
UC Berkeley
UC Berkeley Previously Published Works

Title
Evidence for a Coupled Oscillator Model of Endocrine Ultradian Rhythms

Permalink
https://escholarship.org/uc/item/3qc4k4f4

Journal
Journal of Biological Rhythms, 33(5)

ISSN
0748-7304

Authors
Grant, Azure D
Wilsterman, Kathryn
Smarr, Benjamin L
et al.

Publication Date
2018-10-01

DOI
10.1177/0748730418791423
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3qc4k4f4
https://escholarship.org/uc/item/3qc4k4f4#author
https://escholarship.org
http://www.cdlib.org/


Evidence for a Coupled Oscillator Model of Endocrine Ultradian 
Rhythms
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1Department of Psychology, University of California, Berkeley, CA, 94720

2Department of Integrative Biology, University of California, Berkeley, CA, 94720

3The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720

Abstract

Whereas long-period temporal structures in endocrine dynamics have been well studied, endocrine 

rhythms on the scale of hours are relatively unexplored. The study of these ultradian rhythms 

(URs) has remained nascent, in part, because a theoretical framework unifying ultradian patterns 

across systems has not been established. The present overview proposes a conceptual coupled 

oscillator network model of URs in which oscillating hormonal outputs, or nodes, are connected 

by edges representing the strength of node-node coupling. We propose that variable-strength 

coupling exists both within and across classic hormonal axes. Because coupled oscillators 

synchronize, such a model implies that changes across hormonal systems could be inferred by 

surveying accessible nodes in the network. This implication would at once simplify the study of 

URs and open new avenues of exploration into conditions affecting coupling. In support of this 

proposed framework, we review mammalian evidence for (1) URs of the gut-brain axis and the 

hypothalamo-pituitary-thyroid, -adrenal, and -gonadal axes, (2) UR coupling within and across 

these axes, and (3) the relation of these URs to body temperature. URs across these systems 

exhibit behavior broadly consistent with a coupled oscillator network, maintaining both consistent 

URs and coupling within and across axes. This model may aid the exploration of mammalian 

physiology at high temporal resolution and improve the understanding of endocrine system 

dynamics within individuals.
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Introduction

The “what” of endocrinology, or the study of central and peripheral endocrine factors and 

their genesis, has a long history of systematic investigation from the organismal to the 

molecular scales. In contrast, the temporal dynamics of hormonal secretions, or the “when” 
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of endocrinology, is not defined with comparable precision. Endocrine activity varies across 

infradian (>1 day), circadian (~1 day), and ultradian (<1 day) timescales, with the majority 

of scientific investigation focused on understanding the longer two periodicities. 

Examination of infradian and circadian endocrine rhythms has advanced our understanding 

of basic physiology by providing temporal structures that explain substantial variance of 

measured outputs within and among individuals. This knowledge has facilitated translational 

breakthroughs, exemplified by personalized chronotherapy, for example, in which the timing 

of pharmaceutical administration is aligned to the patient’s circadian peak of receptivity to 

treatment (Giacchetti et al., 2006; Lévi et al., 2010). Whereas ultradian variation also 

provides clinically-relevant information (Hompes et al., 1992; Sturis et al., 1992) and has 

long been suggested to be central to mammalian physiology (Brandenberger et al., 1987; 

Lloyd, 1992; Miyata et al., 2016a; Veldhuis et al., 2008), there is no single accepted 

systems-level framework to unify the study of ultradian rhythms (URs) at the organismal 

level (Bashan et al., 2012; Bourguignon and Storch, 2017; Prendergast and Zucker, 2016). 

Due to the absence of a unifying framework, as well as the technical challenges of 

measuring endocrine systems at ultradian timescales, circadian studies outnumber ultradian 

studies nearly 32:1 (Landgraf et al., 2014; Prendergast and Zucker, 2016). In the present 

overview, we propose a framework to aid future investigation of URs within individuals 

based on the notion that crosstalk among hormonal systems is predictably organized. 

Through researchers working across disciplines to further understand this level of 

organization, such knowledge of ultradian rhythms can help guide research, predictive 

medicine and clinical interventions in much the same way as have knowledge of circadian 

rhythms.

Overview & Implications of a Coupled Oscillator Network Model of URs

Circadian rhythms exhibit coupled oscillator behavior (Feillet et al., 2014; Hannay et al., 

2015; Stoleru et al., 2004), driving independent oscillators to a stable phase relationship 

(Komarov and Pikovsky, 2015). We propose that this principle likely applies to URs across 

endocrine axes. Two criteria must be met for a coupled oscillator, ultradian, endocrine 

network to exist: 1) in unmanipulated organisms, URs appear across endocrine systems and 

2) URs exhibit the physiological substrate for, or direct evidence of, coupling. The present 

overview outlines evidence for both of these requirements with examples from canonical 

endocrine axes: the gut-brain axis (GBA) and the hypothalamic-pituitary-thyroid (HPT), -

adrenal (HPA), and -gonadal (HPG) axes (Fig 1). These systems regulate a range of core 

processes including energy acquisition (GBA), allocation (HPT), production and 

maintenance of gametes (HPG) and arousal (HPA), providing important functional 

significance for networked URs. We first provide evidence that nodes within these axes 

exhibit ultradian oscillations by reviewing findings that illustrate the presence of the most 

common periodicities of UR (i.e., 1–4 h). We then review evidence for coupling across 

endocrine axes through neural and hormonal signaling (Laferrère et al., 2006). A 

comprehensive summary of ultradian oscillations in these axes is available in Table 1. 

