
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
A Survey of Characteristics and Signatures of A Few Low-Temperature Phases of Quantum 
Matter

Permalink
https://escholarship.org/uc/item/3qf979hg

Author
Ish, Daniel

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3qf979hg
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

A Survey of Characteristics and Signatures of A Few

Low-Temperature Phases of Quantum Matter

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Physics

by

Daniel Gregory Ish

Committee in charge:

Professor Mark Srednicki, Chair
Professor Cenke Xu
Professor David Weld

September 2018



The Dissertation of Daniel Gregory Ish is approved.

Professor Cenke Xu

Professor David Weld

Professor Mark Srednicki, Committee Chair

September 2018



A Survey of Characteristics and Signatures of A Few Low-Temperature Phases of

Quantum Matter

Copyright c© 2018

by

Daniel Gregory Ish

iii



For Sarah, partner and joy, and for Emmy, cat and role model.

iv



Acknowledgements

First, I should acknowledge my collaborators. Mark Srednicki, Leon Balents, Cenke Xu,

Matthew Fisher, Andreas Ludwig, Max Metlitski and Tim Hseih have all contributed

significantly to my development as a physicist. Reaching back slightly further, I should

also note that I would not have been able to succeed in graduate school without the

mentorship of Barbara Jones and David Biron. I’ve also very much enjoyed and benefited

from discussions with my classmates, particularly Alex Rassmussen and Kelly Pawlak.

On a personal level, I first and foremost have to acknowledge my (very soon to be)

wife Sarah Del Ciello, who has been an incredible source of support during these years

and without whom this thesis may never have happened. I should also thank my family,

whose confidence in me and support for me have helped me to keep moving forwards. I’d

also like to thank my roommates, Evan Bauer, Lucas Brady and Michael Swift, whose

camraderie and discussion helped keep it light. Last, but certainly not least, I’d like to

thank Darren “Chuck” Valovcin, for many helpful sidebars.

v



Curriculum Vitæ
Daniel Gregory Ish

Education

2018 Ph.D. in Physics (Expected), University of California, Santa Bar-
bara.

2015 M.A. in Physics, University of California, Santa Barbara.

2013 B.S. in Mathematics with Honors, University of Chicago

2013 B.A. in Physics with Honors, University of Chicago

Publications

Ish, D. and Balents, L. “Theory of excitations and dielectric response at a spin-orbital
quantum critical point,” PRB, 92 094413(2015).

L. Mittelstdt, M. Schmidt, Zhe Wang, F. Mayr, V. Tsurkan, P. Lunkenheimer, D. Ish, L.
Balents, J. Deisenhofer, and A. Loidl. “Spin-orbiton and quantum criticality in FeSc2S4,”
PRB 91 125112(2015)

Iwanir S; Tramm N; Nagy S; Wright C; Ish D; Biron D. “The microarchitecture of
behavior during lethargus: homeostatic bout dynamics, a typical body posture, and
regulation by a central neuron.” Sleep. 2013;36(3):385-395.

vi



Abstract

A Survey of Characteristics and Signatures of A Few Low-Temperature Phases of

Quantum Matter

by

Daniel Gregory Ish

We study two distinct systems along a similar theme. In one, we present new theoret-

ical studies of the optical properties of the J2-λ model for the materieal FeSc2S4, which

places it close to a quantum critical point on the disordered side of a quantum phase

transition between a Néel ordered phase and a “Spin-Orbital Liquid” in which spins and

orbitals are entangled, quenching the magnetization. We compute the dispersion relation

for the quasiparticle excitations and the form of the collective response to electric field.

We argue that the latter directly probes a low energy excitation continuum characteristic

of quantum criticality, and that our results reinforce the consistency of this model with

experiment. In the other, through a mixture of analytic and numerical techniques, we

explore the optimal approximation by a free Majorana state to individual disorder real-

izations of the Sachdev-Ye-Kitaev model, along with a generalization of it. We elucidate

the properties of the known time-reversal symmetry breaking phase in the generalized

model, finding strong evidence of ”spin glass” order. For the Sachdev-Ye-Kitaev model

itself, our results are inconclusive but suggest a similar order may be present at T = 0.
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Chapter 1

Introduction

1.1 Permissions and Attributions

1. The content of chapter 2 is the result of a collaboration with Leon Balents, and has

previously appeared in Physical Review B[1].

2. The content of chaper 3 and Appendix A is the result of a collaboration with Mark

Srednicki.

1.2 Context and Connective Tissue

The notion of a phase is a central organizing principle in condensed matter physics.

For the sake of the uninitiated reader, we give a brief survey of the concept and its impli-

cations for experiment. The natural setting for discussing this question is the cannonical

ensemble. Though we will primarily be concerned with these questions in quantum sys-

tems, we begin in a classical setting for the purposes of a gradual introduction of concepts.

In this setting, we have some energy function for each classical state s, E(s) and we assert

that when the system is in thermal equilibrium at a temperature T the probability of
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Introduction Chapter 1

observing it in a state s is

p(s) ∝ e−E(s)/kBT (1.1)

Ostensibly for convinience, we form the free energy

F = −kBT ln

[∫
e−E(s)/kBTds

]
(1.2)

where what exactly we mean by this integral depends on the space of possible states. The

convenience in question is that this allows us to easily write the probability of observing

the system in state s as

p(s) = e−(E(s)−F)/kBT (1.3)

and compute the expected value of any observable quantity as

〈O(s)〉 =

∫
O(s)p(s)ds (1.4)

Most commonly, one will be concerned with quantities which the energy depends on

as

E(h, s) = E(0, s)− hO(s) (1.5)

for some “applied field” h, which we imagine is under the control of the experimenter.

In this instance, we can actually compute

〈O(s)〉 = −∂F
∂h

(1.6)

2



Introduction Chapter 1

along with higher cumulants using higher derivatives. This relationship is so useful that

we will introduce artificial applied fields in order to compute any observables we desire.

One can also immediately see that the bulk thermodynamic quantities that one might

be interested in (i.e. average energy, entropy, specific heat, etc.) are also accessible via

temperature derivatives of this free energy. This allows us the luxury of studying only

the free energy, since it contains all of the information we are interested in.

We are now in a position to begin a roundabout definition of a phase. We start with

a definition of a phase transition: a phase transition is what happens at a point of non-

analyticity in the “thermodynamic limit” of the free energy (as a function of temperature

and applied fields). Immediately, one is drawn to ask what exactly a “thermodynamic

limit” is. For any model we study, there will be some parameter which characterizes the

total size of the system at hand. This might be a number of discrete sites, N , or a total

volume of the system, V . For the sake of concreteness,1 let us take the case where the

state space is discrete and equipped with the counting measure, giving a total number

of states which is some well behaved function of a number of sites N . Thus, the free

energy becomes the log of a finite sum of exponentials and (provided the energy function

is analytic in applied fields) is analytic everywhere. In order to observe a non-analyticity,

we must take the system size to ∞ at fixed values of the applied fields and temperature.

Taking this limit is referred to as the “thermodynamic limit.”

With this in hand, we say vaguely that phases are the regions of parameter space

separated by phase transitions. One might reasonably ask what is vague about that

definition. We illustrate the limitations with an example. Consider the d = 2 classical

Ising model. The state space of the model is ZN2

2 , thought of as N2 “signs” σi,j sitting

1One could no doubt reformulate this argument in a more universal context using the Vitali conver-
gence theorem, but the effort is disproportionate to the impact for our purposes.

3
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on an N ×N grid. That is, to be pedantic

σi,j = πi+Nj(s) (1.7)

for s ∈ ZN2

2 where πk is the projection onto the kth coordinate and we are thinking of

Z2 as ({±1}, ·). The measure on the state space, ds, is the counting measure, i.e. the

integral is actually a sum. The energy function is given by

E(s) = −J
2

N∑
i=1

∑
ν=±1

σi,jσi,j+ν + σi,jσi+ν,j −
∑
i

hi,jσi,j (1.8)

where all arithmetic in subscripts is carried out mod N . Onsager[2] solved this model

exactly at hi,j = 0, showing that the N →∞ limit of the free energy has a non-analyticity

as a function of T at

T = Tc ≡
2J

kB ln(1 +
√

2)
(1.9)

Thus, by our definition we are drawn to conclude that this model exhibits two phases,

one above and one below this temperature. The question of what sets these two phases

apart from one another (i.e. how are they different physically) is closely related to the

foreshadowed deficiency in our current definition.

First, we address the deficiency in our definition of a phase. Consider the model at

hi,j = h, where h is not necessarily 0. Using the more modern tool of the renormalization

group[3], one can show that actually the free energy as a function of both h and T is

analytic everywhere except the line h = 0, T ≤ Tc. This poses a rather dramatic problem

for our definition, as the points of non-analyticity do not separate regions in parameter

space. Furthermore, one wonders at the apparent change in number of phases with the

addition of a new parameter.

4
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We solve these problems by defining a phase and a phase transition in a somewhat

narrower context, motivated by what exactly happens in the Ising model at hi,j = 0 and

T = Tc. In the case of the Ising model, we can notice that the model has a Z2 symmetry

at hi,j = 0 given by

s→ −s (1.10)

Demanding that this Z2 symmetry be preserved restricts us to the hi,j = 0 line in param-

eter space and allows this non-analyticity to actually separate two distinct regions. This

gives us a more serviceable definition of a phase transition: if a model has a symmetry

group G, a phase transition is a non-analyticity in the free energy in the absence of any

applied fields which break the symmetry.

Of course, what constitutes an “applied field” rather than a inextricable portion of

one’s model is intertwined with the question of what symmetries one’s model possesses.

In practice, this ambiguity is most frequently resolved in one of two ways, depending

on the goals of the inquiry. If one is motivated by understanding an actual physical

system, then the properties of that system will answer this question. That is, if it’s a

field the experimenter is applying, it’s probably an applied field. On the other hand, if

one is motivated to explore possible classes of phase transitions, one is free to specify the

symmetry of the model at will.

At first blush, the symmetry group in question seems a bit superfluous, since we may

as well have simply declared some fields “off limits” in an only marginally more ad-hoc

way. However, the symmetry group that the model possesses is actually closely linked

with the nature of the transition. Let us return to the d = 2 Ising model with hi,j = h.

5
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One can define a magnetization:

m(h, T ) =
1

N2

∑
ij

〈σi,j〉 (1.11)

and notice that the action of Z2 that gives a symmetry at h = 0 also gives

m(−h, T ) = −m(h, T ) (1.12)

In terms of this quantity, the non-analyticity at h = 0, T < Tc is fairly easy to

characterize. We can notice that

lim
h→0+

lim
N→∞

m(h, T ) = ms 6= 0 (1.13)

and of course the limit from below is equal to −ms, according to Equation 1.12. We refer

to ms as the “spontaneous magnetization,” since it appears as a residual magnetization

even at h = 0. Since we can see that

m(h, T ) = − 1

N2

∂F
∂h

(1.14)

in concert with Onsager’s calculation, this indicates that the non-analyticity in the free

energy on this line is due to a jump discontinuity in the h derivative of the free energy.

