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The human mind represents the world by temporarily holding information in working 

memory that constructs an internal map of the external environment. This active 

information storage system does not simply produce veridical recordings of the moment-

by-moment experience. Instead, it is rather a reconstructive process that possesses 

inherent, manifold limitations. A central question is thus how the erroneous nature of 

working memory can be best characterized. In this dissertation, I use behavioral and 

computational modeling methods to propose a shift in the central tendency of the internal 

representation as a psychologically valid aspect of working memory that is independent 

of other known limits such as capacity or resolution. In Chapter 1, I review general 

working memory literature and our current understanding of the representational limits, 

then introduce a shift component as another source of working memory quality. In 
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Chapter 2, I present computational modeling work with a set of data simulations and 

parameter recovery. I elucidate the necessity of the shift parameter in explaining working 

memory errors and how robust modeling of shift can be achieved using a hierarchical 

Bayesian approach. I then present a collection of empirical studies in Chapters 3 and 4 

that experimentally show how this shift parameter can be utilized in theoretically 

important hypothesis testing. In Chapter 5, I extended the idea to mouse cursor trajectory 

data where the curved trajectory pattern can be operationalized as a moment-by-moment 

readout of representational shifts. In Chapters 6, I present an original empirical study that 

shows how the trajectory-based analyses of representational shift provide precise 

evidence crucial for constraining competing theoretical debates. Together, this 

dissertation provides a theoretical framework and a quantitative model to validate 

memory accuracy (i.e.,  representational appearance), manifested as the central tendency 

of the recall error distribution over sensory feature space, as another major source of 

working memory quality. 
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PART I. 

Chapter 1. General Introduction 

1.1. Working Memory 

In a complex environment, working memory (WM) serves as an online workplace 

for information temporally stored and manipulated. This short-term retention of 

information is central to cognition. One of the key characteristics of WM is that it is 

greatly limited in the capacity that only about 2-4 objects can be actively stored (Cowan, 

2001; Luck & Vogel, 2013; Zhang & Luck, 2008) and also limited in processing speed 

that how much information can be encoded from perception to more durable form as 

memory representation at a moment (Chun & Potter, 1995; Huang et al., 2007; Vogel et 

al., 2006).  

These intrinsic limits gave rise to the vast literature to investigate the nature of 

individual differences in WM capacity as well as specific mechanisms of how such 

limited capacity operates over various cognitive processes. Studies have shown that a 

large amount of variance in individual cognitive functions including general intelligence 

or emotional regulation, and cognitive deficits in clinical population can be attributed to 

individuals’ WM capacity (Fukuda et al., 2010; Kane & Engle, 2002; Unsworth & Engle, 

2007) and processing speed (Fuller et al., 2005; Kail & Salthouse, 1994).  

While theories of WM agree on its capacity limit, they largely differ by whether 

the unit of these limits is discrete item-based or continuous resource-based. Specifically, 

the prominent “slot” models of WM postulate a fixed number of objects can be stored as 

discrete object-based representations (Luck & Vogel, 1997; Park et al., 2017; Zhang & 
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Luck, 2008), whereas the “resources” models argue that a fixed amount of resources is 

flexibly distributed across the items that need to be remembered concurrently (Bays et al., 

2009; van den Berg et al., 2012). A longstanding debate on these contradictory accounts 

has brought great attention to the continuous nature of representation quality beyond the 

discrete item-based quantity.  

1.2. Dissecting the Erroneous Nature of Working Memory 

How to characterize and precisely measure the erroneous nature of WM has been 

of major interest in the field of cognitive psychology. Conventionally and even in recent 

studies, estimates of WM errors are obtained based on accuracy in the task where a set of 

discrete choices are allowed (e.g., Yes or No). For instance, in a change detection task 

(Luck & Vogel, 1997), one of the popular experimental paradigms to test visual WM 

(Figure 1A), two arrays of simple visual objects are sequentially presented as a memory 

and a test array, with a second of temporal separation in between. Participants in this task 

are required to detect whether the two arrays are the same or whether one of the 

remembered objects has a feature change in the test array, by responding “Same” or 

“Different”. This discrete response method provided a simple calculation of the 

proportion correct and could be further converted to the number of successfully retained 

items among a total number of items presented to be remembered (i.e., the set size). For 

example, Cowan’s K (Cowan, 2001) is a frequently used estimate of WM capacity, 

calculated by, K = (HR + CR – 1) * set size, where HR and CR represent hit and correct 

rejection rates, respectively.  
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While these estimations of the aggregated-level task performance are useful in 

providing summary statistics of WM capacity, the aggregation of individual trials 

neglects important information in the variability across trials. For example, the binary 

responses can only tell us whether a test for a certain WM item was successful or not. 

That means, these measures have an inherent assumption that WM storage follows the 

all-or-none states, therefore the correct and incorrect responses are attributed to the 

success or failure of the WM process. However, successfully retained internal 

representations can continuously vary in signal strength (e.g., d-prime in signal detection 

model) that can be conceptualized as mnemonic precision. The variation in precision can 

vary from item to item as well as trial to trial, just as the aggregate-level estimates vary 

from individual to individual.  

To overcome the limitations of the discrete responses, recent studies in visual 

WM utilize a continuous estimation method (Wilken & Ma, 2004; Zhang & Luck, 2008) 

in the memory recall paradigm instead of the change-detection, discrimination, or 

recognition task. A typical continuous recall task procedure is depicted in Figure 1B. The 

memory and maintenance periods are similar to other delayed match-to-sample tasks. At 

the test, on the contrary, probe items are presented with a surrounding color wheel. A 

target item among the probes can be indicated by a thicker outline of the placeholder. 

Participants are instructed to recall the color of the target item and choose the best match 

color on the color wheel by mouse clicking. WM recall errors can be calculated as the 

angular distance, in degree or radius, between the presented memory color and the 

reported color from the recall. The continuous recall errors over the repeated trials form a 
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bell-shaped distribution centered around zero representing the true color of the probe 

target. Because the stimuli and responses are bound to a circular space, the two ends of 

the error distribution can stretch toward negative π or positive π.  

From the circular error distribution, the quantity (i.e., capacity) and the quality 

(i.e. precision) of WM can be independently estimated based on the state of mnemonic 

evidence that derived each recall response. For example, if the probed color is 

successfully retained in WM, the subject can make a memory-based response for the 

color that best matches the summary statistics of the internal representation. With an 

assumption that internal WM representation is noisy and probabilistic, the spread of the 

error distribution should represent the overall quality of the subject’s WM. On the other 

hand, however, if the test probe is not stored at all, there is no internal evidence the recall 

response can map on. The subject should then eventually make a guess, and pick a 

random color among all possible color palettes as they are equally likely. These random 

guesses over trials will form a uniform distribution. 

A measurement model by Zhang and Luck (2008) describes the observed error 

distribution and measures these two independent WM components, capacity and 

precision. The model is formulated as a mixture of the memory-based bell-shaped 

distribution and the guessing-based uniform distribution (Figure 2). The memory-based 

error distribution for the stimuli with a circular feature space can be formalized by the 

von Mises distribution, a Gaussian analog in circular space, described as: 

𝑝(𝑥	|	𝜇) = 𝑒! "#$(&'()
2𝜋𝐼*(𝜅)
. 	
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where μ and κ are the mean and the concentration parameters representing the shift in the 

retained feature relative to the external stimulus and the mnemonic precision. A mixture 

of the von Mises distribution and the uniform distribution can then be described as: 

𝑝(𝑥|𝜇) = (1 − 𝑔) · 𝑉𝑀(𝑥; 𝜇, 𝜅) + 𝑔(1 2𝜋⁄ )	

where g is the height of the uniform probability distribution representing the proportion 

of guessing-based responses.  

The operationalization of mnemonic precision in the separation of capacity in the 

probabilistic mixture model has been extensively applied to study testing the 

experimental effect on the quality aspect of WM representation (Xie & Zhang, 2016; 

Zhang & Luck, 2009, 2011) and its individual differences (Gold et al., 2010; Xie et al., 

2018).  

1.3. Accuracy, Bias, and Representational Shift 

Meanwhile, theories of WM have largely ignored another significant aspect of 

representational quality, accuracy, which is conceptually independent of precision. In a 

general sense of measurement, accuracy and precision reflect different types of noise. 

Accuracy reflects how close the measurements are to the true value thus describing a 

systematic error, whereas precision reflects how dispersed the measurements are from 

each other thus describing a random error (Walther & Moore, 2005). Statistically, 

inaccuracy and imprecision can be substituted with bias and variability that can be 

descriptively measured by the mean and the standard deviation, respectively, though the 

concept of accuracy sometimes embraces both bias and precision (i.e., accuracy can be 

identical to precision when bias is absent; Hellmann & Fowler, 1999). 
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These two concepts can be applied for further dissecting different types of WM 

errors. For instance, WM representations can be accurate-but-imprecise or inaccurate-

but-precise (in Chapter 4, I present an empirical example of this dissociation as a result of 

experimental manipulation). In this dissertation, I argue that accuracy of WM reports 

should also be operationalized as a psychologically valid measure of representational 

quality. Although the accuracy and precision are mathematically independent, a 

measurement model that does not account for this bias type of error can lead to the 

underestimation of mnemonic precision. Figure 3 demonstrates this scenario. When a 

given dataset contains a systematic overall bias toward a certain direction, fixing μ shift 

parameter to zero constant results in a large overestimation of the width of the 

distribution (i.e., underestimation of precision). In fact, the probabilistic mixture model 

aforementioned already implemented the μ parameter reflecting the overall mean of the 

von Mises distribution. However, the μ shift is often excluded from the set of free 

parameters but instead fixed at zero as constant, in particular when there is no particular 

reason to predict any systematic shift of the underlying WM representation.  

On the theoretical ground, the neglect of central tendency in characterizing WM 

quality originates from a particular assumption that WM errors are normally distributed 

to reflect underlying noisy neural representation centered around the true sensory value. 

It is indeed plausible considering how visual information is represented by population 

neural activity. In particular, WM representations are thought to be maintained in the 

form of sustained spiking activity in populations of neurons distributed across the brain 

regions including the prefrontal cortex, parietal cortex, and sensory cortex (Christophel et 
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al., 2017; Murray et al., 2017; Miller et al. 1996). Because these groups of neurons are 

selectively tuned to their preferred sensory feature values, their population neural activity 

should peak at the true sensory input and persist its activity over the delay period to 

service goal-directed maintenance of WM. This principle of input-matched 

representational central tendency is supported by decoding from the pattern of neural 

activity in the early visual cortex (Ester et al., 2013). This population coding scheme has 

successfully accounted for the precision of behavioral WM reports by gradual attenuation 

and/or diffusion (i.e., broadening) of population spiking activity (Barrouillet et al., 2007; 

Bays, 2014; Sprague et al., 2014). That is, variability of population neural activity and 

imprecision of the retained WM representation are closely linked each other. 

On the other hand, however, the assumption of the correspondence between 

external stimulus and the central tendency of internal representation could be an 

oversimplification of the dynamic interaction of WM with other mental operations. 

Memory is rather a reconstructive process than passively carrying a veridical copy of 

sensory experience. A growing number of empirical studies support the reconstructive 

nature of WM by showing that the contents of WM can influence the perception of 

upcoming sensory inputs (Teng & Kravitz, 2019) or create adaptive distortions within the 

current representations based on the statistical regularities (Brady & Alvarez, 2011; 

Fischer & Whitney, 2014) or to avoid interference between memoranda (Chunharas et al., 

2019). For example, when multiple visual items are remembered WM reports of the 

individual items are often biased toward the ensemble average of the group of the stimuli 

(i.e., attraction bias). Several studies attributed this type of attraction bias to Bayesian 
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inference (Brady & Alvarez, 2011; Huang & Sekuler, 2010), proposing that a prior 

assumption for the distribution of stimulus is utilized to interpret a new stimulus. 

Consequently, the resulting posteriors of internal representation can sometimes contain 

an attractive bias toward the prior mean. Importantly, note that in all these studies, 

distortions in WM representations are manifested as central tendency biases of the error 

distributions and thus could be conceptualized as representational shift.  

Representational shift refers to a correspondence between the internal 

representation as measured and the original stimulus. In neuroscience literature, such 

representation shift is thought to originate from a drift of population neural activities 

(Panichello et al., 2019). The delay-period neural activity supporting WM maintenance is 

commonly modeled as recurrent synaptic networks that generate stable attractors along 

the continuum of sensory feature values. The continuous attractor network models of 

WM have shown that accumulated noise in prefrontal neurons over the delay period 

results in a systematic drift, but not diffusion, of population activity toward the nearest 

bump attractors or even collisions between attractors, which give rise to a shift in the 

represented feature value (Compte et al., 2000; Wei et al., 2012; Wimmer et al., 2014). In 

such case, even if the underlying neural representation of a given memory item is sharply 

maintained (i.e., inaccurate-but-precise), the error in memory report across trials can have 

a large variance, which could be solely captured by the sd parameter of the probabilistic 

mixture model and interpreted as mnemonic imprecision, instead of representational shift.  

Together, these arguments cast a doubt on the estimate of WM precision 

measured by between-trial variability in errors. That is, when aggregated across trials 
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with different stimuli hence different representational profiles, a collection of 

representational bias that determines the direction and magnitude of error for a given 

stimulus will be interpreted as variability in WM recalls. Consistent with this notion, 

Wimmer and colleagues (2014) showed that a trial-wise drift of neural population activity 

in the monkey prefrontal cortex during the WM delay period could accurately predict the 

direction of behavioral error. This raises a theoretically important question: How much 

variability in WM errors is then reflective of overall mnemonic precision? To what extent 

or whether the representational bias irrespective of precision explains the overall quality 

of WM? 

To quantify such artifact in estimating precision, I present a set of data simulation 

and parameter recovery results. Sets of 100,000 data points were simulated from the 

normal distribution, SimData ~ Normal(μ, SDbase), with different combinations of varying 

means and standard deviations. Specifically, five different standard deviations were set as 

SDbase at 10, 15, 20, 25, and 30, and for each case, six different mean μ values were 

assigned proportional to its SDbase value, from 0% to 100% in steps of 20% increment. 

For example, for SDbase of 20, μ was set to 0, 4, 8, 12, 16, and 20, respectively. Note that 

the μ was implemented in an additive manner, thus representing a systematic mean shift. 

A total of 5-by-6 matrix of 100,000 samplings from normal distribution were then 

again fitted by another normal distribution that does not have μ as a free parameter but 

instead fixed its mean at zero. Since we know the original variability in the simulated 

data, SDbase, we can evaluate the extent of the overestimated variability for each dataset 

by comparing the estimated standard deviation with SDbase. Figure 4A illustrates the 
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normal probability density functions of the simulated and recovered data, and Figure 4B 

shows a summary of the estimated SD as a function of SDbase and μ values used in data 

simulation. Systematic overestimation of variability was identified, and its magnitude 

was proportional to the systematic shift in μ.  

To further establish the exact contribution of the mean shift to the overall 

variability of data, I next conduct another data simulation similar to the previous one but 

critically different in the implementation of a shift to the mean. The same number of data 

points were sampled from the normal distribution with the same set of SDbase for the 

variability term. Importantly, the mean of the sampling distribution was derived from 

another normal distribution having its mean fixed at zero but instead having variability of 

SDμ for the same amount of μ values in the previous simulation. In other words, data was 

simulated by, SimData ~ Norm(Norm(0, SDμ), SDbase). Therefore, this represents the case 

of random drift of trial-wise representational shift, instead of a systematic shift in overall 

trials.  

Interestingly, exactly the same results were found in the overestimation of 

standard deviation from the previous simulation of systematic shift (Figure 4B). 

Furthermore, this leads to a conclusion of the root-sum-squared relationship between 

mnemonic precision and representational shift, together accounts for the between-trial 

variability, described as: 

SDbetween-trial = 9SDprecision
+ + SDshift

+	 

This conclusion raises a question that the conventional operationalization of WM 

precision by the width of error distribution might be convoluted with non-systematic 



 11 

shifts of the representation central tendency. This in part resonates with the discussion of 

probabilistic representation in perception literature (Block, 2018; Rahnev, 2017). 

1.4. Dissertation Overview 

In this dissertation, I propose an integrative account for the psychological validity 

of representational shift in modeling quality of WM representations. I present a collection 

of empirical studies and computational modeling methods that focus on the experimental 

effect of the representational appearance, manifested as the central tendency of the 

continuous reports of WM over sensory feature space. In the following Chapter 2, I 

introduce hierarchical Bayesian modeling of a systematic shift in WM error distribution 

while dissociating it from other components of errors such as capacity and resolution. I 

present data simulation and parameter recovery tests to highlight the reliability and the 

precision of parameter estimation under the hierarchical Bayesian method compared to 

the non-hierarchical model with the conventional maximum-likelihood estimation.  

In Part II, I present empirical studies that provide examples of how the shift 

parameter of WM errors can be utilized as a critical estimate for theoretically important 

hypothesis testing. Specifically, the Chapter 3 study introduces how the extent of 

representational shift can be coupled as a key experimental manipulation for testing the 

temporal dynamics of WM encoding. Thorough computational modeling for the profile 

of shift in recall error distributions for dynamically changing features of memory items 

revealed a temporarily discrete component in the WM encoding process for multiple 

items. Chapter 4 experimentally shows how the representational shift and precision 

independently and distinctively capture the influence of prior knowledge of celebrity 
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faces in LTM on how the celebrity look-alike faces are represented in WM. The results 

suggest that the stimulus familiarity effect can manifest as a more precise but biased 

representation toward the prototypical stimulus. 

In the next Part III, I extended the empirical application of representational shift 

to mouse cursor trajectory data, specifically the pattern of trajectory bias during decision-

making and motor response. Throughout two empirical studies, I show several advances 

in the mouse trajectory analyses combined with a specialized task paradigm for testing 

representational shifts in WM. As a part of the advances, I develop a novel method, 

destination vector transformation, mapping the raw cartesian coordinates of mouse cursor 

positions onto underlying feature space on a moment-by-moment basis. Specifically, the 

Chapter 5 study suggests how mouse trajectory data, specifically focusing on its biased 

curvature toward a certain item over the others, accounts for between-item interference in 

WM arising from variable precision across representations. In the following Chapter 6, I 

present the utilization of the circular trajectory shift measures for testing theoretical 

debates in WM research. The study tested the unit of attentional guidance by the contents 

of WM, whether multiple or only a single representation held in can guide attention 

toward the matching visual information in the subsequent, independent perceptual task. A 

closer examination of the mouse trajectory pattern during a perceptual matching task in 

the middle of the WM maintenance period revealed convincing evidence for the single-

item template account. The results further support a hierarchical structure of WM 

representations via variable attentional accessibility.  
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Together, this dissertation presents a theoretical framework and a quantitative 

model to validate a shift in WM errors over sensory feature space as another major source 

of mnemonic quality. The collective evidence provided here further elucidates that the 

external sensory information is not processed in a veridical way but rather subject to 

interactions across various levels of mnemonic trace about one’s internal representation 

of the world.  
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Figures 
Figure 1. 
Change detection and continuous recall paradigms of visual working memory tasks. 

 
Note. (A) Change detection task. Participants are presented with two arrays consisting of 
simple feature objects. A short blank display is presented as delay interval between the 
memory and test array. At the test array, participants need to report whether the test 
probes are the same or whether the color of one of the objects is different from the 
remembered objects. (B) In the continuous recall task, the test display contains a color 
wheel and placeholders at the corresponding locations of the memory objects. A target 
probe is indicated by a thicker outline of the placeholder. Participants need to recall the 
color of the target probe and choose the best match color on the color wheel by a mouse 
clicking.  
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Figure 2. 
A probabilistic mixture model of working memory recall error distribution. 
 

 
 
Note. The model is formulated as a mixture of the uniform and von Mises distributions, 
each captures guessing and memory-based responses, respectively. The von Mises 
distribution has μ and sd parameters as the mean and standard deviation of the 
distribution (the directionality in each type of error from the true value, T, is illustrated 
with an arrow), reflecting accuracy and precision aspects of memory quality. The height 
of the uniform distribution is parameterized by guess rate, g. 
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Figure 3. 
Underestimation of precision by a model that does not account for bias. 

 
Note. When the overall errors exhibit a systematic left-ward bias (red curve), a 
measurement model that does not account for bias can result in underestimation of 
precision to describe the data given (i.e., overestimation of the width of the distribution; 
green curve). 
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Figure 4. 
Data simulation with μ shift and recovered without μ shift. 

 
 
Note. (A) The normal probability density functions of the simulated and recovered data 
(B) A summary of the estimated SD as a function of SDbase and μ values added to 
simulate data.  
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Chapter 2. Modeling Systematic Bias of Working Memory Errors 

2.1. Introduction 

In previous Chapter 1, I present a brief overview of how the errors from 

continuous estimation WM task can be modeled to capture distinct constructs of 

representations, the qualitative and quantitative aspects. A vast of recent studies have 

utilized this measurement model to characterize the mnemonic quality and to evaluate 

individual differences in WM function. However, overall memory quality could also 

manifest as the accuracy of representation (i.e., the correspondence between internal 

representations and stimuli). This chapter will elucidate more details of the practices 

modeling this representational shift from error distribution. 

The representational shift can manifest as the systematic changes in the central 

peak location of the error distribution, which can be represented as the third parameter μ 

in Zhang and Luck (2008) probabilistic mixture model. The direction and magnitude of 

the μ shift parameter could be central for testing theoretically important hypotheses. 

However, its numerical effect often tends to be very subtle, thus vulnerable to multiple 

sources of variability such that the central tendency may vary from participant to 

participant, trial to trial, or even item to item. This could fail to reach statistical 

significance even when the effect is true. 

2.2. Hierarchical Bayesian Modeling of μ Shift 

For the numerically and statistically weak effect in μ shift, the hierarchical 

Bayesian approach could be a useful solution to estimate the true effect over the noisy 

surface of a dataset. The hierarchical Bayesian modeling combining hierarchical models 
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and Bayesian parameter estimation techniques offers substantial advantages over the non-

hierarchical models under the maximum-likelihood or least-square estimation (Oberauer 

et al., 2017). Specifically for the advantage in parameter estimation, multiple levels of 

variability (e.g., population-level, subject-level, and condition-level) are simultaneously 

accounted for by pooling the data from all participants and conditions (Lee & 

Wagenmakers, 2014). Throughout informing and updating the parameter estimates across 

hierarchical structures in data, the posteriors of parameters can be shrunk toward the 

population mean (Shiffrin et al., 2008). This results in a probabilistic density of posteriors 

over all plausible parameter values, instead of a point estimate of the best-fitting 

parameter value under the maximum-likelihood method, giving the uncertainty of 

parameter estimation.  

