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Quantitative diffuse optical spectroscopy for
noninvasive measurements of the malaria
pigment hemozoin

CHRIS CAMPBELL AND THOMAS D. O’SULLIVAN*

Department of Electrical Engineering, University of Notre Dame, 275 Fitzpatrick Hall of Engineering,
Notre Dame, IN 46556, USA
*tosullivan@nd.edu
https://osullivangroup.nd.edu/

Abstract: Hemozoin (Hz) is a crystal by-product of hemoglobin consumption by malaria
parasites. There are currently no in vivo deep tissue sensing methods that can quantify Hz
presence noninvasively, which would be advantageous for malaria research and treatment. In this
work, we describe the broadband near-infrared optical characterization of synthetic Hz in static
and dynamic tissue-simulating phantoms. Using hybrid frequency domain and continuous-wave
near-infrared spectroscopy, we quantified the broadband optical absorption and scattering spectra
of Hz and identified the presence of Hz at a minimum tissue-equivalent concentration of 0.014
µg/mL in static lipid emulsion phantoms simulating human adipose. We then constructed a
whole blood-containing tissue-simulating phantom and demonstrated the detection of Hz at
physiologically-relevant tissue oxygen saturations ranging from 70-90%. Our results suggest that
quantitative diffuse optical spectroscopy may be useful for detecting deep tissue Hz in vivo.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Malaria claims almost half a million lives worldwide every year and sickens millions more [1].
Efforts to eradicate the disease are under development, from new drugs and vaccines to techniques
that reduce or eliminate its transmission vectors [2,3]. These efforts can benefit from noninvasive
in vivo imaging tools that provide quantitative measures of malaria infection and its effect on
specific tissue locations, monitor disease progression, and evaluate response to treatment.
Diffuse optical spectroscopy (DOS) is a noninvasive sensing and imaging technique which

uses visible and near-infrared (NIR) light to characterize optical absorbers from deep (up to
2-3 cm) tissue including water, oxy- and deoxyhemoglobin, myoglobins, lipids, and melanin.
By assessing absolute and changing concentrations of these chromophores, DOS technology
shows promise for many clinical applications including functional brain imaging [4], monitoring
neoadjuvant chemotherapy in breast cancer [5], quantifying blood perfusion in diabetic patients
with peripheral arterial disease [6], and assessing the severity of burns and health of skin grafts
in burn patients [7]. In addition to the stronger optical absorbers mentioned, tissue includes
numerous minor absorbers in small concentrations that can be of great physiological significance.
These include, for example, cytochrome c oxidase [8], dyshemoglobins (e.g., methemoglobin
(MetHb), carboxyhemoglobin) [9], and the subject of this manuscript, hemozoin (Hz) [10].

Hz crystals are synthesized in red blood cells (RBCs) that are infected by malaria parasites,
particularly the deadly species p. falciparum. As the maturing parasite consumes hemoglobin
from the host RBC, toxic heme molecules are rendered safe through reorganization into Hz
crystals [10]. To escape filtration by the spleen, mature, Hz-bearing parasites sequester in small
blood vessels throughout the body by causing the host RBC to adhere to the vascular endothelium
[11]. In addition to major organs including the brain, sequestered parasites are also found in
adipose tissue [12]. There currently is not a suitable noninvasive deep tissue imaging technique
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available to quantify and map the tissue distribution of infected RBCs in vivo; current methods
to assess distribution in humans are completed postmortem [13]. If it were possible, accurate
noninvasive measurements of the distribution and concentration of Hz in vivo could provide
valuable insight into the development of Hz-based diagnostics, as well as improve understanding,
monitoring, and treatment of severe complications of malaria such as cerebral malaria.
Hz exhibits measurable visible absorption in the 600-700 nm range and birefringence that

