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 Management of lung tumor motion is a challenging and important 

problem for modern, highly conformal radiotherapy. Poorly managed tumor 

motion can lead to imaging artifacts, poor target coverage, and unnecessarily 

high dose to normal tissues. The goals of this dissertation are to develop a 

real-time localization algorithm that is applicable to rotational cone-beam 

projections acquired during regular (~60 seconds) cone-beam computed 
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tomography (CBCT) scans, and to use these tracking results to reconstruct a 

tumor's trajectory, shape and size immediately prior to treatment.  

Direct tumor tracking is performed via a multiple template matching 

algorithm where templates are derived from digitally reconstructed radiographs 

(DRRs) generated from four-dimensional computed tomography (4DCT). 

Three-dimensional (3D) tumor trajectories are reconstructed by binning two-

dimensional (2D) tracking results according to their corresponding respiratory 

phases. Within each phase bin a point is calculated approximating the 3D 

tumor position, resulting in a 3D phase-binned trajectory. These 3D 

trajectories are used to construct motion blurring functions which are in turn 

used to remove motion blurring artifacts from reconstructed CBCT volumes 

with a deconvolution algorithm. Finally, the initial direct tracking algorithm is 

combined with diaphragm-based tracking to develop a more robust 

“combined” tracking algorithm.  

Respiratory motion phantoms (digital and physical), and example 

patient cases were used to test each technique. Direct tumor tracking 

performed well for both phantom cases, with sub-millimeter root mean square 

error (erms) in the axial and tangential imager dimensions. In patient studies the 

algorithm performed well for many angles, but exhibited large errors for some 

projections. Accurate 3D trajectories were successfully reconstructed for 

patients and phantoms. Errors in reconstructed trajectories were smaller than 

the errors in the direct tracking results in all cases. The deblurring algorithm 
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performed excellently in phantom studies. Deblurring was also effective on an 

example patient case, though the benefits were less stark. Finally, the 

combined tracking algorithm performed equally to or better than direct tumor 

tracking in the phantom and patient cases examined. While the preliminary 

results for each technique are promising, the algorithms must be tested on a 

larger data set with well defined ground truth to investigate potential clinical 

applications. 



 

1 

1. Introduction 

 

1.1. Overview of Radiation Therapy 

 Along with chemotherapy and surgery, radiation therapy is one of the 

three main modalities of cancer treatment. Radiation can be used with either 

palliative or curative purpose, and is often combined with other treatments. It 

can be used in many situations where surgery is not an acceptable option due 

to risks of complication. It is estimated that radiation is incorporated into the 

treatments of over 50% of cancer patients (Van Dyk 1999). 

 The purpose of radiation therapy is to deliver sufficient dose to the 

malignant tissue (target) while minimizing the dose to normal, healthy tissues. 

Radiation damages cells by creating free radicals within a cell which in turn 

interact with and damage DNA, harming a cell's ability to multiply. While in 

general cancer cells are less able to repair the damage caused by radiation 

than normal cells, damage to normal tissues can still cause severe 

complications, so it is essential to minimize the dose to healthy tissue (Hall 

and Giaccia 2006).  
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 The most common type of radiation therapy is external beam radiation 

therapy. A compact linear accelerator mounted on a gantry that can rotate 

around the patient is used to deliver a high energy beam to the patient. An 

electron gun produces an electron beam which is accelerated to high energy, 

typically in the 4-20 MeV range. This beam is aimed toward the patient with a 

bending magnet. The electron beam collides with a tungsten target, stopping 

the electrons and producing bremsstrahlung radiation. This photon beam 

passes through a system of beam modulators and shapers to create a beam 

which then enters the patient. An image of a typical linear accelerator is 

showed in Figure 1.1. 

 Since radiation can cause significant harm to normal tissues, much 

work is done during the radiation therapy process in an attempt to achieve an 

optimal balance between sufficient dose to the target and minimal dose to 

healthy tissues. The radiation therapy process will be discussed in more detail 

in the following sections, but will be explained briefly here. The first step in 

treating a patient who has been prescribed radiation is to build a patient model 

upon which the treatment can be planned. This phase of the radiation therapy 

process is called treatment simulation, and is usually based around a 

computed tomography (CT) scan. Other imaging modalities such as nuclear 

magnetic resonance imaging (MRI) or positron emission tomography (PET) 

are sometimes also incorporated (Van Dyk 1999). The simulation scan is used 

to define relationships between the target and important normal critical 
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structures. These relationships are used during the next phase of radiation 

therapy, treatment planning. In treatment planning, the patient model is input 

into software which also models the treatment machine that will be used. An 

interactive optimization procedure is used to determine the best beam angles, 

shapes, and intensities to use in order to deliver a dose which conforms tightly 

to the target, and does not surpass tolerable dose levels for critical structures. 

Together, treatment simulation and planning compose the treatment 

preparation piece of the radiation therapy process. The next piece is treatment 

execution. 

 During treatment execution, the patient will return for treatment multiple 

times, each time receiving a fraction of their total prescribed dose. The first 

step in each treatment fraction is patient positioning, where the patient must 

be positioned carefully under the treatment machine in order to match the 

reference geometry established during treatment planning as closely as 

possible. Since modern radiation technologies allow for a highly conformal 

dose to be delivered to the target, there is a significant risk of partially missing 

and under-dosing the target if the patient is not positioned correctly. Several 

imaging modalities can be used to assist in this process, with the state of the 

art currently being a cone-beam CT (CBCT) scanner mounted on the 

treatment machine. Once the patient has been positioned, the last step is to 

turn on the radiation beam and deliver the treatment. During treatment 

delivery, it is important to monitor the patient to ensure that the reference 
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geometry established during treatment planning (and matched during patient 

setup) is maintained throughout the treatment. 

 Organ and target motions cause significant challenges in each step of 

the radiation therapy process. Motion can occur both between treatments 

(interfraction motion) and during treatments (intrafraction motion), and has a 

variety of causes including the cardiac, respiratory, and gastrointestinal 

systems, weight loss, tumor shrinkage, and skeletal muscular motion. Motion 

can cause significant artifacts in the imaging modalities used during treatment 

simulation (Balter et al 1996, Nehmeh et al 2002, Caldwell et al 2003, Taguchi 

2003, Chen et al 2004, Lewis and Jiang 2009). Optimized treatment planning 

must account for an expected amount of organ motion. Accurate patient setup 

should account for deformations in patient anatomy, and the target's motion 

should be monitored and accounted for during treatment delivery. In general, 

failure to account for organ motion at the various steps in the radiation process 

can result in both an under-dosing of the target and in increased dose to 

normal tissues. 

 Respiratory motion is a particularly challenging type of motion to 

manage, and will be the primary focus of this dissertation. Lung tumors have 

been measured to exhibit superior-inferior (SI) motion of as large as 5.0 cm, 

and breathing patterns which vary both between and during treatment 

fractions (Keall et al 2006). Many lung patients have compromised lung 

function, so it is impractical to ask them to hold their breath for extended 
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periods of time while receiving treatment. In the United States, lung cancer is 

the third most common cancer, but is the leading cause of cancer death, as is 

shown in Figure 1.2 (Group 2009). There is a great need for more effective 

lung cancer therapies. Better motion management during radiation therapy 

could allow for increased dose to be delivered to lung tumors, and there is 

clinical evidence to suggest that increased dose to lung tumors provides 

advantage to local control and survival rates (Perez et al 1980, Choi and 

Doucette 1981, Perez et al 1987, Okunieff et al 1995, Martel et al 1999, 

McGarry et al 2005, Wulf et al 2005). In the ensuing sections, I will give more 

detail on each step of the radiation process, with specific focus given to the 

challenges caused by respiratory motion. 

 

 
 
 
Figure 1.1:  A linear accelerator used to treat patients at the University of California, 
San Diego.  
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Figure 1.2:  Charts showing the incidence (above) and death (below) rates for cancer 
in the United States. Both breast and prostate cancer are more common than lung 
cancer, but lung cancer causes the most deaths. Courtesy of the Center for Disease 
Control. 

 

1.2. Treatment Simulation 

 Historically, treatment simulation could be based on orthogonal 

radiographs or clinical examination, but now it almost always is based on a CT 
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scan. A CT scanner uses an x-ray source and a line of detectors which rotate 

around the patient's long axis, as illustrated by Figure 1.3. A series of 

projections are acquired by the detector, with each projection measuring the 

linear attenuation of the photon beam along the path connecting the source to 

the detector, as governed by the Beer-Lambert Law. These projections are 

used to reconstruct a slice of a patient's anatomy using a filtered back 

projection algorithm (Kak et al 1988). This procedure is repeated slice by slice 

for a patient until the entire volume is reconstructed. 

Respiratory motion can cause lung tumors and other organs to appear 

severely distorted in reconstructed CT volumes (Balter et al 1996, Chen et al 

2004). Conventional reconstruction algorithms generally assume that the 

volume being reconstructed is static, so objects that move substantially during 

projection acquisition are not reconstructed accurately. In some cases tumor 

motion and the corresponding artifacts can be suppressed by asking the 

patient to hold her breath during image acquisition (Dawson et al 2001, 

Cheung et al 2003, Berson et al 2004). However, lung cancer patients with 

compromised lung function often cannot tolerate this type of breathing 

restriction. Sometimes the acquisition parameters of a free-breathing CT scan 

can be adjusted to minimize motion artifacts, but the utility of this method is 

somewhat limited as it relies on some prior knowledge or assumptions about a 

tumor's motion (Lewis and Jiang 2009).  
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 Ideally, one would like to reconstruct not just a single, artifact free 

image of a patient's anatomy, but a movie or several frames showing how the 

patient's anatomy moves during respiratory motion.  A recent technology that 

attempts to achieve this is four-dimensional CT (4DCT). During 4DCT a 

surrogate for a patient's breathing motion is also recorded as projections are 

being acquired. Common breathing surrogates include the motion of a 

patient’s abdomen, or a patient's tidal volume as measured by a spirometer 

(Ford et al 2003, Low et al 2003, Vedam et al 2003a, Keall et al 2004, 

Mageras et al 2004). As each CT slice is reconstructed, it is tagged with the 

corresponding respiratory data. Each slice of a patient is oversampled so that 

several slices exist for the same location in the patient, representing different 

pieces of the breathing cycle. Once all slices are acquired a sorting algorithm 

is used to bin each slice into a representative piece of the breathing cycle. 

Most commonly a patient's breathing cycle is divided into ten phases ranging 

from max exhale (0%, phase bin 1) to max inhale (50%, phase bin 6) back to 

just before max exhale( 90%, phase bin 10), and slices are assigned to each 

bin based on which phase of the breathing cycle they were acquired during. It 

is also possible to sort into bins based on the amplitude of the breathing 

motion, and recently our research group has developed a method for sorting 

4DCT based only on internal information stored in the projections, without the 

need for an external respiratory signal (Li et al 2009a). When every slice has 

been sorted into its corresponding bin, the result is several CT volumes 
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corresponding to different pieces of the breathing cycle. Together, these 

volumes can be considered to form the frames a video which shows how a 

patient's anatomy deforms with respiratory motion. 

 A significant limitation of 4DCT is that it assumes a regular periodic 

motion for a patient's breathing pattern. If a patient breathes irregularly, the 

sorting algorithm may bin together slices representing different deformations of 

the patient’s anatomy. These binning errors can result in unrealistic 

discontinuities or deformations in the reconstructed volume (Keall et al 2004, 

Abdelnour et al 2007, Starkschall et al 2007, Li et al 2009a). In many cases 

these artifacts can be minimized by using breathing-coaching, where a patient 

is coached via visual or audio cues as to when and how deeply to breath (Kini 

et al 2003, Haasbeek et al 2008, Spoelstra et al 2008, Nakamura et al 2009).  



 

 

10

 
Figure 1.3:  An illustration of a typical fan beam CT geometry. 

 

1.3. Treatment Planning 

 In treatment planning, the patient model acquired during treatment 

simulation is input into software which has also been programmed with a 

computerized model of the intended treatment machine. The planning 

software can use the virtual patient and treatment machine to calculate the 

expected dose distribution in the patient given a set of parameters defining the 

treatment beams. Previously, the person developing the treatment plan would 

manipulate the beam parameters through a process of educated trial and error 



 

 

11

until an acceptable dose distribution was achieved. More modern treatment 

planning software now approaches the problem as an optimization procedure. 

The software incorporates user defined constraints on dose distributions to 

various organs and the target region, and optimizes the beam parameters to 

best meet the constraints. Modern treatment techniques such as intensity-

modulated radiation therapy (IMRT) allow for the intensity of each beam to be 

modulated along the beam's cross section, allowing for a much larger set of 

parameters to be optimized by the planning system, and making highly 

conformal dose distributions possible. 

 For treatment planning of organs which may move substantially during 

treatment, the general approach is to incorporate margins around the target 

which include the region in which the target is likely to move. The best way to 

determine appropriate treatment margins is an ongoing area of investigation 

(van Herk 2004, Maxim et al 2007, Burnett et al 2008, Colgan et al 2008, 

Coolens et al 2008, Mutaf and Brinkmann 2008, Panakis et al 2008, Richter et 

al 2008, Sonke et al 2008, Wu et al 2008b, Yeung et al 2009). For treatment of 

lung tumors, a tumor's range of motion, called the internal target volume (ITV), 

can be estimated from 4DCT. In addition to the margin defined by the ITV, an 

additional margin is added to account for possible changes in the tumor's 

motion, or patient positioning errors. While adding margins is important for 

ensuring that the target receives the prescribed dose, larger margins mean 

that more normal tissue is irradiated, and it is a major goal of radiation therapy 
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to decrease the margins as much as possible while maintaining reliable target 

coverage. Some advanced treatment delivery techniques, as will be discussed 

in Section 1.4, allow for substantial reduction of motion margins in lung cancer 

patients. 

 For more information related to treatment planning of moving targets, 

the reader is directed to multiple references (Leong 1987, Lujan et al 1999, 

Bortfeld et al 2002, Chetty et al 2003, Senan et al 2004a, Senan et al 2004b, 

Trofimov et al 2005, Unkelbach and Oelfke 2005, Bortfeld and Paganetti 2006, 

Chan et al 2006a, McShan et al 2006, Heath et al 2009). 

 

1.4. Patient Positioning 

 Patient positioning for lung tumor patients is a challenging task due to 

the various kinds of motions and deformations relevant to lung tumors. Before 

in-room imaging techniques were developed for external beam treatments, 

patients were often positioned using skin markers made during treatment 

simulation and lasers mounted in the treatment room. This type of setup can 

be quite inaccurate since the motion of the internal structures relative to the 

skin markers is not incorporated (Van Dyk 1999). A superior alternative is to 

use orthogonal radiographs taken of the patient in treatment position. Such 

radiographs can be used to align the patient based on clearly visible internal 

structures, such as bones. This technique, however, is also limited, as it does 
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not account for the potentially changing relationship between bony anatomy 

and soft tissue. In the case of lung tumors, it has been shown that the mean 

position and trajectory of a tumor can change between treatments, so patient 

positioning based on bony anatomy is not ideal (Seppenwoolde et al 2002, 

Berbeco et al 2005a, Berbeco et al 2006, Shirato et al 2006, Ionascu et al 

2007, Nishioka et al 2008). Recently, soft tissue registration for patient 

alignment has been made possible by the advent of on-board CBCT. 

 Like regular CT, CBCT reconstructs a volume where each voxel value 

represents the linear x-ray attenuation of that point. While regular (or fan-

beam) CT uses a line of detectors to acquire one-dimensional (1D) projections 

and uses these projections to reconstruct a patient's anatomy slice by slice, 

CBCT uses a flat-panel detector to acquire two-dimensional (2D) projections 

and uses these to reconstruct a three-dimensional (3D) patient volume 

directly. On-board CBCT imaging systems are mounted on the same gantry as 

the treatment linear accelerator, and projection data is acquired by rotating the 

gantry around the patient. Due to the more limited sampling of data, increase 

noise from Compton scattering, and more complex reconstruction algorithms, 

CBCT images are generally of poorer quality than a regular CBCT, but can 

provide an image of adequate quality for soft-tissue based patient alignment. A 

comparison of regular fan-beam CT and CBCT images acquired at the 

University of California, San Diego are shown in Figure 1.4. 
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Figure 1.4:  A comparison of CT volumes acquired using regular (left) and cone-beam 
(right) imagine systems. While the CBCT image can be used to determine the position 
of some soft-tissue structures, it is of noticeably poorer quality than the regular CT. 
Blurring artifacts are also caused by motion. 

 

 In additional the generally poorer image quality of CBCT images, 

motion artifacts can cause significant blurring of reconstructed images. During 

a typical CBCT scan, it takes approximately 60 seconds for the gantry to rotate 

around the patient and acquire a set of projections for CBCT reconstruction. 

For lung patients, 60 seconds encompasses several respiratory cycles, and 

the reconstructed CBCT will show organs and the tumor blurred out over the 

paths they followed during projection acquisition. While the blurred tumor 

image is more useful for patient positioning than bony anatomy alone, it does 

not provide clear information about a tumors precise shape or trajectory on the 

day of treatment, and leaves some ambiguity in determining the tumor position 

relevant for patient positioning.  

