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Design of isolated buildings to achieve targeted collapse limits
through Gaussian process modeling
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Engineering, Berkeley, 94720, California, USA

bUniversity of California, Berkeley, Department of Civil & Environmental Engineering, 781 Davis
Hall, Berkeley, 94720, California, USA

Abstract

For conventional buildings, design codes are written such that minimally compliant buildings

should achieve code-defined collapse probabilities under maximum considered events (MCE);

however, there is no systematic methodology to ensure this is true for isolated buildings. Itera-

tive design in which a building is designed, its collapse probability is assessed via incremental

dynamic analysis (IDA), and the design is adjusted is inefficient given the number of permuta-

tions in the building-isolation system design. In an effort to find acceptable design parameters

to achieve desired levels of collapse in early stages, full non-linear dynamic analysis can be by-

passed through the use of data-driven predictive modeling. Gaussian process (GP) regression is

utilized to fit and predict isolated building performance based on a generalized database. A se-

quential adaptive design of experiment (DoE) method is then used to strategically select training

points to minimize the predictive variance of the GP model, and the model is then used to predict

collapse probabilities for isolated structures. From here, designs that admit higher collapse prob-

abilities than the threshold are removed, and cost optimization is performed to inversely select

designs parameters such that the building will meet the targeted collapse probability under the

MCE. Using this information, discussion on necessary required design parameters (e.g., moat

clearance and strength reduction ratio) is given.
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1. Introduction

In recent years, significant effort has been made to advance performance-based seismic de-

sign for new construction of isolated structures[1, 2, 3]. Increasingly, structures of large impor-

tance and scale, such as hospitals, high rises, and other buildings that serve critical roles, are

designed to performance-based metrics and seek to limit the casualties, cost of repair, and eco-

nomic downtime in the case of a major seismic event. ASCE 7 [4] outlines targeted probabilities

of failure under the risk-targeted maximum considered event (MCER) for buildings of various risk

categories, and, through capacity design, conventional non-isolated structures typically achieve

these targets. However, studies such as Bao and Becker [5], Shao and Mahin [6], and Kitayama

and Constantinou [7] have shown that isolated structures designed to the ASCE 7-22 minimum

criteria in Chapter 17 may have unacceptable collapse probability for the MCER. Although many

designers choose to use more enhanced analysis in design such as nonlinear dynamic analysis,

these studies have found that when prescriptively using the minimum design provisions, the iso-

lator design displacements specified in the code may not satisfy targeted reliability for some

seismically isolated structures.

However, the scopes of these studies are limited to a handful of archetype designs, and work

remains to be done in generalizing the results to all permutations of isolated structures. Further-

more, the research generally observes the effect of only one or two design parameters at a time,

such as the moat wall distance [8] or superstructure type and strength [5]. As a result, there is a

lack of information from which regressions can be made and more generalized design parameters

can be targeted based on the desired performance. Given the increased costs of design and con-

struction for isolated buildings and the recent push for performance-based design, owners and

designers should be able to easily target decreased collapse probabilities for the design of any

generalized isolated structure based on a series of starting parameters characterizing the entire

system.

As such, the goal for this study is to build a predictive model based on a generalized random

database that allows a user to select the optimal design parameters given a targeted risk-specific

objective. A full design space of parameters is included, characterizing both the properties of

the isolation system as well as the main superstructure in relation to the hazard. A Gaussian pro-

cess model serves as the predictive model from which a design can be optimized in conjunction

with an appropriate user-defined cost function. Similar approaches to inverse design have been
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utilized in previous research, such as Ning and Xie [9], using logistic regression to find optimal

isolator and damping properties in bridge models, though optimized for minimizing annual re-

pair cost rather than collapse probability. While the framework of this framework of the model

can be adapted to any class of structures, the focus of the paper will demonstrate the process as

applied to a steel moment frame isolated with triple friction pendulums (TFP) targeting a specific

collapse probability.

Naturally, an exhaustive database that indexes all possible combinations of parameters and

design is computationally expensive. As such, researchers have employed machine learning ap-

proaches to tackle the problem of modeling the design space probabilistically and optimizing

a design based on the desired performance. The predictive model bypasses the need for high

fidelity numerical modeling once the probabilistic model is built on an initial dataset. Gaussian

processes (GPs), or kriging methods, is a machine learning approach often used in the engineer-

ing context due to its ability to incorporate known patterns into the representation of stochastic

models. Previous studies have successfully applied GPs to enhance ground motion models [10]

and lifecycle analyses [11]. These studies also incorporate adaptive design of experiments (DoE)

to intelligently generate new design data to further reduce uncertainty in the models. For design,

past studies using data-driven modeling, such as GP-aided design of floor isolation systems [12]

or GP-aided design of high-rises under wind loading [13, 14], are focused on the design of a spe-

cific structure, rather than generalized (location independent) structural design parameters. Here,

the GP-aided design is extended to both the superstructure and the isolation system through the

generation of hazard level-normalized design parameters.

2. Methodology

Initially, a database of basis points is generated from which the predictive model is built with

each basis point being the result of a single nonlinear dynamic analysis of a randomly designed

moment frame coupled with a randomly selected ground motion run in OpenSees [15] and eval-

uated for collapse. The structures considered are special steel moment resisting frame (SMRF),

ranging from 3 to 8 stories and 3 to 8 bays, isolated with triple friction pendulum bearings. Us-

ing the results as a training set, a predictive model is created using Gaussian processes. From

the predictive model, design regions with high predictive variance are identified as candidates

for additional numerical experiments. To target future experiments to regions where points are
3



more informative, a weighted scale factor based on the leave-one-out cross validation error of

the dataset is applied. The weighted predictive variance is then used as the selection criteria

for additional experiments. Additional designs are then generated and analyzed to return a new

training point, and the GP model is updated and evaluated to ensure that the model’s predictive

accuracy reaches convergence.