has been detected via optical interrogation methods without requiring blood draws or dissection
[14,15]. In this study, we hypothesized that Hz’s unique optical absorption signature is detectable
with DOS at concentrations relevant for monitoring malaria infection in vivo. If true, DOS
could provide a quantitative, noninvasive in vivo measurement of deep tissue Hz that reflects
the concentration of sequestered and circulating infected RBCs. To that end, we first measured
the scatter-corrected absorption spectrum of Hz in a liquid, lipid emulsion, tissue-simulating
phantom. Then, we constructed more complex phantoms containing whole blood and Hz to
assess the ability of DOS to noninvasively measure Hz concentrations in adipose tissue over
a physiological range of tissue oxygen saturation. Our data suggest that noninvasive DOS is
indeed sensitive to clinically-relevant concentrations of Hz in adipose-like tissue and capable of
identifying its presence over a range of tissue oxygen saturation, although further work can be
done to improve sensitivity and accuracy. To our knowledge, this work is the first to evaluate the
potential of DOS for quantifying Hz in a noninvasive manner.

2. Methods

2.1. Quantitative broadband DOS technique

We used quantitative broadband DOS to characterize Hz-containing solutions and tissue-
simulating phantoms. This technique, based on the design by Bevilacqua et al. [16], combines
frequency-domain (FD) interrogation with laser diodes at discrete wavelengths, and broadband
continuous-wave (CW) DOS, to measure absolute optical absorption and reduced scattering
from 600 to 1000 nm. The experimental system is sketched in Fig. 1. Measurements of liquid
tissue-simulating phantoms were performed using a reflectance geometry because preliminary
Monte Carlo simulations [17] (not shown) revealed that inserting the large hybrid FD/CW
fiber ferrules into the medium would violate an infinite boundary condition to the diffusion
approximation and appreciably affect optical property estimation.

Fig. 1. Schematic of the FD/CW-DOS multi-distance system used in this study.
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2.2. System components

2.2.1. Multi-frequency FD-DOS system

The FD-DOS portion of the system, described previously [18], consists of a vector network
analyzer (VNA) (Agilent 8753ES), laser driver (Newport/ILX Lightwave LDC-3908), and an
8x1 integrated circuit based RF switch to sequentially intensity-modulate the six laser diodes
(631, 660, 689, 782, 828, and 849 nm). The detector is an avalanche photodiode (APD) module
(Hamamatsu C5658) modified with a 1mm circular APD (Hamamatsu S12060-10). Average
optical power was set to 25 mW when each laser was energized.
Early data was acquired with 17 source-detector separations (SDS) from 14 to 30 mm, and

measured at 401 frequencies from 10-560 MHz. Later experiments were optimized to measure
at only 4 SDS (11, 12, 17, and 18 mm) while reducing the input frequency bandwidth on the
VNA, which had a similar beneficial effect on the signal-to-noise ratio (SNR) and measurement
accuracy. These optimized measurements used 201 frequencies from 20-460 MHz.

2.2.2. Broadband CW-DOS system

BroadbandCWmeasurementswere performed at an SDS 1mmshorter than each FDmeasurement,
due to the position of the broadband detector in the fiber probe. A tungsten-halogen light source
(Ocean Optics HL-2000-FHSA) and a high-throughput visible-NIR spectrometer (Avantes
HS2048XL-EVO) were used. To ensure that broadband reflectance (i.e., spectrometer counts)
measured across the entire spectrum fell within the linear dynamic range of the spectrometer, we
first optimized the integration time at each SDS so peak counts registered between 80 and 90% of
the spectrometer bit depth (216 counts). When needed, to increase the signal in ranges with high
absorption (i.e., low counts), we doubled the integration time and stitched the two dark-subtracted
intensity curves (corrected for integration time) together. We confirmed that saturated pixels
did not negatively affect other pixels registering within their linear dynamic range. With this
technique, most pixels recorded data in the linear range; those that did not were discarded.