We now have three different candidates for the h = 0 state of the system depending on

our order of limits and which direction we approach h = 0 from in the thermodynamic

limit. Since two of these have some spontaneous magnetization which breaks the Z2

symmetry according to the direction of approach, we think of the symmetry as having

been broken in the thermodynamic limit. Practically speaking, we use these two states

to model the state of a physical system due to the probability that any physical system

6



Introduction Chapter 1

will have encountered some transient biasing field during its preparation.

In the remaining chapters, we will explore two systems of considerably greater com-

plexity that nonetheless develop along this theme. In one, we find a system in the ordered

side of a transition which breaks crystallographic Td and translations symmetries and find

some experimental evidence for the proximity of this transition. In the other, a simple

Z2 symmetry breaking will interact interestingly with disorder, giving a richer ordered

state.

7



Chapter 2

Signatures of a Quantum Critical

Paramagnet

2.1 Introduction

A suite of experimental probes[4, 5, 6, 7, 8, 9, 10] identifies the A-site spinel FeSc2S4

as a rare example of a orbitally degenerate antiferromagnet which resists magnetic or

orbital order down to a temperature of tens of millikelvin, making it a truly quantum

paramagnet. It has been suggested[11, 12] to lie close to a quantum critical point, making

it a compelling object of study. This prior theoretical work proposed the ”J2-λ” model

for this compound in terms of spin two, Sj, and spin one half, Tj, operators on the

diamond lattice with the Hamiltonian

H = J2

∑
〈i,j〉

Si · Sj +
∑
i

H0
i −B

∑
i

Szi (2.1)

8



Signatures of a Quantum Critical Paramagnet Chapter 2

where 〈i, j〉 stands for next nearest neighbor bonds and the on-site Hamiltonian H0
i is

given by

H0
i = −λ

3

(√
3T xi

[
(Sxi )2 − (Syi )2

]
+ T zi

[
3 (Szi )2 − S2

i

])
(2.2)

with J2 > 0 and λ > 0. We have included in Eq. (2.1) an external magnetic field B, taken

for concreteness along the crystalline (001) axis, whose effects we will study further in the

following. One should interpret this Hamiltonian as describing the low-energy dynamics

of the 6 d electrons on the Fe2+ sites. Due to the tetrahedral crystal field, the d manifold

splits into a lower e doublet and an upper t2 triplet. These states are then filled in a

high-spin configuration on the assumption that on site Hund’s Rule exchange dominates

the crystal field splitting, giving an overall spin 2 (Si) together with a two fold orbital

degeneracy (Ti). The J2 term in the Hamiltonian is a NNN antiferromagnetic exchange

term which arises in the standard way from virtual hopping between Fe2+ sites and the

λ term represents the effect of spin-orbit coupling at second order, coupling the e hole to

the overall spin 2.[13, 14]

With J2 = B = 0, H0
i describes a system of uncoupled Fe2+ sites with tetrahedral

geometry under the influence of spin orbit coupling. This splits the 10-fold degenerate

high-spin manifold into five equally spaced levels separated by energy λ. These are, in

order of ascending energy, an a1 singlet, a t1 triplet, an e doublet, a t2 triplet and an a2

singlet. The a1 ground state takes the form

1√
2

∣∣x2 − y2
〉
|0〉+

1

2

∣∣3z2 − r2
〉

(|2〉+ |−2〉) (2.3)

where the number in the second ket in each product refers to the Sz eigenvalue. Crit-

ically, this state has zero average magnetization along all axes. In the presence of J2,

9



Signatures of a Quantum Critical Paramagnet Chapter 2

single site t1 excitations (”triplons” or ”spin-orbitons”) acquire a k-dependent dispersion,

but remain massive until J2/λ = 1/16 at which point the system undergoes a quantum

phase transition to antiferromagnetic ordering at wave vector q = (2π, 0, 0) and sym-

metry related wave vectors.[11, 12] In the J2-λ model, this ordering actually happens

independently on each of the fcc sublattices. A NN exchange term, J1, is also allowed

by symmetry,[11, 12] but is expected to be much smaller[11, 12, 15] and is difficult to

distinguish from J2 experimentally at k = 0, which will be the regime of focus in this

article. This term controls the relative orientation of the magnetizations of the A and B

sublattices.

a1

t1

e

t2

a2

λ

Figure 2.1: Spectrum of H0
i , with magentic dipole allowed transitions (blue) and elec-

tric dipole allowed transitions (red, dashed). The number of lines in a level indicates
the degeneracy of that level.

One can argue for the consistency of this model with FeSc2S4 at lowest order in terms

of two distinctive experimental observations: the lack of observed magnetic ordering

down to temperatures of 50mK[9, 10] and the observation of a low energy mode at

momentum (2π, 0, 0) by neutron scattering.[8] Taken together, these suggest that the

model at least qualitatively predicts the behavior of the compound if we suppose that

the compound lies on the disordered side of the transition close to the QCP. Indeed,

previous estimates[11, 12] of the magnitude of J2/λ in FeSc2S4 give J2/λ ≈ 1/17, putting

10
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the material just on the disordered side of the transition.

Given the striking properties of this material, it is no surprise that it has been the sub-

ject of recent experimental investigations, primarily focused on its optical properties.[4, 5]

In this article, we attempt to make contact between this model and the observed optical

properties of FeSc2S4 in order to argue for its continued consistency with experimental

results. In order to do this, we will both investigate the fate of single site dipole allowed

transitions in the presence of non-zero J2, predicting both the shift in location and g fac-

tor, and investigate the character of the collective response to k = 0 electric fields. We

also derive expressions for as-yet unobserved quantities and propose possible experiments

to measure them.

2.2 Magnetic Dipole Exitations

The single site problem has a single magnetic dipole allowed transition from the

ground state, a1 → t1. We expect that in the presence of J2, this excitation will still

result in a peak in the AC response of the material to magnetic fields, but will shift in

energy. Given the proposed proximity of the material to a quantum phase transition,

we expect perturbation theory to be inaccurate when predicting the location of these

excitations. Thus, to determine their dispersion, we calculate the RPA susceptibility in

the presence of a (001) directed field and investigate its pole structure as a function of k.

2.2.1 Formalism and B = 0 Magnetic Dipole Excitations

To that end, we consider the imaginary time dynamic susceptibility

χµνij (τ1 − τ2) =
〈
TτSµi (τ1)Sνj (τ2)

〉
(2.4)

11
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where

Sµ(τ) = Sµ(τ)− 〈Sµ〉 (2.5)

Performing a Hubbard-Stratonovich transformation to decouple the exchange term, we

find the partition function to be given by

Z =

∫
D[Φ]e−Seff [Φ] (2.6)

with the effective action for the auxiliary field Φ

Seff [Φ] =
1

2

∫
dτ
∑
ij

J−1
ij Φi · Φj − lnW [Φ] (2.7)

where W [Φ] is the partition function for the J2 = 0 problem with a magnetic field of

−iΦµeµ applied to each site (the ”single site” problem). The dynamic susceptibility is

then related to the propagator for the auxiliary field, Ω(k, ω), by

χ(k, ω) = J(k)−1 − J(k)−2Ω(k, ω) (2.8)

where J(k) is the Fourier transform of the interaction

J(k) = J2

∑
A

cos (k ·A) (2.9)

with A the 12 fcc nearest neighbors. If we then expand the action to second order in Φ

about its saddle point (Φ = 0), we find that the bare propagator for the auxiliary field,

12
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Ω0, is given by

Ω0 = [J(k)−1 + χ0(ω)]−1 (2.10)

with χ0(ω) the dynamic susceptibility of the single site problem and the inverse being, of

course, the matrix inverse. Together with Equation 2.8 this gives the RPA susceptibility

χRPA(k, ω) = χ0(ω)[1 + J(k)χ0(ω)]−1 (2.11)

which we analytically continue to extract the real-time RPA susceptibility in terms of the

real-time single site susceptibility. We can write the real time single site susceptibility in

terms of the spectral representation

χµν0 (ω) =
∑
j 6=0

〈0|Sµ|j〉 〈j|Sν |0〉
Ej − E0 − ω

+
〈0|Sν |j〉 〈j|Sµ|0〉
Ej − E0 + ω

(2.12)

with |0〉 denoting the ground state. Using this, we find that both the single site and RPA

susceptibilities are multiples of the identity and that the RPA susceptibility exhibits poles

at

ω(k) = λ

√
1 +

4

λ
J(k) (2.13)

which predicts a pole in the k = 0 susceptibility at

ω(0) = λ

√
1 + 48

J2

λ
≈ 1.95λ (2.14)

13
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at the predicted value for J2, J2 = λ/17, as previously reported.[11] Expanding this

dispersion to first order in J2 gives

ω(k) = λ+ 2J(k) +O(J2
2 ) (2.15)

in agreement with first order perturbation theory.

2.2.2 Magnetic Dipole Excitations with B 6= 0

The preceding analysis can be repeated in the presence of a magnetic field with little

change. The location of the Φ saddle point simply shifts due to the presence of a magnetic

term in the associated single site problem, leading to a different mean field. The new

saddle point is of the form

Φ0(τ) = −iβµ (2.16)

with βµ determined by the mean field consistency equation

βµ = 12J2 〈Sµ〉0 (2.17)

where 〈·〉0 stands for averages taken in the single site problem in the presence of the

field (Bµ − βµ) eµ, with Bµeµ the applied field. In our case, since the applied field is

considered only along the (001) direction, we have that only βz is non-zero. The form of

the RPA susceptibility is the same as in Equation 2.11, save for the fact that the single

site susceptibility is now calculated in the mean field

χµν0 (τ) = 〈TτSµ(τ)Sν(0)〉0 (2.18)

14
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Applying the magnetic field reduces the tetrahedral symmetry of the single site prob-

lem, causing some transitions a1 → t2 to become allowed. As will be discussed in Sec-

tion 2.3, the shifts in the energies of the t2 excitations may not be well captured by the

the J2-λ model and have not yet been experimentally observed. In the analysis that fol-

lows, the poles due to these transition exhibit some pathological behavior. In particular,

as B → 0, they return to the single site energy of the t2 excitations, in contrast with the

behavior of the t1 excitations. This is also in contrast to the perturbative result, which

gives a shift of the t2 energies at second order in J2. Consequently, we will not present

the results of the B 6= 0 RPA for the two t2 excitations that become allowed.

For B 6= 0, the analysis of the pole structure of the RPA suceptibility is complicated

significantly by that fact that the single site susceptibility is no longer a multiple of

the identity. We only retain that the susceptibility is block-diagonal in the zz and xy

blocks. Even with this reduced symmetry, there is still some remaining structure that we

can exploit. Using the spectral representation, we see that χxx0 = χyy0 and χxy0 = −χyx0 .

