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Abstract

The k-subset sum problem over finite fields is a classical NP-complete problem. Motivated by 

coding theory applications, a more complex problem is the higher m-th moment k-subset sum 

problem over finite fields. We show that there is a deterministic polynomial time algorithm for 

the m-th moment k-subset sum problem over finite fields for each fixed m when the evaluation 

set is the image set of a monomial or Dickson polynomial of any degree n. In the classical case 

m = 1, this recovers previous results of Nguyen-Wang (the case m = 1, p > 2) [24] and the results of 

Choe-Choe (the case m = 1, p = 2) [3].

1. Introduction

One of the most puzzling problems in theoretical computer science, originally posed in 

1971, is to determine whether P = NP [5]. That is, to determine whether the complexity class 

of problems which can be solved in deterministic polynomial time is equivalent to the class 

of problems whose solutions, if any, can be verified in deterministic polynomial time. For a 

comprehensive survey on this topic, see Widgerson’s forthcoming monograph [25].

All NP-complete problems are equivalent to each other under polynomial time reduction. 

One approach to proving that P = NP is to find an NP-complete problem and prove (or 

disprove) that it is deterministically solvable in polynomial time. We choose the k-subset 

sum problem over finite fields [6], which is a classical NP-complete problem. Although this 

problem is out of reach, our aim of this paper is to explore deterministic polynomial time 

algorithms to this and similar variations of this problem in various interesting special cases.

Let p be a prime, q = ps for some integer s > 0, and F q the finite field of q elements. Given a 

subset D = x1, …, xd ⊂ F q and b ∈ F q, let

N(D, b) = # S ⊆ D: ∑
x ∈ S

x = b .

The dense input size of D is d log q, since one can simply list all the d elements of D in 

F q where each takes log q space. The decision subset sum problem (SSP) over finite fields 

Author Manuscript
Accepted for publication in a peer-reviewed journal

National Institute of Standards and Technology • U.S. Department of Commerce

Published in final edited form as:
Finite Fields Appl. 2020 February ; 62: . doi:10.1016/j.ffa.2019.101607.N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript
N

IS
T

 A
uthor M

anuscript



asks if given D and b, can one determine whether N(D, b) > 0 in polynomial time in terms of 

the dense input size d log q? If N(D, b) > 0, then there exists at least one collection S ⊆ D of 

elements which sum to b. This solution, S, can be checked by addition of |S | ≤ d elements 

of size log q, thus SSP ∈ NP for every fixed p. When p = 2, it is a linear algebra problem and 

thus SSP ∈ P. It is known SSP is NP-complete for each fixed p > 2.

Motivated by numerous applications, a more precise version of the SSP is to determine 

whether there exists a subset S ⊆ D of given size k whose elements sum to b given a set 

D and target b as above. The decision version of this k-subset sum problem (k-SSP) is as 

follows. Given a subset D = x1, …, xd ⊂ F q, k ∈ 1, …, d  and b ∈ F q, for

Nk(D, b) = # S ⊆ D: ∑
x ∈ S

x = b, S = k ,

determine whether Nk(D, b) > 0. The decision k-SSP problem is NP-hard for every fixed p, 

including the more difficult case p = 2 which is the main result in [23] determining that 

computing the minimum distance of binary codes is NP-hard. In general, the complexity 

of the k-SSP problem depends on the relationship between d and the modulus q. When 

q = O(poly(d)), dynamic programming solves the problem in polynomial time [9, 20]. The 

trivial exhaustive search algorithm shows that k − SSP ∈ P when q = O(log log q). It is known 

that k-SSP is NP-hard when d = (log q)c for constant c > 0, see [15, 9]. An explicit formula 

for Nk(D, b) was presented for the case of D = F q [16].

In coding theory, k-SSP arises from computing the minimum distance of a linear code 

and the deep hole problem for Reed-Solomon codes. The set D is called the evaluation 
set as it is exactly the evaluation set of the corresponding Reed-Solomon code. If one 

moves further to consider the harder problem of computing the error distance of a received 

word (namely, maximal likelihood decoding) in Reed-Solomon codes, one is naturally lead 

to the following higher moment k-subset sum problem. More formally, given a subset 

D = x1…xd ⊂ F q, k ∈ 1…d , m ∈ ℕ, and b = b1, …, bm ∈ F q
m, determine whether

Nk(D, b, m) = # S ⊆ D: ∑
y ∈ S

yj = bj, 1 ≤ j ≤ m, S = k ,

is positive. This problem is known as the m-th moment k-SSP and its complexity has been 

studied recently. It is proven to be NP-hard for general D if m ≤ 3 [10] or smaller than 

O(log log log q) [11]. An explicit combinatorial formula for Nk(D, b, m) is obtained in [21] 

when m = 2 and D = F q.

All the problems and results above are based on a model where we use the dense input 

D, b  of size O(d log q) by listing all the d elements of D. Though improved solutions to the 

decision k-SSP with such dense input are desired, one may also consider an algebraic input 
model wherein D is the set of images under some polynomial map applied to field elements. 

That is, for some monic polynomial g(x) ∈ F q[x] of degree n,
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D = g F q = g(a):a ∈ F q .

In this situation, the algebraic input size would be n log q since it is enough to write down 

the n coefficients of the input polynomial g(x). A fundamental problem is to ask if the k-SSP 

and the m-th moment k-SSP can be solved in deterministic polynomial time in terms of the 

algebraic input size n log q. This appears more difficult as it is not even clear if the problem 

is in NP because both k and the set size d = |D | ≥ q/n can already be exponential in terms of 

the algebraic input size n log q. No complexity result is yet known for the algebraic model.

The last author conjectured that k-SSP can be solved in deterministic polynomial time in 

algebraic input size n log q if the order of the Galois group Gg of g(x) − t over F q(t) is bounded 

by a polynomial in n log q. The last condition is trivially satisfied if

n = O(log log q/log log log q)

since then Gg ≤ n! is bounded by a polynomial in log q. This condition is also satisfied when 

g(x) is a monomial or Dickson polynomial of any degree n. Note that this conjecture is 

highly non-trivial, as it is not even clear whether the problem is in NP since we are using 

the algebraic (sparse) input size and d ≥ q/n is exponential in n log q for n = O(log log q). 
Thus, we cannot write down all the elements of D as listing all elements of D already takes 

exponential time. In a sense, our set D is given as a black-box.

