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ABSTRACT OF THE DISSERTATION

Eigenvalues and Structures of Graphs

by

Steven Kay Butler

Doctor of Philosophy in Mathematics

University of California San Diego, 2008

Professor Fan Chung Graham, Chair

Given a graph we can associate several matrices which record information about vertices

and how they are interconnected. The question then arises, given that you know the

eigenvalues of some matrix associated with the graph, what can you say about the graph?

Spectral graph theory looks at answering questions of this type.

In this dissertation we will be focusing on the eigenvalues of the normalized

Laplacian of a matrix which is defined as L = D−1/2(D − A)D−1/2 where D is the

diagonal matrix of degrees and A is the adjacency matrix of the graph. In addition to

some background material on spectral graph theory we will be looking at three main

results about how eigenvalues and structures of graphs are interrelated. These are as

follows.

• For any graph (including directed graphs) the edge discrepancy is a measurement

of how randomly the edges are placed. While it has been known for some time

that for undirected graphs that a tight clustering of eigenvalues around 1 implies

a good measure of discrepancy, only recently has some progress been made in the

other direction. We will show that for any graph (including directed graphs) that

a small discrepancy implies a tight clustering of singular values of the normalized

adjacency matrix. This shows that having small discrepancy and a tight clustering

of singular values are in the same quasirandom class of properties for directed

graphs.

• Graphs which share common local structure tend to share eigenvalues. We will con-

sider one type of covering that preserves local structures, namely 2-edge-coverings

ix



which, as the name strongly suggests, is a mapping from a graph G to a graph H

so that each edge in H is twice covered. We show how to compute the eigenvalues

of G from the eigenvalues of two modified forms of H. As an application we give

a construction of two graphs which are not regular but are cospectral with respect

to both the adjacency and normalized Laplacian matrix.

• Given a graph G, the removal of a small graph will have an effect on the eigen-

values of the graph. We will show that the new eigenvalues will interlace the old

eigenvalues (with the size of the interlacing dependent on the number of vertices

in the graph which is removed). We will also mention some negative results about

interlacing and a normalized Laplacian which has been introduced for directed

graphs.
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1 The basic matrices of spectral

graph theory

1.1 Introduction

Given a large graph it would be useful to be able to take a small snapshot

that can concisely capture information about the graph. One of the most useful ways of

doing this has been by studying the various spectra of matrices (i.e., the eigenvalues of

the matrices) that can be associated with the graph. By looking at these eigenvalues it

is possible to get information about a graph that might otherwise be difficult to obtain.

The study of the relations between eigenvalues and structures in graphs is

the heart of spectral graph theory. Thus someone interested in using spectral graph

theory needs to be familiar both with graph theory and the basic tools of linear algebra

including eigenvalues, eigenvectors, determinants, the Courant-Fischer Theorem, the

Perron-Frobenius Theorem and so on. We will make use of all these tools throughout

the following chapters.

In this chapter we will introduce the three most common matrices associated

with graphs (namely the adjacency matrix, the combinatorial Laplacian, and the nor-

malized Laplacian), and give some simple examples for each about how the eigenvalues

can be used to give some information about the graph. We will also give some compari-

son between the combinatorial Laplacian and the normalized Laplacian. In the following

chapters we will mainly focus on the normalized Laplacian and give some more specific

results about how to use that spectrum to find properties of the graph, and, on the other

hand how we can sometimes use the structure of a graph to help find eigenvalues.

Throughout this chapter we will make use of the graph in Figure 1.1 as a basic

example, and will give the spectrum of this graph for each of the three matrices.

1
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Figure 1.1: A simple example of a graph.

1.2 The adjacency matrix

Given a graph G we can form a matrix A, called the adjacency matrix, by

letting the vertices index the columns and rows, and then letting

Ai,j =

 1 if i is adjacent to j;

0 if i is not adjacent to j.

For example one adjacency matrix for the graph in Figure 1.1 is

A =



0 1 0 0 0

1 0 1 1 1

0 1 0 1 0

0 1 1 0 1

0 1 0 1 0


.

In some sense the adjacency matrix is not unique, because we can relabel the

vertices of the graph which would cause a simultaneous permutation of the rows and

columns. So for example we could also have gotten the following matrix as an adjacency

matrix of the graph, 

0 1 0 0 1

1 0 1 0 1

0 1 0 0 1

0 0 0 0 1

1 1 1 1 0


.

It should be noted however that the eigenvalues of the two matrices will always be

the same for any relabeling. And if we tie eigenfunctions (i.e., the eigenvectors which

can be thought of as functions on the vertices) to the vertices it will also follow that

eigenfunctions are independent of the choice of labeling. In particular, we have the

following.
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Observation. If the eigenvalues of two graphs do not match, then the graphs are not

isomorphic.

The converse is not true. That is there exists graphs which are not isomorphic

but do have the same eigenvalues (in general showing two graphs are not isomorphic is

a nontrivial problem, or so we currently believe). One such example is the Saltire pair

shown in Figure 1.2. We will look at cospectral graphs in more detail in Section 4.6.

Figure 1.2: Two nonisomorphic graphs whose adjacency matrices have eigenvalues
−2, 0, 0, 0, 2.

For the graph in Figure 1.2 a calculation (for which computers are especially

well suited for) shows that the eigenvalues for the graph are:

2.68554393 . . . , 0.33490398 . . . , 0, − 1.27133037 . . . , − 1.74911754 . . .. (1.1)

When dealing with the spectrum of a graph we are dealing with the set of

eigenvalues. Most frequently, it is more correct to say that we are dealing with a multi-

set, i.e., we allow for repetitions. So for example in the graphs given in Figure 1.1 we

have 0 listed as an eigenvalue three times.

All the eigenvalues given in (1.1) are real. This follows from the fact that the

adjacency matrix is symmetric which in turn follows from the fact that the graph is

undirected. In addition, since the adjacency matrix is symmetric, the matrix has a full

set of eigenvectors which are mutually orthogonal. This latter fact is useful in some

applications. These are the main reasons that the vast majority of results in spectral

graph theory deal with undirected graphs. We will look at directed graphs in Section 1.7

and Chapter 3.

In the adjacency matrix we have used 0s and 1s. This is useful for emphasizing

the discrete nature of the graph. However, more generally we can allow for other entries

besides 0s and 1s. The differing entries can than be thought of as weights on the edges,

usually denoted w(u, v), so that Au,v = w(u, v). Many results relating to the spectra

can be easily generalized to their “weighted” versions (which includes, for example,

multigraphs).
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1.2.1 Estimating the number of walks of length k

We can use the eigenvalues of the adjacency matrix to count the number of

walks of length k. To do this, first notice that by the rules of matrix multiplication we

have

(Ak)i,j =
∑

i1,i2,...,ik−1

Ai,i1Ai1,i2 · · ·Aik−2,ik−1
Aik−1,j .

Looking at the term in the summand we see that Ai,i1Ai1,i2 · · ·Aik−2,ik−1
Aik−1,j will be 1

if and only if vertex i is adjacent to i1 which is adjacent to i2 and so on until we get to

j. In other words, the term in the summand is 1 if and only if it corresponds to a walk

of length k starting at vertex i and ending at vertex j. So we have the following.

Lemma 1. Let A be the adjacency matrix of G. Then (Ak)i,j is the number of walks of

length k starting at vertex i and ending at vertex j.

Let us now use the lemma with the eigenvalues of the adjacency matrix. We

will make use of the following two facts. First, the trace of the determinant is the sum

of the eigenvalues of the matrix. Secondly, the eigenvalues of Ak are the eigenvalues of

A raised to the kth power. In what follows we will let λ1 ≤ λ2 ≤ · · · ≤ λn denote the

eigenvalues of A.

• λ1 + λ2 + · · · + λn = 0. This follows by noting that the sum of the eigenvalues is

the trace of the adjacency matrix which is 0 since A is 0 on the diagonal.

• λ2
1 +λ2

2 + · · ·+λ2
n = 2E(G), where E(G) is the number of edges of the graph. This

follows by noting that the sum of the squares of the eigenvalues is the same as the

trace of A2. The diagonal entries of A2 count the number of closed walks of length

2 (a closed walk is a walk that starts and ends at the same vertex; since we are on

the diagonal the starting and ending vertices are the same), for which each edge is

counted exactly twice.

• λ3
1 + λ3

2 + · · · + λ3
n = 6T (G), where T (G) is the number of triangles of the graph.

This follows by noting that the sum of the cubes of the eigenvalues is the same

as the trace of A3, i.e., the same as the number of closed walks of length 3. Each

triangle will be counted exactly six times (i.e., a choice of 3 initial vertices and 2

directions for each triangle).
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This process can be continued, but starts to become impractical for getting

useful information about a graph.

Adding up the eigenvalues, the eigenvalues squared, and the eigenvalues cubed

as given in (1.1) gives respectively, 0, 12, and 12 as expected from the above and the

structure of the graph in Figure 1.1.

Next suppose that we wanted to count the total number of walks of length k.

This can be achieved by considering 1TAk1, where 1 is an all 1s vector of size n and we

use T in an exponent to denote the transpose of a matrix. Since A is symmetric then,

as noted above, we have a full set of (real) orthonormal eigenvectors. So let φi be the

eigenvector associated with λi. Then for some appropriate constants ai we have that

1 =
∑

i aiφi. Putting this in for 1 we have that the total number of walks of length k is(∑
i

aiφ
T
i

)
Ak
(∑

i

aiφi

)
=
(∑

i

aiφ
T
i

)(∑
i

aiλ
k
i φi

)
=
∑
i

a2
iλ

k
i .

Lemma 2. Given a connected, non-bipartite graph G, the number of walks of length k

(for k very large) is ≈ a2
nλ

k
n.

Without loss of generality we can assume that the graph has an edge, from

which it easily follows that λn > 0. Now we have

lim
k→∞

1TAk1
λkn

= lim
k→∞

∑
i

a2
i

λki
λkn

= a2
n.

In the last step we used that |λi| < λn for i 6= n. The latter statement is an easy con-

sequence of the Perron-Frobenius Theorem. This shows that λn tells us the growth rate

for the number of walks of length k in non-bipartite graphs (this constant is sometimes

referred to as “capacity”).

Note in the above derivation that the only eigenvalue which was important was

the largest eigenvalue. In spectral graph theory almost all of the focus and energy has

been put into only the few largest and few lowest eigenvalues, the middle range of the

spectra being usually neglected. This is an indication of how little we understand about

the spectrum of graphs. On the other hand, as we will see in Section 5.5 this is not

unreasonable for properties which can easily be changed by the addition or deletion of a

few edges (i.e., being bipartite).
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1.3 The combinatorial Laplacian

The second type of matrix that we will consider is the combinatorial Laplacian

matrix, denoted as L. In some settings this is referred to as the Laplacian, however

unless otherwise specified when we refer to the Laplacian we will mean the normalized

Laplacian. Here we have added the term combinatorial to help distinguish the two types

of Laplacian matrices that we will consider. We will see that the combinatorial Laplacian

is involved in an interesting enumeration problem (some partial justification for the term

combinatorial).

Again we let the vertices index the columns and rows and define L entrywise

as follows:

Li,j =


di if i = j;

−1 if i is adjacent to j;

0 otherwise,

where di is the degree of the ith vertex. This is closely related to the adjacency matrix

and is sometimes written as L = D−A, where D is the diagonal matrix with the degree

on the diagonals and A is the adjacency matrix.

For the graph in Figure 1.1 the combinatorial Laplacian will be

L =



1 −1 0 0 0

−1 4 −1 −1 −1

0 −1 2 −1 0

0 −1 −1 3 −1

0 −1 0 −1 2


,

with eigenvalues

5, 4, 2, 1, 0. (1.2)

The fact that all the eigenvalues are integers is coincidence and does not hold in

general. However there is one special eigenvalue, namely 0. The fact that 0 is always an

eigenvalue is easy to see by noting that all of the row sums are 0, i.e., 1 is an eigenvector

for the eigenvalue 0. All the other eigenvalues are nonnegative, so in other words the

combinatorial Laplacian is positive semi-definite. This follows from, for example, the

Gershgorin Disc Theorem. This can also be proven using the incidence matrix which we

will introduce below.

That 1 is an eigenvector turns out to be very useful in some applications. We

will make use of a similar idea for the normalized Laplacian in Chapter 3. For the
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adjacency matrix, 1 is an eigenvector if and only if the graph is regular. This is one

reason why spectral results are usually first proved for regular graphs (i.e., for regular

graphs we have good control on the eigenvectors, because we know the “most important”

eigenvector).

The combinatorial Laplacian is associated with the incidence matrix. The in-

cidence matrix, which we will denote C, has rows indexed by the vertices and columns

indexed by the edges. To define the entries, given an edge e = {i, j} then in the column

corresponding to e we put in 1 and −1 for the vertices to which the edge is incident and

0s otherwise, i.e.,

C =



e
...

i · · · · · · · · · 1 · · · · · ·
...

j · · · · · · · · · −1 · · · · · ·
...


,

which entry is negative turns out to be unimportant for our purposes.

The relation between C and L is that L = CCT . To see this we note that

(CCT )i,j can be found by taking the inner product of the ith and jth row of C. It is

easy to check that for i 6= j that this inner product is 0 if there is no edge and −1

otherwise, while for i = j we add 1 for each edge incident to i, i.e., we get di.

If instead of using ±1 in C we had only used 1, the resulting matrix would

be the unsigned Laplacian, also known as the quasi-Laplacian, which differs from the

combinatorial Laplacian in that the off-diagonal entries are positive. This matrix has

not been as extensively studied.

We can use this representation of L to now show that the all of the eigenvalues

are nonnegative. Suppose that σ is an eigenvalue with a (real) normal eigenvector φ.

Then

σ = φT (σφ) = φTLφ = φTCCTφ = (CTφ)TCTφ = ‖CTφ‖2 ≥ 0.

1.3.1 The Matrix Tree Theorem

The most interesting result related to the combinatorial Laplacian (and perhaps

its most important tool) is in counting the number of spanning trees for connected graphs.

A spanning tree of a graph G is, as its name strongly suggests, a subgraph of G which
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is a tree and is incident to all the vertices.

Theorem 3 (Matrix Tree Theorem). Let G be a graph, and 0 = σ0 ≤ σ1 ≤ · · · ≤ σn−1

be the eigenvalues of the combinatorial Laplacian of G. Then the number of spanning

trees of G is given by
σ1σ2 · · ·σn−1

n
.

As an example, taking the eigenvalues given in (1.2) for the graph in Figure 1.1

we would expect 5·4·2·1/5 = 8 spanning trees. It is easy to check that this is in the case

and we show them below.

Figure 1.3: The eight spanning trees of the graph in Figure 1.1.

We will not include a proof of the Matrix Tree Theorem here but will instead

give a sketch of the ideas. The first thing we note is that the Matrix Tree Theorem

is usually stated as saying that any cofactor of the matrix is the number of spanning

trees. Knowing this it can be shown that the coefficient of the first degree term in the

characteristic polynomial is n times the number of spanning trees (since this coefficient

is found by adding the n cofactors from the diagonal). On the other hand the coefficient

of the first degree term is also found by summing all possible products of n − 1 of the

n eigenvalues. Since 0 is an eigenvalue only one of these will be nonzero and the result

follows.

So now let us compute the cofactor for the ith diagonal term. This involves

taking the determinant of L0 where we have removed the ith row and column of L. It

is easy to check that L0 = C0C
T
0 where C0 is C with the ith row removed. Using the

Cauchy-Binet formula we have

det(L0) = det
(
C0C

T
0

)
=

∑
X⊆E
|X|=n−1

det
(
CXC

T
X

)
=

∑
X⊆E
|X|=n−1

(
det(CX)

)2
,
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where CX is the matrix formed by the columns in C0 corresponding to X. The remainder

of the proof is to show that

det(CX) =

 0 if the edges corresponding to X have a cycle;

±1 if the edges corresponding to X form a tree.

The first statement easily follows by finding a linear dependence in the columns of BX .

The second one takes more work and we will not attempt it here, but proofs can be

found in several books on the subject such as Brualdi and Ryser [4].

1.4 The normalized Laplacian

The final type of matrix that we will consider is the normalized Laplacian ma-

trix, denoted L. As the name suggests this is closely related to the combinatorial Lapla-

cian that we have just looked at. For graphs with no isolated vertices the relationship is

given by L = D−1/2LD−1/2 = D−1/2(D − A)D−1/2 = I −D−1/2AD−1/2. (Throughout

the rest of this and ensuing chapters we will usually assume no isolated vertices since

they contribute little more than technicalities to the arguments.) Entrywise we have,

Li,j =


1 if i = j;

−1√
didj

if i is adjacent to j;

0 otherwise.

For graphs with isolated vertices we let the diagonal entries of that vertex be

0. This gives the nice property that the multiplicity of the eigenvalue 0 is the number

of connected components of the graph.

For the graph in Figure 1.1 the normalized Laplacian will be

L =



1
−1
2

0 0 0

−1
2

1
−1√

8
−1√
12

−1√
8

0
−1√

8
1

−1√
6

0

0
−1√

12
−1√

6
1

−1√
6

0
−1√

8
0

−1√
6

1


,
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with eigenvalues

1.72871355 . . . , 1.5, 1, 0.77128644 . . . , 0. (1.3)

As before we have that 0 is an eigenvalue (now with eigenvector D1/21) and

the remaining eigenvalues are nonnegative. A major difference between the two spectra

though is that while for the combinatorial Laplacian the eigenvalues can be essentially as

large as desired (in particular between 0 and twice the maximum degree), the normalized

Laplacian has eigenvalues always lying in the range between 0 and 2 inclusive as shown

by Chung [11].

One advantage to this is that it makes it easier to compare the distribution of

the eigenvalues for two different graphs, especially if there is a large difference in the

“size” of the graphs.

The normalized Laplacian has connections with many interesting properties of

graphs. For now we will consider the problem of random walks.

1.4.1 Random walks—A rambling introduction

A random walk on a graph G can be thought of as a walk where we start at

a vertex on the graph and at each time step pick randomly (in our case uniformly) one

of the edges incident to the current vertex and go along that edge to the next vertex,

repeating as often as desired.

As an example, consider the problem of shuffling cards. In this setting the

graph is all possible ways to arrange a deck (a large graph!) and the edges represent

shuffles, i.e., starting with a deck of cards which orderings can be reached using one

shuffle. In this case a random walk corresponds to doing a random sequence of shuffles.

One problem of interest for people shuffling cards is how many times do we

need to shuffle until the cards are sufficiently “random”. In this setting “random” can

be taken to mean as saying that knowing the initial configuration of cards before starting

the shuffling will not give you any significant information about the current placement

of cards (or put another way, all of the initial information has been lost). The study of

random walks on graphs can help answer such questions.

