
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Computational Methods for Solidification of Multicomponent Materials and Moving Boundary 
Problems in Physics of Inhomogeneous Polymers

Permalink
https://escholarship.org/uc/item/3qj3t08h

Author
Bochkov, Daniil

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3qj3t08h
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY of CALIFORNIA
Santa Barbara

Computational Methods for Solidification of Multicomponent Materials and
Moving Boundary Problems in Physics of Inhomogeneous Polymers

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mechanical Engineering

by

Daniil Bochkov

Committee in charge:

Professor Frederic Gibou, Chair

Professor Sumita Pennathur

Professor Paolo Luzzatto-Fegiz

Professor Glenn H. Fredrickson

September 2020



The dissertation of Daniil Bochkov is approved.

Professor Glenn H. Fredrickson

Professor Paolo Luzzatto-Fegiz

Professor Sumita Pennathur

Professor Frederic Gibou, Committee Chair

August 2020



Copyright c© 2020
by Daniil Bochkov

iii



To my family and friends

iv



Acknowledgements

First of all, I would like thank my PhD advisor Professor Frederic Gibou. While giving

me immense freedom in my research he also provided plenty of guidance throughout my

PhD program. Working under his supervision was always extremely easy and pleasant.

His care for students’ career successes as well as their well-being outside of professional

setting is greatly appreciated.

I would also like to thank Professor Sumita Pennathur, Professor Paolo Luzzatto-

Fegiz, and Professor Glenn Fredrickson for serving on my doctoral committee. They

provided highly valuable feedback from different perspectives.

I would like to thank all teachers and professors I have met throughout my educational

journey and from whom I have had a privilege to learn. Especially, I would like to thank

my high school teachers of mathematics and physics Natalia Vladimirovna Melnichenko,

Lyubov Yurievna Scherbinina, and Enikeev Dmitry Vladilenovich from Licey 153. I am

certain that the fundamental problem solving skills that they had developed in me have

been absolutely crucial for my successes at all stages of my research career.

I would like to thank all members and visitors of the Computational Applied Science

Laboratory with whom I had a pleasure and honor to work: Arthur, Elyce, Fernando,

Gaddiel, Gina, Ivana, Maxime, Miles, Mohammad, Pouria, Raphael, Rochishnu, Samira,

Victoria. Our discussions about science and research have been extremely enriching and

our social gatherings have been a highlight of my stay in Santa Barbara.

I would like to say a special thank you to my family. I owe absolutely all of my

accomplishments to them. I greatly appreciate their support, encouragement, and advice.

A special thank you to Carol for her unceasing love, care, and support.

Last but not least, I would like to thank all of my friends and acquaintances, the ones

I have known for a long time and the ones I have met during my stay in Santa Barbara:

Adam, Aditya, Alexey, Amir, Andrew, Anirban, Aviral, Axel, Aydar, Brandon, Dan,

v



David, Emile, Eugene, Igor, Jacob, Jess, Jin, John, Justin, Katharine, Keran, Krishnan,

Kristen, Lanhe, Leslie, Luke, Manik, Michael, Neeraj, Nhan, Nicholas, Nikita S., Nikita

R., Nikolai, Sarah, Savya, Sergey, Shannon, Shriniwas, Stefany, Tanya, Thomas, Tuan,

Vasily, Vu, William, Yongchao, Zack, and others. I feel very lucky to know them all and

value very much their influence on my life.

vi



Curriculum Vitæ

Daniil Bochkov

Education

2020 Ph.D. in Mechanical Engineering, University of California, Santa Bar-
bara, California, United States of America

2014 M.S. in Applied Mathematics and Physics, Moscow Institute of Physics
and Technology, Moscow, Russia

2012 B.S. in Applied Mathematics and Physics, Moscow Institute of Physics
and Technology, Moscow, Russia

Publications

Gaddiel Ouaknin, Nabil Laachi, Daniil Bochkov, Kris Delaney, Glenn H. Fredrickson,
Frederic Gibou, “Functional Level-Set Derivative for a Polymer Self Consistent Field
Theory Hamiltonian,” Journal of Computational Physics, Volume 345, Pages 207-223,
2017.

Pouria Mistani, Arthur Guittet, Daniil Bochkov, Joshua Schneider, Dionisios Margetis,
Christian Ratsch, Frederic Gibou, “The Island Dynamics Model on Parallel Quadtree
Grids,” Journal of Computational Physics, Volume 361, Pages 150-166, 2018.

Victoria Arias, Daniil Bochkov, Frederic Gibou, “Poisson Equations in Irregular Do-
mains with Robin Boundary Conditions - Solver with Second-Order Accurate Gradients,”
Journal of Computational Physics, Volume 365, Pages 1-6, 2018.

Daniil Bochkov, Frederic Gibou, “Solving Poisson-type equations with Robin boundary
conditions on piecewise smooth interfaces,” Journal of Computational Physics, Volume
376, Pages 1156-1198, 2019.

Daniil Bochkov, Frederic Gibou, “Solving Elliptic Interface Problems with Jump Con-
ditions on Cartesian Grids,” Journal of Computational Physics, Volume 407, Article
109269, 2020.

Daniil Bochkov, Frederic Gibou, “PDE-Based Multidimensional Extrapolation of Scalar
Fields Over Interfaces With Kinks and High Curvatures,” SIAM Journal of Scientific
Computing, Volume 42, Number 4, Pages A2344-A2359.

vii



Daniil Bochkov, Tresa Pollock, Frederic Gibou, “Sharp-Interface Simulations of Mul-
tialloy Solidification,” In preparation.

Daniil Bochkov, Gaddiel Ouaknin, Frederic Gibou, “Computational Framework for
Simulation of Free-Surface Block Copolymers,” In preparation.

Daniil Bochkov, Frederic Gibou, “An Adjoint State Method for Inverse Design Problem
in Directed Self-Assembly of Block Copolymers,” In preparation.

Daniil Bochkov, Ivana Bagaric, Frederic Gibou, “A Versatile Sharp-Interface Particle-
Field Computational Method for Co-assembly of Block Copolymer Nanocomposites,” In
preparation.

Rochishnu Chowdhury, Raphael Egan, Daniil Bochkov, Frederic Gibou, “Efficient Cal-
culation of Fully Resolved Electrostatics around Large Biomolecules,” In preparation.

Asdis Helgadottir, Daniil Bochkov, Frederic Gibou, “A Hybrid Finite Difference/Finite
Volume Approach on Adaptive Octree Grids for Biofilm Growth,” In preparation.

viii



Abstract

Computational Methods for Solidification of Multicomponent Materials and

Moving Boundary Problems in Physics of Inhomogeneous Polymers

by

Daniil Bochkov

This dissertation focuses on the development of numerical methods for the solidification

of multicomponent alloys and a number of moving boundary problems in physics of block

copolymer (BCP) materials: the self-assembly of free surface BCP melts, the co-assembly

of BCP nanocomposites, and the inverse design problem for the Directed Self-Assembly

(DSA). While these processes have different physical nature, they share several compu-

tational challenges: the nonlinearity of the governing equations, the diffusion-dominated

character, and the presence of moving boundaries/interfaces that are themselves part of

the solution. Accurate and efficient simulations of these phenomena require advanced

fundamental numerical capabilities as well as solving conceptual challenges specific to

each application.