A graphical illustration of the hierarchical Bayesian mixture model is shown in 

Figure 5. For the population parameters of the mixture model, shift, precision, and 

proportion of guessing, the main effects are estimated in a general linear model, sampled 

from the normal distribution where the posterior mean is defined by the sum of fixed 

effect (i.e., condition effect) and random effect (i.e., individual effect), and the variability 

term describes the interaction between the individual and condition effects (Rouder et al., 

2014). For example, the population μ shift parameter is drawn from, 

 μij ~ Normal(αi + βj, δ2) 

 αi ~ Normal(0, ε) 

 ε ~ Gamma(1, 1); *in radius 

 βj ~ Normal(0, pi/18) 
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where αi and βj are the ith subject effect and the jth condition effect, respectively, and δ2 

describes their interaction effect.  

2.3. Simulation and Parameter Recovery 

To test the robustness of parameter estimation for the μ shift under hierarchical 

Bayesian mixture modeling, here I present a set of data simulations and parameter 

recovery tests. The 3-parameter Zhang and Luck (2008) mixture model was used to 

simulate and fit the simulated data. Specifically, assuming that a researcher conducted a 

study where the difference between two experimental conditions is predicted only by a 3° 

shift in the reported errors but not in precision and guessing rate. The preset parameters 

for these two conditions are as follow: Condition 1 (μ: 0°, sd: 20°, pguess: 0.2) and 

Condition 2 (μ: 3°, sd: 20°, pguess: 0.2).  

For the maximum-likelihood fitting method, a large sample size of 5,000 data 

points (i.e., subjects) was simulated from the model to minimize sampling noise, 

separately for each condition and each six different trial numbers: 30, 50, 100, 200, 500, 

and 1,000 trials. These simulated data are then again fitted by the same model to estimate 

the best-fitting parameter values, separately for each data cell. To evaluate the parameter 

recovery reliability, I focus on the variability of the recovered parameter values across 

5,000 subjects. Figure 6A shows a decreasing pattern in the standard deviations of the 

best-fit parameters over increasing trial numbers. More importantly, Figure 6B shows the 

condition effect (i.e., condition 2 – condition 1) on each parameter by fitting curves to the 

normal probability density functions, as a function of trial numbers. Among the six 

populations of the condition effects on the μ shift centered around 3°, a simulation set of 
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500 trials per condition revealed a 95% confidence interval between -0.05° and 5.98°. 

This indicates that about 500 trials per condition are required to reliably capture the 

predicted effect of 3° on μ shift.  

For the hierarchical Bayesian method, I simulated only 20 data points from the 

model separately for each condition and three numbers of trials: 50, 100, and 200 trials. 

This huge reduction in the number of samples was to show the power of hierarchical 

Bayesian parameter estimation pooling information from all data points from different 

samples (i.e., subjects) for estimating population-level parameters while accounting for 

individual differences. For Bayesian parameter estimation, I took a total of 10,000 

samples after 10,000 warm-ups from four Markov Chain Monte Carlo chains. For the 

Bayesian posteriors of model parameters, statistical inference can be made based on the 

95% highest density interval (HDI95%). The HDI95% tells the parameter values covered by 

95% of the posterior density, thus a conceptual analog of the frequentist confidence 

interval (CI95%).  

Figure 7 plots the posterior probabilities of the population-level μ shift parameters 

for the condition effect at the corresponding trial numbers, 50, 100, and 200 trials. The 

results show a drastic reduction in the number of trials required to recover the known 

difference of 3° μ shift between conditions, with a reasonable number of 20 subjects. 

Specifically, even at 50 trials per condition per subject, the lower boundary of the HDI95% 

[0.7°, 4.9°] did not cross over zero, indicating a credible difference between the two 

conditions. The HDI95% range becomes narrower as the trial number increases, HDI95% 
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[1.4°, 4.3°] and HDI95% [1.8°, 3.9°] for 100 trials and 200 trials per condition per subject, 

respectively. 

The present data simulation and parameter recovery confirms the primary 

advantage of hierarchical modeling in estimating population-level parameter estimates. It 

is particularly useful in the context of studies using continuous WM recall tasks and when 

more than two experimental conditions need to be tested or only a limited number of 

subjects are available (e.g., special populations such as experts or clinical patients in a 

specific domain). In the following chapters, I introduce empirical examples of how this 

hierarchical Bayesian mixture modeling for the representational shift component in WM 

errors. 
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Figures 
Figure 5. 
A graphical illustration of the hierarchical Bayesian mixture model for working memory 
recall errors. 

 
Note. The model contains different parameters for hierarchies following given data 
structure, observation-level (gray-filled circles), subject-level (orange), condition-level 
(green), and population-level (ivory). Parameters in double-border circles describe 
variabilities of the target parameters. The population-level parameters μij, κij, and gij are 
fitted to the error from each participant, condition, and trial. 
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Figure 6. 
Parameter recovery results under the maximum-likelihood fitting method  

 
Note. (A) The standard deviations of the best-fit parameters of the probabilistic mixture 
models for condition 1 and condition 2, as a function of trial numbers. The larger values 
indicate greater variability in the recovered parameter values. (B) The population 
condition effect (condition 2 – condition 1) illustrated by the normal probability density 
function fit curves based on the mean and standard deviation of the recovered parameter 
values.  
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Figure 7. 
Posterior probability densities of the condition effect captured by the population-level μ 
shift parameter at each trial numbers. 

 
Note. The curves are the kernel density fits of the parameter posteriors, and the shaded 
areas are the range of the 95% highest density interval (HDI95%). The legends summarize 
the mean and HDI95% of the condition effect on the μ shift parameter. 
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PART II. 

Chapter 3. μ Shift Testing a Discrete Component in Visual Working Memory 

Encoding 

3.1. Chapter Abstract 

Working memory (WM) as a central bottleneck in cognition has primarily been 

attributed to its well-known storage limit. However, relatively little is known about a 

processing limit in the initial memory encoding stage, whose temporal characteristics 

may constrain various cognitive processes. The present study has developed a novel 

method of dynamic stimulus presentation with hierarchical Bayesian modeling to 

quantitatively estimate WM encoding speed. Specifically, two memory items for the 

delayed-estimation task continuously changed color hues in perceptually unnoticeable 

steps. Across three experiments, the recall errors systematically shifted toward the 

direction of color change, providing a proxy measure of encoding speed. These shifts can 

be accounted for by a mixture of two distributions of encoding time with credible 

separations in-between, providing strong evidence for a discrete component in WM 

encoding of multiple items. 

3.2. Introduction 

 In natural vision, objects’ appearance often changes subtly due to naturally 

occurring events in the environment (e.g., changes in luminance from shadow of other 

objects) and eye movements or body movements of the observers. Consequently, 

adaptive behaviors often rely on the observers’ ability to rapidly encode and update 

relevant information in a consciously accessible form that can last more than few hundred 
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milliseconds in the absence of sensory inputs (e.g., during saccadic eye movements or 

blinks), as well as to resist interference and memory decay (Irwin, 1991; Sperling, 1960). 

Longstanding research on this active memory representational system, visual working 

memory (VWM) has shown that it is severely limited in storage capacity (Cowan, 2001; 

Luck & Vogel, 1997; Park et al., 2017; Zhang & Luck, 2008, 2009a, 2011), mnemonic 

precision (Bays & Husain, 2008), or strength (Schurgin et al., 2020). Despite the effort on 

characterizing these representational limitations of VWM and its relation to cognition 

(Fukuda et al., 2010; Kane & Engle, 2002; Oberauer et al., 2005; Unsworth & Engle, 

2007), only a handful of studies assessed the broader contributions of the encoding 

process transferring fragile perceptual representations into durable mnemonic 

representations in VWM (Vogel et al., 2006; Cappiello & Zhang, 2016; Cotton & Ricker, 

2022). 

VWM encoding process is functionally important for cognition in several ways 

(Xie & Zhang, 2022). First, VWM encoding is highly limited in its processing speed 

(Jolicœur & Dell’Acqua, 1998; Vogel et al., 2006). That is, the amount of information 

that can be encoded into VWM at a given time is limited, and this may in turn limit the 

processing speed of other cognitive processes, such as the speed of conscious perception 

tested in the attentional blink literature (Chun & Potter, 1995; Vogel & Luck, 2002). 

VWM encoding speed as a limiting factor for conscious perception may even lead to 

continuous sensory inputs being perceptually encoded into discrete chunks (Vanrullen et 

al., 2007). Beyond individual processes, VWM encoding speed may be associated with 

the overall mental processing speed (Kail & Salthouse, 1994), and consequently mediate 
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the relationship between working memory capacity and higher cognition such as fluid 

intelligence (Fry & Hale, 1996; Salthouse, 1991). Relatedly, impairments in VWM 

encoding are often observed in various clinical populations. For instance, schizophrenia 

patients often exhibit larger attentional blink effects (Cheung et al., 2002) and reduced 

VWM capacity (Gold et al., 2006), potentially due to slower VWM encoding (Fuller et 

al., 2005).  

Second, VWM encoding speed may underlie some behavioral effects on VWM 

capacity. For instance, behavioral (Jannati et al., 2015) and electrophysiological (Linke et 

al., 2011) measures of VWM encoding speed seem to be closely related to VWM storage 

capacity. In addition, some recent reports suggest that VWM capacity boost by stimulus 

familiarity (Sørensen & Kyllingsbæk, 2012; Shen et al., 2018; Xie & Zhang, 2017a) can 

be accounted for by the familiarity effect on VWM encoding speed (Blalock, 2015). 

Further studies have suggested that familiarity-induced capacity effect may only manifest 

when VWM encoding is interrupted by short encoding time or use of masking stimuli 

(Xie & Zhang, 2017b; Xie & Zhang, 2018).  

Given the functional significance of VWM encoding and its impact on cognition, 

it is pivotal to establish reliable experimental measures of VWM encoding speed. The 

encoding speed/rate limit can manifest, and thus could be behaviorally assessed, in two 

different ways. First, if the amount of encoding time is short, then VWM task 

performance will deteriorate as the memory set size increases (Becker et al., 2013; Miller 

et al., 2014). Reversely, at a given memory set size, VWM task performance will increase 

continuously with encoding time until it reaches a plateau (Vogel et al., 2006).  
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To measure the encoding rate from these aspects, Vogel and colleagues (2006) 

designed a masked encoding procedure in a change-detection task. In the task, a brief 

presentation of memory items was followed by an additional array of pattern masks at 

various time intervals (i.e., the stimulus onset asynchrony (SOA) between the onset of the 

memory display and the mask array). These backward masking stimuli largely interrupt 

the VWM encoding process such that any perceptual representations that have yet been 

encoded will be masked out, whereas the already encoded memory representations can 

survive. By systematically manipulating the memory encoding time with the memory-

mask SOAs, they found a continuous increase in change-detection accuracy with the 

encoding time, but only until it reached an asymptote level. In addition, the SOA at the 

asymptote performance and the asymptote performance itself, measured as Cowan’s K 

(Cowan, 2001), increased with memory set sizes, suggesting more representations are 

encoded into VWM with longer encoding time. A linear function adequately captured 

this pattern at set size four, yielding a slope of 50 ms with an intercept of 60 ms, 

indicating that VWM encoding rate is approximately 50 ms per stimulus and the initial 

formation of perceptual representation is about 60 ms.  

These methods have provided simple empirical measures of VWM encoding 

speed that can capture various experimental effects (Xie et al., 2022) and individual 

differences in healthy and clinical populations (Habekost & Starrfelt, 2009). Nonetheless, 

these behavioral measures may have some caveats originated from particular assumptions 

and methodological constraints (also see Xie & Zhang, 2018). For example, these 

methods assume that the backward pattern masking effectively terminates VWM 
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encoding with comparable effectiveness across memory set sizes and memory-mask 

SOAs. An additional assumption is the homogeneity in VWM encoding rate across 

memory items (i.e., linear or exponential function; also see Bundesen, 1990). However, 

these assumptions have not been systematically tested. Also, these methods require 

artificial interruption of VWM encoding with backward masking at various SOAs, 

rendering it less ecologically valid given that artificial backward masking is uncommon 

in natural vision. Lastly, the masking stimuli could introduce an additional task demand 

for active inhibition to avoid replacing memory representations with the masking stimuli, 

similar to object substitution masking (Enns, 2004). Given that inhibition of distractors 

may be more crucial than VWM encoding in limiting the processing speed of rapidly 

presented stimuli (Dux & Harris, 2007), it is necessary to ensure that the estimates of 

VWM encoding rate are not confounded by the speed of active inhibition.  

These potential issues with the current behavioral methods for assessing VWM 

encoding call for a new method that does not rely on the artificial backward masking 

procedure and those unnecessary assumptions. In the present study, we have thus 

developed a novel task procedure of presenting two dynamically changing memory 

colors to assess VWM encoding time based on the recalled color values using the delayed 

estimation paradigm (Zhang & Luck, 2008). Although this dynamic memory feature 

change is perceptually subtle and unnoticeable (see Experiment 1B results), the encoded 

memory color will vary based on the encoding speed. Consequently, the temporal 

dynamics of VWM encoding process could manifest as and thus be behaviorally 

measured by the magnitude of systematic shifts in the remembered feature values from 
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the memory onset, which can in turn be converted to the encoding speed measure. In 

other words, a slower VWM encoding will lead to larger shift in the retained color 

representation toward the direction of the memory color rotation. 

Furthermore, we utilized this novel measure of VWM encoding speed to test the 

temporal dynamics in the VWM encoding of multiple items. Despite our subjective 

experience of representing the external world in a continuous manner, growing evidence 

point out a discrete sampling mechanism in attention, perception, and internal attention 

directed to working memory representations (Barrouillet & Camos, 2012; Landau, 2018; 

Pomper & Ansorge, 2021; VanRullen, 2016). We sought out a discrete component within 

the VWM encoding of two colors by comparing two descriptive models (see Method for 

detail) generated from different theoretical perspectives, using a hierarchical Bayesian 

method.  

The discrete encoding hypothesis predicts dissociable memory encoding time 

(starting and/or completion) for the two memory items that manifests as two separable 

central peaks of the recall error distributions under our experimental manipulation of 

dynamically changing memory colors. Specifically, the trial-by-trial variability in the 

circular shift measure could be better accounted for by the model with two central peaks 

(i.e., the to-be-recalled memory item was either encoded earlier or later than the other 

item). In contrast, the concurrent encoding hypothesis predicts overlapping encoding 

time for two changing colors that subsequently manifests as a single central peak of the 

recall error distribution. According to this hypothesis, the seriality predicted by the 

discrete encoding hypothesis could be nothing but a consequence of trial-by-trial 
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variability of parallel encoding completion time (Townsend, 1990). In this case, the 

variable magnitudes of shift on the continuous feature space should originate from 

random variation between trials, while comparable between the encoded items. 

Consequently, the error distribution would be better described by the model with a single 

central peak.  

Together, the present study tested whether or how VWM encoding of two 

dynamically changing colors manifest as the shifts in the recall error distributions for one 

of the two remembered colors (Experiment 1A) or both colors (Experiment 2). To rule 

out an alternative account that these effects are potentially driven by strategical 

adjustment of the recalled color, Experiment 1B tested whether the dynamic color 

rotation was perceptually noticeable and subsequently associated with the recall 

performance.  

3.3. General Method 

3.3.1. Participants 

Twenty-seven (19.0 ± 1.2 years old, 3 males), 33 (19.7 ± 1.1 years old, 17 males), 

and 25 (20.0 ± 1.2 years old, 9 males) college students at University of California, 

Riverside participated in Experiment 1A, Experiment 1B, and Experiment 2, respectively, 

for course credits. All participants provided informed-consent and reported to have 

normal or corrected-to-normal visual acuity and normal color vision. 

3.3.2. Stimuli and Procedure 

Stimuli were presented on an LCD monitor with a refresh rate of 60 Hz and a dark 

grey background (6.1 cd/m2) at a viewing distance of 57 cm. The memory colors were 
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randomly selected from a 360-degree color-wheel with a minimum circular distance of 

24°. The color-wheel, with a radius of 8.2° and a thickness of 2.2°, consisted of 180 

colors evenly distributed on a circle in CIELAB space (for details, see Zhang & Luck, 

2008). All colors had equal luminance but varied in hue and slightly in saturation. As 

shown in Figure 8, for the delayed estimation task in Experiment 1, 1B, and 2, each trial 

started with an 800 ms fixation, followed by a memory array consisting of two colored 

squares (2.0° × 2.0° in visual angle). The colored squares were presented at locations 

randomly selected from a set of four equally spaced locations on an imaginary circle with 

a radius of 5.3° from the center.  

Importantly, the memory colors continuously rotated by 2° at every screen refresh 

(16.7 ms) throughout the 167 ms of presentation duration, resulting in a total of 18° color 

rotation over nine steps (velocity of 0.12°/ms). With this color rotation rate, 1° color 

rotation in the color space corresponds to 8.33 ms in time. The directions of the color 

rotation were counterbalanced between clockwise (CW) and counterclockwise (CCW) 

across trials but stayed the same for the two memory colors on each trial. 

In all experiments, participants were instructed to remember the two memory 

colors as accurate as possible over a 1,000 ms blank interval. A test array followed, 

containing two outline squares at the corresponding memory item locations and a color-

wheel. One square was thicker than the other item, indicating the probed item that needs 

to be recalled. Participants reproduced the color of the probed item by clicking the mouse 

cursor on the best-matching color on the color-wheel. Accuracy was stressed over speed. 

Immediately after the recall response, a 500 ms online feedback was presented with a 
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cross and an arrow marking the color the participants picked and the actual color 

presented in the memory array, respectively. Each trial sequence was repeated 400 trials 

with a second of inter-trial interval. 

In Experiment 1B, an additional perceptual task consisted of two questions was 

presented after the memory recall response in every trial, to assess whether the 

participants noticed the color rotation of the memory colors or not. The same color-wheel 

from the test array of the delayed estimation task stayed on the screen, as a reference for 

the participants. The first question of the perceptual task, presented at the display center, 

asked the participants whether they noticed any color changes during the presentation of 

the memory colors. Regardless of the Yes/No answer and its accuracy, the second 

question followed and asked whether the memory colors changed direction clockwise or 

counterclockwise on the color-wheel. Participants responded to each question by clicking 

on a Yes/No scale or CW/CCW color change scale with the computer mouse. Critically, 

unlike Experiment 1, the memory colors only rotated in the circular space on half of the 

trials, whereas remained static during memory presentation for the other half of the trials. 

The directions of the color change were again counterbalanced between CW and CCW. A 

total of 64 trials were collected for Experiment 1B. 

Experiment 2 procedure was identical to the one in Experiment 1A except that the 

first recall test was followed by a 1-s blank display and then another recall test for the 

other item (i.e., the whole-report procedure). In correspondence, the thicker outline 

square as the recall cue switched from the first item to the other item for the second recall. 

To minimize a strategical recall of the non-target item at the first recall, a new response 
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color-wheel was presented for the second recall with a circular rotation of random 

degrees. Feedback was provided for both recalls as in Experiment 1A. Participants in 

Experiment 2 performed a total of 270 trials.  

3.3.3. Data Analysis 

Recall error was coded as the angular distance between the presented memory 

color and the reported color from the recall. Errors from CW and CCW trials were 

collapsed by reversing the sign of recall errors from CCW trials and consequently the 

directions of recall error for both conditions were identical, relative to the direction of the 

memory color rotation. That is, errors in positive values for both CW and CCW 

conditions are in the direction of the memory color rotation. Prior to this treatment, we 

identified that there was no systematic, statistically significant difference in the absolute 

circular mean of errors between CW and CCW trials in Experiment 1A, t(26) = 1.50, p 

= .145, Cohen’s d = 0.30, Experiment 1B, t(32) = 0.98, p = .334, Cohen’s d = 0.17, and 

Experiment 2 for the first recall, t(24) = 1.07, p = .296, Cohen’s d = 0.22, and for the 

second recall, t(24) = 0.27, p = .787, Cohen’s d = 0.06.  

The recall errors were then modeled using a hierarchical Bayesian method, 

separately for two candidate models. First, to test the concurrent encoding hypothesis, 

1VM+U model, as an extended Zhang and Luck (2008) Mixture model, is mathematically 

a mixture of two distributions representing whether recall responses are based on noisy 

mnemonic evidence or random guesses (Figure 9A). The uniform distribution (U) 

captures recall responses with no mnemonic evidence (e.g., random guesses), represented 

by a single parameter, g, the height of the uniform probability distribution. The von 
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Mises distribution (VM; the circular analogue of the Gaussian distribution) captures recall 

responses resulting from noisy mnemonic representation with two parameters, mean (µ) 

representing the shift in the retained color hue relative to the first color of the memory 

color rotation and standard deviation (σ, converted from concentration κ) representing 

mnemonic imprecision. The shift and imprecision parameters manifest as the peak 

location and width of the bell-shaped von Mises distribution, respectively. In the present 

study, a systematic shift in the retained color toward the direction of color rotation 

captured by µ parameter is central for testing VWM encoding speed. Together, the 

1VM+U model is described by the following equation: 

 𝑝(𝑥|𝜇) = (1 − 𝑔) · 𝑉𝑀(𝑥; 𝜇, 𝜅) + 𝑔(1 2𝜋⁄ ) 

Second, 2VM+U model is defined as the mixture of two von Mises distributions 

and the uniform distribution, testing our discrete encoding hypothesis (Figure 9B). The 

two von Mises functions were equally weighted in summation based on assumptions that 

each memory item is equally likely to be encoded earlier than the other, and more 

importantly, the chance that whether a test probe is the item that is encoded earlier or 

later is also equally likely on average across trials. The 2VM+U model is described by the 

following equation: 

 𝑝(𝑥|𝜇) = (1 − 𝑔) · [0.5 · 𝑉𝑀-(𝑥;	𝜇-, 𝜅) + 0.5 · 𝑉𝑀+(𝑥; 	𝜇+, 𝜅)] + 𝑔(1 2𝜋⁄ ) 

, where VM1 and VM2 are two von Mises distributions sharing the same precision 

parameter κ. They are not arbitrarily ordered but only different by independent mean 

central tendency parameters, µ1 and µ2. 

3.3.3.1. Hierarchical Bayesian Modeling  
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The two descriptive models are generated from and used to test the two 

competing theoretical accounts of VWM encoding. Critically, the magnitude of the 

separation of the two von Mises distributions, µ gap (µ2 - µ1), predicted by the discrete 

encoding hypothesis is expected to be numerically small, based on the previous literature 

(e.g., 20 to 100 ms; Vogel et al., 2006). This expected lag, in the context of the present 

experiment procedure, is equivalent to 2° to 12° gap between the peak locations of the 

error distributions, leading to two closely-overlapped distributions given the typical 

memory imprecision of about 20° standard deviation (Zhang & Luck, 2008). In addition, 

multiple sources of variability such as between-subject and between-trial variance can 

make it even more difficult to tease apart the two overlapping distributions, under the 

conventional maximum likelihood estimation method (Park & Zhang, 2019).  