To study this problem we can keep track of the probability distribution of the

various destinations after k steps. In other words, what is the probability that we are at

some particular vertex in the graph after k steps.

Pictorially, imagine that we have a cup full of water at our initial vertex, and
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empty cups everywhere else (see Figure 1.4). At each step we will simultaneously redis-

tribute the water at each vertex to the vertices neighbors, and thus overtime the water

should diffuse throughout the graph. In our problem the water represents the probability

distribution and the fractional amount of water at a vertex at k steps is the probability

that we are at that vertex in k steps.

initial distribution after 2 steps

Figure 1.4: A “watered” down approach to random walks.

The question that we want to ask is how many steps does it take before we are

sufficiently random. As a first step we should decide what is meant by random. We will

say that a probability distribution is random if the probability of being at any vertex is

proportional to its degree. More explicitly, we are random if the probability of being at

vertex i is exactly equal to di/
∑

`∈G d`.

1.4.2 Convergence of random walks—The technical approach

In what follows we will change our convention slightly in that all of the vectors

will be treated as row vectors (so now we will be focusing on multiplication on the left

hand side).

Putting the above discussion in terms of matrices, if A is the adjacency matrix,

then D−1A is the “probability transition matrix”. That is,

(D−1A)i,j =


0 if i is not adjacent to j;

1
di

if i is adjacent to j;

is the probability that given you are at vertex i you move to vertex j. An initial proba-

bility distribution will be a vector f , and the probability distribution after k steps will

be f(D−1A)k.

The two requirements to be a probability distribution is that all of the entries

are nonnegative and sum to 1. To see that the matrix D−1A takes one probability dis-

tribution to another it suffices to check that these two properties are always maintained.
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Nonnegativity follows easily since all of the terms are nonnegative. To show that the

sum of the entries of a vector g is 1 it suffices to show that g1T = 1. In our case we have

that fD−1A1T = fD−1D1T = f1T = 1. The last step follows since we started with a

probability distribution.

To see the connection between the probability transition matrix and the nor-

malized Laplacian, note that

D−1/2(I − L)D1/2 = D−1/2(D−1/2AD−1/2)D1/2 = D−1A,

showing that D−1A and I − L are similar. As a consequence if λ is an eigenvalue of L
then 1 − λ is an eigenvalue of D−1A. In particular, 1 is always an eigenvalue of D−1A

(since 0 is always an eigenvalue of L) and its left eigenvector is easily shown to be 1D.

If we normalize the vector to a probability distribution the resulting vector is

1D∑
` d`

,

which we refer to as the stationary distribution. This is also the distribution which, from

the above discussion, we want our random walk to converge to.

Now let φi be an orthonormal set of eigenvectors associated with λi for L (here

we will follow the convention that 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1). By the above φi is also

associated with 1 − λi for D−1/2AD−1/2. It is easy to check that φ0 = 1D1/2/
√∑

` d`.

Finally, since we have the full set of eigenvalues and orthonormal eigenvectors, we can

use the idea of projections onto eigenspaces to write

D−1/2AD−1/2 =
∑
i

(1− λi)φTi φi.

To check how close our random walk is after k steps to the stationary distribu-

tion we can use several types of measurements. Here we will choose the L2-norm, i.e.,

‖g‖ =
√∑

i |gi|2 (different types of measurements will give different types of bounds for

the rate of convergence). In particular, the L2-norm distance between the random walk
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after k steps and the stationary distribution is∥∥∥∥f(D−1A
)k − 1D∑

` d`

∥∥∥∥ =
∥∥∥∥fD−1/2

(
D−1/2AD−1/2

)k
D1/2 − 1D∑

` d`

∥∥∥∥
=

∥∥∥∥fD−1/2

(∑
i

(1− λi)φTi φi
)k
D1/2 − 1D∑

` d`

∥∥∥∥
=

∥∥∥∥fD−1/2
(∑

i

(1− λi)kφTi φi
)
D1/2 − 1D∑

` d`

∥∥∥∥
=

∥∥∥∥fD−1/2
(∑
i 6=0

(1− λi)kφTi φi
)
D1/2

∥∥∥∥
≤ max

i 6=0
|1− λi|k

maxi
√
di

minj
√
dj
.

Going from the third to the fourth line is an easy calculation to show that the i = 0

term in the summand will cancel out with the other expression. In the last step we used

matrix norms. In particular, we used that ‖fB‖ ≤ ‖f‖‖B‖ three times, where ‖f‖ is

the L2-norm and ‖B‖ is the operator norm. For the case of symmetric matrices (which

all three are) ‖A‖ is the maximal absolute value of an eigenvalue, and with the matrices

as above it is easy to find these values and then get the bound (of course ‖f‖ ≤ 1 since

it is a probability distribution).

In particular, this tells us that we can use eigenvalues to get an estimate on the

rate of convergence of a random walk. The more closely the eigenvalues are gathered

around 1 for the normalized Laplacian the faster we should expect to converge to the

stationary distribution. This allows us to give an estimate on the number of steps needed

to produce random-like results.

As an example, in the graph of Figure 1.1 if we start at any particular ver-

tex and take 10 steps the probability distribution to where we end up will be at most

0.08444976 . . . away from the stationary distribution in the L2-norm (though we are most

likely much closer). If we wanted to be within 0.000001 of the stationary distribution

then using the above results it is easy to check that it will take at most 46 steps.

Since the eigenvalues of the normalized Laplacian are between 0 and 2, we have

maxi 6=0 |1 − λi| ≤ 1. When can this equal 1? The first possibility is that we have 0 as

an eigenvalue multiple times. Chung [11] showed that this means that the graph is not

connected. The second possibility is that we have 2 as an eigenvalue. Again, Chung [11]

showed that this means that the graph has a bipartite component.

Therefore, for a random walk to converge to the stationary distribution it suf-
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fices to be on a graph which is connected and not bipartite. In terms of ergodic theory

(which can be thought of as the study of mixing systems) the first condition that the

graph be connected is equivalent to the requirement that starting at any point in the

system any other point can be reached (i.e., transitive) while the second condition that

the graph not be bipartite is equivalent to the requirement that the system be aperiodic.

1.5 Comparing different spectrums

As a general rule of which matrix to try we have the following: if the important

property that you are using is related to adjacency and enumerating walks then use

the adjacency matrix; if you can relate the problem to spanning trees or incidence of

vertices and edges use the combinatorial Laplacian; if you can relate the problem to

random walks use the normalized Laplacian. Given the recent interest in using random

walks to make efficient searches of large databases, the normalized Laplacian has received

increased attention in the last few years.

Comparing the eigenvalues in (1.1), (1.2) and (1.3) we see that they can be

quite different. In general it will make a big difference as to which spectrum is used, and

some results which might hold for one spectrum may not hold for another. There are a

few exceptions, the most well known being that for regular graphs the spectrum of all

three graphs are shifted/scaled versions of one another. This follows since for regular

graphs L = kL = k
(
I − 1

kA
)
. (This relationship between the three matrices can make

it difficult to know which matrix to use when trying to generalize a result from regular

graphs to general graphs.)

Less well known is the fact that for a graph without isolated vertices the multi-

plicity of 0 as an eigenvalue of the adjacency matrix is the same as the multiplicity of 1

as an eigenvalue of the normalized Laplacian. While the number of negative eigenvalues

for the adjacency matrix is the same as the number of eigenvalues of the normalized

Laplacian greater than 1, and the number of positive eigenvalues for the adjacency ma-

trix is the same as the number of eigenvalues of the normalized eigenvalues less than 1.

This follows by a simple application of Sylvester’s Law of Inertia.

While for general graphs there is no simple scaling between the three spectra

(and so the spectra can have different “shape”), it can be shown that when the graph

is almost regular, the combinatorial Laplacian and normalized Laplacian have similar

spectra. More specifically we have the following result.
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Theorem 4. Let G be a graph with dmax the maximum degree of a vertex in G and

dmin the minimum degree of a non-isolated vertex in G. Further let φi and λi denote

the eigenvalues of the combinatorial and normalized Laplacians (respectively). Then for

0 ≤ i ≤ n− 1,
1

dmax
φi ≤ λi ≤

1
dmin

φi.

As an immediate consequence we have the following result for almost regular

graphs.

Corollary 5. Let G be a graph and d be such that for each vertex the degree di satisfies

|di − d| = o(d). Then φi =
(
d+ o(d)

)
λi.

This can be used to extend some results for regular graphs to results for almost

regular graphs.

Proof of Theorem 4. Since isolated vertices contribute 0 to the spectrum for both the

combinatorial and normalized Laplacian the result trivially holds for those corresponding

0 eigenvalues. Therefore without loss of generality we may assume that G has no isolated

vertices.

The proof of the theorem follows from an easy application of the Courant-

Fischer Theorem which will be discussed in more detail in Chapter 5. We first note

that

φi = max
X i

(
min

x⊥X i,x 6=0

xTLx

xTx

)
(1.4)

while (with a little work)

λi = max
X i

(
min

x⊥X i,x 6=0

xTLx

xTDx

)
. (1.5)

(Here X i denotes an i-dimensional subspace of Rn.)

The other ingredient is to note that xTx =
∑

i |xi|2 and xTDx =
∑

i |xi|2di,
from which it easily follows that

dminx
Tx ≤ xTDx ≤ dmaxx

Tx.

We now get the key relationship that for any x 6= 0

1
dmax

xTLx

xTx
≤ xTLx

xTDx
≤ 1
dmin

xTLx

xTx
. (1.6)

(Here we also used the fact that L is positive semidefinite so that xTLx ≥ 0 for all x

and thus preserving the inequalities.)
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We now show how to establish that (1/dmax)φi ≤ λi. Fix an i-dimensional

subspace X i. Then there exists some vector y achieving the minimum in the middle

optimization of (1.5) (such a y exists by a compactness argument), and using that y it

follows that:

min
x⊥Xi,x 6=0

xTLx

xTDx
=
yTLy

yTDy
≥ 1
dmax

yTLy

yT y
≥ 1
dmax

min
x⊥Xi,x 6=0

xTLx

xTx
. (1.7)

Since this holds for every X i, let Y be an i-dimensional subspace which maximizes the

right hand side of (1.7). Then we have

1
dmax

φi =
1

dmax
max
X i

(
min

x⊥X i,x 6=0

xTLx

xTx

)
=

1
dmax

min
x⊥Y,x 6=0

xTLx

xTx

≤ min
x⊥Y,x 6=0

xTLx

xTDx
≤ max
X i

(
min

x⊥X i,x 6=0

xTLx

xTDx

)
= λi.

The proof for the other inequality is handled similarly.

1.6 Generalizing from regular to general graphs

In the literature, the combinatorial Laplacian has been more widely used than

the normalized Laplacian. There are several reasons for this; the first is that the normal-

ized Laplacian is a rather new tool (popularized by Chung [11] in the early 1990s). The

second is the somewhat (at first glance) unnatural definition of the normalized Laplacian.

The third, as already mentioned, is that most new theories start out by considering reg-

ular graphs for which it does not matter much which definition is used as the spectrum

of the matrices differ only by a scaling factor.

The last reason though is perhaps the most dangerous, for when you try to

generalize results to non-regular graphs it becomes very important which spectrum you

are considering, since you lose symmetry in the degree sequence which can cripple some

tools. One of the original motivations for the definition of the normalized Laplacian was

to give a more natural way of weighing the vertices of non-regular graphs.

Roughly speaking, in the combinatorial Laplacian each vertex is given equal

weight (and so many results related to the combinatorial Laplacian involve terms like

|X|, the number of vertices in a subset X of the vertices). On the other hand the

normalized Laplacian gives each vertex a weight proportional to its degree (and so many

results related to the normalized Laplacian involve volX =
∑

x∈X dx which we call the

volume of the subset X). For many applications weighing vertices by their degrees is
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more natural and it is in this setting that the normalized Laplacian can give better

results.

As an example, Goldberg [22] considered the problem of bounding the gap

between the nontrivial largest and smallest eigenvalues of the combinatorial Laplacian.

His approach was based on the following two “reverse Cauchy-Schwarz” inequalities.

Theorem 6 (Pólya-Szegö [30]). Let (a1, . . . , am) and (b1, . . . , bm) be positive m-tuples

satisfying 0 < α ≤ ai ≤ A and 0 < β ≤ bi ≤ B for all i. Then∑
a2
i

∑
b2i(∑

aibi
)2 ≤ 1

4
(√

AB
αβ +

√
αβ
AB

)2
.

Theorem 7 (Ozeki [29]). Let (a1, . . . , am) and (b1, . . . , bm) be positive m-tuples satisfying

0 < α ≤ ai ≤ A and 0 < β ≤ bi ≤ B for all i. Then∑
a2
i

∑
b2j −

(∑
aibi
)2 ≤ 1

4
m2(AB − αβ)2.

By using the preceding two theorems on a k-regular graph with the two se-

quences (k, k, . . . , k) (which corresponds to the degree sequence with a vertex removed)

and (λ1, λ2, . . . , λn−1) (the nontrivial eigenvalues), with a little bit of bookkeeping, Gold-

berg established the following result.

Corollary 8. Let G be a connected k-regular graph (so that λ1 > 0) and 0 = λ0 < λ1 ≤
· · · ≤ λn be the eigenvalues of the Laplacian. Then the following holds:

(a)
√

λn−1

λ1
+
√

λ1
λn−1

≥ 2
√(

1− 1
n

)(
1 + 1

k

)
.

(b) λn−1 − λ1 ≥ 2
√

n−k−1
nk .

The problem in generalizing this approach to general graphs is that if the graph

is not regular the degree sequence is not regular and there is no clear way to relate the

degree and eigenvalue sequences together.

On the other hand by working with a normalized Laplacian we can avoid the

irregularity in the degree sequence altogether. We have the following general result which

for the case of the graph being regular reduces to that given by Goldberg.

Corollary 9. Let G be a connected graph (so that λ1 > 0) and 0 = λ0 < λ1 ≤ · · · ≤ λn

be the eigenvalues of the Laplacian. Then the following holds:

(a)
√

λn−1

λ1
+
√

λ1
λn−1

≥ 2
√(

1− 1
n

)(
1 + 1

n1
∗D−1AD−11

)
.
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(b) λn−1 − λ1 ≥ 2
n−1

√
(n− 1)1∗D−1AD−11− n.

Proof. We first note that
∑
λi = traceL = n and

n−1∑
i=1

λ2
i =

n−1∑
i=0

λ2
i = Tr(L2) = n+

∑
x

∑
y∼x

1
dydx

= n+ 1∗D−1AD−11.

Now (a) follows by using Theorem 6 and (b) follows by using Theorem 7 with

the sequences (λ1, . . . , λn−1) and (1, . . . , 1) (the “normalized” degree sequence).

1.7 Associating graphs with matrices for directed graphs

While the majority of spectral graph theory has dealt with undirected graphs

(due to having real eigenvalues and a complete set of eigenvectors), matrices can be asso-

ciated with directed graphs and information about the graph can be found by studying

the properties of these matrices.

For the adjacency matrix we still have a similar definition except now we have

Au,v = 1 if and only if there is a directed edge from u to v (denoted u→v). A gener-

alization of the Laplacian (combinatorial or normalized) to directed graphs has not yet

been well realized. The best attempt was given by Chung [12], and we will look at this

in more detail in Section 5.4.

Since the eigenvalues can now be complex it is sometimes preferable to work

with the singular values of the matrix which will always be real and nonnegative. (For

symmetric matrices the singular values are the absolute values of the eigenvalues and so

the two are essentially equivalent. Looking at some proofs stated in terms of eigenvalues

it is clear that it is singular values which are being used.)

As a simple example comparing and contrasting eigenvalues and singular values

we will count two types of walks on directed graphs. We will denote a walk by W =

(v1, v2, . . . , vk+1) (where the vi need not all be distinct). The first walk is a directed

walk where vi→vi+1 for i = 1, . . . , k (i.e., the intuitive definition for a directed walk).

The second type of walk is an alternating directed walk where vi→vi+1 if i is odd and

vi←vi+1 if i is even (i.e., a walk where at each step we reverse the direction we walk).

For undirected graphs there is no distinction between the two but for directed graphs

we will see that there is a distinction.
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1.7.1 Counting the number of directed walks

Our tool for counting the number of directed walks is to start with the adjacency

matrixA, defined as earlier. We will let λ1, . . . , λn denote the eigenvalues of the adjacency

matrix.

As in the undirected case, we have that
(
Ak
)
u,v

is the number of directed walks

of length k starting at vertex u and ending at vertex v. Since the terms on the diagonal

count the number of closed walks of length k, it follows that the total number of closed

walks of length k is λk1 + · · ·+ λkn. But not only can we use the eigenvalues to count the

number of closed walks, we can also use the eigenvalues to approximate the total number

of walks.

Theorem 10. Let G be a strongly connected acyclic directed graph (or digraph) and let

λ1 be the unique largest (in norm) eigenvalue of the adjacency matrix of G. Then there

exists a constant c so that the total number of walks of length k is ≈ cλk1.

A graph is strongly connected if there is a directed walk joining any two ver-

tices and is acyclic if the greatest common divisor of all closed walks is 1. These two

assumptions correspond to a system which is transitive and aperiodic (in other words an

ergodic system). Moreover, it is known (by use of the Perron-Frobenius Theorem) that

for such a graph there exists a largest real eigenvalue λ1 so that λ1 > |λi| for i 6= 1.

Proof. By an application of Schur’s Theorem, along with the preceding comments, there

exists a matrix S so that A = S−1TS, where

T =

 λ1 O

O T ′

 ,

with T ′ triangular with the diagonal entries corresponding to the eigenvalues (and in

particular in size strictly bounded by λ1). We now note that the total number of walks

of length k is 1∗Ak1 where 1 is the all 1s vector of size n.

We now have the following:

1∗Ak1
λk1

= 1∗S−1

(
1
λ1
T

)k
S1 ≈ 1∗S−1

 1 O

O O

S1 = c

where c is the product of the sum of the entries on the first row of S and the sum of the

entries on the first column of S−1. (Note that the constant c by the description of the

problem is both real and independent of S.)
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Finally it remains to justify the “≈” given above. This follows by noting that

(
1
λ1
T

)k
=

 1 O

O (1/λ1)T ′

k

=

 1 O

O
(
(1/λ1)T ′)k

 .

Since T ′ is an upper triangular matrix with all entries strictly bounded by λ1 then

(1/λ1)T ′ has diagonal entries strictly bounded in size by 1. It is an easy exercise to then

check that such a matrix converges entrywise to the 0 matrix when taking high powers,

concluding the proof.

