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Abstract

This paper examines the behavior of multi-lane freeway traffic past on-ramps, building

on the continuum model of part I and focusing on the onset of congestion. The main

complication with merges is that rabbits (fast vehicles) entering from an on-ramp usually stay

on the shoulder lane(s) of the freeway for some distance before merging into the fast lane(s).

An idealization is proposed where this distance is taken to be the same for all vehicles.  As a

result,  the system behaves as if there was a fixed buffer zone where entering rabbits cannot

change lanes.  The model of part I is extended to capture the peculiarities of traffic within such

a buffer zone, including its two end-points: the “entrance” and the “merge”.  The onset of

congestion is described by means of waves.  The paper shows that this highly idealized model

(and its more realistic cousins) explain qualitatively all the puzzling facts discussed in part I

without introducing obviously unreasonable phenomena.

A typical sequence of events during the onset of congestion is predicted to be as follows:

(i) increased on-ramp flows and the ensuing merging maneuvers into the passing lane generate

a (fast-moving) queue at the merge that grows on the passing lane(s) of the buffer;  (ii) when

the speed in this queue drops past a critical level (vf) a 1-pipe queue forms at the merge, which

then grows upstream across all lanes;  (iii) if the front of this queue moves slowly forward, as

per the model of part I, then the lane-flows at the merge point would be at “capacity” from then

on (with roughly the same speed across all lanes) but  downstream of the front there would be

a “discharge state” with less total flow. Therefore, an observer downstream of the merge would

see this discharge state before the capacity state, and would record a drop in flow followed by

a recovery. If the front of the queue would move slowly backward, then the sequence of events

following (ii) is somewhat different, as described in the paper. 
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1. INTRODUCTION

Part I of this report (Daganzo, 1999) introduced a model of traffic dynamics for

homogeneous, multi-lane freeway sections.  Although in this model traffic could be in a “2-pipe”

over-saturated regime for an extended period of time (in agreement with experiment) the model

included no mechanism for the creation of the over-saturated states in the first place.

Therefore, the model of part I does not explain their existence.   The present paper completes

the picture; it proposes that merging traffic can get traffic into the over-saturated state through

a “pumping mechanism” that follows necessarily from the driver psychology model of part I.  It

also describes the queue generation process in qualitative detail (by-lane and by longitudinal

position) in terms that drivers could understand, and quantifies the process systematically with

the different kinds of waves introduced in part I.  Such detailed predictions should allow the

model to be falsified (or verified) with new experiments.  If it is falsified, the new empirical

observations should lead to improved theories.

The focus of the paper is on the generation of queues by merging traffic. The paper is

organized as follows. Section 2, below, highlights the most relevant results of part I.  Section

3 describes the pumping mechanism.  Section 4 examines the consequences of over-pumping

and how queuing begins; it also shows that the predictions of this theory are consistent with

what is observed. Finally, Sec. 5 offers some closing comments pertaining to experimentation

and further theoretical work.

2. REVIEW: HOMOGENEOUS SECTIONS 

Part I of this report proposed that under moderate to heavy traffic levels where passing

is possible but not free, drivers in homogeneous freeway sections do two things:  (1)  they
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segregate themselves by lane according to maximum desired speed (so that the speed of a lane

corresponds to the speed of the slowest drivers willing to use that lane), and (2) they accept

lower headways while passing.  The special case of this theory that pertains to freeways with

only two driver classes (rabbits and slugs) and/or two lanes (passing and shoulder) was

examined in detail.

It was argued that there would be 3 kinds of stationary states characterized by the speed

of the rabbits,  V:  free-flow/uncongested  ( V = Vf ) ,  semi-congested  ( vf < V < Vf ) and

congested/queued  ( V # vf ).   In all cases the speed of the slugs would be   v  = min (vf , V). 

Accordingly, two regime types were defined:  “1-pipe” (congested), where the speed of all lanes

and vehicles is the same and “2-pipe” (uncongested or semi-congested), where vehicles are

segregated by type and by lane. Because the lane-flows and lane-densities are related, a state

can be characterized by only two quantities, e.g., the respective densities of rabbits and slugs.