Together with the fact that χyx0 is purely imaginary, this implies that the single site

susceptibility is diagonalized at all frequencies (and hence all imaginary times) by the

same unitary transformation. The eigenvalues of the xy single site susceptibility are then

χ±0 (τ) = χxx0 (τ)± iχxy(τ) =
1

2

〈
TτS

∓(τ)S±(0)
〉

0
(2.19)

and, of course, χzz. Together with Equation 2.11, gives that the eigenvalues of the RPA

susceptibility are

χ±RPA(k, ω) =
χ±0 (ω)

1 + J(k)χ±0 (ω)
(2.20)

15



Signatures of a Quantum Critical Paramagnet Chapter 2

and

χzzRPA(k, ω) =
χzz0 (ω)

1 + J(k)χzz0 (ω)
(2.21)

Furthermore, we can actually see by the spectral representation that χ−0 (ω) = χ+
0 (−ω),

which implies the same result for χ−RPA. So, we actually need only investigate the pole

structure of χ+
RPA and χzzRPA. This is quite easy to do for χzz, since only one state has a

non-vanishing Sz matrix element with the ground state at all B. Calling this state |z〉

and its energy εz, we find poles of χzzRPA at

ωz(k) = εz

√
1 +

2J(k)

εz
|〈0|Sz|z〉|2 (2.22)

where it should be noted that εz, |0〉, |z〉 and Sz all depend on B through the mean field.

This result can also be seen to be consistent with perturbation theory to first order in

J2, though one must carefully track the dependence of the mean field on J2 in order to

obtain all the terms.

The poles of χ+
RPA are more difficult to extract exactly, due to the larger number

of states contributing to χ+
0 . We can cast their location as the roots of an 8th order

polynomial, however, and solve this polynomial numerically as a function of B and J2,

producing Figures 2.2 and 2.3. Notice that non-zero J2 actually reinforces the linear

behavior of the triplet at k = 0 in small field. This is easily understood by noticing

that the mean field is strictly smaller than the applied field, since the antiferromangetic

interaction imposes an energy cost to uniform magnetization.

16
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Figure 2.2: Energy of the t1 triplet excitations versus B in the single site problem
(dashed) and as given by RPA at k = 0 (solid). Field and energy are both measured
in units of λ.

2.2.3 The Linear B Regime

Computation of the g Factor

In order to characterize the splitting of the magnetic triplet in low field, we can

compute an effective g factor in RPA

g(k) = 2
∂ε+(B,k)

∂B

∣∣∣∣
B=0

(2.23)

where we have anticipated that this splitting may depend on wave vector, and included

a factor of 2 to account for the fact that B = 2µBBphys.[13, 14] Now, if we define the

total field felt by the site as

Bs = B − βz (2.24)
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Figure 2.3: Energy of the t1 triplet excitations versus kx for a few values of B, at
J2 = λ

17 . Field and energy are both measured in units of λ.

we then find

g(k) = 2
∂ε+(Bs,k)

∂Bs

∣∣∣∣
Bs=0

∂Bs

∂B

∣∣∣∣
B=0

(2.25)

Implicitly differentiating the mean field consistency equation gives

∂Bs

∂B

∣∣∣∣
B=0

=
1

1 + 4J(0)
λ

(2.26)

For the other derivative, we use first order regular perturbation theory on the poly-

nomial derived from RPA to find

2
∂ε+(Bs,k)

∂Bs

∣∣∣∣
Bs=0

= 1 + 4
J(k)

λ
(2.27)

so that

g(k) =
λ+ 4J(k)

λ+ 4J(0)
(2.28)

At the zone center, this predicts no modification to the single site g factor of 1. Cu-
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riously, we also find that the g factor at the ordering wave vector decreases to zero as we

approach the critical point. This agrees well with the qualitative behavior observed in

Figure 2.3. Notice also that by B = 1 and J2/λ = 1/17, we are already well outside of

the the linear regime at the ordering wave vector.

Small Fields

In the linear B regime, we actually find that the system responds identically to a

static applied field B = Bn̂ in any direction. To see this, we show that the change in

the ground state magnetization and dynamic susceptibility of the single site is isotropic

to first order in B. Since these are the only two quantities from the single site problem

that enter the calculation of the RPA susceptibility, this is sufficient to show that the

response is isotropic at the RPA level. For this section only, B will refer to the magnitude

of an arbitrarily directed field, rather than the magnitude of field applied along the (001)

direction. So, let |m〉 denote any exact eigenstate of the single site Hamiltonian in the

presence of B and write

|m〉 = |m0〉+B |m1〉+O(B2) (2.29)

For the ground state, we can see

|01〉 =
1

λ

∑
j 6=0

|j0〉 〈j0|n̂ · S|00〉 (2.30)

giving

m =
〈0|S|0〉
〈0|0〉2

= 2B< [〈00|S|01〉] =
4B

λ
+O(B2) (2.31)
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so that the magnetization of the ground state is indeed isotropic to first order in B.

As for the single site susceptibility, we will receive two corrections to first order in B,

one from the first order correction to the energies and one from the first order correction

to the states. We will write this as

χµν0 (ω,B) = χµν0 (ω, 0) +B (ηµνE (ω) + ηµνs (ω)) +O(B2) (2.32)

with ηE begin the first order correction from a shift in the energies and ηs being that

from the states. Let us focus first on ηs. Investigating the relevant product of matrix

elements from the spectral representation for χ0 gives

〈0|Sµ|n〉 〈n|Sν |0〉 = 〈00|Sµ|n0〉 〈n0|Sν |00〉

+B 〈01|Sµ|n0〉 〈n0|Sν |00〉

+B 〈00|Sµ|n1〉 〈n0|Sν |00〉

+B 〈00|Sµ|n0〉 〈n1|Sν |00〉

+B 〈00|Sµ|n0〉 〈n0|Sν |01〉+O(B2) (2.33)

to first order in B. Since some expectation of the form 〈n0|Sα|00〉 appears in each of the

summands, we can see that this vanishes to first order in B for all states except those that

evolve from members of t1. Furthermore, for |n0〉 ∈ t1, we see that |n1〉 is orthogonal to

t1. Since Sα |00〉 lies entirely in t1, only the first, second and last summands contribute.

Using Equation 2.30, we find

ηµνs =
4i

λ

ω

λ2 − ω2
nαε

αµν (2.34)

where n̂ = nαeα and ε is the Levi-Civita symbol. Indeed, this contribution to the dynamic
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susceptibility is isotropic.

For ηE, the matrix elements in the spectral representation are all between zeroth order

eigenstates, so we can again restrict our attention to the t1 states. Here we diagonalize

the perturbation (B · S) restricted to t1 to obtain the zeroth order eigenstates and the

first order energies. Only two states receive corrections to their energies at first order. A

straightforward computation then produces

ηµνE = − 4iλω

(λ2 − ω2)2
nαε

αµν (2.35)

which we can easily see is also isotropic.

2.3 Response to Electric Fields

2.3.1 Electric Dipole Excitations of a Single Site

Since the tetrahedral symmetry of the single site problem does not include inversion,

there is actually a single electric dipole allowed transition from the ground state a1 → t2.

One would imagine that the story for these excitations ought to be similar to that for

the magnetic dipole excitations: the peaks in the permeability due to these excitations

will persist in the presence of exchange with a shift in position. In this case, it is actually

considerably more difficult to make these statements quantitative for a number of reasons.

Perhaps most glaringly in contrast to the question of magnetic dipole excitations, we do

not know the identity of the operator which couples the single site problem to an electric

field (P). One can demand that such an operator transform as a vector under the point

group, i.e. as t2, but this still leaves the magnitude of its five reduced matrix elements

undetermined.

Furthermore, we have no reason to believe that the shift due to the J2 term ought
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to be dominant over those due to all of the other symmetry allowed exchange terms

absent in the J2-λ model. Though J2 is thought to dominate the other couplings, it

only corrects the energy of the electric triplet at second order. Other symmetry allowed

terms,[11, 12] e.g. (T yj Sj) · (T yi Si), give corrections to the energy at first order in their

coupling constants that, taken together, might dominate those of J2. Since there has not

yet been an experimentally unambiguous observation of the electric triplet excitation, we

abandon the question of quantitatively predicting the shift in its energy.

2.3.2 Collective Response and Critical Behavior

Coupling the Critical Theory to Electric Fields

We can also consider the form of the response to electric field coming entirely from the

low-lying magnetic excitations. As we will see, multiple triplon excitations possess the

correct symmetry to be produced through coupling to the electric field. To determine

the contribution of such processes to the electric field response of our model, we first

restrict our considerations to low energy modes near the ordering wave vectors. Either

expanding Ω0 close to the ordering wave vectors and for small frequencies or performing

a symmetry analysis[11, 12] produces a Gaussian theory of the form

S̃eff
[
ψa,µ

]
=

1

β

∑
a,µ,ωn

∫
d3k

(2π)3
G−1
µ (k, iωn)

∣∣ψa,µ(k, iωn)
∣∣2 (2.36)

with

G−1
µ (k, iωn) = −(iωn)2 + kVµk + r2 = −(iωn)2 + ε2µ (2.37)
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where µ labels which ordering wave vector each of the fields came from, and a labels the

sublattice. The matrix Vµ is of the form

Vx =


v1 0 0

0 v2 0

0 0 v2

 (2.38)

with Vy and Vz obtained by permutation. ψ is an order parameter for the staggered

magnetization, though depending on how we obtained this theory, ψa,µ may not be

precisely the staggered magnetization on the a sublattice at the µ ordering wave vector.

For one thing, we have rescaled the field in order to set the coefficient of the ω2 term to

1. Additionally, expectations of Φ are not precisely those of S (c.f. Equation 2.8). We

expect that such a theory should describe our system correctly on energy scales small

compared to the magnetic bandwidth.

Now, rather than investigate the microscopic origins of the coupling of an electric

field to this model, we simply investigate which couplings are allowed by symmetry. We

expect couplings through a term linear in the applied field, EaP a, where P a is some

function of the order parameter. This gives rise to a contribution to the k = 0 electric

susceptibility through the standard linear response formalism

χabe (0, ω) =
〈
P a(0, ω)P b(0,−ω)

〉
− 〈P a〉

〈
P b
〉

(2.39)

We do not have couplings before second order in the order parameter, since the order

parameter is odd under time reversal while electric fields are even. Beginning at second

order without derivatives, we consider what restrictions requiring that a coupling of the
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form

CabcEaψbψc ≡ EaP a
0 (2.40)

to transform trivially under the space group places on the tensor C, and hence the

polarization P a
0 . We find that the symmetry allowed coupling is given by

P x
0 =c1

(
ψyA,xψ

z
A,x − ψ

y
B,xψ

z
B,x

)
+ c2

(
ψyA,yψ

z
A,y − ψ

y
B,yψ

z
B,y + ψyA,zψ

z
A,z − ψ

y
B,zψ

z
B,z

)
+ c3

(
ψxA,yψ

y
B,y − ψ

x
B,yψ

y
A,y + ψxA,zψ

z
B,z − ψxB,zψzA,z

)
(2.41)

where c1, c2 and c3 are undetermined by this analysis. The other components are related

to the x component by simultaneous permutations of the vector and wave vector indicies.