 Recent research on 4D CBCT has led to the successful reconstruction 

of respiratory correlated volumes (Sonke et al 2005, Li et al 2006b, Li et al 
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2007). Similar to 4DCT, these works use either internal or external surrogates 

to sort raw cone-beam projections into phase bins from which separate CBCT 

volumes are reconstructed. Motion artifacts are dramatically reduced by this 

technique, but since several phase-binned volumes are constructed, either 

substantially more projections must be acquired, or some sort of prior 

knowledge must be incorporated in order to prevent dramatic view-aliasing 

artifacts. Currently implemented methods for acquiring more projections 

include slowing the gantry rotation down to four minutes or more, or using 

multiple gantry rotations during acquisition. These techniques lead to 

increased scanning time and potentially increased imaging dose. It is 

important to minimize the scanning time because longer imaging procedures 

leave more time for intrafractional changes in patient anatomy, can cause the 

patient to become uncomfortable, and slow down a clinic's workflow. For many 

purposes, including lung patient setup, it may often be unnecessary to 

reconstruct a complete 4D set of volumes. Instead, the 3D trajectory of the 

tumor alone, combined with a regular CBCT scan, may be sufficient. In 

Chapter 3 I will present a method for determining a lung tumor's trajectory on 

the day of treatment using only a conventional 3D CBCT acquisition. In 

Chapter 4 I will show how the reconstructed tumor trajectory can be combined 

with a regular CBCT to remove motion artifacts and reconstruct a de-blurred 

tumor volume on the day of treatment. 
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1.5. Treatment Delivery 

 Multiple treatment delivery methods of varying technological complexity 

and potential treatment quality have been developed for lung tumors. The 

most straightforward solution is to incorporate margins into the target volume 

which cover the full estimated range of motion for a tumor so that, as long as 

the tumor’s motion does not vary far from the initial estimation, the tumor will 

be inside the target region during all phases of the respiratory cycle. As 

mentioned in Section 1.2, the major drawback of this technique is that the 

increased target volume means that more radiation dose will be delivered to 

healthy tissues. In some cases, concern about increased dose to healthy 

tissues prevents an increased dose from being prescribed to the tumor, and 

could result in a less effective treatment. In order to reduce the necessary 

treatment margins, two types of treatment delivery have been developed 

which incorporate real-time information about a tumor’s position. These 

treatment modalities are called gating and tracking, and will be discussed in 

the subsequent paragraphs. 

 Gating based treatments attempt to treat the tumor only during a portion 

of the respiratory cycle. The treatment beam is only switched on when the 

tumor is determined to be within a planned-for treatment region (i.e., the gating 

window), then switched back off when the tumor moves outside of the gating 

window. Since the tumor is only being treated during a piece of the respiratory 

cycle, the margins defining the target volume need only encompass 
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corresponding fraction of the tumor’s trajectory. The most critical component of 

an effective gating treatment is determining when the tumor is within the gating 

window. A good gating signal depends on real-time localization of tumor 

position, and is the subject of a great deal of research (Kubo et al 2000, 

Mageras et al 2001, Vedam et al 2001, Berbeco et al 2005a, Cui et al 2007b, 

Cui et al 2008, Wu et al 2008a, Li et al 2009b, Lin et al 2009b). An in depth 

review and discussion of real-time localization algorithms is presented in 

Section 1.6. While gating treatments offer a potentially very good treatment 

quality by reducing the treatment volume and allowing for increased dose to 

the tumor, it also can extend the treatment time significantly, since treatment is 

only being delivered during a piece of the breathing cycle. Many significant 

drawbacks are associated with increased treatment times. The patient is more 

likely to become uncomfortable or move during treatment, and the treatment 

requires more resources in terms of machine time and personnel from the 

treatment facility. Additionally, extending the period of time over which a 

radiation dose is administered can alter the radiobiological effects of the 

treatment. The trade off between smaller treatment margins and increased 

time can be expressed in terms of the target volume and the duty cycle (DC), 

defined as the time spent by the signal within the gate to the total treatment 

time. As the DC is increased, a larger piece of the respiratory cycle is being 

treated, and the planning margins must be increased accordingly. Decreasing 

the DC decreases the target volume but increases the treatment time. The 
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relationship between DC and target volume can be improved by treating the 

tumor during a piece of the respiratory phase where it exhibits the least 

motion, and gating window is usually defined around end of exhale for this 

reason (Berbeco et al 2005a, Cui et al 2007b, Jiang et al 2008). 

 Tracking-based treatments can also decrease the target volume, and 

unlike gating treatment, do not necessarily increase the treatment time. During 

a tracking treatment, the treatment beam is adapted to follow the target’s 

tracked motion. An effective tracking treatment is difficult to implement, as it 

should incorporate; 1) real-time tumor localization; 2) a position prediction 

algorithm to account for system latency; 3) a method for moving the treatment 

beam to follow the tumor’s position; and 4) a method to account for the 

changing position of the tumor and beam with respect to other changing 

anatomy. The first requirement, real-time tumor localization, is the most 

important and challenging task in implementing an effective tracking treatment 

and will be a primary focus of this dissertation (Keall et al 2006). In general, 

the real-time localization requirements for a tracking treatment are more 

difficult than for gating, since one is concerned with the exact tumor position at 

all pieces of the respiratory cycle, instead of only whether or not the tumor is 

within the gating window. The other three mentioned requirements for 

implementation of a tracking treatment are significant research topics, and the 

reader is referred to several references for more information (Murphy et al 

2000, Schweikard et al 2000, Chen et al 2001, Keall et al 2001, Ozhasoglu 
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and Murphy 2002, Jiang et al 2003, Neicu et al 2003, Bortfeld et al 2004, Suh 

et al 2004, D'Souza et al 2005, Papiez and Rangaraj 2005, Papiez et al 2007).  

 Another recent development in treatment delivery for lung tumors is the 

popularization of rotational therapy, or volumetric modulated arc therapy 

(VMAT). Normally external beam radiation is delivered from a set of fixed 

beam angles, with the treatment beam turned off when the gantry is rotating 

from one angle to the next. In VMAT, the gantry rotates during treatment, and 

radiation is delivered in one or more arcs around the patient. Since VMAT is a 

relatively new technology, wide spread systematic studies comparing the 

quality of treatments delivered by VMAT compared to conventional fixed angle 

techniques has not yet been published. However, multiple papers have shown 

anecdotal evidence that VMAT can deliver comparable treatment quality to 

IMRT in many situations (Bedford 2009, Popescu et al 2009, Song et al 2009, 

Wolff et al 2009). A major advantage of VMAT treatments is that they can be 

delivered in a much shorter time than fixed-angle treatments, with treatment 

times reportedly being reduced by up to a factor of four (Bedford et al 2008, 

Bedford 2009, Popescu et al 2009). This has caused VMAT machines to be 

popular with many treatment centers, and VMAT is rapidly becoming a 

preferred treatment modality. If VMAT is to be used for lung cancer patients, it 

would not be practical to use a gating treatment, because it would require 

repeatedly stopping the gantry rotation during delivery. Therefore, tracking 

treatments would be the more suitable method for reduction of target volume. 
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A major purpose of this dissertation is to develop an algorithm for real-time 

localization of lung tumors during VMAT by tracking the tumor in rotational 

cone-beam projections which could be acquired during treatment. 

 

1.5. Real-time Localization 

An accurate and reliable method for determining the target position in 

real-time is of the utmost importance for gating or tracking lung tumor 

treatments. Poor tracking results could lead to dramatically reduced treatment 

quality. Lung tumor tracking techniques can generally be categorized as either 

direct tumor tracking, tracking via breathing surrogates, or tracking of 

implanted markers. Tracking based on fiducial implants has been shown to be 

highly accurate (Seiler et al 2000, Sharp et al 2004, Balter et al 2005, Tang et 

al 2007). For this type of tracking, a small radio-opaque marker is implanted 

into the tumor then tracked in x-ray projections during treatment. Two 

significant drawbacks of implanted marker tracking are risks of clinical 

complications such as pneumothorax (Arslan et al 2002, Geraghty et al 2003)  

and the possibility of marker migration (Nelson et al 2007). When possible, it is 

preferable to determine tumor locations without the additional risks caused by 

implantation of fiducial markers. Breathing surrogate-based tracking is 

appealing because well chosen surrogates can be easily tracked, sometimes 

with no additional radiation dose to the patient (e.g., optical tracking), and do 
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not require an additional implantation procedure. While studies have shown 

that certain surrogates often have a strong correlation with tumor motion, it 

has also been shown that the relationship can often vary both during and 

between treatments (Hoisak et al 2004, Berbeco et al 2005b, Wu et al 2008a, 

Cervino et al 2009). The problems associated with marker and surrogate-

based tracking could be avoided with a markerless tracking system, where the 

tumor is tracked directly based on its image in x-ray projections. While direct 

markerless tracking is appealing because it does not rely on the relationship of 

the tumor’s motion with a surrogate, and does not require any additional 

implantation procedures, the tumor is often much more difficult to track than 

high contrast fiducial markers or breathing surrogates. Tumors often lack 

sufficient contrast or a clear border, and can be difficult to distinguish from 

other nearby anatomy in projection images. 

Several papers have been published on methods for markerless 

tracking of lung tumors in fluoroscopic images, with highly accurate tracking 

results achieved in some patients when the tumor is imaged from the anterior-

posterior (AP) direction (Cui et al 2007a, Xu et al 2008, Lin et al 2009a). A 

significant drawback of these techniques is the requirement for fluoroscopic 

data to be acquired prior to treatment, and the need for a clinician to define 

tumor positions in the images for model training purposes. In addition, a 

fluoroscopic training sequence must be developed for each beam angle at 

which the tumor will be tracked. The increase in time associated with these 
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tasks, and the fact that tumors are often difficult to visualize in fluoroscopic 

data, means that reliance on fluoroscopic training data may not be clinically 

practical. Furthermore, since training data must be developed for each 

treatment angle, these techniques are not applicable to the 3D geometry of 

rotational cone-beam projections. This paper presents an algorithm that avoids 

these issues through the use of digitally reconstructed radiographs (DRRs) 

generated from 4DCT acquired prior to treatment. Many previous works have 

also shown that DRRs can be used for localization of bony anatomy such as 

the spine in 2D projection images, with or without the aide of additional fiducial 

markers, and have shown that these localization results can be applied to the 

2D/3D registration problem of patient position monitoring based on orthogonal 

x-ray projections (Lemieux et al 1994, Penney et al 1998, Penney et al 2001, 

Rohlfing et al 2005). Recently the feasibility of using DRR templates derived 

from 4DCT for markerless fluoroscopic gating treatments of lung tumors has 

been studied (Moser et al 2008, Li et al 2009b). 

 

1.6. Objectives and Organization 

 The goals of this dissertation are to develop a real-time localization 

algorithm that is applicable to rotational cone-beam projections, and to use 

tracking results from a set of projections acquired during a regular 3D CBCT 

scan to reconstruct a tumor's trajectory, size, and shape on the day of 



 

 

23

treatment. In Chapter 2 the foundation of the rotational tracking algorithm and 

some direct tracking results will be presented. In Chapter 3 a method for using 

tracking results from a regular 3D CBCT scan to reconstruct a patient’s 3D 

tumor trajectory on the day of treatment will be presented. In Chapter 4 the 

reconstructed 3D trajectory obtained in Chapter 3, combined with a 

reconstructed 3D CBCT volume will be used in order to reconstruct an image 

of the tumor on the day of treatment from which motion blurring has been 

removed. In Chapter 5 a potentially more robust combined tracking algorithm 

is presented which combines diaphragm-based and direct tumor tracking in an 

attempt to exploit the benefits of each technique while minimizing the 

corresponding weaknesses. 
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2. Direct Tracking in Rotational 

Cone-Beam Projections 

 

2.1. Overview 

 Real-time localization of lung tumors can significantly improve treatment 

quality for lung cancer patients. While accurate tracking results are possible 

when a fiducial marker is surgically implanted into a tumor, the associated 

risks of pneumothorax or other complications make this procedure undesirable 

for lung tumors (Arslan et al 2002, Geraghty et al 2003). Previous work has 

shown success in direct lung tumor tracking in fluoroscopic x-ray series 

acquired from a fixed angle in the AP direction (Cui et al 2007a, Xu et al 2008, 

Lin et al 2009a). Recently, VMAT has gained increasing popularly in external 

beam radiation therapy. Unfortunately, none of the previous techniques used 

for markerless tracking in fluoroscopic images are applicable to the rotational 

geometry associated with VMAT. In this chapter, algorithms for direct tumor 

tracking in rotational cone-beam projections will be developed. The feasibility 

of the algorithm will be demonstrated on a digital phantom, a physical 
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phantom, and patients. Tracking results were obtained by comparing 

reference templates generated from 4DCT to rotational cone-beam 

projections. Direct tumor tracking in rotational projections could be clinically 

useful for rotational therapies, and has other potential uses discussed in later 

chapters.  

 

2.2. Methods 

2.2.1. Markerless tracking algorithm for rotational geometry 

 Previous algorithms for markerless tracking of lung tumors in x-ray 

projections rely on fluoroscopic training data acquired prior to tracking for 

training purposes. This training data is acquired from the same angle at which 

the tumor will be tracked, and must cover several different tumor locations as 

viewed from the projection angle. When a treatment is delivered from multiple 

fixed angles, a new set of training images must be acquired for each new view 

of the tumor, and a physician must define the tumor position in the training 

images. For VMAT, the tumor is treated from many angles in continuous 

succession as the gantry rotates around the patient. In order to track the tumor 

using an x-ray imaging device mounted on the gantry, the tumor must be 

tracked in images acquired as the gantry is rotating around the patient. It 

would be extremely impractical to attempt to acquire a set of fluoroscopic 
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training data for each view around the patient, so another method must be 

developed for tracking in rotational cone-beam projections.  

 In this chapter a direct tracking algorithm based on multiple reference 

templates is developed which avoids the need for fluoroscopic training data by 

generating templates from data already acquired during standard treatment 

simulation procedures. The templates are used to determine the tumor 

positions in rotational cone-beam projections by comparing each template, 

representing different tumor positions and poses, to each projection in which 

the tumor is to be tracked. 

 

2.2.2. Generating reference templates 

 The need for fluoroscopic training data is eliminated by generating 

simulated x-ray projections, known as DRRs, from a set of 4DCT volumes 

acquired during treatment simulation. Since a 4DCT can represent tumor 

positions corresponding to each piece of the breathing cycle, DRRs generated 

from 4DCT can also represent multiple tumor positions and poses. 

 DRRs are generated using the fact that each voxel of a 4DCT 

represents the linear x-ray attenuation of that voxel. The Beer-Lambert law 

states that 
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where 0I  is the incident photon intensity, I  is the photon intensity after 

attenuation, ),( Exµ is the linear attenuation coefficient of the material at 

position x  and with photon energy E , and l  is the path the photon beam 

follows through the attenuating material (in this case, the patient). The linear 

attenuation coefficient is dependent on energy because the energy of the 

photon beam determines the probability of various types of interactions of 

photon beams with matter, including coherent scattering, the photoelectric 

effect, Compton interactions, and pair production. The value of each voxel in a 

CT volume is properly given in Hounsfeld Units (HU) defined as 
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where OH 2µ  is the linear attenuation of water for a given energy. Therefore, 

using knowledge of the x-ray source used during imaging, a CT volume can be 

converted back into an attenuation matrix. Since x-ray sources are rarely 

monoenergetic, an equivalent energy is approximated for a given energy 

spectrum when calculating linear attenuation coefficients. Once a CT volume 

has been converted to attenuation coefficients, simulated x-ray projections can 

be computed by calculating the line integral of this attenuation matrix along a 

ray connecting the simulated x-ray source to each pixel in the simulated 
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imager. Many variations of algorithms have been proposed for DRR 

generation including discrete or interpolated ray casting, voxel projection, 

shear-warp factorization, and others (Siddon 1985, Lacroute and Levoy 1994, 

Jacobs et al 1998, Freund et al 2004, Birkfellner et al 2005). For the purposes 

of this work, a version of Siddon's ray tracing algorithm for DRR generation 

using the C programming language was implemented. 

 Reference templates were created by generating DRRs from 4DCT 

volumes with projection geometry corresponding to the cone-beam projections 

in which the lung tumor was tracked. As shown in Figure 2.1, the tumor was 

first contoured in each phase of 4DCT. These contours were used to define 

the tumor's centroid position in each template. Using the geometry shown in  

Figure 2.2, for projection angle θ , the position of a point defined in 3D 

Cartesian coordinates ( zyx ,, ) projected onto the detector's coordinate system 

( ji, ) is given by 
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where R  is the source-to-detector distance, and r  is distance between the 

rotational isocenter and the detector. The origin of the Cartesian coordinate 
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system is the rotational isocenter, while the origin of the detector's coordinate 

system is the projected position of the isocenter in the detector. In addition to 

tumor contours, a cylindrical volume of interest (VOI) encompassing the 

complete range of tumor motion derived from 4DCT was defined. The 

cylindrical VOI was made as small as possible while still containing the full 

tumor trajectory. It is also possible to define other VOI in order to track other 

surrogates, such as the diaphragm or abdomen surface, and the potential 

benefit of using other surrogates will be investigated in Chapter 5. For the 

study in this chapter, only the tumor was tracked. 
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Figure 2.1:  Coronal slices from three breathing phases of a patient's 4DCT. The 
tumor is contoured on each phase to define its position in the corresponding 
templates. The lower right quadrant shows the cylindrical volume of interest (VOI) 
encompassing the tumor's full motion range derived from all phases. 
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Figure 2.2:  A diagram showing the geometry of a cone-beam scan with a flat panel 
detector.  