The first part of this work describes the general numerical methods for solving partial

differential equations (PDEs) that are necessary for the simulation of the considered pro-

cesses and which, at the same time, have significance beyond these applications. Specif-

ically, we present novel second-order accurate finite-volume discretizations on Cartesian

ix



grids for Poisson-type equations in irregular domains subject to Robin boundary con-

ditions and/or with discontinuities across immersed interfaces. In addition, we provide

a PDE-based approach for smooth extensions of scalar fields across piecewise smooth

interfaces.

In the second part, we present a computational approach for the simulation of multial-

loy solidification in the sharp-interface limit. The main challenge – solving a non-linearly

coupled system of PDEs at each time step – is solved by a novel Newton-type approach.

Further, a combination of adaptive Cartesian quadtree grids and the Level-Set Method is

used to address the highly complex evolution of the solidification front and the multiscale

nature of the process. The proposed method is validated on cases with known analytical

solutions and applied to study the segregation behavior of a Co-Al-W ternary alloy.

Finally, the third part considers the moving boundary problems related to the self-

assembly of BCPs. First, we augment the Self-Consistent Field Theory with a consistent

approach for imposing surface energies, which is crucial for accurate modeling of polymer-

air and polymer-wall interactions. Second, the machinery of PDE-constrained shape

sensitivity analysis is applied to derive the equations governing the free surface shape of

BCP melts and the placement of nanoparticles as well as the shape derivative of the cost

functional associated with the inverse design problem for DSA. The obtained numerical

methods are then used to study the self-assembling behavior of substrate supported BCP

droplets, to investigate the co-assembly of BCP and nanoparticles of complex shapes, and

to design confining masks for nanolithography applications.

x



xi



Contents

Permissions and Attributions 1

1 Solving Elliptic PDEs with Robin Boundary Conditions in Domains
with Piecewise Boundaries 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Relevant Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Compound Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Discretization of fluxes between cells . . . . . . . . . . . . . . . . 18
1.4.2 Discretization of the Robin b.c. term . . . . . . . . . . . . . . . . 21
1.4.3 Matrix structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.4 Truncation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.5 Fall-back strategies for the superconvergent scheme . . . . . . . . 36
1.4.6 Non-singularity of the symmetric scheme . . . . . . . . . . . . . . 38
1.4.7 Computation of integrals . . . . . . . . . . . . . . . . . . . . . . . 40

1.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.1 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.2 Two spatial dimensions . . . . . . . . . . . . . . . . . . . . . . . . 50
1.5.3 Three spatial dimensions . . . . . . . . . . . . . . . . . . . . . . . 59
1.5.4 Accuracy of the level-set representation . . . . . . . . . . . . . . . 66
1.5.5 Singular solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.A Hierarchical geometry reconstruction algorithm . . . . . . . . . . . . . . 73

1.A.1 Vertex (0-simplex) . . . . . . . . . . . . . . . . . . . . . . . . . . 78
1.A.2 Edge (1-simplex) . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
1.A.3 Triangle (2-simplex) . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.A.4 Tetrahedron (3-simplex) . . . . . . . . . . . . . . . . . . . . . . . 82
1.A.5 Valid level-set data . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1.A.6 Removing invalid geometric reconstruction . . . . . . . . . . . . . 89
1.A.7 On curvature resolution in three spatial dimensions . . . . . . . . 90
1.A.8 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xii



2 Solving Elliptic PDEs with Discontinuities across Irregular Interfaces 98
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.2 Numerical Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.3 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.3.1 Two-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . 112
2.3.2 Three-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . 114
2.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.3.4 Application to adaptive quadtree and octree grids . . . . . . . . . 117

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3 PDE-Based Extrapolation of Scalar Fields over Piecewise Smooth In-
terfaces 124
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.2 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.2.1 Level-set Representation . . . . . . . . . . . . . . . . . . . . . . . 126
3.2.2 Normal-derivative based multidimensional PDE extrapolation of [6] 127
3.2.3 Weighted-Cartesian-derivative based multidimensional PDE extrap-

olation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.2.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . 130

3.3 Numerical Results in Two Spatial Dimensions . . . . . . . . . . . . . . . 135
3.4 Numerical Results in Three Spatial Dimensions . . . . . . . . . . . . . . 138
3.5 Application to Solving the Diffusion Equation in Time-Dependent Domains141
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4 Sharp-Interface Simulations of Multialloy Solidification 150
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.2 Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.3 Numerical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.3.1 Discretization in time . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.3.2 Solving the non-linearly coupled system of Poisson-type equations 161
4.3.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.3.4 Overall simulation procedure . . . . . . . . . . . . . . . . . . . . . 181

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.4.1 Validation of the numerical approach: Axisymmetric stable solidi-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.4.2 Directional solidification of a Co-W-Al ternary alloy . . . . . . . . 186
4.4.3 Analysis of solutal segregation . . . . . . . . . . . . . . . . . . . . 188

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.A Functional derivative with respect to δC∗1 . . . . . . . . . . . . . . . . . . 194
4.B Directional derivative with respect to δC∗1 . . . . . . . . . . . . . . . . . 201
4.C Details of linear stability analysis of iterative schemes for solving nonlinear

system of PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
4.D Removing extremely underresolved regions . . . . . . . . . . . . . . . . . 204

xiii



4.E Similarity solution for the solidifying infinite cylinder due to a heat sink . 206

5 Moving Boundary Problems in Physics of Block Copolymer Materials213
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.2 A consistent approach for imposing arbitrary surface energies in SCFT . 218

5.2.1 Solving the SCFT equations for µ∗+ and µ∗− . . . . . . . . . . . . . 227
5.3 Sensitivity of free energy to shape of free surface . . . . . . . . . . . . . . 228
5.4 Sensitivity of free energy to position and orientation of a nanoparticle . . 235
5.5 Sensitivity of polymer morphology to confining mask’s geometry . . . . . 237
5.6 Numerical aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

5.7.1 Imposing surface energies . . . . . . . . . . . . . . . . . . . . . . 243
5.7.2 Free surface block copolymers . . . . . . . . . . . . . . . . . . . . 246
5.7.3 Block copolymer nanocomposites . . . . . . . . . . . . . . . . . . 253
5.7.4 Inverse Design for Directed Self-Assembly . . . . . . . . . . . . . 258

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
5.A Weak formulations and equivalence of modified diffuion equations . . . . 267
5.B Shape derivatives of integral quantities . . . . . . . . . . . . . . . . . . . 269

Bibliography 273

xiv



Permissions and Attributions

1. The content of chapter 1 is the result of a collaboration with Frederic Gibou,

and has previously appeared in the Journal of Computational Physics as “Solving

Poisson-type equations with Robin boundary conditions on piecewise smooth in-

terfaces” [18]. It is reproduced here in accordance with the publisher’s copyright

policy allowing authors to include their articles in a thesis or dissertation, pro-

vided that this is not to be published commercially: https://www.elsevier.com/

about/policies/copyright#Author-rights.

