UC Irvine UC Irvine Previously Published Works

Title

A note on unitary operators in \$C\sp{\ast}\$-algebras

Permalink

https://escholarship.org/uc/item/3qb0945g

Journal

Duke Mathematical Journal, 33(2)

ISSN

0012-7094

Authors

Russo, B Dye, HA

Publication Date

1966-06-01

DOI

10.1215/s0012-7094-66-03346-1

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

Powered by the <u>California Digital Library</u> University of California

A NOTE ON UNITARY OPERATORS IN C*-ALGEBRAS

BY B. RUSSO AND H. A. DYE

1. Introduction. We show that, in any C^* -algebra \mathfrak{A} , convex linear combinations of unitary operators are uniformly dense in the unit sphere of \mathfrak{A} . In other terms, the unit sphere in \mathfrak{A} is the closed convex hull of its normal extreme points, even though non-normal extreme points will in general be present. This fact has several useful technical implications. For example, it follows that the norm of a linear mapping ϕ between C^* -algebras can be computed using only normal operators, that is, from the effect of ϕ on abelian *-subalgebras. In addition, we show that a linear mapping between C^* -algebras which conserves the identity and sends unitary operators into unitary operators is a C^* -homomorphism.

2. The main result. Let α be a C*-algebra, that is, a uniformly closed selfadjoint algebra of operators on some complex Hilbert space H. Throughout, we assume that α contains the identity operator I. $U(\alpha)$ will denote the set of unitary operators in α , and $co(U(\alpha))$ the convex hull of $U(\alpha)$.

LEMMA 1. In any von Neumann algebra M, co (U(M)) is weakly dense in the unit sphere of M.

Proof. This follows readily from the known fact that, in a von Neumann algebra M with no finite summands, the weak closure of U(M) is the unit sphere ([3, Theorem 1 et seq.]). For completeness, however, we include a proof of the lemma.

Let C denote the weak closure of co(U(M)). To show that C is the unit sphere, by Krein-Mil'man, it suffices to show that C contains all extreme points of the unit sphere. Using [5, Theorem 1], it follows readily that these are the partial isometries V in M such that, for some central projection D, $V^*V \ge D$ and $VV^* \ge I - D$. Therefore, replacing M by appropriate direct summands and noting that $C^* = C$, it suffices to consider the case $V^*V = I$. In addition, we can assume that $VV^* = P \ne I$. Given vectors x_i , y_i $(i = 1, \dots, n)$ and $\epsilon > 0$, we will exhibit a unitary U in M such that $|((U - V)x_i, y_i)| < \epsilon$, for all i. Let \mathfrak{M} be the range of I - P. Then the $V^{\mathfrak{M}}\mathfrak{M}$ are mutually orthogonal $(n \ge 0)$ and the restriction of V to the orthogonal complement \mathfrak{N} of $\bigoplus_{n=0}^{\infty} V^n\mathfrak{M}$ is unitary. Let Q_n be the projection on $V^n\mathfrak{M}$, and choose n such that $||\sum_{k>n} Q_k x_i|| < \epsilon/2(1 + \max ||y_i||)$, for all i. Let U = V on the subspace $\mathfrak{M} \oplus \mathfrak{M} \oplus \cdots \oplus V^n\mathfrak{M}, = V^{*(n+1)}$ on $V^{n+1}\mathfrak{M}$, and = I on $\bigoplus_{k>n+1} V^k\mathfrak{M}$. Then

Received April 27, 1965. This research was supported by a National Science Foundation grant.

U is unitary, $U \in M$, and $|((U - V)x_i, y_i)| = |(\sum_{k>n} (U - V)Q_kx_i, y_i)| \le 2 ||\sum_{k>n} Q_kx_i|| ||y_i|| < \epsilon$. The lemma follows.

THEOREM 1. In any C*-algebra α , $co(U(\alpha))$ is uniformly dense in the unit sphere of α .

Proof. Any C*-algebra is *-isomorphic to a C*-algebra all of whose states are weakly continuous. In fact, let ϕ be the universal representation of α . By definition, $\phi = \bigoplus_{\rho} \phi_{\rho}$, where ρ ranges over the entire state space of α and ϕ_{ρ} is the *-representation of α determined by ρ . Then each state of $\phi(\alpha)$ is canonical (see, for example, [11]). So we may assume in proof that all states of α are weakly continuous.