1.7.2 Counting the number of alternating walks

For alternating walks we deal with matrices of the form AA∗AA∗AA∗ · · · . Since

the singular values can be found by computing the eigenvalues of AA∗, the singular

values work quite nicely for this kind of walk. As an example, to count the number of

closed alternating walks of length 2k this is the trace of (AA∗)k and so in particular is

σ2k
1 +σ2k

2 + · · ·+σ2k
n , where σi are the singular values of A. One open problem is how to

count the number of closed alternating walks of length 2k + 1, since in such a case the

sum of the powers of singular values might not be integer and so do not give the correct

result.

As with eigenvalues we can use singular values to count the number of alter-

nating walks. In this case however the proof is simpler.

Theorem 11. Let G be a digraph and let σ1 be the largest singular value of the adjacency

matrix of G. Then there exists constants codd and ceven so that the total number of

alternating walks of length k is ≈ coddσk1 if k is odd and ≈ cevenσk1 if k is even.

Note here we do not restrict our digraphs. This is partially because the singular

values are always nonnegative. But also partially because even with the assumption of

strongly connected and acyclic there is no guarantee for uniqueness in the largest singular

value. (As an example, the graph shown in Figure 1.5 is strongly connected and acyclic

but has repeated largest singular value of
√

(3 +
√

5)/2.)

Figure 1.5: A directed graph with repeated largest singular value.
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Proof. By the singular value decomposition theorem we can write A = UDV where U

and V are unitary and D is a diagonal matrix with entries the singular values of A. Let

u1, . . . , un be the orthonormal columns of U and similarly v1, . . . , vn be the orthonormal

rows of V .

By matrix multiplication we have that the number of alternating walks of length

k is

1∗AA∗AA∗ · · ·A︸ ︷︷ ︸
k terms, k odd

1 = 1∗UDkV 1 =
∑
i

1∗uiσki vi1.

Suppose that σ1 = σ2 = · · · = σ` > σ` ≥ · · · . Then for large k∑
i 1
∗uiσ

k
i vi1

σk1
≈
∑̀
i=1

1∗uivi1 = codd.

Similarly, we have that

1∗AA∗AA∗ · · ·A∗︸ ︷︷ ︸
k terms, k even

1 = 1∗UDkU∗1 =
∑
i

|1∗ui|2σki ,

so that for large k ∑
i |1∗ui|2σki
σk1

≈
∑̀
i=1

|1∗ui|2 = ceven.

The constants codd and ceven may not be the same.
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2 Using eigenvectors to compute

eigenvalues

The eigenvalues of the graph are closely tied to the eigenvectors of a graph.

While you do not always need to find the eigenvectors to find eigenvalues, in some

cases using the structure of a graph we can construct the eigenvectors and thus find the

eigenvalues. In this chapter we will lightly touch upon this theme and return to it in

Chapter 4.

It should also be noted that eigenvectors can sometimes contain useful informa-

tion. For instance Chung [11] used the eigenvector corresponding to the first nontrivial

eigenvalue to help find a “good” cut of the vertices. There also is a recent monograph

dealing with eigenvectors for the combinatorial Laplacian (see [3]).

2.1 Relationship of eigenvectors to eigenvalues

When we think of an eigenvector it is good to think of it as a function on

the vertices. We can then translate the matrix definition for the eigenvector-eigenvalue

relationship to a (local) function on graphs. For instance if we start with the adjacency

matrix (where we now allow for weighted graphs so that Au,v = Av,u = w(u, v)) then

the relationship Ax = λx translates into the condition that at each vertex v∑
u:u∼v

w(u, v)x(u) = λx(v). (2.1)

For the normalized Laplacian instead of focusing on the eigenvectors it is easier

to use the harmonic eigenvectors. Namely if y is an eigenvector of L associated with

λ then the harmonic eigenvector is x = D−1/2y. (The harmonic eigenvectors allow

us to “hide” the square root terms inside the eigenvector and so simplify some of the

expressions.)

22
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The relationship Ly = λy then becomes D−1/2Lx = λD1/2x. Multiplying both

sides by D1/2 it then becomes Lx = λDx. Looking at the vth coordinate of both sides

we get the following condition at each vertex v:

d(v)x(v)−
∑
u:u∼v

w(u, v)x(u) = λd(v)x(v). (2.2)

By showing that one of these relationships holds for a given value of λ (and

a nonzero x) then we have that λ is an eigenvalue (for the appropriate matrix) of the

graph.

2.2 Cyclic graphs

For graphs with “nice” structure we can often find the eigenvalues by exploiting

the graph’s structure. Much work in spectral graph theory has focused on Cayley graphs

and related structures which are derived from group relationships. Using the structure of

these groups it is possible to find the eigenvectors explicitly; this area of spectral graph

theory would be best described as algebraic graph theory (see [20]).

One very simple example in this direction is cyclic graphs. A cyclic graph on n

vertices can be generated by taking Zn and taking a generator set S = {a1, a2, . . . , ak}
which is closed under inversion (to make sure that the graph is undirected). The vertex

set are the elements of the group and we connect elements a and b if a − b ∈ S. So for

instance if we let S = {1,−1} then the resulting graph is a cycle on n vertices denoted

Cn, while if we let S = {1, 2, . . . , n− 1} then the resulting graph is the complete graph

on n vertices denoted Kn.

For a cyclic graph the eigenvectors take the form (1, θ, θ2, . . . , θn−1)∗ where θ

is an nth root of unity, i.e., θ = e2πik/n for some k ∈ {0, 1, . . . , n − 1}. Then applying

relationship (2.1) for the adjacency matrix we have that at vertex v that∑
u:u∼v

x(u) =
∑
t∈S

x(v + t) =
∑
t∈S

θv+t =
(∑
t∈S

θt
)
x(v),

showing that
∑

t∈S θ
t is an eigenvalue for each root of unity.

So if our graph is a cycle on n vertices then the eigenvalues are

θ + θ−1 = e2πik/n + e−2πik/n = 2 cos
(2πk
n

)
for k = 0, 1, . . . , n− 1.
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Similarly if our graph is a complete graph on n vertices then the eigenvalues are

θ + θ2 + · · ·+ θn−1 =

 n− 1 if θ = 1;

−1 otherwise.

This uses the fact that the sum of all nth roots of unity is 0.

Since cyclic graphs are all regular of degree |S| it is easy to translate the eigen-

values of such graphs into any of the three general matrices. So for instance the eigen-

values of the cycle on n vertices for the normalized Laplacian are

1− cos
(2πk
n

)
for k = 0, 1, . . . , n− 1,

while the eigenvalues of the complete graph on n vertices for the normalized Laplacian

are

0,
n

n− 1
, . . . ,

n

n− 1︸ ︷︷ ︸
×(n−1)

.

2.3 Constructing larger graphs

There are several ways to combine smaller graphs to form larger graphs. The

eigenvalues of the smaller graphs then can (sometimes) be used to find the eigenvalues

of the newly constructed graph. A well known example is given two graphs G = (V1, E1)

and H = (V2, E2) to take the Cartesian product, denoted G�H. The graph G�H has

as its vertex set {(u, v) : u ∈ V1, v ∈ V2} and (u1, v1) is adjacent to (u2, v2) if either

u1 = u2 and v1 is adjacent to v2 in H or v1 = v2 and u1 is adjacent to u2 in G. One

simple example of a graph that can be formed using Cartesian products is the hypercube

Qn, which can be defined inductively as Q1 = K2 and Qn = Qn−1 �K2.

It is well known that if α1, . . . , αn are the eigenvalues of the adjacency matrix of

G and β1, . . . , βm are the eigenvalues of the adjacency matrix of H then the eigenvalues

of G�H are αi+βj over all possible i and j. The proof of this is to use the eigenvectors

of G and H to construct new eigenvectors for G�H.

Unfortunately, the same result does not hold for the normalized Laplacian.

For instance it is well known (and we will show shortly) that C4 = K2,2 and K1,3 are

cospectral (i.e., share the same set of eigenvalues), but the spectrum of the normalized

Laplacian of K2 �C4 is {0, 2
3 ,

2
3 ,

2
3 ,

4
3 ,

4
3 ,

4
3 , 2} while the spectrum of the normalized Lapla-

cian of K2 �K1,3 is {0, 1
2 ,

1
2 ,

3
4 ,

5
4 ,

3
2 ,

3
2 , 2}. In particular the eigenvalues of the normalized
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Laplacian for a Cartesian product cannot be determined solely by the eigenvalues of the

two graphs of the product.

One obvious exception to this is for the Cartesian product of two regular graphs.

Since the Cartesian product will again produce a regular graph then the spectra of the ad-

jacency and normalized Laplacian have clear relationships (as mentioned in Section 1.5).

So in that sense it is not particularly interesting.

There is a construction combining two graphs that works for both the adjacency

matrix and the normalized Laplacian. Given graphs G = (V1, E1) and H = (V2, E2) let

G≡H be the graph with vertex set V1∪V2 and edge set E1∪E2∪
{
{u, v} : u ∈ V1, v ∈ V2

}
.

Pictorially we take a copy of G and a copy of H and then connect each vertex of G to

each vertex of H.

Theorem 12. Let G be an r-regular graph on n vertices and H an s-regular graph on

m vertices, neither with loops.

• If α1, α2, . . . , αn−1, αn = r are the eigenvalues of the adjacency matrix of G and

β1, β2, . . . , βm−1, βm = s are the eigenvalues of the adjacency matrix of H, then

the eigenvalues of the adjacency matrix of G≡H are

α1, . . . , αn−1, β1, . . . , βm−1,
(r + s)±

√
(r − s)2 + 4mn
2

.

• If 0 = λ0, λ1, . . . , λn−1 are the eigenvalues of the normalized Laplacian matrix of G

and 0 = ϕ0, ϕ1, . . . , ϕm−1 are the eigenvalues of the normalized Laplacian matrix

of H, then the eigenvalues of the normalized Laplacian of G≡H are

0,
m+ rλ1

m+ r
, . . . ,

m+ rλn−1

m+ r
,
n+ sϕ1

n+ s
, . . . ,

n+ sϕm−1

n+ s
, 2− r

m+ r
− s

n+ s
.

Before giving the proof let us make two observations. First, while G and H are

regular the graph G≡H is typically not. So the two spectrums are not related by the

usual trivial scale and shift as happens in regular graphs. In other words we will need

to prove the result for both spectrums. The other thing is that it is important that the

graphs G and H are regular. This is because we know the most important eigenvector

(for both spectrums) is the all 1s eigenvector which we denote 1. Since the matrices are

symmetric we can assume that every other eigenvector for G or H is orthogonal to this

one. In particular, the sum of all of the entries of every other eigenvector is 0. This

forms the heart of the argument.
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Proof. Let us first work through the case of the adjacency matrix. Given xi an eigen-

vector of αi for the graph G (with i < n) we extend this to a vector x′i on the graph

G≡H by letting

x′i(v) =

 xi(v) if v ∈ V (G);

0 if v ∈ V (H).

We now claim that this is an eigenvector associated with eigenvalue α for G≡H. To see

this we have that for a vertex v in V (G) that∑
u:u∼v

x′i(u) =
∑
u∼v

u∈V (G)

x′i(u) +
∑

u∈V (H)

x′i(u) =
∑
u∼v

u∈V (G)

xi(u) = αixi(v) = αix′i(v).

While for a vertex v in V (H) we have∑
u:u∼v

x′i(u) =
∑

u∈V (G)

x′i(u) +
∑
u∼v

u∈V (H)

x′i(u) = 0 + 0 = αix′i(v).

(Here we used the observation above that the sum of the entries in the eigenvector is

0.) This shows that α1, . . . , αn−1 are also eigenvalues of G≡H. By the exact same

construction we also have that β1, . . . , βm−1 are also eigenvalues of G ≡ H. That leaves

us with two eigenvalues left to determine, for these we can use the basic properties of

eigenvalues given in Section 1.2.1, namely that the sum of all the eigenvalues is 0 and

the sum of the square of the eigenvalues is twice the number of edges.

In particular if τ and ρ are the remaining two eigenvalues to determine then we

have

α1 + . . .+ αn−1︸ ︷︷ ︸
=−r

+β1 + . . .+ βm−1︸ ︷︷ ︸
=−s

+ρ+ τ = 0

so that ρ+ τ = r + s. Similarly we have

α2
1 + . . .+ α2

n−1︸ ︷︷ ︸
=nr−r2

+β2
1 + . . .+ β2

m−1︸ ︷︷ ︸
=ms−s2

+ρ2 + τ2 = nr +ms+ 2mn

so that ρ2 + τ2 = r2 + s2 + 2mn. Combining these two relationships it is easy to solve

for ρ and τ to get that

ρ, τ =
(r + s)±

√
(r − s)2 + 4mn
2

,

which completes the spectrum in the case of the adjacency matrix.
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We now turn to the case of the normalized Laplacian. We can use the exact

same eigenvector construction as in the adjacency matrix case. So suppose that xi is an

eigenvector for λi (where i > 0). So we have that in the graph G

−
∑
u:u∼v

xi(u) = (λi − 1)rxi(v).

Then for a vertex v in V (G) (which now has degree m+ r) we have that

d(v)x′i(v)−
∑
u:u∼v

x′i(u) = (m+ r)x′i(v)−
∑
u∼v

u∈V (G)

x′i(u)−
∑

u∈V (H)

x′i(u)

= (m+ r)xi(v) + (λi − 1)rxi(v)− 0 =
(
m+ rλi
m+ r

)
d(v)x′i(v).

This shows that (m + rλi)/(m + r) is an eigenvalue of G≡H for i = 1, . . . , n − 1. The

same argument will also show that (n+sϕi)/(n+s) are also eigenvalues of G≡H. That

leaves us with two eigenvalues left to determine. One of them must be 0 (since 0 is always

an eigenvalue and none of the ones that we have listed above are 0). Then since the sum

of all the eigenvalues must be m + n it is easy to check that the remaining eigenvalue

must be 2 − r/(m + r) − s/(n + s). This completes the spectrum for the normalized

Laplacian.

2.3.1 Some additional graph spectrums

We can use Theorem 12 to find the spectrum of several graphs. For instance

we have that the complete bipartite graph Km,n is (nK1)≡ (mK1) where nK1 is a graph

with n isolated vertices (so that it is regular of degree 0). The spectrums of nK1 and

mK1 consist entirely of 0. So applying the result we have that the spectrum of Km,n is

{0, 1, . . . , 1, 2}.
As another example of a graph that can be constructed consider Kn−2≡ (2K1).

The resulting graph is Kn with a single edge removed. Applying the result we have that

the spectrum is{
0,

2 + (n− 3)
(
n−2
n−3

)
2 + (n− 3)

, . . . ,
2 + (n− 3)

(
n−2
n−3

)
2 + (n− 3)︸ ︷︷ ︸

×(n−3)

,
n− 2
n− 2

, 2− n− 3
n− 1

}

=
{

0, 1,
n

n− 1
, . . . ,

n

n− 1︸ ︷︷ ︸
×(n−3)

,
n+ 1
n− 1

}
.



28

Similarly one could construct the cocktail party graph on 2n vertices, denoted

CP2n, which is K2n with a perfect matching removed. (The name of the graph comes

from the idea of a set of n couples going to a cocktail party and everyone shakes hands

with the people they did not come with. The resulting handshake graph is the cocktail

party graph.) It is easy to see that CP2n is CP2(n−1)≡ (2K1). It can then be checked

with induction that the spectrum of CP2n is{
0, 1, . . . , 1︸ ︷︷ ︸

×n

,
n+ 1
n

, . . . ,
n+ 1
n︸ ︷︷ ︸

×(n−2)

,
n+ 2
n

}
.

Finally, consider Wn+1, the wheel graph on n + 1 vertices, which is Cn≡K1.

Namely take an n-cycle and connect each vertex to a new central vertex (pictorially

forming something akin to a bicycle tire, hence the name wheel graph). Since we have

already calculated the spectrum of the cycle in Section 2.2 we can now easily find the

spectrum of the wheel graph using the above result. Namely we have that the spectrum

is {
0, 1− 2

3
cos

2πk
n︸ ︷︷ ︸

k=1,...,n−1

,
4
3

}
.



3 Discrepancy of graphs

3.1 Introduction

Random graphs have proven to be a powerful tool in graph theory, and have

been used in many cases to show existence of certain graphs without actually producing

a graph. But while random graphs can be shown to have many “nice” properties, when

we are given a specific graph how do we know that it shares any of these properties? Put

in another way, how do we know that a specific graph behaves like a random graph?

This requires that we understand how a random graph behaves. One of the

most useful properties of random graphs is that there is independence among the edges.

So we can try to measure the distribution of edges and try to measure how randomly

they were distributed. The discrepancy of a graph is one such way to measure this.

To define discrepancy we begin by counting the number of edges between subsets

of vertices. Given subsets X,Y of the vertices of G we have that

e(X,Y ) =
∣∣{(x, y) : x ∈ X, y ∈ Y and x∼y}

∣∣,
where x ∼ y means that x and y are adjacent in the graph. Note that e(x, y) can be

thought of as an edge indicator function. By convention, edges in X ∩ Y are counted

twice. We can use the adjacency matrix A to calculate e(X,Y ), to do this we let ψX

denote the characteristic vector of X, i.e.,

ψX(u) =

 1 if u in X;

0 else;

then e(X,Y ) = 〈ψX , AψY 〉. Recall that the volume of a subset of vertices X, denoted

by volX, is the sum of its degrees, i.e., volX :=
∑

u∈X du = ‖D1/2ψX‖2. (Throughout

this chapter we will use ‖·‖ to denote the L2-norm.)

29
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The discrepancy between two subsets X and Y is defined by

disc(X,Y ) =
∣∣∣∣e(X,Y )− volX volY

volG

∣∣∣∣.
Intuitively this is a measure of the difference between the actual number of edges and the

expected number of edges. One way to see where the (volX volY )/volG term comes

from is to consider a weighted random graph model in which we give each vertex u weight

du so the probability of including edge {u, v} is dudv/volG. With this model it can be

checked (under some simple assumptions) that the expected number of edges between

X and Y is (volX volY )/volG.

For regular graphs this becomes disc(X,Y ) =
∣∣e(X,Y )−ρ|X||Y |

∣∣ where ρ is the

edge density of the graph. The definition we have given here provides a generalization

to non-regular graphs where we put our measure on edges instead of on vertices.

The discrepancy of G, which we denote discG, will be the minimal β such that∣∣∣∣e(X,Y )− volX volY
volG

∣∣∣∣ ≤ β√volX volY .

Counting the number of edges joining vertices in X to vertices in Y is the same

as counting the number of walks of length one joining a vertex in X to a vertex in Y .

This suggests a generalization to looking at the number of (weighted) walks of length t

that join vertices in X to vertices in Y . This will lead to the t-discrepancy of G which

we will denote by disctG.