To address this issue, we adopted the hierarchical Bayesian model with 

MatlabStan (Stan Development Team, 2016), to assess the temporal characteristics of 

VWM encoding for two colors. In hierarchical Bayesian parameter estimation, multiple 

sources of variabilities are accounted for simultaneously through different levels of data 

structure (e.g., subject-by-subject and trial-by-trial variability) such that noisy parameter 

estimates can be shrunk toward the population mean (Shiffrin et al., 2008). As a result it 

provides posterior parameter estimates at population-level with a full range of possible 

values. We took a total of 12,000 samples after 12,000 warm-ups from four Markov 

Chain Monte Carlo chains. We chose reasonable to non-informative priors for all 

parameters to minimize biases due to the choice of priors, following existing literature 

that adopted hierarchical Bayesian modeling for continuous recall errors (Oberauer et al., 
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2017; Park & Zhang, 2022). Model convergence assessed by R̂ was found to be close or 

equal to 1.00 for all parameters (Gelman & Rubin, 1992). 

The mean and the 95% credible interval (highest density interval, HDI95%) of the 

posterior distributions of the population-level parameters provide a point estimate and the 

strength/uncertainty of evidence, respectively. Statistical inference for the difference in 

parameter values (e.g., µ2 – µ1 representing the temporal lag between two encoded 

representations, µgap) can be made based on HDI95%. Specifically, if the lower and upper 

bounds of HDI95% do not cross over zero, it can be considered as strong, credible 

evidence (Kruschke, 2014). Formal model comparison was performed to test the two 

competing models based on the widely applicable information criterion (WAIC; Vehtari 

et al., 2017; Watanabe, 2010), a robust measure of model fit for hierarchical models that 

takes the model complexity into account. 

3.4. Experiment 1 

In Experiment 1, we sought out to test our manipulation of memory color rotation 

in a continuous delayed estimation task. Unlike the presentation of a set of static memory 

items during encoding in conventional VWM recall tasks, the gradually changing 

physical appearance of the memory colors in the present study allows us to trace the 

temporal dynamics of VWM encoding. Accordingly, a central tendency measure of the 

error recall distribution (i.e., shift of the peak location) is predicted to reflect overall 

VWM encoding speed for two colors. A slower VWM encoding in this regard will be 

associated with greater shift of error distribution from the memory colors at their initial 

onset, toward the direction of the color rotation. 
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For the central peak of the recall error distributions, Experiment 1A further 

attempted to test the competing hypotheses about VWM encoding with a specific focus 

of the presence of temporal lag between encoding of two colors. A hierarchical Bayesian 

modeling and a formal model comparison using the likelihoods of the posteriors were 

conducted. If a discrete component is necessary for describing VWM encoding of 

multiple items, it will leave a dissociable temporal lag in the recall error distributions 

across probed items that are either encoded earlier or later than the other, under the 

experimental manipulation of the present study. In addition, Experiment 1B tested 

whether the participants could consciously notice the rotation of the memory colors and if 

their ability to detect a presence of color rotation strategically adjusted their recall 

responses accordingly. 

3.4.1. Results and Discussion 

3.4.1.1. Experiment 1A 

The overall distribution of the recall errors showed a rightward shift toward the 

direction of the memory color rotation (Figure 10A). For the raw recall errors, the 

circular standard deviation was averaged at 30.3° [CI95%: 27.8°, 32.9°] across the 

participants. More importantly, the circular mean of the recall errors was averaged at 

+12.3° [CI95%: +11.6°, +12.9°] toward the direction of the memory color rotation, 

significantly deviated from the 0° initial color hue at the memory onset, t(26) = 36.44, p 

< .001, Cohen’s d = 7.15.  

Next, to test our hypotheses for the temporal relationship between VWM 

encoding of two dynamically rotating colors, a formal model comparison of the two 
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models, 1VM+U and 2VM+U, was performed using WAIC (widely applicable 

information criterion; Watanabe, 2010). The WAIC was calculated from the likelihood 

sets of the data given the estimated model parameters, integrated over all possible values 

from their posteriors (Oberauer et al., 2017). We found that WAIC largely favored the 

2VM+U model (WAIC: 85,379) over the 1VM+U model (WAIC: 88,480). This indicates 

that the recall errors distributions for the two dynamically changing memory colors can 

be better described by the 2VM+U model which postulates two separate central peaks for 

discrete encoding times for the two memory colors, than by the 1VM+U model which 

postulates a single peak for the concurrent encoding of the two memory colors.  

With the model comparison results, we then focused on the estimated parameters 

of the 2VM+U model. The mean posterior of the population-level σ parameter (i.e., 

imprecision) was 18.9° [HDI95%: 18.5°, 19.4°] and g parameter (i.e., guessing rate) was 

12.7% [HDI95%: 12.0%, 13.5%], consistent with the previous studies of VWM using 

static memory colors (e.g., Zhang & Luck, 2011). Of the primary interest, the posterior 

probability density function of the µ1 and µ2 parameters (Figure 10B) showed non-

overlapping means and HDIs95% (µ1, 10.2° [HDI95%: 8.5°, 11.7°]; µ2, 13.8° [HDI95%: 

12.3°, 15.5°]). Therefore, the difference between the two shifts, µgap [µ2 – µ1], did not 

cross over zero, 3.6° [HDI95%: 0.4°, 6.7°], indicating a credible separability of the two 

discrete time points in VWM encoding for the two memory colors.  

These µ1 and µ2 posteriors can then be converted to the temporal dimension. 

Given that 1° shift corresponds to 8.33 ms under our manipulation of color rotation 

velocity, two µs are equivalent to 85.0 ms [HDI95%: 70.8 ms, 97.8 ms] and 115.1 ms 
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[HDI95%: 102.1 ms, 129.2 ms], respectively, with a temporal gap of 30.1 ms [HDI95%: 3.6 

ms, 55.7 ms] in between. Furthermore, the linear function for the two µs produced an 

intercept measure (i.e., µ1 - µgap) at 55.5 ms [HDI95%: 12.3 ms, 96.7 ms], highly 

comparable with the previous report of 60 ms intercept which measures perceptual 

encoding time by Vogel and colleagues (2006).  

3.4.1.2. Experiment 1B 

Four out of the 33 participants repeatedly made the same response of either “Yes” 

or “No” for the first question across all trials and were therefore excluded from data 

analysis. Overall, the participants performed poorly on the detection of whether memory 

colors were changing or not during memory presentation (Figure 11A), with accuracy 

averaged at 50.0% [CI95%: 48.3%, 51.7%] and signal detection d-prime averaged at 0.02, 

[CI95%: -0.11, 0.14]. This performance was not significantly different from the chance-

level (i.e., accuracy at 50% and d-prime at 0), ts(28) < 0.28, ps > .782, Cohen’s ds < 0.05.  

Across all trials, the ratio of subjective CW and CCW color change responses was 

comparable with each other, with a small preference for the CCW responses, 6.25% 

[CI95%: -3.41%, 15.9%] more than the CW responses, t(28) = 1.27, p = .215, Cohen’s d = 

0.24, indicating no systematic bias in the choice between CW and CCW responses. 

Critically, for the half of the trials when the memory color rotations actually happened, 

the participants’ capability of detecting its direction remained at chance, 51.4% [47.0%, 

55.8%], t(28) = 0. 26, p = .540, Cohen’s d = 0.12. This near-chance performance was not 

significantly different regardless of whether they accurately detected the color change or 

not, t(28) = 1.32, p = .100, Cohen’s d = 0.25. 



 47 

To further evaluate whether or how the participants’ detection of the memory 

color change affected their memory recall, we examined two circular descriptive statistics 

of the recall errors. A two-way repeated-measures analysis of variance (ANOVA) for the 

circular mean error (Figure 11B) as a function of presence/absence of the memory color 

rotation (change vs. no change) and participants’ response type (Yes vs. No) revealed a 

significant main effect of color change, F(1, 28) = 124.16, p < .001, η2p = .82, whereas no 

significant main effect of the response type, F(1, 28) = 0.14, p = .707, η2p = .01, or the 

two-way interaction, F(1, 28) = 0.86, p = .362, η2p = .03. Planned t-tests between correct 

(“No”) and incorrect responses (“Yes”) for the color rotation absent condition, t(28) = -

0.51, p = .616, Cohen’s d = -0.10, and between correct (“Yes”) and incorrect responses 

(“No”) for color rotation present condition, t(28) = 0.79, p = .436, Cohen’s d = 0.15, both 

failed to show significant differences.  

Another two-way repeated-measures ANOVA was performed for the circular 

standard deviation of the recall errors (Figure 11B) with the same two factors yielded 

non-significant main effects of color change, F(1, 28) = 1.59, p = .218, η2p = .05, the 

response type, F(1, 28) = 0.11, p = .739, η2p = .00, and the two-way interaction, F(1, 28) 

= 0.03, p = .872, η2p = .00. Again, planned t-tests between correct and incorrect responses 

for the color rotation absent condition, t(28) = 0.15, p = .884, Cohen’s d = 0.03, and the 

present condition, t(28) = 0.32, p = .754, Cohen’s d = 0.06, produced nonsignificant 

effects. These results confirmed that our manipulation of memory color rotation was 

largely unnoticeable, and thus unlikely to elicit strategic responses such as biased recall 

responses toward the average of the dynamically changing memory colors.  
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Experiment 1A suggests that VWM encoding speed for two dynamically-

changing colors can be measured by the extent of the circular shift in the remembered 

color toward the direction of memory color rotation. Furthermore, our Bayesian 

hierarchical modeling and formal model comparison revealed that the overall recall error 

distribution could be well explained by the 2VM+U model postulating two credibly 

dissociated representations with the discrete central peaks, indicating a temporal lag 

between the discrete VWM encoding of two colors. Since the memory color rotation was 

largely unnoticeable and unrelated to the recall performance, tested in Experiment 1B, the 

systematic shift in the remembered color cannot be attributed to strategical adjustments to 

the recall responses.  

3.5. Experiment 2 

To perform a stronger test of the discrete-encoding hypothesis, Experiment 2 used 

a whole-report procedure in which both memory items were recalled in sequence. 

Critically, the relative difference between two recall errors (2nd – 1st recall) was modeled 

to test the validity of the discrete component in VWM encoding (see Figure 12 for 

simulation). For the discrete-encoding hypothesis, two recall responses should be 

mutually-exclusively sampled from different underlying mnemonic representations 

dissociated by the central peak locations, and consequently form a bi-modal distribution 

in the relative error difference between the two recalls. Contrarily, the concurrent-

encoding hypothesis assumes that two recalls are independently-and-identically 

distributed in time, leading to a uni-modal distribution for the relative error difference 

with the central peak around zero. 
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3.5.1. Results and Discussion  

Participants’ average of the circular mean of recall errors was comparable 

between the 1st recall (11.9° [CI95%: 11.1°, 12.7°]) and the 2nd recall (12.0° [CI95%: 11.0°, 

13.1°]), t(24) = -0.22, p = .824, Cohen’s d = -0.05, and also comparable with the recall 

errors in Experiment 1A, ts < 0.36, ps > .719, Cohen’s ds < 0.05. The circular mean for 

the difference in recall errors between the two recalls [2nd – 1st] was not statistically 

different from zero (0.3° [CI95%: -0.6°, 1.2°]), t(24) = 0.65, p = .525, Cohen’s d = 0.13. 

For the circular standard deviation measure, the 2nd recall showed larger variabilities 

(37.4° [CI95%: 33.5°, 41.3°]) compared to the 1st recall (34.3° [CI95%: 30.6°, 38.0°]), t(24) 

= 4.97, p < .001, Cohen’s d = 1.02, yielding 42.1° [CI95%: 39.0°, 45.1°] circular standard 

deviation of the error difference between the two recalls. The significant increase in 

variability of recall errors replicates the recall-order effect from the whole-report 

paradigm (Adam et al., 2017; Park & Zhang, 2022).  

The overall distributions of the recall errors for the 1st recall, 2nd recall, and their 

difference [2nd – 1st] were well captured by the 2VM+U model (Figure 13A-C). We 

compared the WAICs between the 1VM+U and 2VM+U models for the 1st and 2nd recall 

errors, separately. We again found that both sets of recall errors were better fitted by the 

2VM+U model (WAIC1st: 50,502; WAIC2nd: 52,736) than by the 1VM+U model 

(WAIC1st: 53,230; WAIC2nd: 55,478). Critically, the relative difference between two 

recall errors [2nd – 1st recall] was also better accounted for by the 2VM+U model 

(WAICdiff: 56,718) than by the 1VM+U model (WAICdiff: 59,544). The model 

comparison results are consistent with our prediction that memory recalls for different 
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items were mutually-exclusively sampled from two mnemonic representations with 

separable central peak locations. 

Consistent results were also obtained from the estimated posterior distributions of 

the 2VM+U model parameters, specifically for the two shift parameters, µ1 and µ2, from 

the 1st and 2nd recalls (Figure 13D-E), and their difference µgap [µ2 – µ1], (Figure 13G-H). 

For the 1st recall, the posteriors of the µ1, 10.0° [HDI95%: 8.3°, 11.8°], were credibly 

different from those of the µ2, 14.0° [HDI95%: 12.2°, 15.7°], with non-overlapping HDIs, 

yielding a mean µgap [µ2 – µ1] at 3.9° [HDI95%: 0.4°, 7.1°]. Similarly, the 2nd recall errors 

resulted in a credible difference between the posteriors of the µ1, 10.0° [HDI95%: 8.0°, 

11.9°], and the µ2, 14.5° [HDI95%: 12.7°, 16.9°], with µgap [µ2 – µ1] centered at 4.6° 

[HDI95%: 1.0°, 8.6°]. 

Critically, two distinct predictions were tested for the distribution of the relative 

error difference between two recalls, based on hypothetical principles of response 

generation for the 1st and 2nd recalls (see Figure 12). Specifically, if the separation of two 

µ parameters by µgap [µ2 – µ1] is psychologically meaningful, predicted by the discrete-

encoding hypothesis, the 1st and 2nd recall responses should be mutually-exclusively 

sampled from the two von Mises distributions. That is, if the 1st recalled item is the one 

encoded earlier, then the 2nd recalled item has to be the one encoded later, and vice versa. 

Consequently, this hypothesis predicts that the distribution of the within-trial recall error 

differences would also have a similar bi-modal shape, with the µgap [µ2 – µ1] as the sum 

of the µgap from the 1st and 2nd recalls. On the contrary, if the separation of two µ 

parameters is merely a descriptive advantage of the 2VM+U model over the 1VM+U 
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model but nothing psychologically meaningful, each recall response should be 

independently and identically sampled from the same distribution. In other words, there 

should be no functional relationship between two recall errors. Consequently, the relative 

error differences should be centered at zero and uni-modally distributed, with no credible 

difference manifested in µgap [µ2 – µ1]. 

Consistent with the idea of discrete-encoding, the µ1 and µ2 posteriors estimated 

from the relative error difference between two recalls clearly showed two peaks (Figure 

13F), contributing to the bi-modal shape of the error difference distribution. The 

posteriors of µ1, -4.4° [HDI95%: -7.8°, -0.6°], were credibly separated from µ2, 4.4° 

[HDI95%: 0.5°, 7.8°], with µgap [µ2 – µ1], 8.8° [HDI95%: 1.8°, 15.7°] nearly-doubled from 

those observed in the 1st and 2nd recalls, as predicted (Figure 13I). The 4.4° gap in the 

separation of two µs across recalls is equivalent to 36.7 ms. 

These results confirm our hypothesis that two sequential recalls for different 

memory items within each trial were exclusively sampled from differentiable 

representational distributions with a credible separation between their peak locations, 

establishing psychological validity for the two µ parameters in the 2VM+U model. 

Together, Experiment 2 provides strong evidence for the discrete component in VWM 

encoding for multiple items. 

3.6. General Discussion 

The present study investigated the temporal characteristics of VWM encoding 

with a novel method of estimating memory encoding time from the remembered color 

hues of continuously rotating memory colors. In three experiments, we found that 
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memory recalls were systematically shifted toward the direction of the memory color 

rotation, manifested as the shift of the central peak location of the recall error distribution. 

This shift in the circular color space can be mapped onto the temporal dimension based 

on the memory color rotation velocity, providing a proxy measure of VWM encoding 

speed. Our manipulation of dynamic color rotation was fairly unnoticeable to participants 

and their memory performance was unrelated to their subjective reporting of the presence 

of the color change (Experiment 1B).  

Using this novel measure of VWM encoding speed, we further tested two 

competing hypotheses regarding the temporal relationship between VWM encoding of 

two memory colors by fitting the recall errors with two corresponding descriptive models 

under hierarchical Bayesian method. Our 1VM+U and 2VM+U models critically differed 

in the conceptualization of the temporal lag within encoding of two memory colors, each 

testing concurrent versus discrete encoding hypotheses, respectively. Formal model 

comparisons revealed that the 2VM+U model outperformed the 1VM+U model across 

experiments. In addition, the two central peak locations of the recall error distributions 

(µ1 and µ2) estimated by the hierarchical Bayesian 2VM+U model were credibly 

separable each other with a statistically reliable gap in between (µgap) supported by non-

overlapping boundaries of 95% HDIs. These results indicate an existence of the temporal 

lag between discrete VWM encoding of two colors.  

Critically, Experiment 2 attempted to establish the validity of the separation of µ 

parameters for capturing discrete VWM encoding by modeling the relative error 

differences between two sequential recalls of both memory items with the whole-report 
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procedure (i.e., within-trial variability). The results confirmed a mutually exclusive 

sampling principle of the two recall responses from the two separable von Mises 

distributions. That is, if the 1st recall was made for the first encoded item, then the 2nd 

recall would be for the second encoded item. Conversely, if the 1st recall was made for 

the second encoded item, then the 2nd recall would be for the first encoded item. As a 

result, the distribution of the within-trial variability of the two recall errors can be better 

captured by the 2VM+U model with its µgap size being equivalent to the summation of the 

µgap in the two recalls. Together, these findings provide strong evidence for a temporal 

lag within discrete encoding of the two memory colors into VWM.  

It is important to note that this temporal gap by no means suggests that VWM 

encoding is a serial process in nature. Serial encoding means that discrete number of 

items are encoded into VWM in a strictly serial manner, so that only one item can be 

encoded into VWM at a given time (Townsend & Wenger, 2004). For example, Liu and 

Becker (2013) presented to-be-remembered stimuli either sequentially or simultaneously. 

The memory display duration for the simultaneous condition was fixed at a threshold 

interval for encoding a single item with a predetermined level of performance, whereas 

the presentation time for each one of the two sequential displays in the sequential 

condition was fixed at the threshold interval. They found the number of retained 

representations increased from the simultaneous condition to the sequential condition, 

whereas mnemonic precision of retained representations remained constant, which was 

taken as evidence for serial VWM encoding. A similar finding was reported previously 

by Zhang and Luck (2008) that the number, not precision, of encoded VWM 
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representations increased over a short period of time after memory array onset. However, 

they did not attribute the findings to serial VWM encoding, since a parallel process, 

especially a capacity-limited parallel process, can also mimic behavioral manifestation of 

the serial process (Townsend, 1990). That is, all memory items can be encoded into 

VWM simultaneously in parallel with a cost that VWM encoding slows down as the 

memory set size increases. The delay in parallel VWM encoding could result from 

decreases in available cognitive resources for each representation or increases in 

interference among representations as well as decisional noise (Oberauer & Lin, 2017). 

As such, the current finding of the lag between VWM encoding of two colors could also 

be consistent with capacity-limited parallel process.  

The present study estimated about 4° lag between VWM encoding of two colors 

(averaged µgap across experiment 1A and 2), which is approximately 33.3 ms in our 

experimental context. This estimation is to some extent similar with the previous 

estimation of about 25 ms per item for alphanumeric stimuli (Gegenfurtner & Sperling, 

1993; Shibuya & Bundesen, 1988) and 50 ms/item for four colors reported by Vogel and 

colleagues (2006). On more theoretical ground, the estimated temporal gap further 

corresponds to approximately 30 Hz cycle. This casts a natural speculation for the 

potential linkage to the gamma band oscillatory activities, considering the large literature 

on the functional role of gamma oscillatory brain activity in the encoding of attended 

sensory information and its maintenance in working memory (Bosman et al., 2012; Fries 

et al., 2001; Honkanen et al., 2015; Lundqvist et al., 2016; Miller et al., 2018). Therefore, 

the current findings raise several questions remained for future research to explore the 
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underling mechanisms for the discrete component in VWM encoding. A plausible 

account for the bottleneck that limits VWM encoding speed may be attentional in nature, 

given that VWM encoding is critically dependent on the availability and control of 

selective attention (Murray et al., 2011; Panichello & Buschman, 2021; Schmidt et al., 

2002). That is, the speed of VWM encoding may be largely determined by the speed of 

focusing and shifting attention. Alternatively, the limit may arise from a bottleneck in 

conscious perception (Busch & VanRullen, 2010; Dehaene, 1993). 

As our first step toward modeling the temporal dynamics of VWM encoding, 

some caveats of the present study need to be noted. First, it is analytically and 

experimentally challenging to generalize the 2VM+U model to larger memory set sizes. 

Analytically, each addition memory item would require another VM component in the 

model, making it progressively more challenging to fit the limited amount of data reliably. 

Experimentally, larger memory set sizes would require extra presentation duration of the 

dynamically changing memory features values to accommodate the longer encoding time, 

leading to larger overall feature changes that may be perceptually noticeable. Second, the 

current findings need to be generalized across feature dimensions, given that temporal 

dynamics of VWM encoding may be different between different features (Liu & Becker, 

2013; Miller et al., 2014). However, it may be difficult to implement the perceptually 

unnoticeable feature changes for some features (e.g., transparent motion with orientation). 

Third, the online feedback may have reduced the effect size because of the potential 

strategical adjustment of the recall responses due to the feedback. However, this effect 

would be minimal since color rotation of the memory items was not explicitly perceived, 
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and the CW and CCW color rotations were randomly mixed throughout the trials. Fourth, 

some alternative models of VWM, such as Variable-Precision (Van den Berg et al., 2012) 

and Target Confusability Competition (Schurgin et al., 2020) models, have not included 

µ as a free parameter to account for the current effects. Nonetheless, given that these 

models mainly focus on the alternative accounts of the capacity limit of VWM, which is 

conceptually and mathematically independent of the µ effects, similar findings are 

expected from these alternative models when they incorporate the µ parameter. Lastly, 

additional tests of the 2VM+U model would be needed for independently validating the 

initial perceptual analysis time under linearity assumption (i.e., µ1 – µgap, at ~60 ms) with 

experimental manipulation of perceptual noise (e.g., Zhang & Luck, 2009b). 

In summary, with the combination of the novel experimental manipulation and the 

cognitive modeling approach, the present study provides strong evidence for discrete 

nature of VWM encoding for multiple items. Methodologically, it addresses some issues 

in the previous measure of VWM encoding and may provide better characterization of 

slower VWM encoding in various clinical populations using our method. Theoretically, it 

provides a novel perspective of VWM encoding and its underlying neural mechanisms.  
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Figures 
Figure 8. 
Stimuli and procedure for the delayed estimation tasks in Experiment 1A, 1B, and 2. 