As a supporting evidence, this conjecture has been proved to be true in the special case when 

the evaluation set D is the image of the monomial xn or Dickson polynomials of degree n: 

see [24] for the case p > 2 and [3] for the case p = 2. The aim of the present paper is to 

extend these results from m = 1 (k-SSP) to the higher m-moment k-SSP for each fixed m. 

Namely, our main result is

Theorem 1.

Let the evaluation set D be the image set of a monomial or a Dickson polynomial of degree 
n over F q. There is a deterministic algorithm which for any given m ∈ ℕ, b ∈ F q

m and integer 

k ≥ 0, decides if Nk(D, b, m) > 0 in time n log q Cm, where Cm is a constant depending only 

on m. In particular, this is a polynomial time algorithm in the algebraic input size n log q for 
each fixed m.

To prove the above theorem, we will need to combine all the techniques available so far: 

dynamic programming for large n > qϵ, Kayal’s algorithm [13] for constant k, Brun sieve for 

medium k, the Li-Wan sieve for large k and p > 2, and the recent Choe-Choe argument [3] 

for large k and p = 2. In addition, we need to employ the Weil bound to prove a crucial new 

partial character sum estimate.
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2. Background

One important tool in our proof is character sum estimates. Let ψ :F q ℂ be an additive 

character. We know from character theory that for a nontrivial character ψ we have 

∑x ∈ F q ψ(x) = 0. However, in the case of the trivial character, the sum is the size of the 

finite field.

Let G = F q and let G be the set of all additive characters for F q. Then we have the following 

equality

∑
ψ ∈ G

ψ(x) = q if x = 0
0 if x ≠ 0 .

Definition

(Dickson Polynomial). Let n be a positive integer and a ∈ F q. The Dickson polynomial of 

degree n is defined as

Dn(x, a) = ∑
i = 0

n/2 n
n − i

n − i
i ( − a)ixn − 2i .

If n = pn1 is divisible by p, one checks that Dpn1(x, a) = Dn1(x, a)p. Thus, we can assume that n
is not divisible by p.

Note that for a = 0, Dn(x, 0) = xn, so we see that Dickson polynomials are generalizations of 

monomials. Of particular use to us is the size of the image of these polynomials, also known 

as the value set. A simple fact for the monomial Dn(x, 0) = xn is that

Dn F q
×, 0 =

q − 1 gcd(n, q − 1) = 1
1
ℓ(q − 1) gcd(n, q − 1) = ℓ

In the first case, the map is 1 to 1; in the latter case, the map is ℓ to 1. It turns out an 

analogous preimage-counting statement holds when a ≠ 0. Chou, Mullen, and Wassermann 

in [4] used a character sum argument to calculate the following.

Notations.

For b, c, d ∈ ℤ, Let bc d denote that bc fully divides d so that bc + 1 ∤ d.

Theorem 2.

Let n ≥ 2 and a ∈ F q
*. If q is even, then Dn

−1 Dn x0, a =

Lai et al. Page 4

Finite Fields Appl. Author manuscript; available in PMC 2024 March 15.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



gcd(n, q − 1) if condition A ℎolds
gcd(n, q + 1) if condition B ℎolds

gcd(n, q − 1) + gcd(n, q + 1)
2 Dn x0, a = 0,

where ‘condition A’ holds if x2 + x0x + a is reducible over F q and Dn x0, a ≠ 0; ‘condition B’ 

holds if x2 + x0x + a is irreducible over F q and Dn x0, a ≠ 0.

If q is odd, let η be the quadratic character of F q. If 2r q2 − 1  then Dn
−1 Dn x0, a =

gcd(n, q − 1) if η x0
2 − 4a = 1 and Dn x0, a ≠ ± 2an/2

gcd(n, q + 1) if η x0
2 − 4a = − 1 and Dn x0, a ≠ ± 2an/2

gcd(n, q − 1)
2 if η x0

2 − 4a = 1 and condition C ℎolds

gcd(n, q + 1)
2 if η x0

2 − 4a = − 1 and condition C ℎolds

gcd(n, q − 1) + gcd(n, q + 1)
2 otℎerwise,

where ‘condition C’ holds if

2t n witℎ 1 ≤ t ≤ r − 1, η(a) = − 1, and Dn x0, a = ± 2an/2

or

2t n witℎ 1 ≤ t ≤ r − 2, η(a) = 1, and Dn x0, a = − 2an/2.

They also showed an explicit formula for the size of the value set of Dn(x, a), denoted |V Dn x, a |. 
We state their result in the odd q case.

Theorem 3.

Let a ∈ F q
*. If 2r q2 − 1  and η is the quadratic character on F q when q is odd, then

V Dn(x, a) = q − 1
2gcd(n, q − 1) + q + 1

2gcd(n, q + 1) + δ

where

δ =
1 if q is odd, 2r − 1 n and η(a) = − 1
1
2 if q is odd, 2t n witℎ 1 ≤ t ≤ r − 2

0 otℎerwise.

As a consequence, for Dickson polynomials of degree n, the value set cardinality d = |D|
can be computed in polynomial time in n log q. Note that for a general polynomial 
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g(x) ∈ F q[x] of degree n, computing the image size g F q  is a difficult problem, and there 

is no known polynomial time algorithm in terms of the algebraic input size n log q, see [2] 

for complexity results and p-adic algorithm.

Weil’s Character Sum Bound

The following classical case of the Weil bound is well known. We shall give a more general 

form later.

Theorem 4.—(Weil Bound) Let f(x) ∈ F q[x] be a polynomial of degree m, where (p, m) = 1
and ψ a non-trivial additive character of F q. Then

∑
x ∈ F q

ψ(f(x)) ≤ (m − 1) q .