We first define a weight function for walks (following the convention of [14]). If

P = (x0, x1, . . . , xt) is a walk of length t (i.e., we have xi∼xi+1 for 0 ≤ i < t) we define

the weight of such a walk by w(P ) =
∏

0<i<t(1/dxi); in the case that P = (x0, x1) (i.e.,

the walk is a single edge) we define w(P ) = 1. Let Pt(X,Y ) be the set of all walks of

length t starting at a vertex in X and ending at a vertex in Y . Then we define

et(X,Y ) =
∑

P∈Pt(X,Y )

w(P ).

In the case that G is a d-regular graph we have that

et(X,Y ) =

∣∣{ walks of length t joining a
vertex in X to a vertex in Y

}∣∣
dt−1

.

Given a graph G we will let disct(G) denote the minimal β such that∣∣∣∣et(X,Y )− volX volY
volG

∣∣∣∣ ≤ β√volX volY .
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Note that discG = disc1G.

There are many ways that we could have defined the weight of a path which

would lead to different definitions of the t-discrepancy. The weight we have chosen here

is useful in that it allows for an easy generalization of proofs involving discrepancy to

t-discrepancy. This is a consequence of the following fact that is easily checked,

et(X,Y ) = 〈ψX , D1/2(D−1/2AD−1/2)tD1/2ψY 〉,

where here and throughout we will let 〈x, y〉 denote the inner product of two vectors.

The definition of et(X,Y ) has another interpretation. Let the probabilities on

G be distributed proportionally, i.e., the probability of randomly choosing vertex u is

du/ volG and the probability of moving from vertex u to vertex v is e(u, v)/du. Then

et(X,Y )/ volG is the probability that a randomly generated walk of length t joins a

vertex in X to a vertex in Y . As a consequence we have that et(X,V ) = volX (i.e.,

et(X,V )/ volG reduces to the probability of starting in X which is volX/ volG). This

can also be shown directly with the relationship given above.

3.2 Matrix form of discrepancy

The result for discrepancy on graphs will follow from a discrepancy result on ma-

trices, which we now turn our attention to. Bollobás and Nikiforov [5] showed that there

is a constant C so that for any Hermitian matrix A = (aij)n×n, σ2(A) ≤ C Disc(A) log n

where σ2(A) is the second singular value of A and Disc(A) is the minimal α so that for

all S, T ⊆ [n]∣∣∣∣(∑
i∈S

∑
j∈T

aij
)
− ρ|S| |T |

∣∣∣∣ ≤ α√|S||T | where ρ =
1
n2

n∑
i,j=1

aij . (3.1)

Their approach was to approximate the vector associated with σ2(A) as a linear combi-

nation of at most C ′ log n 0-1 vectors for a constant C ′ depending only on how close the

approximation needs to be. They then used this approximation to collapse the matrix

A and get the desired result.

Seperately, Bilu and Linial [2] showed (among other things) that for the special

case when A is the adjacency matrix of a d-regular (undirected) graph that σ2(A) ≤
O
(
α
(
1 + log(d/α)

))
. Their approach also involved an approximation of the vector, but

this time the entries of the approximation were powers of 2, and instead of collapsing

the matrix they used some clever manipulation of the sums.
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We will combine the approximation ideas of Bollobás-Nikiforov [5] and the

manipulation of the resulting sums as in Bilu-Linial [2] to obtain a discrepancy result

which we state below for nonnegative (not necessarily square) matrices. The proofs of

these results will be given in Section 3.3 and the interpretation to directed graphs will

be given in Section 3.4.

We will let J denote the matrix of all 1s.

Theorem 13. Let B ∈Mm×n be a matrix with nonnegative entries and no zero rows or

columns. Also, let R ∈Mm×m and C ∈Mn×n be the unique diagonal matrices such that

B1 = R1 and 1B = 1C. Then for all S ⊆ [m] and T ⊆ [n]∣∣〈ψS , BψT 〉 − 〈ψS , B1〉 〈1, BψT 〉
〈1, B1〉

∣∣ ≤ σ2(R−1/2BC−1/2)
√
〈ψS , B1〉 〈1, BψT 〉.

Note that the diagonal entries of R and C are the row sums and column sums

(respectively) of B.

Theorem 14. Let B,R,C be as above. If for all S ⊆ [m] and T ⊆ [n]∣∣〈ψS , BψT 〉 − 〈ψS , B1〉 〈1, BψT 〉
〈1, B1〉

∣∣ ≤ α√〈ψS , B1〉 〈1, BψT 〉 (3.2)

(we can and will assume that α ≤ 1), then

σ2(R−1/2BC−1/2) ≤ 150α(1− 8 logα).

The minimal α satisfying equation (3.2) is a discrepancy of A which we denote

by disc(A). For nonnegative Hermitian matrices the difference between (3.1) and (3.2)

can be viewed as how rows/columns are weighted. In (3.1) each row is given equal

weight, and so the important measurement is the number of rows, while in (3.2) each

row is weighted according to its row sum, and so the important measurement is the sum

of the row sums (similarly for the columns). It is because of this different approach that

we need to normalize the matrix A by multiplying on the left by R−1/2 and on the right

by C−1/2.

3.3 Proofs of matrix form of discrepancy

Before beginning our proofs we note the following:

(i) (R−1/2BC−1/2)C1/21 = R1/21.



33

(ii) 1R1/2(R−1/2BC−1/2) = 1C1/2.

(iii) σ1(R−1/2BC−1/2) = 1.

(iv) σ2(R−1/2BC−1/2) = σ1

(
R−1/2BC−1/2 − 1

〈1, B1〉
R1/2JC1/2

)
.

Equalities (i) and (ii) are an easy calculation, while (iii) follows by the Perron-Frobenius

Theorem on (R−1/2BC−1/2)∗(R−1/2BC−1/2) which has eigenvector C1/21 associated

with eigenvalue 1. For (iv) we subtract out the largest singular value which by (i)-

(iii) has left and right vectors 1R1/2 and C1/21 respectively, and noting that ‖1R1/2‖2 =

‖C1/21‖2 = 〈1, B1〉.

Proof of Theorem 13. This follows from |〈x,My〉| ≤ σ1(M)‖x‖ ‖y‖ (see [31]), i.e.,

∣∣〈ψS , BψT 〉 − 〈ψS , B1〉 〈1, BψT 〉
〈1, B1〉

∣∣ =
∣∣〈ψS , (B − RJC

〈1, B1〉
)
ψT
〉∣∣

=
∣∣〈R1/2ψS ,

(
R−1/2BC−1/2 − R1/2JC1/2

〈1, B1〉
)
C1/2ψT

〉∣∣
≤ σ1

(
R−1/2BC−1/2 − R1/2JC1/2

〈1, B1〉
)
‖R1/2ψS‖ ‖C1/2ψT ‖.

A calculation shows that ‖R1/2ψS‖2 = 〈ψS , B1〉 and ‖C1/2ψT ‖2 = 〈1, BψT 〉, which with

the above comments concludes the proof.

For Theorem 14 we need the following approximation lemmas.

Lemma 15. Let x ∈ Cn with ‖x‖ = 1, and D a diagonal matrix with positive entries, dt,

on the diagonal. Then there is a vector y ∈ Cn such that ‖Dy‖ ≤ 1, ‖x−Dy‖ ≤ 1
3 and

the nonzero entries of y are of the form
(

4
5

)j
e2πik/29 for j, k integers with 0 ≤ k < 29.

Proof. Let x = (xt)1≤t≤n then we define y = (yt)1≤t≤n entrywise. If xt = 0 then set

yt = 0. Otherwise for some r > 0 and 0 ≤ θ < 2π, we have xt = reiθ. For the unique

integer j so that
(
4/5
)j
< r/dt ≤

(
4/5
)j−1, set yt =

(
4
5

)j
e2πib29θ/2πc/29. By construction

we have

0 < |xt| − |dtyt| ≤
((4

5
)j−1 −

(4
5
)j)

dt =
(5

4
− 1
)(4

5
)j
dt <

1
4
|xt|,

while the argument between xt and yt is bounded above by 2π/29.

By use of the law of cosines it follows that |xt − dtyt|2 ≤ |xt|2/9, which implies

‖x−Dy‖2 =
∑
t

|xt − dtyt|2 ≤
1
9

∑
t

|xt|2 =
1
9

.
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Lemma 16. Let M be a matrix and x′, y′ vectors such that ‖x′‖ = ‖y′‖ = 1 and

σ1(M) = |〈x′,My′〉|. If x, y are vectors such that ‖x‖, ‖y‖ ≤ 1 and ‖x′−x‖, ‖y′−y‖ ≤ 1
3 ,

then σ1(M) ≤ 9
2 |〈x,My〉|.

Proof. We again use |〈x,My〉| ≤ σ1(M)‖x‖ ‖y‖.

σ1(M) = |〈x′,My′〉| = |〈x+ (x′ − x),M
(
y + (y′ − y)

)
〉|

≤ |〈x,My〉|+ |〈x,M(y′ − y)〉|+ |〈(x′ − x),My〉|+ |〈(x′ − x),M(y′ − y)〉|

≤ |〈x,My〉|+ 1
3
σ1(M) +

1
3
σ1(M) +

1
9
σ1(M),

rearranging then gives the result.

Proof of Theorem 14. Let B = B − 1
〈1,B1〉RJC, so that

σ2(R−1/2BC−1/2) = σ1(R−1/2BC−1/2).

There exists vectors x′, y′ such that ‖x′‖ = 1 and ‖y′‖ = 1 where

σ1(R−1/2BC−1/2) = |〈x′, R−1/2BC−1/2y′〉|.

Applying Lemma 15 twice, there exist (step) vectors x, y with ‖x‖, ‖y‖ ≤ 1, and also

satisfy ‖x′ −R1/2x‖, ‖y′ − C1/2y‖ ≤ 1
3 . It follows from Lemma 16 that

σ1(R−1/2BC−1/2) ≤ 9
2
|〈R1/2x, (R−1/2BC−1/2)C1/2y〉| = 9

2
|〈x,By〉|.

We now partition [m] according to the vector x. Let X(t) = {j : |xj | =
(

4
5

)t},
and let x =

∑
t

(
4
5

)t
x(t), where x(t) is the “signed” indicator function of X(t), i.e.,

x
(t)
j =

 xj/|xj | if |xj | =
(

4
5

)t;
0 otherwise.

We similarly partition [n] to get y =
∑

s

(
4
5

)s
y(s). We now have

σ2(R−1/2BC−1/2) ≤ 9
2
|〈x,By〉| ≤ 9

2

∑
t

∑
s

(4
5
)t+s|〈x(t),By(s)〉|.

By assumption, we have for any 0-1 vectors w and z that

|〈w,Bz〉| =
∣∣〈w,Bz〉 − 〈w,B1〉 〈1, Bz〉

〈1, B1〉
∣∣ ≤ α

√
〈w,B1〉 〈1, Bz〉.
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More generally, if w =
∑28

k=0 e
2πik/29w〈k〉 and z =

∑28
`=0 e

2πi`/29z〈`〉 where w〈k〉, z〈`〉 are

0-1 vectors and the w〈k〉 (z〈`〉) are mutually orthogonal, then by the triangle and Cauchy-

Schwarz inequalities we have

|〈w,Bz〉| = |〈
28∑
k=0

e2πik/29w〈k〉,B
28∑
`=0

e2πi`/29z〈`〉〉|

≤
28∑
k=0

28∑
`=0

|〈w〈k〉,Bz〈`〉〉|

≤ α
28∑
k=0

28∑
`=0

√
〈w〈k〉, B1〉 〈1, Bz〈`〉〉

≤ 29α

√√√√ 28∑
k=0

28∑
`=0

〈w〈k〉, B1〉 〈1, Bz〈`〉〉

= 29α

√√√√〈 28∑
k=0

w〈k〉, B1〉 〈1, B
28∑
`=0

z〈`〉〉

= 29α
√
〈|w|, B1〉 〈1, B|z|〉,

where |x| denotes the vector of the absolute value of the entries of x. Applying this to

x(t) and y(s) we have

|〈x(t),By(s)〉| ≤ 29α
√
〈|x(t)|, B1〉 〈1, B|y(s)|〉. (3.3)

We also have that∑
s

|〈x(t),By(s)〉| ≤ 2〈|x(t)|, B1〉 and
∑
t

|〈x(t),By(s)〉| ≤ 2〈1, B|y(s)|〉. (3.4)

To see this, by the triangle inequality we have |〈w,Mz〉| ≤ 〈|w|, |M | |z|〉, and so∑
s

|〈x(t),By(s)〉| ≤ 〈|x(t)|, |B|
∑
s

|y(s)|〉

≤ 〈|x(t)|,
(
B +

RJC

〈1, B1〉
)
1〉

= 2〈|x(t)|, B1〉.

The other result is proved similarly.

We now let γ = log4/5 α and consider∑
t

∑
s

(4
5
)t+s|〈x(t),By(s)〉| ≤

∑
|s−t|≤γ

(4
5
)t+s|〈x(t),By(s)〉|

+
∑
t

(4
5
)2t+γ∑

s

|〈x(t),By(s)〉|+
∑
s

(4
5
)2s+γ∑

t

|〈x(t),By(s)〉|. (3.5)
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The inequality can be verified by comparing the coefficient of |〈x(t),By(s)〉| on both sides.

Clearly when |s − t| ≤ γ the result holds, and when t > s + γ then s + t > 2s + γ so

that
(

4
5

)s+t
<
(

4
5

)2s+γ , and similarly when s > t + γ then
(

4
5

)s+t
<
(

4
5

)2t+γ and the

inequality follows.

We now bound the three terms on the right side of (3.5). For the first term we

have

∑
|s−t|≤γ

(4
5
)s+t|〈x(t),By(s)〉|

≤ 29
2
α
∑
|s−t|≤γ

2

√(4
5
)2t〈|x(t)|, B1〉

(4
5
)2s〈1, B|y(s)|〉

≤ 29
2
α
∑
|s−t|≤γ

((4
5
)2t〈|x(t)|, B1〉+

(4
5
)2s〈1, B|y(s)|〉

)

≤ 29
2
α(2γ + 1)

(∑
t

(4
5
)2t〈|x(t)|, B1〉+

∑
s

(4
5
)2s〈1, B|y(s)|〉

)
≤ 29α(2γ + 1).

The inequalities follow from (respectively) (3.3), the geometric-arithmetic mean inequal-

ity, the fact that any term can show up at most 2γ + 1 times, and∑
t

(4
5
)2t〈|x(t)|, B1〉 = ‖R1/2x‖2 ≤ 1 and

∑
s

(4
5
)2s〈1, B|y(s)|〉 = ‖C1/2y‖2 ≤ 1.

For the second term we use (3.4) to get∑
t

(4
5
)2t+γ∑

s

|〈x(t),By(s)〉| ≤ 2
(4

5
)γ∑

t

(4
5
)2t〈|x(t)|, B1〉 ≤ 2

(4
5
)γ
,

a similar statement holds for the third term.

Putting this together we have that

σ2(R−1/2BC−1/2) ≤ 9
2
(
29α(2γ + 1) + 4

(4
5
)γ) ≤ 150α(1− 8 logα).

3.4 Discrepancy for directed graphs

In this section we consider directed graphs which have a weight function w

which assigns w(u→v) > 0 to each edge u→v. As in the undirected case, the weight
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function is used to give the adjacency matrix A = A(G) by Au,v = w(u→v) for all

edges u→v and 0 otherwise. The in- and out-degrees are din(u) =
∑

v w(v→u) and

dout(u) =
∑

v w(u→v), respectively the column and row sums of A, and form the entries

of the diagonal matrices Din and Dout. While the in- and out-volume of subsets X of

vertices are volin(X) =
∑

x∈X din(x) and volout(X) =
∑

x∈X dout(x).

We also have a discrepancy for directed graphs, denoted disc(G), which is the

minimal α so that for any subsets X,Y of vertices∣∣∣∣(∑
u∈X

∑
v∈Y

w(u→v)
)
− volout(X) volin(Y )

vol (G)

∣∣∣∣ ≤ α√volout (X) volin(Y ), (3.6)

where vol (G) := volin (V ) = volout(V ). The discrepancy for a directed graph and of a

matrix are related by disc(G) = disc(A(G)). Applying Theorems 13 and 14 we get the

following result.

Theorem 17. For G a weighted directed graph without sources or sinks,

disc(G) ≤ σ2(D−1/2
out AD

−1/2
in ) ≤ 150 disc(G)

(
1− 8 log disc(G)

)
.

This shows that for a directed graph having a small second singular value gives

control on discrepancy and vice versa. Since an undirected graph can be made into

a directed graph by replacing each edge with a pair of directed edges this also shows

a relationship for discrepancy for undirected graphs and the size of the second largest

eigenvalue (in absolute value).

Another type of discrepancy for graphs is based on Disc(A(G)), the difference

between these two discrepancies can be viewed in how a set of vertices are weighted.

While in Disc(A(G)) each vertex is given equal weight so that the measure is the number

of vertices, in disc(A(G)) the vertices are weighted by their degree so that the measure

is the sum of the degrees. This idea of normalizing the weights has been used with great

success in spectral techniques by Chung [11].

3.4.1 Alternating walks

Chung and Graham [14] have generalized discrepancy for undirected graphs

by considering the discrepancy of walks of length t (the case t = 1 gives the original

form of discrepancy). There has been limited success in generalizing these results to

directed graphs (see [9]). The difficulty seems to lie in that to count walks we look at

a matrix such as AA · · ·A (t terms) which works well with eigenvalues but not with
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singular values. However, if we consider alternating walks, a walk where at every step

we reverse direction, which are counted by a matrix such as AA∗AA∗ · · · (t terms), these

do work well with singular values. Here we will consider a discrepancy for alternating

walks.

For an alternating walk P = x0→x1←x2→x3←x4 · · · xt we associate a weight

w(P ) =


w(x0→x1)w(x1←x2) · · ·w(xt−1←xt)
din(x1)dout(x2)din(x3) · · · din(xt−1)

t even;

w(x0→x1)w(x1←x2) · · ·w(xt−1→xt)
din(x1)dout(x2)din(x3) · · · dout(xt−1)

t odd.

There is a slight difference between the case t odd and t even, which corresponds to the

direction of the last edge.

Let Pt(x→y) denote the set of all alternating walks of length t starting at x and

ending at y. Then define wt(x→y) =
∑

P∈Pt(x→y)w(P ), equivalently, wt(x→y)/ vol(G)

is the probability that a randomly generated alternating walk of length t starts at x and

ends at y.

We now define the discrepancy of alternating t-walks, denoted AltDisct(G), to

be the minimal β such that for all X,Y ⊆ V∣∣∣∣ ∑
x∈X

∑
y∈Y

wt(x→y)− volout (X) volout (Y )
vol (G)

∣∣∣∣ ≤ β√volout (X) volout (Y ) t even;

∣∣∣∣ ∑
x∈X

∑
y∈Y

wt(x→y)− volout (X) volin (Y )
vol (G)

∣∣∣∣ ≤ β√volout (X) volin (Y ) t odd.