 

 Next, the 4DCT was rigidly registered to a CBCT based on bony 

anatomy. Interpolation was used to match the resolution of the 4DCT to the 

CBCT, and then thresholds were applied to both 4DCT and CBCT to remove 

soft tissue. The resultant bony images were registered using a multiple-

resolution search to maximize the similarity between the two images. Image 

similarity was measured using normalized mutual information, as defined in 

the following section. DRRs were then created from every phase of 4DCT at 

angles corresponding to the rotational cone-beam projections in which the 

tumor was tracked. The previously defined VOI was also projected with the 

same geometry, and used as a binary mask to define regions of interest (ROI) 

on each DRR. These masked DRRs form the templates upon which the 

tracking algorithm was based, and the number of templates for each angle 

equals the number of 4DCT phases used. For each cone-beam projection in 
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which the tumor was tracked, the VOI was projected as a mask to define an 

ROI matching that of the DRRs (Figure 2.3).   

 

 

Figure 2.3:  A cone-beam projection (left) and generated DRR (right) for one patient. 
The ROI is the brighter, highlighted region. 

 

2.2.3. Calculating template similarity 

 There are multiple possible image similarity measures that could be 

used to compute the similarity between each DRR reference template and a 

cone-beam projection. One of the most simple metrics is the sum of squared 

difference ( SSD ), defined as 
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where N is the number of pixels, i  indexes the pixels of the image, and A  and 

B  are the images being compared. This measure has been shown to be the 
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best similarity measure when two images differ only be Gaussian noise 

(Hajnal et al 2001). A less restrictive condition on the images would be that 

there is a linear relationship between the pixel values in each image, in 

addition to some Gaussian noise. Under these conditions normalized cross 

correlation ( NCC ) is the preferable similarity measure, given by 
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where A  and B  represent the corresponding average pixel values for each 

image. If a CT volume could be reconstructed perfectly, and the algorithm 

used to generated DRRs perfectly modeled the physical process of x-ray 

attenuation and image generation for the imaging system being modeled, one 

of the above image similarity measures would be ideal for the purposes of this 

work. Unfortunately, real CT volumes often contain imaging artifacts, and DRR 

generating algorithms are not completely realistic in terms of modeling the 

energy spectra and scatter of x-ray imaging tubes. The probability of various 

interactions with matter (Compton, photoelectric, etc.,) depends on the energy 

of incident radiation. The material properties that determine the attenuation of 

radiation are different for each of these types of interactions (Z3, electron 

density, etc.,). Therefore, the attenuation determined at one energy level may 

not be appropriate for another energy level. While the x-ray energy spectra 
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used for CT acquisition and reconstruction during simulation is usually similar 

to the x-ray energy spectra generated by on-board CBCT imaging devices, 

there is often some difference, meaning that the attenuation values 

represented in a CT volume may not be completely appropriate for the 

reconstruction of DRRs designed to match cone-beam projections acquired by 

the on-board imager. For these reasons, the relationship between intensity 

values in DRRs and in real cone-beam projections can sometimes be 

nonlinear, and a more robust image similarity measure is preferable. 

 Derived from the field of information theory, mutual information ( MI ) 

provides a more robust similarity measure that does not rely on a linear 

relationship between pixel values in each image, and has shown great 

success in registering images of different modalities (e.g., MRI to CT 

registration) (Thurfjell et al 2000, McLaughlin et al 2004, Yokoi et al 2004, 

Yang et al 2008). Mutual information attempts to measure the amount of 

shared information in two images. It defined as 
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where X  and Y  are two random variables, ),( yxp  is the join probability 

distribution of X  and Y , )(Xp  is the marginal probability distribution of X , 

and )(Yp  is the marginal probability distribution of Y . In practice, the 
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probability distributions are estimated from histograms of image intensities. 

Some care must be taken in this step, as the choice of bin size and range can 

affect the shape of the histogram, and correspondingly the similarity score.  

 In this study, both DRR and cone-beam projections were normalized to 

a pixel value range of 0-255, then a normalized variant of mutual information 

was calculated between each masked projection and each DRR with 

corresponding angle (e.g., a 10-phase 4DCT would lead to 10 DRRs to 

compare to each projection). Normalized mutual information ( NMI ) was 

defined as 
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where ),( YXH  is the joint entropy between images X  and Y . Histograms 

used to estimate distributions were defined on the integer set from 0-255. The 

program used to calculate NMI  was developed based on a previously written 

software package (Peng et al 2005). Some additional concerns and potential 

problems with using NMI as a similarity measure are discussed in Section 2.5. 

 

2.2.4. Determining tumor position from templates 

 For each projection, the two highest scoring templates from the set of 

DRRs with matching angle were selected and allowed to shift within a 21 by 
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21 pixel grid centered on the template (with pixel size 0.388 mm) until the 

highest NMI score was achieved. The optimal number of templates for every 

situation is hard to determine, but two is a reasonable choice. In some cases, 

template selection may choose a bad template, or one that is not close to the 

tumor's true position. In this case, having two templates allows for the effects 

of one badly selected template to be mitigated by the second (hopefully better) 

template. This shift was incorporated to allow for the fact the tumor's position 

may not be exactly represented by one of the 10 corresponding reference 

DRR templates. While the true motion of the lung is non rigid, the rigid 

template shifting is considered an acceptable approximation within a small 

search region. Positions derived from each of the two highest scoring 

templates were averaged together using Gaussian weights based on the 

magnitude of the template shift to produce a final tumor position. This 

weighting scheme was chosen based on the assumption that as templates are 

shifted from their initial position, they will generally become less reliable due to 

deformation or changes in the surrounding anatomy.  

 As described thus far, the algorithm locates the tumor in each 2D 

projection. Most lung tumor motion is along the SI axis of a patient, and since 

this axis is aligned with the axis of rotation for the cone-beam projections, the 

most important SI information is captured within each projection image. While 

this information is helpful for a tracking treatment, ideally one would prefer to 

know the true 3D position of the tumor as each projection is acquired. Using 
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these 2D positions to calculate the tumor's corresponding 3D position for each 

projection is an underdetermined problem, and cannot be done without using 

some method of approximation or incorporating some prior knowledge into a 

3D model of tumor motion. In the next chapter we will outline a method for 

combining a set of projections to calculate a representative 3D tumor 

trajectory. For the purpose of analyzing the accuracy of the tracking algorithm 

itself, we will compare the algorithm output to the defined true tumor position in 

each projection image. Positions in the imager plane, with corresponding 

errors, are scaled back to the average tumor position derived from 4DCT (or in 

the phantom case, to the known tumor position). When the tumor is close to 

the isocenter, this is approximately equal to scaling by the source-axis 

distance divided by the source-to-imager distance. While this method of 

approximating the tracking error at the tumor's location is not exact since the 

tumor's exact 3D position is unknown, the approximation is quite accurate 

since the variability in the tumor's position is very small compared to the 

tumor-to-imager distance. 

 

2.3. Materials 

2.3.1. Digital NCAT phantom data 

 Initially, the algorithms were tested using a non-uniform rational B-

spline (NURBS) based cardiac-torso (NCAT) phantom (Segars et al 1999, 
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Segars 2001, Segars et al 2001). This digital phantom is based on data from 

the Visible Human Project, while the respiratory motion model was developed 

based on basic knowledge of respiratory mechanics combined with a high 

resolution gated-CT data set. The phantom is very flexible, while also 

maintaining a high level of anatomical realism (a beating heart, detailed 

bronchial trees, etc.). DRRs generated from the phantom are shown in Figure 

2.4.  

   DRRs were created at 1 degree intervals for a full 360 degree rotation, 

with the end of exhale tumor position centered at the rotational isocenter. 

 For simulating real cone-beam projections, a much higher resolution 

phantom was desired in order to simulate the continuous spatial and temporal 

information of a real patient. However, choosing too high of a resolution 

resulted in prohibitive computational times, so a phantom with 1mm x 1mm 

pixel size and 0.5 mm slice thickness was used, and 100 phase bins were 

created. DRRs were created from these high resolution phantoms, and treated 

as the simulated cone-beam projections. These simulated projections were put 

together based on patient breathing period and gantry rotation speed in order 

to create a complete breathing pattern for the full 360 degree rotation. 
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Figure 2.4:  Simulated projection (left) and DRR template (right) created from NCAT 
phantom. The simulated projection has higher resolution. The ROI around the tumor is 
highlighted. 

 

2.3.2. Physical phantom data 

The algorithms were also tested on a simple physical respiratory 

phantom. The phantom consisted of a cork block resting on a platform that 

could be programmed to undergo translational motion in one dimension. This 

platform was used to simulate the SI respiratory motion of a lung tumor. Inside 

the cork block were embedded several tissue-like objects including an 

approximately 2.5 cm water balloon which was used as the tracking target. An 

additional, smaller platform could be programmed to move perpendicularly to 

the primary platform, simulating the AP motion of the abdomen during 

respiration. A picture of the phantom is shown in Figure 2.5. 

 4DCT was acquired using a GE four-slice LightSpeed CT scanner (GE 

Medical Systems, Milwaukee, WI, USA) and a Varian Real-time Position 

Management (RPM) system (Varian Medical Systems, Palo Alto, CA, USA). 

The RPM block was placed on the platform exhibiting AP motion. Cone-beam 
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projections were acquired using Varian On-Board Imager 1.4 in full-fan mode 

with 100 kVp, 80 mA, and 25 ms exposure time.  

 

 

 
Figure 2.5:  A picture of the physical phantom used (left). The sagittal CT slice on the 
right shows the objects embedded in the cork block.   

 

2.3.2. Patient data 

 Lastly, three patient data sets were used to evaluate the algorithms. 

Data was acquired using the same systems as described for the physical 

phantom. Breathing signals were obtained using an RPM block placed on the 

patient's abdomen. CBCT scans were conducted in half-fan mode. Half-fan 

mode allows for larger volumes to be reconstructed by shifting the imager off-

center laterally. Since the isocenter was not placed on the tumor, the tumor is 

not visible in some projections. The projections were taken with the imaging 



 

 

41

system set to 110 kVp, 20 mA, and 20 ms exposure time. The 4DCT used to 

generate reference templates was acquired during simulation, approximately 

two weeks prior to the cone-beam scan. Figure 2.6 shows generated DRRs 

with centroid positions and projected contours derived from 4DCT for patient 

2. The border of the tumor is difficult to discern in these magnified DRRs, and 

is particularly hard to see since the tumor edge is partially covered by the 

projected contours. The tumor is somewhat easier to see, for example, in 

Figure 2.3. 

 A ground truth to measure the tracking algorithm against was defined 

by asking a clinician to contour the tumor location in each cone-beam 

projection using a simple graphical user interface programmed in MATLAB 

7.7. The patients chosen for this study had tumors that were visible to the 

clinician in cone-beam projections. From the contour the tumor centroid was 

calculated for each projection. Since the tumor is sometimes hard to see in 

these projections, the uncertainty in this definition of ground truth can be large, 

and may depend on the angle at which a projection is taken. A future study is 

planned to quantify this error more carefully, but a rough estimation based on 

comparing contours drawn from two observers suggests that the error in 

centroid position is patient 1 is on the order of about 2-3 mm, with larger errors 

occurring at angles where the view of the tumor is obstructed by other high 

contrast objects, such as the spine. 
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Figure 2.6:  Four DRR templates generated with 30 degree spacing for patient 2, with 
tumor contours shown in white and centroid positions shown as black dots. The 
poorer resolution in the SI direction is due to the 2.5 mm CT slice thickness. When the 
tumor is behind the spine (lower right), its shape is very difficult to see. 

 

2.4. Results 

2.4.1. Digital NCAT phantom results 

 Tracking results for the NCAT phantom are shown in Figure 2.7 for both 

the axial (along the axis of rotation, or the SI direction) and the tangential 

(perpendicular to the axis of rotation) imager directions. The tangential 

direction represents a mixture of AP and left-right (LR) directions depending 

on the projection angle. All results have been scaled back to the known tumor 

position, as explained at the end of Section 2.1. The phantom was 
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programmed with 4 second period, 2.3 cm SI tumor amplitude, 0.9 cm AP 

amplitude, and 0.2 cm LR amplitude. Images were simulated at 1 degree 

intervals over a 360 degree arc, with a gantry rotation time of 61.2 s. The 1.8 

cm diameter tumor was positioned in the middle of the right lung, as shown in 

Figure 2.4. For this situation, the root mean square error (erms) in the axial 

dimension was 0.6 mm, and the 95th percentile absolute error (e95) is 1.1 mm. 

For the tangential direction, the corresponding erms was 0.4 mm and the e95 

was 0.8 mm. 

 

 

 
Figure 2.7:  Tracking results for the NCAT phantom. Blue dots show the tracking 
output, and a red line shows the true tumor position. Results for the axial (left) and 
tangential (right) dimensions of the imager are shown. The axial erms is 0.6 mm, and 
the e95 is 1.1 mm. The tangential erms is 0.4 mm and the e95 is 0.8 mm. 

  

2.4.2. Physical phantom results 

 Tracking results for the physical phantom are shown in Figure 2.8. The 

phantom was programmed to move sinusoidally in the SI direction with 4 

second period and 1.5 cm amplitude. 359 projections were acquired over an 
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arc of 200 degrees with a frequency of 10.7 Hz. The tangential and axial 

imager directions are defined as described in Section 2.4.1, and the tracking 

results are scaled to the true tumor position. For the axial direction the erms is 

0.8 mm, and the e95 is 1.7 mm. In the tangential direction the erms is 0.7 mm 

and the e95 is 1.7 mm. 

 

 

 
Figure 2.8:  Tumor tracking results for the physical phantom. Ground truth is 
represented by a solid red line while tracking results are represented by blue dots. For 
the axial direction the erms is 0.8 mm, and the e95 is 1.7 mm. In the tangential direction 
the erms is 0.7 mm and the e95 is 1.7 mm.  

 

2.4.3. Patient results 

 Results for patients 1, 2 and 3 are shown in Figure 2.9, Figure 2.10, 

and Figure 2.11 respectively. Approximately 650 projections were obtained for 

each patient over an arc of 360 degrees with a frequency of 10.7 Hz. 

However, since the scans were performed in half-fan mode (with the imager 

shifted laterally), and the tumor was not located at the isocenter of the cone-

beam scan, the tumor is only visible in a subset of these projections. For each 
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patient, the tumor was tracked in the largest continuous set of projections in 

which the tumor was visible. For patient 1, this was 281 projections. For 

patient 2, 373 projections were used. For patient 3 235 projections were used. 

 In patient 1 the tracked tumor was located in the left lower lobe, just 

above the patient’s diaphragm in the periphery of the lung. From 4DCT the 

tumor was estimated to have 1.8 cm diameter, and motion with 4.4 second 

period, 1.4 cm SI amplitude, 0.2 cm AP amplitude, and 0.9 cm LR amplitude. 

For the axial direction the erms is 1.7 mm, and the e95 is 3.2 mm. In the 

tangential direction the erms is 1.8 mm and the e95 is 3.3 mm. 

 In patient 2 the tracked tumor was located near the center of the left 

lung. From 4DCT the tumor diameter was estimated as 1.2 cm, with a 2.7 

second breathing period and 0.5 cm, 0.3 cm, 0.4 cm amplitudes in the SI, AP, 

and LR directions respectively. For the axial direction the erms is 1.0 mm, and 

e95 is 1.9 mm. In the tangential direction the erms is 1.1 mm and the e95 is 1.6 

mm. 

 In patient 3 the tumor was located near the spine in the lower right lung. 

From 4DCT the tumor diameter was estimated as 1.6 cm, with a 3.0 second 

breathing period and 1.9 cm, 0.1 cm, and 0.1 cm amplitudes in the SI, AP, and 

LR directions respectively. For the axial direction the erms is 2.5 mm, and e95 is 

4.6 mm. In the tangential direction the erms is 1.1 mm and the e95 is 1.6 mm.  
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Figure 2.9:  Tumor tracking results for patient 1. Ground truth is represented by a solid 
red line while tracking results are represented by blue dots. For the axial direction the 
erms is 1.7 mm, and e95 is 3.2 mm. In the tangential direction the erms is 1.8 mm and 
the e95 is 3.3 mm. 

 

 

 
Figure 2.10:  Tumor tracking results for patient 2. Blue dots represent the tracking 
output, and the tumor position is represented by a solid red line. For the axial direction 
the erms is 1.0 mm, and e95 is 1.9 mm. In the tangential direction the erms is 1.1 mm 
and the e95 is 1.6 mm. 
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Figure 2.11:  Tumor tracking results for patient 3. Blue dots represent the tracking 
output, and the tumor position is represented by a solid red line. For the axial direction 
the erms is 2.5 mm, and e95 is 4.6 mm. In the tangential direction the erms is 1.0 mm 
and the e95 is 1.7 mm. 

 

2.5. Discussion 

 The proposed method for direct tumor tracking in rotational projections 

performed very well for phantom cases (better for the digital phantom), with 

sub-millimeter accuracy in both the axial and tangential imager dimensions. In 

patient studies, the algorithm performed well for most angles, but exhibited 

large errors for some projections. 

 One source of error in the tracking algorithm is the difficulty in localizing 

the tumor when other high contrast objects obscure its image (Figure 2.12).  . 