2.1. Building design and modeling

For each basis point, a set of inputs is randomly generated from which the building design is

automated, and a ground motion is scaled. Latin hypercube sampling with uniform distribution

is utilized to select design parameters to ensure a good representation of isolator bearings and

superstructures, providing a strong basis for the Gaussian process model. The design parameters

and their ranges are presented in Table 1. Parameter ranges are chosen to reflect typical values

that might be seen in the design of an isolated structure. The range of design spectrum accelera-

tion at period T = 1 sec, S 1, is chosen to reflect typical values found in coastal CA. The range for

the amplification of the moat gap is chosen to investigate potential increases from the code rec-

ommended value that might be necessary. The strength reduction factor Ry is treated as a random

variable to explore the effects of increasing the superstructure strength. With an upper bound

value of Ry = 2.25, prior to impact against the moat wall, the structure is expected to experience

a small amount of yielding, and for the lower bound of Ry = 0.5 the structure is expected to

remain elastic until impact. ASCE 7-22 limits the Ry value for isolated structures to 3/8 of the

Ry of the fixed base system, capped at 2.0. For steel SMRFs this results in a maximum value of

Ry of 2.0, though, here, this is raised to investigate additional strength reduction. However, in

practice many engineers use a Ry of 1.

The ranges of bearing parameters are chosen to match typical ranges seen in isolated struc-

tures. The TFP bearing design is derived from the unidirectional multi-stage behavior of TFP

bearings [16], excluding hardening. For simplicity, this study examines bearings with the outer

sliding surfaces sharing the same friction coefficient and radius of curvature. For each com-

bination of TM , Q, and k1/k2, an effective damping ratio ζM is determined. With the spectral

acceleration S 1, effective period TM , and effective damping ζM , ASCE 7-22 gives the expected

displacement capacity DM of the isolated system as

DM =
gS aTM T 2

M

4π2BM
=

gS 1TM

4π2BM
(1)
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Table 1: Design inputs from Latin hypercube sampling

Input Description Lower bound Upper bound

S 1 Spectral acceleration at T = 1 s 0.8 1.3

TM Target effective bearing period 2.5 sec 5.0 sec

k1/k2 Ratio of bearing inner to outer slider stiffness 5.0 18.0

Q Normalized bearing backstrength 0.05 0.12

Aδ Amplification for moat gap 0.5 1.2

Ry Strength reduction factor 0.5 2.25

Lbldg Length of building 23 m (75 ft) 76 m (250 ft)

hbldg Height of building 9 m (30 ft) 30 m (100 ft)

where BM is the damping coefficient from ASCE 7-22, associated with the damping ratio ζM .

The first sliding coefficient, µ1, is specified by the designer, and the remainder of the bearing

parameters are calculated as shown in Fenz and Constantinou [16] or Becker and Mahin [17].

DM is not amplified for torsion as the analysis is conducted with a unidirectional ground motion.

However, the constructed moat gap Dmoat is modified by multiplying DM by Aδ to explore its

effect on the collapse probability.

The superstructure is then designed following the equivalent static lateral force procedure

outlined in ASCE 7-22. The design base shear for the structure is calculated as Vb = DMkM/Ry,

where kM is the effective stiffness of the bearings. ASCE 7-22 allows a maximum story drift of

θ = 0.015 at the MCER level for isolated buildings. The additional stiffness required for drift

controls the member sizing and introduces overstrength into the structure. The beams are first

selected by narrowing W-shapes down to those that have sufficient second moment of area Ix

to meet the drift requirements and section modulus Zx to meet the strength requirements. The

lightest compact W-shapes are selected for the beams, and then the columns are selected to

ensure a strong column weak beam mechanism. At the end of the design procedure, the friction

coefficients µ, slider radii of curvature R, moat gap Dmoat, column sections, and beam sections

have been selected.

A 2-D model is constructed in OpenSees. The modeling details are provided in Figure 1.

Beam and column elements are modeled using elastic beams with a bilinear rotational spring

that exhibits strength deterioration at each end using the modified Ibarra-Krawinkler material
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model. Parameters for the material model are selected for the beam sections chosen, placing

each plastic hinge at 10% of the member length away from each joint [18]. A leaning column

is incorporated to include the mass from the unmodeled gravity frames and to model P-∆ forces

from the rest of the structure. A rigid diaphragm using elastic elements spans the layer above the

isolators. The superstructure is assigned 5% stiffness proportional damping.
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Figure 1: Modeling components of the TFP-isolated steel moment frames

The bearings are modeled with triple friction pendulum elements using simple Coulomb

friction [19]. For this study, uplift is not considered as a failure mode due to the complexity of

modeling the bearing uplift behavior. The moat wall is implemented using zero-length impact

elements, which use an approximated damped Hertz contact model with calibration parameters

as provided by Muthukumar and DesRoches [20].

For this study, collapse is judged by a collapse fragility curve, shown in Figure 2, using a

lognormal cumulative distribution function. For the SMRF, the distribution is defined with 84%

probability of collapse at a drift θ = 0.10 and a dispersion of β = 0.25 for frames with less than

4 stories and a β = 0.35 for taller frames [21]. Sensitivity to this definition is later discussed,

as structures such as intermediate or ordinary moment frames will damage and fail at lower drift

ratios. As the displacement of the isolators are bound by the moat, their failure is not included in

the analysis.
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Figure 2: Defined collapse fragility curve for special steel moment resisting frame

2.2. Ground motion scaling

A library of 133 ground motion records is collected via the PEER NGA-West database [22]

from events of magnitudes ranging from 6.0 to 8.0 and distances from 0.0 km to 80.0 km. Vs,30

velocities were limited from 200 m/s to 600 m/s to select for site with dense soil or soft rock.