2.2.3. Optical fiber probe and stage

Seven 400 µm low-OH, silica-silica fibers arranged in a 6-on-1 hexagonal configuration delivered
light to the phantom. Remitted light was collected with two 1 mm solid-core fibers (one each for
broadband and FD). The FD detector fiber (NA 0.48, hard-clad silica) was coupled to the APD
module using a matched pair of lenses. Broadband CW illumination was delivered via the central
400 µm source fiber and collected with the second detector fiber (NA 0.22, silica-silica). The
source and detector fibers were bundled together in two 6.4 mm diameter stainless steel ferrules.
The distance between the two ferrules was adjusted with a translating stage (Thorlabs LTS300).

2.3. Measurement processing

All experiments were accomplished in a self-calibrated fashion using a multi-distance approach
to avoid the reliance on calibration standards. We chose this approach for two reasons. First,
calibration standards for diffuse optical measurements are generally not traceable, and error
in the characterization of these calibration standards could be quite large [19] and will induce
roughly equal (percentage-wise) error into measured optical properties. Second, most calibration
phantoms are made of a solid material (e.g., silicone), while the present study was performed
in liquid phantoms. Our initial experiments demonstrated that differences in optical coupling
between the fiber probes and the solid calibration vs liquid Hz phantoms were resulting in
inaccuracies in the optical property estimation. Since consistent multi-distance optical coupling
is more easily achieved in a liquid phantom, liquid phantoms offer the beneficial opportunity
to make highly accurate self-calibrated measurements. Because the data acquisition speed
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of the multi-distance approach is relatively slow (ten minutes for a full measurement), time-
sensitive blood phantom measurements were necessarily performed at a single SDS. Single SDS
measurements were calibrated to a multi-distance measurement acquired from the same solution
under static conditions at the conclusion of the experiment, negating the need for a separate
calibration phantom.
Multi-distance, multi-frequency, multi-wavelength FD-DOS provides a robust and complex

dataset that can improve optical property and chromophore accuracy. However, intelligent data
filtering is necessary since including data with low SNR (e.g., at higher modulation frequencies
and long SDS) can undercut this benefit. Therefore, data that failed to meet SNR criteria were
discarded. These criteria and the pairwise fitting procedure for FD and CW measurements are
described below.

2.3.1. FD processing

The FD component of the system captured intensity-modulated data, which was then fit to an
analytical semi-infinite P1 approximation of the radiative transport equation model to estimate
optical properties [20,21]. Multi-distance FD reflectance data were utilized in the model pairwise
(e.g., the complex-valued ratio of 17 mm SDS reflectance with 11 mm SDS). A representative
multi-distance measurement and its model fit are shown in Fig. 2. Since we used a point-source
approximation to model optical fibers with finite numerical apertures, we found that comparing a
pair of measurements less than 10 fiber diameters apart could introduce non-negligible error. As
a result, ratios were only compared for SDS pairs separated by 5 mm or more.

Fig. 2. Representative self-calibrated multi-distance FD-DOS data and the accompanying
model fit at 660 nm. The medium is an Intralipid phantom with 1 µg/mL Hz. The modulation
frequency cutoff (202 MHz) was chosen in combination with the maximum SDS (18 mm)
to ensure all data were above the noise floor. Each line represents a comparison of the
measurements at two source-detector separations: ratio of amplitude (a) and difference in
phase (b). The markers represent every fifth frequency measured.

The FD noise floor was determined by acquiring dark measurements after each experiment,
wherein the source and detector fibers were optically blocked. The SNR criterion was chosen
to be 10 dB above the mean dark amplitude (i.e., noise floor) for each modulation frequency
and wavelength. A modulation frequency cut-off was chosen as the first of three sequential
frequencies that failed to meet the SNR requirement. This limit informed the choice of maximum
SDS to include in the fit, and the lowest cut-off frequency selected was applied to all selected
SDS for ease of fitting. The maximum SDS choice reflected a compromise between frequency
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content and number of SDS, though the final cutoff (+/- 1 mm) did not have a significant effect
on the measurement accuracy, given all the included data was above the noise floor.