Theorem 18. For G a weighted directed graph without sources or sinks,

AltDisct(G) ≤
(
σ2(D−1/2

out AD
−1/2
in )

)t ≤ 150 AltDisct(G)(1− 8 log AltDisct(G)).

Proof. We consider the case t odd (t even is handled similarly). Let

B = AD−1
in A

∗D−1
outAD

−1
in A

∗D−1
out · · ·D

−1
outA

= D
1/2
out (D−1/2

out AD
−1/2
in )(D−1/2

out AD
−1/2
in )∗ · · · (D−1/2

out AD
−1/2
in )︸ ︷︷ ︸

t terms

D
1/2
in .

We have Dout = R, Din = C,
∑

x∈X
∑

y∈Y wt(x→y) = 〈ψX , BψY 〉, volout (X) =

〈ψX , B1〉 and volin (Y ) = 〈1, BψY 〉. From Theorems 13, 14 and the definition of dis-

crepancy for alternating t-walks we have

AltDisct(G) ≤ σ2

(
D
−1/2
out BD

−1/2
in

)
≤ 150 AltDisct(G)

(
1− 8 log AltDisct(G)

)
.
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It remains to show that σ2

(
D
−1/2
out BD

−1/2
in

)
=
(
σ2(D−1/2

out AD
−1/2
in )

)t. But this follows im-

mediately from the definition ofB and the fact that for a matrix F , σ2(FF ∗FF ∗F · · ·F︸ ︷︷ ︸
t terms

) =(
σ2(F )

)t.
3.4.2 Directed walks for regular directed graphs

Alternating walks might not seem intuitive, and are chosen because of the

nature of singular values. There is one case when we can relax our conditions and

examine the traditional walk and that is the case of directed graphs where the in-degrees

and out-degrees are equal at each vertex.

Let P = x0→x1→x2→· · ·→xt be a walk of length t from x0 to xt. We define

the weight of the walk P by

w(P ) =
w(x0→x1)w(x1→x2) · · ·w(xt−1→xt)

dx1dx2 · · · dxt−1

.

Note that since the in- and out-degrees are equal we have that du := din(u) = dout(u),

volX := volinX = voloutX, and D := Din = Dout. If we let Pt(X,Y ) denote the set

of all paths of length t joining a vertex in X to a vertex in Y , then the actual sum of

weighted paths is

et(X→Y ) =
∑

P∈Pt(X→Y )

w(P ).

Note that et(X→Y )/ volG is the probability that a randomly generated walk of length

t starts in X and ends in Y . With et(X→Y ) we now define disctG to be the minimal β

such that for all X,Y ⊆ V∣∣et(X→Y )− volX volY
volG

∣∣ ≤ β√volX volY .

With this definition we get the following theorem.

Theorem 19. Let G be a directed graph where in-degree equals out-degree at each vertex.

Then

disctG ≤
(
σ2(D−1/2AD−1/2)

)t
.

Further, if the in-degree and out-degree are positive for each vertex in G then

|λ2|t ≤ 150 disctG(1− 8 log disctG),

where 1 = λ1 ≥ |λ2| ≥ · · · are the eigenvalues of D−1/2AD−1/2.
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For undirected graphs |λ2| = σ2(D−1/2AD−1/2), showing that the distribution

of t-walks and the first non-trivial eigenvalue are equivalent in that case.

Proof. From Theorems 13, 14 and the definition of discrepancy we have

disctG ≤ σ2

(
(D−1/2AD−1/2)t

)
≤ 150 disctG(1− 8 log disctG).

We have that D1/21 is the left and the right vector corresponding to the largest singular

value of (D−1/2AD−1/2)t and in this case it is also the left and right eigenvector associated

with the largest eigenvalue. From this it follows that

σ2

(
(D−1/2AD−1/2)t

)
= σ1

(
(D−1/2AD−1/2)t − 1

volG
D1/2JD1/2

)
= σ1

(
(D−1/2AD−1/2 − 1

volG
D1/2JD1/2)t

)
≤

(
σ1(D−1/2AD−1/2 − 1

volG
D1/2JD1/2)

)t
=

(
σ2(D−1/2AD−1/2)

)t
.

On the other hand, by biorthogonality we have that the right eigenvector of

(D−1/2AD−1/2)t corresponding to λ2, which we will denote by y, is orthogonal to the

left eigenvector of 1, i.e., D1/21. So we have that

σ2

(
(D−1/2AD−1/2)t

)
= sup

x:〈x,D1/21〉=0

‖(D−1/2AD−1/2)tx‖
‖x‖

≥ ‖(D−1/2AD−1/2)ty‖
‖y‖

= |λ2|t.

The result now follows.

3.5 A discrepancy for hypergraphs

Hypergraphs take sets of vertices as edges. However where in graphs these sets

have either cardinality one (loops) or two (edges) in hypergraphs they can have different

cardinalities. We will give a small discrepancy result for k-graphs which are graphs where

edges are k-elements sets. Thus, a simple graph without loops can be thought of as a

2-graph.

The difficulty with generalizing discrepancy to hypergraphs is how to handle

“adjacent”. For a k-graph one approach is to replace the matrix with a multi-dimensional

matrix (i.e., a k-dimensional array) with 1 in an entry if and only if the union of the
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indices corresponds to an edge. An obvious difficulty with this is the matrix is very

sparse, but even worse there is no well defined notion of eigenvalues and/or eigenvectors.

The approach we take here will be different.

For a k-graph we fix an i with 0 < i < k. We then will define an adjacency

matrix A(i,k−i) by indexing the rows by the i-element subsets of V , indexing the columns

by the (k − i)-element subsets of V , and an entry of A(i,k−i) is 1 if the union of the sets

indexing the row and column gives a k-edge, and 0 otherwise. Note that for a 2-graph

that A(1,1) gives the adjacency matrix we have seen before. (We note that in general

this matrix will not be square, so we will have to work with singular values instead of

eigenvalues.)

Given an i element subset X of V we define the analogue of the degree by

∆(i)(X) =
∣∣∣∣{Y :

Y a k − i element subset of V
and X ∪ Y is a k-edge of G

}∣∣∣∣
Note that ∆(i)(X) is the row sum of A(i,k−i) which corresponds to X, while ∆(k−i)(Y ) is

the column sum of A(i,k−i) which corresponds to Y . We also have the analogues of the

diagonal degree matrix, ∆(i) and ∆(k−i). This gives us our analogue of the normalized

adjacency matrix, namely,

(∆(i))−1/2A(i,k−i)(∆(k−i))−1/2.

Given X (i) and Y(k−i), collections of i and k − i element subsets respectively,

then we have that the number of k-edges formed by these subsets is given by

e(X (i),Y(k−i)) =
∣∣{(X,Y ) : X ∈ X (i), Y ∈ Y(k−i), and X ∪ Y forms a k edge

}∣∣.
We also need the other half of discrepancy, namely, the “expected” number of

k-edges given a collection of i and k − i element subsets. Let us suppose that X (i) is a

collection of i element subsets of the vertices, we define the volume of X (i) analogously

as before by

vol(i)(X (i)) =
∑

X∈X (i)

∆(i)(X),

and similarly if we have Y(k−i) a collection of k − i element subsets of the vertices, we

have

vol(k−i)(Y(k−i)) =
∑

Y ∈Y(k−i)

∆(k−i)(Y ).
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We note in passing that vol(i)(G) = vol(k−i)(G) := vol(i,k−i)(G) denotes the total number

of nonzero entries in A(i,k−i).

We are now ready to define the (i, k−i)-discrepancy of G, denoted disc(i,k−i)(G).

It is the minimum β such that∣∣∣∣e(X (i),Y(k−i))− vol(i)(X (i)) vol(k−i)(Y(k−i))
vol(i,k−i)(G)

∣∣∣∣ ≤ β√vol(i)(X (i)) vol(k−i)(Y(k−i)).

Similar to before by using Theorems 13 and 14 on the matrix A(i,k−i) we have

disc(i,k−i)(G) ≤ σ2

(
(∆(i))−1/2A(i,k−i)(∆(k−i))−1/2

)
≤ 150 disc(i,k−i)(G)(1− 8 log disc(i,k−i)(G)).

We note that σ2

(
(∆(i))−1/2A(i,k−i)(∆(k−i))−1/2

)
≤ 1. In particular, we see that again

both of these properties are equivalent in that if one goes to zero then the other also

goes to zero.

3.6 Comments about quasirandom directed graphs

We have seen that for directed graphs that there is a direct relationship between

having small singular values and having small discrepancy. This is an example of two

quasirandom properties for directed graphs.

Quasirandom graph properties (introduced in the work of Chung-Graham-

Wilson [15]) are a collection of graph properties where if a graph has any one of the

properties then it must have them all. The name quasirandom is that these properties

are ones that we would expect a random graph to have, so that a graph having these

properties would behave somewhat like a random graph should. While the theory for

quasirandom graphs has been well developed for undirected graphs there has been little

work done for directed graphs. One possible explanation is that the obvious generaliza-

tion of the quasirandom (undirected) graph properties fail to be quasirandom (directed)

graph properties. Some of the (undirected) quasirandom graph properties are listed be-

low (p being the density of the edges, in the Erdős-Renyi model it is the probability of

including an edge, n is the number of vertices).

P : There are at least
(
1 + o(1)

)p
2n

2 edges in the graph and the eigenvalues of the

adjacency matrix have λ1 =
(
1 + o(1)

)
pn and λ2 = o(n).
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Q : For any graph H on s vertices the number of induced copies of H in the graph is

(1 + o(1))pe(H)(1− p)(
s
2)−e(H)ns, where e(H) is the number of edges in H.

R : For any graph H on s vertices the number of (not necessarily induced) copies of

H in the graph is (1 + o(1))pe(H)ns.

S : For all but o(n2) pairs of vertices the number of common neighbors of vertices u

and v (i.e., the vertices w with the same adjacency relationship between u and v)

is
(
1 + o(1)

)
(1− 2p+ 2p2)n.

In particular, we see that if all but the largest eigenvalue of the graph are small

then the graph has rich structure, i.e., contains all small subgraphs the appropriate

number of times. This is an example of where knowing the distribution of eigenvalues

can give you a lot of information about the graph. The usual method of proving the

equivalency of these relationships is to show that P ⇒ S ⇒ (Q,R)⇒ P

If we look at the generalization of these properties to directed graphs we get

the following natural candidates.

P ′ : There are at least
(
1 + o(1)

)
pn2 edges in the graph and the singular values of the

adjacency matrix have σ1 =
(
1 + o(1)

)
pn and σ2 = o(n).

Q′ : For any directed graph H on s vertices the number of induced copies of H in G is

(1 + o(1))pe(H)(1− p)s(s−1)−e(H)ns, where e(H) is the number of arcs in H.

R′ : For any directed graph H on s vertices the number of (not necessarily induced)

copies of H in the graph is (1 + o(1))pe(H)ns.

S′ : For all but o(n2) pairs of vertices the number of common neighbors of vertices u

and v (i.e., the vertices w with the same adjacency relationship between u and v)

is
(
1 + o(1)

)
(1− 4p+ 8p2 − 8p3 + 4p4)n.

The problem now arises in that P 6⇒ (Q,R). To see this take a quasirandom

undirected graph on n vertices and replace each edge by a pair of directed edges. The

resulting singular values are the same and we have double the number of edges so we

satisfy P ′. However if we count the number of copies of H where H is the graph on

two vertices with a pair of bidrected edges we see that this shows up as a subgraph pn2

times, but Q′ and R′ would predict p2n2 occurrences.
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The problem seems to lie in the somewhat innocuous looking condition S and

S′. In undirected graphs it can be shown that this property is a control on the entries

of the matrix A2 + (J − A)2. Since quasirandom graphs are almost regular this can be

easily translated into an eigenvalue condition and so we can see that P ⇒ S. On the

other hand, for directed graphs we do not have this clear relationship between sameness

and the adjacency matrix.

This suggests that for directed graphs that the quasirandom properties subdi-

vide into smaller groups. There still remain many questions in this direction.
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4 Eigenvalues and

2-edge-coverings

4.1 Introduction

We have seen that the eigenvalues can be used to give information about the

structure of a graph. We would then expect that if two graphs have many eigenvalues in

common that they also share some structure. One example of this is when two graphs

both “cover” a smaller graph.

If we look at the spectrum of the three graphs in Figure 4.1 (either using the

adjacency matrix or the normalized Laplacian) we see that there are four eigenvalues

which are common to all three graphs. In this chapter we will show how to compute

the spectrum of graphs of this type by computing the spectrum of two smaller graphs,

which we will call the (modified) cover and the anti-cover. In the example of these three

graphs we will see that the common eigenvalues are traced to a shared anti-cover graph.

Figure 4.1: Three graphs sharing some common eigenvalues.

4.2 2-edge-coverings of graphs

We will be considering a special type of cover called a 2-edge-cover. We say

that a graph G is a 2-edge-covering of a graph Ĝ if there is an onto map π : V (G)→V (Ĝ)

45
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satisfying the following conditions:

(i) if u∼v in G then π(u)∼π(v) in Ĝ and further w
(
π(u), π(v)

)
= w(u, v);

(ii) if π(u)∼ŵ in Ĝ then there is some vertex v in G so that u∼v and π(v) = ŵ;

(iii) for each (ordered) edge (ŵ, ẑ) in Ĝ there are exactly two (ordered) edges (p, q),

(r, s) in G so that
(
π(p), π(q)

)
=
(
π(r), π(s)

)
= (ŵ, ẑ).

Property (i) states that the graph is a weight preserving homomorphism (for

more about graph homomorphisms and coverings the reader is referred to Godsil and

Royle [20]). Property (ii) insures that we can lift edges from Ĝ back up to G, while

property (iii) states that each edge is covered twice. The reason that we insist on having

ordered pairs is to deal with the creation of loops, namely, if u 6= v, u∼v and π(u) = π(v)

then we would have a loop at π(u) in Ĝ; by our convention the loop is double covered

by (u, v) and (v, u).

Some examples of 2-edge-coverings involving the 6-cycle are shown in Figure 4.2

(the labeling indicating how the vertices map).

1

2 3

4

56

1/4

2/5 3/6

2/3

1/4

5/6

1

2/6 3/5

4

Figure 4.2: Examples of 2-edge-coverings involving the 6-cycle.

For our purposes, the most important feature of a 2-edge-covering is what

happens at the vertices. It is easy to see that for a connected graph each vertex in the

covered graph Ĝ can have either one or two preimages.

Lemma 20. Let G be a nonempty connected graph which is a 2-edge-covering of Ĝ under

the map π, and π(v) = v̂.

• If
∣∣π−1(v̂)

∣∣ = 2 and u∼v∼w with u 6= w in G, then π(u) 6= π(w).

• If
∣∣π−1(v̂)

∣∣ = 1 and u∼v, then there is some w such that v∼w, u 6= w and π(u) =

π(w).
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In other words when a vertex has two preimages there is a 1-to-1 correspondence

between the edges incident to v and v̂. On the other hand, if a vertex has only a single

preimage the edges incident to v in G map 2-to-1 to the edges incident to v̂ in Ĝ.

Intuitively in the latter case the edges incident to v “fold” over and we will refer to such

vertices in either G or Ĝ as folding vertices throughout.

Proof. First consider the case π−1(v̂) = {v, v′}. Suppose that u∼v∼w; then by property

(i) π(u)∼v̂ so by property (ii) there exists some vertex z in G so that (z, v′) and (u, v)

are distinct edges in G both covering the same edge in Ĝ. Now if π(u) = π(w) then

(w, v) would be a third edge in G which also covers but this contradicts (iii). Therefore

we have that π(u) 6= π(w).

Now consider the case π−1(v̂) = {v}. If u∼v then by property (i) π(u)∼v̂. By

property (iii) this edge is double covered and since v̂ has only one preimage the two edges

in G which double cover it are (u, v) and (w, v) (for some w). But now note that v∼w,

u 6= w and that π(u) = π(w) as needed.

Similarly one can show that it is not possible with our conventions for two

folding vertices to be adjacent and we will implicitly assume this in our proofs.

4.3 Finding eigenvalues of 2-edge-coverings

4.3.1 2-edge-coverings and the adjacency matrix

In this subsection and the next we will illustrate the techniques of how to

calculate the eigenvalues of a graph G which has a 2-edge-covering (i.e., there is some H

so that π : V (G)→V (H) is a 2-edge-covering). We will use the graph in Figure 4.3 for

an example of how to apply the techniques.

1

23

4

5

6 7

8

0G =

1/5

2/6

3/7

4/8 0H =

Figure 4.3: Our example 2-edge-covering. (All edge weights are 1.)

To find the eigenvalues of the adjacency matrix of G we will make use of two
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graphs. The first is a modified cover graph, denoted H◦ (to keep track of which graph

we will be dealing with; anytime we are referring to H◦ we will use the �◦ notation).

The graph will have the same vertices and the only modification will be to the weight

function as follows:

w◦(u◦, v◦) =


√

2w(u, v) u or v is a folding vertex;

w(u, v) otherwise.

The second graph will be an anti-cover graph and we denote it by H◦ (again

anytime we refer to H◦ we use the �◦ notation). The first step to defining the anti-cover

is to give a sign function on the vertices of G so that for each v, sgn(v) ∈ {−1, 0, 1}
where sgn(v) = 0 if and only if the vertex folds, otherwise if π(u) = π(v) for u 6= v then

sgn(u) = − sgn(v).

Then an anti-cover H◦ is formed by removing all folding vertices and incident

edges, for any remaining edge u◦∼v◦ which is covered by edge u∼v, the edge weight will

be

w◦(u◦, v◦) = w(u, v) sgn(u) sgn(v). (4.1)

Similar to Lemma 20 it can be shown that this weight function is well defined, i.e.,

choosing either of the two edges which cover an edge will give the same result. Also we

note that a signing of the graph, and so also the anti-cover, is not unique, but it can

be shown that the adjacency matrix of two different anti-cover graphs are similar by a

diagonal matrix with ±1 on the diagonal.

In the special case that there are no vertices which fold then H◦ = H and H◦

is a signed version of H. This case has been previously considered by D’Amato [17] and

more recently Bilu and Linial [1].

H◦ =

√
2

√
2

+

−−

+

−

+ +

−
H◦ =

−1−1

−1

−1

Figure 4.4: The graphs H◦, a signing of G, and corresponding H◦ for graphs in Figure 4.3.
(Unmarked edges have weight 1.)