Given these two quantities, one can identify uniquely the flow-density-speed of all the traffic

stream components (by vehicle type and by lane) and draw representative sets of vehicle

trajectories on the (t, x) plane.

A recipe was given to solve dynamics problems in which the (t, x) data were piecewise

constant on piecewise linear boundaries.  For well posed problems the (t, x) solution is a unique

partition of the solution space into polygonal areas of stationarity separated by “stable”

interfaces.  These interfaces represent (t, x) regions where traffic changes in character, and can

be of three types: slips, simple (or kinematic) waves and mixed (or regime changing) waves.

Slips are changes in vehicular density that propagate with the vehicular speed, i.e., where

vehicles do not interact.  Simple waves induce changes in speed as vehicles are hit by the

wave, without lane-changing.  Mixed waves involve concurrent speed, lane and psychology

changes.  Situations involving regime transitions such as incidents and their removal were
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analyzed in detail.  Of particular interest were the transitions marking the rear and front of a 1-

pipe queue.  

If the queue is generated when traffic flow is high then 1-pipe precursor states with a

vehicular speed that can be anywhere between  0 and vf  will form upstream of it.  These states

grow spatially with time.  The details depend on the particular conditions of the problem as per

the geometrical construction in Fig. 6 of part I.

The evolution of the front of a 1-pipe queue is described by Fig. 4 of part I.  The front of

the queue is characterized by a “fan” of states with progressively higher speeds. In the

prototypical case all vehicles leaving the queue first accelerate to speed vf , entering the

“capacity” 1-pipe state, and some time later rabbits change lanes and accelerate into a 2-pipe

“discharge” state. The passing-lane flow of the discharge state, Qd , is reproducible and smaller

than the maximum possible flow on that lane, Qc.  The regime transition between the capacity

and discharge states will travel either upstream or downstream, depending on the proportion

of slugs in the queue, which dictates the shoulder lane flow.  For multi-lane freeways the

process is assumed to be similar; i.e., involving a sequence of discharge states where lanes

reach their maximum speed sequentially from the shoulder to the median (see Fig. 8 of part I.)

The present paper extends the above to explain evidence “E” of part I.  The  following

aspects of “E”, noted in Cassidy and Bertini (1996),  are worth recalling:  (E1) prior to the onset

of queuing there is a period of time where the flows on both the passing lane and the freeway

as a whole are very high;   (E3): (i) delays for vehicles passing the merge increase slightly

towards the end of this period; (ii) ... ; (iii)  afterwards, the total flow drops sharply and queuing

delay increases significantly; (iv) the total flow finally rises to a  level, slightly below the original,

which is sustained with minor fluctuations while the queue is present.
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1   See for example the theoretical proposal made in Buckley and Yagar(1974) in recognition of this phenomenon.

3. THE PUMPING EFFECT

Although extensions are possible, it will be assumed for the remainder of this paper that

there are only two driver types (rabbits and slugs) and that slugs behave near the merge as they

do in a homogeneous section, i.e. always staying in the right lane.  We recognize that it would

be more realistic to use more driver classes and to assume that some of the slugs could use the

left lane in the neighborhood of the merge (i.e., temporarily behaving as rabbits), but

generalizations like these would also introduce more parameters into the model.  We prefer to

keep the model simple until experimental evidence indicates that complications are necessary.

It is well known that the transition between the congested and uncongested traffic

regimes at an active merge bottleneck occurs somewhere downstream of the merge rather than

at the merge itself.1   It is conjectured here that as main-line and on-ramp flows increase, main-

line rabbits stay on the passing lane and become increasingly motivated to accept short

headways, especially while proceeding past the merge. (Still triggered by passing, this

psychological mechanism is the same as in part I.)   At the same time, on-ramp vehicles of both

types enter at the junction and stay on the shoulder lane.  Further downstream, rabbits vacate

the shoulder lane by accelerating and forcefully merging into the passing lane.  These merges

decrease the downstream headways on the passing lane, which is possible because drivers are

motivated, and increase the downstream passing-lane flow beyond the discharge level.  We call

this the “pumping mechanism” and the resulting state an “over-saturated” or “pumped state”.