2. The content of chapter 2 is the result of a collaboration with Frederic Gibou, and

has previously appeared in the Journal of Computational Physics as “Solving el-

liptic interface problems with jump conditions on Cartesian grids” [19]. It is repro-

duced here in accordance with the publisher’s copyright policy allowing authors to

include their articles in a thesis or dissertation, provided that this is not to be pub-

lished commercially: https://www.elsevier.com/about/policies/copyright#

Author-rights.

3. The content of chapter 3 is the result of a collaboration with Frederic Gibou, and has

1

https://www.elsevier.com/about/policies/copyright#Author-rights
https://www.elsevier.com/about/policies/copyright#Author-rights
https://www.elsevier.com/about/policies/copyright#Author-rights
https://www.elsevier.com/about/policies/copyright#Author-rights


previously appeared in the SIAM Journal on Scientific Computing as “PDE-Based

Multidimensional Extrapolation of Scalar Fields over Interfaces with Kinks and

High Curvatures” [16]. It is reproduced here with the permission of the publisher.

2



Chapter 1

Solving Elliptic PDEs with Robin

Boundary Conditions in Domains

with Piecewise Boundaries

1.1 Introduction

Poisson-type equations in irregular domains are one of the core fundamental models

in science and engineering, whether as standalones or as part of more complex models.

Since most of the models of modern science and engineering involve an irregular boundary

that evolves in time, finding a numerical solution in the context of the level-set method is

particularly desirable because it provides a framework that automatically handles changes

in topology. Numerical methods for applying boundary conditions such as Dirichlet

3



[58, 56, 29, 147], Robin [128] or jump conditions [95, 66] in this ‘capturing interface’

context have been developed in the level-set community in the case of smooth boundaries

(see also the reviews [61, 59]) and have been applied to a wide variety of problems

[129, 123, 124, 125, 28, 44, 55, 57, 68, 90, 96, 104, 116, 136, 158, 159, 38]

However, the modeling of certain important physical phenomena require that different

Robin (mixed) boundary conditions be imposed on different parts of the boundary of

irregular domains; i.e. an irregular boundary that may present kinks. Examples of

models with significant scientific and industrial applications are (i) the Robin boundary

conditions that model the repulsive/attractive air-polymer interfaces in the context of the

self-consistent field theory for block-copolymers [47], (ii) the Robin boundary conditions

that model the solute-rejection equations that is at the center of dendritic solidification of

multicomponent metal alloys [159], and (iii) the Robin boundary conditions that model

the Ehrlich-Schwoebel step-edge energy barrier used in the simulation of epitaxial growth

[170, 128, 127]. In those problems, the presence of confining solid boundaries add to the

complexity in that surface tension forces lead to sharp contact angles between different

phases (e.g. the air-polymer-substrate in the context of polymer droplets on a substrate

or the liquid-solid-wall in the context of confined dendritic growth). To simulate these

physical processes, one must consider the solution of a diffusion-dominated equation in

domains with piecewise smooth boundaries.

We thus focus on the following problem: consider a domain Ω with a piecewise smooth

(C0) boundary ∂Ω that consists of nφ smooth (C2) components Γ1, . . . ,Γnφ , that is,

4



∂Ω = Γ1 ∪ . . . ∪ Γnφ . We are interested in solving a Poisson-type equation of the form:

−∇(µ(r)∇u(r)) + k(r)u(r) = f(r) in Ω, (1.1)

where µ(r) is the diffusion coefficient bounded below by some positive constant, k(r) and

f(r) are given functions, and where the function u(r) satisfies Robin boundary conditions

on each of the smooth parts Γ1, . . . ,Γnφ of the domain boundary:

µ(r)
∂u(r)

∂np
+ αp(r)u(r) = gp(r) on Γp, p = 1, . . . , nφ. (1.2)

We present two finite volume numerical schemes. The first method produces a sym-

metric linear system, solutions that are second-order accurate in the L∞-norm and gra-

dients that are first-order accurate in the L∞-norm. The second method leads to a

nonsymmetric linear system but produces solutions and gradients that are both second-

order accurate in the L∞-norm. We note, however, that these optimal convergence rates

are achieved for solutions that are sufficiently smooth. It is well-known that sharp fea-

tures in the domain’s boundary may lead to solutions with a low regularity. Throughout

the derivation of the numerical methods and their analysis it is assumed that smoothness

requirements for the solution (not the domain, which may have kinks) are satisfied and

the effect of violating such requirements is studied numerically (see section 1.5.5).

The rest of this chapter is organized as follows. In Section 1.2, we review relevant

prior works. In Section 1.3, we describe the class of domains we consider in this work. In

Section 1.4 we present the two numerical schemes for solving (1.1)-(1.2). In Section 1.5,

we present numerical results that illustrate the accuracy of the two schemes. Section 1.6

5



concludes the chapter. Finally, in 1.A, we provide a detailed description of the integration

method that we use.

1.2 Relevant Literature

We consider a Eulerian approach to avoid the problems related to mesh generation that

requires conforming the elements near evolving boundaries [137, 140, 143, 126, 138, 182,

12] or explicit representations that rely on complex schemes to handle changes in topology

[130, 63, 15, 62, 83, 166, 164, 70]. By far the most successful and popular method for

describing irregular domains on fixed grids is the level-set method [122, 145, 121, 59].

In this approach the boundary of an irregular domain is implicitly defined by an iso-

contour of a Lipschitz-continuous function and the motion of the domain is described by

a simple (possibly nonlinear) advection equation. Due to its implicit character, the level-

set approach naturally handles such challenging (especially in three dimensions) problems

as merging and breaking up of domains. It has been successfully applied to a wide variety

of computational problems [129, 123, 124, 125, 28, 44, 55, 57, 68, 90, 96, 104, 116, 136,

158, 159, 38]. Moreover, the method can be also applied to describe domains with sharp

features using the idea that certain domains with piecewise smooth boundaries can be

represented as intersections/unions of domains with smooth boundaries [113, 78, 151,

152, 153, 90].