For our purposes it will be important to have a good estimate for certain incomplete 

character sums, where the sum is not summing over the full field F q, but over the image 

set D of another polynomial g(x). This is not available yet for general g(x), but can be proved 

for monomials and Dickson polynomials. The monomial case is straightforward.

Proposition 1.—Let f(x) ∈ F q[x] be a polynomial of degree m such that p ∤ m. Let 

D = xn:x ∈ F q  where (n + 1)2 ≤ q. Then

∑
x ∈ D

ψ(f(x)) ≤ m q .

Proof. Without loss of generality, we can assume that n ∣ (q − 1). Let D× = xn:x ∈ F q
× . Using 

the Weil bound above,

∑
x ∈ D

ψ(f(x)) = ψ(f(0)) + ∑
x ∈ D×

ψ(f(x))

= ψ(f(0)) + 1
n ∑

x ∈ F q
×

ψ f xn

= ψ(f(0)) + 1
n ∑

x ∈ F q

ψ f xn − 1
nψ(f(0))

≤ 1 + 1
n (mn − 1) q + 1

n

= 1 + m q − q − 1
n .

If (n + 1)2 ≤ q then we conclude
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∑
x ∈ D

ψ(f(x)) ≤ m q .

When D is the image of Dickson polynomials, the corresponding character sum estimate is 

harder. We need the following version of Weil’s bound, which is the case d = 1 of Theorem 

5.6 in [8].

Theorem 5.—Let fi(t) (1 ≤ i ≤ n) be polynomials in F q[t], let fn + 1(t) be a rational function in 

F q(t), let D1 be the degree of the highest square free divisor of ∏i = 1
n fi(t), let

D2 =
0 deg fn + 1 ≤ 0
deg fn + 1 deg fn + 1 > 0,

let D3 be the degree of the denominator of fn + 1, and let D4 be the degree of the highest square 

free divisor of the denominator of fn + 1(t) which is relatively prime to ∏i = 1
n fi(t).

Let χi:F q
* ℂ*(1 ≤ i ≤ n) be multiplicative characters of F q, and let ψ = ψp ⃘ TrFq/F p for a 

non-trivial additive character ψp:F p ℂ* of F q. Extend χi to F q by setting χi 0 = 0. Suppose 

that fn + 1(t) is not of the form r(t)p − r(t) + c in F q(t). Then, we have

∑
a ∈ F q, fn + 1(a) ≠ ∞

χ1 f1(a) ⋯χn fn(a) ψ fn + 1(a)

≤ D1 + D2 + D3 + D4 − 1 q,

where the sum is taken over those a ∈ F q such that fn + 1(a) is well-defined.

As a consequence, we derive the following character sum bounds.

Corollary 1.—Let ψTr = ψp ⃘ TrFq/F p be the canonical additive character, ψ: F q ℂ* any 

non-trivial additive character of F q, and η: F q
* ℂ* the quadratic character if q is odd. Let 

f(x) be a polynomial in F q[x] of degree m not divisible by p.

1. For all q, we have

∑
x ∈ F q

ψ f Dn(x, a) ≤ (mn − 1) q .

2. If q is odd, then

∑
x ∈ F q

η x2 − 4a ψ f Dn(x, a) ≤ (mn + 1) q .

3. If q is even, then
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∑
x ∈ F q

*
ψTr f Dn(x, a) + a/x2 = ∑

x ∈ F q
*
ψTr f Dn(x, a) + aq/2/x

≤ (mn + 1) q .

Note that none of the polynomials in place of fn + 1(x) are of the form r(t)2 − r(t)+c. This is 

clear if n is also not divisible by p. If n is divisible by can be reduced to the case when n is 

not divisible by p using the identity Dpn1(x, a) = Dn1(x, a)p.

The following lemma is the key character sum estimate we need. The proof follows the 

method used in [14], where the case m = 1 is treated.

Lemma 1.—Let f(x) be a polynomial in F q[x] of degree m not divisible by p. Let 

D = Dn(x, a) ∣ x ∈ F q , for a ∈ F q
*. If ψ : F q, + ℂ* is a non-trivial additive character, then 

the following estimates hold:

∑
x ∈ D

ψ(f(x)) ≤ (mn + 1) q .

Proof. The sum can be rewritten in the following way:

Sf : = ∑
y ∈ D

ψ(f(y)) = ∑
x ∈ F q

ψ f Dn(x, a) 1
Nx

,

where Nx = Dn
−1 Dn(x, a)  is size of the preimage of the value Dn x, a .

When q is even:

By Theorem 2, Nx can be quantified. Let Tr:F q F 2 denote the absolute trace. Using the fact 

that z2 + xz + a is reducible over F q if and only if Tr(a/x2) = 0, we obtain

Sf = ∑
x ∈ F q

*

Tr a/x2 = 0

1
gcd(n, q − 1)ψ f Dn(x, a)

+ ∑
x ∈ F q

*

Tr a/x2 = 1

1
gcd(n, q + 1)ψ f Dn(x, a)

+ 1
gcd(n, q − 1)ψ f Dn(0, a) + O(1),

where O 1  is a constant of size at most 1, which we accept by dropping the Dn(x, a) = 0 case. 

Denote ψ1:F 2 ℂ* as the order two additive character and ψTr = ψ1 ⃘ Tr, which is an additive 

character from F q ℂ*. Simplifying and rearranging gives
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Sf = 1
2gcd(n, q − 1) ∑

x ∈ F q
*
ψ f Dn(x, a) 1 + ψTr a/x2

+ 1
2gcd(n, q + 1) ∑

x ∈ F q
*
ψ f Dn(x, a) 1 − ψTr a/x2

+ 1
gcd(n, q − 1)ψ Dn(0, a) + O(1)

= 1
2gcd(n, q − 1) + 1

2gcd(n, q + 1) ∑
x ∈ F q

*
ψ f Dn(x, a)

+ 1
2gcd(n, q − 1) − 1

2gcd(n, q + 1) ∑
x ∈ F q

*
ψ f Dn(x, a) ψTr a/x2

+ 1
gcd(n, q − 1)ψ f Dn(0, a) + O(1) .