2.3.2. CW processing

Accurately measuring both absorption and scattering from a single series of CW reflectance
measurements is difficult, if not impossible, even with minimal experimental noise present.
Therefore, the broadband scattering spectrum estimated from the power law fit of the discrete
(multi-distance) FD-DOS optical scattering coefficients [22] was used to constrain amulti-distance
CW reflectance model and estimate broadband absorption. Then we compared the measured
broadband absorption spectra to the discrete wavelength FD-DOS derived absorption coefficients
for confirmation. Misfits between FD and CW components could indicate a problem with the
experiment or data processing and provide a rough estimate of the experimental uncertainty. An
example CW reflectance dataset with accompanying fit is shown in Fig. 3, while the typical
agreement of the FD- and CW-DOS derived optical properties are shown in Fig. 4(a).

Fig. 3. Representative self-calibrated multi-distance broadband CW reflectance data and
model fit, with µ′S constrained by the frequency domain power law fit. The medium is an
Intralipid phantom with 1 µg/mL Hz.

2.3.3. Chromophore estimation

For the bovine blood phantoms, we initially fit four basis spectra: bovine oxyhemoglobin
(HbO2), bovine deoxyhemoglobin (HHb) [9], and water all from literature values, as well as
the experimentally-derived Hz. As work progressed, it became apparent that the absorption
spectrum of water was not matching the absorption of the (mostly-water) Intralipid component.
Specifically, the water absorption peak and width was slightly different than the experimental
data, which is expected due to variations in temperature and protein binding [23,24] (even after
correcting for the lipid component). Therefore we separately measured the absorption spectrum
for Intralipid and water mixed at a 1% concentration with the multi-distance approach and used
this as the basis chromophore for Intralipid+water in the blood phantom. Total Hemoglobin
concentration (THb) was calculated by adding HbO2 and HHb. The basis spectra components
are shown in Fig. 4(b).

Figure 4(a) demonstrates the results of a typical broadband fit. The mean difference between
the fitted chromophore absorption and measured broadband absorption is 1.4×10−4 mm−1 (1.7%),
and the mean difference between FD and CW absorption is 2.4×10−4 mm−1 (3.5%).
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Fig. 4. (a) Absorption and reduced scattering spectrum obtained with quantitative broadband
DOS, of a bovine blood phantom at 80% saturation. Scattering was estimated via a power-law
fit to the FD-DOS coefficients. Broadband reflectance was calibrated with the reconstructed
broadband system response from a multi-distance fit. (b) Individual chromophore spectra

2.4. Phantom construction

Liquid phantoms were selected for this study because they allow for dynamic adjustment of their
optical properties. The phantoms were constructed in a cylindrical vessel with a 20 cm diameter
to minimize boundary reflections and continuously stirred with a stir bar during experiments to
maintain homogeneity. The stir speed was chosen to minimize vortex size while also disrupting
the propagation of surface waves. For this configuration, the stir speed was 100 rpm.

Since the phantom experiments required several hours to conduct, we observed that evaporation
could affect optical coupling at the liquid surface. To counter this, a custom lid was fabricated
with black, open-cell foam to cover the phantom mixture and minimize reflection. Holes in
the lid permitted the insertion and translation of the fiber ferrules, as well as the insertion of a
dissolved oxygen (DO) sensor (Hamilton, P/N 243666-121).
Three phantom types were constructed for this work: a static Hz+Intralipid phantom for

measuring the optical properties of Hz, and dynamic Hz+Intralipid+blood and Intralipid+blood
(i.e., control) phantoms for simulating tissue at varying levels of oxygenation. Table 1 details the
composition of each phantom type.