If merging and/or through traffic increase so much that the ensuing passing-lane flow

would exceed the maximum possible motivated flow, Qc , then only this flow would advance, and

a queue would grow on the passing lane generating a semi-congested state.  We say that the

merge has been “critically-pumped”.  Further increases in on-ramp flow and the ensuing decline
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2  The notation in this paper is identical to that of part I.

in passing-lane speed may cause the passing-lane queue to spillover to the shoulder lane and

create a 1-pipe queued state.  The result would then be an “over-pumped” state of affairs in the

neighborhood of the merge.  The remainder of this section only describes the pumping effect

and the transition into criticality. The collapse into the over-pumped state is described in Sec.

4.

As in part I, it is assumed that rabbits (and slugs) are identical in all respects. In

particular, all entering rabbits are assumed to accelerate and merge into the fast lane a fixed

distance, D, downstream of the entrance and all slugs are assumed to remain in the shoulder

lane.  This is modeled, as shown in Fig. 1a, by introducing an imaginary set of lane markings

(a baffle) that forbids shoulder lane vehicles from crossing into the passing lane between the

entrance and the merge.  Vehicle trajectories could then be idealized as shown in the figure.

Note that the headway adjustments due to merging are confined to a narrow “awareness zone”.

To keep the figure simple, the entering traffic stream includes no slugs.  This, however, is not

a requirement of the theory.  The (t, x) diagram in part b of the figure is a continuum

representation of this process in which the length of the awareness zone has been neglected

and where capital letters (A, B, S) have been used to indicate the stationary states. The

corresponding flow-density points are shown in the diagram on the left;  q’e  is the entering

rabbit flow.2  

Traffic outside the buffer zone spanned by the baffle is assumed to behave as in part I.

Buffer traffic is slightly different, however, because it is a superposition of ordinary upstream

traffic and entering traffic, which must stay on the shoulder lane.  As a result, the 2-pipe buffer

regime can contain shoulder-lane rabbits. In recognition of this difference, “S” and later letters
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3  Similar conservation relations hold for the flows of slugs and the total flows, but not for the lane flows.

of the alphabet will be reserved to denote buffer states.   As shown on the flow-density diagram

of Fig. 1b the buffer point denoting the total flow of rabbits may be off the curve. Note that flow

conservation for rabbits requires   Q’B = Q’S = Q’A + q’e ,
3   as shown on the flow-density diagram

of Fig.1b.

        Parts a and b of Fig. 2 show the transition into criticality. The (t, x) diagram of part a is a

continuation of Fig. 1a, where the inflow of rabbits is assumed to have increased by 25% at t

= 1.5.  (Slug trajectories are not shown in this figure to avoid clutter.)  The increased flow

saturates the passing lane downstream of the merge and a simple shockwave denoting the back

end of a passing-lane queue is kicked back upstream.  The shock velocity and other

macroscopic properties of this process are easily displayed with a continuum representation,

as in part b of the figure.  The (t, x) portion of this figure includes all the interfaces that would

arise as a result of two successive increases in the flow of entering rabbits (at t = -0.25 and t

= 1.5).  The three interfaces on the left are slips, as are the interfaces separating S and S’, and

A’ and B.  The flow-density diagram shows how the shock velocity is determined.  All the points

in this figure, except the solid dot labeled “z” are data.  This point is located on the down-sloping

part of the Q(K) curve, with flow QC - q’e , as shown.  The shock velocity is obtained as usual.