For each trial, a random S 1 is generated to create a target spectrum. A random ground motion

is selected and then scaled over a range of interest, defined as T = [0.2TM , 1.5TM] seconds. As

this range does not extend into the constant acceleration region, the design spectrum is created

without the need for an S S value. The scaled ground motion’s actual pseudo-acceleration at TM ,

S aTM , is recorded. This spectral acceleration is selected to represent the intensity measure as it

appears in the ASCE 7-22 displacement capacity DM .

2.3. Generalized design parameters

To generalize findings across a range of sites with different seismic hazard and different

structural configurations, generalized design parameters are used for the inputs to the predic-

tive model. Furthermore, using generalized parameters for the GP model has the advantage of

generalizing the problem across different isolation systems without being constrained to friction

pendulum bearings. For each design, the parameters are calculated after input variables are se-

lected, and the isolated structure is designed. The dimensionless parameters are chosen due to

their direct connection to the design.
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A set of six design variables relevant to isolated system design (Dmoat, TM , T f b, ζM , Ry, S aTM )

is considered for this problem. The variables ζM , TM/T f b, and Ry represent the structural damp-

ing, effective isolation period amplification, and strength reduction factor, respectively. ζM , and

Ry are already dimensionless, and TM is normalized with T f b, the calculated fundamental period

of the equivalent fixed base superstructure, to characterize the isolation period lengthening. The

remaining variables are reduced into the moat gap ratio GR = 4π2Dmoat / (S aTM g/BM)T 2
M . This

parameter relates the constructed moat gap to the linear displacement demand from the hazard

being designed for. For ASCE 7-22 compliance, the MCER would be considered. The list of

covariates for the GP model is then finalized as GR, ζM , Ry, and TM/T f b.

2.4. Gaussian process model

To enable the selection of an inverse design, the probability of collapse across the design

space needs to be estimated, which presents a major challenge in the inverse design problem.

The calculation of collapse probability for every point in the design space would require a pro-

hibitive amount of dynamic analyses performed. In lieu of this, Gaussian process [23] is used

as a surrogate model to allow for efficient calculation of the probability of collapse p(x) over

the design space. The advantages of choosing a GP are multi-faceted. First, GPs are analytic

in nature, meaning that the optimized model is computed exactly in closed form. This, in turn,

allows for the direct calculation of the regressed mean predictions and bias metrics such as the

leave-one-out error. GPs are also generative models, which means that a probability distribu-

tion is determined for each prediction involving both the mean and variance, which allows for

design-of-experiment procedures to be carried out targeting high variance regions, as well as

probabilistic outcomes, such as collapse probability, to be inferred. Additionally, the choice of

covariance functions, or kernels, in specifying the GP allows for prior knowledge to be applied

to the regression.

The Gaussian process (Equation 2) is defined by a mean function µ(x), which expresses

the prior expected output of the input and a covariance function k(x, x′) which expresses the

similarity of inputs in their effects on the output and provides a representation of the features of

x to train upon. The underlying function is then expressed as

f (x) = GP
(
µ(x), k(x, x′)

)
(2)
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The outcome of collapse probability y is the Gaussian process combined with a noise variable ϵ.

y = f (x) + ϵ (3)

Ultimately, the goal of Gaussian process regression is to predict the outcome, which in this

study is the posterior probability that a new design point collapses. A prior mean function and

covariance is then placed on the GP prediction f (x). A zero-mean function µ(x) = 0 is chosen to

avoid placing a prior relationship between design parameters and collapse probability. Therefore,

expressions for the predictive mean and variance consist entirely of the GP’s kernel components.

For the covariance function, the squared exponential kernel with an isotropic lengthscale

(SE-ISO) augmented with white noise is chosen, in which one lengthscale is shared between all

covariates. The SE-ISO kernel is defined as

k(x, x′) = a exp
(
−

1
2
∥x − x′∥2

ℓ2

)
+ σ2

nI
[
x = x′

]
(4)

which requires the hyperparameters a, a scaling coefficient, the lengthscale parameter ℓ, and the

white noise parameter σ2
n to determine the covariance between two points x and x′. The white

noise σ2
n is present if x = x′. The squared exponential kernel is commonly used in GP regression

and is chosen here for its smoothness. The isotropic lengthscale ℓ is deliberately favored over a

separate ℓ for each covariate. This results in variables with stronger correlations having a more

“tempered” effect on the response, while variables with weaker correlations see their effects

boosted. Previous trials of this study used individual lengthscales for each design variable by

using the squared exponential kernel with automatic relevance determination. This resulted in

overprediction based on GR while ignoring the effects of TM/T f b, which is later seen to be

influential in Figure 4. Thus, the SE-ISO kernel is favored. This is chosen to explore interaction

between all variables regardless of their importance and also to highlight more nuanced effects

that bearing parameters might play on collapse probability.

The hyperparameters are free variables in the regression and are determined by optimizing the

dataset’s likelihood, whereby the log marginal likelihood of the training data is maximized using

the Broyden-Fletcher-Goldfarb-Shanno algorithm [24]. Upon optimization of the hyperparame-

ters, the GP model then returns a best fit predictive mean and variance of collapse probability for

any given point x∗ as closed form expressions by forming the posterior distribution, arriving at

f (x∗) = k(x, x∗)⊤
[
k(x, x) + σ2

nI
]−1

y (5)
9



where I is the identity matrix, f ∗ is the mean prediction of the unknown test point x∗, and {x, y}

form the existing dataset.

2.5. Adaptive design of experiment

Although creating the initial database using a Latin hypercube with variables from Table

1 allows for a uniform distribution of input parameters in the design space, the database has

shortcomings. First, there is no rigidly defined quantity of initial data points deemed “sufficient”;

this is especially important for the problem of predicting structural collapse which is particularly

noisy. Accordingly, there lacks a way to determine if the variance or accuracy metrics of the

model’s predictive capabilities have converged. Additionally, although the data uniformly covers

the space of the input parameters, there is no guarantee that the output is equally informative

across the space of the design parameters. For example, regions where the GR and superstructure

strength are large result in consistent non-collapse predictions, meaning that the GP model does

not gain information useful for reducing collapse prediction errors in regions where variance and

collapse likelihood are high.