For example, in patient 2 near the seventh breathing peak shown in Figure 

2.12, the projections were acquired at an angle such that the spine was 

located in line with the tumor and the source, and the tracking results become 

quite poor. Patient 3 had the largest error, and also had the largest number of 
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projections where the tumor overlapped with the spine due to the tumor’s 

location in the body. In patient 1, tracking results appear worst around the 

fourth peak, and were discovered to correspond to the projections at which the 

edge of the treatment couch was passing in front of the tumor in the projection 

images. It is clear that the couch could pose a problem, since it is not 

represented in the 4DCT. This issue could possibly be managed by pre-

scanning and subtracting the couch from projection data, or by using 

inpainting methods to remove the couch (Chan et al 2006b, Cai et al 2008). 

The cause of the poor tracking near the spine is less obvious. Though the 

spine is present in both 4DCT and CBCT, it is possible that some deformation 

or registration error may occur between the two. Since the spine is a high 

contrast object, the template matching and local rigid registration may be 

dominated by the spine position, and the determination of the tumor position 

may become less accurate. It is also possible that the large errors are due 

more to the uncertainty in the clinician-defined ground truth than in the tracking 

algorithm. One potential solution is to separate the tumor image from the other 

obstructions using some variant of small angle digital tomosynthesis (DTS). 

However, given normal gantry rotation speeds and breathing periods, it is 

unlikely that images could be acquired from widely enough spaced angles to 

generate useful DTS images without too much blur being caused by 

respiratory motion. Another potential solution is to use surrogate based 

tracking when the tumor is unable to be tracked directly. This solution lends 
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itself particularly well to the algorithm of this chapter, since other surrogates 

can be tracked simply by defining VOI around other anatomical locations, such 

as the diaphragm or chest wall. This solution is explored further in Chapter 5, 

where a method for combining direct tumor tracking diaphragm-based tracking 

is presented. 

 Other significant sources of error may include artifacts in 4DCT, 

interfractional or intrafractional changes in anatomy or respiratory motion as 

compared with 4DCT, or deficiencies in the physics model used to generate 

DRRs. Each of these may result in reference templates which are not ideally 

suited to tracking the tumor motion on the day of treatment.  

 Phase-binning artifacts frequently occur in 4DCT of patients with 

irregular breathing patterns (Rietzel et al 2005). Even for regular breathing 

patterns, motion-induced artifacts will occur, which may partially explain why 

the physical phantom tracking results had larger errors than the digital 

phantom. These 4DCT artifacts will lead to the generation of DRR reference 

templates with distorted tumor images. Work is being done in an attempt to 

reduce 4DCT artifacts (Li et al 2009a), which could translate into improved 

reference templates and tracking results for this algorithm.  

 Changes in the anatomy or respiratory pattern pose perhaps the most 

difficult challenge for template based tracking algorithms. If, for example, the 

patient is breathing with much larger amplitude during treatment than is 

represented by the 4DCT, there may be no reference templates corresponding 
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to the extreme tumor positions. This type of “out of range” problem is partially 

managed by shifting the templates to extend the range covered, but this 

technique only helps over a limited range, as a rigid template shift does not 

account for movement or deformation of other anatomy. If available, 4D CBCT 

could be used to generate new templates on the day of treatment, minimizing 

the effects of interfractional variations. Intrafractional changes in breathing 

patterns could still cause difficulty (Keall et al 2006). Breathing-coaching could 

also be helpful in encouraging patients to produce regular, reproducible 

breathing patterns. For our study of three patients, templates generated from 

4DCT acquired approximately two weeks prior to treatment, combined with 

template shifting, appeared to be adequate. This evidence is however only 

anecdotal, and a more thorough study needs to be conducted in order to test 

the robustness of this algorithm to irregular breathing and tissue deformations. 

 The DRR algorithm used to generate reference templates may also 

have an effect on the quality of the reference templates. DRRs should be 

generated by a model which represents the actual imaging system as closely 

as possible. In theory, a well designed DRR generation algorithm used on an 

artifact-free CT volume could produce DRRs with pixel values that correspond 

linearly to actual cone-beam projection images. In this case, a simpler 

similarity metric such as normalized cross correlation would be ideal. In 

practice, it may not be realistic to depend on such accurately generated DRRs. 

For example, if the x-ray energies used to obtain 4DCT data and CBCT 



 

 

51

projections are different, the ratio of bone to tissue attenuation will also 

change, and the relationship between intensity values will be nonlinear. A 

similarity measure which does not assume a linear relationship, NMI , was 

selected for this tracking algorithm to help mitigate such potential differences 

between generated DRRs and real cone-beam projection images. When using 

NMI  as a similarity measure for 2D/2D registration, troubles can arise if not 

enough pixels are present to accurately estimate the joint probability 

distribution function (Penney et al 1998). In a previous study of markerless 

spine tracking in fluoroscopic images it was shown that NMI  is a suitable 

similarity measure for template sizes comparable to those used in this work 

(~104 pixels), and claimed that NMI  performed better than cross correlation 

for their data (Rohlfing et al 2005). Figure 2.13 shows a map of NMI  scores 

over the 21 x 21 pixel window through which a template was allowed to shift 

for a projection from patient 1 (upper left). Scores on the map range from 

0.151 to 0.186, with contour lines representing 5% increases between these 

values. Joint histograms are shown for positions successively closer to the 

template match, including 10 pixels off in both directions (upper right, 

NMI =0.161), 5 pixels off in both directions (lower left, NMI =0.173) and the 

best match (lower right, NMI =0.186). As the match point is approached, the 

dispersion in the joint histograms appears to decrease, as expected. The 

relationship shown in the joint histogram corresponding to the highest NMI  

score appears to be not quite linear. If the relationship is linear, then cross 
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correlation may be a preferable similarity measure. Whether or not linearity 

can be assumed will depend on the data; particularly on the process used to 

generate DRRs. NMI  can work as a similarity measure for both linear and 

nonlinear relationships. 

 Speed is a concern if the algorithm is to be applied to a real-time 

tracking rotational treatment. DRR generation from 4DCT could be done prior 

to treatment by estimating the expected location of the rotational isocenter 

during CBCT scans, but the location of the isocenter relative to the patient's 

anatomy could change based on how the patient is set up.  Errors may occur 

unless DRRs are generated after an initial registration of CBCT and 4DCT 

volumes. In this preliminary study, DRRs with pixel dimensions 768 x 1024 

were computed in approximately 10 seconds using a 2.67 GHz processor with 

8 GB of ram. Under these conditions, computing 10 DRRs for a set of 650 

patient projections would require about 10 hours, which is obviously much too 

long for the practical use. A simple CUDA implementation of the algorithm was 

able to generate similar DRRs in approximately 50 ms using an NVIDIA Tesla 

C1060 GPU card. This 200 times speedup factor means DRRs could be 

generated in about 3 minutes. Parallel GPUs could be used for an even 

greater speedup factor. The next computationally intensive task in tracking is 

computing the similarity score between the images. Computation of NMI  

using the 2.67 GHz processor took approximately 1 ms for a 200 x 100 pixel 

ROI. Including template selection, and using a 21 x 21 pixel search window 
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with two templates, this calculation must be made 891 times per projection, 

taking approximately 0.9 seconds. This is an unacceptable length of time since 

the tumor could move substantially in 0.9 seconds. In the future, the similarity 

score computation will be implemented on GPU. Since the calculation for each 

point within the 21 x 21 pixel search window can be performed independently, 

a significant speedup factor is expected. 

 

  

Figure 2.12:  Examples showing poor tracking results when view of tumor is 
obstructed by other high contrast objects. The projection image corresponding to the 
good tracking results at point (a) is shown on the left, while the image corresponding 
to the poor tracking result at point (b) is shown on the right. 
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Figure 2.13:  A contour map of NMI  scores with corresponding joint histograms for a 
patient projection. Contour lines represent 5% changes. Max NMI  is a dot and true 
position a star. Histograms represent positions 10 (upper right, NMI =0.161), 5 (lower 
left, NMI =0.173) and 0 pixels away from max NMI  (lower right, NMI =0.186). 

 

2.6. Conclusion 

 An algorithm for direct tumor tracking in rotational cone-beam 

projections was developed. The feasibility of the algorithm was demonstrated 

on a digital phantom, a physical phantom, and three patients. While the patient 

tracking results are promising, future refinement is needed to achieve more 

clinically palatable accuracy. The largest source of error appears to be 

difficulty in tracking the tumor at angles where other high contrast objects 
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intervene close to the tumor in the projections. These errors will be addressed 

in part by the diaphragm-based tracking work of Chapter 5. The remaining 

chapters of this dissertation are based upon the tracking algorithm described 

in this chapter. 

This chapter contains material published in Physics in Medicine and 

Biology 2010. Lewis, John H.; Li, Ruijiang; Watkins, W. Tyler; Lawson, Joshua 

D.; Segars, W. Paul; Cerviño, Laura I.; Song, William Y.; Jiang, Steve B., IOP 

Publishing. The dissertation author was the primary investigator and author of 

this paper. 
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3. Daily 3D Trajectory 

Reconstruction from Rotational 

Tracking Results 

 

3.1. Overview 

 Modern highly conformal radiation therapy provides treatments which 

conform exquisitely to the target's shape, and allow for enhanced normal 

tissue sparing. With such precisely designed treatments, it is of critical 

importance to know the exact location of a lung tumor on the day of treatment. 

Studies have shown that a tumor's mean position and amplitude can change 

substantially between treatments, so it is not advisable to rely on information 

about a tumor's trajectory that was acquired during simulation (Seppenwoolde 

et al 2002, Berbeco et al 2005a, Berbeco et al 2006, Shirato et al 2006, 

Ionascu et al 2007, Nishioka et al 2008, Sonke et al 2008). Modern on-board 

volumetric imaging techniques like CBCT can provide information about a 

tumor's location on the day of treatment, which could be used to position the 
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patient, to recalculate and evaluate the dose distribution that would be 

delivered by a treatment, or possibly to develop new adaptive treatment plans 

online (Jaffray et al 2002, Langen et al 2005, Meeks et al 2005, Oldham et al 

2005, Pouliot et al 2005, Yang et al 2007). Unfortunately, current CBCT 

scanners take about 60 seconds or longer to acquire a set of projections for 

reconstruction. When scanning a lung patient, the patient will breathe multiple 

times during this interval, and the resultant image of a moving tumor will be 

greatly blurred by motion artifacts. This blurring makes it difficult or impossible 

to precisely locate a tumor's position, shape, or size.   

 The severity of motion artifacts in conventional 3D CBCT scans has 

motivated a substantial amount of work in 4D CBCT (Sonke et al 2005, 

Dietrich et al 2006, Li et al 2006b, Li et al 2007, Li and Xing 2007). The 

respiratory correlated volumes generated by 4D CBCT exhibit greatly 

diminished motion artifacts, and give information about the motion of the tumor 

and organs on the day of treatment. However, since several phase-binned 

volumes are reconstructed, the total number of projections must be divided 

amongst the bins. The lower number of projections available for reconstruction 

will cause severe view-aliasing artifacts using regular CBCT reconstruction 

algorithms (Feldkamp et al 1984). In order to avoid this problem, acquisition 

protocols for 4D CBCT have been modified either by slowing down gantry 

rotations, or by acquiring projections in multiple gantry rotations (Sonke et al 

2005, Li et al 2006b). These methods extend the projection acquisition time by 
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a factor of four or more, and may also lead to increased imaging dose to the 

patient. These problems have preventing 4D CBCT from becoming standard 

for daily patient imaging.  

 In this chapter, a method for reconstructing the trajectory of a tumor 

from a set of projections acquired during a normal 3D CBCT acquisition is 

presented. While the method presented is tailored to handle the possibility of 

larger tracking errors associated with markerless tracking, the algorithm is 

general and could be modified slightly for application to tracking results 

acquired via other methods. As presented here, the algorithm only 

reconstructs the motion of the centroid of the tumor, and does not give 

information about the shape of the tumor or other organs on the day of 

treatment. Depending on the task, often the motion of the tumor provides 

enough information by itself (e.g., patient positioning), but in some cases it 

may be desirable to know the shape and size of the tumor too (e.g., dose 

calculation). A method for using the reconstructed trajectory as determined by 

the algorithm in this chapter in order to reconstruct the tumor size and shape 

on the day of treatment will be presented in Chapter 4. 

 

3.2. Methods 

 Reconstructing the complete 3D trajectory of a tumor from tracking 

results acquired in a series of rotational 2D projections is an underdetermined 
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problem unless some additional information about the tumor's trajectory is 

available. In the case of respiratory induced lung tumor motion, the 

assumption of periodic regular breathing is reasonable, and is commonly used 

for phase binning in both 4DCT and 4D CBCT. The reconstruction algorithm 

employed here uses the same assumption in order to reconstruct a phase-

binned tumor trajectory from direct tracking results as acquired by the methods 

in Chapter 2.  

 In order to reconstruct the tumor's 3D trajectory, line segments were 

found connecting the x-ray source with the tracked position of the tumor in the 

imager for each projection. These line segments were then separated into 

phase bins based on a respiratory signal (explained below for each data set). 

Figure 3.1 shows these line segments for one CBCT scan, with each graph 

representing a different phase bin. In the ideal case where a tumor did not 

undergo any residual motion within each phase bin and the tracking results 

were perfect, all of the line segments within one phase bin would intersect at 

one point in space, representing the 3D position of the tumor within that phase 

bin. In reality, the tumor does move some within the phase bin, and tracking 

results exhibit some error, so the line segments will not intersect at one point. 

In order to approximate the point represented by a set of line segments within 

a phase bin, a point is found which minimizes ∑=
k

kdJ 2 , where 2
kd  is the 

squared distance between a point 0x  and a line defined by two points 

( 2kx , k1x ), and k  indexes the line segments in each phase bin. To find the 
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point which minimizes J  for a set of lines, the derivative of J  with respect to 

0x  is set it to 0, and used to solve for 0x  
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0

2

0

=
∂

∂
=

∂
∂ ∑

xx
k

kd
J

,                 (3.1) 

 

 Some markerless tracking results may have significant tracking errors. 

For example, larger errors may occur when images are acquired from angles 

at which the tumor is difficult to see due to interfering structures such as the 

treatment couch, spine, or heart, or when breathing patterns or tissue 

deformations occur that are not well represented by the reference templates.  

In order to manage these uncertainties and increase the accuracy of phase-

binned trajectory reconstruction, an iterative approach was taken in which the 

lines farthest away from the calculated point were discarded before the point 

was recalculated. The iterations terminated when either all lines score within a 

predefined value ld , or the total number of lines in a phase bin became lower 

than a selected threshold. In this way, a phase-binned tumor trajectory was 

obtained, representing the average tumor motion on the day of treatment. For 

the purposes of this study, this threshold was chosen to be 20 lines, while ld  

was selected as approximately 30% of the expected tumor amplitude 

(estimated from 4DCT for patient data). This choice of threshold was meant as 
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a rough upper bound of the largest residual motion expected within any phase 

bin. 

 

 

 
Figure 3.1:  Examples of phase-binned tracking results for full exhalation (upper left) 
mid inhalation (upper right) full inhalation (lower left) mid exhalation (lower right). Line 
segments connect the source position to the position that the tumor appears at in the 
imager for each projection. 

 

3.3. Materials 

 Trajectories reconstructed in this chapter will be derived from the 

tracking results obtained for the phantoms and patients as described in 

Chapter 2. In the following sections of this chapter details are given describing 
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the phase binning process for each phantom and patient, as well as the way 

ground truth was defined in each case. 

 

3.3.1. Digital NCAT phantom data 

 The breathing signal used to phase bin the tracking results for 3D 

trajectory reconstruction of the digital NCAT phantom was based on the known 

phase of the phantom in each projection. For a trajectory ground truth, the 

100-bin high resolution phantom was separated into 10 larger bins, and the 

average position of the tumor within each of these 10 bins was computed. 

 

3.3.2. Physical phantom data 

 The breathing signal used to phase bin the tracking results for 3D 

trajectory reconstruction was extracted from the programmed sinusoidal 

motion of the phantom. The average position of the target within each of the 

10 phase bins was used as ground truth for comparison. 

 

3.3.3. Patient data 

Diaphragm motion was used as a breathing signal surrogate for phase 

binning of tracking results. The maximum and minimum positions of the 

diaphragm were manually selected for each breathing cycle, defining the 



 

 

63

maximum exhale and inhale phase bins. Other phase bins were defined by 

evenly dividing the time between maximum and minimum positions. 

Assignment to phase bins could also be based on monitoring of an external 

surrogate, tidal volume measurements from a spirometer, or directly from 

tumor tracking results. The simple use of the diaphragm appeared satisfactory 

in this study.  

Since the true 3D trajectory of the tumor is not known in the patient 

studies, a ground truth was instead approximated based on the clinician-

defined tumor positions in each projection. Phase-binned ground truth 

trajectories were derived by applying the algorithm described in Section 3.2 to 

the clinician-defined tumor positions in projection images. In the future, a 

ground truth for the reconstructed trajectory could be better defined based 

upon a high quality 4D CBCT. Unfortunately we are currently unable to 

reconstruct such a data set given the clinical imaging protocol at the University 

of California, San Diego Moores Cancer Center.  

 

3.4. Results 

3.4.1. Digital NCAT phantom results 

 As described in Chapter 2, a digital phantom was created with 2.3 cm 

SI tumor amplitude, 0.9 cm AP amplitude, 0.2 cm LR amplitude, and a 

breathing period of 4 seconds.  A 1.8 cm diameter tumor was positioned in the 
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middle of the right lung. The tracking results obtained in Chapter 2  were used 

to reconstruct the phase-binned tumor trajectory shown in Figure 3.2, with 

associated errors described in Table 3.1. The reconstructed trajectory was 

represented by 10 phase bins, with a maximum 3D error of 0.6 mm and a 3D 

erms of 0.4 mm. 