The convenience of Eulerian methods comes with the need to develop special meth-

ods for imposing boundary conditions on irregular domains. Few studies have addressed

6



Robin boundary conditions in this context. In Greenspan [64], two finite difference meth-

ods, based on linear or quadratic approximations of normal derivatives and the Shortley-

Weller operator, are proposed for solving elliptic equations in irregular domains with

mixed boundary conditions in two spatial dimensions. In the case of the linear approx-

imation, the resulting linear system is non-singular and numerical solutions converge to

exact solutions with first-order accuracy in the L∞ norm. The scheme based on quadratic

approximation is also derived using geometric considerations in Jomaa and Macaskill [82]

and an extension to three spatial dimensions is presented by the same authors in [81].

In both [82] and [81], the convergence of those schemes is analyzed theoretically in one

spatial dimension and studied numerically in higher dimensions. It is shown that linear

and quadratic interpolations of the solution leads to first- and second-order accuracy in

the L∞ norm, respectively. Accuracy of gradients are not studied.

In Bramble and Hubbard [22], a finite difference method is proposed for solving the

Poisson equation with mixed boundary conditions. This work focuses on the development

of a scheme that results in a “positive type” linear system. The authors proved that the

numerical solution converges to its exact solution with second-order accuracy in the L∞

norm if the exact solution is sufficiently smooth. Although the authors proved that it is

always possible to choose three internal points for discretization of boundary conditions

such that the resulting linear system is of “positive type”, no simple and clear algorithm

is presented on how to select such points. Another difficulty of this scheme is that it

requires the computation of the tangential derivatives of boundary data, a task that may

7



be challenging. Numerical examples are not provided and accuracy of gradients are not

studied.

In Van Linde [168], higher-order finite difference schemes are proposed to solve

the Poisson equation with Dirichlet, Neumann and Robin boundary conditions. These

schemes use four internal points to discretize boundary conditions, a special third-order

accurate discretization of the Laplace operator near the irregular boundary that depends

on the particular configuration of the boundary and first and second tangential derivatives

of the boundary conditions data. The author proved that the schemes are of “positive

type” and produce third-order-accurate numerical solutions in the L∞ norm for the Neu-

mann and Robin problems and fourth-order-accurate solutions in the L∞ norm for the

Dirichlet problem.

An alternative second-order accurate finite difference scheme for Neumann and Robin

problems that does not use tangential derivatives is proposed in Bouchon and Peichl [21].

This is achieved by using four internal points for discretizing the boundary conditions,

which are selected so that the resulting linear system is represented by an M-matrix.

However, such points can be as far as 11 grid-spacings away from a point of consideration,

limiting the applicability of such an approach. Second-order accuracy in the L∞ norm is

proved analytically and demonstrated numerically.

In Papac et al. [128], a simple second-order accurate finite volume scheme is presented

for the Robin problem. This method uses only direct neighbors in the Cartesian direc-

tions and results in a symmetric positive definite linear system. The Robin boundary

8



condition requires an integration over irregular domains and their boundaries, which is

performed with the geometric integration of Min and Gibou [99]. Later, the method of

[128] was extended to three spatial dimensions and to adaptive Octree grids and applied

to Stefan-type problems [129]. In Arias et al. [5], a simple numerical example on a two-

dimensional irregular smooth domain illustrated that second-order accurate solutions and

second-order accurate gradients can be obtained if the method of [128] is modified in two

important ways: (1) the fluxes between cells are discretized using ideas of Johansen and

Colella [80], and (2) a Taylor expansion of the unknown function is used to approximate

the boundary condition at the boundary.

Another important work in the development of finite volume methods is the work of

[41] that presents a fourth-order accurate finite volume method for the Poisson equation

with Neumann and Dirichlet boundary conditions (Robin boundary conditions are not

considered). The higher accuracy is achieved by constructing rather wide stencils for each

grid node independently using a least-squares approach. Piece-wise smooth interfaces are

considered, however such cases are dealt with by some regularization/smoothing of the

problem’s geometry. It is not clear whether some modification of boundary conditions is

needed for such a treatment. It is shown that the choice of the smoothing length affects

the convergence behavior.

Coco and Russo [33] presented a finite difference ghost-point approach for discretizing

Dirichlet, Neumann and Robin boundary conditions in two spatial dimensions, based on

a quadratic interpolation of the unknown function near the domain’s boundary. This

9



approach produces second-order accurate numerical solutions and second-order accurate

gradients and is applicable to domains with sharp features as well.

In Gallinato and Poignard [53, 54], second-order accurate finite difference supercon-

vergent schemes, i.e. schemes producing derivatives of the numerical solution of the

same accuracy as the numerical solutions themselves, are presented for Dirichlet, Neu-

mann and Robin boundary conditions in two spatial dimensions. These schemes are

based on the ghost-fluid method of Gibou et al. [58], i.e. the standard 5-point stencil is

used everywhere and values of the unknown function at points that fall outside of the

solution’s domain are extrapolated from internal points and the given Dirichlet boundary

condition. To produce different levels of superconvergence, linear, quadratic and cubic

extrapolations are considered, as in [56]. In cases of Neumann and Robin boundary

conditions, where the value of the unknown function is not immediately available at the

domain’s boundary, the boundary value is obtained from bi-linear, bi-quadratic or bi-

cubic (depending on the desired level of superconvergence) interpolation from internal

points. It is demonstrated that to obtain second-order accurate gradients (first level of

superconvergence), quadratic extrapolations and interpolations are required, while cubic

extrapolations/interpolation produce second-order accurate second order derivatives as

well (second level of superconvergence).

Obtaining accurate numerical derivatives is important in problems where the solution

process is driven by the accuracy of the solution’s gradient. This is the case for exam-

ple of the Stefan problem, which is the building block for simulating processes like the

10



solidification of multicomponent alloys or the islands growth in the context of molecular

beam epitaxy. Among the aforementioned works only [33] demonstrated an immediate

applicability to domains with piecewise smooth boundaries. An extension to three spatial

dimensions seems to be rather straightforward, but could be limited by the fact that the

stencil near the domain’s boundary needs to be adjusted in region of high curvature in

such a way that it contains only points that are internal or ghost points. Although possi-

ble, this requirement makes the implementation less straightforward and the requirement

that far-neighbor grid points are involved in the stencil may lower the efficiency of par-

allelism. The other finite difference methods [64, 82, 81, 22, 168, 21, 53, 54] have similar

drawbacks, since all of them require a certain number of strictly internal grid points to

approximate boundary conditions. It should also be noted that none of the methods

[64, 82, 81, 22, 168, 21, 53, 54] results in a symmetric linear system.

Contrary to finite difference methods, finite volume methods [128, 5] use only imme-

diate neighboring points to approximate the equation and the structure of the stencil

stays the same even in the regions of high curvature. In these frameworks, the com-

plexity is shifted from constructing stencils to that of integrating over implicitly defined

domains and their boundaries. Clearly, the task of developing a finite volume method for

geometries with piecewise smooth boundaries requires the development of an integration

method over such geometries as well.