To address these shortcomings, an adaptive DoE is used to augment the GP model. This

process seeks to selectively introduce new data points that maximize the information gain while

running the fewest additional experiments as possible [25]. A DoE process based on reducing

the predictive variance of the GP is utilized to introduce new experiments. Sequential design

of experiment seeks to find an additional data point xn+1 that will increase the information gain,

which is defined in this study as MS Ew, the localized mean squared error (MSE) at the candi-

date point evaluated under the current dataset weighted with the leave-one-out cross-validation

(LOOCV) error [26] :

MS Ew(x) = W(x)σ2(x|X) (6)

where σ2(x|X) is the predictive variance of the GP at the current point x under the current dataset

X:

σ2(x|X) = k(x∗, x∗) − k(x, x∗)⊤
[
k(x, x) + σ2

nI
]−1

k(x, x∗) (7)

W(x) is a weight defined by

W(x) =

∑n
i=1 γ(x, xi)

(
ecv

i

)2∑n
i=1 γ(x, xi)

(8)

where ecv
i is the LOOCV error associated with omitting point xi from the GP. ecv

i can be calculated

in closed-form [27] upon tuning the GP at the current step and serves as a proxy to approximate
10



prediction bias and infer “important” regions in the model, and is expressed as

ecv
i =

[
k(x, x)−1y

]
i

k(x, x)−1
ii

(9)

Since the value is only known at discrete values of the existing points xi in the training set, a

smoothing weight γ(x, xi) inversely proportional to the normalized distance to point xi is used to

extrapolate ecv
i to every point in the design space

γ(x, xi) = exp
(
−

∥∥∥∥∥x − xi

ℓ

∥∥∥∥∥2)
(10)

where ∥ · ∥ is chosen as a L2-vector norm, ℓ is the lengthscale hyperparameter of the kernel in

Equation 4, and the division in the function is element-wise.

The ideal point added by DoE is then a point xn+1 that maximizes MS Ew(x); however, this

criterion simply involves the estimation of the localized mean squared error without considering

its impact on the mean squared error of the design space as a whole. This leads to several neg-

ative side effects, such as a tendency to place new experiments in boundary regions or clustered

in the same location. Although this can be combated by using an integrated MSE approach, a

proportional sampling approach is opted for in this study to save computational burden. The se-

lection criterion MS Ew is evaluated across considered design space and is used as a desired sam-

pling probability. During the design of experiments, additional experiment points are sampled

proportionally to the selection criterion MS Ew using rejection sampling in batches of multiple

points. By using proportional sampling to select batches of data points proportional to MS Ew,

new points introduced are more likely to be in regions exhibiting both high variance and equal

likelihood of having collapse as non-collapse, although points in regions of lower MS Ew are still

occasionally added to provide additional exploration of points across the domain. This is partic-

ularly useful when the model lacks data to distinguish regions of distinctly high variance or bias

(flatter distributions of MS Ew), such as the case when the DoE process is starting from a smaller

dataset. In this study, the batch size is set at 5 experiments, and the GP model is refit after every

batch to update the hyperparameters regularly while still using the advantages of batch sampling

described above.

To assess the global accuracy of the GP model, this study uses a normalized root mean

squared error (NRMSE) of the LOOCV error metric

NRMS Ecv =

√∑n
i=1

(
ecv

i

)2
/n

maxi yi −mini yi
(11)

11



where yi are the outcome probabilities of collapse in the training set. This study uses two stopping

criteria for the DoE process: a global accuracy metric defined as the reduction of NRMS Ecv

below a threshold of 0.01, or a relative convergence metric defined as when NRMS Ecv does not

change more than 0.001 for 10 added batches in a row. The motivation for the global accuracy

metric is to attempt to achieve an average error of prediction roughly equal to 1% of collapse.

The relative convergence metric is used to identify when the DoE model achieves diminishing

return, and the selected 0.001 threshold, representing 0.1% difference in collapse probability

prediction relative to its previous iteration, serves to limit the size of the training set to keep the

O(n3) computational burden of the GP regression to a reasonable magnitude.

2.6. Grid search on cost function

After the completion of the DoE process, the final database is used to train the Gaussian

process model, and the model returns collapse probability predictions for a uniform mesh over

all possible design points. The inverse design problem can now be formulated as the optimization

problem

x∗ = arg min
x∈Xa

c(x) (12)

where c(x) is the construction cost of the design x, a function of the cost of erecting the frame

as well as the land cost to accommodate the isolation gap. In the optimization problem above,

the chosen design x∗ is restricted to only designs in the subspace Xa of designs that satisfy the

acceptable collapse probability limit

p(x) ≤ p∗ (13)

where p∗ is the acceptable collapse probability limit at a given hazard level, and p(x) is the GP-

predicted collapse probability. The inverse design optimization problem in Equation 12 is solved

by minimizing the cost function c(x) via a simple grid search. In practice, commonly defined

cost functions for optimization could be related to the cost of the structure, mean annual loss,

losses under a specified intensity measure, or metrics pertaining to the physical performance of

the structure, such as peak story acceleration or isolation layer displacement.