Furthermore, we present evidence that body temperature shapes, and is shaped by, URs 

across endocrine axes, providing a highly tractable measure of inter-UR coupling (i.e., a 

tightly coupled network manifests as high amplitude body temperature URs). Finally, we 
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conclude with a consideration of translational implications for personalized, predictive 

medicine.

Ultradian Rhythms and Coupling Within Endocrine Axes

Ultradian Rhythms and Coupling within the Gut Brain Axis

In the present overview, the gut-brain axis (GBA) is defined as neural and hormonal 

signaling among the brain, gastrointestinal tract and supporting organs that mediate 

functions from food seeking behavior to digestion and elimination (Collins and Bercik, 

2009; Pigrau et al., 2016). Hunger, food consumption, satiety and digestion display URs in 

mammals (Matsuda et al., 2014; Miyata et al., 2016; Reid et al., 2014), with most hormones 

involved exhibiting coupled URs with periods (τ) ranging from 1–4 h. Two hormones, the 

orexigenic and anorexigenic peptides ghrelin and leptin (Avau et al., 2013; García-García et 

al., 2014; Miyata et al., 2016b), respectively, provide a temporal link among hormonal and 

organ URs in the GBA. Ghrelin (García-García et al., 2014; Mingrone et al., 2006) and 

leptin (Licinio et al., 1998b, 1998a; Saad et al., 1998; Simon et al., 1998a; Sinha et al., 1996) 

exhibit URs, most often with τ = 1–5 h in humans and rodents and, in rodents, pulses of 

these hormones often occur within minutes of one another (Michela Bagnasco et al., 2002a; 

Kalra et al., 2003a; Otukonyong et al., 2005). Additionally, ghrelin URs couple to 1–5 h 

URs in the growth hormone axis (Goji, 1993; Minamitani et al., 1989; Mitsugi and Kimura, 

1986; Mogi et al., 2004; Tannenbaum et al., 2003, p. 200; Tannenbaum and Ling, 1984; 

Tolle et al., 2002; Wagner et al., 2009, 1998; Yonezawa et al., 2010), ghrelin and leptin to ~ 

3 h URs in glucose and insulin in the fed state (Brandenberger et al., 1987; Lefcourt et al., 

1999; Otukonyong et al., 2005; Poher et al., 2018; Polonsky et al., 1988a; Sinha et al., 1996; 

Thaela et al., 1998; Tolle et al., 2002). Additionally, 2–8 h URs in intestinal activity (Ariga 

et al., 2007; Code and Marlett, 1975; Deloose et al., 2012, 2015; Fujino et al., 2003; 

Hoogerwerf, 2010; Husebye et al., 1990; Masuda et al., 2000; Zheng et al., 2009) can be 

initiated by administration of ghrelin or the related peptide motilin. In rats, plasma ghrelin 

and leptin and, in humans, glucose and insulin URs occur both in fed and fasted conditions 

(Michela Bagnasco et al., 2002b; Schaefer et al., 2003; Scheen et al., 1996; Shapiro et al., 

1988; Simon et al., 1987, p. 198, 1998a; Simon and Brandenberger, 2002; Sturis et al., 

1992), suggesting that these rhythms are not only food entrained, but endogenously 

maintained.

Though inter-individual variability makes clear that multiple stable states of varying 

periodicity exist, the periodicities and phase alignments of GBA components provide 

compelling evidence for a temporally organized GBA network structure on an ultradian 

timescale. Considering results across studies in humans and rats, ghrelin, leptin, and growth 

hormone oscillate approximately in phase with the most common τ ~= 1 and 3 h (Michela 

Bagnasco et al., 2002b; Goji, 1993; Kimura and Tsai, 1984; Licinio et al., 1998a, 1998b; 

Mingrone et al., 2006; Sinha et al., 1996; Tannenbaum and Martin, 1976, p. 1; Tolle et al., 

2002). Approximately antiphase to these three hormones (Licinio et al., 1997; Shapiro et al., 

1988), glucose and insulin oscillate in near synchrony with τ = 1.5–3 h (Polonsky et al., 

1988a; Scheen et al., 1996; Simon et al., 1987). At the harmonic circhoral (rhythms of ~1 h), 
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hypothalamic growth hormone releasing hormone (GHRH) oscillates in phase with ghrelin/

leptin and growth hormone (Mogi et al., 2004; Tannenbaum and Ling, 1984).

Ultradian Rhythms and Coupling within the Hypothalamic-Pituitary-Thyroid (HPT) Axis

The HPT axis is responsible for regulating metabolism. Hypothalamic release of thyrotropin 

releasing hormone (TRH) into the hypophyseal portal system stimulates production and 

release of thyroid stimulating hormone (TSH) from the pituitary. TSH stimulates production 

of thyroid hormones from the thyroid gland. Thyroid hormones are initially produced as 

thyroglobulin, which is converted primarily to thyroxine (T4). T4 is considered inactive and 

is the most abundant thyroid hormone in circulation. T4 can be converted into the active 

thyroid hormone, triiodothyronine (T3). T3 is present in relatively low quantities in 

circulation.