Suppose $T \in \alpha$, $||T|| \leq 1$, and that T does not lie in the uniform closure of $co(U(\alpha))$. By a standard separation theorem, there will exist a continuous linear functional σ on α , a real c, and an $\epsilon > 0$ such that

(2.1)
$$\operatorname{Re} \sigma(A) \leq c < c + \epsilon \leq \operatorname{Re} \sigma(T),$$

for all A in $co(U(\alpha))$. The functional σ will be a finite linear combination of states of α , each assumed weakly continuous. Let M be the strong closure of α . By the Glimm-Kadison variant of the Kaplansky density theorem [4, Theorem 2]. $U(\alpha)$ is strongly dense in U(M). Therefore, (2.1) holds for all A in co(U(M)). Again by weak continuity, (2.1) holds for all A in the weak closure of co(U(M)). In view of Lemma 1, this is a contradiction. The theorem is proved.

For abelian C^* -algebras (namely, for C(X), X compact Hausdorff), Theorem 1 has been proved by Phelps [8]. Little is known about the pre-closed convex hull $co(U(\alpha))$. For a von Neumann algebra M, co(U(M)) coincides with the unit sphere if and only if M is finite; this follows readily from results in [5]. For a general C^* -algebra, $co(U(\alpha))$ contains the open sphere about 0 of radius $\frac{1}{2}$. [To see this, let the C^* -algebra α act on H, and let A be a regular operator in α of norm 1. If A = U |A| is the polar decomposition of A in L(H), then U is unitary, $|A| \in \alpha$, and so $U = A(|A|)^{-1} \in \alpha$. It is standard that |A| is a convex linear combination of two unitary operators in α , and therefore the same applies to A. Now, if T is any operator in α of norm $< \frac{1}{2}$, then $\pm T + \frac{1}{2}I$ is regular, since $||I - (\pm T + \frac{1}{2}I)|| < 1$, and one has

$$T = \frac{1}{2} \left[(T + \frac{1}{2}I) + (T - \frac{1}{2}I) \right].$$

It follows that T is a convex linear combination of four unitaries.]

3. Applications. Each C*-algebra α is the linear span of its unitary group $U(\alpha)$. For each $A \in \alpha$, we define

$$(3.1) ||A||_{v} = \inf \sum_{i} |\lambda_{i}|,$$

taken over all representations $A = \sum_{i=1}^{n} \lambda_i U_i$ of A as a finite linear combi-

nation of unitaries. A simple calculation shows that $||A||_v$ is a normed algebra norm on α such that $||A|| \leq ||A||_v$.

LEMMA 2. For all A, $||A|| = ||A||_v$.

Proof. Availing ourselves of the comments following Theorem 1, we see that if ||A|| = 1, then for each $\epsilon > 0$, $||(1/(2 + \epsilon))A||_{\upsilon} \le 1$. It follows that $\frac{1}{2} ||A||_{\upsilon} \le ||A|| \le ||A||_{\upsilon}$, for all A, so that the two norms are equivalent. By the theorem, each A with ||A|| = 1 is the ||-limit of a sequence with $||A_n||_{\upsilon} = 1$. Since the A_n must also converge to A in $||_{\upsilon}$ -norm, it follows that $||A||_{\upsilon} = 1$. In general, therefore, $||A|| = ||A||_{\upsilon}$.

Recall that a mapping ϕ between C*-algebras is termed positive if $\phi(A) \ge 0$ whenever $A \ge 0$.

COROLLARY 1. The norm of a linear mapping ϕ of a C*-algebra α in a normed linear space α is $\sup_{U \in U(\alpha)} ||\phi(U)||$. Moreover, if α is a C*-algebra and $\phi(I) = I$, then ϕ is positive if and only if $||\phi|| = 1$.

Proof. Let $K = \sup_{U \in U(\mathfrak{a})} ||\phi(U)||$. If $A \in \mathfrak{a}, A = \sum_i \lambda_i U_i$, then $||\phi(A)|| \le (\sum_i |\lambda_i|)K$, so $||\phi(A)|| \le K ||A||_{\mathcal{V}} = K ||A||$, by Lemma 2.

We turn to the second statement. That $||\phi|| = 1$ entails the positivity of ϕ when $\phi(I) = I$ is well known: if x is a unit vector in the representation space of \mathfrak{G} and if $\sigma(A) = (\phi(A)x, x)$, then σ is a linear functional on \mathfrak{A} of norm 1 with value 1 at I, and any such functional is a state [2; 25]; therefore, $A \geq 0$ forces $\sigma(A) \geq 0$, so that $\phi(A) \geq 0$. Furthermore, the converse is known when the algebra \mathfrak{A} is abelian. In this case, by results of Stinespring [9], ϕ is completely positive, and therefore has the form $\phi(A) = V^*\rho(A)V$, where V is an isometry and ρ is a *-representation of \mathfrak{A} . Therefore, $||\phi(A)|| \leq ||A||$. This fact and the first paragraph show that, for any C*-algebra \mathfrak{A} , the positivity of ϕ entails $||\phi(A)|| \leq ||A||$, for all A. Since $\phi(I) = I$, one therefore has $||\phi|| = 1$.