This shock is the only simple wave of the figure.  State “Z” deserves to be called a critical state

because the total flow of rabbits is QC.  Of note: (i) U must be negative for otherwise we would

still be in the case of Fig. 1; and (ii) the geometrical construction is not valid if solid dot “z” is

below the ray with slope vf .  This would imply a traffic speed below vf, which forbids a 2-pipe

state.  In this case the system would transition directly into a 1-pipe state.  These types of

transitions are described in Sec.4
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Small increases (or decreases) in on-ramp flow while the system is in the critically-

pumped state would continue to propagate as slips from the entrance to the merge.  When each

one of these slips reaches the merge a flow reducing (or increasing) wave with velocity  W

would be issued from the merge in order to maintain flow conservation at it without changing

the downstream flow on the passing lane.  The downstream state would remain “critical”.  This

wave may overtake the shock and alter its velocity, as in conventional kinematic wave theory.

With successive (small) increases in on-ramp flow the solid dots representing the newly

introduced semi-congested states upstream of the merge (e.g, points such as  “z” in the figure)

would move gradually down the Q(K) line until eventually a new point would have to be below

the ray with slope vf.  This is the moment of the collapse, which is depicted in Fig. 2c and

examined below.

4. OVER-PUMPING AND THE ONSET OF QUEUING

When an increase in on-ramp flow such as the one issued from the entrance at time t =

4 in Fig. 2c reduces the passing-lane speed in the neighborhood of the merge to vf  or below,

rabbits lose the incentive to follow closely and may want to move into the shoulder lane.  When

the reduction in speed spans several car lengths, some through rabbits will act, creating an

ordinary 1-pipe state of unmotivated drivers. Because there is nothing holding the front of this

queue, drivers in this collapsed 1-pipe state accelerate into the 1-pipe capacity state and later

reach a discharge state.  This process was described in connection with Fig. 4 of part I.

On the upstream side, given a velocity W’ for cross-regime deceleration transitions

(assumed to be independent of Z’ as in the examples of part I), one can identify the collapsed

1-pipe state with the construction of Fig. 6b of part I.  One may think of this state as a “queue

precursor” state that introduces the capacity state.
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4  Flow on the right lanes could conceivably increase.

The final result may be as in Fig. 2c.  Note that the solution includes two regime

transitions: (i)  a “collapse wave” which involves a general speed reduction, lane-changes away

from the passing lane and a loss of driver motivation, and (ii) a “frontal wave” or “acceleration

transition” which marks the return of all the rabbits to the passing lane.  The solution also

includes two slips and a simple wave.  Because the proportion of slugs in the traffic stream is

low in our example the velocity of the frontal wave was positive but this does not have to be the

case.  The case with negative velocity is discussed latter.

Downstream behavior: Note that an observer well downstream of the merge would see

a gradual increase in the freeway flows (states A,  A’ in our example), particularly in the passing

lanes.  Also note that  maximum flow levels on the passing lane(s) (state B) could be reached

and sustained for an indefinite period.  This state of affairs, however, could also end (as

occurred in the example) with a sudden drop in the overall flow and the introduction of a

discharge state “D”.  The drop in flow would be particularly severe on the passing lanes,

although traffic on these lanes would continue to move faster than on the shoulder lanes.4  This

state of affairs cannot persist, however.  Eventually, the slow frontal wave would reach the

observer and one would see a reduction in the speed of the passing lanes, a more even

redistribution of flows across lanes and an increase in the overall flow.  This state of affairs

could then be sustained indefinitely. The qualitative description in this paragraph, which would

also hold for the multilane freeway model embodied in Fig. 8 of part I, is consistent with puzzling

empirical observations E1 and E3(vi).

Still downstream but closer to the entrance (upstream of our imaginary merge) the model

predicts a slightly different pattern.  Total flows also increase but the lane distribution is less
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5  The model predicts that increases in upstream flow cannot cause the collapse.

biased toward the passing lanes since entering rabbits have not yet had the time to merge. This

is typified by states A, S and S’ in our example.   Eventually, once the passing lanes have been

saturated with merging rabbits and maximal passing-lane flows are seen downstream, a speed

reduction should also be noted on the passing lanes as a queue of slightly delayed passing

vehicles begins to grow (state Z in the figure).  In agreement with item E3(i), this state manifests

itself by way of increased average trip times between detectors, particularly on the passing

lanes.  (Further increases in entering flow would result in even higher shoulder lane flows, lower

passing lane flows/speeds and still unchanged passing lane flows well downstream.)  Semi-

congested states such as Z can propagate upstream of the merge and can last forever.