Though data about HPT axis function at high temporal resolution in unmanipulated animals 

are limited, elements of the HPT axis show URs with τ = 1–5 h (Buff et al., 2007; 

Roelfsema et al., 2014; Romijn et al., 1990). To our knowledge, the only high temporal 

resolution TRH study reports ultradian release with τ = 3–5 h in male rats (Okauchi et al., 

1996). TSH, however, consistently oscillates in circulation with τ = 1–4 h in mammals 

(Adriaanse et al., 1993; Buff et al., 2007; Cauter, 2004; Greenspan et al., 1986, 1991; Guyot 

et al., 2007; Jansen et al., 2015; Joustra et al., 2016; Keenan et al., 2003; MacCagnan et al., 

1999; Roelfsema et al., 2014; Romijn et al., 1990; Rookh et al., 1979; Samuels et al., 1993; 

Stewart et al., 1994; Veldhuis et al., 1990). Some studies in dairy cows and humans also 

show ultradian T3/T4 release with ~ 1.5 h URs (Bitman et al., 1994; Russell et al., 2008). 

Given strong associations between plasma concentrations of TSH and T3 in humans (Jansen 

et al., 2015; Russell et al., 2008), it is possible that TSH oscillates with double the period of 

T3/T4, therefore utilizing a harmonic to retain a stable phase relationship over many cycles.

Ultradian Rhythms and Coupling within the HPA Axis

The HPA axis regulates arousal under normal conditions and promotes rapid availability of 

stored energy in response to acute challenges (e.g., predation or fasting). Hypothalamic 

release of corticotropin-releasing hormone (CRH) stimulates release of adrenocorticotropic 

hormone (ACTH). In systemic circulation, ACTH acts on the adrenal cortex to stimulate 

glucocorticoid (CORT) release. CORT acts broadly within the body and generates negative 

feedback at both the hypothalamus and the pituitary to inhibit its own production. 1.5–3 h 

URs in CRH neuron excitation and CRH release have been observed in rodents, rams, and 

macaque hypothalamus, but not extensively characterized (Caraty et al., 1988; Ixart et al., 

1991; Mershon et al., 1992; Ono et al., 2015; Vrang et al., 1995). As one would expect, 

ACTH and CORT release show URs and are highly synchronized (τ = ~2–3 h) 

(Brandenberger et al., 1987; Dallman et al., 1987; Henley et al., 2009; Jasper and Engeland, 

1991; Lightman and Conway-Campbell, 2010; Smarr et al., 2016; Spencer and Deak, n.d.; 

Spiga et al., 2011, 2014; Waite et al., 2012). Stable CORT URs likely impose periodic 

inhibition on CRH neurons through negative feedback regulation, perpetuating ultradian 

output within the axis (Watts, 2005).

Grant et al. Page 4

J Biol Rhythms. Author manuscript; available in PMC 2019 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ultradian Rhythms and Coupling within the Hypothalamic-Pituitary-Gonadal Axis

The HPG axis controls reproduction, including the generation and maintenance of gametes, 

and the appropriate expression of sexual behavior. Release of hypothalamic gonadotropin-

releasing hormone (GnRH) triggers the release of the gonadotropins, luteinizing hormone 

(LH) and follicle-stimulating hormone (FSH). LH and FSH then stimulate sex steroid (i.e., 

estradiol, progesterone, and testosterone) synthesis in the gonads. These sex steroids feed 

back onto the HPG axis to regulate GnRH and the gonadotropins. As with other axes 

described, HPG axis URs appear to be coordinated with predictable changes in UR features 

across the axis based on time of the ovulatory cycle in females.

GnRH (Caraty and Locatelli, 1988a; Clarke et al., 1987; Gore et al., 2004; Grattan et al., 

1995; Levine and Ramirez, 1982; Meredith and Levine, 1992; Moenter et al., 1991a; Phelps 

et al., 1992; Ramirez et al., 1991) and LH (Alexander and Irvine, 1987; Ar, 1985; Backstrom 

et al., 1982; Ben Jebara et al., 1994; Caraty and Locatelli, 1988b; Czieselsky et al., 2016; 

Ellis and Desjardins, 1984; Evans et al., 1979; Ginther et al., 1998; Hodges, 1978; Irvine and 

Alexander, 1994; Jain et al., 2007; Joustra et al., 2016; Levine and Ramirez, 1982; 

Luboshitzky et al., 1996; Matsumoto and Bremner, 1984; Mulligan et al., 1995; Nordéus et 

al., 2012; Rossmanith et al., 1990b; Sisk and Desjardins, 1986; Soules et al., 1988, 1989, 

Steiner et al., 1982a, 1982b; Urban et al., 1988; van Leckwyck et al., 2016; Veldhuis et al., 

1988; Vugt et al., 1984; Wu et al., 1996) release oscillate with τ = ~ 1 – 4 h in both sexes, 

and these pulses are consistently coupled (within minutes within individuals) (Alexander 

and Irvine, 1987; Bergendahl et al., 1996; Caraty et al., 1992; Caraty and Locatelli, 1988b; 

Chandolia et al., 1997; Gazal et al., 1998; Irvine and Alexander, 1994; Levine and Ramirez, 

1982). FSH exhibits low-amplitude URs that are often concomitant with LH (Booth Jr et al., 

1996; Genazzani et al., 1993; Joustra et al., 2016; Lockwood et al., 1998; Matsumoto and 

Bremner, 1984; Pincus et al., 1998; Stewart et al., 1994; Urban et al., 1988; Veldhuis et al., 

1991; Yen et al., 1972), though pulsatile FSH is not always detectable in general circulation 

(Filicori et al., 1984; Ginther et al., 1998; McNeilly et al., 2003; Spratt et al., 1988; Yen et 

al., 1972). Gonadotropins are also coupled to gonadal hormone production on ultradian 

frequencies; LH peaks usually precede peaks in testosterone and progesterone by 10–40 min 