Notice that P0 is odd under interchange of the sublattices, since inversion acts only to

interchange the sublattices and gives a sign on the electric field. It can also be shown by

expanding the effective action for Φ given in Equation 2.7 that a coupling of the electric

field to each site through the single site polarization operator (P) produces a coupling

to the critical theory precisely of this form with c1 = c2 and c3 = 0.

The next lowest order contribution to the electric field response should come from a

coupling of the form

DabcdEaψb∂cψ
d ≡ EaP a

1 (2.42)

Due to the larger number of indicies, P x
1 contains many more terms than P x

0 so we omit

a detailed discussion of its structure.
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Computation of the Electric Susceptibility

Neglecting all couplings of higher order in fields and derivatives, we find the electric

susceptibility is given by

χe = χe0 + χe1 (2.43)

χabe0 =
〈
P a

0 (0, ω)P b
0 (0,−ω)

〉
(2.44)

χabe1 =
〈
P a

1 (0, ω)P b
1 (0,−ω)

〉
− 〈P a

1 〉
〈
P b

1

〉
(2.45)

since 〈P0〉 = 0 and

〈
P a

0 (0, ω)P b
1 (0,−ω)

〉
= 0 (2.46)

since the internal momentum sum is odd under q → −q while the Green’s function is

even. Exploiting the particular form of P0, we find that χe0 is a multiple of the identity

and

χxxe0 (0, iωn) =
α

β

∑
νn

∫
dq

(2π)3
Gx(q, iωn + iνn)Gx(−q,−iνn) (2.47)

with α = 2c2
1 + 4c2

2 + 4c2
3. Performing the Matsubara sum and analytically continuing to

real frequencies gives

χxxe0 (0, ω) = lim
δ→0+

α

N

∫
dq

(2π)3

coth
(
βεx(q)

2

)
εx(q) (4εx(q)2 − (ω + iδ)2)

(2.48)
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Allowing δ → 0 produces

Im (χxxe0 (0, ω)) ∝ sgn(ω)

∫
d3q

(2π)3

coth
(
βεx(q)

2

)
εx(q)2

δ(|ω| − 2εx) (2.49)

∝ Θ(|ω| − 2
√
r) coth(βω/4) (2.50)

Now, as for χe1, we can see on general grounds that

χabe1(0, iωn) =
ηabcd

β

∑
νn

∫
dq

(2π)3
q2
cGd(q, iωn + iνn)Gd(−q,−iνn) (2.51)

for some fantastically complicated tensor η. Terms with momentum dependence of the

form qcqd for c 6= d vanish due to the momentum integration, together with the q→ −q

symmetry of the Green’s function. The restriction that both Green’s functions come

from the same ordering wave vector comes from demanding that P1 be invariant under

the primitive lattice translations, together with the subtraction of 〈P1〉. On identical

grounds to Equation 2.49, we then see

Im (χe1(0, ω)) ∝ sgn(ω)

∫
d3q

(2π)3

q2
a coth

(
βεb(q)

2

)
εb(q)2

δ(|ω| − 2εb) (2.52)

∝ Θ(|ω| − 2
√
r)(ω2 − 4r) coth(βω/4) (2.53)

2.4 Discussion

2.4.1 Observations of the a1 → t1 Excitation

Existing Observations

Two recent THz spectroscopy experiments[4, 5] on FeSc2S4 have observed a well de-

fined peak at in the range of 4.3meV to 4.5meV, in broad agreement with the previously
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estimated magnitude of λ and Equation 2.14.[11, 12] Laurita et al.[5] also performed this

experiment in field and extracted results in remarkable agreement with the calculations

performed here. To briefly recapitulate their story, they were capable of measuring the

dynamic susceptibility in the presence of a field with incident light polarized with mag-

netic field polarized both along the static applied field direction and transverse to it. At

zero field, they observed a peak at ≈ 4.5meV in both polarization configurations. As field

increased, the peak in the transverse direction split into two peaks in an approximately

linear manner while the peak in the longitudinal direction remained unaffected. Fitting

a line to the splitting of the peaks in the transverse susceptibility gave them g ≈ 0.92.

Following the discussion for Section 2.2.2, this is precisely what we would expect for

the case of the field along the (001) direction. We saw that the longitudinal susceptibility

(i.e. χzz) received contributions from only one state and, expanding Equation 2.22 to

first order in B, the energy of this state is independent of applied field to first order. The

transverse susceptibility (i.e. the x-y block) received contributions from two states of the

lower triplet, whose energies split with a g factor just below the single site value of g = 1,

due to the small wavevector of the incoming light. A priori, we might be surprised that

the analysis with B along the (001) direction fits so well to data taken on a polycrystaline

sample, but the results of Section 2.2.3 tell us that this is exactly what we should expect,

provided we are within the linear regime with respect to the static applied field.

We would be remiss if we did not take this time to say a few words about the nature

of the t1 excitations and what selection rules are relevant to this situation. It is tempting

to draw an analogy between the states of t1 and those of a spin one triplet. Indeed,

this analogy motivated the character of the analysis in Section 2.2.2. After all, if we

restrict O(3) to Td, the spin one representation becomes the t1 representation. So, at

least formally, we can label the members of the triplet by m = 0 and m = ±1. In limited

ways, this is even reflected in the response to applied field: the m = 0 and m = ±1

27



Signatures of a Quantum Critical Paramagnet Chapter 2

states are the zeroth order eigenenstates with respect to the perturbation BSz and the

first order corrections to the energies are 0 and ±B/2, respectively. This is about where

the analogy ends, however. The first order corrections to the eigenstates are non-zero

(in sharp contrast with a true spin triplet) and there are higher order corrections to the

energies of all members of the t1 triplet.

Furthermore, one might be tempted to attempt to extrapolate selection rules from

this analogy, saying that a1 → t1 is spin forbidden as a singlet to triplet transition.

This would be incorrect, since in terms of the physical spins the transition is between

different states of the S = 2 manifold, and no total spin change actually occurs. Since

the electronic states see a reduced symmetry due to the crystal field and this reduced

symmetry is communicated to the spins through spin orbit coupling, neither total spin

nor total orbital angular momentum nor total angular momentum are good quantum

numbers on energy scales comparable to λ, and we should not analyze selection rules in

terms of them. The proper way to determine the selection rules for transitions between

the eigenstates of H0
i is through using the Wigner-Eckart Theorem applied to Td.

Proposal for Future Measurements

The authors are quite taken with the results of the computation of the g factor

(Equation 2.28), and hope that it can be successfully measured soon away from k = 0.

This would probably require an inelastic neutron scattering measurement on a single

crystal. The benefits of such a measurement would be twofold. First of all, the result

is unusual and interesting in itself and it would be valuable to see it confirmed in the

material. A successful fit of the g factor to the derived form would argue quite strongly

for the predictive power of the J2-λ model for this compound. Secondly, and perhaps

more importantly, a fit of the g factor to Equation 2.28 would provide a measurement of

the ratio J2/λ, allowing one to estimate the proximity to the critical point directly.
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2.4.2 Continuum Weight in THz Absorption

In addition to their observation of a transition matching the description of the a1 → t1

excitation, Mittelstädt et al.[4] observed a curious continuum weight at low frequencies in

the dielectric loss which was roughly linear at T = 80K and superlinear at T = 5K. One

can attempt to explain this weight in terms of triplon pair production using the analysis

in Section 2.3.2, focusing on the ω2 coth(βω/4) term that appears in Equation 2.53.

At high temperature, coth(βω/4) ≈ 4kBT/ω and we obtain the linear weight. At low

temperature, the coth saturates and we obtain weight that grows as ω2. Within this

picture, the fact that this continuum appears at low frequencies then becomes yet another

signal of our proximity to the critical point, since we expect this weight only at frequencies

in excess of twice the gap to triplon production at the ordering wave vector, as evidenced

by the Heavyside Θ in Equation 2.53.

To be fair, there are a few objections that can be raised to this analysis. One could

object that without a temperature dependent prefactor the ω2 coth(βω/4) term fails

to reproduce the observed temperature dependence of the absorption. The coth term

decreases with increasing temperature, while the lowest frequency weight observed by

Mittelstädt et al. increases with increasing temperature. The authors do not find this

objection particularly compelling, as one would almost certainly find a temperature de-

pendent prefactor upon a more careful analysis of the temperature dependence. Indeed,

if one were to use a finite temperature version of the action in Equation 2.7 and expand

about the ordering wave vector for small frequencies, one would find that the velocities

in the Green’s function in Equation 2.37 depend on temperature. Repeating our analysis

that led to Equation 2.53 but keeping more careful track of constants shows that the

velocities appear among the (ω) constant prefactor that we have neglected. This is of

course to say nothing of possible temperature dependence of the undetermined constants
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in the coupling described in Equation 2.42.

Somewhat more concerning is the presence of the two (const) × coth(βω/4) terms

appearing in Equations 2.50 and 2.53, which do not reproduce the observed ω dependence.

The term in Equation 2.53 can be argued away consistently by claiming that the gap

(
√
r) is very small and we do not expect this term to be easily distinguishable in the

presence of the large, dominating ω2. The contribution from Equation 2.50 cannot, to

our knowledge, be so concretely claimed as negligible. One might hope that the presence

of small but non-zero J1 might suppress this term by controlling the relative orientations

on the A and B sublattices and leading to some cancelation, but this turns out not to be

the case. At the Gaussian level, J1 only acts to slightly reorganize our order parameters,

shift the gap slightly and move the soft mode slightly away from the ordering wave vector.

Pushing through the calculation, one finds only a change to the gap in Equation 2.50. It

seems our only recourse is to argue that the coupling constants (c1, c2 and c3) ought to

be small. While this is plausible, the microoscopics of this coupling are quite daunting

so we do not present a detailed analysis.
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Chapter 3

Instabilities of the

Sachdev-Ye-Kitaev and Related

Models

3.1 Introduction

The Sachdev-Ye-Kitaev model, a model of N Majorana fermions subject only to

quenched disordered interactions, has been an object of considerable study recently, due

in part to its rich phenomenology.[16, 17, 18, 19, 20] At finite temperature, the model is

amenable to both diagrammatic and replica approaches, with the large N limit reducing

to a tractable integral equation which exposes an emergent (approximate) conformal

symmetry. This combination of properties sparked considerable interest in the model as

a means to study its holographic dual.

Beyond questions of holography, this model also exhibits many properties deserving

of study in their own right. To name a few, the disorder-averaged fermion two-point

function is gapless and has no poles, prompting an identification of the average model
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as a strange metal without quasiparticles. Instabilities of this metal have also been

studied as part of the general program to study exotic phases of quantum matter.[20]

As T → 0, the entropy density approaches a constant. Finally, despite the Hamiltonians

of individual disorder realizations being composed purely of interactions, the replica-

saddle point approach exposes that, at leading order in N , the disorder averaged fermion

correlation functions obey Wick’s theorem indicating that the average model is in some

sense free at leading order.