However, an incident, or further increases in entering flow  (to a level such as that of state Z’

in part c the figure) would cause a collapse into the 1-pipe regime as shown.5   Our imaginary

observer would then see the passage of the collapse wave which, in agreement with item E3(iii),

introduces a sharp reduction in the speed of all lanes and an increase in vehicular delay. The

precursor 1-pipe queue state so introduced would then be followed in short order by the

capacity state and continued delays.  (Because W’ and w are likely to be similar and the length

of the “buffer” is likely to be short, the precursor state should not last long at this location.)  

Upstream behavior: Traffic behavior upstream of the entrance is influenced by the

arrival of the collapse wave and the onset of the 1-pipe regime. From then on the merge should

behave approximately as described in Daganzo (1994 and 1996), i.e., with the maximum flow

allowed to enter being a given proportion of the flow downstream of the entrance.  This

proportion may be location- and flow-specific.  Although the conventional wisdom is an entering

proportion from the on-ramp equal to 1/2L (if L is the number of freeway lanes) a number closer
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6  We recognize that oscillations exist in the 1-pipe regime and that these oscillations may grow in amplitude as
one moves upstream from an active bottleneck.  We suspect that the initial oscillations may be caused by random
variations in the number of vehicles that make room for entering traffic by changing into the passing lanes
forcefully.  We also recognize that speed changes so generated will travel upstream as waves and that the changes
may be magnified by further on-ramps and more congested traffic.  Unfortunately, not enough detailed
observations have yet been made to speculate further about this mechanism.

to 1/L may be more reasonable if one finds that main-line vehicles make room for the on-ramp

flow by moving to the passing lanes upstream of the entrance.  In any case, a queue will grow

on the on-ramp if its cumulative arrivals exceed the maximum allowable cumulative flow.  Of

course, a reduction in downstream flow will also reduce the upstream main-line flow.

Congested main-line flows can be modeled with the KW wave model, albeit not precisely.6  

Negative front velocity:   It was shown in part I that the case of Fig. 2c with w* > 0

arises if QC > QD ,i.e., if there are few slugs.  Otherwise, the velocity of the front would be

negative and a pattern such as that in Fig. 3 should emerge; i.e., as in Fig. 4c of part I. The

precise form of the pattern can be determined with the geometrical construction of said figure.

The only difference is that the front velocity within the buffer, w*b , should now be determined

as if the entering rabbits, who cannot change lanes within the buffer, were slugs.  This leads

to a discharge state with heavier flows in the shoulder lane, and flow Qd on the passing lane.

Insofar as w*b < 0, the total flow of the discharge state should now be (slightly) greater than

capacity flow.  On exiting the buffer at the dotted line of Fig. 3, the cripto-rabbits should force

their way into the passing lane, increasing its flow to an over-saturated level (higher than Qd).

The figure assumes that  this level does not exceed  the critical level, and therefore that a

queue is not created by this action.  This should be the case in most instances.  (Otherwise, and

quite unlikely, a semi-congested state may appear upstream of the merge and downstream of

the front.)

Therefore, in the case of Fig. 3, an observer well downstream of the merge would see
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7  We speculate that to maintain this state of affairs, through rabbits would merge into the passing lines immediately
upstream of the merge in anticipation of the higher speeds, creating the bottleneck. The bottleneck will be stable
at this location if it does not have a tendency to move upstream; i.e., if the speed of the wave front, w* , would be
positive upstream of the entrance.  (This should be the case, given the scarcity of slugs–vehicles willing to be in
the right lanes-- upstream of the on-ramp.)