We add and subtract 1
2gcd(n, q − 1) + 1

2gcd(n, q + 1) ψ Dn(0, a)  to complete the first sum:

= 1
2gcd(n, q − 1) + 1

2gcd(n, q + 1) ∑
x ∈ F q

ψ f Dn(x, a)

+ 1
2gcd(n, q − 1) − 1

2gcd(n, q + 1) ∑
x ∈ F q

*
ψ f Dn(x, a) ψTr a/x2

+ 1
2gcd(n, q − 1) − 1

2gcd(n, q + 1) ψ f Dn(0, a) + O(1) .

In order to estimate the sum in second term, take b ∈ F q
* so that ψ(x) = ψTr(bx). Then,

∑
x ∈ F q

*
ψ f Dn(x, a) ψTr a/x2 = ∑

x ∈ F q
*
ψTr bf Dn(x, a) + a/x2 .

Applying the bounds in Corollary 1 with f replaced by bf,

∑
y ∈ D

ψ(f(y)) ≤ 1
2gcd(n, q − 1) + 1

2gcd(n, q + 1) (mn − 1) q

+ 1
2gcd(n, q − 1) − 1

2gcd(n, q + 1) (mn + 1) q + 2
≤ (mn + 1) q .

When q is odd:

We use Theorem 2 again to calculate Nx. Let η be the quadratic character of F q. Then,

Sf = ∑
x ∈ F q

η x2 − 4a = 1

1
gcd(n, q − 1)ψ f Dn(x, a)

+ ∑
x ∈ Fq

η x2 − 4a = − 1

1
gcd(n, q + 1)ψ f Dn(x, a) + O(1) .

Lai et al. Page 9

Finite Fields Appl. Author manuscript; available in PMC 2024 March 15.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



The term O 1  is a constant of size at most 2, which we accept by dropping the complicated 

‘condition C’ and ‘otherwise’ cases. Simplifying and rearranging gives

= 1
2gcd(n, q − 1) ∑

x ∈ F q

ψ f Dn(x, a) 1 + η x2 − 4a

+ 1
2gcd(n, q + 1) ∑

x ∈ F q

ψ f Dn(x, a) 1 − η x2 − 4a + O(1)

= 1
2gcd(n, q − 1) + 1

2gcd(n, q + 1) ∑
x ∈ F q

ψ f Dn(x, a)

+ 1
2gcd(n, q − 1) − 1

2gcd(n, q + 1) ∑
x ∈ F q

ψ f Dn(x, a) η x2 − 4a + O(1) .

Again applying the bounds in Corollary 1,

∑
x ∈ D

ψ(f(x)) ≤ 1
2gcd(n, q − 1) + 1

2gcd(n, q + 1) (mn − 1) q

+ 1
2gcd(n, q − 1) − 1

2gcd(n, q + 1) (mn + 1) q + 2
≤ (mn + 1) q,

which was to be shown.

3. k-MSS(m)

We are now ready to consider the m-th moment k-subset sum problem, called k-MSS(m) 

in short. Let m be a fixed positive integer, and g(x) ∈ F q[x] a polynomial of degree n with 

1 ≤ n ≤ q − 1. Let D = g(Fq) and b = b1, b2, …, bm ∈ F q
m. Since we are working in characteristic 

p, we have that

x1
i + … + xk

i p = x1
ip + … + xk

ip .

Thus if bi
p ≠ bip for some ip ≤ m, there will be no solutions for k-MSS(m). We may and will 

assume without loss of generality that bi
p = bip for all ip ≤ m in the remainder of this paper. 

Under this assumption, the j-th power equation in the k-MSS(m) can and will be dropped for 

all j divisible by p. We introduce the moment subset sum problem over subsets of size k with 

the value

Nk(D, b, m) = # S ⊆ D: S = k, ∑
y ∈ S

yj = bj, 1 ≤ j ≤ m, p ∤ j .

(1)

Thus, from now on, the index j is not divisible by p.

Determining whether Nk(D, b, m) > 0 for given D, b  is the decision version of the k-MSS(m) 

problem. As indicated before, we shall use the algebraic input size n log q.
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A closely related number is the following integer

Mk(D, b, m) = # x1, …, xk ∈ Dk: ∑
i = 1

k
xi

j = bj,

xi1 ≠ xi2, ∀1 ≤ i1 < i2 ≤ k, p ∤ j .

It is clear that Mk(D, b, m) = k!Nk(D, b, m). We deduce

Theorem 6.

Mk(D, b, m) > 0 if and only if Nk(D, b, m) > 0.

Our problem is then reduced to deciding if Mk(D, b, m) > 0. We can reduce this further by 

assuming from duality that k ≤ |D|
2 . The strategy to solve this new problem is to combine 

all established strategy for the original subset sum problem and apply the character sum 

estimate from the previous section. We shall divide k into three different ranges (constant 

size, medium size, and large size) and use different methods for each range. The main idea 

is to use algorithms to solve boundary cases of parameters and to use mathematics to prove 

that there is a solution when the parameters are in the interior.

If n > qϵ for constant ϵ > 0, then q is polynomial in n log q, we can list all elements of D
and use the dynamic programming algorithm to solve the moment subset sum problem in 

polynomial time. In the rest of the paper, we can and will assume that n > qϵ for whatever 

positive constant ϵ we like.

k-MSS(m) for constant size k
The main result that we depend on in this case is due to Kayal’s solvability algorithm 

for polynomial systems over F q [13], which we summarize in this context below. Let 

f1, …, fm ∈ F q x1, …, xn , where d is the maximum degree of all the polynomials. Let 

X = V f1, …, fm  be the vanishing locus of the polynomials. Then the result of Kayal [13] 

states the following.

Theorem 7.—The decision problem of # X F q > 0 can be solved in time dncn
m log q

O(1)

for some constant c > 0.