In the level-set community, there exists several integration methods, which can be

divided into the following categories: (1) methods based on the discretization of the

11



Heaviside step-function and Dirac delta-function [150, 43, 161, 180, 163, 162, 101]; (2)

methods based on the reduction of the integral dimensionality using the divergence the-

orem [114, 142]; (3) dimension-by-dimension integration approaches [139, 173, 172, 171];

and (4) geometric integration approaches [99, 50, 51]. Although some of the aforemen-

tioned methods have been extended to high-order accuracy, most of them are designed

only for smooth geometries. It appears that only the geometric reconstruction methods

admit an immediate extension to domains with piecewise smooth boundaries. Such an

extension was used in [113] in conjunction with linear geometric reconstruction and dis-

cussed in [51] for higher-order reconstructions. In [113] the proposed integration method

was used within the XFEM framework, however the accuracy of the integration method

itself was not investigated. Higher order methods of [50, 51] has been mainly used as a

basis for conformal grid generation [48, 52, 119].

The two schemes we present build and improve on results of [128] and [5]. In partic-

ular, the symmetric scheme presented in this work is an improvement of the scheme of

[128] in two aspects: (1) Robin boundary conditions are discretized more accurately for

smooth boundaries; (2) it considers domains with sharp features - a special treatment

is proposed for cells with sharp features and an integration method specifically devel-

oped for piecewise smooth domains is used. The more accurate (nonsymmetric) scheme

improves on the approach of [5] in that (1) it considers domains with piecewise smooth

boundaries and (2) discretization in three spatial dimensions are developed. As it is the

case of [5], the nonsymmetric discretization uses ideas from [80, 141] for discretizing the

12



fluxes across cells boundaries. We note however that [80, 141] considered neither Robin

boundary conditions nor domains with sharp features, while in the present work consider

both.

As it was mentioned above, integration plays a crucial parts of finite volume methods.

We employ a geometric reconstruction approach and propose a hierarchical algorithm for

its implementation. This approach is in large part based on the methods and results of

[99, 50, 51]. We implement the algorithm for linear and quadratic geometric reconstruc-

tions and demonstrate second- and third-order accuracy for the integration procedure,

respectively.

1.3 Compound Domains

We focus on irregular domains with piecewise smooth boundaries. Specifically, we con-

sider domains that can be described by a combination of domains with smooth bound-

aries, which we shall call generating domains. We consider boolean operations of inter-

section and union1 that can be used to combine generating domains (see Figure 1.1).

(a) Union. (b) Intersection.

Figure 1.1: Elementary operations to construct compound domains.

1We do not consider separately the boolean operation of difference, since it is equivalent to the
operation of intersection with the complement of a domain.

13



We call compound domain a domain that is obtained through a sequential combination

of generating domains with smooth boundaries using the two aforementioned boolean

operations. An example of such a domain is pictured in Figure 1.2. This domain is

described by three generating domains {Ωi}3
i=1 and the construction of the compound

domain proceeds as follows: Ω1 is the initial shape (combined with empty space using

the union operation). Ω2 is added using the union operation. Finally, Ω3, defined as

the exterior of a circle, is combined using the intersection operation. Clearly, such an

approach can be used to generate complicated geometries, with possibly kinks in their

boundaries, in both two and three spatial dimensions.

Figure 1.2: example of the construction of a compound domain.

We denote by Ω a compound domain and by ∂Ω its piecewise smooth boundary. We

denote by Ω1, Ω2, . . ., the generating domains and by ∂Ω1, ∂Ω2, . . ., their boundaries

(also called interfaces). Finally, we denote by Γ1, Γ2, . . ., the corresponding smooth

components of ∂Ω so that ∂Ω = (Γ1 ∪ Γ2 ∪ . . .).

We employ the level-set framework to represent each generating domain. Briefly, in

the level-set method the boundary ∂Ω of a domain Ω is described by the zero-isocontour

of a Lipschitz-continuous function, called the level-set function, φ(r), such that the value

14



Figure 1.3: Level-set representation of a two-dimensional irregular domain Ω.

of the function is negative inside the domain Ω and positive outside, i.e.

φ(r) < 0, ∀r ∈ Ω,

φ(r) = 0, ∀r ∈ ∂Ω,

φ(r) > 0, ∀r /∈ Ω.

We consider locally C2-smooth level-set functions. We refer the interested reader to

[122, 145, 121] for more details on the level-set method and to [59] for a recent review.

To summarize, we consider compound domains that are described by collections of

locally C2-smooth level-set functions {φi}
nφ
i=1, each of which represents a generating do-

main, with associated sets of operations {σi}
nφ
i=1, where σi = intersection or union and

nφ is the total number of level-set functions describing a compound domain.

1.4 Numerical Method

Let us consider solving equation (1.1) with boundary conditions (1.2), where Ω is a

compound domain. For the sake of clarity we present numerical schemes in the two

dimensional case; extension to three spatial dimensions is straightforward.

We enclose the domain Ω into a rectangular computational area [xmin, xmax] ×

15



[ymin, ymax] and discretize the area into a uniform rectangular grid of nx grid points

in the x-direction and ny grid points in the y-direction (Figure 1.4a). Spatial steps of

such a grid are given by

∆x =
xmax − xmin

nx − 1
and ∆y =

ymax − ymin

ny − 1
.

We enumerate grid points in a standard manner, i.e. Pi,j stands for a point located at

ri,j =

(
xi,j
yi,j

)
=

(
xmin + (i− 1)∆x
ymin + (j − 1)∆y

)
, ∀(i, j) ∈ [1, nx]× [1, ny].

We also denote ui,j = u(ri,j).

(a) (b)

Figure 1.4: (a) Discretization of space and (b) definition of the control volume for Pi,j.

With each grid point Pi,j, we associate a rectangular finite volume Ci,j of dimensions

∆x×∆y such that Pi,j is the center of Ci,j (see Figure 1.4b) and employ a finite volume

approach to discretize equation (1.1). Let us consider a cell Ci,j, which may be crossed by

the domain boundary ∂Ω (Figure 1.4b). Integration of equation (1.1) over the intersection

of Ω with Ci,j, and application of the divergence theorem yields

16



−
∫
Ci,j∩∂Ω

µ(r)
∂u(r)

∂n
dΓ︸ ︷︷ ︸

Flux through the domain’s boundary in Ci,j

−
∫
∂Ci,j∩Ω

µ(r)
∂u(r)