a less drastic reduction in flow than in Fig. 2 and would never see the capacity state.  After a

while, however, the observer may see a slight increase in flow, still in the 2-pipe state.  The

explanation for this is as follows: The arrival of the collapse wave at the entrance may create

an on-ramp queue; if it does, the subsequent arrival of the frontal wave, with its reduced flows

in the shoulder lane, would allow the queue to be released and more traffic to enter the freeway;

this would be manifested upstream by a higher flow on the passing lanes  Qd +qe’ .  If this were

to happen, we would expect the final equilibrium to be an active bottleneck at the entry point

with a 1-pipe freeway queue directly upstream of it, and a 2-pipe state downstream.7

5. CLOSING COMMENTS

The theory in this paper and its companion is promising because it is qualitatively

consistent with all the observed phenomena listed at the beginning of part I.  This is not enough,

 however.  Since the model was developed so as to be consistent with previously known facts,

it is only providing a “post-prediction”.  The theory would pass a more meaningful test if it were

to make some new predictions that turned out to be true.  Some of these predictions have been

mentioned in Sec. 4.  Other investigators can make additional ones, perhaps aided with the

detailed calculation procedure introduced in part I. New experimental evidence should then

either put the theory on a firmer foundation or falsify it.

When comparing the theory with reality, however, it should be remembered that the

theory does not apply to very light traffic, where drivers obey the rules of the road, and that the

proposed mathematical models are highly idealized.  In reality, for example, one would expect
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waves (an in particular mixed waves involving lane-changes) to have a characteristic length

comparable with tens of vehicle spacings, perhaps extending for the better part of a kilometer.

If such a wave were to travel at a speed of 5 km/hr, it could take many minutes to pass over a

fixed location.  Thus, one should not expect to see the “clean” changes in flow predicted by the

model.  Furthermore, in reality, drivers will choose to merge at different locations, rather than

at an idealized merge point.  They will also choose to change lanes less predictably.  Driver

differences like these should result in less regular wave propagation than in the models; and

one should expect the relative timing of the various events depicted in the (t, x) diagrams of the

two papers to deviate slightly from the predictions in random ways.  Interestingly, if these effects

are factored in, one can readily see that the lane-specific flow-density scatter plots recorded by

imaginary detectors in the examples of Figs. 2 and 3 would be qualitatively consistent with the

patterns described under item “A” of part I.

Another prediction of the theory, which could have important practical ramifications if it

is correct, is that prior to the collapse of a merge bottleneck two things must happen in

sequence in the neighborhood of the on-ramp: (i) flows in the passing lanes must grow to be

very high (Q . Qc), and (ii) the speed in these lanes should decline slightly due to lane-changing

mergers.  Moreover, according to the theory these speed drops can be reversed by reducing

the on-ramp flow.  It therefore follows that one could prevent the collapse (while maintaining

over-capacity flows) by metering the on-ramp so as to ensure that the speed on the passing

lanes remains within an acceptable range.

Although the information given in these two papers should be sufficient for experimental

falsification/verification, if the theory is found to be valid one should probably try to develop

simplified recipes and computer models for systems involving more than one on-ramp. This

should be relatively easy since all the waves in the proposed theory obey rather simple rules.
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Figure 2. Effects of overpumping: (a) speed reduction on the left lanes with V > ; (b) schematic
representation; (c) schematic representation for case with V < including "collapse"
into 1-pipe regime when the velocity of the downstream recovery front is positive.

v
v

f

f ,

W



x

t

slips simple waves regime transitions

merge

entrance

merge is
activated

Vf
vf

W'

2-pipe

2-pipe2-pipe 2-pipe

2-pipe

shoulder lane
flow increases
due to merge

collapse
wave 1-pipe queues

begin upstream
and on-ramp flow
may be reduced

w
frontal wave

passing lane flow increases (with x)
due to merging rabbits

2-pipe
discharge state

(in buffer)

2-pipe
discharge state
with increased

shoulder lane flow

wb*

1-pipe queues
continue upstream
but on-ramp flow
may increase

1-pipe 1-pipe

entrance is
activated

total and passing lane
flows increase (with t)

Figure 3. Example of system evolution when the velocity of the downstream recovery front is
negative.