Most of the conditions in our k-MSS(m) are polynomial equations, with the exception 

of the condition that the individual elements be distinct. However, we can easily 

consider this as a polynomial equation at the cost of additional variables. Recall that 

D = g(x):x ∈ F q, g(x) ∈ F q[x]  for a polynomial g such that deg(g) = n. For the context of 

the k-MSS(m) problem, we are deciding if the variety determined by the vanishing locus of

fj x1, …, xk : = ∑
i = 1

k
g xi

j − bj, 1 ≤ j ≤ m, p ∤ j
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and the additional polynomial

∏
i1 ≠ i2

g xi1 − g xi2 xk + 1 − 1

have any F q-rational points. Each fj has degree at most mn while the latter polynomial has 

degree n k
2 + 1.

Now, we assume k ≤ 3m + 1. Then, n k
2 + 1 ≤ 9nm2 and so all the polynomials have degrees 

bounded by 9nm2. Kayal’s theorem then states that the decision problem can be solved in 

time which is bounded by a polynomial in

9nm2 (k + 1)O((k + 1))
log q = 9nm2 (3m + 2)O((3m + 2))

log q .

This is (n log q)O(1) if m is a constant. Thus, we have proved the following

Theorem 8.—Let D = g(x):x ∈ F q , where g(x) ∈ F q[x] is any polynomial of degree n. Let 

m be a fixed positive integer. Assume k ≤ 3m + 1. Then k-MSS(m) can be solved in time 

(n log q)O(1).

The condition k ≤ 3m + 1 is all we need. It can be replaced by any bound k ≤ C, where C is a 

positive constant.

k-MSS(m) for medium k
We now consider the moment k-subset sum problem for medium-sized values of k. Fix 

m ∈ ℕ and b = b1, …, bm ∈ F q
m. Let mp = | j:1 ≤ j ≤ m, p ∤ j | = m − m

p . Recall

Mk(D, b, m) = ∣ x1, …, xk ∈ Dk: ∑
i = 1

k
xi

j − bj = 0,

xi1 ≠ xi2 for i1 ≠ i2,
1 ≤ j ≤ m, p ∤ j ∣ .

and

Mk(D, b, m) = k! ⋅ Nk(D, b, m),

where

Nk(D, b, m) = S ⊆ D: S = k, ∑
y ∈ S

yj = bj, 1 ≤ j ≤ m, p ∤ j .
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We wish to decide when Mk(D, b, m) > 0. The following theorem solves this problem in the 

medium k case if certain character sum estimate is satisfied.

Theorem 9.—Let D = g F q  where g ∈ F q[x] with deg(g) = n. Let ψ be a non-trivial additive 

character of F q. Assume for all f ∈ F q[x] of degree at most m with p ∤ deg(f), we have

∑
x ∈ D

ψ(f(x)) ≤ (mn + 1) q .

Then Mk(D, b, m) > 0  if 2n(mn + 1) < q
1
6  and 3mp + 1 < k < q

5
12 .

The first condition 2n(mn + 1) < q
1
6  is already satisfied, since we assumed that n < qϵ and m is 

a constant. The second condition 3mp + 1 < k < q
5
12  gives the medium range of k.

Towards this goal, we define

R = x1, …, xk ∈ Dk: ∑
i = 1

k
xi

j − bj = 0, 1 ≤ j ≤ m, p ∤ j .

We say that x = x1, …, xk ∈ F q
k is a solution if x satisfies the conditions of R. Note that R

counts solutions allowing for those with repeated entries, while Mk(D, b, m) strictly counts 

solutions with distinct entries. We define a new number to compute the size of R with the 

added condition that the first two entries of x are equal. Let

R12 = x1, …, xk ∈ Dk:2x2
j + ∑

i = 3

k
xi

j − bj = 0, 1 ≤ j ≤ m, p ∤ j .

Then the Brun sieve tells us that

Mk(D, b, m) ≥ R − ∑
1 ≤ i1 < i2 ≤ k

Ri1i2 = R − k
2 R12 .

In order to rewrite R and R12 and obtain bounds for them we use the theory of characters.

Let ψ be a non-trivial additive character of F q. Recall that we have the following summation:

∑
c ∈ F q

ψ(cx) = q if x = 0
0 if x ≠ 0

We would like to take advantage of this character sum equation and have it evaluate 

solutions positively and evaluate non-solutions to zero. Thus we have the following identity.
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∏
j = 1, p ∤ j

m
∑

c ∈ F q

ψ c ∑
i = 1

k
xi

j − bj = qmp if x is a solution
0 if x is not a solution

With this in mind, we can rewrite R as below

R = 1
qmp

∑
x ∈ Dk

∏
j = 1, p ∤ j

m
∑

c ∈ F q

ψ c ∑
i = 1

k
xi

j − bj

= 1
qmp

∑
x ∈ Dk

∑
c ∈ F q

mp
∏

j = 1, p ∤ j

m
ψ cj ∑

i = 1

k
xi

j − bj

= 1
qmp

∑
c ∈ F q

mp
∑

x ∈ Dk
∏

j = 1, p ∤ j

m
ψ cj ∑

i = 1

k
xi

j − bj

= 1
qmp

∑
c ∈ F q

mp
∑

x ∈ Dk
ψ ∑

j = 1, p ∤ j

m
cj ∑

i = 1

k
xi

j − bj

By separating the contribution of the trivial term, we obtain the following.

R = 1
qmp

∑
x ∈ Dk

ψ(0) + 1
qmp

∑
0 ≠ c ∈ F q

mp
∑

x ∈ Dk
ψ ∑

j = 1, p ∤ j

m
cj ∑

i = 1

k
xi

j − bj

= D k

qmp
+ 1

qmp
∑

0 ≠ c ∈ F q
mp

Sc,

where

Sc = ∑
x ∈ Dk

ψ ∑
j = 1, p ∤ j

m
cj ∑

i = 1

k
xi

j − bj .

Define

f(x) = ∑
j = 1, p ∤ j

m
cjxj ∈ F q[x] .

Note that the degree of f is not divisible by p and at most m if c ≠ 0. We now want to find an 

upper bound for Sc. Notice that
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ψ ∑
j = 1, p ∤ j

m
cj ∑

i = 1

k
xi

j − bj = ψ ∑
i = 1

k
∑

j = 1, p ∤ j

m
cjxi

j − ∑
j = 1, p ∤ j

m
cjbj

= ψ f x1 ⋯ψ f xk ψ − ∑
j = 1, p ∤ j

m
cjbj

= A ⋅ ∏
i = 1

k
ψ f xi .