Here, a simple cost function is defined considering representative upfront construction and

development costs of the steel in the superstructure and the land given the moat distance. The

land cost is taken as $2,837 per m2 ($263 per sq ft) as a representative value of development in

San Francisco, CA [28]. To estimate the cost of the superstructure strength, a unit cost of $4.41
12



per kg. ($2.00 per lb) is taken for steel. The cost of each structure in the database is calculated

and normalized by the building area to account for varying building layouts. A linear regression

is then performed for the normalized steel cost on the design base shear for the superstructure

(Vs). The total cost function is then evaluated as

c(x) = $263 × Amoat(x) + (C1Vs(x) +C2) × Abldg(x) (14)

where Amoat and Abldg are the areas covered by the building plus moat and just the building

respectively, and C1 and C2 are regression coefficients for a structure’s steel cost per area as a

function of the design base shear. From the final database, the coefficients are C1 = 1.51 × 10−3

and C2 = 13.7. The cost function is then minimized over the acceptable design space using a

grid search across combinations of design variables.

3. Example design selection

To illustrate the inverse design method, three cost-optimal designs are sought for isolated

SMRFs, targeting 10%, 5%, and 2.5% maximum collapse probability.

3.1. Data trends and design of experiment

An initial data set of 50 trials was generated, and the completed DoE process resulted in a

final database of 785 experiments. The convergence history of the root mean squared error on

a test set (RMSE), the leave one out cross validation NRMSE, as well as the NRMSE’s change

are shown Figure 3. In addition to the initial 50 training points, 50 additional points were kept

unseen from the GP model as a test set to benchmark the GP’s accuracy. In this example, the

global accuracy metric is never achieved, but rather the DoE process is halted by the relative

convergence metric. The GP model initially sees improvement as points are added, and the

RMSE on the test set converges to around 0.122. The NRMSE-LOOCV is measured on the

training set as simulations are added during the DoE process, and the value hovers around a

range of around 0.10 to 0.13 until the relative convergence criterion is reached. In Figure 3c), the

change in NRMSE-LOOCV decreases with diminishing return after approximately 100 points

added, which implies gradual convergence of NRMSE-LOOCV. There are abrupt changes in the

NRMSE-LOOCV, which can be explained as the addition of data points that are more difficult

to predict (e.g. higher collapse likelihood than predicted); however, the magnitude of changes
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decrease as the set approaches convergence. Although a stricter convergence criterion could be

defined, it is also prudent to avoid overfitting on the training set, demonstrated by the plateau in

improvements to accuracy on the holdout set in Figure 3a).
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Figure 3: Convergence history of a) holdout set RMSE; b) LOOCV-NRMSE of the training set; and c) difference in

NRMSE-LOOCV from the previous batch of points

Across all simulations, 31.2% experienced impact against the moat wall, and the mean peak

drift across the dataset is θ = 0.019. The distribution of the input parameters against the output

peak drift of the structural analyses is shown in Figure 4, categorized by if the building im-

pacts the moat wall. Generally, moat wall impact results in a distinct increase in recorded story

drift. As such, there is a clear trend between the GR and drift. Weaker trends are present in Ry

and TM/T f b, which sees slight correlation between lower drift and decreasing Ry or increasing

TM/T f b.

Figure 5 shows the histogram of the original set of data, as well as the points added via DoE.

Although the original dataset is generated with a uniform distribution of the inputs in Table 1,

the original point histogram shows that this distribution is non-uniform in several dimensions

of the design variables. After the DoE selections, several additional observations can be made

regarding the choice of the points. The DoE strategy exhibits exploration characteristics, notably

by adding points in low ζM and higher GR domains, where variance is high due to the sparsity

of data in the original set. The DoE criterion also shows characteristics of bias exploitation by

adding experiments where collapse is more likely, which is seen by a higher density of points

added in higher Ry and lower TM/T f b regions. This shows that using proportional sampling to

the weighted variance criterion results in new points in both regions of high variance and regions
14
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Figure 4: Effect of design variables on peak story drift

where individual data points contribute more to the overall prediction.

Figure 6 compares the GP predictions of collapse at 2D slices in the 4 design dimensions

using the initial dataset and the finalized dataset with 735 additional points. Figure 6b) shows

the MS Ew selection criterion. From the initial 50 points, very few of the displayed points in

Figure 6a) exhibits significant collapse probability, and the collapse predictions are low across

the design space. Figure 6b) shows that the selection criterion favors structures with low GR,

with a preference for weaker structures (higher Ry). Figures 6c) and d) show the final model

predictions. Compared to the pre-DoE model, Figure 6c) shows a higher collapse probability,

particularly with the top left corner (weaker superstructures, smaller isolation gaps) having a

sharp increase in collapse probability compared to the initial predictions. In the TM/T f b and

ζM dimensions, shown in Figure 6d), predictions show a higher collapse probability for lower

damping ratios and smaller TM/T f b.
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3.2. GP model predictions

After supplementing the initial database with additional experiments, the GP model is eval-

uated. Figure 7 presents the contours of the predicted probability of collapse across a range of

design parameters. The contours indicate that increasing GR and superstructure strength both

heavily influences the collapse probability. Since impact against the moat wall introduces ex-

tremely large forces that result in drift, it is reasonable that larger moat gaps are the dominant

contributors to decreasing collapse likelihood. Comparing the two columns of the figure, Ry is

effective in reducing collapse probability, more so under smaller TM/T f b conditions, where the

displacement responses are not strongly concentrated in the isolation layer. Under higher TM/T f b

values, GR clearly has more influence than Ry. These results are consistent with the findings of

Bao and Becker [5], which found that designs increasing displacement capacity reduces failure

probability more than designing the frame to be stronger.

Figure 7 also shows the minimum gap necessary to achieve several collapse probability tar-

gets at Ry = 2.0. For a SMRF, to achieve 10% collapse with TM/T f b = 2.0, ζM = 0.15, and

Ry = 2.0 (Figure 7c), the GP model suggests that the gap ratio should be at 0.93, that is 93% of

the code-specified expected maximum displacement. By lowering Ry to 1.5, thereby increasing

superstructure strength by 25%, the required GR to maintain the same probability of collapse

reduces dramatically, from 0.89 to 0.47. It is important to note that this study focuses on col-

lapse and does not cover functionality of the building. Therefore, designs found to be sufficient

in achieving the desired collapse may sustain significant damage, attaining high story drifts to

magnitudes that would require significant repair if not complete replacement. It is expected that

imposing higher functionality targets on the GP would push the design boundary for the param-

eters to be more conservative.