∂n
dΓ︸ ︷︷ ︸

Fluxes between adjacent cells

+

∫
Ci,j∩Ω

k(r)u(r) dΩ =

∫
Ci,j∩Ω

f(r) dΩ,

where we split the boundary integral over ∂(Ci,j∩Ω) into two separate integrals: over the

part of the domain boundary contained in Ci,j, i.e. Ci,j ∩∂Ω, and over the cell’s boundary

included in the domain, i.e. ∂Ci,j ∩ Ω. Recalling that the domain’s boundary consists

of C2-smooth parts {Γp}nφp=1, on which u satisfies Robin boundary conditions (1.2), the

equation above can be transformed into:

nφ∑
p=1

∫
Ci,j∩Γp

αp(r)u(r) dΓ︸ ︷︷ ︸
Robin b.c. term

−
∫
∂Ci,j∩Ω

µ(r)
∂u(r)

∂n
dΓ︸ ︷︷ ︸

Fluxes between adjacent cells

+

∫
Ci,j∩Ω

k(r)u(r) dΩ =

∫
Ci,j∩Ω

f(r) dΩ +

nφ∑
p=1

∫
Ci,j∩Γp

gp(r) dΓ. (1.3)

We first note that the domain integrals in (1.3), i.e. the last term in the left-hand

side and the first term in the right-hand side, can be approximated by the value of the

integrand multiplied by the volume of Ci,j∩Ω, which we shall denote as Vi,j, i.e., we have:

∫
Ci,j∩Ω

k(r)u(r) dΩ = k(ri,j)ui,jVi,j +O
(
hD+1

)
, (1.4)

and

∫
Ci,j∩Ω

f(r) dΩ = f(ri,j)Vi,j +O
(
hD+1

)
, (1.5)

17



where h = max(∆x,∆y) and D is the problem dimensionality. The second term on the

right-hand side of (1.3) represents integrals of known functions over C2-smooth compo-

nents of a C0 domain boundary. Calculation of such integrals is discussed in Section

1.4.7.

In what follows we discuss the discretization of fluxes between cells (second term in

(1.3)) followed by a discussion of the Robin boundary term discretization (first term in

(1.3)). For each, we first present a simple symmetric discretization before describing a

more accurate, albeit nonsymmetric, discretization.

1.4.1 Discretization of fluxes between cells

Let us denote by Fi± 1
2
,j (resp. Fi,j± 1

2
) the face between cells Ci,j and Ci±1,j (resp. Ci,j and

Ci,j±1). Using the fact that on each of the faces the normal derivative of u has a simple

form, one can express the second term in the left-hand side of (1.3) as:

∫
∂Ci,j∩Ω

µ
∂u

∂n
dΓ =

∫
F
i+1

2 ,j
∩Ω

µ
∂u

∂x
dΓ−

∫
F
i− 1

2 ,j
∩Ω

µ
∂u

∂x
dΓ

+

∫
F
i,j+1

2
∩Ω

µ
∂u

∂y
dΓ−

∫
F
i,j− 1

2
∩Ω

µ
∂u

∂y
dΓ. (1.6)

Symmetric discretization

A simple discretization of (1.6) that leads to a symmetric linear system can be obtained

following the approach of [128, 116]. For example, to approximate the total flux through

the cut face Fi+ 1
2
,j ∩Ω one can estimate the x-derivative of u at the center of Fi+ 1

2
,j using

values ui,j and ui+1,j and multiply it by the value of µ(r) at the same point and the

18



(a) (b)

Figure 1.5: Nomenclature for the symmetric (a) and nonsymmetric (b) discretizations of
the fluxes between cells.

length Li+ 1
2
,j of the cut face Fi+ 1

2
,j ∩ Ω, i.e.

∫
F
i+1

2 ,j
∩Ω

µ
∂u

∂x
dΓ =

∫
F
i+1

2 ,j
∩Ω

(
µ
∂u

∂x

)
i+ 1

2
,j

+O (h) dΓ

=

(
µ
∂u

∂x

)
i+ 1

2
,j

∫
F
i+1

2 ,j
∩Ω

dΓ +O (h)×O
(
hD−1

)
= µi+ 1

2
,j

ui+1,j − ui,j
∆x

Li+ 1
2
,j +O

(
hD
)
.

The application of the same procedure to the rest of the faces leads to:

∫
∂Ci,j∩Ω

µ
∂u

∂n
dΓ = µi+ 1

2
,j

ui+1,j − ui,j
∆x

Li+ 1
2
,j + µi− 1

2
,j

ui−1,j − ui,j
∆x

Li− 1
2
,j

+ µi,j+ 1
2

ui,j+1 − ui,j
∆y

Li,j+ 1
2

+ µi,j− 1
2

ui,j−1 − ui,j
∆y

Li,j− 1
2

+O
(
hD
)
, (1.7)

where Li± 1
2
,j (resp. Li,j± 1

2
) is the length of the cut edge Fi± 1

2
,j ∩Ω (resp. Fi,j± 1

2
∩Ω) and

µi± 1
2
,j (resp. µi,j± 1

2
) is the value of µ(r) at the center of Fi± 1

2
,j (resp. Fi,j± 1

2
) (see Figure

1.5a). It is straightforward to show that such a discretization is symmetric [128].

19



Higher-order discretization

A more accurate discretization of the fluxes through cell faces can be obtained by es-

timating the normal derivatives and the diffusion coefficient at the centers of the cut

faces, rather than at the centers of full faces (see Figure 1.5b), as it is done in [80, 141].

Consider the flux through the face Fi+ 1
2
,j. Using a Taylor expansion of the integrand at

the center of the cut face, we have:

∫
F
i+1

2 ,j
∩Ω

µ
∂u

∂x
dΓ =

∫
F
i+1

2 ,j
∩Ω

(µ∂u
∂x

)
rc
i+1

2 ,j

+ (y − yc
i+ 1

2
,j

)
∂

∂y

(
µ
∂u

∂x

)
rc
i+1

2 ,j

+O
(
h2
) dΓ

= µ(rc
i+ 1

2
,j

)

(
∂u

∂x

)
rc
i+1

2 ,j

Li+ 1
2
,j +O

(
h2
)
×O

(
hD−1

)︸ ︷︷ ︸
O(hD+1)

, (1.8)

where rc
i+ 1

2
,j

= (xi+ 1
2
,j, y

c
i+ 1

2
,j

) denotes the centroid of the cut face Fi+ 1
2
,j ∩ Ω (see Figure

1.5b). Note that

∫
F
i+1

2 ,j
∩Ω

(y − yc
i+ 1

2
,j

) dΓ = 0, hence the O
(
hD+1

)
term.

The normal derivatives at the centroid of the cut faces are linearly interpolated from

the normal derivatives at the centers of the full face under consideration and its neigh-

boring faces. For example, when considering the face Fi+ 1
2
,j, the normal derivative is

discretized as:

(
∂u

∂x

)
rc
i+1

2 ,j

=
(

1−
∣∣∣θi+ 1

2
,j

∣∣∣)(∂u
∂x

)
i+ 1

2
,j

+
∣∣∣θi+ 1

2
,j

∣∣∣×

(
∂u
∂x

)
i+ 1

2
,j+1

, θi+ 1
2
,j < 0,(

∂u
∂x

)
i+ 1

2
,j−1

, θi+ 1
2
,j > 0.