Table 1. Phantom ingredients

Phantom PBS 1X(mL) 20% Intralipid(mL) Nigrosin(nmol) Hz(mg) Blood/Citrate(mL)

Hz+Intralipid 1900 100 150 0 - 38 -

Hz+Intralipid+blood 2270 110 - 0.325 37

Intralipid+blood (control) 2270 110 - - 37

2.4.1. Hz absorption phantom

A phantom designed for accurately measuring the absorption spectrum of Hz in Intralipid was
constructed from deionized (DI) water and lipid emulsion (Fresenius Kabi AB, Intralipid 20%).
Nigrosin (Sigma Aldrich 198285) was also added to assure a nonzero baseline absorption. The
baseline absorption spectrum for this Hz-free phantom was acquired using three multi-distance
measurements. Synthetic Hz (Invivogen, tlrl-hz) was then dispersed in DI water and added
to the phantom mixture in 1 mL aliquots (approximately 200 µg Hz) between measurements.
After measuring the absorption of the phantom at each concentration with a multi-distance
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measurement, we performed a linear regression to estimate the absorption spectrum of Hz (µA,Hz)
using the formula

µA(λ) = µA,baseline(λ) + [c] ∗ µA,Hz(λ) , (1)

where µA is the measured Hz phantom absorption spectrum, µA,baseline(λ) is the measured Hz-free
phantom absorption spectrum, and [c] is the concentration of Hz. The concentration of Hz was
calculated according to the molecular weight of a Hz dimer (1228.9495 g/mol) [10].

2.4.2. Blood oxygenation phantom with Hz

Another Intralipid-based phantom simulating human adipose tissue with a blood volume fraction
(BVF) of 1% was constructed to assess the ability of quantitative broadband DOS to noninvasively
quantify Hz at varying tissue oxygen saturation [25]. Potential interference with HHb, which
exhibits significant absorption in the same spectral region, was of particular interest. We began
with a 2.3 L bath of 1x phosphate-buffered saline (PBS) to prevent the rupturing of red blood cells
due to osmotic pressure. To this bath, we added 100 mL Intralipid 20%. We used fresh, whole
bovine blood because its properties are similar to human blood, with one relevant exception.
Bovine blood reference values for hematocrit and mean corpuscular hemoglobin are both lower
than those for human blood. To compensate for this, we used 1.3 times the blood required
for a 1% human BVF [26,27]. All phantoms were kept at room temperature, rather than body
temperature, to limit evaporation. In blood phantoms, lower-than-physiological temperature
increases the oxygen affinity of the blood but should not otherwise change its optical absorption
or interaction with other phantom ingredients. To simulate moderate p. falciparum malaria
infection of 0.5% parasitemia (16 µg/mL of blood, or 0.16 µg/mL of tissue), [28], we added 375
µg Hz to the phantom.
The blood phantom was deoxygenated by bubbling nitrogen gas through the initial Intralipid

and PBS mixture until DO measured less than 5% of its equilibrium value. Then we stopped
the gas flow and added 37 mL of fresh, whole bovine blood (with anticoagulant). We elected to
use this approach over introducing yeast or sodium dithionite to deoxygenate because the simple
chemistry should not affect the phantom optical properties other than altering hemoglobin state.
The blood was collected fresh, at most five hours prior to the start of the experiment, and

mixed well with citrate (Sigma Aldrich S5770) anticoagulant in a 9-to-1 ratio by volume. The
containers of blood/citrate mix were immediately placed on ice for transport, and stored in a
refrigerator at the destination at 4◦ C. Optical measurements were collected every 30 seconds
during reoxygenation. Following the conclusion of the Hz-blood deoxygenation experiment, a
control blood phantom with no Hz was mixed using the remaining blood (now approximately ten
hours old).