 
Note. In all three experiments, two colored squares in the 167 ms memory array 
continuously changed color hues, either clockwise or counterclockwise, by 2° every 16.7 
ms, resulting in a total of 18° change throughout the memory array (0.12°/ms or 8.33 
ms/°, see top right table). In Experiment 1B, each recall test was followed by two 
additional questions for the subjective judgment of the presence of color change during 
the memory array and its direction. Participants reported their responses by clicking on 
one of the options presented below the question using a computer mouse. In Experiment 
2, both memory items were tested in sequence, with the response color wheel randomly 
rotated between the two recalls.
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Figure 9. 
The descriptive candidate models for the two competing hypotheses. 

 

Note. (A) The 1VM+U model for the concurrent encoding hypothesis is a mixture of a 
single von Mises distribution and uniform distribution. (B) The 2VM+U model for the 
discrete encoding hypothesis consists of two von Mises distributions with different peak 
locations but the same variability terms, in conjunction with the uniform distribution. In 
both models, the µ and σ parameters represent bias and imprecision, respectively, and the 
g parameter represents guessing rate. 
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Figure 10. 
Experiment 1A results of recall errors and the hierarchical Bayesian posteriors of the µ 
parameters. 

 

Note. (A) The histogram of the raw recall error (green bars) overlapped with the fit from 
the hierarchical Bayesian 2VM+U model (black curve). Error bars represent the standard 
error of the mean. (B) The posterior probability of the µ1 and µ2 parameters from the 
2VM+U model (top), and their difference, µgap [µ2 – µ1] (bottom). The numeric values in 
the legends represent the mean and 95% highest density intervals (HDI) of the posterior 
parameter values, and the shaded area under the curves indicate the region between the 
lower and upper boundaries of HDIs. 
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Figure 11. 
Experiment 1B results in subjective judgments and recall errors. 

 

Note. (A) Accuracies for reporting the color Change versus No-Change (C/NC) of the 
memory items (left bar) and the color change direction (clockwise CW versus counter-
clockwise CCW) from only color change trials when the change was correctly reported 
(CW/CCW among correct on C, right bar). (B) Participants’ average of circular mean 
error (left) and circular standard deviation (right) measures as a function of their 
reporting of the color change (YES) versus no-change (NO), separately for color change 
and no-change trials (filled-circles indicate correct responses for each case). Error bars 
represent the standard error of the mean. 
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Figure 12. 
Simulation of whole-report recall errors generated by the 2VM+U model and the 
hypothesis-driven predictions for the relative error difference. 

 
Note. (A) Hypothetical 1st and 2nd recall errors (R1 and R2) simulated from the 2VM+U 
model. The two von Mises (VM) distributions were sampled with a fixed set of 
parameters, VM1 (20°, 20° for µ and σ) and VM2 (50°, 20°), with a 30° gap in between. 
Note, the guessing component (U) was kept as zero in this simulation for simplicity and 
the representational shift parameters (µs) are exaggerated for illustration purpose. (B) 
Distinct predictions for the distribution of relative error difference (R2 – R1) can be 
generated based on competing hypotheses regarding the psychological validity of the 
separation of two shift parameters, µ1 and µ2. Specifically, if the separation of two shift 
parameters is merely a descriptive advantage for the trial-by-trial variability without 
psychological meaning (H0; left panel), two recall responses would be independently-
and-identically sampled from the same representational distribution (i.e., overall grey 
histograms). Consequently, this will result in a uni-modal distribution for the relative 
error differences (R2 – R1), with no credible separation of the two shift parameters. On 
the contrary, for the separation of two shift parameters to be valid (H1; right panel), two 
recall responses should be mutually-exclusively sampled from two representational 
distributions that differ in central peak location (i.e., encoding time; color-coded). 
Therefore, the relative error difference (R2 – R1) should also be bi-modally distributed 
across trials, and subsequently captured by the 2VM+U model with a credible separation 
of the two peak locations. 

A

B

H0 H1
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Figure 13. 
Experiment 2 results of recall errors and the hierarchical Bayesian 2VM+U model 
posteriors of the µ parameters. 

 
Note. (A-C) Raw recall error histograms (green bars) overlapped with the fitted curves 
from the posterior mean parameters of the 2VM+U model (black curves), separately for 
the 1st recall (R1), 2nd recall (R2), and their relative difference [R2 – R1], respectively. 
Error bars represent the standard error of the mean. (D-F) The posterior probability of the 
µ1 and µ2 parameters, and (G-I) their difference, µgap [µ2 – µ1] estimated from the 
corresponding data at each column. The numeric values in the legends represent the mean 
and 95% highest density intervals (HDI) of the posterior parameter values, and the 
shaded area under the curves indicates the lower and upper boundaries of HDI95%. 
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Chapter 4. μ Shift Testing the Influence of Long-Term Memory on Working 

Memory 

4.1. Chapter Abstract 

Prior stimulus familiarity has a variety of effects on visual working memory 

representations and processes. However, it is still unclear how familiarity interacts with 

the veridical correspondence between mnemonic representation and external stimuli. 

Here, we examined the effect of familiarity on two aspects of mnemonic correspondence, 

precision and accuracy, in visual working memory. Specifically, we used a hierarchical 

Bayesian method to model task performance in a change detection task with celebrity 

lookalikes (morphed faces between celebrities and non-celebrities with various ratios) as 

the memory stimuli. We found that familiarity improves memory precision by sharpening 

mnemonic representation but impairs memory accuracy by biasing mnemonic 

representation toward familiar faces (i.e., celebrity faces). These findings provide an 

integrated account of the puzzling celebrity sighting phenomena with the dissociable 

effects on mnemonic imprecision and bias and further highlight the importance of 

assessing these two aspects of memory correspondence in future research. 

4.2. Introduction 

Celebrities can be easily spotted on the street, although the internet is also flooded 

with celebrity lookalikes and hilarious “celebrity sightings” where strangers were 

mistaken as celebrities. These seemingly contradictory “celebrity sightings” phenomena 

bring up a question, are celebrity faces remembered more precisely (and hence more 
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recognizable), but less accurately (with biases where similar faces are easily 

misidentified as celebrities)?  

At the center of this question is representational correspondence, the relationship 

between external stimuli and internal representations (Koriat et al., 2000). As the 

examples of celebrity sighting suggest, there can be dissociable effects of familiarity on 

two different aspects of memory correspondence.  First, mnemonic precision can be 

conceptualized and operationalized as the inverse of variability in overt memory 

responses, reflecting the noisy nature of the underlying memory representations (Bays & 

Husain, 2008; Zhang & Luck, 2008).   Second, mnemonic accuracy can be 

operationalized as the inverse of the deviation or bias in the mnemonic representations 

from the external stimuli. With the noisy memory representation modeled as a bell-

shaped distribution in the memory feature space (e.g., faces, Figure 14A), mnemonic 

precision and accuracy manifest as the width (dotted green line) and offset (solid green 

line) of the peak, respectively (for details, see Methods).   

First, the effects of familiarity on mnemonic precision are mixed in the literature. 

Some studies showed that familiarity can improve mnemonic precision in visual working 

memory (VWM, Lorenc et al., 2014; Montefusco-Siegmund et al., 2018; Scolari et al., 

2008). For example, upright faces, more familiar than inverted faces to ordinary 

observers, can be remembered more precisely than inverted faces in VWM (Lorenc et al., 

2014). In contrast, Xie and Zhang (2017b) showed that VWM precision is comparable for 

familiar and unfamiliar Pokémon characters, although a greater number of familiar 

Pokémon characters can be maintained in VWM (i.e., larger capacity) than unfamiliar 
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Pokémon characters. It is possible that the previous precision effects may result from the 

use of different stimuli across familiarity levels (e.g., difference in perceptual encoding of 

familiar versus unfamiliar stimuli such as configural face encoding; Azer & Zhang, 2019). 

Consistent with this account, Zhou and colleagues (2018) found that the VWM precision 

effect for familiar faces (own-race faces) relative to unfamiliar faces (other-race faces) 

only occurs with limited encoding time, whereas the capacity effect dominates when 

encoding is uninterrupted. Although either the capacity effects (Nishimura et al., 2021; 

Xie & Zhang, 2017b; Zhou et al., 2018) or precision effects (Lorenc et al., 2014; 

Montefusco-Siegmund et al., 2018; Scolari et al., 2008) can account for better VWM 

performance for familiar than unfamiliar stimuli (Buttle & Raymond, 2003; Curby & 

Gauthier, 2007; Jackson & Raymond, 2008), it is important to resolve the conflicting 

findings on the effects of familiarity on VWM precision.  

Second, the effect of familiarity on mnemonic accuracy is largely unknown. 

However, several previous studies indicate mnemonic bias that leads to distortion of 

mnemonic representation can be functional (Mallett et al., 2020; Panichello et al., 2019; 

Teng & Kravitz, 2019). For instance, memory representations for faces or objects can be 

exaggerated to boost distinctiveness (Lewis & Johnston, 1998; Mauro & Kubovy, 1992; 

Rhodes et al., 1987; Tomita et al., 2014). Similar to this face caricature effect, the internal 

representation of a celebrity lookalike may bias toward the celebrity. Furthermore, this 

memory bias may provide an alternative account of the null effects of familiarity on 

VWM precision. Specifically, a model that does not capture memory accuracy may lead 
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to an underestimate of precision (Figure 14B) and subsequently cancel out the 

experimental effect of improved precision.  

The present study has thus assessed the hypothesis that familiarity improves 

mnemonic precision but with reduced memory accuracy. We adopted a change detection 

task with faces morphed between American celebrity and non-celebrity faces with varied 

ratios and compared the task performance, using hierarchical Bayesian modeling (HBM), 

for the same face between participants who are familiar versus unfamiliar with a given 

celebrity. We predicted that familiarity of celebrity faces would produce attractive 

distortion of mnemonic representation of a morphed face toward the more familiar faces 

(i.e., celebrity faces) and more precise mnemonic representation (Figure 14C). 

4.3. Method 

4.3.1. Participants  

Fifty-two subjects (19.0 ± 1.2 years; 30 women, 21 men, 1 other gender) recruited 

from UC Riverside Psychology Subject Pool participated in an online experiment hosted 

at testable.org for course credits. Sample size was determined by a priori power analysis 

for a two-by-four mixed-effect repeated measures analysis of variance (ANOVA; Faul et 

al., 2009, with a = .05 and b = .01, under predefined effect sizes of hp2 = .04 and an 

intercondition correlation as r =  .70 using G*Power (3.1). This analysis suggested that a 

sample size of 44 should provide sufficient power for the predefined effect sizes. We 

chose to err on the side of caution and collect a larger sample size. All participants had 

normal or corrected-to-normal vision and provided informed consent. The experimental 

protocol was approved by UC Riverside Institutional Review Board.  
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4.3.2. Stimuli     

A total of 8 face stimuli were collected from Google images, including 4 faces 

from American celebrities (Anne Hathaway, Brad Pitt, Zendaya Coleman, and George 

Clooney) and 4 other faces. These celebrities were selected for the large individual 

differences in the undergraduate students’ familiarity for these celebrities based on an 

informal survey. Each celebrity face was paired with a non-celebrity face with matching 

gender and race. All images were cropped, resized, and transformed to black and white. 

Especially, images of hair, ears, and neck parts were cropped to minimize the peripheral 

non-identity-related features (e.g., hairstyle). The faces in each pair (e.g., from Anne 100% 

to Anne 0%) were then used to produce 8 morphed images that represented gradual 

transitions from a celebrity face to a non-celebrity face, in steps of 11%, using 

Fantamorph 5.6.2 (Abrosoft). Given that the present study focuses on the effects of 

familiarity with celebrity, we only used the five images from each set that celebrity face 

prevailed over non-celebrity face (100:0%, 89:11%, 78:22%, 67:33%, and 56:44% in the 

ratio for celebrity : non-celebrity, respectively, Figure 15A). The mean size of a face 

stimulus was 253 x 400 in pixels. Note that the actual stimulus size and resolutions might 

vary depending on the participant’s environment (e.g., monitor, video card, screen 

specifications, and lighting conditions) considering that this was an online experiment.  

4.3.3. Procedure 

4.3.3.1. Face Change Detection Task 

The data was collected on Testable (http://testable.org), an online experiment 

platform. The experiment began with the task instructions and four practice trials 



 74 

followed by the main experiment. On each trial of the face change detection task (for an 

example, see Figure 15B), a face was shown at the center of the memory display for 500-

msec, followed by a delay interval for 1000-msec, and then another face at the center of 

the test display. Participants were asked to report whether the face in the test display was 

the same as or different from the face in the memory display by pressing a “Z” key (same) 

or an “X” key (different) on their keyboard. The test face stayed on the screen until the 

participants responded. Because this study was partially focused on memory bias, no 

immediate performance feedback was provided to the participants, to avoid strategical 

correction of the memory biases. 

 The participants completed a total of 320 trials, which consisted of 160 “same” 

face trials and 160 “different” face trials in random orders. In the “same” face trials, the 

same face repeated from the memory display to the test display. The face was randomly 

sampled from the five face morphs for each celebrity set that were repeated eight times (4 

celebrity sets x 5 morphs x 8 repetitions). In the “different” face trials, the face in the 

memory display and the face in the test display were different face morphs from the same 

set (e.g., 100% Zendaya in the memory display changed to either 89%, 78%, 67%, or 56% 

Zendaya). That is, once the memory face was selected, a different face was randomly 

sampled from the four remaining face morphs for each celebrity set that were repeated 

two times (4 celebrity sets x 5 morphs for memory x 4 morph for test x 2 repetitions). 

The participants received three short breaks evenly distributed across the task session. 

4.3.3.2. Familiarity Evaluation Questionnaire 
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After the face change detection task, two questions for each celebrity face were 

presented to the participants, rendering a categorical and a continuous self-report measure 

of celebrity familiarity, respectively. The first question was “Have you seen this person 

on TV?” with a forced choice between Yes or No. The second question was “If you have 

seen this person on TV, how familiar are you with this person? If you haven't seen the 

person, please rate it as 0.” The participants used a slide bar (0-10) to report their ratings. 

Participants were given unlimited time for each question. The participants were then 

divided into Seen versus Unseen groups based on their responses to the first question, and 

high familiarity group versus low familiarity group based on the median split of their 

responses to the second question. The subsequent between-group comparisons of the 

memory performance for the same task stimuli could minimize the physical confounds 

and differences in perceptual encoding of task stimuli compared to that for two different 

sets of faces (e.g., familiar faces vs. non-familiar faces as in Scolari et al., 2008, same-

race versus other-race faces as in Zhou et al., 2018, and upright versus inverted faces as 

in Lorenc et al., 2014).  

4.3.4. Data Analysis 

In the face change detection task, the “different” face trials had a test face that 

consisted of a different morph ratio from the memory face within the same celebrity face 

set. This led to varying change magnitudes (differences in face morph ratio from memory 

to test) across the specific morph ratio of the memory faces (100% to 56% celebrity face), 

ranging from negative four steps toward the celebrity face to positive four steps away 

from the celebrity face (i.e., test – memory: -4, -3, -2, -1, 0, +1, +2, +3, +4 steps with 11% 
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change in morph ratio at each step, where 0 is “same” trial and all others are “different” 

trials). For instance, when the memory face was a 100% celebrity face, the test face could 

be the same 100% celebrity face for the “same” trials (0), or one of the 89% (+1), 78% 

(+2), 67% (+3), and 56% (+4) celebrity faces for the “different” trials. Similarly, trials 

with a memory face of a 67% celebrity morph ratio could have 56% (+1), 67% (0), 78% 

(-1), 89% (-2), or 100% (-3) celebrity faces for the test.  

Thirteen out of 52 subjects who showed signal-detection theory d-primes (the difference 

between standardized hit rate and false-alarm rate, z(Hit) – z(FA)) below zero from one or 

more conditions of celebrity face set in the face change detection task were excluded 

from data analysis due to poor performance (i.e., chance-level discriminability). Overall, 

rejected subjects’ mean d-prime was 0.23 (± 0.28 standard deviation) and mean accuracy 

of 53.8% (± 4.6% standard deviation). To precisely examine participants’ change 

detection performance, we first calculated the proportion of the “same” responses as a 

function of the change magnitudes for each % celebrity memory face (Figure 16). We 

then modeled these proportion same response curves using the Gaussian function 

consisting of three parameters:  

𝑓(𝑝(𝑆𝑎𝑚𝑒)|𝐶𝑀) = 𝐴𝑚𝑝 × 𝑒'.
/0'(
1 2

!

	

where CM represents the change magnitude and the three Gaussian parameters, 

Amplitude (Amp), Mu (μ), and Sigma (σ), represent the height of the central peak of the 

curve, the horizontal shift of the peak from zero, and the width of the curve, respectively. 

In the context of the present study, this Gaussian function is used as a measurement 

model, and μ and σ parameters are interpreted to capture representational bias and 
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imprecision properties, respectively. The Amp parameter is a scaling factor for the 

response curve that is largely driven by the response tendency of reporting “same” across 

change magnitudes. Consequently, the Result section will focus on the imprecision and 

bias parameters given the primary testing hypothesis.   

This analytic method allowed us to estimate the model parameters at each % 

celebrity memory face and each subject, even though the to-be-fitted data at each 

condition had a restricted and varying set of observations (i.e., five change magnitudes 

for each memory face morph type, over nine possible data points ranging from negative 

four to positive four steps). However, the number of responses was highly limited for all 

the data points on the proportion same response curves, making conventional curve-

fitting that minimizes the least-squares error less reliable. To address this issue, we 

adopted HBM method for fitting the Gaussian function to the proportion of the same 

responses. This method simultaneously accounts for multiple levels of variance for each 

parameter, specifically a population-level, a participant-level, a stimulus-level of the 

celebrity face set (i.e., four celebrities), and another stimulus-level of the memory face 

type (i.e., five morph ratios), and further provides population-level posteriors of each 

parameter. The population-level parameter posteriors were estimated through a general 

linear model, sampling values from the normal distribution whose mean is a sum of the 

fixed and random effects, and the variability term is a sum of the interaction effects 

across levels (Park et al., 2021). This HBM method can produce reliable parameter 

estimation and recovery of numerically and statistically subtle effects on mnemonic 
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biases, for limited data that is challenging for non-hierarchical model fitting methods 

(Park & Zhang, 2019). 

We used Markov Chain Monte Carlo simulations (20,000 samples after 20,000 

warm-ups). To minimize biases driven by the choice of priors, reasonably informative 

priors were chosen for all parameters [e.g., Ampfixed ~ Beta(1, 1); Amprandom ~ Normal(0, 

VarAmp); VarAmp ~ Gamma(1, 1)]. Statistical inference was made based on the resulting 

posterior means and their 95% credible intervals (highest density interval, HDI), as a 

point estimate and an error term (similar to the frequentist 95% confidence interval), 

respectively. Specifically, the range of HDIs can indicate the strength of evidence 

depending on whether the upper or lower bound of 95% HDI for the experimental effect 

crosses over zero or not (Kruschke, 2013). Change detection performance and the 

estimated posteriors of parameters were then compared between two participants groups 

(i.e., Seen vs. Unseen; high familiarity and low familiarity) to examine whether or how 

familiarity of celebrity faces affects mnemonic representations of faces. 

4.4. Results 

As expected, the proportion of the same responses in the change detection task 

decreased with the change magnitudes (Figure 16) and the celebrity familiarity ratings 

showed reasonable individual differences (Figure 17A). Overall change detection 

performance, measured by signal-detection theory d-prime, was better for high familiarity 

group than low familiarity group (Figure 17B). Consistent with this observation, a two-

by-four factorial analysis of variance (ANOVA) for d-prime as a function of the 

categorical familiarity group (Seen vs. Unseen), and the celebrity set (Anne, Brad, 



 79 

Zendaya, & George), revealed a significant main effect of the categorical measure of 

familiarity, F(1, 148) = 19.57, p < .001, η2p = .12. The main effect of the celebrity set, 

F(3, 148) = 1.92, p = .130, η2p = .04, and the interaction effect were not significant, F(3, 

148) = 0.52, p = .672, η2p = .01. In addition, the continuous measure of familiarity rating 

positively correlated with the d-prime measure across the participants and celebrity face 

sets, r(154) = .30 [95% CI: 0.15, 0.44], p < .001. These findings suggest that familiarity 

improves VWM performance, consistent with the literature (Lorenc et al., 2014; 

Montefusco-Siegmund et al., 2018; Scolari et al., 2008). 

To assess how familiarity affects mnemonic precision and accuracy, we modeled 

the proportion same responses with HBM of Gaussian function (see Data Analysis for 

detail and Figure 16 for the overall fits). The population-level posteriors for the bias (μ) 

and imprecision (σ) measures showed large differences between the categorical measure 

of familiarity (between the Seen and Unseen groups, Figure 18), manifested in posterior 

mean and 95% HDIs that do not cross over zero (bias: μ, -0.144, [-0.233, -0.052]; 

imprecision: σ (-0.384 [-0.517, -0.254]). Similar patterns were obtained for each celebrity 

face set (see Figure 19). Consistent with our predictions, these findings indicate that 

VWM representations for faces were more precise for familiar facial identities, but at the 

same time, biased toward the celebrity faces. 

4.5. Discussion 

The present study developed an HBM method to model change detection task 

performance for morphed faces that look alike celebrities to assess whether and how prior 

familiarity affects VWM precision and accuracy. We found that familiarity improves 



 80 

memory precision by sharpening mnemonic representation but impairs memory accuracy 

by biasing mnemonic representation toward familiar faces.  

These findings add to the growing literature on the effects of familiarity on VWM. 

Familiarity has been found to improve VWM capacity (Jackson & Raymond, 2008; Xie 

& Zhang, 2017b), speed up VWM consolidation (Xie & Zhang, 2018), and increase 

VWM encoding efficiency by prioritizing novel sensory information (Bruning & Lewis-

Peacock, 2020). Our findings suggest that familiarity also affects memory 

correspondence, consistent with the previous findings that various factors, such as co-

occurred stimulus (Bae & Luck, 2017; Golomb, 2015), emotional context (Xie et al., 

2022; Xie & Zhang, 2016, 2017a), and prior knowledge (Hansen et al., 2006) can 

modulate mnemonic precision and accuracy of internal representations. 

Although the benefits of high mnemonic precision for memory performance are 

straightforward (e.g., vivid memory retrieval with confidence and details, Xie & Zhang, 

2017a), the functional roles of mnemonic bias are less clear. Theoretically, mnemonic 

biases can maximize memory performance and minimize memory losses (Alvarez, 2011; 

Chunharas et al., 2022; Golomb, 2015; Huttenlocher et al., 2000; Schacter, 2012). For 

example, when two items are similar in feature space (e.g., color or orientation), their 

VWM representations tend to repulse each other to reduce their confusability (Bae & 

Luck, 2017; Scotti et al., 2021). However, when two items are dissimilar, their VWM 

representations tend to attract each other to increase the probability of successful memory 

retrieval (i.e., ensemble representation, Alvarez, 2011). Canonical information also biases 

WM representation. For example, an oblique bar (e.g., 85°) close to the cardinal 
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orientation (e.g., 90°) tends to be represented toward the cardinal orientation to reduce 

working memory load (Bae & Luck, 2019; Crawford et al., 2016; Hardman et al., 2017). 