Here, A = ψ −∑j = 1, p ∤ j
m cjbj  and so |A | = ∏j = 1, p ∤ j

m ψ −cjbj = 1. Thus

Sc = ∑
x ∈ Dk

∏
i = 1

k
ψ f xi = ∑

x ∈ D
ψ(f(x))

k
.

By our assumptions, Sc ≤ (mn + 1)k( q)k. It follows that

R − D k

qmp
= 1

qmp
∑

0 ≠ c ∈ F q
mp

Sc ≤ qmp − 1
qmp

(mn + 1)kq
k
2 < (mn + 1)kq

k
2 .

Remark.—Igor Shparlinski kindly informed us that the average trick in [22] can be 

used to improve the above coefficient (mn + 1)k to (mn + 1)k − 2. The idea is to apply the 

character sum estimate only to the first (k − 2)-th power in |Sc|, and then compute the 

remaining quadratic moment over c, resulting in a saving of the factor (mn + 1)2. This type 

of improvement is theoretically interesting, but would not significantly improve the lower 

bound condition 3mp + 1 < k in our theorem, which is enough for our algorithmic purpose of 

this paper.

Now we can rewrite R12 in a similar way.

R12 = 1
qmp

∑
x ∈ Dk − 1

∏
j = 1, p ∤ j

m
∑

c ∈ F q

ψ c 2x1
j + ∑

i = 3

k
xi

j − bj

= 1
qmp

∑
x ∈ Dk − 1

∑
c ∈ F q

mp
∏

j = 1, p ∤ j

m
ψ cj 2x1

j + ∑
i = 3

k
xi

j − bj

= 1
qmp

∑
c ∈ F g

mp
∑

x ∈ Dk − 1
∏

j = 1, p ∤ j

m
ψ cj 2x1

j + ∑
i = 3

k
xi

j − bj

= 1
qmp

∑
c ∈ F q

mp
∑

x ∈ Dk − 1
ψ ∑

j = 1, p ∤ j

m
cj 2x1

j + ∑
i = 3

k
xi

j − bj

By separating the contribution of the trivial character, we obtain the following.
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R12 = 1
qmp

∑
x ∈ Dk − 1

ψ(0) + 1
qmp

∑
0 ≠ c ∈ F q

mp
∑

x ∈ Dk − 1
ψ ∑

j = 1, p ∤ j

m
cj 2x1

j + ∑
i = 3

k
xi

j − bj

= D k − 1

qmp
+ 1

qmp
∑

0 ≠ c ∈ F q
mp

Sc
12,

where

Sc
12 = ∑

x ∈ Dk − 1
ψ ∑

j = 1, p ∤ j

m
cj 2x1

j + ∑
i = 3

k
xi

j − bj .

By a similar manipulation in the previous case,

Sc
12 = ∑

x ∈ Dk − 1
ψ 2f x1 ψ f x3 ⋯ψ f xk ψ − ∑

j = 1, p ∤ j

m
cjbj

= A ∑
x ∈ Dk − 1

ψ 2f x1 ∏
i = 3

k
ψ f xi .

By a rearrangement, we see that

Sc
12 = ∑

x ∈ Dk − 1
ψ 2f x1 ∏

i = 3

k
ψ f xi

= ∑
x ∈ D

ψ(2f(x)) ∑
x ∈ D

ψ(f(x))
k − 2

By our assumptions, if p > 2 (and thus 2 ≠ 0),

Sc
12 ≤ (mn + 1) q(mn + 1)k − 2( q)k − 2

= (mn + 1)k − 1q
k − 1

2 .

The case p = 2 can be handled in a similar way, and one get the alternate bound

Sc
12 ≤ D (mn + 1)k − 2q

k − 2
2 .

We assume that p > 2 for simplicity. Now we have that
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R12 − D k − 1

qmp
= 1

qmp
∑

0 ≠ c ∈ F q
mp

Sc
12

≤ 1
qmp

∑
0 ≠ c ∈ F q

mp
(mn + 1)k − 1q

k − 1
2

= qmp − 1
qmp

(mn + 1)k − 1q
k − 1

2

< (mn + 1)k − 1q
k − 1

2 .

Since we have the following two inequalities,

R12 − D k − 1

qmP
< (mn + 1)k − 1q

k − 1
2

R − D k

qmp
< (mn + 1)kq

k
2

We see that

D k

qmp
− (mn + 1)kq

k
2 < R, and

R12 < D k − 1

qmp
+ (mn + 1)k − 1q

k − 1
2 .

Then

R − k
2 R12 > D k

qmp
− (mn + 1)kq

k
2 − k

2
D k − 1

qmp
+ (mn + 1)k − 1q

k − 1
2

= D
k − 1 1

qmp
D − k

2 − (mn + 1)k − 1q
k − 1

2 (mn + 1) q + k
2

= 1
qmp

D
k − 1

D − k
2 − (mn + 1)k − 1q

k − 1
2 (mn + 1) q + k

2 .

We wish to show that R − k
2 R12 is positive and thus we need to show that

D
k − 1

D − k
2 ≥ qmp(mn + 1)k − 1q

k − 1
2 (mn + 1) q + k

2 .

However since deg(g) = n we know that |D | ≥ q
n . Thus it is enough to show that

q
n

k − 1 q
n − k

2 ≥ qmp + k − 1
2 (mn + 1)k − 1 (mn + 1) q + k

2 .
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Towards this goal, we utilize our assumptions that 2n(mn + 1) < q
1
6  and 3mp + 1 < k < q

5
12 . It 

is enough to prove

q
n

k − 1
≥ qmp + k − 1

2 (mn + 1)k − 1, q
n − k

2 ≥ (mn + 1) q + k
2 .

For the first inequality, we have

q
n

k − 1
> qmp + k − 1

2 (mn + 1)k − 1 qk − 1 − mp − k − 1
2 > (mn + 1)k − 1nk − 1

q
k − 1

2 − mp > (mn + 1)k − 1nk − 1.