3. Results

3.1. Hz absorption spectrum

Absorption spectra for Hz suspended in an Intralipid/nigrosin solution at concentrations ranging
from 0.01 to 9.2 µg/L are shown in Fig. 5(a). Unlike previously published attenuation spectra
for synthetic Hz [29,30], these spectra are corrected for optical scattering that occurs when the
solid crystals are suspended in solution. From these data, the slope of a least-squares linear
fit to absorption as a function of Hz concentration at each wavelength (e.g., Fig. 6) yields the
broadband absorption spectrum (Fig. 5(b)). Uncertainty increases near the 978 nm water peak,
where the albedo and spectrometer sensitivity are reduced. Additionally, the Hz peak in Intralipid
solution was measured to be at 643 nm, 22 nm shorter than previously reported [29,30], and
confirmed with spectrophotometry (Jasco V-760, data overlaid in Fig. 5(b)). This implies that
there are solvatochromic interactions with the Intralipid that alter the absorption spectrum. We
identified the presence of Hz absorption at all measured concentrations in this phantom.
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Fig. 5. (a) Absorption spectra for increasing concentrations of Hz. (b) Measured molar
absorption spectrum for Hz, overlaid with attenuation spectrum of Hz in DI water. The
shaded uncertainty region represents the interquartile range of the normalized difference
between absorption spectra and their fits.

Fig. 6. Measured absorption of Hz at 643 nm with increasing concentration.
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We utilized a separate set of Hz+Intralipid phantom data to assess the accuracy of quantifying
Hz concentrations using the derived Hz molar absorption spectrum. Figure 7 shows the Hz
concentrations estimated from the absorption spectra measured in these phantoms, compared
to the added amount. We conclude that we can quantify differences in Hz concentrations in a
phantom down to approximately 0.12 µg/mL. Though recovered concentrations are approximately
linear with the amount added, the slope is shallower compared to the ideal relationship. Intense
sonication and repeated rinsing of the syringe vials the Hz was packaged in did not always succeed
in extracting all of the crystals. A fraction left in the vials when preparing the subsequent Hz
absorption phantoms could have led to an underestimation. In addition, the non-zero y-intercept
suggests that some measured Hz may be due to crosstalk with another phantom component or
error introduced by measurement uncertainty (i.e., low SNR).

Fig. 7. Measured concentrations of Hz in Intralipid phantoms, using the absorption spectrum
in Fig. 5(b). Error bars represent +/- 2 standard error of the chromophore concentration
estimated from the linear regression of theHz absorption spectrum to themeasured absorption
spectrum.

3.2. Blood-Intralipid phantoms

Hz absorption in liquid phantoms containing whole bovine blood under varying oxygen saturation
were measured to simulate more optically challenging and realistic physiological conditions.
Oxygenation was increased under ambient air from near zero to 100% blood oxygen saturation in
two phantoms: with and without Hz. Measured HbO2, HHb, THb, as well as oxygen saturation
from both the Hz-containing and non-Hz control phantoms are plotted against the measured DO
in Fig. 8(a). The control experiment, with no Hz, is represented by open circles. As expected,
the hemodynamic profiles match between the Hz and control phantom. The control phantom
shows slightly higher total hemoglobin; we attribute this to measurement errors arising when the
blood was mixed with anticoagulant, and when it was dispensed. The slight discontinuities in
THb (e.g., at 13, 15, 18, 20, 23, 27. and 31% DO for the Hz containing phantom) coincide with
time points when 2.5 mL (0.1% of the phantom volume) of DI water was added to counteract
evaporation of the aqueous phantom. Further, oxygen saturation (StO2) increases as expected
with increasing dissolved oxygen.

Finally, we present the recovered Hz from both the Hz and control phantoms. The measured
Hz concentration for each phantom is plotted in Fig. 9. As expected, the values for the phantom
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Fig. 8. HbO2, HHb, and THb measurements versus DO, and the reconstructed HbO2
dissociation curves for each experiment. Closed circles represent the experiment containing
Hz, while open circles represent the control.

containing Hz were significantly higher than for the control, but they were overestimated in both
phantoms (i.e., should be zero in the control). This is similar to the offset observed at the similar
low concentration in Fig. 7. A possible reason for this overestimation is crosstalk with HHb
given the spectral overlap below 700 nm, and further investigation is needed.