Figure 7 also shows the corresponding recommended GR for contours of lower collapse

probabilities of 5% and 2.5%. At 5% target, the required GR in Figure 7c) is 1.27 (27% above

code minimum) for Ry = 2.0. This gap amplification increases to 1.50 (50% larger than code

minimum) when targeting 2.5% collapse probability. ASCE 7-22 does not provide for different

designs for higher performance targets for isolated structures, however as shown, larger GR and

stronger superstructures are recommended when aiming for lower collapse probabilities. Values

for displacement limits given fixed Ry, TM/T f b, and ζM , as illustrated in Figure 7, could be used

in codes to enable targeted performance.
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Figure 7: GP predicted collapse probability contours at several constant TM/T f b and ζM values. Constant lines show

minimum allowable GR at fixed Ry for 10%, 5% and 2.5% risk targets from left to right

The effects of TM/T f b and ζM are visible across the plots in Figure 7 and are directly plotted

in Figure 8. From the scatter plots in Figure 4, it should be expected that these variables have an

effect on collapse probability, albeit less markedly compared to GR and Ry. Increasing TM/T f b,

observed by moving from Figures 7a), c), and e) to the respective Figures 7b), d), and f), results

in an overall reduction of collapse probability on the contours, allowing for smaller acceptable

GR values to attain the same collapse probability. This agrees with the core concept of base
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isolation, which favors higher period amplification of the structure to lower the spectral demands

felt on the system.
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Figure 8: Effect of TM/T f b and ζM on GP collapse probability predictions

Increasing ζM does not always have a linear effect on collapse probability; the increase from

ζM = 0.10 to ζM = 0.15 under TM/T f b = 2.0 results in increasing collapse probability, while

further increasing ζM to 0.20 lowers collapse probability. Referring again to Figure 4d), the

trend with ζM is much weaker than for the other three variables. Nevertheless, ζM is still a

consequential variable within the GP predictions, particularly at larger TM/T f b conditions, which

is a result of the selection of the isotropic squared-exponential kernel, which utilizes one shared

lengthscale between all four dimensions. Although the SE-ISO kernel slightly overexaggerates

the effects of a less important variable like ζM and vice versa, it allows for the observation of

more minor trends which may be missed otherwise. As the current study is limited to collapse
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probability defined on interstory drift, it is expected that TM/T f b and ζM might be less influential

parameters compared to GR and Ry. However, they contribute to acceleration and velocity of

the structure, which are important contributors to repair costs not incorporated in this study.

Additionally, in design, TM/T f b and ζM also contribute to determining the isolator displacement

capacity DM in conjunction with GR, which has an impact on the optimization function via

construction cost.

3.3. Inverse design

As an example of the inverse design process, a 4-story 4-bay frame design is sought for a

design spectrum defined by S 1 = 1.017 g, assumed to represent the MCER. Using the GP output,

a space of design variables that result in collapse likelihood predictions lower than a target failure

probability is identified. Although the most cost optimal design is later identified and discussed,

a set of Pareto optimal designs could also be presented. The set of Pareto optimal designs is

obtained from the multiobjective optimization problem

XPF = arg min
x∈Xd

{c(x), p(x)} (15)

where XPF , the Pareto front, is the set of design points that are dominant, meaning that no other

design points simultaneously improve both the cost and the predicted collapse probability of the

structure. Points not belonging to the Pareto front are considered “dominated” points. Figure 9a)

shows that a large portion of the Pareto front lies in the realm of designs that achieve extremely

low probabilities of collapse, which indicates that many designs are likely to achieve the 10%

collapse probability target under the defined collapse definition for SMRFs. Since no truncation

is used in the GP output, collapse prediction values < 0 are present and effectively represent

negligible collapse probability. Figures 9b) and c) present the set of Pareto efficient designs in the

space of the original design parameters. In Figure 9b), two types of designs are present: designs

that minimize collapse probability with higher superstructure strength and GR values above 1.0

are clustered at the bottom of the plot, while designs at the top, with weaker structures and

smaller GR, are Pareto efficient by achieving lower costs. Other than a few exceptions, designs

with ζM = 0.25 tend to be Pareto efficient (see Figure 9c) since high damping is associated with

lower collapse probability while also decreasing land cost through reducing the design isolator

displacement DM; as such, Pareto efficient designs exhibit high damping. Similarly, the Pareto

efficient designs span the range of TM/T f b, which shows that these designs are Pareto efficient
20



in reducing collapse probability (achieving the lowest collapse probability among other designs

with the same cost), while the small cluster of low ζM and TM/T f b designs are Pareto efficient in

the upfront cost dimension.
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Figure 9: Illustration of Pareto efficient designs in the decision variable space

A single design is then selected from the Pareto set, optimizing the lowest upfront cost within

the acceptable design space. For target collapse probabilities of 10%, 5%, and 2.5%, the design

parameters are presented in Table 2. Upon optimizing for collapse probability and cost, the in-

verse procedure selects the minimum considered gap for all targets while increasing the isolation

period TM/T f b for lower collapse targets. For a 10% collapse probability at the MCER level

targeted by ASCE 7-22, the cost optimization aided by GP selects a design with the minimum

acceptable gap of 60.0% of the code recommended displacement capacity while lowering the

superstructure strength from the code recommendation to a reduction factor of Ry = 2.25, with

an isolation ratio of TM/T f b = 2.16 and damping of ζM = 0.25. It should be noted that these

values lie on the boundary of the considered design space which is an artifact of a single cost

metric in the optimization function. Under the current collapse definitions, the superstructure has

adequate strength to avoid collapse-inducing drift ratios, though this may not be true for other

superstructures such as intermediate moment frames.