In addition to mnemonic biases in isolation, the current observation of the 

precision and accuracy tradeoff has also been observed across cognitive processes such as 

categorization (Briscoe & Feldman, 2011; Huttenlocher et al., 2000), decision making 

(Yaniv & Foster, 1995, 1997), and eyewitness memory (Evans & Fisher, 2011). For 

example, prior knowledge such as categories can be used to adjust inexactly represented 

stimuli, leading to memory bias, but improved memory precision (Huttenlocher et al., 

2000). This precision-accuracy tradeoff may be driven by a decisional strategy to 

improve the confidence and informativeness from mnemonic precision at the cost of 

memory accuracy under uncertainty (Yaniv & Foster, 1995, 1997), which could also 

account for the present findings.  

Some further caveats of the present findings need to be noted. First, the face 

feature space generated from the face morphing procedure has evenly distributed steps of 

change in physical space. However, this feature space may not be represented linearly in 

perception and memory. Nonetheless, the relative effects of bias should still be present 

with nonlinear models of VWM (e.g., Schurgin et al., 2020). Furthermore, given the 

small memory set size of one, the present precision effect could in principle manifest to 

the precision measure in some alternative models of VWM (van den Berg et al., 2014) or 

the memory strength measure (Schurgin et al., 2020). Second, the present findings 

suggest that the previous null results of familiarity on VWM precision (e.g., Xie & Zhang, 

2017b) may result from the underestimate of precision due to memory biases canceling 
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out the true precision effect. However, it is still possible that the larger VWM capacity 

for familiar information (Jackson & Raymond, 2008; Xie & Zhang, 2017b) may lead to 

better precision for the single memory item in the current study due to capacity and 

precision tradeoff (the “averaging’ component of Zhang & Luck 2008 model, Zhang & 

Luck, 2008). Lastly, mnemonic imprecision and bias are conceptually and 

mathematically independent. However, their underlying neurocomputational mechanisms 

are still largely unknown. Future research needs to explore whether the underlying 

neurocomputational mechanisms for mnemonic precision and bias can be dissociated.   

In conclusion, the present study provides an integrated account of the puzzling 

celebrity sighting phenomena with the dissociable effects on imprecision and bias. In 

addition, the finding of precision-accuracy tradeoff suggests an alternative account of the 

conflicting literature regarding the effects of familiarity on VWM precision. Our findings 

further highlight the theoretical and empirical importance of assessing both memory 

imprecision and bias in hypothesis testing and memory performance measurement in 

future studies. It is also pivotal to test the extent to which VWM precision and accuracy 

are affected by affective, aging, and mental health factors. 
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Figures 
Figure 14. 
Model and the hypotheses. 

 
Note. (A) Noisy memory representation manifested as a Bell-shaped distribution in the 
memory feature space. Mnemonic precision and accuracy are represented by the width 
(dotted green line) and offset (solid green line) of the peak, respectively. (B) Model 
showing an underestimate of precision by not capturing memory accuracy. (C) The 
hypothesized attractive distortion of mnemonic representation toward the celebrity faces 
and more precise mnemonic representation. 
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Figure 15. 
Stimuli and procedure of the change detection task. 

 
Note. (A) The four sets of five face morphs used in the face change detection task. (B) In 
the face change detection task, participants tried to remember a briefly presented memory 
face and, after a retention interval, reported whether a test face was the same as or 
different from the memory face. On a change trial, the test face could be another face 
with a different morph ratio, from the same face set, than the one for the memory face. 
For example, in the first trial in the figure, the memory face (100% Zendaya) changes to 
56% Zendaya in the test (i.e., a “different” trial). In the second trial, the memory face and 
the test face morph are both 78% George (i.e., a “same” trial). The proportions of the 
images are modified for illustration purpose. 
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Figure 16. 
A summary of the face change detection task performance.  

 
Note. Proportion of the same responses (circles), averaged across celebrity face sets and 
participants, as a function of the change magnitude, separately for each memory 
face %celebrity morph ratio, along with the hierarchical Bayesian model (HBM) fits 
(solid lines). The possible change magnitudes on a given trial are constrained by the 
memory face % celebrity morph ratio. When mapped onto the nine-step change 
magnitude, zeros on the x-axis represent “same” face trials, whereas negative and 
positive change steps represent the face changes in a direction towards the celebrity and 
non-celebrity faces, respectively. The filled circles represent the 100% celebrity faces at 
the test. The error bars represent the standard error of mean.  
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Figure 17. 
Overall celebrity familiarity ratings and the change detection performance. 

 
Note. (A) Histograms of familiarity ratings for celebrity faces, where the zero familiarity 
rating was from participants who reported that they have not seen a given celebrity face 
before (Unseen group) and 1-10 familiarity ratings were from those with the seen reports 
(Seen group). Note, participants could have different Seen/Unseen responses and 
familiarity ratings (and hence different subject grouping) for different celebrity faces. 
Overall, 84.6%, 79.5%, 87.2%, and 64.1% of participants gave “Seen” responses for the 
faces of Anne Hathaway, Brad Pitt, Zendaya Coleman, and George Clooney, respectively. 
(B) Overall change detection performance, measured by d-prime, between Unseen and 
Seen groups. The error bars represent the standard error of mean. 
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Figure 18. 
Population-level posteriors for bias (μ) and imprecision (σ) and the group difference 
effects. 

 
Note. (A, C) The population-level posteriors for the bias (μ) and imprecision (σ) 
parameters as a function of memory face %celebrity morph ratio, separated by the 
categorical measure of familiarity (Seen vs. Unseen). (B, D) The population-level 
parameter posteriors for the group difference effect, with the shaded area under the curve 
representing 95% highest density intervals. 
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Figure 19. 
Celebrity-by-celebrity results of the population-level posteriors for bias (μ) and 
imprecision (σ) measures. 

 
Note. Error bars represent 95% highest density intervals (HDIs). 
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PART III.  

The traditional information-processing framework posits that cognitive processes, 

action planning, and motor execution are operated in a serial manner (Sternberg, 1969; 

Tversky & Kahneman, 1981). However, many studies have challenged this view by 

proposing that cognition and action are rather interactive and parallel processes (Cisek, 

2007; Spivey et al., 2005). The action-oriented view of cognition has encouraged many 

studies on oculomotor control coupled with endogenous attention and has provided a rich 

understanding of how ongoing cognition is reflected in motor action and movement 

trajectory (Awh et al., 2006; Howard & Tipper, 1997; van Ede et al., 2019; Welsh & 

Elliott, 2004).  

Behavioral responses in cognitive tasks involve sequences of discrete movements 

and leave continuous trajectories. The analysis of movement trajectory can provide 

unique insights to look into temporal changes in internal cognitive processes before a 

final response is made (Song & Nakayama, 2009). For example, studies have shown that 

computer mouse trajectories can be indicators of conflicts between multiple choices 

during decision-making (Freeman et al., 2011). Similarly, studies of movement trajectory 

in different domains, saccadic eye movements or manual reaching, have shown that 

online-movement trajectories to a target item were systematically deviated due to the 

impact of distractors (Tipper et al., 1997; Menceloglu et al., 2021). Moreover, changes in 

the direction of trajectory curvature suggest temporal dynamics of selective and 

inhibitory attentional signals (Erb et al., 2016; Welsh & Elliott, 2004).  
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A quite number of studies with movement trajectory analysis have primarily 

focused on the deviation property of the trajectory pattern (see for review, Van der 

Stigchel et al., 2006). The direction of trajectory deviation and its magnitude can be 

mapped onto the underlying spatial attention mechanisms such as inhibition against 

distractors in the visual field (Doyle & Walker, 2001), especially when combined with 

the temporal dynamics of such deviations (McSorley et al., 2006). Therefore, one of the 

appealing aspects of including movement trajectory analysis in this dissertation is that 

trajectory deviations can be thought to reflect biases in the underlying representation. 

Moreover, trajectory data can be measured on a fine temporal scale, thus offering insights 

into the temporal dynamics of how the central tendency changes over time (i.e., moment-

by-moment evolution of shift errors). In the following chapters, I took advantage of the 

mouse cursor movement trajectory analysis in testing the dynamics of representational 

shift during decision-making and motor responses, specifically testing the influence of 

the current WM contents on the subsequent processes of attention and perception. The 

mouse trajectories in these studies were obtained in a specialized task paradigm where 

the mouse cursor movements were bounded within the circular response window (e.g., 

heading toward a certain color value on a color wheel).  
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Chapter 5. μ Shift Testing Between-Item Interference Arising from Variance of 

Precision Across Multiple Working Memory Representations 

5.1. Chapter Abstract 

Multiple representations in visual working memory (VWM) can vary in 

mnemonic precision. This inhomogeneity of VWM precision has received support from 

recent studies with the whole-report procedure, in which all memory items are recalled in 

free or forced orders. Recently, Hao and colleagues (2021) added a novel item-selection 

stage before each memory recall and found smaller between-trial variance in mouse 

trajectory during the selection stage in free-recall condition as compared to forced-recall, 

which was taken as evidence for less between-item interference. Here, we reanalyzed the 

original dataset with a different analytic approach and attempted independent hypothesis 

testing focusing on trajectory deviations. We found that the direction of trajectory bias for 

the first to-be-recalled item was predictive of the relative mnemonic precision of the 

remaining items. Critically, this relationship was only present for forced-recall but not for 

free-recall. Hierarchical Bayesian modeling of recall errors further identified that this 

relationship was selectively driven by VWM precision. Together, our reanalysis provides 

evidence for the source of between-item interference arising from variance of precision of 

VWM representations, and further highlights the novel methodological benefits of 

probing memory decisional processes using mouse trajectory data. 

5.2. Introduction 

Visual working memory (VWM) is an online cognitive system that represents 

task-relevant information over a short period at the service of ongoing mental activities. 
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Models of VWM assume that it is a highly limited process and characterize such limit by 

estimating the variability of error responses from continuous estimation tasks, as a 

summary statistic of mnemonic precision (Bays & Husain, 2008; Zhang & Luck, 2008). 

This variability estimate has successfully captured individual differences in VWM 

precision in various populations (Xie et al., 2018) and experimental manipulations such 

as emotion induction (Xie & Zhang, 2017). However, the variability measure is based on 

data collapsing across items and trials. Consequently, it is insensitive to capture 

inhomogeneity in VWM precision across items, even though it by no means implies that 

different memory items are of homogeneous quality (i.e., equal amount of attentional 

resources allocated for each item).  

Growing evidence showed that the quality of retained representations 

considerably varies across items, some are represented more precisely than others due to 

intrinsic (Oberauer, 2002) or experimental factors (Zhang & Luck, 2008). This 

inhomogeneous VWM precision has received further support from studies using a whole-

report procedure that allows investigation of within-trial variability of retained items 

(Adam et al., 2017; Fougnie et al., 2012). The whole-report task requires sequential 

recalls of all memory items, thus a key manipulation is the order of recall. Specifically, 

participants could either select to-be-reported item for each recall (free-recall) or simply 

report items in a forced order determined by the experiment program (forced-recall). 

Overall, memory performance tends to decrease from earlier to later recalls, presumably 

due to prolonged between-item interference and/or forgetting (Oberauer & Lin, 2017; 

Shin et al., 2017; Zhang & Luck, 2009). In addition, a robust free-recall benefit was 
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found in earlier recalls, indicating a tendency of reporting the best-remembered item first 

(Adam et al., 2017). This suggests that participants had fairly accurate meta-knowledge 

of the variable quality across concurrent VWM items, consistent with previous findings 

that subjective confidence rating of memory performance strongly predicts mnemonic 

precision (Adam & Vogel, 2017; Rademaker et al., 2012). 

Hao and colleagues (2021) recently revised the whole-report task by adding a 

separate item-selection stage immediately before each recall (Figure 20). Specifically, 

following a cue indicating recall-type (free or forced-recall), participants were instructed 

to identify the next to-be-recalled item by clicking its placeholder. Mouse cursor 

trajectory during item-selection was recorded to provide additional data to explore the 

nature of the free-recall benefit arise from variable WM precision across items. Critically, 

they found that free-recall benefit was associated with less variance in mouse trajectories 

during the item-selection across trials. As such, they reasoned that the free-recall benefit 

may largely arise from reduced between-item interference during retrieval, as well as 

minimized mnemonic cost due to switching of representations for the focus of attention 

(FoA; Oberauer, 2002). Under forced-recall, however, when an item currently outside of 

FoA (or even out of representations successfully maintained) is prompted to be recalled, 

the current FoA item needs to be switched (or simply undergo prolonged delay), leading 

to mnemonic degradation.  

Furthermore, they examined the location preference effect and its asymmetric 

consequences in free and forced-recall. Under free-recall, items in the upper-left visual 

field had highest probability to be chosen, but without precision benefit over the other 
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items from the non-preferred locations. Under forced-recall, on the other hand, randomly 

chosen items from the preferred upper-left locations were associated with precision 

benefit, but this effect only held for the 1st recall. According to their interpretations 

inspired by Oberauer’s interference model of WM (Oberauer & Lin, 2017), when an item 

in the preferred location (thus presumably in FoA) is not forcedly-chosen for the 1st recall, 

the other chosen item must take place in FoA while the original FoA item is switched and 

underwent irreversible loss of precision.  

Although we generally agree with their conclusions, their mouse trajectory dataset 

can be better utilized to provide a more direct examination of whether and how inter-item 

dynamics can be explained by variable mnemonic quality across items. The rich mouse 

trajectory dataset from Hao and colleagues (2021) provides an additional opportunity to 

test the interference-based account of the free-recall benefit. For instance, between-item 

interference was inferred from between-trial estimates of circular variance in mouse 

cursor positions. Although it can be a straightforward index of between-item interference, 

the measure of between-trial variance fails to take advantage of within-trial dynamics of 

recall process in whole-report task. Alternatively, the source of between-trial variance 

can be reduced into directional biases in mouse position on each trial (e.g., clockwise or 

counterclockwise from target). As such, the patterns of trial-by-trial trajectory deviations 

could provide a more sensitive way to examine variable VWM precision given the 

substantial literature on memory-guided attention demonstrating that the contents of 

active WM can guide selective attention toward an item location that matches WM 

(Olivers et al., 2011; Soto et al., 2008).   
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The present study has thus reanalyzed the dataset from Hao and colleagues (2021) 

with different analytic approaches. We first addressed the potential artifacts in mouse 

trajectory analyses in the original study. More importantly, we developed a trial-level 

mouse trajectory categorization method and tested the interference account of the free-

recall benefit and its relationship with inhomogeneous WM precision based on within-

trial trajectory deviations. 

5.3. Method 

5.3.1. Data Reanalysis and Rationales 

The original data from Hao and colleagues (2021) were retrieved from the authors’ 

deposit of the data at Open Science Framework (https://osf.io/67upz/). Figure 21 

illustrates the differences in the analytic method for mouse trajectories from the original 

study and the present study. Specifically, the two methods are different in three aspects: 

normalization, mapping cartesian on polar coordinates, and inclusion of endpoint bias.  

First, the original study normalized the mouse trajectories based on the distance 

from starting point at the center of the screen to its ending point to the circle (x2 + y2 = 1). 

This distance-based normalization can be useful in estimating variance at the same points 

along with starting-to-ending movements across trials. However, it ignores velocity 

which is likely variable across trials. We therefore normalized trajectories based on two 

time points, from when a movement initiated (i.e., onset latency) to when the ending 

point is selected with a mouse click (i.e., reaction time). The onset latency is defined on 

each trial as the time the mouse cursor deviates from its original location by three pixels 

in a horizontal or vertical direction (21.8 ± 11.2%, 3.4 ± 1.4%, and 3.3 ± 1.2% 
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normalized time from display onset to click, for the 1st, 2nd, and 3rd item-selection, 

respectively). 

Second, to map the raw mouse cursor positions in Cartesian coordinates (x, y) to 

polar coordinate (-π to π), Hao and colleagues (2021) computed intersection angles at 

different radii ranging from 0.02 to 0.98 in steps of 0.02. The intersection angle was 

calculated as the angular distance from each intercept point along the radii (origin-to-

intersection vector) to the target (origin-to-target vector), not to the endpoint. The 

intersection angles rely on, maybe unnecessarily, an assumption that the interim mouse 

positions (and especially its angular distance from target) are psychologically meaningful 

such that they reflect the moment-by-moment movement goals. Hao and colleagues 

(2021) attempted to examine the source of trajectory deviation with a formal model 

comparison between two competing hypotheses, the Alternation and the Integration 

models. The two models attribute trajectory bias either to a probabilistic swap tendency 

(Bays et al., 2009) or to an attraction toward a vector sum over the target and distractor 

positions (e.g., response vector model, Tipper et al., 1997), respectively (see Hao and 

colleague’s Supplemental Methods for details). Nonetheless, there has been an ongoing 

debate regarding underlying mechanisms of mid-flight deviations and what it truly means 

(Spivey et al., 2005; van der Wel et al., 2009). Moreover, intersection angles only assign 

polar distance from the target, regardless of the actual amount of deviation at different 

radii on the raw coordinate system. Consequently, this measure is likely to overestimate 

the circular variance at those intersection radii corresponding to early movements, since 

initial movements often tend to deviate drastically in direction due to motor noise but 
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typically not in actual distance. For a concrete example, the two mouse cursor positions 

at 20% and 40% radii in Figure 21 would be converted to similar intersection angles (i.e., 

angular deviation from the target) despite that fact that they are double-sized in 

perpendicular distance to the references line. For these reasons, the present study 

analyzes mouse trajectories in their raw coordinate system (e.g., pixels) which is more 

precise to characterize how trajectory tracks interdependency of multiple VWM 

representations.  

Lastly, any biases in the endpoint (i.e., the distance from a mouse click location to 

the designated target probe location) would affect the measure of intersection angles in 

Hao and colleagues (2021), which could further contribute to the estimated circular 

variance postulated to measure between-item interference. There are several different 

methods quantifying curvature in trajectories (Ludwig & Gilchrist, 2002; Van der 

Stigchel et al., 2006). Although all of them are with valid reasons to focus on different 

aspects of trajectories, a choice of reference straight line (either to a target or to the 

endpoint from the mouse onset position) may create considerable differences in the 

resulting measure. As one can infer from Figure 21, the endpoint bias affects not only the 

variability at the very last radius but also every radius back to the starting point. 

Moreover, trajectory curvature is mathematically and conceptually independent from the 

endpoint bias. That is, a greater trajectory curvature is not necessarily accompanied by a 

greater amount of endpoint bias, and their directions may differ as well (e.g., curved 

clockwise from the target, but with a counterclockwise ending point, vice versa). 

Therefore, endpoint bias could be a serious artifact especially when the primary measure 
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of interest is a variance of intersection angles. As shown in Figure 20B, the variance 

estimates of the intersection angle at the last radius (0.98) were well above zero and 

considerably different between free and forced-recall in the first two item-selections. If 

such endpoint bias is controlled, the difference in the total variance of trajectory between 

free and forced-recall might be diminished.  

To overcome these artifacts of intersection angle measure, our reanalysis used the 

area under trajectory curve (AUC) to characterize the extent of trajectory deviation1. 

AUC is the geometric area between the observed trajectory and a reference straight-line 

from the onset to the endpoint. A higher AUC value indicates a greater deviation toward 

alternative locations. Also, the sign of AUC can represent the direction of deviation either 

toward clockwise (+) or counterclockwise (–) from the reference line.  

Another critical hypothesis tested in the present study was that the between-item 

interference manifested as the between-trial variability of item-selection mouse 

trajectories, identified in Hao and colleagues (2021), could be directly accounted for by 

the within-trial dynamics of variable precision of multiple VWM representation (see 

Results for detail). For this novel hypothesis testing, we selected trials where the 1st recall 

item was placed within four displacements from the other two items on the opposite side 

among eight possible locations (i.e., 1st target placed somewhere in the middle of 2nd and 

3rd items). For example, from Figure 22A, when the 1st recall item was placed at the 

location marked as ‘1’, only those trials where the 2nd and 3rd items were placed at the 
 

1 Note we also calculated another popular measure of trajectory deviation, the maximal 
deviation (MD) at the point where the curvature is maximum for sanity check. 
Participants’ MDs were highly correlated with their AUCs, r(14) = .95 [95% CI: .87, .98], 
p < .001. The results were comparable between measures using AUC and MD. 
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opposite side between location ‘1’ and ‘5’ were included for data analysis. In other words, 

all other types of trials where 2nd and 3rd recall items were placed on the same side 

relative to the 1st recall item were excluded. We allowed uneven clockwise and counter-

clockwise displacements from the 1st item to maximize the trial number (e.g., 2nd and 3rd 

item placed three-steps clockwise and two-steps counter-clockwise to 1st item, 

respectively) This resulted in 1,917 trials remained for data analysis out of the total of 

3,840 trials (49.9%).  

For the analyses of recall errors, we applied the hierarchical Bayesian approach 

for the extended Mixture model (Zhang & Luck, 2008). The three free parameters, μ, SD, 

and guessing, of the model represent the location (μ, mnemonic appearance) and the 

width (SD; inversely related to mnemonic precision) of the central peak distribution of 

the recall errors (i.e., noisy mnemonic representation), and the probability of random 

guessing that is not driven by mnemonic evidence, respectively. The hierarchical 

Bayesian estimation samples plausible posterior parameter values at the population-level, 

while simultaneously accounting for different sources of variabilities from individuals, 

conditions, and trials using Markov Chain Monte Carlo simulations (16,000 MCMC 

samplings after 16,000 warming-ups). The main effects of each population-level 

parameter were estimated in a general linear model, sampling from the Normal 

distribution where the mean is a sum of the fixed (condition) and random effect 

(individual), and the variability term describes the individual-by-condition interaction 

effect (Rouder et al., 2014). 
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We chose reasonable to non-informative priors for all parameters to minimize 

biases due to the choice of priors. The mean and the 95% credible interval (highest 

density interval, HDI) of the posterior distribution were treated as a point estimate and an 

analogue of a frequentist confidence interval (CI), respectively. Statistical inferences 

were made based on the range of HDIs (e.g., whether the positive or negative side of 95% 

HDIs for the condition effect crosses over zero), as the strength of evidence (Kruschke, 

2014). 