Building on this interest, we attempt in the present work to extend considerations

beyond the average model to questions about the full SYK ensemble through some mod-

est studies of questions involving distributions and higher disorder moments of various

observables. We also attempt to probe the T = 0 physics of this model and further

elaborate on studies of its instabilities. Indeed, the T → 0 entropy density seen around

the replica diagonal saddle point is itself evidence that the N → ∞ and T → 0 limits

cannot be interchanged, since the entropy at T = 0 is exactly 0 for any finite N . (Tech-

nically speaking, the model could also have an extensive ground state degeneracy, but

there is no evidence for this in existing exact digitalization studies.[18]) This indicates a

non-analyticity in the N →∞ limit of the free energy, i.e. a phase transition.

Motivated by the observation that the average fermion correlators obey Wick’s theo-

rem and our desire to ask questions about the full distribution, we approach the problem

through the variational principle applied to each individual disorder realization, taking

as our mean field Hamiltonian a generic free Majorana Hamiltonian. We will see some

evidence that the T = 0 phase of the SYK model may also break time reversal symme-

try, like the ordered phase observed by Bi et al. Finally, we will investigate the disorder

statistics of these ordered phases, finding evidence of glassy behavior. While we advance

an argument that the ordered phase observed by Bi et al is the same phase as Gaus-

sian random Majorana fermions, we find some evidence that the T = 0 phase of the
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SYK model is distinct in its disorder statistics and unlikely to be well described by our

variational states.

3.2 Formalism and Analytic Results

3.2.1 Setup

We take as our object of study the generalization of the Sachdev-Ye-Kitaev model

studied by Bi et al[20], a model of N randomly interacting Majorana fermions ηi with

Hamiltonian

H = H0 + uHu (3.1)

H0 =
1

4!

N∑
ijkl

Jijklηiηjηkηl (3.2)

Hu =
1

8

N∑
ijkl

BijBklηiηjηkηl (3.3)

with the entries of Jijkl and Bij totally antisymmetric and drawn from independent,

identically distributed gaussians with zero mean and

J2
ijkl =

J2

N3
B2
ij =

J

N2
(3.4)

where Q is our notation for the disorder average of the quantity Q. We also define, for

our future convenience

k =
N

2
M =

N !

2!(N − 2)!
(3.5)
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As presaged in the introduction, our approach is approximation of the thermal density

matrix of each disorder realization by the thermal density matrix of a free Majorana

Hamiltonian. To whit, we consider the Gibbs-Delbruck variational principle which states

that if

F = −T ln Tr [exp (−βH)] (3.6)

for any trial density matrix ρt

F ≤ Tr [Hρt] + T Tr [ρt ln ρt] ≡ Ft (3.7)

This suggests a standard variational approach: we minimize over some tractable class of

ρt to get the best tractable approximation to F . Notably, this also gives an approximation

to the thermal density matrix of a particular disorder realization

ρ = exp (−β(H −F)) (3.8)

since in terms of this quantity the variational principle reads

0 ≤ Tr [ρt (ln ρ− ln ρt)] (3.9)

and we can recognize the quantity on the right as the relative entropy, an information

theoretic measure of the difference between two density matrices. Thus the optimum

ρt for the purposes of approximating the free energy is the closest to the true thermal

density matrix in the sense of relative entropy.
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We choose as our class of trial density matrices

Ht =
i

2

N∑
ij

Gijηiηj (3.10)

G = −T ln Tr [exp (−βHt)] (3.11)

ρt = exp (−β(Ht − G)) (3.12)

where G, our variational parameter, is any antisymmetric real matrix. Utilizing these

trial density matrices should be thought of as doing mean field theory in the observable

〈ηiηj〉. Indeed, one can see that the equations we eventually derive for the optimum G

can be identified with the saddle point equations for the field generated in a Hubbard-

Stratonovich decoupling of the 4-fermion interaction.

We note for the sake of the fastidious reader that when we refer to ”Gaussian random

free Majoranas” we mean an ensemble of Hamiltonians of the form given in Equation 3.10

with Gij drawn from independent, identically distributed Gaussians with zero mean and

G2
ij =

J

N
(3.13)

Though we will find later that the parametrization of this class of density matrices by

G is profitable in a numerical context, we make a change of variables in order to explore

the broad character of the minima. There is some Φ ∈ O(N) such that defining

ξi =
∑
j

Φijηj (3.14)
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give new cannonical Majoranas ξi in terms of which we have

Ht =
i

2

k∑
µ

gµξ2µ−1ξ2µ (3.15)

where the spectrum of G is ±igµ and we have chosen gµ ≥ 0. We will refer to this Φ as

”diagonalizing” G, since

ΦtGΦ =
k∑
µ

gµe
µ (3.16)

where

eijkl = δi,kδj,l − δi,lδj,k (3.17)

eµ = e2µ−1,2µ (3.18)

Equation 3.15 implies

〈ξ2µ−1ξ2µ〉t = −i tanh
(gµ
T

)
≡ −idµ (3.19)

where

〈A〉t = Tr [Aρt] (3.20)

Reversing the transformation, we find

〈ηiηj〉t =
δij
2
− iCij (3.21)
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with

iC = tanh

(
iG

T

)
(3.22)

where for any holomorphic function f(z) and Hermitian matrix X we have defined

f(X) =
1

2πi

∮
γ

f(z) (zI−X)−1 dz (3.23)

where γ is some contour enclosing the spectrum of X and I is the identity matrix.

For any T > 0, C(G, T ) is a diffeomorphism from all antisymmetric real matrices

to antisymmetric real matrices with eigenvales with absolute value strictly less than 1.

Since it is a diffeomorphism, we may consider our trial free energy (and density matrices)

to be a function of C rather than G. For future use, we define A ∼= RM to be the space

of all antisymmetric real matrices, C ⊂ A to be those matrices with eigenvalues with

absolute value strictly less than 1 and C ⊂ A to be those matrices with eigenvalues with

absolute value less than or equal to 1.

Thinking of C as our variational parameter also allows us to slightly expand our class

of variational density matrices in a critical way. For any C ∈ C, we can write

C = Φ

(
k∑
µ

dµe
µ

)
Φt (3.24)

Diagonalizing Ht, we can find that this C maps to the density matrix

ρt(C) = 2−k
∑
s∈Zk2

(
k∏
µ

(1 + sµdµ)

)
|Φ, s〉 〈Φ, s| (3.25)
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where |Φ, s〉 is the ground state of the free fermion Hamiltonian

i

2

∑
ij

G̃ijηiηj G̃ = Φ

(∑
µ

sµe
µ

)
Φt (3.26)

and we have identified Z2 with ({±1}, ·). This formula can manifestly be extended to

give a well defined density matrix for any C ∈ C. Since C is compact, this guarantees

that the trial free energy will attain a minimum on this class of density matrices.

This extension is not merely a curiosity, but necessary to obtain a minimum at T = 0.

This is to be expected, since ∂C = C −C corresponds to density matrices of less than full

rank: in particular it contains the pure states corresponding to the ground states of free

Majorana Hamiltonians.

To put a fine point on it, fix Φ ∈ SO(N) arbitrary and consider the zero temperature

minimum with respect to dµ. At T = 0, we have

Ft = 2−k
∑
s∈Zk2

(
k∏
µ

(1 + sµdµ)

)
〈Φ, s|H|Φ, s〉 (3.27)

Some s0 ∈ Zk2 has the minimum expectation value of the energy 〈Φ, s0|H|Φ, s0〉 and

clearly Ft is then minimized with respect to d by choosing d = s0, corresponding to the

pure state |Φ, s0〉. So, at T = 0, the minimum is always attained on ∂C.
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3.2.2 Properties of the minima

In terms of C, a lengthy but straightforward calculation gives

Ft = E − TS (3.28)

E =
1

2
〈C,LC〉 − u

2
‖B‖2 (3.29)

L = K + uU (3.30)

S = N ln(
√

2)− 1

2
Tr [(I + iC) ln (I + iC)] (3.31)

where we have defined the inner product and norm on A

〈X, Y 〉 =
1

2
Tr
[
XY T

]
(3.32)

‖X‖ =
√
〈X,X〉 (3.33)

and J and U are linear functions A → A defined by

〈X,KY 〉 = −1

4

N∑
ijkl

JijklXjiYkl (3.34)

〈X,UY 〉 = −〈X,B〉 〈B, Y 〉 − 〈X,BY B〉 (3.35)

We will write the latter as

U = −B ⊗B −B �B (3.36)

Since it is actually composed of two different tensor products of B. B ⊗ B refers to the

tensor product of B with itself considered as a vector (in RM , c.f. the operator |α〉 〈α|)

while B � B is the tensor product of B with itself considered as an operator on RN
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projected onto the subspace of antisymmetric matrices (Λ2(RN)).

Now, in order to characterize the minimum of the free energy as a function of C,

we must take derivatives of Ft with respect to C. This computation is lengthy and not

particularly informative, so we relegate it to Appendix A.1. There, we find

∇CFt = L(C) +G (3.37)

So that our minimum must have

L(C) = −G (3.38)

We also have for the Hessian (the matrix of second derivatives)

HessC(Ft) = L− T HessC(S) (3.39)

As for −HessC(S), we give a more thorough characterization in Appendix A.1 and for

now simply note that its eigenvalues are given by

gµ ± gν
dµ ± dν

and
1

1− d2
µ

(3.40)

Using the concavity of (1 + x) ln(1 + x) + (1 − x) ln(1 − x) on (−1, 1), we can see that

the former is bounded below by the latter. The latter is then easily seen to be bounded

below by 1, which implies that −(I+HessC(S)) is non-negative. So, if λm is the minimum

eigenvalue of L, for T > |λm| Ft is convex in C. Since C is convex, Ft must have a unique

minimum. Since one can easily see that ∇CFt|C=0 = 0 this minimum occurs at C = 0,

giving G = 0 and ρt = I.
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For T < |λm|, though, the extremum at the origin becomes a saddle point. To whit,

HessC(Ft)|C=0 = L+ T I (3.41)

so that at T = λm the minimum eigenvalue of the hessian passes through zero and the

minimum moves off of the origin, stabilized by higher order terms in S. For T < |λm|,

there are actually a pair of minima away from the origin related by time reversal sym-

metry. That is, in the language of mean field theory, the individual disorder realization

breaks time reversal symmetry (G → −G) at the mean field level. We do not have

an argument that these local minima remain the global minima below the transition

temperature, and will simply ignore the question in this work.

3.2.3 Order Parameter

We adopt the convention that a quantity Q evaluated at the minimum will be denoted

Q∗. ‖C∗‖2 is an order parameter for the time reversal symmetry breaking, so it is natural

to ask what implication it has for possible glassy order. ‖C∗‖2 is in some sense a natural

analogue of the Edwards-Anderson order parameter[21], since

‖C∗‖2 = −
∑
ij

〈ηiηj〉t∗ 〈ηiηj〉t∗ (3.42)

or, in the language of replicas

‖C∗‖2 = −
∑
ij

〈
ηαi η

α
j η

β
i η

β
j

〉
(3.43)

Thus, the presence of nonzero ‖C∗‖2 in the thermodynamic limit is our signal that the

physics is governed by a non replica-diagonal saddle point (i.e. ”spin glass” order) and a
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lack of self averaging in ‖C∗‖2 is our signal for replica symmetry breaking.[22]

We note in passing that ‖C∗‖2 contains all non-trivial information from the first two

disorder moments of the distribution of ‖C∗‖2, due to the O(N) statistical symmetry of

the SYK model. It is trivial to see that this symmetry forces C∗ = 0. However, it also

gives that

Cij∗Ckl∗ = (δikδjl − δilδkj)
2‖C∗‖2

N(N − 1)
(3.44)

by applying Schur’s Lemma to the adjoint representation of SO(N). While the funda-

mental reflections in O(N) allow us to see that the third disorder moment must be zero,

the fourth disorder moment is in general allowed to be more complicated. In this work,

we study only ‖C∗‖4 as a test of self-averaging in ‖C∗‖.