 

 

 
Figure 3.2:  A reconstructed tumor trajectory from NCAT phantom tracking results. 
The blue circles (connected by dashed lines) represent the algorithm output, while the 
red dots (connected by solid lines) represent the tumor position ground truth.  

 

Table 3.1:  Maximum error and erms in the reconstructed phase-binned tumor 
trajectory for NCAT phantom. 

 
 max (mm) erms (mm) 

SI 0.5 0.3 
LR 0.2 0.1 
AP 0.3 0.2 
3D 0.6 0.4 

 

3.4.2. Physical phantom results 

 The physical phantom was programmed to move sinusoidally in the SI 

direction with 4 second period and 1.5 cm amplitude. 359 projections were 
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acquired over an arc of 200 degrees with a frequency of 10.7 Hz. The tumor 

trajectory reconstructed using the tracking results from Chapter 2 is plotted in 

Figure 3.3, with corresponding error values shown in Table 3.2. The trajectory 

was represented by 10 phases, and resulted in a maximum 3D error of 1.0 

mm, and a 3D erms of 0.5 mm. 

 

 

 
Figure 3.3:  A reconstructed tumor trajectory from physical phantom tracking results. 
The blue circles (connected by dashed lines) represent the algorithm output, while the 
red dots (connected by solid lines) represent the ground truth target position.  

  

Table 3.2:  Maximum error and erms in the reconstructed phase-binned tumor 
trajectory for physical phantom. 

 
 max (mm) erms (mm) 

SI 0.4 0.2 
LR 0.4 0.3 
AP 0.8 0.3 
3D 1.0 0.5 
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3.4.3. Patient results 

 The tracked tumor for patient 1 was located in the left lower lobe, just 

above the patient’s diaphragm in the periphery of the lung. From the 4DCT 

acquired during simulation, the tumor was estimated to have 1.8 cm diameter, 

and motion with 4.4 second period, 1.4 cm SI amplitude, 0.2 cm AP amplitude, 

and 0.9 cm LR amplitude. 

 In patient 2 the tracked tumor was located near the center of the left 

lung. From 4DCT the tumor's trajectory was estimated to have a 2.7 second 

breathing period and 0.5 cm, 0.3 cm, 0.4 cm amplitudes in the SI, AP, and LR 

directions respectively. The tumor was approximately 1.2 cm in diameter. 

 In patient 3 the tracked tumor was located in the lower right lung near 

the spine. The tumor's trajectory was estimated to have a 3.0 second 

breathing period and 1.9 cm, 0.1 cm, 0.1 cm amplitudes in the SI, AP, and LR 

directions respectively. The tumor was approximately 1.2 cm in diameter. 

 Trajectories for patients 1, 2, and 3 are plotted in Figure 3.4, Figure 3.5, 

and Figure 3.6 respectively, with corresponding errors reported in Table 3.3, 

Table 3.4, and Table 3.5 respectively. The trajectories were represented with 

10 phase bins for each patient, with a maximum 3D error of 2.0 mm, 1.4 mm, 

and 2.1 mm for patients 1, 2 and 3 respectively. The 3D erms was 1.3 mm for 

patient 1, 0.7 mm for patient 2, and 1.3 for patient 3. 
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Figure 3.4:  A reconstructed tumor trajectory from patient 1 tracking results. The blue 
circles (connected by dashed lines) represent the algorithm output, while the red dots 
(connected by solid lines) represent the ground truth tumor position. 

 

Table 3.3:  Maximum error and erms in the reconstructed phase-binned tumor 
trajectory for patient 1. 

 
 max (mm) erms (mm) 

SI 1.0 0.6 
LR 1.7 1.2 
AP 0.6 0.4 
3D 2.0 1.3 

 

 

 
Figure 3.5:  A reconstructed tumor trajectory from patient 2 tracking results. The blue 
circles (connected by dashed lines) represent the algorithm output, while the red dots 
(connected by solid lines) represent the ground truth tumor position. 
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Table 3.4:  Maximum error and erms in the reconstructed phase-binned tumor 
trajectory for patient 2. 

 
 max (mm) erms (mm) 

SI 0.6 0.3 
LR 0.9 0.5 
AP 0.8 0.4 
3D 1.4 0.7 

 

 

 
Figure 3.6:  A reconstructed tumor trajectory from patient 3 tracking results. The blue 
circles (connected by dashed lines) represent the algorithm output, while the red dots 
(connected by solid lines) represent the ground truth tumor position. 

 

Table 3.5:  Maximum error and erms in the reconstructed phase-binned tumor 
trajectory for patient 3. 

 
 max (mm) erms (mm) 

SI 2.0 1.2 
LR 0.4 0.2 
AP 0.8 0.4 
3D 2.1 1.3 

 

3.5. Discussion 

 Accurate phase-binned tumor trajectories were successfully 

reconstructed for both patients and phantoms. In all cases, errors in the 

reconstructed tumor trajectory were substantially smaller than the errors in the 
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direct tracking results (reported in Chapter 2). The smaller errors were a result 

of both the averaging effect of using many tracking results in each phase bin, 

and the elimination of large outliers using the iterative method described in 

Section 3.2. All errors in the reconstructed tumor trajectories were 1.0 mm or 

less in each direction, except for the LR direction of patient 1 (1.7 mm) and the 

SI direction of patient 3 (2.0 mm). Patient 1 exhibited a large magnitude LR 

motion (0.9 cm), which probably led to the increased error. The tumor for 

Patient 3 was located near the spine and had significantly larger tracking 

errors. Even in these cases, the maximum 3D error did not exceed 2.1 mm. 

While these errors may be reduced further by improved, more accurate tumor 

tracking, they are already small enough that the trajectory information could be 

clinically useful. 

 The primary way of improving the accuracy of reconstructed tumor 

trajectories would be to improve the tracking results used. Possible ways to 

improve the tracking algorithm were discussed in Chapter 2, and will be 

explored further in Chapter 5. The trajectory reconstruction algorithm itself 

could possible be improved by developing or more intelligent way of discarding 

bad tracking results before reconstructing the trajectory. For example, if all 

templates for a particular cone-beam projection score a very low similarity 

score, the corresponding tracking result may be considered less reliable. An 

attempt was made to implement this method, but improved trajectories were 

not successfully reconstructed. Relying on the actual value of similarity scores 
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may not be a good choice, since the score also varies depending on image 

content, which changes significantly for different projection angles. 

 As with any method that relies on phase-binning of data (such as 4DCT 

and 4D CBCT), irregular breathing patterns could pose problems for this 

method of trajectory reconstruction. In fact, if breathing is quite irregular, the 

usefulness of reconstructing one "representative" trajectory from 10 phase-

binned points is very questionable. This technique would not be appropriate 

for patients who are unable to maintain stable breathing patterns. Breathing-

coaching could help to ensure that breathing patterns remain stable. 

 While the complete trace of the lung tumor's motion during a CBCT 

scan would provide more information, the most clinically important information 

is still supplied in a phase-binned trajectory, and it is unclear how beneficial 

the extra information in a complete trace would be in most clinical settings. 

Choosing to reconstruct only the phase-binned trajectory also allowed for the 

simple iterative way of eliminating less reliable tracking results. This algorithm 

relies on the assumption that the tumor trajectory is periodic and a phase-

binned trajectory is therefore meaningful. This assumption is reasonable for 

respiratory motion, but not good for other types of motion (such as that 

exhibited by the prostate). 
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3.6. Conclusion 

An algorithm for the reconstruction of a lung tumor trajectory on the day 

of treatment using only projections acquired during regular 3D CBCT 

acquisition has been developed. Accurate phase-binned trajectories were 

reconstructed in each case despite poor markerless tracking results in some 

projection images. Such a trajectory could be useful for daily analysis of tumor 

motion, especially for patient setup for gating treatments. The trajectories can 

also be used to remove motion blurring artifacts from a reconstructed CBCT 

volume, and to reconstruct a tumor's size and shape on the day of treatment, 

as will be discussed in Chapter 4. 

This chapter contains material published in Physics in Medicine and 

Biology 2010. Lewis, John H.; Li, Ruijiang; Watkins, W. Tyler; Lawson, Joshua 

D.; Segars, W. Paul; Cerviño, Laura I.; Song, William Y.; Jiang, Steve B., IOP 

Publishing. The dissertation author was the primary investigator and author of 

this paper. 
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4. Removing Motion Blurring 

Artifacts  

 

4.1. Overview 

 In the preceding chapters of this dissertation, methods have been 

presented to extract tumor centroid motion from a set of cone-beam 

projections acquired during a regular 60 second 3D CBCT scan.  For some 

applications, such as monitoring daily changes in tumor motion, the previous 

work is adequate. However, during an extended fractionated radiation therapy, 

a tumor may change size or deform (Markman 1996, Kim and Spencer 2000, 

Erridge et al 2003, Puglisi et al 2004, Melmed et al 2005, Kopans 2006, Lotz 

et al 2006, Tuma 2006, Henzel et al 2009). In fact, tumor shrinkage is often 

considered desirable, and may sometimes be used as a measure of a tumor's 

response to treatment (Rubinstein et al 2007, Birchard et al 2009, Bruno and 

Claret 2009, Piessevaux et al 2009). There are situations in which knowledge 

of the daily tumor shape could improve treatment quality. It may be helpful to 

be aware of daily tumor changes when deciding if dose calculations and 
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treatment plans derived from images acquired during simulation are still 

appropriate, or if an adapted plan is necessary. For example, knowledge of 

changes in a tumor's structure could allow for beam shaping parameters to be 

adjusted in order to deliver a more appropriately conformal dose distribution. 

 As discussed in previous chapters, moving objects such as tumors 

appear distorted in reconstructed CBCT images. In order to reconstruct the 

correct shape of the tumor, the distorting effects of motion must be removed 

from the image. In addition to distortions caused by motion, noise in CBCT 

images increases the difficulty of removing motion artifacts. The problem of 

removing blurring effects from noisy images has been well studied in the field 

of image processing, leading to the development of multiple potential solutions 

including both iterative (e.g., Richardson-Lucy deconvolution) and non-iterative 

(e.g., Weiner deconvolution) algorithms (Richards.Wh 1972, Lucy 1974, 

Katsaggelos 1991, Favaro and Soatto 2007). Such algorithms can generally 

be used to reduce blur caused by various mechanisms, such as optical 

distortions present in images acquired with microscopes, telescopes, or other 

imaging devices, and motion distortions present in medical or other images 

(Ancin et al 1996, Carasso 2006, Levoy et al 2006, Zhulina 2006). The choice 

of algorithm depends on the specific requirements of the problem. 

 A substantial amount of effort has been invested in developing methods 

to reduce the presence of artifacts caused by motion in conventional CT 

imaging, positron emission tomography (PET), and magnetic resonance 
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imaging (MRI) (Atalar and Onural 1991, Wang and Vannier 1995, Willis and 

Bresler 1995, Crawford et al 1996, Ritchie et al 1996, Dhanantwari et al 2001, 

Bonnet et al 2003, Buhler et al 2004, Blondel et al 2006, Reyes et al 2007, 

Lewis and Jiang 2009). The problem was first cast as a time-varying 

tomography problem by Willis and Bresler (1995). Crawford et al (1996) 

adapted the problem to CT, and used a parametric model for respiratory 

motion to derive an exact reconstruction formula for motion compensation in 

CT scans. Ritchie et al (1996) improved the model by adopting a more realistic 

motion model for thoracic CT scans. The performance of these algorithms 

depends critically on the motion model used. When actual motion does not 

adhere to the model used, the quality of reconstructed images can deteriorate 

rapidly (Crawford et al 1996, Linney and Gregson 2001, Ablitt et al 2004). 

Bonnet et al provide a review of methods used to account for motion in x-ray 

computed tomography (2003).  

 More recently, methods of reducing respiratory motion artifacts 

applicable to CBCT have been of great interest (Sonke et al 2005, Li et al 

2006a, Li et al 2006b, Li et al 2007, Rit and Sarrut 2007, Rit et al 2008, Rit et 

al 2009a). The approaches can generally be divided into two categories: 1) 

techniques which separate acquired projections into bins in order to separately 

reconstruct multiple respiratory-correlated volumes (i.e., 4D CBCT); and 2) 

techniques which use a respiratory motion model to compensate for motion in 

the reconstruction process. The first approach was discussed in detail in 
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Chapter 3 of this dissertation, with the primary drawback being the need for 

sufficient sampling during projection acquisition to reconstruct multiple 

volumes of reasonably high quality. The second approach avoids this problem 

by using a motion model to allow all acquired projections to be used to 

reconstruct one motion-compensated volume. The development and 

widespread use of 4DCT has allowed for patient specific motion models to be 

derived based on deformable registration between phase-binned volumes. Li 

et al used 4DCT to develop such a model, and incorporated it into a modified 

FDK algorithm which accounts for deformation during backprojection (2006).    

 A significant shortcoming of approaches based on motion models 

derived from 4DCT is the assumption that the motion model derived during 

simulation is still valid at the time of treatment. Given the dependence of 

motion compensation algorithms on the accuracy of a motion model, there is a 

need for a motion deblurring algorithm which incorporates knowledge of a 

patient's motion during CBCT acquisition (i.e., without relying on a model 

derived from 4DCT). The purpose of this work is to develop such an algorithm 

based on motion information acquired by object tracking performed on 

rotational cone-beam projections. 
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4.2. Methods 

4.2.1. Deblurring model 

 A simple model for the blurring effects of motion on CBCT 

reconstruction can be written as: 

 

 ,ngfi +∗=                  (4.1) 

 

where i  is the blurry reconstructed CBCT image, f  is a motion blurring 

function, g  is the true, non-blurred volume, and n  is some random noise 

(which we will assume to be Gaussian). Various reconstruction artifacts may 

be present which complicate the model stated above, but are not considered 

for these purposes. The goal of deconvolution is then to determine  g  given 

some reconstructed CBCT image i . Without any additional knowledge, this is 

a blind deconvolution problem, and is very difficult to solve. In this work, we 

will use the tracking methods discussed in previous chapters to construct an 

estimate of the motion blurring function, and incorporate it into the 

deconvolution procedure.  

  A diagram of the motion correction procedure proposed is shown in 

Figure 4.1. Rotational x-ray projections acquired during a CBCT scan are used 

separately for tumor tracking and for image reconstruction. The tumor tracking 

results are used to estimate the motion blurring function f . The motion 
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blurring function and the reconstructed image are the inputs to a deconvolution 

algorithm, which outputs the motion-corrected CBCT image. 

 

 

 
Figure 4.1:  A flow chart showing the proposed method of artifact removal for CBCT 
images. The projections are used both for tracking and image reconstruction, then the 
blurry reconstructed image and the tracking results are input into the deconvolution 
algorithm. The motion corrected volume is output. 

 

4.2.2. Deconvolution algorithm 

 Deconvolution is performed through minimization of the following cost 

function: 

 

 ,
2

2 TV
gigfE λ+−∗=                (4.2) 

 

where the first (data fidelity) term ensures that the recovered image convolved 

with the motion blurring function is similar to the original reconstructed volume 
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in the least mean squared error sense, and the second term is a total variation 

(TV) norm regularization term with weighting factor λ . The TV norm of g  is 

the L1-norm of the magnitude of the gradient of g , i.e., 

 

 .)( dxxgg
TV ∫ ∇=                                                                                (4.3) 

 

This TV norm regularization term has been used in other image processing 

applications (Rudin et al 1992). It has been demonstrated that the TV norm 

regularization term is able to remove artifacts and noise in the reconstructed 

images, while preserving sharp edges to a large extent. Other regularization 

methods such as Tikhonov regularization rely on an L2-norm, and tend to 

smooth out jump discontinuities, blurring edges in images. For imaging in 

radiation therapy, boundaries of tumors, organs, and other structures are of 

primary importance. Therefore, TV norm regularization is a well-suited choice. 

The choice of regularization based on knowledge of the goals of deconvolution 

can be thought of in some sense as an incorporation of prior knowledge. 

 The cost function shown in Equation 4.2 is minimized via gradient 

descent. The gradient of E  with respect to g  is 
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This gradient is used to iteratively update g  with 

 

 ,E
d

dg
g−∇=

τ
                                                                                       (4.5) 

 

where τ  is an artificial time step, until the value of g  which minimizes E  is 

determined. This resultant value of g  is the final motion-corrected CBCT 

image. λ  controls the smoothness of the image and is selected manually for 

best image quality.  

 

4.2.3. Motion blurring function estimation 

 For the purposes of this work, we assume that the motion blurring 

function can be well estimated by a motion probability density function (PDF) 

of the target's motion during the CBCT scan. In some sense this is an 

assumption that the reconstructed CBCT is a time average of the tumor's 

motion during projection acquisition. This is a reasonable assumption given 

that the period of a tumor's motion is very small (~4 seconds) compared to the 

acquisition time for CBCT (~60 seconds). 

 A motion PDF for the tumor during the CBCT scan can be generated 

using the tracking and trajectory reconstruction techniques described in 

Chapters 2 and 3. Reconstructed 3D trajectories of target motion were fit with 
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cubic splines and up-sampled to generate higher resolution points along the 

target's trajectory. These points were then convolved with a spherical 3D 

Gaussian kernel in order to generate a PDF of the target's motion. 