(Backstrom et al., 1982; Beaven et al., 2010; Bray et al., 1991; Filicori et al., 1984; 

Genazzani et al., 1991; Ginther et al., 1998; Lewis et al., 1995; Nakajima et al., 1990; 

Nóbrega et al., 2009; Rossmanith et al., 1990a; Sisk and Desjardins, 1986; Soules et al., 

1989; Spratt et al., 1988; Urban et al., 1988; Veldhuis et al., 1988; Winters and Troen, 1986) 

and estrogen pulses occur either concomitant with or just after testosterone or progesterone 

in men (Winters and Troen, 1986) and women (Backstrom et al., 1982; Licinio et al., 1998a; 

Venturoli et al., 1988), respectively. Finally, inhibin (a hormone produced by the gonads that 

inhibits FSH) also shows weak URs at approximately circhoral frequencies (τ = 1–1.7 h), in 

antiphase with the gonadotropins (Lockwood et al., 1998; Nakajima et al., 1990).

The ovulatory cycle has well-documented effects on the period and coupling strength of 

HPG axis URs. Coupling among the release of reproductive hormones (e.g., GnRH, LH/

FSH, and progesterone) is more consistent during the follicular phase than the luteal phase 

(Booth Jr et al., 1996; Clarke et al., 1987; Genazzani et al., 1991, 1993). The period of 

GnRH and LH pulses decreases across the follicular phase, reaching a minimum before 
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ovulation (Ginther et al., 1998; Moenter et al., 1991b; Rossmanith et al., 1990a; Stewart et 

al., 1994), and most mammals exhibit the longest GnRH, LH, progesterone, and estradiol 

UR periods during the luteal phase (Ar, 1985; Backstrom et al., 1982; Czieselsky et al., 

2016; Filicori et al., 1984; Genazzani et al., 1991; Ginther et al., 1998; Gore et al., 2004; 

Healy et al., 1984; Licinio et al., 1998a; Moenter et al., 1991b; Nakajima et al., 1990; 

Prendiville et al., 1996; Rossmanith et al., 1990b, 1990a; Soules et al., 1989; Tani et al., 

1999; Venturoli et al., 1988; Vugt et al., 1984). The reason for these changes in UR 

periodicity and coupling across the ovulatory cycle are not well understood. However, the 

presence of these patterns across ovulatory cycles of different species, which differ in 

duration, argue for a shared role for URs in ovulatory cycle regulation.

Ultradian Rhythms and Coupling Across Endocrine Axes

The presence of URs coupled within single axes is not sufficient evidence for a body-wide 

UR network. Coupling must also occur across axes such that all URs in the hypothetical 

network are directly or indirectly linked. Such an arrangement would allow for sampling 

from one node to inform rhythmic patterns at other nodes. We propose that the GBA and 

HPT axes, in their regulation of energy acquisition and allocation, are functionally and 

dynamically tied to the HPA and HPG axes to appropriately allocate the use of available 

energy (Tena-Sempere, 2013). This proposition is based on findings pointing to cross-axis 

ultradian coupling for well-studied systems, as well as hormonal and neural substrate for 

coupling among all four axes. For example, GBA-HPA axis crosstalk coordinates extraction 

of energy following food intake, as CORT inhibits insulin secretion (Lambillotte et al., 1997; 

Plat et al., 1996), increases leptin levels (Laferrère et al., 2006) and stimulates protein 

breakdown (Spiga et al., 2014). Leptin URs show an inverse phase relationship to insulin 

and glucose (Simon et al., 1998b), and to ACTH and CORT (Licinio et al., 1997). This 

might imply that glucose and insulin oscillate in phase with ACTH and CORT. Though acute 

glucose ingestion amplifies pulsatile ACTH and CORT secretion (Iranmanesh et al., 2011), 

other investigations have not identified a stable phase relationship among these outputs 

(Brandenberger et al., 1987; Shapiro et al., 1988).

GBA URs also couple to HPG axis URs, as leptin, LH and estrogen peaks often oscillate in 

synchrony in women (Licinio et al., 1998a). Although not studied at an ultradian timescale, 

the HPG axis likely couples to the HPT axis, as TSH and thyroid volume change with 

ovulatory cycle phase (Doufas and Mastorakos, 2000). CORT and sex steroids influence 

patterns of GBA and HPT axis activity via actions on numerous neural substrates. Briefly, 

hunger-regulating circuits in the arcuate and paraventricular nuclei are sensitive to CORT 

feedback (Leon-Mercado et al., 2017; Ramos et al., 2005). Likewise, feeding and drinking 

behavior are modulated by testosterone and intra-cerebroventricular-administered estradiol 

(Clegg et al., 2006; Mauvais-Jarvis, 2011). Furthermore, one potential driver of URs in 

locomotor activity and appetitive behavior (including feeding) was recently located in 

CORT-tunable neurons in central dopaminergic circuitry (Berry et al., 2016; Blum et al., 

2014). Finally, the HPT expresses receptors for numerous products released by the GBA and 

vice-versa (Kluge et al., 2010; Sirakov and Plateroti, 2011; van den Beukel and Grefhorst, 

2014), providing support for reciprocal interactions between these axes (Miller et al., 1978; 

Mullur et al., 2014). Taken together, there is substantial evidence that all four axes described 
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exhibit (1) ultradian oscillations and (2) coupling at multiple levels within and across axes. 

As a result, these axes should behave as a coupled oscillator network in unperturbed 

individuals.