Since, 2n(mn + 1) < q
1
6 , the right side is bounded by

(mn + 1)k − 1nk − 1 < (n(mn + 1))k − 1 < q
k − 1

6 .

Our problem is now reduced to showing that q
k − 1

6 + mp < q
k − 1

2 . Namely,

mp < k − 1
2 − k − 1

6 = k − 1
3 .

This is satisfied since 3mp + 1 < k. Thus we have shown that

q
n

k − 1
> qmp + k − 1

2 (mn + 1)k − 1 .

(2)

For the second inequality, we need to show that n(mn + 1) q + 2n k
2 < q. Since k < q

5
12  and 

2n(mn + 1) < q
1
6 , we know that k2n < q

5
6q

1
6 /2 = q/2. We deduce that

n(mn + 1) q + 2n k
2 < q1/6 + 1/2

2 + q
2 < q .

(3)

The theorem is proved.

Corollary 2.—Let D = xd:x ∈ F q  or D = Dn(x, a):x ∈ F q  for a ∈ F q
×. Then Mk(D, b, m) > 0

if 2n(mn + 1) < q
1
6  and 3mp + 1 < k < q

5
12 .

Let ψ be a non-trivial additive character of F q. We have shown that all f ∈ F q[x] of degree at 

most m with p ∤ deg(f),
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∑
x ∈ D

ψ(f(x)) ≤ m q

if D = xd:x ∈ F q , and

∑
x ∈ D

ψ(f(x)) ≤ (mn + 1) q

if D = Dn(x, a):x ∈ F q . Since m q ≤ (mn + 1) q, the character sum condition in Theorem 9 is 

satisfied. The medium case is proved.

k-MSS(m) for large k
Following established procedures, we use the Li-Wan sieve [17] to analyze large values of k. 

This method has been used several times [26, 14, 17, 18, 19, 24] and is now standard. So, we 

will only give an outline and indicate the differences. We begin by discussing the relevant 

notation and concepts that we will apply in our context. In this section, we assume that D
is the image of a monomial or Dickson polynomial of degree n. The relevant character sum 

estimate is then true.

We use the notation Sk to denote the symmetric group on k letters. For a permutation τ ∈ Sk, 

its disjoint cycle decomposition is written as

τ = a1a2⋯am1 am1 + 1⋯am2 ⋯ amk − 1 + 1⋯amk .

We shall refer to τ interchangeably with its disjoint cycle decomposition, which we fix 

beforehand.

Denote by X = x1, …, xk ∈ Dk:xi ≠ xj, ∀i ≠ j . For the sake of brevity, we will denote 

k-tuples from such products by x = (x1, ..., xk) when there is no risk of confusion. Let ψ be a 

fixed non-trivial additive character of F q. Recall from earlier sections that we are interested 

in

ℎc x1, …, xk = ψ ∑
j = 1, p ∤ j

m
cj ∑

i = 1

k
xi

j − bj ,

where c is not the zero vector. Now define

F (c) = ∑
x ∈ X

ℎc x1, …, xk , Fτ(c) = ∑
x ∈ Xτ

ℎc x1, …xk ,

where Xτ consists of tuples in X such that
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xa1 = … = xam1, xm1 + 1 = … = xm2, …, xmk − 1 + 1 = … = xmk

and so on. Now, let’s think of τ as having e1 cycles of length 1, e2 cycles of length 2, and so 

on, up until ek cycles of length k. Note that ∑i = 1
k iei = k. This allows us to express Fτ(c) as:

Fτ(c) = ∑
x ∈ Xτ

ψ ∑
j = 1, p ∤ j

m
cj ∑

i = 1

k
i xi1

j + ⋯ + xiei
j − bj

= ∑
xil ∈ D

1 ≤ i ≤ k
1 ≤ l ≤ ei

ψ ∑
j = 1, p ∤ j

m
cj ∑

i = 1

k
∑

l = 1

ei
ixil

j ψ ∑
j = 1, p ∤ j

m
− cjbj

= ∑
xi1 ∈ D
1 ≤ i ≤ k
1 ≤ l ≤ ei

∏
i = 1

k
ψi ∑

p ∤ j, l
cjxil

j ψ ∑
j = 1, p ∤ j

m
− cjbj .

Let’s consider the inner sum.

∑
xil ∈ D

ψi ∑
p ∤ j

cjxil
j = ∑

x ∈ D
ψi(f(x))

where f(x) = ∑j = 1, p ∤ j
m cjxj. Hence, if the cj’s are not all zero, we have

∑
x ∈ D

ψ ∑
j = 1, p ∤ j

m
cjxj ≤ (mn + 1) q .

Now the order of ψ is p so the order of ψi is p
(i, p) , which is p unless p | i, in which case it is 1. 

Therefore,

Fτ(c) = ∏
i = 1

k
∑

x ∈ D
ψi ∑

j = 1, p ∤ j

m
cjxj

ei

ψ ∑
j = 1, p ∤ j

m
− cjbj

≤ ∏
i

1 ≤ i ≤ k
p ∤ i

((mn + 1) q)ei ⋅ ∏
i

1 ≤ i ≤ k
p ∣ i

D

ei

.

The Li-Wan sieve says that
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F (c) = ∑
∑ iei = k

( − 1)k − ∑eiN e1, …, ek Fe1, …, ek(c),

where N(e1, ..., ek) denote the number of permutations in Sk with cycle type (e1, ..., ek), and 

Fe1, ..., ek(c) denotes Fτ(c) for any τ of cycle type (e1, ..., ek). Using the above estimates and 

Lemma 2.1 in [24], one obtains

F (c) ≤ ∑
∑ iei = k

N e1, …, ek ∏
(i, p) = 1

((mn + 1) q)ei ⋅ ∏
p ∣ i

D
ei

≤ (mn + 1) q + k + (mn + 1) q − D
p − 1

k

where we define (x)k: = x(x − 1) · · · (x − k + 1).

This concludes our discussion of the Li-Wan sieve and the appropriate adaptation to our 

context. We now return to the framework in the previous sections, with notations as before. 