Theorem 21. If G has a 2-edge-covering of H then the eigenvalues of the adjacency

matrix of G is the union of the eigenvalues of the adjacency matrices of H◦ and H◦

(counting multiplicity).
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Proof. We will show how to lift eigenvectors of H◦ and H◦ to be eigenvectors of G. Then

since the number of vertices (and hence) eigenvectors of H◦ and H◦ combined is equal

to the number of vertices of G, and the independence of the vectors will follow from the

construction the result will follow.

So suppose that λ is an eigenvalue of H◦ with eigenvector x◦. Then consider

the following vector defined for G by

x(u) =


√

2x◦(u◦) u is a folding vertex;

x◦(u◦) otherwise;

where u◦ = π(u).

We now show that (2.1) holds for x showing that λ is an eigenvvalue of G; we

do this by considering two cases.

(1) v is not a folding vertex:∑
u:u∼v

w(u, v)x(u) =
∑
u∼v
u folds

w(u, v)x(u) +
∑
u∼v

u not fold

w(u, v)x(u)

=
∑
u◦∼v◦
u◦ folds

w◦(u◦, v◦)√
2

(√
2x◦(u◦)

)
+

∑
u◦∼v◦

u◦ not fold

w◦(u◦, v◦)x◦(u◦)

=
∑

u◦:u◦∼v◦
w◦(u◦, v◦)x◦(u◦) = λx◦(v◦) = λx(v).

(2) v is a folding vertex:∑
u:u∼v

w(u, v)x(u) = 2
∑

u◦:u◦∼v◦

w◦(u◦, v◦)√
2

x◦(u◦) =
√

2λx◦(v◦) = λx(v).

Similarly, now suppose that λ is an eigenvalue of H◦ with eigenvector x◦. Then

consider the following vector defined for G by

x(u) =

 0 u is a folding vertex;

sgn(u)x◦(u◦) otherwise.

We again show that (2.1) holds for x showing that λ is an eigenvalue of G, by

considering two cases.

(1) v is not a folding vertex:∑
u:u∼v

w(u, v)x(u) =
∑
u∼v

u not folds

w(u, v)x(u) +
∑
u∼v
u folds

w(u, v)x(u)

= sgn(v)
∑

u◦:u◦∼v◦
w◦(u◦, v◦)x◦(u◦)

= λ sgn(v)x◦(v◦) = λx(v). (4.2)
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(2) v is a folding vertex:∑
u:u∼v

w(u, v)x(u) =
∑
u∼v

sgn(u)=1

w(u, v)x(u) +
∑
u∼v

sgn(u)=−1

w(u, v)x(u)

=
∑
u∼v

sgn(u)=1

w(u, v)x◦(u◦)−
∑
u∼v

sgn(u)=−1

w(u, v)x◦(u◦)

= 0 = λx(v). (4.3)

Thus the eigenvalues of H◦ and H◦ are eigenvalues of G and, as noted above, this

concludes the proof.

4.3.2 2-edge-coverings and the normalized Laplacian

We again consider the problem of how to calculate the eigenvalues of G but

this time for the normalized Laplacian. We will again make use of two graphs, but this

time they will be slightly different. First, we will let H∆ = H.

The second graph H∆ is again found by removing the folding vertices and

incident vertices, and also taking a sign function on G as before and defining w∆(u∆, v∆)

similarly to (4.1). There is one additional structure that we will need for H∆ and that

is a weight function on the vertices,

w∆(v∆) =
∑
u∼v
u folds

w(u, v).

This new weight function shows up in the degrees in H∆ which are defined as follows,

d∆(v∆) = w∆(v∆) +
∑

u∆∼v∆

∣∣w∆(u∆, v∆)
∣∣.

Intuitively, w∆(v∆) is used to correct for the change caused by the removal of edges

incident to folding vertices so that now d(v) = d∆(v∆). Pictorially, we will note a weight

at vertex v∆ of k by putting “ k ” at the vertex.

Theorem 22. If G has a 2-edge-covering of H then the set of eigenvalues of the normal-

ized Laplacian matrix of G is the union of the eigenvalues of the normalized Laplacian

matrices of H = H∆ and H∆ (counting multiplicity).

Proof. We again show how to lift eigenvectors of H∆ and H∆ to be eigenvectors of G.

Then since the number of vertices (and hence) eigenvectors of H∆ and H∆ combined



51

H∆ =

+

−−

+

−

+ +

−
0

1

0

1

H∆ =

−1−1

−1

−1

Figure 4.5: The graphs H∆, a signing of G, and corresponding H∆ for graphs in Fig-
ure 4.3. (Unmarked edges have weight 1.)

is equal to the number of vertices of G, and the independence of the vectors will follow

from the construction, the result will follow.

So suppose that λ is an eigenvalue of H∆ with eigenvector x∆. Then consider

the following vector defined for G by x(u) = x∆(u∆), where u∆ = π(u).

We now show that (2.2) holds for x showing that λ is an eigenvalue of G, we

again have two cases.

(1) v is not a folding vertex:

d(v)x(v)−
∑
u:u∼v

w(u, v)x(u) = d∆(v∆)x∆(v∆)−
∑

u∆:u∆∼v∆

w∆(u∆, v∆)x∆(u∆)

= λd∆(v∆)x∆(v∆) = λd(v)x(v).

(2) v is a folding vertex:

d(v)x(v)−
∑
u:u∼v

w(u, v)x(u) = 2d∆(v∆)x∆(v∆)− 2
∑

u∆:u∆∼v∆

w∆(u∆, v∆)x∆(u∆)

= 2λd∆(v∆)x∆(v∆) = λd(v)x(v).

Now suppose that λ is an eigenvalue of H∆ with eigenvector x∆, then consider

the following vector defined for G by

x(u) =

 0 u is a folding vertex;

sgn(u)x∆(u∆) otherwise;

note that this is equivalent to the definition given in Theorem 21. We again show that

(2.2) holds for x showing that λ is an eigenvalue of G. We again have two cases.
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(1) v is not a folding vertex:

d(v)x(v)−
∑
u:u∼v

w(u, v)x(u) =

sgn(v)d∆(v∆)x∆(v∆)− sgn(v)
∑

u∆:u∆∼v∆

w∆(u∆, v∆)x∆(u∆)︸ ︷︷ ︸
same as in (4.2)

= sgn(v)λd∆(v∆)x∆(v∆) = λd(v)x(v).

(2) v is a folding vertex:

d(v) x(v)︸︷︷︸
=0

−
∑
u:u∼v

w(u, v)x(u)︸ ︷︷ ︸
=0 same as in (4.3)

= 0 = λd(v) x(v)︸︷︷︸
=0

.

Thus the eigenvalues of H∆ and H∆ are eigenvalues of G, and as noted above,

this concludes the proof.

4.3.3 2-edge-coverings and directed graphs

For directed graphs it is easy to adapt the definition of a 2-edge-covering and

the constructions and proof given in Section 4.3.1 to establish the following theorem. (We

omit the definitions, but they are the obvious generalizations of what we have already

given.)

Theorem 23. If ~G has a 2-edge-covering of ~H then the eigenvalues of the adjacency

matrix of ~G contains the union of the eigenvalues of the adjacency matrices of ~H◦ and
~H◦ (counting multiplicity of the respective eigenspaces).

It would be interesting to determine if the eigenvalues of ~G was the union of the

eigenvalues of ~H◦ and ~H◦. The difficulty lies in that for directed graphs the adjacency

matrices do not need to have a full set of eigenvectors, a key fact which was used in the

earlier proof. A similar result for directed graphs for the results in Section 4.3.2 is more

problematic as there is often no well defined normalized Laplacian for a directed graph,

see for example Chung [12] and Butler [8].

4.4 Can you hear the shape of a graph?

Returning to the graphs in Figure 4.1 it is now easy to find the (modified) cover

and anti-cover graphs of all three graphs (where the 2-edge-covering is given by folding in
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half along the vertical axis). Moreover for both the adjacency matrix and the normalized

Laplacian all three have the same anti-cover (the path of length four in the first case and

the path of length four with all vertex weights 1 in the second) and thus they all share

four eigenvalues in common. It is easy to expand on this example and start with a given

anti-cover and construct many graphs which will share some nontrivial eigenvalues.

A famous question in spectral graph theory is “can you hear the shape of a

graph?” That is, given the eigenvalues can you determine the graph that produced

them. There are many examples of two graphs that share the same spectrum but are

not the same graph, while there are also examples of graphs that are uniquely determined

by the spectrum (see van Dam and Haemers [19]).

But when it comes to the normalized Laplacian of the anti-covers H∆ the

situation can be even worse. Consider the two weighted graphs in Figure 4.6. These

2 2 2 2 2 2 2

Figure 4.6: Two graphs with several shared eigenvalues. (Unmarked edges have weight
1.)

graphs share four nontrivial eigenvalues. They also have obvious left/right symmetry

and the eigenvalues found by the 2-edge-covering when the graphs are folded in half are

the ones which are not common. Thus the shared eigenvalues come from their anti-cover

graphs. These are simple to construct and are shown in Figure 4.7. However it is not

3 −1
1 1 1

1 1
1 2 2

−2

Figure 4.7: Anti-covers of the graphs shown in Figure 4.6

possible to obtain one of these anti-coverings from the other by relabeling and/or scaling.

So the shared eigenvalues appear to be the result of two cospectral anti-covers.

However the situation is a little more interesting than that. If we now compute
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L∆ for both the graphs in Figure 4.7 they both give

1 −1
2
√

2
0 0

−1
2
√

2
1 −1

2 0

0 −1
2 1 −1

2

0 0 −1
2

3
2


.

In particular, the anti-cover graph cannot in general be uniquely determined from the

corresponding normalized Laplacian of the anti-cover. So these graphs are not only

co-spectral they also have the same normalized Laplacian.

4.5 Applications of 2-edge-coverings

If we now think of a real matrix as the anti-cover matrix of some graph then we

can sometimes use information about graphs to help find eigenvalues and eigenvectors.

As a simple example consider the following.

Corollary 24. Let Bn be the following n×n matrix

Bn =



0 1 0 · · · 0 0 −1

1 0 1 · · · 0 0 0

0 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0

0 0 0 · · · 1 0 1

−1 0 0 · · · 0 1 0


.

Then the eigenvalues of Bn are 2 cos
(
π(2j + 1)/n

)
for j = 0, 1, . . . , n− 1.

Proof. It is easy to check that Bn corresponds to the adjacency matrix of an anti-covering

of the 2n-cycle where we have wrapped the cycle on itself twice (an example for n = 3 is

shown on the left in Figure 4.2). Therefore by Theorem 21 it follows that the spectrum

of Bn is the spectrum of the 2n-cycle with the spectrum of the n-cycle removed. Since

the eigenvalues of the cycles are known the result follows.

More generally any real symmetric matrix can be thought of as the adjacency

matrix of some anti-cover. Given the anti-cover it is easy to construct a graph which
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covered it, i.e., make vertices {1+, 1−, 2+, 2−, . . . , n+, n−} and then if w(i, j) > 0 put

in edges {i+, j+} and {i−, j−} with weight |w(i, j)|, while if w(i, j) < 0 put in edges

{i+, j−} and {i−, j+} with weight |w(i, j)|. This is only one of many possible graphs

that generated the anti-cover, but it has the additional property that the matrix of the

corresponding graph is found by taking the absolute values of the matrix we started

with. This gives us an easy constructive proof for the following theorem.

Theorem 25. Let A be a real n×n symmetric matrix and let |A| be the n×n matrix

defined entrywise by |A|i,j = |Ai,j | (i.e., the absolute value of the corresponding entry of

A). Then there exists a nonnegative 2n×2n symmetric matrix B so that the eigenvalues

of B are the union of the eigenvalues of A and |A| (counting multiplicity).

4.6 A simple construction of cospectral graphs

As another application for 2-edge-coverings we can give a construction for

cospectral graphs. There have been several constructions given which produce cospec-

tral graphs (see [21, 24]). However, these constructions have focused on the adjacency

matrix, the (combinatorial) Laplacian and the signless (combinatorial) Laplacian. Our

construction will generate a large class of graphs which are cospectral with respect to

the normalized Laplacian and the adjacency matrix. While our method is to use 2-edge-

coverings, we will include simplified proofs here to demonstrate the techniques used in

this chapter.

We note that the construction gives pairs of graphs which are cospectral simul-

taneously with the adjacency and the normalized Laplacian and are also not regular.

Examples were previously known of regular graphs which are cospectral with respect

to the adjacency matrix and so also trivially cospectral with respect to the normalized

Laplacian. This is the first known example of non-regular graphs with this property.

For a matrix M , let σ(M) be the (multi-)set of eigenvalues of M , i.e., the

spectrum of M . Further, for a nonnegative symmetric matrix M with positive row (and

hence column) sums let L(M) = I −R−1/2MR−1/2 where R is the diagonal matrix with

diagonal entries composed of the row (or column) sums of M . Note that if A is the

adjacency matrix then L(A) is the normalized Laplacian.
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Lemma 26. Let B be a p×q matrix. Then

σ



O B B

B∗ O O

B∗ O O


 =

√
2σ

O B

B∗ O

 ∪ {0, 0, . . . , 0︸ ︷︷ ︸
×q

}, and

σ



O B O

B∗ O B∗

O B O


 =

√
2σ

O B

B∗ O

 ∪ {0, 0, . . . , 0︸ ︷︷ ︸
×p

}.

Further, if B is nonnegative and has positive row and column sums then

σ

L


O B B

B∗ O O

B∗ O O



 = σ

L
O B

B∗ O

 ∪ {1, 1, . . . , 1︸ ︷︷ ︸
×q

}, and

σ

L


O B O

B∗ O B∗

O B O



 = σ

L
O B

B∗ O

 ∪ {1, 1, . . . , 1︸ ︷︷ ︸
×p

}.

Proof. We will prove the first statement in both cases (the second statements are handled

similarly). Let
[
x
y

]
be an eigenvector for the eigenvalue λ and the matrix

[
O
B∗

B
O

]
(i.e.,

so By = λx and B∗x = λy). Then consider the following,
O B B

B∗ O O

B∗ O O



√

2 x

y

y

 =


2By
√

2B∗x
√

2B∗x

 =
√

2λ


√

2 x

y

y

 ,
so that

√
2λ is an eigenvalue for the enlarged matrix. For the remaining eigenvalues let

ei denote the vector of length q which is 1 in the ith position and 0 otherwise. Then
O B B

B∗ O O

B∗ O O




0

ei

−ei

 =


0

0

0

 , (4.4)

since these vectors are orthogonal to the ones previously given, it shows that the remain-

ing q eigenvalues are 0.

For the second part we first note that x̂ is an eigenvector of L(M) if and only

if ŷ = R−1/2x̂ (known as the harmonic eigenvector) satisfies (R −M)ŷ = λRŷ. So for

an eigenvalue λ let
[
x
y

]
be chosen to satisfy R1 −B

−B∗ R2

x
y

 =

 R1x−By

−B∗x +R2y

 = λ

R1x

R2y
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(where R1 and R2 are the partitioned parts of R). Then the following holds
2R1 −B −B
−B∗ R2 O

−B∗ O R2



x

y

y

 =


2R1x− 2By

−B∗x +R2y

−B∗x +R2y

 = λ


2R1x

R2y

R2y

 ,
so that λ is also an eigenvalue of the enlarged matrix. For the remaining eigenvalues we

can use the same eigenvector and relationship given in (4.4). In particular since these

vectors, ŷ, satisfy M ŷ = 0 then it follows that (R −M)ŷ = Rŷ showing that these

are q additional eigenvectors associated with an eigenvalue of 1, which completes the

spectrum.

4.6.1 The construction

Let G be a bipartite graph with vertex set V (G) = V1 ∪ V2, and an edge set

E(G) where edges go between V1 and V2. Then we construct new graphs G1 and G2

where

V (G1) = V1 ∪ V2 ∪ V ′2 ,

E(G1) =
{
{v1(i), v2(j)}, {v1(i), v′2(j)}

∣∣ {v1(i), v2(j)} ∈ E(G)
}

;

V (G2) = V1 ∪ V ′1 ∪ V2,

E(G1) =
{
{v1(i), v2(j)}, {v′1(i), v2(j)}

∣∣ {v1(i), v2(j)} ∈ E(G)
}
.

Intuitively this construction can be thought of as taking a bipartite graph and

“unfolding” it either along V1 or V2 to construct the new graphs. An example of this

construction is shown in Figure 4.8.

G = G1 = G2 =

Figure 4.8: Examples of constructing G1 and G2.

Theorem 27. Let G be a given bipartite graph with |V1| = p ≤ |V2| = q, and let A(G)

denote the adjacency matrix of G. Then σ
(
A(G1)

)
and σ

(
A(G2)

)
differ by (q − p)

eigenvalues of 0. If further, G has no isolated vertices and L(G) denotes the normalized

Laplacian matrix of G, then σ
(
L(G1)

)
and σ

(
L(G2)

)
differ by (q − p) eigenvalues of 1.
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In particular, if G is a bipartite graph with |V1| = |V2| and no isolated ver-

tices then G1 and G2 are cospectral both with respect to the adjacency matrix and the

normalized Laplacian.

Proof. The statement follows by noting that the form of the matrices A(G), A(G1) and

A(G2) are those in the statement of Lemma 26, and that the normalized Laplacian

matrix of a graph is L(A(G)).

We now have a construction for cospectral graphs, and it remains to find exam-

ples where these graphs are non-isomorphic. It is easy to check that when the maximum

degree of vertices in V1 is not equal to the maximum degree of vertices in V2, that

the corresponding graphs G1 and G2 have different maximum degrees and hence are

non-isomorphic. An example of this situation is shown in Figure 4.8.

In the case when p < q the resulting graphs G1 and G2 can be made cospectral

with respect to the adjacency matrix by the addition of isolated vertices to the smaller

graph (there is not a similar operation for the normalized Laplacian). For instance if

we start with the path on three vertices then G1 and G2 are a four-cycle and a star on

five vertices, and by adding an isolated vertex to the four-cycle the two graphs are now

cospectral and give the famous Saltire pair (these are shown in Figure 1.2).

4.7 Calculating Dirichlet eigenvalues

Dirichlet eigenvalues of a graph are related to the problem of random walks on

a subset S of the vertices of a graph. When dealing with a random walk on a subset S

the question becomes how to deal with boundary of S. There are two popular methods,

the Dirichlet boundary condition and the Neumann boundary condition. More details

about what these conditions are and how they relate to random walks can be found in

Chung [11]. For our purposes it suffices to know that the eigenvalues associated with a

random walk with Dirichlet boundary conditions can be found by looking at LS which is

the matrix L (for the whole graph) restricted to the columns and rows associated with

S.