+O
(
h2
)
,

20



where θi+ 1
2
,j =

yc
i+ 1

2
,j
− yi,j

∆y
.

Similar discretizations hold for the other faces of a cell.

1.4.2 Discretization of the Robin b.c. term

We focus on the following term in equation (1.3):

nφ∑
p=1

∫
Ci,j∩Γp

αp(r)u(r) dΓ,

and describe a discretization that leads to a symmetric linear system (with first-order

accurate gradients) and a discretization that produces second-order accurate gradients

(with a nonsymmetric linear system).

Symmetric discretization

Let us first assume that the part of the domain’s boundary ∂Ω contained in the cell Ci,j is

entirely smooth, that is, Ci,j contains only one smooth component of ∂Ω, say, Γp̂. Then,

nφ∑
p=1

∫
Ci,j∩Γp

αp(r)u(r) dΓ =

∫
Ci,j∩Γp̂

αp̂(r)u(r) dΓ. (1.9)

We approximate the integral in (1.9) by the length of Ci,j ∩ Γp̂ multiplied by the

integrand value at the point rp̂i,j on Γp̂, which also lies on the line collinear to the normal

to Γp̂ and passing through the cell center ri,j (see Figure 1.6), i.e.

21



Figure 1.6: Symmetric discretization of the Robin b.c. term in case of a smooth boundary.

∫
Ci,j∩Γp̂

αp̂(r)u(r) dΓ =

∫
Ci,j∩Γp̂

(
αp̂(r

p̂
i,j)u(rp̂i,j) +O (h)

)
dΓ

= αp̂(r
p̂
i,j)u(rp̂i,j)L

p̂
i,j +O (h)×O

(
hD−1

)︸ ︷︷ ︸
O(hD)

, (1.10)

where Lp̂i,j =
∫
Ci,j∩Γp̂

dΓ is the length of Ci,j ∩ Γp̂.

The coordinates of rp̂i,j can be calculated using the level-set function φp̂ as (see, e.g.,

[145, 121]):

rp̂i,j = ri,j − dp̂i,j
∇φp̂(ri,j)
|∇φp̂(ri,j)|

+O
(
h2
)
,

where dp̂i,j is the signed distance between ri,j and the sub-boundary Γp̂, which can be

estimated as:

dp̂i,j =
φp̂(ri,j)

|∇φp̂(ri,j)|
+O

(
h2
)
.

Using the Taylor expansion of u at rp̂i,j, one can obtain the following relation between

ui,j and u(rp̂i,j):

22



ui,j = u(rp̂i,j) + dp̂i,j
∂u

∂n
(rp̂i,j) +O

(
h2
)
. (1.11)

At the same time the Robin boundary condition (1.2) on Γp̂ gives a relation between

∂u
∂n

(rp̂i,j) and u(rp̂i,j):

µ(rp̂i,j)
∂u

∂n
(rp̂i,j) + αp̂(r

p̂
i,j)u(rp̂i,j) = gp̂(r

Γp
i,j ). (1.12)

Solving equations (1.11) and (1.12) for u(rp̂i,j) one obtains

u(rp̂i,j) = ui,j
µ(rp̂i,j)

µ(rp̂i,j)− αp(r
p̂
i,j)d

p̂
i,j

−
g(rp̂i,j)d

p̂
i,j

µ(rp̂i,j)− αp(r
p̂
i,j)d

p̂
i,j

+O
(
h2
)

(1.13)

Note that for sufficiently refined computational grids in the sense that h <

C minα>0(µ/α), where C is a O(1) constant accounting for the problem dimensional-

ity, the denominators in the above expression cannot turn zero. Substituting of (1.13)

into (1.10) produces the following discretization for the Robin b.c. term:

∫
Ci,j∩Γp̂

αp̂(r)u(r) dΓ = ui,j

(
µ(rp̂i,j)αp̂(r

p̂
i,j)L

p̂
i,j

µ(rp̂i,j)− αp̂(r
p̂
i,j)d

p̂
i,j

)

+

(
g(rp̂i,j)d

p̂
i,jαp(r

p̂
i,j)L

p̂
i,j

µ(rp̂i,j)− αp̂(r
p̂
i,j)d

p̂
i,j

)
+O

(
hD
)
. (1.14)

Since the discretization above does not involve any value of the unknown function at any

of neighboring points, it preserves the symmetry of the resulting linear system.

Now let us consider a cell that contains an intersection of two interfaces, say Γp1 and

Γp2 . In this case the Robin b.c. term reduces to:

23



nφ∑
p=1

∫
Ci,j∩Γp

αp(r)u(r) dΓ =
∑

p=p1,p2

∫
Ci,j∩Γp

αp(r)u(r) dΓ. (1.15)

(a) (b) (c)

Figure 1.7: An example when projection points are outside of the domain due to the
presence of a kink (a), projections of centroids at which boundary conditions are used to
approximate u (b) and an illustration of the relation between an interface’s centroid and
its projections (c).

In the case where the domain’s boundary has a kink, the accuracy of the method

presented above will drop since projection points to Γp1 and Γp2 may fall outside of the

domain Ω (see Figure 1.7a). Therefore we propose a special treatment for cells near

kinks. The idea of this approach is to use a multidimensional Taylor expansion of u at

(i, j):

u(r) = ui,j +∇u(ri,j) · (r − ri,j) +O
(
h2
)

(1.16)

in equation (1.15), where the gradient ∇u(ri,j) is approximated using the boundary

conditions on the two intersecting interfaces. Such an approximation of the gradient is

possible since the boundary conditions on two interfaces provide values of the u derivatives

24



in two non-collinear directions.

Specifically, we enforce that the above approximation of u satisfy the boundary con-

dition at one point of Γp1 and at one point of Γp2 . We choose those points to be the

projections of the interfaces’ centroid onto the interfaces themselves (see Figure 1.7b).

Centroids rp1i,j and rp2i,j of interfaces Γp1 ∩ Ci,j and Γp2 ∩ Ci,j can be calculated as:

rp1i,j =

∫
Γp1∩Ci,j

r dr∫
Γp1∩Ci,j

dr
and rp2i,j =

∫
Γp2∩Ci,j

r dr∫
Γp2∩Ci,j

dr
.

Then their projections ρp1i,j and ρp1i,j can be easily found using level-set functions φp1 and

φp2 (see, e.g., [145, 121]):

ρp1i,j = rp1i,j −
(

φp1
|∇φp1|

n1

)
r=r

p1
i,j

+O
(
h2
)
,

ρp2i,j = rp2i,j −
(

φp2
|∇φp2|

n2

)
r=r

p2
i,j

+O
(
h2
)
,

where n1 and n2 are the normals to the two interfaces at their respective centroid:

n1 =

(
∇φp1
|∇φp1|

)
r=r

p1
i,j

and n2 =

(
∇φp2
|∇φp2 |

)
r=r

p2
i,j

,

and which are estimated by a multi-linear interpolation from the grid nodes. A typical

placement of an interface’s centroid and its projection are illustrated in Figure 1.7c.