5.4. Results 

5.4.1. Endpoint Bias and Its Impact on Between-Item Interference 

In Hao and colleagues (2021), three memory item locations were randomly 

selected from eight possible placeholders. We sorted every trial based on those eight 

recall target locations across participants and recalls and reconstructed the original mouse 

trajectories. We then estimated the amount of endpoint bias at each location, separately 

for forced and free-recall (Figure 22A). The extent of endpoint variability was estimated 

for individual participants by calculating circular SD as a function of recall order (1st, 2nd, 

vs. 3rd) and recall type (forced vs. free), separately (Figure 22B). A two-way repeated-

measures analysis of variances (ANOVA) revealed significant main effects of recall 

order, F(2, 30) = 15.36, p < .001, η2p = .51, and recall type, F(1, 15) = 10.24, p = .006, η2p 

= .41, without significant interaction effect, F(2, 30) = 0.06, p = .943, η2p = .00. 

Surprisingly, endpoint bias was greater in free-recall than forced-recall, which is opposite 

to what can be inferred from Hao and colleagues (2021). This discrepancy is likely due to 

different analytic approaches for mouse trajectories.  
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Our next aim is to replicate the primary finding of greater between-item 

interference under forced-recall while evaluating the impact of endpoint bias by 

comparing two sets of results with and without endpoint bias. Figure 23 illustrates the 

mean absolute horizontal deviations along time normalized to movement onset-to-

endpoint. All trajectories were rotated such that a reference point of endpoint (endpoint-

corrected) or target (endpoint-included) to be placed perpendicular from the starting point. 

Consequently, any interim deviations can be represented as deviation on the horizontal 

dimension. We calculated AUCs then took [forced – free] difference as a measure for the 

relative amount of between-item interference.  

For the endpoint-corrected set, planned one-sample t-tests comparing AUC 

differences from zero at each recall revealed significant positive differences in 1st 

selection (+2,129.1px×t [CI95% hereafter: +1164.5, +3093.6]), t(15) = 4.33, p = .001, 

Cohen’s d = 1.12, and 2nd selection (+1,709.7px×t [+1138.5, +2280.9]), t(15) = 5.87, p 

< .001, d = 1.51, whereas a significant negative difference in 3rd selection (-419.2 px×t [-

758.3, -80.2]), t(15) = -2.42, p = .028, d = -0.63). These results replicate the original 

finding of greater between-item interference under forced-recall in selection of first two 

items. We observed similar patterns for the endpoint-included set (Figure 23B), with 

AUC differences [forced – free] in the 1st, 2nd, and 3rd item-selections were +2004.3 

[+1047.6, +2961.0], +1523.5 [+954.0, +2093.1], and -497.7 [-831.6, -163.8], respectively, 

all ps < .011, ds > 0.75. Additional two-way repeated-measures ANOVA for AUC 

differences as a function of recall order and endpoint (corrected vs. included) revealed 

significant main effects of recall order, F(2, 30) = 15.71, p < .001, η2p = .51, and endpoint, 



 106 

F(1, 15) = 26.69, p < .001, η2p = .64. However, there was no significant interaction 

between them, F(2, 30) = 1.04, p = .361, η2p = .07.  

To summarize, we identified substantial amount of endpoint bias varied between 

forced- and free-recall. The endpoint bias nonetheless played a minimal role in between-

item interference. These findings reaffirm the original conclusion that under forced-recall 

participants suffered greater between-item interference during the item-selection stage.  

5.4.2. Within-Trial Trajectory Predicts Relative Precision of VWM Items 

Hao and colleagues (2021) discussed potential connection between between-item 

interference and VWM inhomogeneity. Specifically, the greater between-item interference 

under forced-recall was attributed to increased swap tendency toward the alternatives (i.e., 

misdirecting mouse cursor toward the other non-probe items), whereas VWM 

inhomogeneity was supported by asymmetric consequences of the location preference 

effect in free and forced-recall. These interpretations, however, are drawn from less 

concrete evidence by combining two separate empirical results supporting each concept. 

Further, it relies on particular assumptions for the nature of FoA such as irreversible 

mnemonic degradation due to switch of items for a single, fixed capacity of FoA state 

(see for other accounts of FoA capacity; Beck & Hollingworth, 2017; Beck et al., 2012; 

Cowan, 2001; Williams et al., 2022).  

Alternatively, here we hypothesize that inhomogeneous VWM precision may 

directly give a rise to inhomogeneous between-item interference between forced and free-

recall. It is expected that trial-by-trial dynamics of mouse trajectory during the 1st item-

selection are related to subsequent item recall performance. We predict that mouse 
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trajectory to the 1st forced-target would be attracted toward one of the two non-targets, 

where its direction may depend on the relative precision of those items. Specifically, on 

two-thirds probability, the 1st forcedly-chosen target would not be of the best precision 

and mouse movement to this non-best item would be deviated toward the other best item, 

reflecting the relative attractive force driven by variable precision among three memory 

items.  

To test this idea, we created a two-by-two trial-categorization matrix, where one 

dimension categorizes whether the 1st item-selection trajectory deviated toward 2nd or 3rd 

recall item (by the sign of trajectory AUC), whereas the other dimension categorizes the 

relative recall performance (2nd – 3rd absolute recall errors; a negative value indicates 

better recall for the 2nd item than 3rd item). Note, for the first dimension of the sign of 

trajectory AUC, AUCs from trials with the 3rd item presented counterclockwise (–) to the 

1st item were reversed. Hence, negative and positive AUCs represent 1st item-selection 

trajectory deviated toward the 2nd item (–) and the 3rd item (+), respectively. For the 

second dimension of the absolute [2nd – 3rd] recall error differences, the overall main 

effect of recall order (i.e., 2nd recall more precise than 3rd recall in general) was corrected 

by weighting a half-size of the main effect (i.e., the difference between the bottom row 

sum and the top row cell sum) to the top row cells (i.e., when 3rd recall more precise) 

while subtracting it from the bottom row cells (i.e., when 2nd recall more precise). This 

was to equate the null probability of top and bottom cells at 50% each. Trials with the 

absolute relative [2nd – 3rd] error smaller than 2° were excluded to prevent ambiguity in 

categorization. 
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Each trial was categorized into one of quadrant categories based on the sign of the 

measures. Critically, according to our hypothesis, trial-categorization accuracy defined by 

the summed probability of the first (+/+) and the third quadrants (–/–) should be greater 

than the chance-level at 50%. In other words, there will be a greater proportion of trials in 

which the direction of the 1st item-selection trajectory bias was predictive of the relative 

recall precision of the 2nd and 3rd items. Moreover, this asymmetric diagonal pattern in 

the two-by-two matrix should only be present for forced-recall, but not for free-recall 

where the 1st recalled item had the best precision.  

 The results were consistent with these predictions (Figure 24). We found trial-

categorization accuracies to be significantly above chance for forced-recall (54.7% 

[51.0%, 58.3%], one-tailed one-sample t(15) = 2.69, p = .008, d = 0.70, BF10 = 3.60), but 

stayed around chance for free-recall (50.6% [46.1%, 55.0%], t(15) = 0.27, p = .396, d = 

0.07, BF10 = 0.26). The same one-tailed paired-samples t-test between forced- and free-

recall yielded only marginally significant difference but with reliable effect size measures, 

t(15) = 1.74, p = .051, d = 0.43, BF10 = 1.63. This suggests that the direction of trajectory 

bias during the 1st item-selection was to some extent predictive of the relative precision of 

the two subsequently recalled items. This provides supporting evidence for our 

hypothesis that between-item interference may be directly related to variable precision 

among VWM representations.  

To further identify how the 1st item-selection trajectory predicts representational 

quality of the subsequently recalled items, we fitted 2nd and 3rd recall errors with the 

extended Mixture model (Zhang & Luck, 2008) using hierarchical Bayesian method, 
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separately for different 1st item-selection trajectory bias direction (toward 2nd or 3rd item; 

left and right cells in Figure 24). Figure 25 summarizes the resulting population-level 

posteriors of μ, SD, and guessing parameters, showing their difference between two 

recalls (2nd – 3rd). Further analyses based on posterior mean with 95% HDI for the 

difference between two cases when the 1st item-selection trajectory deviated toward the 

2nd or 3rd recalled item revealed only credible difference from the SD parameter for 

forced-recall (+6.84, HDI95% [+1.09, +13.42]), whereas no other parameters from both 

recall type were credibly different. These results indicate that the variability in precision, 

but not the representational shift (μ) or guessing, among VWM representations on a given 

trial manifested in the trial-specific directional mouse trajectory bias during the 1st item-

selection under forced-recall.   

5.5. Discussion 

The present study reanalyzed the behavioral and mouse trajectory data from Hao 

and colleagues (2021), with a different analytic approach that controls for substantial and 

asymmetric variance in mouse endpoints between free and forced-recall. We first 

replicated the original findings of the greater between-item interference under forced-

recall. More importantly, we examined the trial-level mouse trajectories to investigate 

how they are inherently associated with inhomogeneous VWM precision. The results 

from our novel trial-categorization method revealed that the direction of trajectory bias 

during the 1st item-selection was predictive of the relative recall performance of the 

remaining items. Specifically, a memory item producing stronger attraction of the item-

selection mouse movement was recalled more accurately than the other item. This was 
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only valid for forced-recall but not for free-recall. Furthermore, using hierarchical 

Bayesian modeling of the recall errors, the categorization pattern was solely driven by 

WM precision, not by other factors of recall such as bias in feature appearance or failure 

of remembering. These findings provide strong support for our hypothesis that variable 

precision of concurrent VWM representations directly gives a rise to the asymmetric 

trajectory bias resulting from non-target items at the moment, a novel manifestation of 

between-item interference. Taken together, the present reanalysis provided direct mouse 

trajectory evidence for the link between between-item interference and variable precision.  

These results are in general consistent with the operations of active-state WM 

contents. Accumulating evidence suggests that new sensory inputs that match active WM 

contents can capture attention, even when such guidance is irrelevant to the current task 

goal (Pan et al., 2016; Van Moorselaar et al., 2014). WM guidance not only occurs to the 

internal shift of attention but also manifests in preparation and execution of motor actions 

such as eye-movements or reaching behavior (Hollingworth et al., 2013; Theeuwes et al., 

2009). Our findings thus provide an important extension of these previously observed 

interactions between WM and attention. 

Although the present results are in support of the inhomogeneity in VWM 

precision, it does not directly speak to the ongoing debate on the capacity of FoA or the 

number of active templates that can guide attention and action (Cowan, 2001; Oberauer, 

2002; Olivers et al., 2011; McElree, 2001; Zhou et al., 2020). It is also possible that not 

necessarily one or more discrete items have to enter the qualitatively privileged state to 

guide behavior. Instead, all the representations in mind at the moment may compete for 
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selection and result in a gradient interaction with attention, depending on their relative 

precision. Mouse movement trajectory could be an effective measure to address this 

question in future research. 

There are some caveats in the current findings. First, we found that the item-

selections were more erroneous (i.e., greater endpoint variance) in free-recall than 

forced-recall, which is opposite to Hao and colleagues’ results. This discrepancy may 

originate from different trajectory analysis methods. In addition, participants were not 

instructed to click at the center of the item placeholder, thus the amount of endpoint bias 

could arise from motor execution. That is, under free-recall, the participants might try to 

proceed to the recall quicker with faster but less careful mouse clicking. Consistent with 

this speculation, item-selection time was faster for free-recall than forced-recall (Hao et 

al., 2021). 

Second, although we obtained the above-chance trial-categorization accuracy for 

forced-recall, the effect was weak (54.7%) though exhibited reliable effect sizes (Cohen’s 

d = 0.70, BF10 = 3.60). This could be largely due to the absence of the trajectory effect on 

one-third of forced-recall trials where the 1st forced-target would be by chance of the best 

precision, yielding no apparent trajectory bias to the other items. Consequently, this one-

third of forced-recall trials was nothing different from those free-recall trials, attenuating 

the predictive power of trajectory bias direction for the relative precision of the other 

items. Also, the relative distance of the 2nd and 3rd item locations to the 1st item was not 

controlled to be symmetrical in the original experiment, adding additional noise to the 

measure of the AUC sign. Nonetheless, our hierarchical Bayesian modeling of the 2nd and 



 112 

3rd recall errors identified which of the Mixture model parameters was the source of 

asymmetric trajectory bias, suggesting its robustness to small experimental effects (Park 

et al., 2021).  

The present study further extended the literature on investigating the continuous 

nature of internal cognitive processing using response trajectory data across the various 

domains such as eye-movement (Kowler et al., 1995; Van der Stigchel et al., 2006), 

hand-movement (Abrams & Balota, 1991; Song & Nakayama, 2008; Welsh & Elliott, 

2004), and moue trajectory (Spivey et al., 2005; van der Wel et al., 2009). However, most 

previous studies relied on trial-average effects and draw conclusions from the comparison 

between experimental conditions. The present study assesses the within-trial trajectory in 

response to ongoing WM-based decisions, which provides a more effective investigation 

of the dynamic interactions among multiple memory representations. Taken together, the 

present findings have demonstrated that mouse trajectory during the selection of recall 

item not only tracks the total amount of between-item interference but rather directly 

reflects the variation in representational precision of VWM items. Our findings further 

highlight the methodological importance of mouse trajectory analysis for hypothesis 

testing.  
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Figures 
Figure 20. 
Task procedure and primary results from Hao and colleague (2021). 

 
Note. Figures reconfigured from the original Figure 1 and 2. (A) Participants remembered 
three color squares briefly presented. After a short delay interval, a center cue appeared to 
indicate the recall type of the trial. Afterward, participants were asked to click the to-be-
recalled item (item-selection; probe randomly selected under forced-recall, whereas 
chosen by participants under free-recall), then immediately followed by actual color-
recall. The item-selection and color recall were repeated for all three memory items. (B) 
Variance of mouse trajectory during the item-selection stage between free and forced-
recall, for each of the 1st, 2nd, and 3rd recalled items, respectively. The variance was 
estimated from intersection angles at each radius normalized from the starting point to the 
ending point. The free-recall benefit was associated with less variance in item-selection 
mouse trajectory for earlier recalls, interpreted as less between-item interference. Note, 
the variance of intersection angle at the last radius (0.98; right before mouse click 
response) was well above zero and considerably different between free and forced-recall 
in the first two item-selections. 
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Figure 21. 
Differences in the analytic method for the mouse trajectory data from the original and the 
present study. 

 
Note. The green curve is an example trajectory from the mouse movement onset at the 
display center to the mouse click endpoint, depicted in a reconstructed setting of the item-
selection stage. During this stage, three placeholders appeared at the locations of the three 
memory items and the participants selected one for the next memory retrieval. Four key 
differences are summarized below: 1) Data normalization, 2) Mapping between interim 
mouse positions to the reference line, 3) Inclusion of endpoint bias (i.e., the distance 
between the target center and the endpoint), and 4) Between-item interference measure. 
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Figure 22. 
Overall mouse trajectories of the item-selection stage. 

 
Note. (A) reconstructed item-selection mouse trajectories over eight possible target 
locations for forced and free-recall, collapsed across participants and selections for the 
three items. Colored curves and shades represent group mean trajectory and 95% CI, 
whereas grey curves are individual participant mean trajectories (top-panel). The bottom 
panel illustrates the extent of variability at the mouse-click endpoints across trials 
(indicated by error bars representing 95% CI of total trials), which was similar across 
eight target locations (M and SD of CI95% upper – lower bound range = 18.36 ± 0.99°). (B) 
The mean and standard error of the endpoint variability measured by circular standard 
deviation (SD) as a function of recall order (1st, 2nd, and 3rd item-selection) and recall 
type (forced vs. free-recall). The endpoint variability was systemically larger under free-
recall than forced-recall. 
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Figure 23. 
Comparison of the mouse trajectory results between endpoint correction methods. 

 
Note. Mean absolute horizontal deviations as a function of time normalized from the 
mouse movement onset to click endpoint, separately for recall type (forced vs. free-recall) 
and recall order (1st, 2nd, and 3rd item-selection), respectively. Either trial-specific 
endpoint (A) or target probe center (B) was set to be placed at the top of the mouse onset 
at the display center as a reference point. The rightmost panels illustrate the differences in 
trajectory area under curve (AUC) between forced and free item-selections, as a measure 
for the relative amount of between-item interference between recall-type. Positive values 
indicate greater between-item interference. All error bars including the shaded curves 
represent the standard error of mean. 
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Figure 24. 
Trial-categorization results 

 
Note. Proportion of trials as a result of trial-categorization consisting of a 2-by-2 matrix, 
where the horizontal dimension categorizes whether the 1st item-selection mouse 
trajectory deviated toward the 2nd or 3rd recalled item (by the sign of area under curve; 
AUC), whereas the vertical dimension categorizes by the sign of the relative absolute 
recall errors (2nd – 3rd; negative sign indicates the 2nd recall being more precise than the 
3rd recall). The first (+, +) and the third quadrants (–, –) are consistent with the prediction 
that the direction of 1st item-selection mouse trajectory under forced-recall will be 
predictive of the relative precision of the 2nd and 3rd recall items. (Right-panel) Consistent 
with this prediction, trial-categorization accuracy (proportion of trials in the first and 
third quadrants) was significantly above chance under forced-recall but stayed at around 
the chance level under free-recall. 
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Figure 25. 
The posteriors of the hierarchical Bayesian mixture model parameters.  

 
Note. Hierarchical Bayesian posterior distributions of the three parameters (μ, SD, and 
guessing) from the extended Zhang & Luck (2008) Mixture model, representing the 
difference between 2nd and 3rd recall errors. For each recall-type (forced and free-recall), 
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the top row shows the mean and the 95% highest density interval (HDI) of the posterior 
parameter values (2nd – 3rd recall) as a function of the 1st item-selection trajectory bias 
direction (toward 2nd or 3rd item). The bottom row illustrates the difference between these 
two conditions (trajectory biased toward 2nd – 3rd recall item), depicted in the 
nonparametric kernel density fits of the resulting posteriors (solid black curves) with 
shaded grey area representing the lower and upper bound of HDI95%. These resulting 
posteriors in other words represent the interaction effect between recall-order (2nd and 3rd) 
and trajectory bias (toward 2nd and 3rd). For only the precision parameter (SD) under 
forced-recall reveals its HDI95% not crossing over zero, thus indicating a credible 
interaction effect. In other words, it is the variability in precision, but not representational 
shift (μ) or guessing, across VWM representations on a given trial gave a rise to the trial-
specific directional mouse trajectory bias during the 1st item-selection under forced-recall. 
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Chapter 6. μ Shift for Testing a Unit of Attentional Guidance by the Contents of 

Working Memory 

6.1. Chapter Abstract 

Working memory (WM) contents can guide attention towards matching sensory 

information in the environment. However, there are mixed findings regarding whether 

only a single prioritized item or multiple items held in WM can effectively guide 

attention. The present study aims to precisely examine the unit of WM-guided attention 

by using a novel task procedure and mouse trajectory analysis. Specifically, a perceptual-

matching task was inserted into the maintenance interval of a WM task with the memory 

set size of one or two color squares. In this perceptual-matching task, a target color was 

presented at the screen center until it was matched on a continuous color-wheel with a 

mouse-click response. Participants’ mouse cursor trajectories were recorded to estimate 

the moment-by-moment influence of WM on the subsequent perceptual process. We 

found that when a single item was remembered, the perceptual matching response and the 

mouse trajectory were robustly biased toward a location of the WM color on the color-

wheel (i.e., attraction bias). When two items were remembered, the same trial-average 

measures did not show systematic bias toward either memory color. However, a closer 

examination of the mouse trajectories using hierarchical Bayesian modeling revealed two 

separable central peaks from the trajectory distributions for both memory set sizes. A 

novel trial-categorization method further revealed that the curved mouse trajectories, as a 

proxy measure of attentional guidance by WM items, are related to the precision of the 

memory representations. Together, these results support the single-item template account 
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and highlight the utility of mouse trajectory analyses in hypothesis testing in the domain 

of visual attention and WM. 

6.2. Introduction 

Working memory (WM) and attention are closely intertwined in their operations 

for guiding our adaptive behaviors. For example, they cooperate for selectively 

prioritizing relevant information, maintaining coherent internal representations across 

time, and prospectively modulating the process of upcoming sensory signals (Awh & 

Jonides, 2001; Oberauer, 2019; Nobre & Stokes, 2019). Grounded on the 

conceptualization of WM as a major source of top-down proactive attention (Desimone & 

Duncan, 1995; Gazzaley & Nobre, 2012), researchers have extended the idea of by which 

mechanisms selective attention gates access to WM (Chun & Potter, 1995; Mayer et al., 

2007; McNab & Klingberg, 2008; Vogel et al., 2005) to how the contents of WM 

reversely guide where to attend (Hutchinson & Turk-Browne, 2012; Wolfe & Horowitz, 

2004).  

Studies have shown that visual information matching the WM content of the 

moment can automatically guide attentional selection, even when such attentional capture 

is detrimental to the immediate task goal (Downing, 2000; Olivers et al., 2006; Woodman 

et al., 2013). These studies typically employ a dual-task paradigm, where an independent 

attentional task such as a visual search is performed while holding a set of simple objects 

in WM. When distractors in the intervening attentional task match the representations 

held in WM, the search goes slower and/or inaccurate compared to when there are no 

WM-match distractors presented. Further studies found that the WM-driven search cost is 
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often accompanied by overt eye fixations over the matching distractors (Hollingworth et 

al., 2013; Houtkamp & Roelfsema, 2006).  

Despite the large body of research on the prospective role of WM in attentional 

guidance, there still has been an ongoing debate over the unit of WM-guided attentional 

selection. A central question is how many discrete memory representations are active at a 

moment that in turn interact with ongoing attentional selection. Two major competing 

hypotheses were proposed in this regard. The single-item template (SIT) hypothesis 

proposes that only one item among memoranda can be in an active state and readily 

interact with attentional selection (Houtkamp & Roelfsema, 2006; Olivers et al., 2011). 

Substantial empirical evidence was reported in favor of the SIT hypothesis, for example, 

showing that multiple WM-match distractors in the secondary attention task do not 

produce any additional distractor interference, or even diminish the WM-match distractor 

effect due to mutual canceling of attentional biases as a product of competition between 

WM-match distractors (Van Moorselaar et al., 2014). On the contrary, other recent 

studies found evidence supporting the multiple-item template (MIT) hypothesis, which 

proposes that multiple representations, as long as successfully maintained in WM, can 

simultaneously serve as active attentional templates (Bahle et al., 2018; Beck & 

Hollingworth, 2017; Fan et al., 2022).  

The discrepancy in the literature could be attributed to various factors. For 

instance, task paradigms and types of WM-matching distractors could determine whether 

or how multiple WM-match distractors interfere ongoing attentional processes (Frătescu 

et al., 2019). Moreover, a lack of precise measures of memory-driven capture could be 
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problematic (Beck & Vickery, 2019; Zhou et al., 2020). The majority of previous studies 

have primarily focused on the trial-average estimates such as mean reaction time (RT) or 

accuracy between experimental conditions (e.g., one vs. two WM-match distractors). 