We can use 2-edge-coverings to compute Dirichlet eigenvalues. The key is to

note that the difference between LS and the normalized Laplacian that is formed by

the graph restricted to S is the degree of points near the boundary; namely, in LS the

degree of vertices at the boundary counts the edges that leave S. So the difference is
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that for LS we have extra weight added to vertices incident to the boundary. This is the

same as the extra vertex weight function we introduced for the anti-cover graphs. So

calculating the Dirichlet eigenvalues of a subset S is the same as calculating eigenvalues

of an anti-cover graph.

· · · · · · 1

V \ S

}
S (n vertices)

}
n vertices

Figure 4.9: A subset S that we want to compute Dirichlet eigenvalues for and corre-
sponding anti-cover graph.

For a more concrete example consider the graphs shown in Figure 4.9, where S

is a path on n vertices connected by an edge to some graph (as shown on the left). Now

translating the edges at the boundary as extra weight on vertices we have that computing

the Dirichlet eigenvalues for S is the same as computing the eigenvalues of the graph on

the right. As mentioned above this graph can be thought of as an anti-cover of some

graph. In this case if we start with a path on 2n + 1 vertices and fold it in half at the

middle vertex then the covered graph is the path on n+ 1 vertices and the anti-cover is

the graph shown on the right in Figure 4.9. Since the eigenvalues of a path on m vertices

is 1− cos(πj/(m− 1)) for j = 0, 1, . . . ,m− 1, it follows that the Dirichlet eigenvalues for

the set S shown in Figure 4.9 are the eigenvalues of the path on 2n+ 1 vertices with the

eigenvalues of the path on n+1 vertices removed. In particular, the Dirichlet eigenvalues

are 1− cos
(
(2j − 1)π/2n

)
for j = 1, 2, . . . , n.
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5 Interlacing and the normalized

Laplacian

5.1 Introduction

In the last chapter we saw an example of two coverings where the eigenvalues of

a smaller graph also were eigenvalues of a larger graph. The principle at work was that

the graphs were sharing a common structure. Now suppose that we have two graphs

which differ only in a few edges. Then on the whole the structure of the two graphs

are the same with a few local exceptions. We would then expect that the eigenvalues

are also very similar and that the eigenfunctions have some small local perturbations.

This turns us to the content of this chapter which is the interlacing of eigenvalues for

the normalized Laplacian.

Suppose that A and B are real symmetric matrices, with eigenvalues α1, . . . , αn

and β1, . . . , βm. Then the eigenvalues of A and B interlace if for some constants p and

q and all 1 ≤ i ≤ n we have αi−p ≤ βi ≤ αi+q. In many simple cases of interlacing we

have p, q ∈ {0, 1}. Another way to think about interlacing is that the eigenvalues of B

are bounded by the eigenvalues of A. In some cases when A has an eigenvalue which

occurs with high multiplicity an eigenvalue of B can also be found.

A well known example of interlacing from spectral graph theory is to compare

the adjacency matrix of G and G \ {v} for any vertex v. In this case it is known by

Cauchy’s Interlacing Theorem that if the eigenvalues of A(G) are αi and the eigenvalues

of A(G \ {v}) are βi then the αi ≤ βi ≤ αi+1 (so we have p = 0 and q = 1 in this case).

A recent development for interlacing and the normalized Laplacian was recently

given by Chen et al. [10] (and even more recently a shortened proof by Li [28]).

Theorem 28. Let G be a simple graph without loops or parallel edges, let H = e be an

60
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edge of G, and G −H the graph G with edge e removed. If λ0 ≤ λ1 ≤ · · · ≤ λn−1 and

θ0 ≤ θ1 ≤ · · · ≤ θn−1 are the eigenvalues of L(G) and L(G−H) respectively, then

λk−1 ≤ θk ≤ λk+1 for each k = 0, 1, . . . , n− 1,

where λ−1 = 0 and λn = 2. More generally if H is a subgraph of G with |E(H)| = t then

λk−t ≤ θk ≤ λk+t for each k = 0, 1, . . . , n− 1,

where λ−t = · · · = λ−1 = 0 and λn = · · · = λn+t−1 = 2.

We will establish an improved version of Theorem 28. Our first improvement

will be to allow a broader range of graphs which include graphs with loops and multiple

edges, and more generally any weighted graph. Our second improvement will be to show

that when removing a graph from G we can use the number of vertices of the graph

being removed rather than the number of edges to control the spread of the eigenvalues.

So for instance when we are removing a dense graph such as K10 we will show that the

eigenvalues spread by at most 10 (the number of vertices), while the above result states

that the eigenvalues spread by at most 45 (the number of edges). Before we state the

main result we need to introduce terminology needed for weighted graphs.

We will follow the conventions of Chapter 1 by letting a weighted graph be a

graph (possibly with loops) with a nonnegative weight function w : V ×V → [0,∞) with

w(u, v) = w(v, u) (i.e., undirected) and w(u, v) > 0 if and only if there is an edge joining

u and v. Using the weight function we define the adjacency matrix by Au,v = w(u, v)

and the diagonal degree matrix uses degrees defined by d(u) =
∑

v w(u, v). With the

adjacency matrix and the diagonal degree matrix we can then define the normalized

Laplacian of such a graph as we have before, i.e., L = D−1/2(D − A)D−1/2 (we will

adopt the convention that if d(v) = 0 then (d(v))−1/2 = 0).

A simple graph is the special case when all weights are either 0 or 1 and

w(v, v) = 0 for all v. However, by allowing the weights to vary we can model more

graphs. For instance, multigraphs can be modeled by letting w(u, v) be the number of

edges connecting u to v.

Given a weighted graph G we say that H is a subgraph of G if wH(u, v) ≤
wG(u, v) for all u, v. When H is a subgraph of G we let G−H be the graph which has

weight function wG−H(u, v) = wG(u, v) − wH(u, v) for all u, v. From this definition it

follows that dG−H(u) = dG(u)− dH(u). The graph G+H, where the two graphs are on

the same set of vertices, is defined analogously. Our main result is as follows.
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Theorem 29. Let G be a weighted graph and H a subgraph of G with t nonisolated

vertices. If λ0 ≤ λ1 ≤ · · · ≤ λn−1 and θ0 ≤ θ1 ≤ · · · ≤ θn−1 are the eigenvalues of L(G)

and L(G−H) respectively, then for k = 0, 1, . . . , n− 1 we have

λk−t+1 ≤ θk ≤

 λk+t−1 H is bipartite;

λk+t otherwise;

where λ−t+1 = · · · = λ−1 = 0 and λn = · · · = λn+t−1 = 2.

In the proof for Theorem 29 we will see that when H is bipartite that we are

(essentially) allowed one more degree of freedom than when H is not bipartite. This

accounts for the difference in the bounds given by the theorem. The statement of the

theorem is essentially the best possible; to see this consider the two graphs shown in

Figure 5.1. The graph G has three loops of weight 1 on the three top vertices, three

edges of weight 2 (as marked) and the remaining edges of weight 1. The graph H consists

of a triangle of the three top vertices with edge weight 1 along with the loops (so t = 3).

Calculating the eigenvalues we have that θ1(G−H) = 5/4 > 8/7 = λ3(G), showing that

the bound for non-bipartite graphs cannot be improved in general.

2

2

2

G = G−H =

Figure 5.1: An example showing the result of Theorem 29 is tight.

As an example of an application of Theorem 29 we have the following.

Proposition. If G is a simple graph on n vertices and more than n/2 of the vertices

have degree n− 1 then n/(n− 1) is an eigenvalue of G.

This follows from the above theorem since G = Kn−H where H has fewer than

n/2 nonisolated vertices while n/(n− 1) is an eigenvalue of Kn with multiplicity n− 1.

This result is not the best possible (as a general rule finding eigenvalues by interlacing is

one of the worst ways to find eigenvalues). For example, if a simple graph on n vertices

has 2 vertices with degree n − 1 then n/(n − 1) is an eigenvalue of G. This is a simple

application of the following result (letting u and v be the vertices of degree n− 1).
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Lemma 30. Let G be a simple graph and let nbd(u) = {w : u∼w} (note that |nbd(u)| =
du). If nbd(u) = nbd(v) and u is adjacent to v then (du+1)/du is an eigenvalue of G for

the normalized Laplacian. On the other hand if nbd(u) = nbd(v) and u is not adjacent

to v then 1 is an eigenvalue of G for the normalized Laplacian.

The proof of the lemma is to let x be the vector which is 1 at u, −1 at v and

0 otherwise, and then check that this is an eigenvector for the indicated eigenvalue.

One interesting thing to note is that the result of Theorem 29 is independent

of the amount of weight removed. This is because the proof relies on orthogonality

conditions which are unaffected by changes in the weights. Instead of subtracting out

a graph we could also add a graph. The following result immediately follows from

Theorem 29 working with the graphs G+H and (G+H)−H = G.

Corollary 31. Let G be a weighted graph and H a graph on the vertices of G with

t nonisolated vertices. If λ0 ≤ λ1 ≤ · · · ≤ λn−1 and θ0 ≤ θ1 ≤ · · · ≤ θn−1 are the

eigenvalues of L(G) and L(G+H) respectively, then for k = 0, 1, . . . , n− 1 we have

λk+t−1 ≥ θk ≥

 λk−t+1 H is bipartite;

λk−t otherwise;

where λ−t = · · · = λ−1 = 0 and λn = · · · = λn+t−1 = 2.

5.2 Proof of interlacing result

The proof of Theorem 29 will be adapted from the proof of Chen et al. [10]

which follows by application of the Courant-Fischer Theorem (see [26]).

Theorem 32 (Courant-Fischer Theorem). Let M be a real symmetric matrix with eigen-

values λ0 ≤ λ1 ≤ · · · ≤ λn−1. Let X k denote a k dimensional subspace of Rn and let

x ⊥ X k signify that x ⊥ y for all y ∈ X k. Then

λi = min
Xn−i−1

(
max

x⊥Xn−i−1,x 6=0

xTMx

xTx

)
= max
X i

(
min

x⊥X i,x 6=0

xTMx

xTx

)
.

We will also use the notation x ⊥ Z for a set of vectors Z to indicate that x ⊥ z
for all z ∈ Z. This is equivalent to saying that x ⊥ span(Z) (the span of the vectors of

Z).
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In order to be able to use the Courant-Fischer Theorem we first note that

yT (D −A)y =
∑
u

y2
ud(u)− 2

∑
u∼v

yuyvw(u, v) =
∑
u∼v

(yu − yv)2w(u, v).

If we make the substitution x = D1/2y then we have

xTLx
xTx

=
(D1/2y)TL(D1/2y)
(D1/2y)T (D1/2y)

=
yTLy

yTDy
=
∑

u∼v(yu − yv)2w(u, v)∑
u y

2
ud(u)

. (5.1)

Comment. Here we run into small a problem when there are isolated vertices, in which

case there might be no y for which x = D1/2y. We will address this in the proof of

Theorem 29 below, but for now will assume there are no isolated vertices in the graph.

We now have

λi = min
Xn−i−1

(
max

x⊥Xn−i−1,x 6=0

xTLx
xTx

)
= min
Xn−i−1

(
max

D1/2y⊥Xn−i−1,D1/2y 6=0

yTLy

yTDy

)
= min

Yn−i−1

(
max

y⊥Yn−i−1,y 6=0

∑
u∼v(yu − yv)2w(u, v)∑

u y
2
ud(u)

)
, (5.2)

and similarly

λi = max
Yi

(
min

y⊥Yi,y 6=0

∑
u∼v(yu − yv)2w(u, v)∑

u y
2
ud(u)

)
. (5.3)

Proof of Theorem 29. Without loss of generality we may assume that the graph G has

no isolated vertices. We first will consider the case when G − H also has no isolated

vertices. The result is trivial if k ≤ t− 1 or k ≥ n− t− 1 (k ≥ n− t if H is bipartite),

since the eigenvalues of the normalized Laplacian always lie in the interval between 0

and 2 inclusive (see [11]). So we may assume that t− 1 < k < n− t− 1 (or n− t for H

bipartite).

We now show that θk ≥ λk−t+1. Suppose that {u1, u2, . . . , ut} are the noniso-

lated vertices of H, and let Z = {eu1 − eu2 , eu1 − eu3 , . . . , eu1 − eut}. Then using (5.2)

we have

θk = min
Yn−k−1

(
max

y⊥Yn−k−1,y 6=0

∑
u∼v(yu − yv)2wG−H(u, v)∑

u y
2
udG−H(u)

)
= min

Yn−k−1

(
max

y⊥Yn−k−1,y 6=0

∑
u∼v(yu − yv)2wG(u, v)−

∑
u∼v(yu − yv)2wH(u, v)∑

u y
2
udG(u)−

∑
u y

2
udH(u)

)
≥ min

Yn−k−1

(
max

y⊥Yn−k−1,y⊥Z,y 6=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y
2
udG(u)−

∑
u y

2
udH(u)

)
≥ min

Yn−k−1

(
max

y⊥Yn−k−1,y⊥Z,y 6=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y
2
udG(u)

)
≥ min

Yn−k+t−2

(
max

y⊥Yn−k+t−2,y 6=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y
2
udG(u)

)
= λk−t+1.
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In going from the second to the third line we added the condition that y also be perpen-

dicular to Z so that we are maximizing over a smaller set. With the condition that y ⊥ Z
then yu = yv for all u, v in H, and in particular the second term in the numerator drops

out. While in going from the fourth to the fifth line we consider a broader optimization

that would include the fourth line as a special case.

Next we show that θk ≤ λk+t for general H. Suppose that u1, . . . , ut are the

nonisolated vertices of H, and let Z = {eu1 , eu2 , . . . , eut}. Then using (5.3) we have

θk = max
Yk

(
min

y⊥Yk,y 6=0

∑
u∼v(yu − yv)2wG(u, v)−

∑
u∼v(yu − yv)2wH(u, v)∑

u y
2
udG(u)−

∑
u y

2
udH(u)

)
≤ max

Yk

(
min

y⊥Yk,y⊥Z,y 6=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y
2
udG(u)

)
≤ max

Yk+t

(
min

y⊥Yk+t,y 6=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y
2
udG(u)

)
= λk+t. (5.4)

In going from the first to the second line we added the condition that y also be per-

pendicular to Z so that we are minimizing over a smaller set. With the condition that

y ⊥ Z then yu = 0 for all u in H. In particular the second terms in the numerator and

denominator drop out. Finally, we consider a broader optimization that would include

the second line as a special case.

For the case when H bipartite let {u1, v1}, {u2, v2}, . . . , {ut−1, vt−1} be edges

of a spanning subgraph of H, and let Z = {eu1 + ev1 , eu2 + ev2 , . . . , eut−1 + evt−1}. Note

that if y ⊥ Z then for some γ, yu = ±γ, and in particular (yu − yv)2 = 4γ2 for all edges

{u, v} in H (here we are using that H is bipartite). So again using (5.3) we have

θk = max
Yk

(
min

y⊥Yk,y 6=0

∑
u∼v(yu − yv)2wG(u, v)−

∑
u∼v(yu − yv)2wH(u, v)∑

u y
2
udG(u)−

∑
u y

2
udH(u)

)
≤ max

Yk

(
min

y⊥Yk,y⊥Z,y 6=0

∑
u∼v(yu − yv)2wG(u, v)− 2γ2

∑
u dH(u)∑

u y
2
udG(u)− γ2

∑
u dH(u)

)
≤ max

Yk

(
min

y⊥Yk,y⊥Z,y 6=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y
2
udG(u)

)
≤ max

Yk+t−1

(
min

y⊥Yk+t−1,y 6=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y
2
udG(u)

)
= λk+t−1.

We went from the first to the second line as before using the above comments on γ. In

going from the second to the third line we used the following easily proved fact: let a, b, c

be real with 2b ≥ a ≥ 2c ≥ 0 and b > c ≥ 0, then (a − 2c)/(b − c) ≤ a/b. That the

assumptions on a, b, c are satisfied can be easily verified. Finally, we consider a broader

optimization that would include the third line as a case.
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We now turn to the case when G−H has isolated vertices u1, u2, . . . , um. We

approach this by considering the graph Gε which has loops of weight ε added to the

vertices u1, u2, . . . , um. A simple calculation shows that L(Gε − H) = L(G − H), and

in particular has the same eigenvalues, but now with the added loops has no isolated

vertices. If we let λεk denote the kth eigenvalue of L(Gε) then the above derivation shows

that

λεk−t+1 ≤ θk ≤

 λεk+t−1 H is bipartite,

λεk+t otherwise.

We now let ε→ 0, and since L(Gε)→ L(G) then λεk → λk, and the result follows.

5.3 Weak coverings and eigenvalues

The technique used to prove Theorem 29 can be used to prove other results.

In this section we give an interlacing result for weak coverings. We say that G is a weak

cover of H if there is some onto mapping π : V (G)→V (H) such that for all u, v ∈ V (H),

wH(u, v) =
∑

x∈π−1(u)

y∈π−1(v)

wG(x, y).

From this definition it follows that dH(v) =
∑

x∈π−1(v) dG(x). Alternatively, for a weak

covering we group the vertices of G in some manner then collapse the individual groups

of vertices into single vertices of H. To find the edge weights of H we add the weights of

any resulting parallel edges that are formed. An example of this is shown in Figure 5.2.

2 1

3
2

Figure 5.2: An example of a weak covering.

The idea of coverings for weighted graphs was previously considered by Chung

and Yau [16]. In their definition of a cover they required additional structure which

allows eigenvalues from H to be “lifted” up to G. Here we make fewer assumptions and

so might no longer have eigenvalues lifting up (hence we give the name “weak cover”).

Theorem 33. Let G be a weak cover of H with |V (G)| = n and |V (H)| = m, and

further let λ0 ≤ λ1 ≤ · · · ≤ λn−1 and θ0 ≤ θ1 ≤ · · · ≤ θm−1 be the eigenvalues of L(G)
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and L(H) respectively. Then for k = 0, 1, . . . ,m− 1 we have the following

λk ≤ θk ≤ λk+(n−m).

Proof. For i = 1, . . . ,m let Vi = π−1(vi), i.e., these are the groupings of the vertices of

G, and let Zi = {ei1 − ei2 , ei1 − ei3 , . . . , ei1 − eij} where Vi = {vi1 , vi2 , . . . , vij} ⊆ V (G).

Further we will let Z =
⋃
iZi. It is easy to check that the dimension of the span of Z is

n−m. Now using (5.3) we have

θk = max
Yk⊆Rm

(
min

y⊥Yk,y 6=0

∑
u∼v(yu − yv)2wH(u, v)∑

u y
2
udH(u)

)
= max

Yk⊆Rn

(
min

y⊥Yk,y⊥Z,y 6=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y
2
udG(u)

)
. (5.5)

In the second step we used the defining property of weak covers to lift vectors from H

to G so that we still satisfy the same Rayleigh quotient. Our only condition in lifting

is that yi = yπ(i); in particular if π(vi) = π(vj), then we need yπ(i) = yπ(j). This last

condition is easily achieved by requiring that the lifted vector be perpendicular to Z.