 

4.3. Materials 

4.3.1. Digital phantom data 

 The algorithm was initially tested on the digital NCAT phantom 

described in Section 2.3.1. The tumor is represented by a 1.8 cm diameter 

sphere with uniform density. 100 frames were created representing one 

complete motion cycle with a 4 second period, 2.3 cm SI amplitude, 0.9 cm AP 

amplitude, and 0.0 cm LR amplitude of tumor motion. These 100 frames were 

averaged together to generate one motion blurred "average" volume. This 

generated volume is meant to simulate the time averaging effects of a slow 

CBCT scan. Motion PDFs were generated using the estimation procedure 

described above based on tracking and trajectory reconstruction results 

acquired using the methods of Chapters 2 and 3. The variance of the 

Gaussian kernel was selected as 0.4 mm based on the estimated error in the 

reconstructed trajectory. The results of the deblurring algorithm are compared 

to a generated stationary phantom volume. 
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4.3.2. Physical phantom data 

 The deblurring algorithm was tested on the physical phantom described 

in Section 2.3.2. Two phantom CBCT volumes were acquired: one with the 

phantom stationary, and one with the phantom moving sinusoidally in the SI 

direction with 1.5 cm amplitude and 4 second period. The tumor is represented 

by an approximately spherical object with lengths 2.7 cm, 2.6 cm, and 2.9 cm 

along the SI, AP, and LR axes respectively. Motion PDFs were generated 

using the estimation procedure described above based on tracking and 

trajectory reconstruction results acquired using the methods of Chapters 2 and 

3. The variance of the Gaussian kernel was selected as 0.5 mm based on the 

estimated error in the reconstructed trajectory. The deblurring algorithm was 

applied to the motion-blurred CBCT volume, which was then compared to the 

image of the stationary phantom. 

 

4.3.3. Patient data 

 The algorithm was also applied to an example patient case. Patient 3 

from of Chapter 2 was selected because of the tumor's relatively large motion 

and well defined borders. Patient 1 from Chapter 2 was excluded because the 

tumor was directly on top of the diaphragm, and its border along the major axis 

of motion (SI) was difficult to discern. Patient 2 from Chapter 2 was excluded 

because motion was small, and blurring effects in the reconstructed CBCT 

were minimal. Deblurring was performed on a CBCT acquired from a lung 
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cancer patient immediately prior to treatment. A motion PDF was constructed 

based on the tracking and trajectory reconstruction techniques described in 

previous chapters. The variance of the Gaussian kernel was selected as 1.3 

mm based on the estimated error in the reconstructed trajectory. The tumor 

being deblurred was located in the lower right lung, near the spine. The 

trajectory of the tumor had amplitude of approximately 1.9 cm in the SI 

direction, 0.1 cm in the AP direction, and 0.1 cm in the LR direction, and an 

average period of 3.0 seconds. 

 A 4DCT acquired during simulation was used as a reference 

"stationary" volume to which the deblurred CBCT was compared. The use of 

4DCT as a reference is not ideal since anatomy, including the tumor, can 

move and deform between 4DCT and CBCT acquisitions. The 4DCT only 

gives an estimate of the correctly deblurred CBCT volume, since differences 

between the deblurred CBCT and the 4DCT may represent actual anatomical 

changes, and not errors is the deblurring algorithm. Based on the 4DCT, the 

tumor measured 1.6 cm along the SI dimension, 1.4 cm along the AP 

dimension, and 1.1 cm along the LR dimension. 

A more ideal volume for comparison to the deblurred CBCT would be a 

reference 4D data set acquired at the same time as the CBCT. Unfortunately, 

it is uncommon for 4D volumes to be acquired at the time of treatment, largely 

due to concerns of increased imaging time and dose, as discussed in 
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Chapters 2 and 3. Such data is not available at our institution given the clinical 

imaging protocol used for lung cancer patients. 

 

4.3.4. Evaluation of performance 

 The algorithm's performance was evaluated based on three criteria: 1) 

the normalized mean squared error ( NMSE ), defined below; 2) intensity line 

profiles taken through the tumor; and 3) qualitative image comparison. NMSE  

is defined as 

 

 

( )
,

2

2∑

∑ −

=

i
B

i
BA

NMSE
i

ii

                (4.6) 

 

where i  indexes the pixels of the image, and A  and B  are the images being 

compared. Since NMSE  measures the difference between two images, the 

deblurred image should have lower NMSE  than the original motion-blurred 

image when each is compared to the stationary reference image. NMSE  is 

however not necessarily the most relevant measure of performance, since it 

accounts for all differences in the images. For many practical purposes, it is 

only the shape and size of the tumor that is important. Line profiles shown in 

the results section give an idea of how accurately the dimensions of the tumor 

have been recovered, and how sharp the edges of the tumor are (i.e., how 
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steep the line profile is). The line profiles are used to measure the size of the 

tumor is at intensity thresholds of -700 HU and -500 HU (often used for 

contouring of lung tumors in patients). Finally, a qualitative comparison of the 

images is enough to see any obvious improvements or problems with the 

deblurred images. 

 

4.4. Results 

4.4.1. Digital phantom results 

 Figure 4.1 and Table 4.1 show results of the deblurring algorithm as 

applied to the time averaged NCAT volume. Sagittal, coronal, and axial slices 

which intersect the center of the tumor are shown for the time averaged (left), 

stationary (middle) and deblurred (right) volumes. Below the images for each 

volume are shown line profiles measured along the SI (blue) AP (red) and LR 

(green) directions through the center of the tumor. The corresponding colored 

lines in the images show the positions of the line profiles. 

The NMSE  between the stationary and deblurred images is 0.1255, 

which is a significant improvement over the NMSE  between the stationary and 

time averaged images, 0.2897. If simple thresholds are applied to the image at 

-700 HU (i.e., tissue somewhat denser than air, but less dense than water), 

the SI dimension of the tumor (a 1.8 cm sphere) would be measured as 2.8 cm 

in the time averaged image, 1.8 cm in the stationary image, and 1.9 cm in the 
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deblurred image. Measurements along the AP axis give 1.1 cm in the time 

averaged image, 2.2 cm in the stationary image, and 2.2 in the deblurred 

image. Measurements along the LR axis give 1.2 cm in the motion averaged 

image, 1.8 cm in the stationary image, and 1.9 cm in the deblurred image. A 

threshold of -500 HU would result in detection of no tumor in the time 

averaged image, measurements of 1.8 cm SI by 2.1 cm AP by 1.8 cm LR in 

the stationary image, and measurements of 1.8 cm by 2.1 cm by 1.8 cm in the 

deblurred image. The measured tumor size is less dependent on the choice of 

threshold for the stationary and deblurred images because the line profiles are 

steeper near the tumor boundaries. Not only does the time averaging effect 

blur the edges of the tumor, it also lowers the HU of the tumor enough that no 

part of the tumor is visible at a threshold of -500 HU. The error in the 

measured AP length of the tumor in the stationary and deblurred images is 

caused by the vascular structure located directly anterior to the tumor. 

Qualitatively, the deblurred image is an obvious improvement over the heavily 

blurred time averaged image when each is compared to the stationary image. 

The deblurred image is not as sharp as the stationary image, and some 

artifacts are present, for example at the interface of the tumor and the adjacent 

vascular structure. 
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Figure 4.2:  Deblurring results for the NCAT phantom. Slices through the center of the 
tumor for time averaged (left), stationary (middle), and deblurred (right) volumes are 
shown, with corresponding line profiles along the SI (blue), AP (red) and LR (green) 
axes. The colored lines in the slices show the position of each line profile. 
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Table 4.1:  A table of NCAT phantom results including the NMSE  of each volume 
relative to the stationary image, and the size of the tumor along the SI, AP, and LR 
axes, as determined by application of -700 HU and -500 thresholds to each image. 

 

 
Time Averaged 
-700/-500 HU 

Stationary 
-700/-500 HU 

Deblurred 
-700/-500 HU 

SI (cm) 2.8/0 1.8/1.8 1.9/1.8 

AP (cm) 1.1/0 2.2/2.1 2.2/2.1 

LR (cm) 1.2/0 1.8/1.8 1.9/1.8 
NMSE  0.2897 0 0.1255 

 

4.4.2. Physical phantom results 

  Figure 4.3 and Table 4.2 show results of the deblurring algorithm as 

applied to the CBCT of the moving phantom. Sagittal, coronal, and axial slices 

which intersect the center of the tumor are shown for the moving CBCT (left), 

stationary CBCT (middle) and deblurred CBCT (right) volumes. Below the 

images line profiles measured along the SI (blue) AP (red) and LR (green) 

directions through the center of the tumor are plotted. The corresponding 

colored lines in the images show the positions of the line profiles. 

The NMSE  was 0.1179 when comparing the stationary CBCT to the 

moving CBCT, but was reduced to 0.0714 when comparing the deblurred 

CBCT to the stationary CBCT. At a thresholds of (-700/-500) HU, the SI 

dimension of the tumor was measured as (3.4/2.5) cm in the moving CBCT, 

(2.7/2.5) cm in the stationary CBCT, and (2.7/2.5) cm in the deblurred CBCT. 

Measurements along the AP axis give (2.5/2.3) cm, (2.6/2.5) cm, and (2.5/2.4) 

cm in the moving, stationary, and deblurred CBCT respectively. 
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Measurements along the LR axis give (2.6/2.5) cm, (2.9/2.8) cm, and (2.9/2.7) 

cm in the moving, stationary, and deblurred CBCT respectively. Figure 4.3 

shows how blurring along the target’s trajectory causes the SI dimension of 

the tumor to be overestimated in the moving CBCT, while the AP and LR 

dimensions are slightly underestimated. The correct measurement of the SI 

tumor size at a threshold of -500 HU in the moving CBCT could be considered 

somewhat a matter of luck, as the slope of the line profile is shallow at this 

point, and a small change in the threshold value would alter the determined 

tumor size significantly. Measurements of the tumor size in the stationary or 

deblurred images on the other hand are accurate at either threshold value, as 

steeper line profiles and correspondingly more clearly defined edges are 

present. Qualitatively, the deblurred CBCT shows an excellent match to the 

stationary CBCT, and is a large improvement over the moving CBCT.  
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Figure 4.3:  Deblurring results for the physical phantom. Slices through the center of 
the tumor for moving (left), stationary (middle), and deblurred (right) CBCTs are 
shown, with corresponding line profiles along the SI (blue), AP (red) and LR (green) 
axes. The colored lines in the slices show the position of each line profile. 
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Table 4.2:  A table of physical phantom results, including the NMSE  of each volume 
relative to the stationary CBCT, and the size of the tumor along the SI, AP, and LR 
axes, as determined by application of a (-700/-500) HU threshold to each CBCT. 

 

 
Moving CBCT 
-700/-500 HU 

Stationary CBCT 
-700/-500 HU 

Deblurred CBCT 
-700/-500 HU 

SI (cm) 3.4/2.5 2.7/2.5 2.7/2.5 

AP (cm) 2.5/2.3 2.6/2.5 2.5/2.4 

LR (cm) 2.6/2.5 2.9/2.8 2.9/2.7 
NMSE  0.1179 0 0.0714 

 

4.4.3. Patient results 

 Figure 4.4 and Table 4.3 show results of the deblurring algorithm as 

applied to the CBCT acquired immediately prior to treatment. Sagittal, coronal, 

and axial slices which intersect the center of the tumor are shown for the 

CBCT (left), 4DCT (middle) and deblurred CBCT (right) volumes. Below the 

images line profiles measured along the SI (blue) AP (red) and LR (green) 

directions through the center of the tumor are plotted. The corresponding 

colored lines in the images show the positions of the line profiles. The 4DCT is 

used as a "ground truth" reference in this case. However, the 4DCT was 

acquired weeks prior to simulation, is subject to its own artifacts, and may not 

accurately reflect the tumor's form at the time the CBCT was acquired. 

 The NMSE  was 0.2929 when comparing the CBCT to the 4DCT, but 

was reduced to 0.1909 when comparing the deblurred image to the 4DCT. At 

a thresholds of (-700/-500) HU the SI dimension of the tumor was measured 

as (4.1/3.1) cm in the CBCT, (2.0/1.6) cm in the 4DCT, and (2.2/1.7) cm in the 

deblurred image. Measurements along the AP axis give (1.8*/1.4) cm, 
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(1.8*/1.4) cm, and (1.8*/1.5) cm in the CBCT, 4DCT, and deblurred image 

respectively. Measurements along the LR axis give (1.1/1.0) cm, (1.2/1.1) cm, 

and (1.2/1.1) cm in the CBCT, 4DCT, and deblurred image respectively. 

Measurements along the LR axis are cut off on the right side of the VOI, where 

the tumor abuts with the spine. For AP measurements denoted with an *, the 

threshold of -700 HU is not reached along the line profile, and the full size of 

the VOI is reported. While a threshold of -700 HU would not generally be used 

in real patient data, results are reported for consistency with the phantom 

studies of this chapter. Inspection of the line profiles in Figure 4.4 shows that 

the intensity profiles are somewhat steeper near the edge of the tumor in the 

deblurred image than in the original CBCT, and that the tumor size matches 

roughly with that represented in 4DCT. Along the AP and LR axes, the size of 

the tumor appears to be correctly preserved, and the line profiles near the 

tumor edges are slightly steeper in the deblurred image as compared to the 

CBCT. Qualitatively, the size and shape of the tumor appears much clearer in 

the deblurred image than in the CBCT. However, the deblurred image is 

noticeably less sharp than the 4DCT, and some of the finer details or textures 

may not be represented. 
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Figure 4.4:  Deblurring results for the patient example. Slices through the center of the 
tumor for CBCT (left), 4DCT (middle), and deblurred (right) volumes are shown, with 
corresponding line profiles along the SI (blue), AP (red) and LR (green) axes. The 
colored lines in the slices show the position of each line profile. 
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Table 4.3:  A table of example patient results, including the NMSE of each volume 
relative to the 4DCT, and the size of the tumor along the SI, AP, and LR axes, as 
determined by application of a (-700/-500) HU threshold to each CBCT. 
 

 
CBCT 

-700/-500 HU 
4DCT 

-700/-500 HU 
Deblurred 

-700/-500 HU 

SI (cm) 4.1/3.1 2.0/1.6 2.2/1.7 

AP (cm) 1.8*/1.4 1.8*/1.4 1.8*/1.5 

LR (cm) 1.1/1.0 1.2/1.1 1.1/1.0 
NMSE  0.2929 0 0.1909 

 

4.5. Discussion 

 The preliminary results reported above show that a deblurring algorithm 

based on motion tracked during CBCT acquisition performed excellently when 

tested on digital and physical phantom studies. Deblurring also appeared to be 

effective on an example patient case, though the benefits were less stark than 

in the phantom cases. Possible sources of error and how they relate to the 

phantom and patient cases are discussed below, including; 1) the assumption 

that motion is rigid within the VOI being deblurred; 2) estimation of the motion 

PDF; 3) the validity of the model used for motion blurring artifacts (Equation 

4.1); and 4) choice of regularization in the deconvolution algorithm. 

 A major advantage of this work is that it uses motion tracked during a 

CBCT scan. Previous works have relied on motion models generated from 

4DCT to remove motion blurring artifacts from CBCT (Li et al 2006a, Rit et al 

2009b). When motion changes significantly between 4DCT acquisition and 

treatment, this dependency may result in poor performance in artifact removal. 
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By tracking objects on the day of treatment, the method presented here 

ensures that the motion model is specific to the motion during the CBCT scan. 

The preliminary results reported above show that a deblurring algorithm based 

on motion tracked during CBCT acquisition performed excellently when tested 

on digital and physical phantom studies. Deblurring also appeared to be 

effective on an example patient case, though the benefits were less stark than 

in the phantom cases. Some possible sources of error are discussed below, 

including; 1) the assumption that motion is rigid within the VOI being 

deblurred; 2) estimation of the motion PDF; 3) the validity of the model used 

for motion blurring artifacts (Equation 1); and 4) choice of regularization in the 

deconvolution algorithm. 

 Since the motion of only one point (the tumor centroid) is tracked, the 

region over which the "motion model" is accurate is small. The deblurring 

technique can only be applied to a small VOI near the tracked object, where 

points inside the VOI can be assumed to move rigidly with the tracked point. If 

points within the VOI move differently than the tracked object, the algorithm 

will perform poorly. Larger tumors or any tumor that deforms substantially 

during the respiratory cycle could pose a problem. In the future, this challenge 

might be addressed by tracking multiple points, or by combining the tracked 

motion with previous motion information from 4DCT to generate a motion 

model for the entire reconstruction volume (though the reliance on a previous 

motion model should be minimized). As an alternative to the post-processing 
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approach of this paper, a complete motion model such as this could be 

incorporated into the reconstruction algorithm (Li et al 2006a, Rit et al 2009b). 

 Accurate estimation of a tumor's motion PDF during the CBCT scan is 

critical to the performance of the deblurring algorithm. The first requirement for 

PDF estimation is reliable knowledge of the tumor's position. Methods of tumor 

tracking are discussed in detail in Chapters 1 and 2, with their associated 

benefits and disadvantages. Tracking results from a CBCT scan would come 

in the form of a set of 2D tracking results corresponding to the rotational x-ray 

projections. The methods of this dissertation rely on the assumption of a 

regular, periodic orbit to reconstruct a closed 3D trajectory from these 2D 

tracking results, which is in turn used to estimate the motion PDF. If the 

trajectory is irregular or aperiodic, neither the trajectory nor the corresponding 

motion PDF will be useful. A somewhat irregular breathing pattern is likely part 

of the reason that the deblurring results are not as good in the patient data as 

they are for phantom data. 