Implications of Ultradian Coupled Oscillator Network Properties for 

Research and Clinical Applications: A Case for Body Temperature

If the endocrine system operates as a coupled UR network, this system has the potential to 

provide continuous and non-invasive access to information about individual nodes of the 

network to researchers and clinicians without the need for high frequency sampling of 

biological material (e.g., blood). Electrical outputs like heart rate, heart rate variability, 

gastric contractions, and cortical power provide physiological information, but none of these 

measures exhibit clear relationships to all of the axes discussed above. In contrast, all four 

axes have well-documented influences on body temperature, a measure that exhibits URs of 

a similar periodicity in rodents and humans (Huang et al., 2014; Lindsley et al., 1999; 

Prendergast and Zucker, 2016; Ruis et al., 1987; Smarr et al., 2016; Smarr et al., 2016; 

Smarr et al., 2017). Body temperature may therefore provide continuous information about 

the UR network. Evidence below provides support for the notion that body temperature is 

shaped by, and in turn shapes, each axis on an ultradian timescale.

HPT axis and GBA influence CBT.

It has been accepted since the 1800s that energy regulation influences rate of heat production 

through the HPT axis and the GBA (Magnus-Levy, 1895). In fact, it has been argued that 

endothermy evolved from the cold-response of the HPT axis in ectotherms (Little and 

Seebacher, 2014), suggesting a long evolutionary history of HPT responsiveness to 

temperature. Temperature change can influence HPT axis activity, as low temperatures 

stimulate HPT activity in humans (Smolander et al., 2009) and rodents (Ikegami et al., 

2015); conversely, HPT axis dysfunction impairs core body temperature (CBT) rhythms 

(Mazzoccoli et al., 2004; Mullur et al., 2014). Thyroid-stimulated metabolic activity can be 

used directly for thermogenesis, as in brown fat thermogenesis, but many digestive and 

metabolic activities intrinsically generate heat (Clapham, 2012).

Body temperature profiles are dependent on GBA activity, including feeding schedules 

(Yoon et al., 2012); feeding-related changes to body temperature manifest in two forms: 

facultative and obligatory (Brundin et al., 1997). Facultative changes occur as the body 

anticipates incoming energy by increasing metabolism. For example, ghrelin stimulates both 

appetite and brown fat thermogenesis (Lin and Sun, 2012). Obligatory increases in 

temperature arise from the metabolic activity of breaking down food (e.g., protein, sugar, 

and fat content of a meal), and shape subsequent thermogenesis (Kus et al., 2008; Landsberg 

and Young, 1978; Quatela et al., 2016). Protein intake, for example, causes an increase in 

human CBT within one hour (Brundin and Wahren, 1994), whereas fat intake causes a 

temperature decrease (Maffeis et al., 2001). Antagonizing the metabolism of glucose in the 

brain via intracerebroventricular injection of 2-deoxyglucose causes a dose-dependent 

hypothermic response that lasts 2–3 h in rats (Fiorentini and Müller, 1975). Similarly, insulin 

secretion decreases CBT (Sanchez-Alavez et al., 2010). Temperature may also feed back on 
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this axis, exerting a synchronizing effect (Buhr et al., 2010). For instance, some insulin 

receptors expressed in the pancreas are sensitive to temperature changes within the 

physiological range (Uchida and Tominaga, 2011) (e.g., TRPV4 [27–41°C], TRPM2 

[>36°C]). This finding suggests a role for CBT URs in insulin regulation and provides a 

mechanism to close the feedback loop of food intake and metabolism impacting CBT.

Beyond the immediate impact on metabolic activity, food intake can shape neural control of 

homeostatic thermogenesis. For example, leptin is involved in increasing thermogenesis in 

response to cold stress in mice (Rozhavskaya-Arena et al., 2000) (a response that takes 3–4 

h), and glucose intake affects this thermoregulation by enhancing the leptin sensitivity of 

neurons in the feeding circuit (Mounien et al., 2010). Finally, extensive literature attests to 

the immediate and long-timescale effects of GBA and HPT activity on body temperature, 

strongly supporting its potential use in monitoring changes occurring on an ultradian 

timescale in these systems.

HPA axis influences CBT.

There is some evidence that human cortisol URs have a stable phase relationship to URs of 

core and distal body temperature both in isolation and under natural conditions (Smarr et al., 

2016). Similarly, an injection of CORT or adrenaline at doses mimicking acute stress results 

in an acute decrease in CBT over the subsequent hour (Kainuma et al., 2009; Watanabe et 

al., 2008). ACTH and CORT also have opposing effects on brown fat activation in rodents 

(Soumano et al., 2000; Strack et al., 1995; van den Beukel et al., 2014; Viengchareun et al., 

2001), with ACTH increasing thermogenesis and CORT in turn muting this activation. 

Reciprocally, corticosteroid-binding globulin is temperature sensitive, enabling changes in 

HPA signaling in response to thermoregulatory challenges (Lightman and Conway-

Campbell, 2010).

HPG axis influences CBT.

The gross effects of estradiol and testosterone on the temporal pattern of CBT have been 

documented for decades, giving rise to the term “in heat” for an ovulating, sexually receptive 

female mammal (Marrone et al., 1976). The preovulatory spike in estradiol on days of 

ovulation in mice and rats is associated with a plateau of high CBT (Sanchez-Alavez et al., 

2010; Smarr et al., 2017). Acutely, estradiol raises CBT and lowers skin temperature in 

females (Mittelman-Smith et al., 2012; Rance et al., 2013; Williams et al., 2010), and OVX 

mice show a sustained increase in tail temp that is reversed with treatment by estradiol (Ding 

et al., 2013). In males, testosterone acutely raises muscle temperature while lowering 

adipose temperature, but can also be aromatized to estradiol, thereby affecting CBT through 

similar mechanisms as estradiol in females (Clarke et al., 2012; Mauvais-Jarvis, 2011). 