Using this, one can put Bonsall's minimal norm theorem [1] in the following sharper form: in order that a normed algebra norm $||_0$ on a C^* -algebra coincide with the C^* -norm, it is necessary and sufficient that $||A||_0 \leq ||A||$ on all abelian *-subalgebras of α . Similarly, it follows that an identity-conserving linear order isomorphism between C^* -algebras is an isometry. This reduces [6, Corollary 5] to [5, Theorem 7], which asserts that such a mapping is a C^* isomorphism.

By definition, a C*-homomorphism of a C*-algebra \mathfrak{A} in a C*-algebra \mathfrak{B} is a *-linear mapping ϕ of \mathfrak{A} into \mathfrak{B} such that $\phi(A^2) = \phi(A)^2$, for all self-adjoint A in \mathfrak{A} . As is known (see Størmer [10]), such a mapping is the sum of a *-homomorphism and a *-anti-homomorphism; more precisely, there is a central projection E in the W*-envelope of $\phi(\mathfrak{B})$ such that $A \to \phi(A)E$ is a *-homomorphism and $A \to \phi(A)(I - E)$ is a *-anti-homomorphism.

COROLLARY 2. Let ψ be a linear mapping of the C*-algebra α in the C*-algebra β such that $\psi(U(\alpha)) \subseteq U(\beta)$. Then, ψ has a factorization $\psi(A) = U\phi(A)$, where $U \in U(\beta)$ and ϕ is a C*-homomorphism.

Proof. We set $U = \psi(I)$, $\phi(A) = U^{-1}\psi(A)$. Then ϕ conserves unitaries and $\phi(I) = I$. Application of Corollary 1 shows that $||\phi|| = 1$ and, in turn, that ϕ is positive (and hence, a *-mapping).

It remains to show that $\phi(A^2) = \phi(A)^2$, for all self-adjoint A. In any case, by Kadison's generalized Schwarz inequality, [6], one has $\phi(A^2) \ge \phi(A)^2$. Applying this to a self-adjoint operator of the form $U + U^*(U \in U(\mathfrak{a}))$, one obtains after expansion $\phi(U^2) + \phi(U^2)^* \ge \phi(U)^2 + \phi(U^*)^2$. The same inequality holds with *iU* replacing U. But this reverses the preceding inequality in U. Since, up to a scale factor, each self-adjoint A has the form $U + U^*$, we have proved that $\phi(A^2) = \phi(A)^2$, for all self-adjoint A, and the corollary is proved.

In particular, if M is a finite factor and ψ is a unitary-conserving mapping of M on itself, then the ϕ of the corollary is either a *-isomorphism or a *-antiisomorphism. For factors of type I_n , this has been proved by Marcus [7].

References

- 1. F. F. BONSALL, A minimal property of the norm in some Banach algebras, Journal of the London Mathematical Society, vol. 29(1954), pp. 156-164.
- 2. J. DIXMIER, Les C*-algèbres et leurs représentations, Paris, 1964.
- 3. H. A. DYE, The unitary structure in finite rings of operators, this Journal, vol. 20(1953), pp. 55-69.
- 4. J. G. GLIMM AND R. V. KADISON, Unitary operators in C*-algebras, Pacific Journal of Mathematics, vol. 10(1960), pp. 547-556.
- R. V. KADISON, Isometries of operator algebras, Annals of Mathematics, vol. 54(1951), pp. 325-338.
- 6. R. V. KADISON, A generalized Schwarz inequality and algebraic invariants for operator algebras, Annals of Mathematics, vol. 56(1952), pp. 494–503.
- M. MARCUS, All linear operators leaving the unitary group invariant, this Journal, vol. 26(1959), pp. 155–163.
- 8. R. R. PHELPS, *Extreme points in function algebras*, Notices of the American Mathematical Society, vol. 11(1964), p. 538.
- W. F. STINESPRING, Positive functions on C*-algebras, Proceedings of the American Mathematical Society, vol. 6(1955), pp. 211-216.
- 10. E. Størmer, On the Jordan structure of C*-algebras, to appear.
- Z. TAKEDA, Conjugate spaces of operator algebras, Proceedings of the Japan Academy, vol. 30(1954), pp. 90-95.

UNIVERSITY OF CALIFORNIA, LOS ANGELES