Other methods of estimating the motion PDF are possible when the 

assumption of periodic motion is unacceptable. Recently Poulsen et al 

reconstructed motion PDFs from tracking results based on implanted fiducial 

markers in lung and prostate patients (Poulsen et al 2008). Maximum 

likelihood estimation (MLE) was used to fit a 3D Gaussian PDF based on sets 

of tracking results acquired in 60 second intervals (corresponding to the 

approximate time of a regular CBCT scan). This method of PDF estimation 
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works well when the PDF can be accurately represented by a 3D Gaussian, 

and is appealing in that in can be applied to targets that exhibit aperiodic 

motion, such as the prostate. However, in some cases a motion PDF cannot 

be well modeled by a single 3D Gaussian. For example, a Gaussian would not 

be a good choice to model a lung tumor trajectory which is completely regular 

but exhibits some hysteresis (e.g., a circular orbit). Additionally, as discussed 

in the following paragraph, the deblurring model used in this work may not be 

applicable when regular periodic motion can not be assumed. 

The deblurring algorithm relies on the assumption the model used to 

describe the creation of motion artifacts in a CBCT volume (Equation 4.1) is 

appropriate. For a simple time averaged volume, such as the one used in the 

digital phantom study, the model is clearly valid. For reconstructed CBCT data, 

the model is also reasonable if the period of a tumor’s trajectory is small 

compared to the gantry rotation time of a CBCT scan (as is the case for lung 

tumors). Previous work has verified that lung tumors appear spread out over 

their trajectory in CBCT volumes, and the effect is easily seen in the physical 

phantom and patient results shown in Section 4.4 (Wang et al 2007). The 

effects of slower (roughly similar to the gantry rotation speed) or aperiodic 

tumor motion may not be well represented by this simple model because of 

the more complicated artifacts caused by the interplay of gantry and tumor 

positions. The success of the algorithm in deblurring the CBCT of the physical 

phantom suggests that the model is well suited for typical CBCT acquisition 



 

 

98

parameters and regular periodic motion similar to what might be expected 

from a lung tumor. 

TV norm was chosen as the regularization term for the cost function in 

Equation 4.2, but many other regularization terms are possible. The choice of 

regularization essentially corresponds to incorporation of prior knowledge in 

the deconvolution algorithm. TV norm regularization assumes that the signal 

being recovered is piecewise constant. This is a good assumption for lung 

tumors, where the tumor with approximately constant high density is 

embedded in lower density lung tissue. TV norm regularization may cause the 

variations across the tumor or within the lung to be lost, but this is usually not 

a significant concern since for most practical purposes it is the ability to 

distinguish between tumor and regular lung tissue that is important. Other 

forms of edge preserving regularization have been developed which may be 

better suited for anatomical regions or purposes where it is more important to 

preserve textures and details. Some examples include neighborhood filters 

(e.g., bilateral filter, penalty weighted least square, etc.,) and non local means 

algorithms (Smith and Brady 1997, Buades et al 2005, Liu et al 2008, Wang et 

al 2009). While these regularization methods may preserve more fine structure 

than TV norm regularization, they are much more computationally expensive, 

and would not necessarily improve the ability to determine the shape and size 

of a lung tumor. 
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4.6. Conclusion 

 An algorithm has been developed which removes motion artifacts from 

CBCT volumes based on tracked object motion in the cone-beam projections 

used for reconstruction. The procedure was demonstrated to work well for 

digital and physical phantom studies, and appeared to decrease motion 

artifacts in patient CBCT. The major advantage of this method is that it relies 

on information about the motion of the patient acquired in the same projections 

used for CBCT reconstruction. A drawback is that only one point (a tumor 

centroid) is tracked, thus the motion correction only works over a small volume 

which moves similarly to the tracked point. In the future, multiple objects or 

points may be tracked in order to provide motion information over a larger 

reconstruction volume.  

This chapter contains material being prepared for publication. Lewis, 

John H.; Li, Ruijiang; Jia, Xun; Watkins, W. Tyler; Song, William Y.; Jiang, 

Steve B. The dissertation author was the primary investigator and author of 

this material. 
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5. Diaphragm-Based Tumor 

Tracking 

 

5.1. Overview 

 The importance of accurate knowledge of a tumor’s position in modern, 

highly conformal radiation therapy is well known and has been discussed in 

detail in the preceding chapters of this dissertation. Methods for tumor tracking 

can be separated intro three basic categories, each of which has its own 

benefits and problems.  

 The first method is direct tumor tracking, which has been the primary 

focus of this dissertation. In direct tumor tracking, the tumor is localized based 

on its appearance in fluoroscopic x-ray images. Direct tumor tracking is 

appealing because there is no requirement for marker implantation and 

because tracking does not rely on the relationship between the tumor position 

and the position of a surrogate (implanted or anatomical). The major drawback 

of direct tumor tracking is the difficulty in automatically detecting the tumor in 

x-ray images. Tumors appear in many different shapes, sizes, and positions in 



 

 

101

the lung, and sometimes have no clear border or texture visible in x-ray 

images. While a great deal of work has gone into direct or markerless tumor 

tracking (including Chapter 2 of this dissertation), these challenges have thus 

far prevented a tracking algorithm from being developed which is reliable 

enough for common clinical use (Cui et al 2007a, Xu et al 2008, Lewis et al 

2009, Li et al 2009b, Lin et al 2009b). 

A second method is tracking based on implanted artificial surrogates, 

such as gold fiducial markers or wireless transponders (Seiler et al 2000, 

Balter et al 2005). An implanted marker is by design easy to track accurately. 

However, markers may sometimes migrate within the body (Nelson et al 

2007). Marker migration can lead to poor tumor tracking due to the changing 

relationship between the marker and tumor positions. Additionally, there are 

risks of complications associated with marker implantation into lung tumors, 

including the potential for pneumothorax (Arslan et al 2002, Geraghty et al 

2003). These drawbacks have prevented the use of implanted markers for 

lung tumor localization in many institutions. 

Thirdly, tumor tracking can be performed based on anatomical 

surrogates. Common surrogate choices include the chest wall, abdomen, 

carina, or diaphragm. An obvious advantage of anatomical surrogates is that 

no invasive marker-implantation procedure is required. Additionally, chosen 

surrogates are generally easily tracked, either by external cameras (e.g., 

abdomen surface) or in x-ray images (e.g., diaphragm). The major difficulty 
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with this type of tracking is the development of a stable and reliable model to 

relate the position of the surrogate to the position of the tumor.  

The most commonly used anatomic surrogate is the abdominal surface 

(Jiang 2006, Kanoulas et al 2007, Ruan et al 2008, Wu et al 2008a). Some 

forms of external surrogate-based tracking have already attained widespread 

clinical use, such as the Real-time Position Management (RPM) system for 

gated radiation therapy or 4DCT sorting (Varian Medical Systems, Inc, Palo 

Alto, CA) (Jiang 2006). This system uses infrared cameras to track the AP 

motion of a marker block placed on a patient's abdomen, and relies on a 

consistent correlation between the block's motion and the tumor's position. 

Unfortunately it has been shown in multiple studies that the relationship 

between abdominal motion and lung tumor position can change, both between 

and during treatments (Bruce 1996, Hoisak et al 2004, Tsunashima et al 

2004). The use of the abdomen as a surrogate during gated radiation therapy 

can result in large residual tumor motion with the gating window, and frequent 

target misses (Berbeco et al 2005b, Berbeco et al 2006, Wu et al 2008a). It 

may be possible to improve accuracy by repeatedly updating the correlation 

model between the external surrogate and the internal tumor, or through 

breathing coaching methods (Jiang 2006, Kanoulas et al 2007, Wu et al 

2008a). 

A more intuitively appealing solution is to use an internal surrogate such 

as the diaphragm or carina for tumor tracking. These objects should have a 
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simpler and more stable relationship with the tumor position. A previous study 

based on 4DCT showed the carina to be a good surrogate for lung tumor 

motion, and suggested that it is in fact superior to the diaphragm (van der 

Weide et al 2008). However, this study did not account for a phase shift 

between the tumor and the diaphragm position. A similar study showed that 

when a possible phase shift between the diaphragm and tumor motions is 

accounted for, the diaphragm performs well as a surrogate (Zhang et al 2007). 

The usefulness of the diaphragm as a surrogate for lung tumor motion  has 

since been corroborated by a more comprehensive study in fluoroscopic 

image sequences (Cervino et al 2009). The diaphragm is a particularly 

appealing surrogate for use with x-ray projections because of its high visibility 

in the projections. It has been shown to be tracked easily in fluoroscopic 

images from a fixed angle (Chen et al 2001, Vedam et al 2003b, Berbeco et al 

2005a). Retrospective diaphragm tracking in MV CBCT projections has also 

been successfully performed (Alfredo 2009). 

While the diaphragm may perform well as a surrogate for tumor motion 

in most cases, the relationship between diaphragm and tumor positions will 

not always remain stable over time. Figure 5.1 shows an example of two 

fluoroscopic images acquired of at different times during the same treatment 

session. These images were both acquired at approximately the same phase 

in the breathing cycle, and with the diaphragm at the same position (as shown 

by the dotted line). The tumor, marked with a solid black circle, has a 
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dramatically different position in the two images. Current linear models used to 

relate tumor and diaphragm positions would not be able to accurately account 

for this type of discrepancy (Cervino et al 2009). It is possible that a more 

complicated non linear model could account for this type of motion. However, 

the fundamental problem is that correlation models are based on previous 

knowledge of the two object's motion (i.e., training data). If the objects move in 

a way that is not represented in the training data, the model will likely be 

unable to predict the correct relationship.  

In this chapter, a combined tracking method is developed which 

incorporates both direct and diaphragm-based lung tumor tracking. Direct 

tumor tracking results are relied on when a tumor is relatively clearly visible in 

projection images and good accuracy can be expected, while diaphragm 

tracking is resorted to when direct tracking results are deemed unreliable. The 

methods by which this distinction is made, and the way in which diaphragm 

tracking is performed are outlined in the following section.   
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Figure 5.1:  Two images from a fluoroscopic sequence acquired during the same 
treatment. The two images are acquired at approximately the same phase, with the 
apex of the diaphragm (dotted line) in the same position. The tumor (black circle) is 
not in the same position. 
  

5.2. Methods 

5.2.1. Combined tracking 

 Direct tumor tracking has been shown to be capable of accurately 

tracking a tumor in fluoroscopic image sequences taken from the AP direction 

when the tumor is somewhat easily visible (Cui et al 2007a, Xu et al 2008). 

Unfortunately, the same success has not been achieved in lateral images or in 

images where the tumor is difficult to see. In the case of tracking in rotational 

projections, there should nearly always been some angles at which the tumor 

is difficult to see due to intervening objects such as the spine. Figure 5.3 

shows the axial tracking results for the second patient in Chapter 2. Arrow (a) 

points to a tracked position within a region of relatively good tracking accuracy, 

while arrow (b) points to a position surrounded by relatively bad tracking 
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results. The corresponding projection images are shown below. In image (a), 

the tumor is clearly visible. In image (b), corresponding to the bad tracking 

result, the tumor is behind the spine and is nearly impossible to see. It is not 

surprising that an automatic tracking algorithm dependent on image 

information has a relatively easy time tracking a clearly visible object, but 

trouble when the object is barely distinguishable. A robust markerless tracking 

algorithm applicable to rotational projection images must have some way of 

handling this problem. 

 A practical solution is to implement a combined tracking algorithm 

which uses surrogate-based tracking for the angles at which the tumor is 

difficult to track directly. Even at angles where the tumor is difficult to see, a 

surrogate such as the diaphragm has enough contrast to be clearly visible in 

the projection image (see Figure 5.3). While reliance on a correlation model 

between the diaphragm and the tumor is not ideal, it may be less of a problem 

than attempting to track an object which is practically invisible in the projection 

image.  

 A key element to a combined tracking approach is the determination of 

when a switch from direct tumor tracking to diaphragm-based tracking should 

occur. As stated above, the angles for which a lung tumor is difficult to see 

often are the angles for which it overlaps with the spine or other relatively 

dense structures. The solution presented here is to determine the angles at 
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which this overlapping is expected, and to rely on diaphragm tracking for those 

angles.  

 Using the methods described in Chapter 2, DRRs generated from 

4DCT phases are used for direct tumor tracking. In addition to contouring the 

VOI surrounding the lung tumor's range of motion, another "avoidance" VOI is 

now contoured surrounding the spine and other high density structures near 

the posterior center of the thorax. An example of contoured VOIs is shown in 

Figure 5.4. When DRRs are created, in addition to projection the tumor VOI 

onto the imager, the avoidance VOI is also projected using the same 

geometry. If the projected VOIs overlap in the image, the tumor is assumed to 

be difficult to track, and diaphragm-based tracking is used. If the two areas do 

not overlap, direct tumor tracking is used (avoiding the dependence on a 

diaphragm-tumor model). 
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Figure 5.2:  The tracking results for patient 2 are shown above, with arrows pointing 
out two specific tracking results. The projection image corresponding to the good 
tracking results at point (a) is shown on the left, while the image corresponding to the 
poor tracking result at point (b) is shown on the right. 
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Figure 5.3:  Tumor VOI (red lines), tumor contour (yellow) and "avoidance" VOI 
(magenta) shown for an example patient case.  

 

5.2.2. Diaphragm-based tracking 

The first step in building a diaphragm-based tracking algorithm is to 

construct a model relating tumor and diaphragm positions. It has been shown 

that a simple linear model can be used to accurately model the relationship 

(Cervino et al 2009). A similar model is used in this work: 

 

,∑+=
N
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where ix  is the position of the diaphragm at series of time points indexed by i , 

ib  and a  are parameters fit to the training data, N  is the number of previous 

diaphragm positions incorporated into the model, and y  is the tumor position. 

If N  is chosen as 1, then the tumor position depends only on the diaphragm 

position at the same time instant, and no phase shifts are possible. In order to 

account for a possible phase shift between diaphragm and tumor motion, N  is 

chosen as 2 for this study. The model was fit using least squares based on the 

diaphragm apex and tumor positions derived from 4DCT. It has been shown in 

previous work that a diaphragm-tumor motion model derived during treatment 

simulation can be employed during later treatment sessions (Cervino et al). 

While the model could be used for tracking in multiple dimensions, we 

examine only the SI diaphragm and tumor positions in this preliminary study. 

Diaphragm tracking in the rotational projections was performed using 

the template matching algorithm described in Chapter 2. Deformations of the 

diaphragm surface make tracking based on shifting of fixed templates 

impractical if applied to a large VOI encompassing the entire surface. 

Additionally, the diaphragm apex position was used to derive the relationship 

with the tumor position, and this relationship may change for different regions 

of the diaphragm. For these reasons, only a narrow VOI around the apex of 

the diaphragm was used. An example image with projected VOI overlaid is 

shown in Figure 5.4. The resulting tracked SI motion of the diaphragm apex 

was input to the correlation model to determine the tumor position. Since the 
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model is defined in the 3D patient coordinate system, the parameters in 

Equation 5.1 must be appropriately scaled for application in the imager plane. 

Similarly to Chapter 2, this scaling was performed based on the source to 

apex and apex to imager distances as estimated from 4DCT. 

The diaphragm apex was chosen as a reference point because it 

should remain at or close to the diaphragm-lung interface for all projection 

images. If a point on the diaphragm surface lower than the apex was selected, 

there would be some angles for which the point was not along the visible 

interface in the image, and the position of the point could not be detected. 

Depending upon the curvature of the diaphragm and the relative positions of 

the source, isocenter, and image detector, even the 3D diaphragm apex may 

not appear as the highest position of the diaphragm in the 2D projection 

images or DRR templates. Given the convexity of a diaphragm, and the 

relatively large source to isocenter distance (100 cm) the apparent apex in the 

2D image should represent a point close to the true 3D apex. For this work, we 

assume that the model derived relating the SI diaphragm apex position to the 

tumor position is also valid for points near the apex. 
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Figure 5.4:  An example patient projection, with the projected narrow VOI shown near 
the apex of the diaphragm. 
 

5.3. Materials 

5.3.1. Digital NCAT phantom data 

 Diaphragm-based and combined tracking were initially tested on the 

digital NCAT phantom. The NCAT phantom is described in Chapter 2, along 

with the methods used to simulate projections and templates. The phantom 

was programmed with 4 second period, 2.3 cm SI tumor amplitude, 0.9 cm AP 

amplitude, and 0.2 cm left-right (LR) amplitude. Images were simulated at 1 

degree intervals over a 360 degree arc, with a gantry rotation time of 61.2 s. 

The 1.8 cm diameter tumor was positioned in the middle of the right lung. SI 

tumor and diaphragm apex positions used to fit the model in Equation 5.1 
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were derived from the same 10-frame dataset used to simulate 4DCT in 

Chapter 2. 