Fig. 9. Measured Hz concentration as a function of measured oxygen saturation between 70
and 90%.

4. Discussion

The goal of this work was to assess whether deep tissue DOS could be used to quantify
clinically and preclinically-relevant concentrations of Hz in vivo. There exist few imaging
techniques sensitive to Hz in vivo such as multi-modal magneto-optical [31] and photoacoustic
[32] approaches. While these techniques have excellent sensitivity that are similar to or better
than rapid diagnostic tests, their field of view is limited to shallow or single vessels. DOS, on the
other hand, probes a much larger tissue volume and depth, while closely related techniques such
as spatial frequency domain imaging [33] can rapidly image wide fields of view.

A deep tissue imaging approach could provide researchers an important tool for studying the
pattern of infected red blood cell sequestration, elucidating the ligands and host tissue receptors
responsible for this process, as well as the relationship between clinical symptoms and the
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underlying causes. This need is especially significant for better understanding cerebral malaria,
which is a severe and oftentimes fatal syndrome resulting from severe malaria and is associated
with seizures, retinopathy, brain swelling, and coma. Sequestration has been hypothesized as
having an important role in the pathogenesis of cerebral malaria, although the exact mechanisms
are still unclear [34]. Currently, the primary approach to assess sequestration in humans is
through postmortem examination, making it very difficult to correlate with clinical symptoms.

Furthermore, disruption of Hz production is a major target for malaria therapeutics, including
what was formerly the best drug for malaria treatment, chloroquine. Because of widespread
resistance to chloroquine, there have been renewed efforts to develop new therapeutics that also
disrupt the Hz pathway and lead to the accumulation of toxic heme in the infected host cells
resulting in cell death. Noninvasive in vivo Hz sensing and imaging could serve as a useful
preclinical tool for assessing new drugs and targets as well as characterizing treatment response by
measuring and mapping where infected RBCs have been cleared. Since Hz induces and disrupts
the host immune response, a DOS-based technique could provide a simple approach to image
the tissue distribution of Hz together with markers of immune response (e.g., oxyhemgoglobin)
longitudinally in vivo.
With these long-term goals in mind, the necessary first step in this line of research was to

measure the near-infrared absorption spectrum of synthetic Hz suspended in a tissue-simulating
lipid emulsion phantom. This was necessary because, to our knowledge, the only reported Hz
spectra were of its absorbance that includes both attenuation due to absorption and scattering
from the Hz crystals. The self-calibrated multi-distance quantitative broadband DOS technique
employed here is ideal because it decouples the effects of the optical absorption and scattering
and does not rely on the accurate a priori characterization of a calibration phantom. During this
experiment, we observed absorption contrast to Hz even at the lowest measured concentration of
0.014 µg/mL. The absorption contribution at peak Hz absorption was 0.0008 mm−1, which is
similar to the precision of a deep tissue DOS measurement [18].

After this data was used to reveal the Hz (in Intralipid) extinction spectrum, we quantified Hz
in a subsequent phantom with a sensitivity of approximately 0.12 µg/mL. We then demonstrated
Hz detection in a whole blood-based phantom simulating human adipose tissue with an adipose
tisue Hz concentration of 0.16 µg/mL (i.e., 0.5% parasitemia or 16 µg/mL in blood corresponding
to a moderate malaria infection, discussed below) through a physiological range of tissue oxygen
saturations. Because Hz was overestimated in both the Hz+blood phantom and the blood-only
control phantom, there may have been crosstalk interference with HHb, which will be the subject
of a future investigation.
To our knowledge, this is the first time that a quantitative DOS technique has been used to