Given that the WM load-dependent capture is thought to be a key feature in testing the 

SIT and MIT hypotheses, the trial-average single point estimates might not be sensitive 

enough to capture what actually happened when one, two, or none of the WM-match 

distractors captured attention at a given trial. Instead, such dynamics may vary across 

trials or even across items due to variable precision and interference between memoranda 

(Hao et al., 2021; Williams et al., 2022), which could only manifest in the trial-by-trial 

variability (Beck & Vickery, 2019; Park & Zhang, 2022). Lastly, here we claim that 

distractors in the subsequent visual search tasks that exactly match the perceptual 

appearance of the WM contents could be another experimental artifact. That is, the re-

appearance of the preceded memory features may allow additional processes to play 

besides memory-driven capture, such as temporary suppression of mnemonic trace or 

even a second-chance for supplementary WM encoding.  

To overcome these potential experimental and analytic limitations, the present 

study employed a novel dual-task paradigm in which a simple perceptual matching task 

inserted in the maintenance period of the delayed WM recall task. Participants first saw 

either one or two colored squares to remember (i.e., WM set size). Shortly after a blank 

interval, participants were presented with a perceptual matching array consisting of a 

colored circle at the screen center. This perceptual target color had different shape and no 

spatial overlap with the preceded memory items. Participants were instructed to simply 
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match this target color on a surrounding color-wheel by moving their mouse cursor from 

the center and clicking at the best-match color. We utilized the continuous estimation 

paradigm so that the WM-match sensory feature was not presented as an explicit 

distractor but only occupied a slice of the response window along a circular feature space. 

Notably, the perceptual target color was kept available on screen until the mouse click 

response was made. All of one or two remembered colors were then recalled in sequence 

at the end of the trial on color-wheel randomly rotated at each recall. 

Critically, participants’ mouse trajectory during the perceptual matching task was 

recorded to estimate the moment-by-moment influence of WM on the subsequent 

perceptual process. Following a well-established literature on the distractor interference 

effect manifested in movement trajectories via different motor actions (Song & 

Nakayama, 2009; Van der Stigchel, 2010), we operationalized a systematic WM-

dependent attractive trajectory bias (i.e., deviated toward a location of the WM-match 

color on color-wheel) as a proxy measure of memory-driven capture. To normalize the 

strength of bias across trials and two set sizes, we manipulated a relative feature distance 

of the perceptual target from the memory items, either clockwise (CW) or counter-

clockwise (CCW). For the delicate examination of the mouse trajectory data, here we 

introduced a novel analytic approach, destination-vector transformation, that leverages 

the moment-by-moment direction of trajectory progression. We then modeled their 

circular trajectory bias distributions at different time points using the extended Zhang and 

Luck (2008) mixture model implemented in a hierarchical Bayesian method (see Method 

for detail). 
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To test whether or how multiple WM representations simultaneously guide 

attention, we utilized the perceptual matching trajectory pattern under memory set size 1 

as a baseline and compared it with the trajectories under set size 2. Distinct hypothesis-

driven predictions are proposed for the perceptual matching mouse trajectory under 

memory set size 2. These predictions largely benefited from the trial-by-trial variability 

in the circular trajectory bias distributions (see Figure 26). For a summary, the SIT 

hypothesis predicts a bi-modal trajectory distribution with two dissociable central peaks 

at a given moment. The bi-modal distribution is hypothetically a mixture of two 

trajectory distributions, each of them are from distinct proportion of trials when attention 

is captured by a single WM-match color located either CW or CCW relative to the 

perceptual target. In other words, the CW and CCW memory-match colors would 

exclusively capture attention and attract mouse trajectory on a trial-by-trial basis. Across 

all trials, the set size 2 mouse trajectories should result in a bi-modal distribution that is 

nearly identical to the trajectory distribution from set size 1 when the trial-specific WM-

match color location is ignored. On the contrary, the MIT hypothesis assumes both WM 

representations to be active and thus ready to guide attention at the moment of 

perceptual-matching task. Because they compete each other for selection, however, the 

attractive momentum from two WM-match colors will cancel each other out as a product 

of competition (Sogo & Takeda, 2007). Therefore, the MIT-based prediction holds no 

systematic and asymmetric trajectory bias toward one of the two WM-match colors over 

the other. Consequently, the trajectory distribution will be better described by a uni-

modal function with its peak location centered at around the perceptual target color.  



 130 

Lastly, we further sought to investigate whether asymmetric trajectory bias 

between WM-match distractors could possibly be accounted for by the variable precision 

across items. Consistent with a recent argument from Williams and colleagues (2022), the 

idea proposes that representational precision is a determinant factor for which WM items 

guide attention whereas others do not. Our recent work has provided a partial support for 

this idea using mouse trajectory data, where a trial-categorization method revealed that 

the relative recall performance between items could be predicted by the direction of 

mouse trajectory bias during the forced-selection of to-be-recalled item (Park & Zhang, 

2022). However, this association was examined to explain between-item interference 

arising from inhomogeneity of WM precision rather than WM-driven attentional capture. 

Therefore, the present study adopted the same analysis to test if the curved mouse 

trajectories, as a proxy measure of attentional guidance, are related to the relative 

precision of WM representations. Note that the analysis exploits both the within-trial 

variability (i.e., trajectory bias and subsequent memory recall performance) and the 

between-trial variability (i.e., variability in recall performance). It is thus predicted that 

for both memory set sizes, the more precisely represented item will exhibit the stronger 

attractive trajectory bias during the subsequent perceptual matching task.  

6.3. Method 

6.3.1. Participants  

Forty-five college students (19.1 ± 1.3 years old, 20 male) at the University of 

California, Riverside participated in the study for course credit. All participants reported 
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normal or corrected to normal visual acuity and normal color vision. Informed consent 

was obtained at the beginning of the experiment.  

6.3.2. Stimuli and Procedure 

Stimuli were presented on a 60 Hz LCD monitor (calibrated with a X-Rite I1Pro 

spectrophotometer) with a grey background (15.1 cd/m2) at a viewing distance of 60 cm. 

Figure 27 illustrates the stimuli and procedure of the study. Each trial began with an 800 

ms central fixation, followed by a sample array for 500 ms. The sample array consisted of 

either one or two colored squares (2.0° × 2.0° in visual angle). One memory color was 

randomly selected from a set of 180 evenly distributed on a circle in the CIRLAB color 

space (see Zhang & Luck, 2008 for details), and the other memory color for the set size 2 

trials was picked at either ± 120° from the other. All colors had comparable luminance 

and varied mainly in hue and slightly in saturation. The locations of colors were 

randomly selected from a set of six possible locations equally spaced on an imaginary 

circle with a radius of 5.3° from the center. Participants were instructed to remember the 

one or two memory colors as accurately as possible.  

After a short delay of 800 ms, the perceptual matching array appeared. It 

contained a colored circle presented at the center (2.0° × 2.0°), in addition to a continuous 

color-wheel (radius of 8.2°, thickness of 2.2°) with 180 evenly distributed colors. This 

perceptual target color had a relative distance of ± 60° to the memory colors. This made 

the perceptual target color in the middle of the memory colors for the set size 2 condition, 

whereas either clockwise (CW) or counterclockwise (CCW) for the set size 1 condition 

(hereafter, WMCCW and WMCW indicates memory-match color at -60° and +60° from the 
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perceptual target on color-wheel, respectively). This relative featural distance between 

items was unknown to participants. Participants were required to report the color of this 

target item using a computer mouse to click a matching color on the color-wheel. Note, 

the target item was kept visible until the mouse click response was made. The 

performance was measured as the error in degrees between the color chosen by the 

participant and the actual color shown in the sample array. Immediately after the recall 

response, a 500 ms online feedback was presented with a cross marking the color the 

participants picked and an arrow marking the actual color. 

After another 800 ms delay, a memory test array followed. The test array 

consisted of outlined squares at the corresponding memory item locations and another 

color-wheel. One square was thicker than the other, indicating a probe item that needs to 

be recalled. For the trials of memory set size 1, only a single thick outline was presented. 

The color-wheel had a circular rotation of random degrees to prevent a strategical 

mapping of stimulus to color-wheel location during the previous perceptual matching 

array. Participants were again required to reproduce the remembered color of the probed 

item by clicking on the color-wheel as in the perceptual matching task, except that no 

colors were displayed on the screen. For those trials of memory set size 2, another test 

array was presented for the remaining memory item, with a second delay after the first 

memory recall. The response procedure was identical to the first memory recall and 

another randomly rotated color-wheel was provided. Visual feedback was provided for 

both recalls. All participants completed three blocks of 66 trials, yielding 198 trials in 

total. Trials for the memory set size 1 and 2 conditions were randomly mixed across trials 
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and took the one-third (66 trials) and two-thirds (132 trials) of total trials, respectively. 

For every mouse click response made on the color-wheel, the cursor position was reset to 

the screen center as a starting point. Participants’ mouse trajectories were recorded. 

6.3.3. Data Analysis 

6.3.3.1. Mouse Trajectory 

The trial-by-trial mouse trajectory during the perceptual matching task was first 

normalized in time, from its movement onset (0%) to a final click (100%). The 

movement onset was detected by cursor offset by three pixels in any direction from the 

center point set to (0, 0) in x-y coordinates. The target-match color location on color-

wheel was rotated to be perpendicular to the x-axis (0, r), where r is a radius of color-

wheel. The extent of trajectory deviation in all trials can thus be represented by area 

under curve (AUC), a definite integral of the horizontal cursor offsets over the course of 

trajectory. The sign of AUC indicates which direction trajectory deviated toward (i.e., 

which WM-match color on color-wheel), and the magnitude tells how strong WM-driven 

capture was. We also calculated maximum deviation (MD), the greatest offset along with 

trajectory curvature for sanity check. Participants’ AUCs and MDs were highly correlated, 

r(43) = .90, 95% CI [.82, .94], p < .001. The main result pattern using the AUCs held the 

same when done with the MDs. 

These measures of trajectory bias, however, are based on distance on the raw 

cartesian coordinates and possess inherent artifacts due to asynchronous variability in 

movement factors along time. For example, initial mouse cursor movements tend to 

deviate weakly in distance relative to mid-flight movements. This may cause under- 
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and/or over-estimation of trajectory bias, may even lead to a risk of misinterpretation in 

hypothesis testing. Imagine a hypothetical case wherein a mouse cursor is incorrectly 

directed straight to a distractor. Even though its movement target (i.e., distractor) is 

constant across time, the distance-based measures would show linearly increasing 

trajectory bias over time. Furthermore, AUC provides a single point estimate for a given 

trial that neglects the moment-by-moment dynamics in decision making. 

In the present study, mouse movement was bounded within the circular feature 

space, therefore the direction of trajectory projected to the corresponding color on color-

wheel is critical in testing the dynamics of WM-driven capture, especially when two 

items in WM compete each other for a selection. Here we benefited this circular nature of 

mouse movement destinations to characterize how the moment-by-moment moving 

direction of mouse trajectory tracks the influence of WM content on ongoing perceptual 

process. One simple way to map raw trajectory position onto meaningful feature space is 

to convert cartesian to polar coordinates with a starting position as a reference point (Hao 

et al., 2021). However, it comes with another limitation from its insensitivity of 

measuring the actual moving direction and its changes over time, especially when a 

movement target is subject to alter between attractors at work. 

Here we developed a novel solution for the mapping of raw position onto 

underlying feature at the moment, destination-vector transformation, that focuses on the 

progression of movement targets based on two consecutive time points. Figure 28 

demonstrates the example destination vectors in comparison with the cartesian-to-polar 

conversion output. Instead of computing angular position of the cursor at each moment, 
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the destination vectors compute a series of where on color-wheel the cursor headed 

toward from its previous position. As a consequence, this results in N – 1 data points in 

circular degree from N cursor positions varying in time. We treated this moment-by-

moment circular bias as a proxy measure of WM-driven attentional capture. Furthermore, 

it produces a probability distribution of the circular bias across trials at each time point, 

of which the distributional shape can be critical to test competing hypotheses. 

6.3.3.2. Hierarchical Bayesian Modeling of Trajectory Bias 

To test whether or how multiple WM representations guided attention, we 

modeled the circular bias measures of mouse trajectory under a hierarchical Bayesian 

method. Two candidate models were constructed for the distribution of circular trajectory 

biases across trials. One model testing the MIT hypothesis is a uni-modal function, as an 

extended Zhang and Luck (2008) Mixture model, predicting the trajectory bias 

distribution to be a mixture of the uniform distribution and a single von Mises 

distribution (VM; circular analogue of the Gaussian distribution). The proportion of the 

uniform component (g) captures data points that are not driven by target-relevant process 

(i.e., randomly directed mouse cursor). In mouse trajectory data, a cursor occasionally 

wanders rapidly at early movements due to motor noise and thus needs to be separated. 

The von Mises distribution has two parameters, mean shift (µ) and variability (σ, 

converted from concentration κ). The present study has a primary interest of the µ shift 

parameter as it represents the systematic WM-dependent bias in mouse trajectory. This 

MIT-predicted uni-modal function is described by: 

 𝑝(𝑥|𝜇) = (1 − 𝑔) · 𝑉𝑀(𝑥; 𝜇, 𝜅) + 𝑔(1 2𝜋⁄ ) (1) 
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Another model testing the SIT hypothesis is a bi-modal function, consisting of a 

mixture of the uniform distribution (𝑔) and two equal-variance (𝜅) von Mises 

distributions (VM1 and VM2). The two von Mises functions are dissociable by their 

central peak locations, µ1 and µ2, and designated to capture different proportions of trials 

with which the perceptual matching mouse trajectory deviated toward WMCCW or WMCW 

on color-wheel, relative to the perceptual target. According to the SIT hypothesis, when 

two items are remembered in WM, only one of the two WM-match colors will be guiding 

attention during the perceptual matching. Regardless of which WM-match color captured 

attention on a given trial, the trial-by-trial variability in trajectory bias will result in a 

bimodal distribution with two separable central peaks. In this model, two von Mises were 

equally weighted in summation based on assumptions that each WM representation is 

equally likely to be able to capture attention across trials. This SIT-predicted bi-modal 

function is described by: 

 𝑝(𝑥|𝜇) = (1 − 𝑔) · [0.5 · 𝑉𝑀-(𝑥;	𝜇-, 𝜅) + 0.5 · 𝑉𝑀+(𝑥; 	𝜇+, 𝜅)] + 𝑔(1 2𝜋⁄ ) (2) 

Modeling and parameter estimation were done under the hierarchical Bayesian 

method. The hierarchical structure of variabilities and the choice of reasonably 

informative to non-informative priors were determined following previous studies with 

similar modeling approach (Oberauer et al., 2017; Park & Zhang, 2022). We took a total 

of 4,000 samples after 4,000 warm-ups from four chains of Markov chain Monte Carlo 

sampling. Statistical inference was made based on the mean and 95% credible interval 

(highest density interval, HDI95%) of the posterior distributions of the population-level 

parameters (Kruschke, 2014). To conduct a formal model comparison for our two 
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competing models with varying numbers of parameters, we computed the widely 

applicable information criterion (WAIC; Watanabe, 2010), which is a robust measure of 

goodness-of-fit for hierarchical models by taking the model complexity into account. A 

model with lower WAIC indicates a better fit to the observed data.  

6.3.3.3. Trial-Categorization 

We hypothesized that the WM-directed trajectory bias during perceptual matching 

would reflect variable precision across multiple WM representations. To test this we 

adopted a binary trial-categorization method, recently introduced by Park and Zhang 

(2021). Mouse movements could be subject to various motor noises that are either 

jittering alongside target-directed movement or even random wandering of the cursor. 

Nonetheless, the potential association between variable precision and asynchronous 

mouse trajectory bias across WM representations could still remain detectable when the 

effects are simplified into the binary codes.  

In the present study, for example, every trial of the WM set size 2 condition could 

be categorized into a 2-by-2 binary matrix: 1) one dimension categorizes which side of 

the WM-match distractors (i.e., -60° CCW or +60° CW to a perceptual target) the 

perceptual matching mouse trajectory was deviated toward (e.g., by the sign of AUC; 

negative and positive values indicate WMCCW and WMCW capture trials, respectively). 2) 

The other dimension categorizes the relative recall performance between two WM items 

for the set size 2 condition (2nd – 1st absolute recall errors; positive value indicates 1st 

recalled item was more precise than the 2nd item). For the set size 1 condition, this second 
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dimension categorizes whether the absolute recall error was within or outside of the 

circular standard deviation of individual participant.  

Importantly, the association between the direction of trajectory bias and the 

relative WM precision could manifest as an interaction effect in the proportion of trials at 

the diagonal positions over the 2-by-2 categorization matrix, where the signs of the two 

dimensions match each other (–/– and +/+), indicating a correspondence between the 

trajectory bias direction and the WM item more precisely reported. To make this diagonal 

interaction clear, the main effects were corrected by up- and down-weighting a half-size 

of the difference between rows and columns. As a consequence, the null trial proportions 

across the quadrant cells can be equated at 25%, and thus a statistical significance of the 

interaction effect can be tested by a one-sample t-test for the proportion of the diagonal 

cells (–/– and +/+) to 50% null proportion. 

6.4. Results 

Overall performance of the continuous reports for perceptual matching and WM 

recalls was estimated by the Zhang and Luck (2008) mixture model sd parameter, 

representing imprecision of reports (Figure 29). Perceptual matching performance was 

statistically comparable between the WM set size 1 (11.1° [CI95% hereafter: 10.3, 12.0]) 

and set size 2 (11.5° [10.7, 12.2]) conditions, t(44) = -0.95, p = .350, Cohen’s d = -0.14. 

WM recall performance showed the set size effect and the recall order effect. The 1st WM 

recall was more precise for the set size 1 (17.1° [16.2, 18.1]) than for the set size 2 (20.2° 

[19.2, 21.3]), t(44) = -5.71, p < .001, Cohen’s d = -0.86. In the set size 2 condition, the 
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2nd recall (25.2° [23.9, 26.6]) was less precise than the 1st recall, t(44) = 10.66, p < .001, 

Cohen’s d = 1.61. 

Of the primary interest, we focus on performance for the perceptual matching task 

inserted in the middle of the WM maintenance period. First, to see how the conventional 

WM-driven attentional capture manifested in our novel paradigm of perceptual matching 

on a continuous scale, we analyzed reaction time (RT) and mouse onset latency 

calculated from the trajectory data as a function of WM set size (Figure 30). On one hand, 

overall mean RTs were comparable between the WM set size 1 (2196.4 ms [1961.1, 

2416.5]) and set size 2 conditions (2285.0 ms [2049.5, 2520.4]), t(44) = -1.47, p = .149, 

Cohen’s d = -0.22. On the other hand, however, mean movement onset latency for WM 

set size 2 condition (823.1 ms [761.0, 885.2]) was significantly slower than set size 1 

(657.2 ms [599.3, 715.0]), t(44) = 10.08, p < .001, Cohen’s d = 1.52. The same pattern 

was observed with the normalized movement onset latency in percentage of RT in each 

trial (set size 1: 32.4% [29.1, 35.6] vs. set size 2: 38.9% [35.5, 42.4]; t(44) = -5.55, p 

< .001, Cohen’s d = -0.84). It suggests a trade-off between movement onset latency and 

‘in-flight’ duration, in a way that delayed response selection was compensated by 

expedited mouse cursor movement and clicking response. Together, these results 

replicate the previous mixed findings at different aspects of response speed measures. An 

extra WM-match distractor did not produce additional distractor interference on the 

overall perceptual matching RT as predicted by the SIT hypothesis, whereas delayed the 

initiation of mouse movement, potentially due to additional competition between multiple 
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WM-match distractors for a selection as predicted by the MIT hypothesis. Yet, it is not 

clear whether the observation is simply due to task difficulty. 

We next analyzed the perceptual matching mouse trajectories, separately for WM 

set size 1 and 2 trials. Figure 31 illustrates the horizontal trajectory deviations, as well as 

the circular biases calculated from the destination-vector transformation along the 

normalized time from movement onset to final click (see Method for detail). For the WM 

set size 1 condition, there was a robust, systematic trajectory bias during perceptual 

matching toward the location of the single WM-match color appeared on color-wheel (i.e., 

attraction bias), either at CW or CCW to the perceptual target color, respectively. 

Specifically, a paired t-test revealed a significant difference in the mean AUCs between 

the CW (27.9 px/t [19.5, 36.2]) and the CCW conditions (-29.2 px/t [-37.3, -21.1]), t(44) 

= -7.20, p < .001, Cohen’s d = -1.08, confirming a WM-dependent attentional capture. 

When the sign of the CCW trial AUCs were flipped to be matched with the CW trial 

AUCs, their magnitudes were found comparable each other, t(44) = 0.46, p = .646, 

Cohen’s d = 0.07, further supported by a strong correlation in individual participants’ 

AUCs between CW and CCW conditions, r(43) = .78 [.63, .87], p < .001.  

When these raw trajectory coordinates are converted to the circular bias estimates 

at every 10th quantile along the normalized time, the degree to which the reconstructed 

color feature (i.e., movement target on color-wheel at the moment) was biased from the 

perceptual target was most evidence in the first 10% of movement time, then corrected 

over time toward the perceptual target. These circular biases at every time point were 

again systematically shifted toward the WM-match color, yielded significant difference 
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between CW and CCW trials, ps < .001, Cohen’s ds > 0.77, even at the last moment of 

the perceptual target report, t(44) = 6.41, p < .001, Cohen’s d = 0.97.  

It is important to note, however, that these trial-average measures of mouse 

trajectory are inadequate to test the predictions of the SIT and MIT hypotheses for the 

perceptual matching mouse trajectories under WM set size 2. Only the set size 1 

condition had a condition code for the location of a single WM-match color, whereas in 

the set size 2 condition both WM colors appeared at CW and CCW to a perceptual 

matching target on color-wheel. In fact, when the condition code for WM-match location 

is ignored from set size 1, the trial-average AUCs were comparable between set size 1 (-

1.4 px/t [-3.8, 1.0]) and set size 2 (0.6 px/t [-3.4, 2.1]) conditions, t(44) = 0.44, p = .662, 

Cohen’s d = 0.07. The same pattern was observed from the circular bias measures, the set 

size 1 and 2 trials were not significantly different at all 10 time points, ps > .288, Cohen’s 

|d|s < 0.16. 

For a closer examination of the mouse trajectories, we focused on the trial-by-trial 

variability in trajectory and tested the distinct predictions for the shape of the circular bias 

distributions, derived from the SIT and MIT hypotheses each predicts a bi-modal and a 

uni-modal function, respectively (see Figure 32). For the first step, the set size 1 circular 

biases at every 10th normalized movement time without their condition codes of WMCW 

or WMCCW location were successfully modeled by the bi-modal function, where the two 

central peak locations could be credibly dissociated. It is not surprising given the 

meaning of their condition-coded trajectories we already examined (Figure 31A). In the 

next step, more importantly, we applied the competing models (i.e., bi-modal SIT vs. uni-
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modal MIT) to the circular bias distributions from set size 2 trials. A formal model 

comparison revealed that the bi-modal SIT model (WAIC: 217,696) robustly 

outperformed the uni-modal MIT model (240,587), with WAIC difference of 22,891 

(9.51% in WAIC ratio). Figure 33 summarizes the hierarchical Bayesian posteriors of the 

two µ shift parameters, µ1 and µ2, in our SIT model, at each of the 10th mouse movement 

time. The overall pattern of the µ shift posteriors show a remarkable resemblance 

between WM set sizes, with the most credible separation of µgap [µ2 – µ1] at those early 

mouse movements. Furthermore, individual participants’ µgap [µ2 – µ1] means between 

the set size 1 and 2 conditions were strongly correlated at all time points, rs(43) > .85 [.74, 

91], ps < .001. These results suggest evidence strongly favored by the SIT hypothesis. In 

other words, even when two items are remembered in WM at a given trial, only one 

representation could effectively capture attention and guide mouse trajectory toward it.  