To forestall questions of whether these correlations are sub-leading, we note that

0 ≤ −1

2

∑
i 6=j

〈ηiηj〉 〈ηiηj〉 ≤
N

2
(3.45)

for any density matrix, not just a thermal density matrix of a free Majorana Hamiltonian.

To see this, notice that

Mij = 〈ηiηj〉 −
δij
2

(3.46)

is an antisymmetric Hermitian matrix by the properties of the Majorana operators. So

there must be Φ̃ ∈ O(N) such that

M = Φ̃

(
k∑
µ

imµe
µ

)
Φ̃t (3.47)
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and defining the new cannonical Majoranas

ξ̃i =
N∑
ij

Φ̃ijηj (3.48)

we find

|mµ| =
∣∣∣〈ξ̃2µ−1ξ̃2µ

〉∣∣∣ ≤ 1 (3.49)

implying

−1

2

∑
i 6=j

〈ηiηj〉 〈ηiηj〉 =
k∑
µ

m2
µ ≤

N

2
(3.50)

Since the minimum is attained by a pure state at T = 0, we have

‖C∗‖2
∣∣
T=0

=
N

2
(3.51)

for every disorder realization. So, this implies that

‖C∗‖2
∣∣∣
T=0

=
N

2
(3.52)

and ‖C∗‖2 saturates this bound at T = 0.

3.2.4 Large N scaling

Beyond this point, making further analytic progress seems daunting, since we must

exert some understanding of the random symmetric real matrix L. L is not drawn

from any well studied matrix ensemble the authors are aware of, rendering hope of this

understanding slim. Some partial progress and modest intuition can be developed about
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L’s constituent parts, however, which can then be checked numerically.

We begin with U , since the distribution of B is relatively well understood. First, we

can notice that B ⊗B is rank one with nonzero eigenvalue

λ⊗ = ‖B‖2 (3.53)

It is a trivial application of the central limit theorem to see that

√
N(N − 1)

3J2

(
N2

N(N − 1)
λ⊗ −

J

2

)
d−→ N(0, 1) (3.54)

where N(µ, σ) denotes a normally distributed random variable with mean µ and variance

σ2, so that in the large N limit, λ⊗ becomes narrowly distributed around J .

Our understanding of B � B is more limited, but some can still be said without

straining. Since the eigenvalues of the tensor product of two operators are the product

of the eigenvalues of the operators, we find the bound for the operator norm

‖B �B‖op ≤ ‖B‖
2
op (3.55)

Since iB is drawn from a Hermitian Wigner matrix ensemble, we have[23]

‖B‖op = O

(
1√
N

)
(3.56)

and so

‖B �B‖op = O

(
1

N

)
(3.57)

Before synthesizing these results, we say what we can about K. Unfortunately, this
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amounts entirely to conjecture that will be borne out in our numerical results. K bears

some resemblance to a sample from a symmetric Wigner matrix ensemble, except for the

fact that

〈
eij, Keik

〉
= 0 (3.58)

for every i, j and k. This violates the independence assumption and prevents us from

rigorously applying any of those results. Heuristically, however, we can notice that there

are

 M

2

 off diagonal elements and only

 N

3

 of them are correlated. So, the

proportion of them that are correlated is

 N

3


 M

2


= O

(
1

N

)
(3.59)

and it is perhaps reasonable to expect that we have

‖K‖op = O

(
1√
N

)
(3.60)

as we would were K actually drawn from a symmetric Wigner distribution.

As to what this means for our minimization problem, we have the simple eigenvalue

bound

λm ≥ −‖K‖op − u ‖B �B‖op − uΘ(u)λ⊗ (3.61)
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giving

λm =

 O(1) u > 0

O
(

1√
N

)
u ≤ 0

(3.62)

provided that our conjecture about the scaling of λK is correct.

Assuming that where it is nonzero ‖C∗‖2 = O(N) (as is suggested by Equation 3.51),

we can use Equation 3.62 to deduce the scaling of a few other quantities. Notably, we

find

E∗ =

 O(N) u > 0

O(
√
N) u ≤ 0

(3.63)

which casts serious doubt on how well this approximation captures the T = 0 physics of

the model for u ≤ 0, since we expect an extensive (i.e. O(N)) ground state energy for all

u. This question will be discussed in more detail in Section 3.4. Finally, we notice that

the minimum condition allows us to see

‖G∗‖2 =

 O(N) u > 0

O(1) u ≤ 0
(3.64)

3.2.5 The Susceptibility and Heat Capacity

We also compute an approximation to the susceptibility and heat capacity within this

framework. The details of this computation are given in Appendix A.2. There, we find

that the susceptibility shows a singularity of the form

χ0 ∼
sgn(|λm| − T )

|λm| − T
(3.65)
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We can compute a crude approximation to the average of the susceptibility by simply

integrating this expression against the distribution of the lowest eigenvalue λm:

χ0 ∼
∫ ∞
−∞

sgn(|λm| − T )

|λm| − T
p(λm)dλm (3.66)

which, combined with our expectation that p(λm) should be supported on all of (0,∞)

for finite N , yields an integral that does not exist. That is, we can conclude that the

disorder average for this approximation to the susceptibility does not exist at finite N .

Heuristically, one should perhaps think about this result in the reverse direction. At

any given temperature, there’s a finite probability of finding the transition temperature

of a disorder realization within any given small region around the temperature of interest.

Given the strength of the singularity in the susceptibility, these nearby transitions have

large enough values of the susceptibility to prevent the average from converging at the

temperature of interest. It is perhaps illustrative to consider circumstances under which

this could fail to happen. If the singularities predicted in an individual disorder realization

were less severe, say |T − |λm||−1/2, this integral would converge and our heuristic would

predict finite disorder averages. There, we would be saved by the fact that we do not

have finite probability of finding the transition precisely at the temperature of interest

and the nearby transitions are not strongly enough singular to make up for this fact.

We note in passing that this behavior is certainly an artifact of our variational ap-

proximation. For finite N , the true free energy is analytic in the probe field defined in

Appendix A.2. We should perhaps have expected worse behavior out of the susceptibility

than our other quantities of interest, since it is not controlled directly by a variational

principle like our other quantities of interest (with the exception of the heat capacity).

We also note that its possible that a prediction of the susceptibility in this framework

might be salvageable with more careful analysis, since λm self-averages at large N which
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appears to superficially address the issue. A careful examination of this approach and

whether it can be accessed numerically is outside the scope of the present work, however,

and we make no further inquiry into the susceptibility.

As for the heat capacity, the expression given in Equation A.37 bears some investiga-

tion for any dangerous singularities given our experience with a similar expression for the

susceptibility. However, considering a Landau-type expansion in small G near T = |λm|

leaves one with the expectation that

‖G∗‖ = O
(

(|λm| − T )1/2
)

(3.67)

as T → |λm|− so that counting powers of |λm| − T then suggests that CV = O(1)

in this limit. Numerically, we see no evidence of a singularity in the heat capacity in

an individual disorder realization, though note a discontinuity in the heat capacity at

T = |λm|.

3.3 Numerical Results

To complement our analysis above, we numerically find the minima of randomly

generated samples of L to characterize the statistics of various quantities at the minimum.

All of our code was written in Python 2.7.14 using SciPy 1.0.0 and NumPy 1.14.0 and run

on the CNSI ”Knot” cluster at UCSB. After a sample of L is generated, its minimum

eigenvalue and the associated eigenvector are found using SciPy’s eigh function. The

code then searches for a minimum of Ft as a function of G using BFGS as implemented

in SciPy’s minimize function, starting with the temperature just below the minimum

eigenvalue and with an initial guess just away from the origin in the direction of the

minimum eigenvector of L. After a minimum is found at a given temperature, the code
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Figure 3.1: Averages and mean squared errors for λm for u = 0, together with fit line
and limiting value.

decreases the temperature by a predetermined step and searches for the minimum starting

at the previous minimum. An exact value for the gradient with respect to G is provided,

as calculated in Appendix A.1. We choose to minimize with respect to G rather than C

to avoid having to numerically enforce the eigenvalue constraint. We of course study the

quantities Ft∗, E∗, S∗ and CV . To track some information about the minimizing state

and the resulting distribution, we also track ‖C∗‖2 and ‖G∗‖2.

To counteract the fact that we expect λm → 0 for u ≤ 0, we rescale the model and

study instead

L̃ =

 2L u > 0

3
√
N

4
L u ≤ 0

(3.68)

This rescales all quantities with dimensions of energy identically, so T̃ and G̃ are rescaled

by the same factors. The factors of two exist to move the limiting value of λm close to J
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Figure 3.2: Coefficient of N in ‖C∗‖2 regression for u = 0, with error bars.

as observed empirically. All N dependencies given in this section will be given in terms of

the rescaled model, rather than the original model. Because of our limited computational

resources, we study only three values of u, u = ±1 and u = 0. These values were chosen

with the expectation from Bi et al’s work and our analysis so far that there are only two

relevant regions of u, u ≤ 0 and u > 0 together with a modest degree of hedging that

the u = 0 case might conceivably be special.

We are interested in the leading order large N behavior of our quantities of interest

as a function of temperature. However, only N ≤ 62 is numerically accessible to us

without considerable effort. Our numerical efforts produced 500 samples for N = 10

through N = 30 and a steadily decreasing number of samples through N = 62 where we

received only 12 samples. We sampled every available N in this range, i.e. every even

N . Consequently, we must work just a little bit to extract information about the large

N limit with our available data. Our analysis largely follows White[24] with some trivial

modifications, but we present the techniques here to ensure we are clear about what we

50



Instabilities of the Sachdev-Ye-Kitaev and Related Models Chapter 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2
T/J

0

1

2

3

4

5

6

7

2|
|G

||2 /N

1e 1 Leading order Behavior of ||G * ||2, u=0.0

limit of | m|
| m| at N = 10
| m| at N = 62
fit

Figure 3.3: Coefficient of N in ‖G∗‖2 regression for u = 0, with error bars.

mean by each quantity and in case the reader is unfamiliar. We will be concerned with

two questions for all of our quantities of interest: what is the leading order behavior of

their average and do they exhibit self-averaging.

For the first question, consider some quantity y = O(N ν). Largely we will be con-

cerned with quantities with ν = 1, with the exception of λm which has ν = 0. We will

attempt to fit our observations to a model of the form

yi =
2∑
j=0

N ν−j
i yf,j + εi (3.69)

where i stands for the ith of n independent observations at various N and εi = yi − yi.