Changes in thermogenesis associated with sex steroids likely occur through influence on 

hypothalamic neurons that regulate pulsatile release of LH as well as body temperature 

(Mittelman-Smith et al., 2012; Rance et al., 2013).

In summary, there is ample evidence that temperature is modulated on an ultradian timescale 

by output of the GBA, HPT, HPA, and HPG axes. Thus, if these axes operate as coupled 

oscillators, then body temperature should oscillate with a stable phase relationship to the 
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oscillations within these axes. In turn, resulting temperature URs may reinforce coordination 

among these axes.

Discussion

The existence of 1–4 h URs and coupling in the GBA, HPT, HPA and HPG axes support a 

coupled oscillator network model of ultradian rhythms. This network provides a testable 

framework that makes several predictions relevant to academic and clinical endocrinology. 

First, information from one endocrine axis carries information about other axes. Second, 

there may be shared outputs, including body temperature, that provide high temporal 

resolution information about the entire endocrine network through non-invasive means. 

While lacking the precision of direct chemical assays, such shared outputs enable a range of 

endocrine studies not currently possible. For example, such an arrangement would permit 

combined longitudinal and high temporal resolution assessment of physiological dynamics 

within individuals (Bashan et al., 2012). Such an assessment may uncover changes to 

endocrine dynamics particular to specific states (e.g., obesity, diabetes, fertility). For 

example, continuous, high temporal resolution data has already been shown to enable 

predictions of future physiological changes, including pregnancy outcomes in mice and 

sepsis onset in hospital patients (Drewry et al., 2013; Smarr et al., 2016). Alongside the 

rapid evolution of wearable technology, conceptualizing endocrine dynamics as a coupled 

oscillator UR network may assist in the development of predictive medical analytics by 

pairing traditional endocrine studies with hypotheses generated from non-invasive, 

biologically relevant data gathered continuously within individuals from broad populations. 

Although a great deal of additional knowledge is needed to inform the type of and extent to 

which a coupled oscillator network model correctly describes endocrine interactions and 

dynamics, such information will likely be invaluable as a clinical diagnostic or for non-

invasive data collection across systems.

Caveats and considerations

Networks are composed of nodes and edges. Here, nodes represent oscillating, measurable 

outputs (e.g., CORT, LH, ghrelin) with edges representing coupling between nodes (See Fig 

2). Edges contain two-dimensions, with weight representing coupling strength (degree to 

which a change in one node will affect change in an adjacent node) and length representing 

phase delay (the time delay of propagation from change in one node to change in the 

connected node). In this arrangement, all nodes and edges of the proposed network could be 

experimentally mapped. The properties of edges likely change over time and condition. For 

example, the length of an edge might change as a function of sleep and wakefulness, hunger, 

sex, ovulatory phase or age. Nodes themselves are likely to change across development, as 

in the rise in prominence of the estradiol node at puberty. A useful model will therefore 

require complexity and flexibility. Our simplistic model gives at least three testable 

predictions, which may inform network-mapping efforts.

1) UR Parameters: Maintenance of Fundamental Frequency and Harmonics
—In an unperturbed individual, coupled nodes may share a fundamental frequency at the 

ultradian timescale. That is, they may have a single lowest common frequency, as in 
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circhoral pulses superimposed on 3 h oscillations. Thus, individual rhythms need not share 

the same frequency to maintain a stable phase relationship, and it would be expected that 

abolishing or perturbing signaling at one timescale would predictably perturb oscillations at 

others (Baker et al., 2007; Smarr et al., 2012). Body temperature provides an example of a 

node that is strongly modulated by other hormonal outputs and exhibits a single dominant 

frequency in the 1–4 h range in individuals (Fig 2). URs may also have stable frequencies at 

harmonics (i.e., whole number multiples of the fundamental frequency). For example, an 

individual might have LH peaks every hour, CORT peaks every 2 h, and feed every 4 hours 

without violating this expectation. As many URs appear to be primarily circhoral, this is an 

important component of ultradian network stability. If constituent nodes influencing body 

temperature were not coupled, each node would contribute an independent frequency and 

phase of UR. When these unrelated frequencies overlap to modulate the body temperature 

UR, the composite frequency space would lack the structure of superimposed harmonics, 

obscuring URs in body temperature (Fig 3A). The fact that a dominant 1–4 h rhythm is 

observed in temperature supports the coupling hypothesis (Fig 3B, 3C). Experimental 

mapping of the ultradian frequencies of hormonal outputs within an individual, along with 

widely-coupled outputs like temperature, could be used to test this prediction.

2) Active Decoupling & Recovery—If endocrine nodes are usually coupled, then lack 

of coordinated activity in adjacent nodes would imply the presence of a decoupling force. 