We now bound (5.5) in two ways. First, we can drop the requirement that we

remain perpendicular to Z; thus we are minimizing over a larger set and so we have

θk ≥ max
Yk

(
min

y⊥Yk,y 6=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y
2
udG(u)

)
= λk.

The second approach is to maximize over some larger set that will also consider the case

given in (5.5), i.e.,

θk ≤ max
Yk+n−m

(
min

y⊥Yk+n−m,y 6=0

∑
u∼v(yu − yv)2wG(u, v)∑

u y
2
udG(u)

)
= λk+n−m.

Combining the two inequalities above concludes the proof.

Alternatively it is easy to show that Theorem 33 follows from a result of

Haemers [23] on interlacing of eigenvalues of matrices. We have given the proof above

to emphasize the nature of the approach.

5.4 Comments on interlacing for directed graphs

Recently Chung [12] defined a Laplacian for aperiodic strongly connected di-

rected graphs and showed connections of its spectrum to mixing rates of random walks

and isoperimetric properties, and in a subsequent paper gave a further connection to the
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diameter of the graph [13]. A natural question is whether a similar interlacing result to

Theorem 29 holds for the Laplacian of a directed graph. In this section we will partially

answer this question in the negative.

5.4.1 Definition for the directed Laplacian

To define the Laplacian for a directed graph ~G we start with P the probability

transition matrix with Pu,v the probability of moving from u to v (for a weighted directed

graph Pu,v = w(u, v)/dout(u) where dout(u) =
∑

tw(u, t) is the out-degree of u). If we let

1 denote the all 1s vector then P1 = 1. If we assume that the graph is strongly connected

and aperiodic it follows from the Perron-Frobenius Theorem (see [26]) that there is a

unique (row) vector φ for which φP = φ with φ(v) > 0 for all v and
∑

v φ(v) = 1. This

vector φ is called the Perron vector of P .

If Φ is the diagonal matrix with Φ(v, v) = φ(v), then the directed Laplacian is

defined by Chung [12] as

L(~G) = I − 1
2
(
Φ1/2PΦ−1/2 + Φ−1/2P ∗Φ1/2

)
,

where P ∗ denotes the transpose of P .

With this definition it is not too difficult to construct counterexamples to the

corresponding statement of Theorem 28 for directed graphs. For example if we consider

the simple directed graphs given in Figure 5.3 we have that λ2(~G) = 0.324609 . . . <

0.362281 . . . = λ1(~G− ~H).

~G = ~G− ~H =

Figure 5.3: An example of a directed graph where the eigenvalues do not interlace.

5.4.2 Connecting directed Laplacians with undirected Laplacians

To understand why the corresponding statement of Theorem 28 could fail for

directed graphs we connect the Laplacian for a directed graph with the Laplacian for a

corresponding undirected graph.



69

Lemma 34. Let ~G be an aperiodic strongly connected weighted directed graph and let H

be a weighted undirected graph on the same vertex set with weights defined by

w(u, v) = φ(u)P (u, v) + φ(v)P (v, u).

Then L(~G) = L(H).

Proof. We note first that since φ is a left eigenvector of P and
∑

u P (v, u) = 1, it follows

that dH(v) =
∑

uw(u, v) = 2φ(v).

For terms on the diagonal we have

L(~G)v,v = 1− P (v, v) = 1− w(v, v)
2φ(v)

= 1− w(v, v)
dH(v)

= L(H)v,v,

while for the off-diagonal terms

L(~G)u,v = −1
2

(√
φ(u)
φ(v)

P (u, v) +

√
φ(v)
φ(u)

P (v, u)
)

= −
(
φ(u)P (u, v) + φ(v)P (v, u)

)√
(2φ(u))(2φ(v))

= − w(u, v)√
dH(u)dH(v)

= L(H)u,v.

This connection between directed and undirected Laplacians can be used to

establish several results. For instance it can be shown that the Cheeger inequality estab-

lished for the directed graph ~G in Chung [12] is equivalent to the already known Cheeger

inequality for the undirected graph H defined in Lemma 34.

The underlying principle of the directed Laplacian is based on circulations, i.e.,

a nonnegative function F : V × V → [0,∞) with the property that at each vertex u∑
v

w(v, u) =
∑
t

w(u, t).

If we think of the circulation F as a flow then the above equality can be interpreted

as saying that at each vertex the in-flow equals the out-flow. Chung [12] showed that

F (u, v) = φ(u)P (u, v) is a circulation and uses this to define the directed Laplacian. It

is easy to adapt Lemma 34 to give new definitions for directed Laplacians using different

types of circulations, and then establish some corresponding Cheeger inequalities and

other similar results.

Applying Lemma 34 to the graphs in Figure 5.3 we get the weighted undirected

graphs shown in Figure 5.4, where unspecified edges have weight 1. [We have scaled the

weights in Figure 5.4 to more easily compare the two graphs; it is simple to see by (5.1)

that scaling all the weights by some constant factor does not change the spectrum.]
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Figure 5.4: The corresponding undirected graphs for graphs given in Figure 5.3.

Now we see that the removal of a single edge in the directed graph in Figure 5.3

had an effect on many edges in the underlying undirected graph in Figure 5.4. So by

Theorem 29 the eigenvalues could spread by more than just 1, and in our case could

spread by at most 3.

In general the removal of a single edge in a directed graph can have a tremendous

impact on the underlying undirected graph. Using the results of Theorem 29 for the

underlying undirected graph then we cannot in general guarantee a tight spread of the

eigenvalues between the two graphs. Although for some special cases it can be shown

that the removal of a single edge has a small impact on the underlying undirected graph

in which case we can get a similar result.

This does not conclusively say that there is no corresponding statement such as

Theorem 28, but only illustrates the difficulty of using the approach given by use of the

Courant-Fischer Theorem. It would be interesting to see if there were some construction

such that for each k there exists an aperiodic strongly connected graph directed graph
~G such that the removal of a single edge leaves an aperiodic strongly connected directed

graph ~G− ~H and either λm+k(~G) < λm(~G− ~H) or λm−k(~G) > λm(~G− ~H) for some m.

5.5 A heuristic reason why the middle of the spectrum is

often ignored

The most commonly studied eigenvalues for the normalized Laplacian (and any

matrix for that matter) have been λ1 and λn−1. The further away from the extremes an

eigenvalue lies, the less it has been studied. Theorem 29 gives a heuristic argument for

why this should be the case.

The basic problem is that if a graph property can be changed by the addition

or removal of a small number of edges (i.e., some graphs can go from connected to

disconnected with the removal of a single edge), then the “interior” eigenvalues will not
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change by much (since they tend to be clustered close together and so the eigenvalues

will only have a small range that they can fall into), while the “fringe” eigenvalues can

change by a nontrivial amount.

5.6 Some interlacing results using results of Haemers

In this section we will consider some results derived from interlacing that were

known for the combinatorial Laplacian and show how to adopt them to the normalized

Laplacian. Our starting point is the following classical result (see Haemers [23] for a

short proof).

Theorem 35. Let the matrix S of size n × m be such that S∗S = Im and let A be a

Hermitian matrix of size n with eigenvalues µ1 ≤ · · · ≤ µn. Set B = S∗AS and let

η1 ≤ · · · ≤ ηm be the eigenvalues of B. Then the eigenvalues of A and B interlace, that

is µi ≤ ηi ≤ µn−m+i, for i = 1, . . . ,m.

The proofs for the normalized Laplacian are very similar to those involving the

combinatorial Laplacian and tend to involve a little more bookkeeping of the terms.

5.6.1 Interlacing sums of eigenvalues

We begin with the following which is a normalized version of a result given by

Bollobás and Nikiforov [6].

Theorem 36. Let G be a graph on n vertices with no isolated vertices, and let L denote

the Laplacian of G with eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. For every partitioning

of the vertices [n] = N1 ∪ · · · ∪Nm we have
m−1∑
i=1

λi ≤ m−
m∑
i=1

e(Ni, Ni)
volNi

=
∑

1≤i<j≤m
e(Ni, Nj)

(
1

volNi
+

1
volNj

)
≤

m−1∑
i=0

λn−1−i.

Proof. Let S = (sij) be the n×m matrix defined by

sij =


√
di/volNj if i ∈ Nj ;

0 otherwise.

With this definition it is easy to check that S∗S = Im. So by Theorem 35 we have

that the eigenvalues of B = S∗LS are interlaced with the eigenvalues of L. If we let

η1 ≤ η2 ≤ · · · ≤ ηm denote the eigenvalues of B, then we have

λi−1 ≤ ηi ≤ λn−1−m+i.
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From the interlacing inequalities it follows immediately that

m−1∑
i=0

λi =
m∑
i=1

λi−1 ≤
m∑
i=1

ηi ≤
m∑
i=1

λn−1−m+i =
m−1∑
i=0

λn−1−i.

Since λ0 = 0 we can start the left hand sum at 1. On the other hand we can find the

entries of B = (bi,j), namely,

bi,j =


1− e(Ni, Ni)

volNi
if i = j;

− e(Ni, Nj)√
volNi volNj

if i 6= j.

Using this one has

m∑
i=1

ηi = traceB =
m∑
i=1

(
1− e(Ni, Ni)

volNi

)
= m−

m∑
i=1

e(Ni, Ni)
volNi

.

Alternatively we note that

1− e(Ni, Ni)
volNi

=
volNi − e(Ni, Ni)

volNi
=
e(Ni, [n] \Ni)

volNi
=
∑
j 6=i

e(Ni, Nj)
volNi

,

and so
m∑
i=1

µi =
m∑
i=1

∑
j 6=i

e(Ni, Nj)
volNi

=
∑

1≤i<j≤m
e(Ni, Nj)

(
1

volNi
+

1
volNj

)
.

Combining everything gives the desired result.

5.6.2 Large disjoint sets

A surprising application of Theorem 35 is the following which is a normalized

version of a result of Haemers [23].

Theorem 37. Let G be a connected graph on n ≥ 2 vertices, and let L denote the

Laplacian of G with eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. If X and Y are disjoint

subsets of the vertices of G with no edges between X and Y , then

volX volY
volX volY

≤
(
λn−1 − λ1

λn−1 + λ1

)2

,

where X = V \X and Y = V \ Y .
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Proof. We will let ψU denote the characteristic vector of a subset U , i.e.,

ψU (v) =

 1 v ∈ U ;

0 v /∈ U.

Let λ = −1
2(λn−1 + λ1), and consider the following matrix

A =

 O L+ λI

L+ λI O

 .
This is a (2n)×(2n) matrix with eigenvalues ±(λi + λ), and where −λ, 1

2(λn−1 − λ1),

−1
2(λn−1−λ1), and λ are (respectively) the largest, second largest, second smallest, and

smallest eigenvalues. Recall that D is the diagonal degree matrix of G and consider the

following 2n× 4 matrix

S =

 D1/2ψX D1/2ψX 0 0

0 0 D1/2ψY D1/2ψY

 ,
here 0 denotes the all 0s column vector. Finally, let

E =


volX 0 0 0

0 volX 0 0

0 0 volY 0

0 0 0 volY

 .

A straightforward calculation shows that (SE−1/2)∗(SE−1/2) = I4, so by Thereom 35

we have that the eigenvalues of A and B = (SE−1/2)∗A(SE−1/2) interlace. More par-

ticularly, since E−1/2BE1/2 is similar to B we have that the eigenvalues of E−1S∗AS
interlace with the eigenvalues of A. Calculating we have

E−1S∗AS =

 O B1

B2 O

 , where,

B1 =


(λ+ 1) vol(X ∩ Y )− e(X,Y )

volX
(λ+ 1) vol(X ∩ Y )− e(X,Y )

volX
(λ+ 1) vol(X ∩ Y )− e(X,Y )

volX
(λ+ 1) vol(X ∩ Y )− e(X,Y )

volX

 ,

B2 =


(λ+ 1) vol(X ∩ Y )− e(X,Y )

volY
(λ+ 1) vol(X ∩ Y )− e(X,Y )

volY
(λ+ 1) vol(X ∩ Y )− e(X,Y )

volY
(λ+ 1) vol(X ∩ Y )− e(X,Y )

volY

 .
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By our assumptions we have that X ∩ Y = ∅ (so X ⊆ Y and Y ⊆ X), and

e(X,Y ) = 0. It follows that vol(X ∩ Y ) = volX and vol(X ∩ Y ) = volY , and a simple

computation shows that

e(X,Y ) = e(X,Y ) + e(X,Y ) = e(X,V ) = volX,

so we have e(X,Y ) = vol(X ∩ Y ) = volX; similar computations show that e(X,Y ) =

vol(X ∩ Y ) = volY . Next note that

volX = e(X,V ) = e(X,Y ) + e(X,Y ) = volY + e(X,Y ),

showing that e(X,Y ) = volX − volY , and a similar calculation shows that e(X,Y ) =

volY − volX.

Using the above we simplify to get

E−1S∗AS =



0 0 λ 0

0 0
(

1− volY
volX

)
λ

volY
volX

λ

volX
volY

λ

(
1− volX

volY

)
λ 0 0

0 λ 0 0


.

If we let ν1 ≤ ν2 ≤ ν3 ≤ ν4 denote the eigenvalues of E−1S∗AS then it is

easy to check that ν1 = λ, ν4 = −λ and by interlacing that −ν2 ≤ 1
2(λn−1 − λ1) and

ν3 ≤ 1
2(λn−1 − λ1). In particular, we have

volX volY
volX volY

λ4 = det(E−1S∗AS) = ν1ν2ν3ν4 ≤
1
4

(λn−1 − λ1)2λ2,

which upon rearranging and substituting the definition of λ gives,

volX volY
volX volY

≤
(
λn−1 − λ1

λn−1 + λ1

)2

.

5.6.3 An extension to bipartite graphs

We can mimic the proof of Theorem 37 to get a (slightly) better result for

bipartite graphs.

Lemma 38. Let G be a connected bipartite graph with n ≥ 2 vertices, and vertex set

V1 ∪ V2 where edges in G go between V1 and V2. Let L denote the Laplacian of G with
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eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 = 2. If X ⊆ V1 and Y ⊆ V2 with no edges between

X and Y , then
volX volY

vol(V1\X) vol(V2\Y )
≤ (1− λ1)2.

Proof. We consider the matrix

I − L = D−1/2AD−1/2 =

 O B

B∗ O

 ,
where the initial rows are indexed by V1 and the terminal rows are indexed by V2. This

matrix has eigenvalues −1 ≤ 1−λn−2 ≤ · · · ≤ 1−λ1 ≤ 1. We interlace as in Theorem 37

where we now let S be the n× 4 matrix

S =
[
ψX ψV1\X ψV2\Y ψY

]
,

and

E =


volX 0 0

0 volV1\X 0 0

0 0 volV2\Y 0

0 0 0 volY

 .
So the eigenvalues of A = I − L and

E−1S∗AS =



0 0
e(X,V2\Y )

volX
e(X,Y )
volX

0 0
e(V1\X,V2\Y )

volV1\X
e(V1\X,Y )
volV1\X

e(X,V2\Y )
volV2\Y

e(V1\X,V2\Y )
volV2\Y

0 0

e(X,Y )
volY

e(V1\X,Y )
volY

0 0


interlace. Doing similar calculations as in Corollary 37 we have that

e(X,V2\Y ) = volX, e(V1\X,Y ) = volY, and

e(V1\X,V2\Y ) = volV1\X − volY = volV2\Y − volX.

Using these we have that

E−1S∗AS =



0 0 1 0

0 0 1− volY
volV1\X

volY
volV1\X

volX
volV2\Y

1− volX
volV2\Y

0 0

0 1 0 0


,
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which has eigenvalues −1 = ν1 ≤ ν2 ≤ ν3 ≤ ν4 = 1. By interlacing we have that

ν3 ≤ 1− λ1 and −ν2 ≤ λn−2 − 1.

So we now have that

volX volY
vol(V1\X) vol(V2\Y )

= detE−1S∗AS = −ν2ν3 ≤ (1− λ1)(λn−2 − 1).

Finally we note that by the Peron-Frobenius Theorem, the spectrum of I−L is symmetric

and so λn−2 − 1 = 1− λ1, substituting this in we have

volX volY
vol(V1\X) vol(V2\Y )

≤ (1− λ1)2.

We can compare this result with a general result for discrepancy in a bipartite

graph.

Lemma 39. Let G be a connected bipartite graph with n ≥ 2 vertices, and vertex set

V1 ∪ V2 where edges in G only go between V1 and V2. Then for all X ⊆ V1 and Y ⊆ V2

we have that ∣∣∣∣e(X,Y )− volX volY
volG

∣∣∣∣ ≤ (1− λ1)
√

volX volY ,

where λ1 is the second smallest eigenvalue of L, and we define volG := volV1 = volV2.

For the case when there are no edges between X and Y Lemma 39 implies

volX volY
volG volG

≤ (1− λ1)2,

which is a weaker result than the one given in Lemma 38

Proof of Lemma 39. We recall that

I − L = D−1/2AD−1/2 =

 O B

B∗ O

 ,
has largest and smallest eigenvalues 1 and −1 respectively. In particular if we let DV1

and DV2 denote the restrictions of the degree matrices to V1 and V2 respectively we have

that

S1 =
1√

2 volG

 D
1/2
V1

1

D
1/2
V2

1

 ,
and,

S2 =
1√

2 volG

 D
1/2
V1

1

−D1/2
V2

1

 ,
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are the normalized eigenvectors associated with 1 and −1 respectively. We consider the

matrix B defined as

D−1/2AD−1/2 +
1

2 volG
D1/2JD1/2 − 1

2 volG
D1/2

 J|V1| −J|V1|×|V2|

−J|V2|×|V1| J|V2|

D1/2

which a straightforward calculation shows that

e(X,Y )− volX volY
volG

= 〈D1/2ψX ,BD1/2ψY 〉.

Finally, using that |〈x,My〉| ≤ ‖M‖ ‖x‖ ‖y‖, where ‖M‖ denote the largest singular

value of M , we have that∣∣∣∣e(X,Y )− volX volY
volG

∣∣∣∣ ≤ ‖B‖ ‖D1/2ψX‖ ‖D1/2ψY ‖ = ‖B‖
√

volX volY .

All that remains is to determine ‖B‖, this is done by noting that this is the largest

(normed) eigenvalue of B which has the same eigenvalues as I − L, except we have

“subtracted” out ±1. So the largest eigenvalue is (1−λ1) (as in Corollary 37 by symmetry

this is equal to (λn−2 − 1)). Substituting this in gives the desired result.
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