As is standard for regression problems, we phrase this in terms of matrices as

Y = NYf + ε (3.70)
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Figure 3.4: Coefficient of N in ‖C∗‖2 for various u at low temperature.

where Y is now a n × 1 vector of observations, N is our n × 3 ”design matrix” which

contains the powers of N we expect the averages to depend on and Yf is a 3× 1 vector

of our unknown fit parameters.

The critical difference between this situation and a standard regression problem is

that the variances of the εi are both unknown and expected not to be equal. Even so, if

we define the ordinary least squares estimator

Ŷf =
(
N tN

)−1N tY (3.71)

and the variance estimator

V̂ =
(
N tN

)−1N tR̂N
(
N tN

)−1
(3.72)

R̂ij = δij

(
yi −

[
N Ŷf

]
i

)2

(3.73)
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Figure 3.5: Coefficient of N in ‖G∗‖2 for various u at low temperature.

White[24] shows that as the number of observations grows

V̂ −1/2
(
Ŷf − Yf

)
d−→ N(0, I3) (3.74)

Since one can observe that V̂ = O(n−1), where n is the number of observations, this

shows that Ŷf is still a consistent estimator for our fit parameters. This also allows us

to compute confidence intervals for these parameters (albeit only asymptotically correct

ones). All confidence intervals quoted will be the 99% confidence windows under the

asymptotic distribution.

The question of self-averaging requires a modicum more work, since we must be

careful about what exactly constitutes an observation of the variance. One could imagine

a number of ways to organize this information, but we simply use all data points taken

at a particular N to construct an estimate of the variance at that N and count this as a

single observation of the variance. Since y undergoes self averaging if y2−y2 = O(N2ν−1)

53



Instabilities of the Sachdev-Ye-Kitaev and Related Models Chapter 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2
T/J

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00
E

*/
N

J

1e 1 Leading order Behavior of E * , u=0.0
limit of | m|
| m| at N = 10
| m| at N = 62
fit

Figure 3.6: Coefficient of N in E∗ regression for u = 0, with error bars.

rather than O(N2ν), we probe self-averaging by fitting our observed values of the variance

to N2ν through N2ν−3 and reporting the leading order coefficient with 99% confidence

windows.

By this point, there is relatively little in the numerical results that is a surprise, since

we have already conjectured all of our highest leverage results. The scalings conjectured

in Section 3.2.4 are consistent with our observed scalings in the rescaled model. Com-

fortingly, we find that the fit to the data for λm gives for u = 1 that λm → 0.99± 0.01,

which is consistent with the limiting value one would expect from assuming λ⊗ is the

dominant contribution to the large N limit and using Equation 3.54. In particular, our

results strongly argue that our scaling expectations for ‖C∗‖2 (FIG. 3.2) are correct, an

indication of glassy behavior in the model. We also note the consistency of the numerical

results of these quantities with many of their known T = 0 limiting values.

Looking at our results as a whole, two broad trends bear discussion first. The first

of these themes is that the results for u = −1 and u = 0 look nigh identical to the
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Figure 3.7: Coefficient of N in S∗ regression for u = 0, with error bars.
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Figure 3.8: Coefficient of N in CV regression for u = 0, with error bars.

55



Instabilities of the Sachdev-Ye-Kitaev and Related Models Chapter 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2
T/J

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
4 

va
r(|

|C
||2 )

/N
2

1e 3 Leading Order Behavior of var(||C * ||2), u = 0.0
fit
Confidence window
limit of | m|
| m| at N = 10
| m| at N = 62

Figure 3.9: Coefficient of N2 in of ‖C∗‖2 regression for u = 0, with confidence window.

human eye. One might have expected this given the information on B � B presented

in Section 3.2.4, since this term is expected to be sub-leading relative to K. One might

also have expected this on the basis that previous study of this model indicates u ≤ 0

should all be a single phase.[20] A close inspection of the data for ‖C∗‖ at u = 1, however,

reveals a subtle feature at low temperature (FIG. 3.4) that is hard to conclusively make

sense of with the available data. The authors conjecture that this is due to differences

in the angular distribution (or eigenvalue distribution, if the reader prefers) of G∗, about

which more will be said in Section 3.4. This conjecture is supported by the presence of

this feature in our data for S∗ and CV along with the lack of any such feature in the data

for ‖G∗‖2 and is consistent with the lack of this feature in the data for E∗ and Ft∗.

On the second theme: we note a few regions in the plots which almost certainly show

finite size effects. The most clear instance of this is the lack of an O(N) component in

the temperature range between the limiting value of
∣∣λm∣∣ and the value of

∣∣λm∣∣ at our

final N point, N = 62. We have a strong expectation that this region of temperatures
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Figure 3.10: Coefficient of N2 in of ‖G∗‖2 regression for u = 0, with confidence window.

should actually be in the ordered phase, but samples of disorder realizations with |λm|

greater than the average value at N = 62 are quite rare at all of the N points that

we sample. This is perhaps more intuitive upon looking at our fits of the observed λm

(FIG. 3.1) where one can notice that λm appears to self average more rapidly than it

converges to its limiting value. This accounting is supported by the fact that the plots

for u = 1 show this feature much less strongly while λm appears to self average much

more slowly for u = 1. For similar reasons, we regard any dramatic features in the fits in

the region between the values of
∣∣λm∣∣ for N = 10 and N = 62 with a mild suspicion, as

temperatures further to the right of that region spend progressively more of our sample

artificially above the transition temperature.

One might reasonably rouse some suspicion towards our statistical analysis on these

grounds, since it does not raise any red flags in the form of wider confidence intervals

in most of our quantities in these regions. However, ultimately this is not so surprising

since these finite size effects represent ”unknown unknowns” from the point of view of the
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Figure 3.11: Coefficient of N2 in of E∗ regression for u = 0, with confidence window.

statistical techniques. Upon being presented with a large number of data points which

largely cluster around a zero slope line, there is no statistical basis to expect that the

line might suddenly upturn at a later data point or that our knowledge of the slope is

likely to be imprecise. This is the problem of induction, not a problem with our analysis.

Finally, before we move on to questions of self-averaging, we briefly discuss the heat

capacity (FIG. 3.8). Unfortunately, our data is inconclusive as to whether the average

heat capacity will develop a singularity at the limiting value of
∣∣λm∣∣ or simply repro-

duce the discontinuity seen in individual disorder instances. This question is ultimately

governed by the N scaling of the T → |λm|− limit of the heat capacity of each individ-

ual disorder realization. The authors find this question rather inscrutable based only

on Equation A.37 at present. This question might be within the scope of additional

numerical attacks of this problem, with higher N and a finer gradation of temperature

points.

Our ability to make conclusive statements about self averaging is somewhat weaker
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Figure 3.12: Coefficient of N2 in of S∗ regression for u = 0, with confidence window.

than our ability to address questions about the averages themselves, unfortunately. We

lay the blame here on the slower convergence of the variance estimates of all of our

quantities than that of the estimates of their mean. Fortunately, the behavior we do see

in the variance estimates looks unambiguously more like noise than signal. Largely, our

standard confidence interval includes 0, meaning that we can not reject the hypothesis

that these variances are zero with 99% confidence. Even taking into account the fact

that some regions of the plots do put 0 outside of this confidence interval and that a

more modest confidence interval (e.g. 95%) would widen these regions, we still do not

find compelling evidence for a lack of self averaging in any of these quantities. Two

considerations lead us to this conclusion. Firstly, we find that what estimates we do have

for some non-zero O(N2) component of the variance of some quantity are largely orders

of magnitude lower than the O(N2) component of the square of the mean of this quantity,

laying some of the blame at the feet of our inability to detect the full cancellation of two

large numbers. Secondly, the behavior of these quantities where they are largest is in
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Figure 3.13: Coefficient of N2 in of CV regression for u = 0, with confidence window.

many cases inconsistent with our physical or statistical expectations. These estimates

are occasionally negative, which is impossible for any true leading-order contribution to

a variance. Much of the action in these plots is concentrated in the region near the

transition, which we have already flagged as a likely haven of finite size effects. Many

other regions of concern (e.g. low temperature in FIG. 3.10) occur at temperatures where

the fits of the averages show sudden spikes in the size of the confidence window, indicating

that these might be driven by errors or outliers.

3.4 Discussion

For the u > 0 phase, we have reason to expect that this approximation captures the

properties of the time reversal symmetry breaking phase quite well. In fact, as u → ∞

and T = 0, the true ground state becomes arbitrarily close to a state in our class of

60



Instabilities of the Sachdev-Ye-Kitaev and Related Models Chapter 3

variational state since (as noted by Bi et al[20])

Hu = −1

2

(
i

2

∑
ij

Bijηiηj

)2

(3.75)

has a two-fold degenerate ground state spanned by a pair of free Majorana ground states.

Indeed, in this limit we can see that G∗ → ±f(N)B so we expect that the distribution

of G∗ ought to behave like that of Gaussian random free Majoranas up to some scaling.

This expectation is borne out in what numerical results we have, though as we noted

we cannot actually fully characterize the distribution of G∗ with the moments we have

studied. One might express some surprise that G∗ = O(N) while B = O(1) (in the

sense of norms). However, this is the scaling that one finds in the Gaussian random free

Majoranas (set to give an extensive free energy), so this scaling is necessary to prevent

the distribution of density matrices from approaching infinite or zero temperature in the

N →∞ limit.

We take a moment to reconcile what might be an apparent difference between our

results and those of Bi et al[20], the presence of replica non-diagonal terms in this model.

While they find that they can ignore replica indexes in their analysis, they also proceed

by considering the boson

b =
i

2

∑
ij

Bijηiηj (3.76)

which the above argument suggests should behave like 〈G∗, C∗〉 in its disorder statistics,

up to scaling. Using the minimum condition, we can actually identify this quantity with

E∗, which self-averages around its first moment according to our analysis. Thus, the

replica off-diagonal physics seen in this analysis is simply packaged into their considera-

tion of this boson.
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For u ≤ 0, these results are more a call to action than a conclusive accounting. Since

λm → 0 in this region of parameter space, we are left with the prediction of a phase

transition at T = 0 into a phase that breaks time reversal symmetry and exhibits some

glassy behavior. The particulars of this story should be viewed with a healthy dose of

skepticism, since as noted in Section 3.2.4 the variational ground state energy is sub-

extensive (O(
√
N)) as N →∞. In particular, this precludes the variational ground state

from having an O(1) overlap with the true ground state in this limit.

As an aside, this exposes of a curiosity of this analysis that is perhaps worthy of

discussion in its own right: free fermion states are remarkably poor at capturing the

physics in this model outside of the u > 0 ordered state despite the ”average freedom”

noted in Section 3.1. One aspect of this is the low overlap of any free fermion ground

state with the true ground state at u ≤ 0 noted above. To the extent that one is willing

to interpret an SYK ground state as a generic ground state of a Hamiltonian composed

only of interactions, this shows that such states are usually orthogonal to free fermion

ground states. We can also see that in the high temperature phase (i.e. the phase with

the emergent conformal symmetry) ρt∗ self averages around ρt∗ = 2−N/2I. That is, in the

large N limit, the variational states become certain that they can say precisely nothing

about the ensemble of thermal density matrices. One could perhaps argue in their favor

that they get the average right, since one can show that an O(N) statistical symmetry

of the form possessed by this model forces ρ = 2−N/2I. Given that the ensemble of ρt∗

must also possess this O(N) symmetry, however, this doesn’t argue in their favor above

any other O(N) symmetric class of trial states.