measure Hz. A natural question to ask is: given our results, how sensitive can DOS be for either
diagnostics or characterization of disease progression and treatment response? One indicator of
the severity of a malaria infection is parasitemia, which can be estimated from thin blood smears
as the number of parasites expected per volume of blood. The sensitivity limit of microscopy is as
low as 4 parasites/µL, with low-level parasitemia at <100 parasites/µL and severe malaria found
with >250,000 parasites/µL [28,35,36]. The level of parasitemia at which clinical symptoms
(e.g., fever) appear varies greatly depending upon immune response, which is dependent upon
age, geography and seasonal exposure, and other factors. For example, it has been shown that
an appropriate cut-off value indicating clinical malaria in older children in an endemic area of
Kenya is 2,500 parasites/µL [37].
However, the amount of Hz expected to present in tissue is not related to parasitemia in a

simple manner because the amount of Hz present inside infected cells also depends upon the
development stage of the parasite itself and the tissue distribution of the infected cells. Infected
RBCs express proteins which cause sequestration of infected cells to the endothelial cells of the
microvasculature and vary by tissue location and organ. This means Hz is not evenly distributed
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in the body; common sites discovered upon post mortem examination include, for example,
cerebral cortex, intestine, skin, lungs, and adipose tissue [13]. Because of the complexity in
establishing a relevant threshold for Hz detection, we adopted the approach utilized by Newman
et al. 2008 [28] to estimate the concentration of Hz present in the tissue for a given level of
parasitemia (i.e., 100 parasites/µL corresponds to 0.06 µg/mL in whole blood). The lowest
observed concentration of Hz in the Intralipid phantom experiment (which was diluted to simulate
the Hz concentration in 1% BVF adipose tissue) thus corresponds to a parasitemia (2,300
parasites/µL) close to the threshold observed for clinical malaria symptoms in older children in
endemic areas. The Hz concentration we chose for the blood phantoms was 12x higher because
we expected reduced sensitivity due to the high absorption of hemoglobin in the same wavelength
range, and corresponds to the level of a moderate malaria infection (27,000 parasites/µL). Given
the data, we conclude that deep tissue noninvasive DOS as performed in this work may already
be sensitive to moderate to malaria infections in vivo, but further improvements are necessary for
DOS to be useful as an early diagnostic.
Our work revealed an unexpected finding that warrants further investigation as this research

progresses toward in vivo applications. The Hz absorption peak in Intralipid solution was
unexpectedly measured to be at 643 nm, approximately 22 nm shorter than previously reported
[29,30]. We believe that this could be due to a chemical interaction with Intralipid as we observed
the wavelength shift scaled with Intralipid concentration up to approximately 0.25%. Therefore,
more work is needed to understand these effects and perhaps find a dispersion medium that
scatters light without perturbing the absorption spectra of Hz in tissue. If the Hz absorption
peak truly is closer to the 665 nm peak in vivo, we expect that the sensitivity of the technique
will increase because of reduced spectral overlap with the absorption of HHb. Indeed this DOS
technique could help reveal the actual in vivo Hz absorption spectrum during the first set of in
vivo experiments. Once the in vivo absorption spectrum is well-characterized, we believe that
DOS imaging of preclinical models of malaria could be a viable approach to quantify and map
Hz distribution at different levels of parasitemia. We also anticipate that further improvements in
sensitivity can be achieved by using a spectrometer with higher sensitivity in the red spectral
region where Hz and hemoglobin absorption is significant.

5. Conclusion

In summary, we have demonstrated measurements of Hz in static and dynamic tissue-simulating
phantoms as an important first step towards noninvasive in vivo sensing of malaria infection using
DOS. We have identified challenges to noninvasive Hz sensing using broadband quantitative DOS
and proposed methods to further improve sensitivity and accuracy. With further development
and validation, noninvasive deep tissue Hz in vivo sensing and imaging could prove to be a useful
tool for studying malaria infection and, ultimately, monitor disease progression and response.
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