Thus, if an endogenous rhythmic pattern is known, then predictable perturbations should be 

detectable following a disruptive event. In addition, stable phase relationships should re-

emerge following recovery from disruption (Fig 2B, 2C). Sufficiently strong disruptions 

might shift the entire network to a new stable state, whereas smaller disruptions would be 

expected to result in transient perturbation. For example, decoupling could arise from a 

phase-shift of gastric output due to an ill-timed meal, with the meal’s influence on gastric 

activity acting to temporarily decouple gastric activity from the surrounding network (see 

Fig 2E). Decoupling could also manifest along an edge. For example, if the edge between 

the nodal outputs ACTH and CORT were pharmacologically suppressed by an ACTH 

receptor antagonist, then a lack of coordinated pulsatility would be expected between these 

two hormones due to the decoupling action of the antagonist. One implication is that 

disruptions to network synchrony might be detectable through the appearance of destructive 

interference in a shared output such as body temperature (Fig 2D). As each day in an 

individual’s life does not share identical timing (e.g., sleep, meals, etc.), another implication 

is that a degree of system-wide perturbation is expected to arise from environmental factors, 

and perfect regularity of URs is not expected from real-world data (Fig 3B). At present, a 

sparse literature has investigated active decoupling and recovery at the timescale of hours. 

Modeling of these relationships has begun in isolated axes but, to our knowledge, has yet to 

be investigated using a holistic framework to incorporate across-axes interactions (Caplan et 

al., 2010; Lightman and Terry, 2014).

3) Network-Wide Predictions—With sufficient knowledge of a network’s nodes and 

edges, measurement of the UR phase of one node should allow reasonable predictions about 

the UR phase of any other node in the network. Measured deviation from these predictions 

would imply either imperfect mapping of the network, or the presence of disruptions. This 
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property speaks to the potential utility of easily acquired outputs, like body temperature, for 

estimating the state of more difficult-to-measure hormonal dynamics. For example, research 

into coupling among blood glucose, blood insulin, and body temperature under various 

conditions might allow diabetes management by continuous temperature measurement 

without the need for frequent blood samples.

Past and Present Challenges to Collecting and Analyzing UR data

There are many reasons why it is not yet clear if endocrine systems comprise a coupled 

oscillator network, despite an abundance of evidence that individual axes both have URs and 

couple. In part, lack of understanding reflects the complexity of the system being mapped. 

However, methodological barriers including limitations in sampling frequency from tissues, 

inter-individual variability of period and network state, and intra-individual variability across 

days due to modern environmental disruptions, have made those mapping efforts more 

difficult.

Adequate sampling frequency and duration across multiple hormones is difficult in small 

mammals and can be cost prohibitive in humans. Detection of URs requires high-frequency 

sampling: for a 4 h rhythm, a sample every 2 hours is the mathematical minimum sampling 

frequency required to avoid aliasing (i.e., the Nyquist critical frequency) (Durkin and 

Callaghan, 2005). Even if sampling is adequately frequent, a short duration of data 

collection (i.e., a small number of cycles) also decreases the likelihood of accurately 

detecting the oscillation. Sampling periods of only a few hours, even at high sampling 

frequencies, are biased towards the detection of ultrashort URs (M. Bagnasco et al., 2002; 

Otukonyong et al., 2005). Some studies have attempted to bypass these challenges by 

measuring ultradian outputs in tissue explants (Chou and Johnson, 1987; Lewy et al., 1996); 

however, if URs rely extensively on network feedback, a node isolated from network 

feedback may not exhibit the same periodic behavior as it would in vivo. An ideal tool 

would be able to measure a node continuously over many days at high temporal resolution. 

Hormone-proxy measures from easy-to-measure variables like body temperature are 

therefore of great potential value. Likewise, newer devices that allow continuous monitoring 

(e.g., glucose or lactate monitors) will aid researchers and practitioners interested in 

studying URs.

Once data have been collected, choice of analytical method can influence the detection of 

periodicities in measured outputs. Widely-used pulse detection algorithms (e.g., 

PREDETEK (Genazzani et al., 1991), ULTRA (Polonsky et al., 1988b; Saad et al., 1998; 

Simon et al., 1998a)) have user-specified detection thresholds. In these analyses, a lower 

threshold for pulse detection results in a larger number of detected peaks. As the peak 

number is often divided by the duration of measurement, detection threshold can directly 

affect the determination of periodicity, with a lower threshold leading to a shorter estimated 

period, and a bias toward missing large, but slow, peaks. As alluded to earlier, these analyses 

may bias results of studies conducted over a short interval toward detection of high 

frequency rhythms that may or may not be the dominant frequency observed over a longer 

interval (Otukonyong et al., 2005). Signal-processing techniques like wavelet 

transformations (Leise et al., 2013), dynamic time warping (Tan et al., 2015), or delay 
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differential analysis (Lainscsek and Sejnowski, 2015) provide a more unbiased picture of the 

frequency compositions of, and relationships between, hormonal signals over many cycles.

After accounting for variability arising from sampling and analytical methods, within-

individual variability may still account for a substantial amount of total variability. For 

example, intra-individual variability in periodicity of intestinal contractions accounts for 

about 50% of population variability (Husebye et al., 1990), more than the contributions of 

expected sources of variability, such as sex or age. If individuals comprise unique UR 

networks, then averaging across individuals or even by time of day within individuals will 

‘‘wash out’’ higher frequencies. Nonetheless, because of the infeasibility and expense of 

high temporal resolution sample collection, URs in the literature are almost exclusively a 

reflection of averages across individuals. In some cases, modern computational techniques 

allow researchers to revisit existing raw data with an eye to understanding individual-

specific features (e.g., periodicity, period variability, rhythmic strength), rather than average 

values at a given time of day.