Finally, we tested whether such imbalanced trajectory bias exclusively toward a 

single WM-match distractor could be accounted for by WM precision. The trial-

categorization was conducted separately for the WM set size 1 and 2 conditions, over the 

two-by-two matrix consisting of the trajectory bias direction (AUC toward WMCW vs. 

WMCCW) and the WM recall precision (for set size 1: within- vs. over-circular SD; for set 

size 2: 2nd – 1st absolute recall errors). Figure 34 illustrates the resulting proportion of 

trials across the quadrants (1st: +/+, 2nd: –/+, 3rd: –/–, and 4th: +/–) and the categorization 

accuracy (1st + 3rd quadrants) for both set sizes. For set size 1 trials, we found the 

categorization accuracy at 61.6% [58.5, 64.7%], significantly greater than the chance-

level at 50%, one-tailed one-sample t(44) = 7.39, p < .001, Cohen’s d = 1.11, suggesting 
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that WM-directed trajectory bias was associated with how precise the memory item was 

represented in WM. Similar pattern was obtained for set size 2 trials, the categorization 

accuracy was 53.7% [51.3%, 56.1%], significantly above the chance-level at 50%, one-

tailed one-sample t(44) = 3.03, p = .002, Cohen’s d = 0.46. This suggest that although the 

numerical effect size was decreased from the set size 1 trial categorization, the relative 

recall performance between WM items could be predicted by the direction of mouse 

trajectory bias during the preceded perceptual matching task.  

6.5. Discussion 

A debate has continued on whether multiple representations held in WM can 

concurrently guide attention or only a single representation in an active state can do so 

while others cannot. These MIT and SIT hypotheses both have empirical supports and the 

mixed findings are thought to originate from the different experimental factors across 

studies (Frătescu et al., 2019). The present study investigated the unit of WM-guided 

attention with a novel method of estimating attentional bias by WM-match information 

on the secondary perceptual matching task. In particular, we examined the mouse 

trajectory to assess the moment-by-moment influence of the WM contents on the 

subsequent perceptual process.  

Three major findings are reported as follows. First, remembering a single color 

item caused a robust WM-dependent attraction bias in mouse trajectory during the 

subsequent perceptual matching task. The trajectories were deviated systematically 

toward a side of WM-match color on a continuous color-wheel response window. We 

introduced a novel destination-vector transformation that reconstructs the underlying 
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feature value based on a cursor movement target on the response window on a moment-

by-moment basis. These converted circular trajectory bias revealed that the extent of 

WM-toward trajectory bias was at peak during early moments after cursor movement 

onset, then corrected toward the original perceptual target. This corrective movement 

shortly after initial movement toward distractor is consistent with the previous studies 

using manual reaching (Song & Nakayama, 2008) or saccadic eye-movements (McPeek 

et al., 2000). Second, for the critical testing of the SIT and MIT hypotheses, the overall 

pattern of the set size 1 mouse trajectory served as a baseline and compared with that of 

the set size 2 trajectories. A closer examination of the circular trajectory bias distributions 

with the hierarchical Bayesian modeling and formal model comparison provided 

convincing evidence in favor of the SIT hypothesis. In particular, we identified two 

credibly separable central peaks from the trajectory distributions for both set sizes, where 

each peak distribution represents a half proportion of trials either WMCW or WMCCW 

color on color-wheel captured trajectory. Separate model fits for each WM set size 

condition revealed a remarkable resemblance in the estimated separation of the µ shift 

parameters in between, throughout every 10th movement time points. These results 

indicate that even when two items are remembered, only one WM representation was 

able to capture attention and guide mouse cursor movement. Lastly, we showed a partial 

support for the idea that attentional guidance by the WM contents and their 

representational fidelity are not independent constructs. A novel trial-categorization 

adopted from Park and Zhang (2022) identified this interaction effect, statistically reliable 

though numerically weak, between the direction of trajectory bias and the subsequent 
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WM recall performance, manifested in diagonal cells on the two-by-2 categorization 

matrix.  

The present study speaks to some important notions in the literature of WM-

guided attention in several ways. We attributed the discrepancy in the discussion of the 

SIT and MIT hypotheses to two major points, experimental design and precision of 

estimates. In typical dual-task paradigms, memory-match distractors in the secondary 

visual search task are the exact copies of the memory items. Though it helps granting a 

robust guidance effect, it may call for other processes such as global feature suppression 

or encouraging supplementary memory encoding. Here we instead introduced the 

perceptual matching task in which WM-match sensory features are not presented as 

explicit distractors to be suppressed but only occupied a slice of circular response 

window along with all color palettes. Therefore, it serves a more natural setup for testing 

any influence of the task-irrelevant WM-match visual information on independent 

attentional process, with minimal differences in task demand over distractors and the 

number of distractors across studies. In addition, it is noteworthy that a perceptual target 

color in our paradigm was always in view until it was matched on the color-wheel by a 

mouse clicking response. We nevertheless observed a strong guidance effect by WM-

match color on the mouse trajectory pattern. This grants the validity of our paradigm and 

adds to the existing literature on the robustness of WM-driven capture (Olivers et al., 

2006; Soto et al., 2005).  

Moreover, the discussion of SIT and MIT has tapped into a simple comparison of 

trial-average estimates of attentional capture. Regardless of the types of measure whether 
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it is WM load-dependent cost in RT or oculomotor capture, this approach neglects the 

trial-by-trial variability that may otherwise convey essential information of whether one 

or more WM representations or even none of them guided attention on a particular trial 

(see for a similar notion, Beck & Vickery, 2019). Instead, the present study leveraged the 

distributional properties of mouse trajectory biases and modeled them after distinct 

predictions from the competing hypotheses under the hierarchical Bayesian method.  

Considering a growth of interests on the role of mnemonic precision in 

determining whether a certain WM representation is sufficient to guide attention (Olivers 

et al., 2011; Williams et al., 2022), the dichotomy of single versus multiple in current 

theories might be an oversimplification of the dynamics in WM-guided attention that 

vary trial to trial and item to item. The present study adds a partial support to this notion 

from the trial-categorization results showing that the relative precision among the 

concurrent WM representations could somewhat predict which side of WM-match color 

the mouse trajectory would deviate toward during independent task. Even for set size 1, 

we found a statistically reliable association between recall precision for the single 

remembered item and whether the preceded perceptual mouse trajectory was deviated 

toward the WM-match color or not. This weighs the idea beyond the division of active 

versus latent states (Williams et al., 2022). However, we only tagged binary codes for 

each trial based on the sign of measures, therefore cannot answer the gradient nature of 

precision-dependent WM guidance of attention. In fact, we failed to see a meaningful 

pattern when we attempted more complex trial-categorization matrix, 3-by-3 or 4-by-4 

matrices, to take the strength of estimates into account. Considering numerically weak 
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categorization accuracy we obtained from binary codes, the failure of the strength-based 

account could possibly be due to random noise in trial-level measures. Further study 

would be needed to develop more precise and strength-sensitive trial-level marker of 

WM-driven trajectory bias.  

To the best of our knowledge, this study is the first to investigate the nature of 

WM-guided attention using mouse trajectory. Mouse trajectory data contains common 

features with other goal-directed movement trajectories in different modalities such as 

saccadic eye-movements (Van der Stigchel, 2010) and manual reaching (Song & 

Nakayama, 2009) providing continuous measures before the final choice is made. 

Compared to saccadic movements, on the other hand, mouse trajectory can provide more 

reliable trajectories and thus have relative benefits in a read-out of internal cognitive 

decisions against conflicts (Song & Nakayama, 2009). In addition, the mouse trajectories 

in the present study were specifically designed to be bounded within a circular feature 

space (i.e., color-wheel response window). This allowed us to reconstruct underlying 

sensory features through a series of movement targets across moments (Spivey et al., 

2005; but see, van der Wel et al., 2009) by the destination-vector transformation we 

proposed.  

A caveat of mouse trajectory, however, is that a measurement window could be 

much lagged compared to saccades. Importantly, this leads to a caution that the current 

findings do not necessarily mean that only a single WM representation can exclusively 

guide attention throughout the entire attentional process. Alternatively, it is possible that 

multiple WM representations are maintained with overall comparable accessibility but 
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being cycled in and out of the active and latent states (Barrouillet et al., 2011; Camos et 

al., 2018; Gilchrist & Cowan, 2011). We found a load-dependent delay in movement 

onset latency, though the overall RTs were comparable between memory set sizes. One 

would not expect such delay if a certain WM representation was exclusively in an active 

state at the onset of perceptual matching task. Although it could totally be driven by 

general task difficulty increased with memory set size, another theoretically plausible 

account would be that a competition occurred between memoranda for a selection but 

then resolved before the motor response began. The guidance by this ‘winning’ WM 

representation was then followed by inhibition and during ongoing decision making and 

motor response, became detectable by our mouse trajectory recording. Further 

examination of mouse-tracking in conjunction with a concurrent eye-tracking method 

would be recommended for testing these theoretically important questions in future work 

(see Koop & Johnson, 2013). 

Taken together, the present study took several novel steps toward resolving an 

ongoing debate on the unit of attentional guidance by WM. A thorough examination of 

the mouse trajectory data through computational modeling of trial-by-trial variability 

concludes that, at least for its manifestation at the behaviorally meaningful level, a single 

WM item can guide attention and interact with the subsequent perceptual processes. In 

line with growing consensus on the dynamic interaction between motor action and 

ongoing cognitive processes (Olivers & Roelfsema, 2020; van Ede et al., 2019), the 

current work further sheds light on the utilization of mouse trajectory in critical 

hypothesis testing in the domain of visual attention and WM. 
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Figures 
Figure 26. 
Predictions for mouse trajectory based on the single-item template (SIT) and the 
multiple-item template (MIT) hypotheses. 

 
Note. The SIT hypothesis proposes that only a single item among two WM 
representations can be in a focus of attention and thus able to guide attention. This 
predicts that perceptual mouse trajectory on a given trial will be deviated toward a 
particular WM-match color that is either clockwise (WMCW) or counterclockwise 
(WMCCW) to a target color on a color wheel response window. Across over trials, the 
trajectory bias distribution could be best characterized by a bi-modal function. Contrarily, 
the MIT hypothesis proposes that both WM items are active and thus compete for 
attentional selection. The competition cancels out attractive biases and makes the net 
attraction effect at zero on average. Consequently, the trajectory bias will be best 
characterized by a uni-modal function centered around the straight target-directed 
trajectory. 
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Figure 27. 
Stimuli and procedure of the working memory and perceptual matching dual task. 

 
Note. Either one or two colored-squares were presented for memory items. After a short 
delay, a secondary perceptual matching task followed. A perceptual target colored-circle 
was presented at the display center, with no spatial overlap with the preceded memory 
items. Participants matched a target color on a surrounding color wheel. The perceptual 
target color had a fixed feature distance of 60° from the WM colors. Mouse trajectory 
during the perceptual matching response was recorded. After response, either one or two 
working memory (WM) recall arrays followed to test memory item(s). The three color 
wheels in sequence were randomly rotated to prevent strategic mapping of stimulus to 
color-wheel location. 
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Figure 28. 
Example of destination-vector transformation of mouse trajectory. 

 
Note. A solid black line and circle markers represents an actual example mouse trajectory 
(participant #1, trial #19) at every 10th normalized time points. The surrounding big 
circles indicate a color wheel contour (solid lines) and a centerline (dotted-line). A radius 
from the center point to the color wheel centerline was used for angular transformations. 
Red lines are the calculated destination vectors reflecting the moment-by-moment mouse 
cursor movement targets along the color wheel centerline, based on two consecutive time 
points. For a comparison, green lines are the conventional cartesian-to-polar 
transformation results. 
 

 Raw trajectory
 Destination-vector
 Cartesian-to-polar
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Figure 29. 
Imprecision of the reports for perceptual matching and working memory recall tasks. 

 
Note. Estimation errors for each type of reports were fitted to the Zhang and Luck (2008) 
mixture model. The imprecision estimates on the y-axis is the sd parameter of the model 
reflecting the width of the error distribution. Error bars represent standard error of mean. 
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Figure 30. 
Mean reaction times and mouse onset latencies from perceptual matching task. 

 
Note. Error bars represent standard error of mean. 
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Figure 31. 
Perceptual matching mouse trajectory results. 

 
Note. The horizontal deviation of the mouse cursor positions (left in panel) and the 
circular bias calculated from the destination vector transformation (right in panel) as a 
function of the normalized time between movement onset and final click response. (A) 
Working memory (WM) set size 1 trajectory results. Green and Red curves indicate the 
mean and the standard error of mean of the measures from the counterclockwise (WM at 
CCW) and clockwise WM-match color (WM at CW) on color wheel, respectively. Gray 
curves are all trials combined between WM CW and WM CCW trials. (B) The same 
measures from WM set size 2 trials. In the set size 2 condition, the color wheel contained 
both WM-match colors. Therefore, there was no condition code (e.g., CW or CCW). 
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Figure 32. 
Analytic approach for testing the predictions for the circular trajectory bias distributions 
based on the single-item template hypothesis (HSIT) and multiple-item hypothesis (HMIT). 

 
Note. In step 1, we identified that the set size 1 circular trajectory biases were 
systematically deviated toward the corresponding WM-match color on color wheel, either 
clockwise (CW trials) or counterclockwise from the perceptual target (CCW trials). In 
step 2, these set size 1 circular biases at every 10th normalized movement time were 
ignored their CW or CCW condition codes. In step 3, these condition-ignored circular 
bias distributions were successfully modeled by the bi-modal function (i.e., recovery of 
the two dissociable peaks). In step 4 and 5, importantly, the set size 2 circular trajectory 
bias distributions were fitted to the competing models (i.e., bi-modal SIT vs. uni-modal 
MIT) to see if they are better described by a model predicted by the HSIT or HMIT. 
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Figure 33. 
The hierarchical Bayesian posteriors of µ shift parameters. 

 
Note. The posterior probability densities of the two µ shift parameters µ1 and µ2 in the bi-
modal SIT model and their differences µgap (µ2 - µ1) along every 10th normalized 
movement time from movement onset to final click response. Shaded area indicates 95% 
highest density interval. 
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Figure 34. 
Trial-categorization results for each memory set size condition. 

 
Note. The results of proportion of trials from the trial-categorization consisting of a 2-by-
2 matrix. (A) For working memory (WM) set size 1, the horizontal dimension categorizes 
whether the perceptual matching mouse trajectory deviated toward or away from the 
WM-match color on color wheel (by the sign of area under curve; AUC), whereas the 
vertical dimension categorizes whether WM recall error for a given trial was within or 
over 1 circular standard deviation of errors for total trials. (B) For WM set size 2, the 
horizontal dimension categorizes whether the mouse trajectory deviated toward the 1st or 
2nd recalled WM-match color on color wheel, whereas the vertical dimension categorizes 
by the sign of the relative absolute recall errors (1st – 2nd recalls; negative sign indicates 
the 1st recall being more precise than the 2nd recall). For both set sizes, the first (+, +) and 
the third quadrants (–, –) are consistent with the idea that WM-directed trajectory bias 
was associated with how precise the memory item was represented in WM. 
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Chapter 7. General Discussion 

7.1. Establishing a Psychological Meaning of μ Shift 

The dissertation research devoted to characterizing the central tendency of the 

errors from continuous WM reports as a behavioral manifestation of the underlying 

representational appearance, and further establishing accuracy as a psychologically valid 

aspect of memory quality that is independent of precision. Several lines of work are 

presented in support of the argument. Part I sets a theoretical ground for the necessity of 

representational shift in characterizing noisy WM presentations. I elucidated the 

erroneous nature of WM and how the recall error distribution can be dissected into 

qualitatively distinct components reflecting different states of mnemonic representations 

by probabilistic mixture modeling. Despite this widely-accepted division of the quality 

and quantity of WM representation conceptualized as precision and capacity, the 

correspondence between external stimulus and the central tendency of internal 

representation (i.e., accuracy) has largely been ignored in the previous WM literature.  

Several previous studies have looked into the central tendency of the WM errors, 

but within a restricted domain of research such as statistical systematic memory distortion 

toward the ensemble average of the stimuli (Brady & Alvarez, 2011) or category means 

(Bae et al., 2015; Hardman et al., 2017). Otherwise, the central tendency is often 

neglected based on assumption that the overall WM errors will eventually be centered 

around the true feature value of the physical stimulus. Contradict to this assumption, 

however, the data simulation and parameter recovery tests in Chapter 1 showed that 

random drifts added to individual sampling points contributed to the variability of the 
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overall simulation set in an additive manner, thus resulted in a robust underestimation of 

precision (i.e., the width of the sampling distribution). This casts a doubt on the 

conventional operationalization of mnemonic precision estimated by the width of the 

between-trial error distribution. From the simulation results, I derived a root-sum-squared 

relationship of variances, where one type of variance arises from the assumed overall 

variability of the representation (i.e., precision), whereas the other type of variance 

emerges from the trial-specific random drift of the representation (i.e., accuracy). The 

recent advances in continuous measurements enabled us to examine the quality aspect of 

memory representation which is difficult with binary response methods. Nonetheless, the 

level of analysis anchored to the between-trial variability has inherent limitations in 

accurately characterizing the noisy mnemonic representation convoluted by independent 

sources of variance, inaccuracy and imprecision.  

Using the advantages for reliable parameter estimation of the hierarchical 

Bayesian mixture model introduced in Chapter 2, Part II introduced the many faces of 

representational shift with two empirical studies. In these studies, the µ shift parameter of 

the mixture model was utilized as a critical variable for testing theoretically-grounded 

hypotheses in the domain of WM research. Another set of empirical studies in Part III 

further combined the µ shift with the mouse-tracking method. These studies 

demonstrated the potential for mouse trajectory data to investigate how the moment-by-

moment evolutions of shift errors are manifested during decision-making and motor 

actions. The results from the dynamic mouse trajectory patterns provide supporting 

evidence for a hierarchical structure of WM representations via attentional weights.  
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Altogether, this dissertation presents a theoretical framework, a quantitative 

modeling approach, and a collection of empirical studies to validate representational shift 

as an independent source of noise that contributes to the overall mnemonic quality. The 

novel methodological approaches for the mouse trajectory analyses in conjunction with 

the measures of representational shift further shed light on how the trial-wise level of 

analysis can be conducted and offer a different perspective for characterizing mnemonic 

quality in WM tasks.  

7.2. Future Research Directions 

The collective empirical work in this dissertation highlights how the 

representational shifts can emerge through a variety of factors such as stimulus property, 

categorical encoding, and interactions between representations or between internal 

representations and external sensory inputs. For this representational shift to be fully 

psychologically valid, however, further evidence need to be fulfilled by inspecting the 

neurally reconstructed representation using neuroimaging techniques and computational 

modeling. For example, although the precision and shift parameters of the probabilistic 

mixture model are mathematically independent, their underlying neurocomputational 

mechanisms are largely unknown. Therefore, testing whether the behaviorally estimated 

representational shift and precision are directly derived from the corresponding properties 

of the underlying mental representation in the form of population brain activity would be 

necessary. On the one hand, the behavioral manifestation of representational shift is 

expected to reflect the biased central tendency peak of the underlying neural 

representation. On the other hand, behavioral responses are inherently confounded by 
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several types of noise due to unstable motor actions or strategic response bias. Therefore, 

the ultimate goal of future research would be identifying the correspondence in 

representational shifts between the brain and behavior.  

Quantifying representational shift at the neural level could be achieved by 

adopting an inverted encoding model (IEM) approach to reconstruct trial-by-trial feature-

specific information retained in WM from population neural response profile recorded by 

functional magnetic resonance imaging (fMRI) blood-oxygenation-level-dependent 

(BOLD) signals. The IEM now become one of the popular standard methods for 

reconstructing the population channel responses by modeling hypothesized population-

level tuning functions (Ester et al., 2015; Sprague & Serences, 2013). Some recent 

studies using the IEM techniques have shown that the reconstructed channel response 

profile could successfully predict trial-by-trial sensory features being maintained (Kim et 

al., 2020; Li et al., 2021). Since the modeled channel tunning functions are typically 

comprised of a continuous feature dimension, the reconstructed channel responses could 

also be modeled by the same hierarchical Bayesian mixture model introduced in the 

present work to reliably recover the representational shift.  

Taken altogether, the theoretical framework of representational shift in WM in the 

present dissertation provides a different perspective of understanding the blurred nature 

of our mental representation of the external world. There are several motivations to apply 

this perspective to the future WM research. First, a shift in the central peak location in 

WM error distribution can serve a useful means to investigate the fundamental structure 

of WM and its interaction with ongoing visual processing. It is widely accepted that 
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multiple concurrent WM representations are organized in a hierarchical structure via 

attentional accessibility (D'Esposito & Postle, 2015). Although debate continues on the 

specific mechanisms (Stokes et al., 2020), general consensus in the field is that only a 

single representation in a focus of attention can directly interact with ongoing visual 

processing in early visual cortices whereas the other representations are maintained in a 

latent, activity-silent state (Serences et al., 2009; but see Xu, 2017). This sensory 

recruitment theory predicts a common use of early visual areas to support both ongoing 

perception and WM maintenance (Rademaker et al., 2019). Therefore, examining the 

representational shift of WM representations in response to new perceptual inputs could 

be central to testing the sensory recruitment hypothesis and a dynamic interplay between 

WM and other cognitive processes that guide our behaviors (Boettcher et al., 2021; 

Zokaei et al, 2019).  

Second, the degree of representational shift may vary across individuals which 

could potentially contribute to the individual differences in WM function. There is only a 

handful of studies that examined how different experimental manipulations such as 

between-item relationship or memory/cognitive load affect the extent of attractive or 

repulsive representational bias (Allred et al., 2016; Chunharas et al., 2019). Further 

examining individual differences in representational shift by various factors such as 

affective, aging, and health-related conditions would help to understand dissociable 

components in WM functions in addition to the known dissociation between capacity and 

precision (Gold et al., 2010; Wee et al., 2013; Xie & Zhang, 2018).  
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Lastly, although subtle shifts in the correspondence between the external stimulus 

and internal representation may seem like minor errors of memory, a systematic tendency 

of distorting internal representations of the world can be extended to promote our 

understanding of general cognition and its interaction with broader factors such as prior 

knowledge, personality, attitude, political stance, and so forth. 
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