With our hammer in hand, however, we take one last swing at that which appears

to us a nail. Within the context of this analysis, we expect that while the T = 0, u ≤ 0

phase may break time reversal and exhibit some glassy behavior, it is unlikely to be

the same phase as the low temperature u > 0 phase. One piece of evidence is actually
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the change in scaling of the ground state energy, since this is a rather dramatic change

between these two regions of parameter space. We also notice that two O(N) symmetric

distributions for G with ‖G‖4 = (‖G‖2)2 need not have the same distribution, in contrast

with the case for an O(N) symmetric distribution for an O(N) vector. This is related to

the fact mentioned in Section 3.2.3 that the O(N) symmetry begins to fail to constrain

the moments of G (or C) to a single scalar starting at the fourth moment. Ultimately,

this is due to the fact that the action of O(N) cannot affect the eigenvalues of G beyond

permutation.

With this in mind, reviewing the absence of the low temperature feature seen in ‖C∗‖2

(FIG. 3.4) for u = 1 from the graphs for u = 0 and u = −1 suggests quite strongly that

we are seeing distinct distributions of eigenvalues in the T → 0 limit of G∗. Since the

graphs of ‖G∗‖2 (FIG. 3.5) all appear roughly identical and to have converged to their

T → 0 limit by the time the feature is present in u = 1, this feature cannot be due to

shifts in the overall size of G∗ as a function of temperature. Rather, it suggests that

there are some eigenvalues of G∗ in the u = 1 case that are typically lower than in the

u = 0 and u = −1 case and so are ”frozen out” only at lower temperatures. We should be

cautious, however, about interpreting this difference as certainly indicating a difference

between the N →∞ limits of these distributions, however, since there are also finite size

differences between the two cases. Notably: the u = 1 case self averages more slowly,

due to the smaller number of components of B relative to J .

In sum, our results represent a tantalizing glimpse into the low temperature physics of

the SYK model. We hope that they spark further investigations of the low temperature

physics of this model and inform explorations of the non-analyticity predicted at T = 0

by the replica calculation.

63



Appendix A

Supplemental Calculations

A.1 Derivatives of the Trial Free Energy

Our strategy for computing the necessary derivatives will be extending these functions

from functions of antisymmetric matrices (thought of as purely imaginary Hermitian

matrices) to all Hermitian matrices, using this extension to diagonalize the argument

to ease our computation and then restricting the resulting derivatives to act only on

antisymmetric matrices. We set our notation to ease determining the domain of any

formulas. While we use the notations of ∇ and Hess for the first two derivatives of

functions on A to match the notions on RM , we will denote the directional derivative of

the function f(X) of a Hermitian matrix X at a point X in the directions {Bi} by

Dnf(X; {Bi}) =

(
n∏
i

∂

∂εi

)
f

(
X +

n∑
i

εiBi

)∣∣∣∣∣
εi=0

(A.1)

where Dnf(X; {Bi}) of course takes values in the same space that f does (typically,

for our purposes, R or hermitian matrices.) In this context, Df is our notation for the

gradient of a scalar function (using the modification of the standard inner product on
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Hermitian matrices which restricts to the inner product given in Equation 3.32):

1

2
Tr
[
Df(X)Y †

]
= Df(X;Y ) (A.2)

If f takes values among Hermitian matrices instead, Df will refer to its Jacobian

Df(Y )Z = Df(Y ;Z) (A.3)

Similarly, we write D2f to mean the Hessian of a scalar function. That is, D2f = D(Df).

There is a natural action of Θ ∈ U(N) on all Hermitian matrices by

R(Θ)(X) = ΘXΘ† (A.4)

Many of our functions will be invariant under this action, so we notice that if f(R(Θ)X) =

f(X) then we have

Dnf(R(Θ)X; {Bi}) = Dnf(X; {R(Θ†)Bi}) (A.5)

Our final ingredient will be a method for taking derivatives of functions defined by

Equation 3.23. For this, we notice

D1X−1(X;B) = −X−1BX−1 (A.6)

by using the product rule and linearity of scalar derivatives applied to the equation

XX−1 = I. Applying this to a function of the form given in Equation 3.23 gives

D1f(X;B) =
1

2πi

∮
γ

f(z) (zI−X)−1B (zI−X)−1 dz (A.7)
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We actually begin with derivatives of G, for reasons which will gradually become

clear. Using standard manipulations on free fermion Hamiltonians, we find

G = −kBT
2

(
N ln(2) + Tr

[
ln cosh

(
iG

kBT

)])
(A.8)

Applying the chain rule, we can actually compute directly with the above technique that

for antisymmetric B

D1G(iG; iB) = −〈B,C(G)〉 (A.9)

or

∇GG = −C (A.10)

We can also compute from our knowledge of free fermions that

〈Ht〉t = −〈G,C〉 (A.11)

This gives

TS = 〈G,DGG〉 − G (A.12)

and, since we will see in a second that G is concave in G, TS is the Legendre transform

of G. Hence,

∇C(−TS) = G (A.13)
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justifying the non-trivial portion of Equation 3.37. We also have

T HessC(S) = HessG(G)−1 (A.14)

allowing us to finish all the derivatives with respect to C that we need once we compute

HessG(G). Utilizing Equation A.5, we find

HessG(G) = R̃(Φ)PAR(E)D2G(G̃)R(E†)P t
AR̃(Φt) (A.15)

where PA is the projection from Hermitian matrices to antisymmetric Hermitian matrices,

G̃ =
k⊕
µ

gµ 0

0 −gµ

 (A.16)

E =
1√
2

k⊕
µ

 1 1

−i i

 (A.17)

R̃(Φ) = PAR(Φ)P t
A (A.18)

and Φ ”diagonalizes” G in the sense of Section 3.2.1 so that

iG = R(Φ)R(E)G̃ (A.19)

On a practical level, we only give formulas for

H = PAR(E)D2G(G̃)R(E†)P t
A (A.20)
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and then recognize that

R̃(Φ) = Φ � Φ (A.21)

which is sufficient for all of our numerical purposes. Since R̃(Φ) is orthogonal, this also

allows us to fully characterize the eigenvalues of HessG(G), which is sufficient for all of

our analytic arguments.

As for H, a computation using Equation 3.23 and Equation A.6 gives that

D2G(G̃;X, Y ) = −1

2

∑
ij

XijYji
wi − wj
hi − hj

(A.22)

wi = (−1)i+1dd i2e (A.23)

hi = (−1)i+1gd i2e (A.24)

⌈
i

2

⌉
=


i
2

i ∈ 2Z
i+1

2
else

(A.25)

After an unpleasant calculation, we can use this to find for µ 6= ν and εi = 0 or 1

〈
e2µ−1+ε1,2ν−1+ε2 , He2µ−1+ε1,2ν−1+ε2

〉
= −D0

µν −D1
µν (A.26)〈

e2µ−1+ε1,2ν−1+ε2 , He2µ−ε1,2ν−ε2)
〉

= −(−1)ε1+ε2(D0
µν −D1

µν) (A.27)〈
e2µ−1,2µ, He2µ−1,2µ

〉
= − 1

T cosh2
(

gµ
kBT

) (A.28)

where

Dε
µν =

tanh
(

gµ
kBT

)
− (−1)ε tanh

(
gν
kBT

)
gµ − (−1)εgν

(A.29)

and any matrix element left unmentioned is 0. We can see that eµ is an eigenvector of
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H with eigenvalue

− 1

T cosh2
(

gµ
kBT

) = − 1

T

1

1− d2
µ

(A.30)

The remaining non-zero matrix elements can be seen by inspection to be block diagonal

in the 2× 2 blocks −D0
µν −D1

µν ±D0
µν ∓D1

µν

±D0
µν ∓D1

µν −D0
µν −D1

µν

 (A.31)

which have eigenvalues −D0
µν and −D1

µν , justifying Equation 3.40 and implicitly com-

pleting all analysis of the derivatives of the trial free energy with respect to C.

We need a few modest results about derivatives with respect to G for Section 3.3 and

Appendix A.2 which we give now. Using the chain rule, Equation A.10 and Equation 3.37

we find

∇GFt = −HessG(G) (L(C) +G) (A.32)

which is sufficient for our numerical needs. In the next section, we will also make use of

the fact that

〈X,HessG(Ft)Y 〉 = 〈X, (HessG(G)LHessG(G)− HessG(G))Y 〉

−D3G (iG; iX, iY, i(L(C) +G)) (A.33)

which can be obtained by differentiating Equation A.32 and making use of the product

rule where applicable.
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A.2 Specific Heat and Susceptibility Calculations

For the heat capacity, we have

CV =
∂E∗
∂T

=

〈
LC∗,

∂C∗
∂T

〉
(A.34)

Using the chain rule Equation A.10 gives

∂C∗
∂T

= −HessG(G)∗

(
∂G∗
∂T
− G∗

T

)
(A.35)

while differentiating the minimum condition (Equation 3.38) gives

L

(
∂C∗
∂T

)
= −∂G∗

∂T
(A.36)

Putting these together, we have

CV =

〈
G∗,

1

T
Hess(G)∗ (LHess(G)∗ − I)−1G∗

〉
(A.37)

For the susceptibility, we add a probe field

Hh = − i
2

∑
ij

hijηiηj (A.38)

and take two derivatives

χ = HesshFt∗|h=0 (A.39)

Since χ is a linear operator A → A, its disorder average will be a multiple of the identity
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by Schur’s lemma:

χ = χ0I (A.40)

where we have defined

χ0 =
1

M
Tr [χ] (A.41)

Taking one derivative, we see by the chain rule

∇hFt∗ = C∗ + (DhG∗)
t∇GFt∗ + (DhC∗)

t h (A.42)

where Dh refers to the Jacobian. Using the minimum condition gives, comfortingly,

∇hFt∗|h=0 = C∗ (A.43)

Using the minimum condition and chain rule again gives

HesshFt∗|h=0 = (DhG∗)
t HessG (Ft)∗DhG∗ − 2 HessG(G)∗DhG∗ (A.44)

At the minimum, Equation A.33 becomes

HessG (Ft)∗ = HessG(G)LHessG(G)− HessG(G) (A.45)

Finally, we note that in the presence of h, the minimum condition shifts to

L(C) +G+ h = 0 (A.46)
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Differentiating this with respect to h allows us to see

DhG∗ = (LHessG(G)∗ − I)−1 (A.47)

which gives, in conjunction with Equation A.44

χ0 = − 1

M
Tr
[
HessG(G)∗ (LHessG(G)∗ − I)−1] (A.48)

This expression readily exhibits the promised singularity at T = λm for each individual

disorder instance.
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