Despite these sources of variance, remarkable UR consolidation exists in one model 

organism, laboratory rats. Examined separately, rats have consistent 3–4 h rhythms in serum 

GH (Tannenbaum and Martin, 1976), CORT (Mitsugi and Kimura, 1986), body temperature 

(Harper et al., 1996; Ruis et al., 1989), ghrelin (Michela Bagnasco et al., 2002b; Kalra et al., 

2003b) and leptin (Michela Bagnasco et al., 2002b; Kalra et al., 2003b). Though we should 

expect greater variability in humans who have more environmental and genetic variability 

than model animals raised in laboratory conditions, the potential consolidation of within-

individual URs across outputs is an avenue worthy of further investigation. Simultaneous 

monitoring of multiple URs in a single individual will be important for expanding 

understanding of UR dynamics.

Conclusion and Implications: Building personalized medicine through 

modeling and wearable devices

The present overview suggests that neuroendocrine physiology operates as a network of 

coupled ultradian oscillators. More research is needed to fully characterize and verify the 

proposed model by acquiring new data and reanalyzing existing data using signal processing 

techniques. Focusing on intra-individual comparisons sidesteps challenges associated with 

inter-individual variability and allows identification of information-rich nodes that can be 

non-invasively assayed (Skarke et al., 2017). Such metrics have the potential to replace 

costly and disruptive measures like blood draws and enable personalized medicine through 

comparison of individuals to themselves over time, rather than by comparison of a single 

measure to the population mean. For example, if temperature dynamics accurately reflect 

reproductive or digestive state, individual monitoring of fertility or individually-tailored 

times to eat or exercise might be garnered non-invasively. Although the present overview 

focuses on body temperature as a proxy for hormonal dynamics, other non-invasive metrics 

like heart rate and heart rate variability, EEG components, skin conductivity, etc., may also 

provide information on hormonal and non-hormonal physiological nodes.
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In research, reliable proxy measures would allow more detailed descriptions of endocrine 

dynamics and identification of conditions that perturb those dynamics. Future work designed 

within this framework could aid in the development of network models of disease that could 

help explain increasingly common, cross-axes co-morbidities such as PCOS and obesity 

(Naderpoor et al., 2015), GI imbalance and depression (Dash et al., 2015), and adrenal 

fatigue and infertility (Hompes et al., 1992). With the aid of new technologies and analyses, 

it is feasible to collect data longitudinally at high temporal resolution and across multiple 

nodes. Such advances may enable rapid progress in understanding endocrine URs and the 

potential translational applications they carry.
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Figure 1. Canonical axes in mammalian physiology exhibit 1–4 hour ultradian rhythms.
The hypothalamus and pituitary (HP) coordinate feedback loops across physiological 

systems. The Gut Brain Axis influences feeding and digestion, the HP-Thyroid axis 

influences metabolism, the HP-Adrenal axis regulates the arousal and stress response, and 

the HP-Gonadal axis regulates reproductive function. 1–4 hour ultradian rhythms occur in 

outputs of each of these axes, are coupled within and among axes, and modulate body 

temperature output.
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Figure 2. Hypothetical Coupled Oscillator Network and Properties.
Schematic of the hypothetical ultradian rhythm network with URs represented as sines (A) 

exemplifying node and edge properties. Oscillating outputs are represented by nodes. The 

presence of coupling is represented by edges, with edge thickness proportional to the 

consistency with which a modulation of one node is associated with response in its 

neighbors (i.e., coupling strength), and edge length indicating the time delay between 

modulation of one node and response of another. Arrowheads indicate that coupling is 

directed. Red color indicates a perturbation that spreads from the stomach contraction node 

to neighboring nodes and indicates that perturbation may propagate through multiple nodes 

and influence subsequent feedback to the originally perturbed node. B. Hypothetical ACTH 

ultradian rhythm approximated as a sine wave, with ΤauACTH indicating period. C. ACTH 

ultradian rhythm form (B) with overlaid hypothetical CORT ultradian rhythm, illustrating 

the concept of coupled oscillations with a stable phase difference. D. Hypothetical Core 

Body Temperature (CBT) ultradian rhythm resulting from combined influence of ACTH, 

CORT, and stomach contractions, highlighting potential for detecting network disruptions as 

rhythm perturbations. E. Hypothetical ultradian rhythms in stomach contractions, illustrating 

a phase advance from a mistimed early meal. This perturbation is visible in the rapid 

dampening of the composite CBT signal, and in the depressed amplitude as the systems 

recover and realign (blue and red arrows).
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Figure 3. Real data can be compared to simple models to explore harmonics.
Simulated body temperature data (A, C) was generated by superimposing sinewaves of 

circadian and ultradian frequencies and compared to four days of real mouse CBT data (B). 

A. Two ultradian frequencies overlap with an average periodicity of 2 hours, but with each 

component sine wave set to a non-integer, non-whole-number-multiple (i.e., non-harmonic) 

of the other. Linear depiction of the simulated waveform (above) across four simulated days; 

the same data plotted as a raster plot of temperature (color, D), per minute (x-axis) per day 

(y-axis) allows comparison of peak-timing across days. B. Real mouse data body 
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temperature data (based on data published in Smarr et al., 2017), shows circadian and 

ultradian rhythms overlapping, as well as reactions to sudden changes in the light: dark cycle 

(yellow and black bars) not included in our data for the sake of simplicity. C. Simulated data 

with only one dominant frequency (Tau = 2h) results in perfect ultradian alignment across 

days. Comparisons across animals and conditions would allow quantitative testing of 

conditions under which harmonics emerge, as appears to be the case in the real data (B) 

during the late inactive phase (preceding ZT 0). Notably, UR frequency appears to be 

modulated at the circadian timescale. D. Color scale bar.
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