For special moment frames, all three designs show parameters that have smaller moat gaps

and weaker superstructure strength when compared to code minimum. These designs are conse-

quences of (1) the collapse definition, and (2) the cost function selected. As such, they should not

be taken as recommended designs. Furthermore, this study does not predict damage prior to col-
21



Table 2: GP inverse designed structure parameters based on cost optimization

Target % collapse GR TM/T f b ζM Ry DM GP % collapse Total cost

10 % 0.6∗ 2.16 0.25∗ 2.25∗ 18.92 cm 9.45% $4.655 M

5 % 0.6∗ 2.79 0.25∗ 2.25∗ 24.46 cm 4.64% $4.659 M

2.5 % 0.6∗ 3.10 0.25∗ 2.25∗ 27.23 cm 2.42% $4.663 M

Baseline 1.0 3.00 0.15 2.00 51.97 cm 5.85% $4.721 M

∗ Indicates variable lies on the bounds of the considered design space.

lapse. Functionality-focused design that aims at more stringent performance targets would result

in isolation parameters that reduce story drift significantly, likely through increasing GR to mini-

mize moat wall impact and lowering Ry to reduce overall drifts. Also not considered are damage

to nonstructural components, which are often sensitive to floor accelerations and velocities and

could result in the inverse design giving more weight to TM/T f b or ζM .

3.4. Sensitivity analysis

The optimization problem in Equation 12 is sensitive to cost definitions as well as the collapse

fragility as defined in Figure 2. Figure 10 shows the change in the cost optimal design variables

as several conditions are changed, including the mean drift of the collapse fragility θ, unit land

cost, and unit steel cost. Changes in design variable are shown relative to the selected designs

in Table 2. The collapse definition has a significant effect on the selected design. At limit states

with lower θ, the necessary GR increases and Ry decreases. Thus, if designing an intermediate

or ordinary moment frame with reduced ductility capacity, larger moat gaps and superstructure

design strength would be required to achieve the same collapse probability. Changing the drift

limit state could also be used as a proxy for conducting inverse design to achieve stricter limit

states such as immediate occupancy or functionality.

The optimal inverse design also changes considerably as project constraints like resource

prices change. As land and steel prices rise, there is a tradeoff to maintain the same allowable

probability while minimizing cost. As land price rises, isolator displacement is reduced by low-

ering TM/T f b, which results in a stiffer isolator system. In response, superstructure strength is

increased with the goal of keeping story drifts low. The inverse is true when steel price rises,

with Ry increasing to lower the steel cost while TM/T f b increases to provide a more flexible iso-

lation system. Figure 10d) also presents the effect of the collapse fragility definition on predicted
22



Table 3: Bearing and frame parameters from GP-aided inverse designs

Target

Design specifications Collapse %

GR µ1 µ2 R1 R2 Largest Columns Estimated

beam % collapse

10% 0.60 0.024 0.25 274 mm 1469 mm W30X90 W14X257 9.45%

5% 0.60 0.057 0.11 274 mm 1469 mm W27X84 W14X233 4.64%

2.5% 0.60 0.045 0.10 274 mm 1827 mm W24X84 W14X233 2.42%

Baseline 1.000 0.037 0.13 764 mm 1424 mm W27X84 W14X233 5.85%

collapse probability of the code-minimum baseline design, defined as a structure with GR = 1.0,

Ry = 2.0, TM/T f b = 3.0, and ζM = 0.15 that would be typical in design practice. While this study

sets median collapse drift ratio θ at 0.078, the GP prediction approaches 10% as θ shifts lower to

values more likely seen in intermediate moment frames, which agrees more with previous find-

ings for isolated special moment frames, such as Masroor and Mosqueda [8], which concluded

that a code-recommended design (GR = 1.0, TM/T f b ≃ 2.0, ζM ≃ 0.15) achieved the 10% target

with 9.7% collapse when defining θ = 0.05.

3.5. Validation via incremental dynamic analysis

To validate the Gaussian process model results, collapse fragility curves are generated using

the FEMA P-695 methodology [29] for the three designs targeting the different probabilities of

collapse shown in Table 2. For a randomly selected MCER spectrum with S 1 = 1.017 g, the

superstructure and isolator design parameters for the three designs are presented in Table 3. To

calculate the bearing period TM , the fixed base period is estimated from ASCE-7 procedures

T f b = 1.4 × 0.0724 × h0.8
n (16)

where hn is the height of the four-story building in meters. The inversely designed TM/T f b value

is then used to calculate the bearing period TM .

The designs are subjected to a full nonlinear IDA. Additionally, analysis is performed for a

baseline design using the code-prescribed minimum displacement capacity and Ry = 2.0 with

TM/T f b = 3.0 s and ζM = 0.15 designed using the equivalent lateral force procedure in ASCE 7-

22. From the library of 133 ground motions, 50 records are scaled to match the design spectrum
23
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Figure 10: Sensitivity analysis for cost optimal design parameters to achieve different collapse targets across a) defined

mean collapse drift, b) land cost, and c) steel cost; d) Sensitivity of predicted baseline collapse to defined mean collapse

drift

amplified by 1.0×, 1.5×, and 2.0× the MCER. Figure 11 shows a boxplot of the MCER level

peak story drift of the three designs along with the baseline design as found from the nonlinear

time history analyses of the ground motion suite. The boxplot shows that the median drifts
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exhibit trends as expected, with lower collapse target designs experiencing less story drift than

higher targets counterpart. The probability of collapse is then evaluated from drift as was done

for the database generation, and the mean probability of collapse across all ground motions in

the intensity level is used as a data point. A lognormal distribution is fit through the data via a

maximum likelihood estimation (MLE).
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Figure 11: Boxplot of peak story drift at MCER level for inverse designs