Let’s see how the above Li-Wan helps. Recall

Mk(D, b, m) = ∑
x ∈ X

1
qmp

∑
ψ

∑
cj ∈ Fq

ψ ∑
j = 1, p ∤ j

m
cj ∑

i = 1

k
xi

j − bj

= 1
qmp

( D )k + ∑
⋯cj⋯ ≠ 0

1
qmp

F (c) .

Therefore,

Mk(D, b, m) − 1
qmp

( D )k < (mn + 1) q + k + (mn + 1) q − D
p − 1

k

(4)

≤ 0.013 D + k + D
p k

.

(5)

This estimate is the analogue of equation (2.3) in [24], resulting from assuming that

(mn + 1) q ≤ 0.013 D .

If further, 6mplnq ≤ k ≤ |D|
2 , the same argument as in the proof of Theorem 2.3 in [24] shows 

that Mk(D, b, m) > 0. We obtain
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Theorem 10.

Let D be the image of a monomial of Dickson polynomial of degree n. Assume that p > 2, 

(mn + 1) q ≤ 0.013 |D|, and 6mplnq ≤ k ≤ |D|
2 . Then, Mk(D, b, m) > 0.

Note that if p = 2, the same proof works, but only for k in the shorter range 

6mplnq ≤ k ≤ (1 − ϵ) |D|
2 . That is, k cannot reach all the way to |D | /2 if p = 2.

Since |D | ≥ q/n, the condition (mn + 1) q ≤ 0.013 |D| is satisfied if n(mn + 1) q ≤ 0.013q, 

which is certainly true since m is fixed and n < qε.

4. Case p = 2
Finally, we examine the k-MSS(m) over finite fields of characteristic 2. The result of Kayal 

used for k-MSS(m) for constant k and our proof for medium-sized k still hold in fields of 

characteristic 2. Thus Theorem 8 and Theorem 9 hold for q = ps for all p.

To analyze the case p = 2 for large k, we rely on recent work by Choe and Choe [3] 

which examines the subset sum problem over finite fields of characteristic 2. We adjust the 

definitions of this work to fit the higher moment subset sum problem over D which are 

images of monomials or Dickson polynomials. Note that p = 2 in this section.

We will prove an analogue of Theorem 2.3 in [3]. Let D ⊆ F q, k ≤ |D | /2 and 

f(x) = ∑j = 1, p ∤ j
m cjxj, for cj ∈ F q. For a nontrivial additive character ψ of F q, define

SD(k, ψ, f) = ∑
x1 ∈ D

xi distinct

ψ f x1 + f x2 + … + f xk .

Although SD(k, ψ, f) sums over distinct xi, there is no assumption that the f(xi) are distinct. 

Over finite fields of characteristic 2, however, if xi = xj, then f(xi) = f(xj), and the sum 

f(xi) + f(xj) is equivalent to 2f(xi) = 0. It follows that

SD(2, ψ, f) = ∑
x1, x2 ∈ D

x1 ≠ x2

ψ f x1 + f x2

= ∑
x ∈ D

ψ(f(x))
2

− D .

By induction, one derives the following recursive formula for SD(k, ψ, f) for all k > 1, which 

is the analogue of Lemma 2.1 [3].

Lemma 2.

Let D be a subset of F q with more than 3 elements and ψ be a nontrivial additive character of 

F q. Then
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• SD(1, ψ, f) = ∑x ∈ Dψ(f(x)),

• SD(2, ψ, f) = SD(1, ψ, f)2 − |D|, and

• SD(k, ψ, f) = SD(1, ψ, f)SD(k − 1, ψ, f) − ( |D | − k + 2)(k − 1)SD(k − 2, ψ, f), where 

3 ≤ k ≤ ∣ D ∣.

This lemma can be applied to prove analogue of Lemma 2.2 [3]. The statement is as follows.

Lemma 3.

Let D be a subset of F q with more than 4 elements and ψ be a nontrivial additive character of 

F q. If

∑
x ∈ D

ψ(f(x)) ≤ 1
16 D ,

then

SD(k, ψ, f) < 9
16 D

k
, for all k ≤ D

2 .

From Proposition 1 and Lemma 1, it follows that when D is the image of a polynomial of 

degree n such that the value set character sum estimate satisfies

∑
x ∈ D

ψ(f(x)) < (mn + 1) q,

then the condition n(mn + 1) < 1
16 q implies that

∑
x ∈ D

ψ(f(x)) < (mn + 1) q < 1
16

q
n ≤ 1

16 D .

As in the previous section, a standard character sum argument gives the inequality

Mk(D, b, m) − 1
q

mp( D )k < maxc ∈ Fqmp − 0S k, ψ, fc ,

(6)

where fc = ∑j = 1, p ∤ j
m cjxj. It follows that

Mk(D, b, m) − 1
q

mp( D )k < 9
16 D

k
.

(7)

Lai et al. Page 23

Finite Fields Appl. Author manuscript; available in PMC 2024 March 15.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



The same argument as in the proof of Theorem 2.3 in [3] shows that if

3.05smp = 3.05mplog2q < k ≤ D /2,

then

1
qmp

( D )k > 1
qmp

9
16 D

k
2smp = 9

16 D
k

,

(8)

Thus, we obtain

Theorem 11.

Let p = 2 and n(mn + 1) < 1
16 q. Then Mk(D, b, m) > 0 for all 3.05mplog2q < k ≤ |D | /2.

We conclude that when D is the image of degree n polynomial satisfying the value set 

character sum estimate in Lemma 1, the m-th moment subset sum problem over D can be 

solved in deterministic polynomial time in the algebraic input size n log q, for every constant 

m. In particular, this is true when D is the image of a monomial of Dickson polynomial of 

degree n.

5 Conclusion

We show that there is a deterministic polynomial time algorithm for the m-th moment 

k-subset sum problem over finite fields for each fixed m when the evaluation set is the image 

set of a monomial or Dickson polynomial of any degree n. An open problem is to ask if 

Theorem 1 can be proved for larger range of m, say, m = O(log log q). The difficulty lies in 

the small k range such as k ≤ 3m + 1.
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