 

5.3.2. Patient data 

 The algorithm was also tested on two patients from Chapter 2. The first 

patient was excluded because the tumor was located on top of the diaphragm 

apex. In patient 1 (corresponding to patient 2 of Chapter 2) the tracked tumor 

was located near the center of the left lung. From 4DCT the tumor diameter 

was estimated as 1.2 cm, with a 2.7 second breathing period and 0.5 cm, 0.3 

cm, 0.4 cm amplitudes in the SI, AP, and LR directions respectively. In patient 

2 (corresponding to patient 3 in Chapter 2) the tumor was located near the 

spine in the lower right lung. From 4DCT the tumor diameter was estimated as 

1.6 cm, with a 3.0 second breathing period and 1.9 cm, 0.1 cm, and 0.1 cm 

amplitudes in the SI, AP, and LR directions respectively. The CBCT and 4DCT 

acquisition protocols are discussed in Chapter 2. 

 

5.4. Results 

5.4.1. Digital NCAT phantom results 

 Tracking results for the digital NCAT phantom are shown in Figure 5.5. 

Blue dots represent the direct tracking results, the red line is the true tumor 
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position, and the green dots are the diaphragm tracking results. The tumor 

positions have been scaled back to the average tumor position using the same 

procedure described in Chapter 2. The grey region in the graph denotes the 

angles for which the projected tumor ROI overlaps with the projected 

"avoidance" ROI, and the combined tracking algorithm switches from direct 

tracking to diaphragm-based tracking. Since projections span an entire 360 

degrees, there are two regions where the tumor and spine overlap.  

Cubic splines were fit to the 10 SI tumor and diaphragm apex positions 

from simulated 4DCT, and the time step (i.e., the time lag between 1x  and 2x ) 

in Equation 5.1 was selected as 0.68s, corresponding to a lag of 4 projections 

(and 17% of a breathing cycle). The determined coefficients for Equation 5.1 

were 1b = 0.81, 2b = -0.01, and a = 6.26. The small value for 2b  is expected 

because there is a simple linear relationship and no phase shift between the 

diaphragm and the tumor in the respiratory motion model of the NCAT 

phantom.  

 Tracking errors are reported for the digital phantom in Table 5.1. 

Results are reported in terms of the e95 and the erms for direct tracking (as 

described in Chapter 2), diaphragm based tracking (as described above in 

Section 5.2.2), and combined tracking. Combined tracking combines direct 

and diaphragm-based tracking using the technique described in Section 5.2.1. 

The e95 is 1.1 mm with direct tracking, 0.9 mm with diaphragm-based tracking, 

and 1.1 mm with combined tracking. Corresponding values of erms are 0.6 mm, 
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0.4 mm, and 0.6 mm for direct, diaphragm-based, and combined tracking 

respectively. 

 

 
 

Figure 5.5:  Diaphragm tracking results for the digital phantom. The red line is the true 
tumor position, the blue dots are the direct tracking results, and the green dots are 
from diaphragm-based tracking. The shaded grey area is the region in which 
diaphragm-based tracking would be used in a combined tracking scheme. 
  

Table 5.1:  Digital phantom tracking errors. Direct tracking (Chapter 2), diaphragm-
based tracking (Section 5.2.2) and combined tracking (Section 5.2.1) results are 
reported. 

 
 e95 

(mm) 
erms 
(mm) 

Direct 1.1 0.6 
Diaphragm 0.9 0.4 
Combined 1.1 0.6 

 

5.4.2. Patient results 

 Tracking results for patient 1 and patient 2 are shown in Figure 5.6 and 

Figure 5.7 respectively. Blue dots represent the direct tracking results, the red 

line is the clinician defined ground truth, and the green dots are the diaphragm 

tracking results. The tumor positions have been scaled back to the 
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approximate tumor position as estimated from 4DCT using the same 

procedure described in Chapter 2. The grey region in the graphs denote the 

angles for which the projected tumor ROI overlaps with the projected 

"avoidance" ROI, and the combined tracking algorithm switches from direct 

tracking to diaphragm-based tracking. In patient 1, the diaphragm tracking 

results are only available in a subset of angles where the diaphragm apex is 

visible in the projection images. In patient 1, the tumor is located farther from 

the spine, and the two do not overlap in most projections. In patient 2, the 

tumor is very close to the spine, and overlaps in about two thirds of the 

projections used. 

Cubic splines were fit to the 10 SI tumor and diaphragm apex positions 

from 4DCT. The time step in Equation 5.1 was selected as 0.47s, 

corresponding to a lag of 5 projections (17% of breathing cycle in patient 1, 

16% of breathing cycle in patient 2). The determined coefficients for Equation 

5.1 were 1b = 0.41, 2b = 0.24, and a = 6.90 for patient 1, and 1b = 1.24, 2b = -

0.43, and a = 2.41 for patient 2. 

 Tracking errors are reported for patients 1 and 2 in Table 5.2 and Table 

5.3 respectively. Results are reported in terms of the e95 and the erms for direct 

tracking (as described in Chapter 2), diaphragm-based tracking (as described 

in Section 5.2.2), and combined tracking. Combined tracking combines direct 

and diaphragm based tracking using the technique described in Section 5.2.1. 

In patient 1, the e95 is 1.9 mm with direct tracking, 1.7 mm with diaphragm-
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based tracking, and 1.7 mm with combined tracking. The corresponding erms 

values are 1.0 mm, 0.9 mm, and 0.8 mm for direct, diaphragm-based, and 

combined tracking respectively. In patient 1, the e95 is 4.6 mm with direct 

tracking, 3.0 mm with diaphragm-based tracking, and 2.9 mm with combined 

tracking. The corresponding erms values are 2.5 mm, 1.7 mm, and 1.6 mm for 

direct, diaphragm-based, and combined tracking respectively. 

 

 

 

Figure 5.6:  Diaphragm tracking results for patient 1. The red line is the clinician 
defined ground truth position, the blue dots are the direct tracking results, and the 
green dots are diaphragm-based tracking. The shaded grey area is the region in 
which diaphragm-based tracking would be used in a combined tracking scheme. 

 

Table 5.2:  Patient 1 tracking errors. Direct tracking (Chapter 2), diaphragm-based 
tracking (Section 5.2.2) and combined tracking (Section 5.2.1) results are reported.  

 
 e95 

(mm) 
erms 
(mm) 

Direct 1.9 1.0 
Diaphragm 1.8 0.9 
Combined 1.6 0.8 
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Figure 5.7:  Diaphragm tracking results for patient 2. The red line is the clinician 
defined ground truth position, the blue dots are the direct tracking results, and the 
green dots are diaphragm-based tracking. The shaded grey area is the region in 
which diaphragm-based tracking would be used in a combined tracking scheme.  

 

Table 5.3:  Patient 2 tracking errors. Direct tracking (Chapter 2), diaphragm-based 
tracking (Section 5.2.2) and combined tracking (Section 5.2.1) results are reported. 
 

 e95 
(mm) 

erms 
(mm) 

Direct 4.6 2.5 
Diaphragm 3.0 1.7 
Combined 2.9 1.6 

 

5.5. Discussion 

In the digital phantom every tracking method performed well. 

Diaphragm-based tracking had slightly smaller errors than direct or combined 

tracking. This may have been due to the ease in tracking the high contrast 

diaphragm, and the simple, constant relationship between the diaphragm and 

tumor positions. Combined tracking does not offer much benefit in the 
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phantom case because the tumor is easily visible and tracked even when 

behind the spine. Reconstruction artifacts, imaging noise, and increased 

anatomic complexity make this a much more difficult task in patient data 

(along with 4DCT-CBCT registration errors, tissue deformations between 

4DCT and CBCT acquisitions, and irregular breathing patterns).  

In patient 1, direct tracking had the largest errors, and combined 

tracking had the smallest errors. However, the differences were very small. A 

difference of 0.1-0.2 mm is not clinically significant in most practical situations. 

Furthermore, given the inherent uncertainty in the clinician-defined ground 

truth, the small differences in performance may not constitute a real 

improvement. In patient 2, direct tracking had substantially larger errors than 

either diaphragm-based or combined tracking. Direct tracking was particularly 

poor for the large set of angles at which the tumor overlapped the spine in 

projection images. Combined tracking had slightly smaller errors than 

diaphragm-based tracking, but the difference was again very small. 

While a conclusive comparative study would require more data, the 

results of this preliminary study demonstrate the feasibility of both diaphragm-

based and combined tracking methods. In every case, both diaphragm-based 

and combined tracking performed equally or better than direct tracking alone. 

The results showed no clear advantage between combined and diaphragm-

based tracking. However, as was discussed in Section 5.1 and illustrated in 

Figure 5.1, lung tumors can move in ways that are hard or impossible to 
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predict based on the diaphragm alone, or are not represented by the training 

data used to fit the diaphragm-tumor model. In these cases the model will be 

unable to accurately predict tumor motion, and diaphragm-based tracking will 

perform poorly. No such tumor motions were observed in the data used for this 

study, so the potential benefits of combined tracking were not demonstrated. 

Still, combined tracking reduced the time that the diaphragm-tumor model was 

relied upon (reducing the chance of failure) while maintaining comparably 

small errors to diaphragm-based tracking. 

Imaging artifacts in 4DCT can lead to inaccurate diaphragm-tumor 

models. 4DCT are acquired slice by slice axially, so that the actual breathing 

cycle of the patient while a slice at the tumor is being acquired is a different 

cycle than when the diaphragm slice is acquired. These slices are usually 

binned into volumes based on phase, but if a patient breaths irregularly, the 

amplitude may be different for these two cycles. In this case, the diaphragm 

position would not correctly correspond to the tumor position. Nevertheless, 

diaphragm-tumor models based on 4DCT have been shown to be reliable in 

previous work (Zhang et al 2007, van der Weide et al 2008). Problems caused 

by irregular breathing could potentially be reduced by breathing coaching, or 

by using amplitude sorting instead of phase sorting. Amplitude sorting is 

however unpopular clinically because sampling issues lead to missing slices in 

reconstructed volumes. 
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The relationship between the diaphragm and tumor could change 

during the time between 4DCT acquisition and a treatment, reducing the 

accuracy of the model. Cerviño et al showed in a recently study of 21 

fluoroscopic sequences acquired from five lung cancer patients that 

diaphragm-tumor models acquired during the first treatment could be used for 

accurate tracking in subsequent fluoroscopic sequences (2010). Registration 

based on bony anatomy was used to transfer the model to between 

sequences. Despite this study, it seems likely that there will be some 

instances in which models cannot be applied to multiple treatment days due to 

anatomical changes. For example, variable levels of matter in the 

gastrointestinal tract could cause a baseline shift in the diaphragm position. 

Unless the tumor exhibits the same magnitude baseline shift, the relative 

positions of the tumor and diaphragm would change. 

Both the issues with 4DCT phase-binning errors and with applying a 

diaphragm-tumor model to subsequent treatment days could be addressed by 

training the model based on direct tumor tracking results on the day of 

treatment. In the methods of this chapter, both diaphragm and direct tumor 

tracking were performed at each angle. When the tracking results are reliable, 

these results could be used to establish or update the diaphragm-tumor 

model. As has been the major point of this chapter, direct tumor tracking is not 

always reliable. A potential solution to use the methods of Section 5.2.1 to 

determine when tracking results are reliable, and use those results to train the 
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diaphragm-tumor model. Then the model could be used at the angles for 

which direct tracking was deemed unreliable. In some cases a CBCT scan 

may start at an angle where direct tracking is unreliable, as was the case for 

example in the scan of patient 2. In these cases one would have to either 

resort to a model from a previous day, or to change the starting angle of the 

CBCT scan so that accurate direct tracking results are obtained before there is 

need to switch to diaphragm-based tracking. 

This study was limited to only the SI motion of the diaphragm apex and 

tumor centroid positions. SI motion is generally the largest component of 

respiratory induced lung tumor motion, but smaller motions do occur in the AP 

and LR directions (Keall et al 2006). A model could be built relating the 

diaphragm's SI position to a tumor's LR and AP positions based on 4DCT. 

This extension of diaphragm-based tracking is planned for a future study. 

 

5.6. Conclusion 

 A combined tracking algorithm was developed which incorporates 

benefits of both diaphragm-based and direct tumor tracking. The diaphragm 

apex was tracked using a slightly modified version of the method presented in 

Chapter 2. Diaphragm positions were then translated to tumor positions based 

on a simple linear model. By using the diaphragm as a surrogate, large 

tracking errors associated with angles for which the tumor is difficult to detect 
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in projection images can be reduced. By using direct tracking when the tumor 

is clearly visible in projection images, the time spent relying on the (potentially 

unstable) diaphragm-tumor model is minimized. In this preliminary study, the 

combined tracking algorithm performed better than or comparably to direct and 

diaphragm-based tracking in each case. Diaphragm-based tracking also 

performed well in each case. More data is required to investigate the 

performance of combined tracking in situations where diaphragm-based 

tracking may perform poorly. A larger comparative study should be performed 

before any decisive conclusions are drawn.  
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6. Conclusion 

 

6.1. Summary and Conclusions 

 The goals of this dissertation were to develop a real-time localization 

algorithm that is applicable to rotational cone-beam projections, and to use 

tracking results from a set of projections acquired during a regular 3D CBCT 

scan to reconstruct a tumor's trajectory, size. The primary motivation for these 

goals was to make available more information about a lung tumor's motion 

and position to be available on the day of treatment, allowing for more 

accurate and precise radiation treatments. Such enhancements could 

potentially allow for decreased dose to normal tissues, or escalated dose to 

the tumor. 

 In Chapter 2 the algorithm for direct tumor tracking in rotational cone-

beam projections was developed. Since tumors are tracked directly in 

projection images the algorithm does not require surgical implantation of 

fiducial markers, and does not rely on a stable relationship between the tumor 

and any surrogate. The feasibility of the algorithm was demonstrated on a 

digital phantom, a physical phantom, and three patients. While the patient 
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tracking results are promising, future refinement is needed to achieve more 

clinically palatable accuracy. A significant source of error appeared to be 

difficulty in tracking the tumor at angles where other high contrast objects 

overlapped with the tumor in the projection images. These errors were partially 

addressed by the diaphragm-based tracking work of Chapter 5. 

In Chapter 3 a method was designed for using the rotational 2D 

tracking results of Chapter 2 to reconstruct 3D lung tumor trajectories. 

Accurate phase-binned trajectories were reconstructed in each case despite 

poor direct tracking results in some projection images. The most appealing 

aspect of this method is that 4D information can be acquired from the 

projections without the increased scanning time and dose associated with 4D 

CBCT. However, while the method presented here only provides a set of 

points representing the motion of the tumor centroid, a 4D CBCT allows for 

entire volumes to be reconstructed from which motion blurred artifacts have 

been removed. Depending on the application, knowledge of the tumor motion 

alone may be sufficient (e.g., patient positioning), but in some cases it is 

desirable to know the shape and size of the tumor. 

In Chapter 4 a method was developed to generate motion-corrected 

CBCTs of lung tumors using knowledge of a tumor's motion during CBCT 

acquisition as acquired by the techniques of Chapters 2 and 3 . The method 

was tested on digital phantom, physical phantom, and example patient cases. 

Motion blurring artifacts were effectively reduced in each case. While previous 
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motion-correction strategies relied on motion models derived from 4DCT 

acquired days or weeks prior to treatment, this method uses motion 

information acquired in the same dataset used for CBCT reconstruction. A 

drawback is that only one point (a tumor centroid) is tracked, thus the motion 

correction only works over a small volume which moves similarly to the 

tracked point.  

In Chapter 5, a tracking algorithm was developed which incorporated 

benefits of both diaphragm-based and direct tumor tracking. By using the 

diaphragm as a surrogate, large tracking errors associated with angles for 

which the tumor is difficult to detect in projection images could be reduced. By 

using direct tracking when the tumor is clearly visible in projection images, the 

time spent relying on the (potentially unstable) diaphragm-tumor model is 

minimized. The method was tested on a digital phantom and two example 

patient cases. The combined tracking algorithm performed better than or 

comparably to direct and diaphragm-based tracking in each case. Diaphragm-

based tracking also performed well in each case. More data is required to 

investigate the performance of combined tracking in situations where 

diaphragm-based tracking may perform poorly. 
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6.2. Future Work  

 The work of this dissertation has been limited to algorithm development 

and feasibility testing. A larger set of testing data is needed for a more 

comprehensive study of the methods presented in each chapter. A major 

challenge in patient data is the establishment of ground truth. In markerless 

tracking, the tumor position in each x-ray projection was defined manually. 

Since the tumor is hard to see in some projections, there is uncertainty in this 

definition of tumor position. A better future solution would be to use projection 

images of tumors with implanted fiducial markers. The markers could be used 

to establish ground truth, and then images could be processed to remove the 

markers before the markerless tracking algorithm is tested. Such data would 

only be available at an institution which uses fiducial markers and acquires 

CBCT for lung patients.  

 While the ultimate test of a tracking algorithm is its performance on real 

patient data, a more rigorous phantom study could also be helpful. In the 

future the NCAT phantom will be used to simulate more realistic data by 

adding noise, irregular breathing patterns, registration errors, and 

interfractional anatomic deformations. While it is not possible to reproduce all 

of the complexities and variations in real patient images, such a phantom 

study could be helpful in isolating and testing solutions to specific 

shortcomings of the tracking algorithms. 
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 As was mentioned in Chapter 4, the motion-compensation algorithm 

presented is only applicable to a small volume near the tracked tumor. The 

size of the volume corresponds to the region for which rigid motion 

(corresponding to the tracked tumor centroid) is an accurate assumption. In 

future work, multiple targets will be tracked simultaneously so that motion 

blurring functions can be generated for specific regions of the thorax and 

motion artifacts can be removed from a larger volume.  
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