Figure 12 and Table 4 present the fragility curves for the IDA performed on the inversely

designed buildings. Under raw observed percentage of collapse at the MCER level, the 5% and

2.5% designs achieved their targeted collapse probability (1.37% and 1.53%, respectively), while

the 10% design observed a collapse frequency of 11.6%. Notably, the SMRF baseline design

achieved risks well below the target 10% from ASCE 7-22 with a 1.9% collapse probability at

the MCER level, which becomes 1.6% when adjusted for the MLE fit that considers the 1.5×

and 2.0× MCE levels. With the MLE fit, the GP-aided designs for 5% and 2.5% collapse met

their targets with 1.73% and 1.69%, while the 10% design exceeded its target with 12.8%. Al-

though the 5% design individually recorded lower collapse estimation at the three discrete MCE

experiments than the 2.5% design, its MLE fit collapse probability at MCE = 1.0 is higher than

the 2.5%. This is an artifact of the MLE curve fitting, which minimizes error among the three
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points by changing the lognormal mean and dispersion parameters. Although these estimates

could be adjusted for additional uncertainty through provisions in FEMA P-695 [29], likely re-

sulting in increased collapse probabilities, this is not performed for this study since FEMA P-695

procedures were derived for fixed base structures.
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Figure 12: Collapse fragility curves of MCER levels from incremental dynamic analysis results for GP-aided designs

Although not all GP-aided designs achieved their intended collapse probability, the GP-aided

inverse design method gives an initial estimate for the magnitude of displacement capacity, iso-

lation period amplification, and strength requirements necessary to target lower collapse prob-

abilities. The validation study highlights the difficulty of predicting collapse with consistent

accuracy at all performance targets. Although the 2.5% design performed close to its target,

the 10% and 5% achieved true collapse probabilities that were 2.78% and 3.27% away from

their targets, respectively. Notably, the baseline special moment resisting frame, as modeled in

this study, performs extremely well under the defined collapse definition. Without considering
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Table 4: Incremental dynamic analysis results for GP-aided designs

Target

Observed collapse frequency Lognormal MLE fit collapse Lognormal

frequency at MCER level parameters

1.0 MCE 1.5 MCE 2.0 MCE Fit value (GP prediction) Mean (dispersion, β)

10% 11.6% 58.5% 83.1% 12.8% (9.45%) 1.44 (0.320)

5% 1.37% 29.2% 68.6% 1.73% (4.64%) 1.75 (0.265)

2.5% 1.53% 29.3% 70.2% 1.69% (2.42%) 1.74 (0.260)

Baseline 1.93% 28.0% 73.2% 1.56% (5.85%) 1.72 (0.252)

additional functionality objectives, the GP-aided inverse design procedure offers a design that

achieves closer to the intended 10% probability of collapse.

4. Conclusions

To evaluate how isolated buildings might be designed to achieve targeted collapse probabil-

ities under a given earthquake level, such as the targets given in ASCE-7 [4], a GP model was

developed to identify acceptable design spaces over which the design can be optimized. For an

SMRF, the moat gap distance, superstructure strength, and isolation ratio are the most important

variables for controlling the collapse probability, in that order. An increase in these variables

results in a larger decrease in predicted collapse probability compared to changing the isolation

system damping. The GP model predicts that to achieve the ASCE-7 target of 10% probability

of collapse for an isolated SMRF with Ry = 2.0, TM/T f b = 3.0, ζM = 0.15, the moat gap needs

only to be 0.93 times the current code minimum. This gap recommendation can be lowered to

0.47 if Ry is lowered to 1.5. The gap ratio for the same isolated SMRF should increase to 27%

and 50% greater than code recommended minimum when targeting 5% and 2.5% collapse prob-

ability, respectively. These conclusions are only for collapse of special moment frames and do

not extend to any other level of functionality, such as immediate occupancy or repairable damage

or any other superstructure type such as intermediate moment frames, braced frames, etc.

From the acceptable design region, optimization can be used to select a final design. This

study optimized using upfront steel and land cost. Throughout the inverse design procedure, to

lower collapse probabilities, GP-aided design increased the ratio between the isolator and fixed

base superstructure to further concentrate deformations into the isolation layer. Interestingly,
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the gap ratio was maintained. Under the collapse fragility definitions used in this study, special

moment frames are predicted to have adequate ductility to withstand high forces from wall impact

and prevent collapse. Sensitivity analysis shows that GP prediction is able to change design

strategy depending on project constraints, such as resource prices or drift fragility definitions.

Validation results showed that current minimum code design recommendations achieve a col-

lapse probability well below 10% at the MCER level for isolated SMRFs. Sensitivity analysis

of the GP shows that changing the collapse fragility definition to have drift fragility curve defi-

nitions resembling intermediate moment frames results in predicted collapse rising closer to the

intended 10% as laid out in ASCE 7. For the 10% collapse probability target, the inverse design

using GP predictions suggested that the gap can be 0.60 times the code displacement capacity in

combination with a strength reduction factor of Ry = 2.25, TM = 2.16T f b s, and ζM = 0.25, which

was validated to achieve 12.8% collapse, thus being closer to, albeit exceeding, the intended 10%

collapse target. For all design targets, GP-aided designs achieved collapse probabilities close to

their targeted performance. Discrepancies between the GP predictions and validation results

highlight the difficulty in predicting collapse probability at enhanced targets due to high uncer-

tainty. For future work, the usage of a non-homogeneous variance parameter in the GP kernel

could serve to provide lowered uncertainty in certain regions of the design domain, leading to

predictions with a standard deviation bound. The findings of the inverse design framework could

also be further developed by considering full 3D models as well as both horizontal direction and

vertical shaking. Overall, the usage of GP modeling on a database of generalized parameters

allows for the interaction between all variables and their effects on collapse probability to be

better observed and different levels of performance to be targeted. The variables and methods

presented are well suited to be extended to more general design problems beyond a handful of

design case studies.
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