Boundary conditions at the projection points ρp1i,j and ρp2i,j have the form:

µ(ρp1i,j)
∂u

∂n1

+ αp1(ρ
p1
i,j)u(ρp1i,j) = gp1(ρ

p1
i,j) +O (h) ,

µ(ρp2i,j)
∂u

∂n2

+ αp2(ρ
p2
i,j)u(ρp2i,j) = gp2(ρ

p2
i,j) +O (h) ,

25



where the O (h) errors are due to using estimations of the normals at the interfaces’

centroid. Substituting approximation (1.16) for u into the above two equations we obtain

the following 2× 2 linear system:

N · ∇u(ri,j) =

(
gp1(ρ

p1
i,j)

gp2(ρ
p2
i,j)

)
− ui,j

(
αp1(ρ

p1
i,j)

αp2(ρ
p2
i,j)

)
, (1.17)

where the matrix N is defined as:

N =

µ(ρp1i,j)n
1
x + αp1(ρ

p1
i,j)(ζ

p1
i,j − xi,j) µ(ρp1i,j)n

1
y + αp1(ρ

p1
i,j)(η

p1
i,j − yi,j)

µ(ρp2i,j)n
2
x + αp2(ρ

p2
i,j)(ζ

p2
i,j − xi,j) µ(ρp2i,j)n

2
y + αp2(ρ

p2
i,j)(η

p2
i,j − yi,j)

 .

Thus, the gradient ∇u(ri,j) can be approximated as:

∇u(ri,j) = bi,j − ai,jui,j + (O (h) ,O (h))T , (1.18)

where the vectors ai,j and bi,j are given by:

ai,j = N−1 ·
(
αp1(ρ

p1
i,j)

αp2(ρ
p2
i,j)

)
and bi,j = N−1 ·

(
gp1(ρ

p1
i,j)

gp2(ρ
p2
i,j)

)
.

As a result, using (1.16) with the gradient estimate (1.18), we have:

nφ∑
p=1

∫
Ci,j∩Γp

αp(r)u(r) dΓ =

ui,j
∑

p=p1,p2

(∫
Ci,j∩Γp

αp(r) (1− ai,j · (r − ri,j)) dΓ

)

+
∑

p=p1,p2

(∫
Ci,j∩Γp

αp(r)bi,j · (r − ri,j) dΓ

)
+O

(
hD+1

)
. (1.19)

Again, this discretization does not involve the unknown function at any neighboring

26



points, therefore preserving the symmetry of the linear system.

Remarks:

1. It is interesting to note that since additional information is given by the boundary

conditions for computational cells with kinks (i.e. imposing boundary conditions

at two points rather than at one), we are able, rather fortuitously, to obtain an

approximation of the total flux through the domain’s boundary ∂Ω ∩ Ci,j that is

of a higher, (D + 1), order of accuracy than for cells without kinks. However,

since this approximation is combined with O
(
hD
)

accurate discretization of fluxes

between cells (section 1.4.1), the overall error is still O
(
hD
)
. Moreover, since this

discretization is applied only in O
(
ND−2

)
cells containing kinks (compared to the

total O
(
ND−1

)
number of cells containing a domain’s boundary), where N is a

characteristic number of grid cells in one Cartesian direction, it is not expected to

affect significantly the overall accuracy of the numerical method.

2. We do not consider cases where a cell contains more than 2 interfaces in two di-

mensions, since such cases are essentially under-resolved. Still, such cases pose no

problem: a linear system analogous to (1.17) would be just over-determined and

should be solved using a least-squares approach.

3. In the case of two intersecting interfaces in three spatial dimensions, a system

analogous to (1.17) would be under-determined. We found that closing the system

by approximating u as a constant in the third direction, i.e.
∂u

∂n3

= 0, where n3 is a

27



unit-vector perpendicular to the normals of the two intersecting interfaces, produces

good results: designed convergence rates are recovered. In fact, such an approach

can be viewed as a slight improvement over the approach described above for cells

containing only one smooth component of a domain’s boundary, which could be

interpreted as the present approach with setting
∂u

∂n2

=
∂u

∂n3

= 0.

4. Unlike the two dimensional case, there may be well-resolved situation in three

spatial dimensions where more than three interfaces are intersecting in the same

cell (e.g. the top of a square pyramid at which four planes meet). In such cases a

system analogous to (1.17) would be over-determined and should be solved using a

least-squares approach.

5. As intersecting interfaces get almost parallel matrix N is expected to become sin-

gular. Thus described above special method for kinks should not be used in such

cases, instead the approach for cells not containing sharp features should be used

for each of the intersecting interfaces independently.

Higher-order discretization

To obtain a (D + 1)-order accurate discretization of the Robin b.c. term in all cells,

we apply an approach similar to the one for cells with kinks described in the previous

section.

Denote by r̄pi,j =

x̄pi,j
ȳpi,j

 the centroid of the p-th interface in the cell Ci,j, that is:

28



x̄pi,j =

∫
Ci,j∩Γp

x dΓ∫
Ci,j∩Γp

dΓ
and ȳpi,j =

∫
Ci,j∩Γp

y dΓ∫
Ci,j∩Γp

dΓ
.

Expanding the integrands in the first term of (1.3) around the interfaces’ centroid one

obtains:

nφ∑
p=1

∫
Ci,j∩Γp

αp(r)u(r) dΓ =

nφ∑
p=1

∫
Ci,j∩Γp

(
αp(r̄

p
i,j)u(r̄pi,j)

+
∂(αpu)

∂x
(r̄pi,j)(x− x̄

p
i,j) +

∂(αpu)

∂y
(r̄pi,j)(y − ȳ

p
i,j) +O

(
h2
) )

dΓ

=

nφ∑
p=1

αp(r̄
p
i,j)u(r̄pi,j)

∫
Ci,j∩Γp

dΓ +O
(
hD+1

)
, (1.20)

where we use the same symbol αp(r) for a smooth extension of αp(r), r ∈ Γp, to a

neighborhood of Γp (specific extension will be discussed further). Thus, to obtain a

third-order approximation of the Robin b.c. term, one needs to estimate the values of

the unknown function u at the centroids of the interfaces r̄pi,j and multiply them by the

length of the interfaces contained in Ci,j. We perform this task by approximating u by a

linear interpolant:

u(r) = u0 + uxx+ uyy +O
(
h2
)
,

where the coefficients u0, ux and uy are found by the least square approach described

below. Note that a second-order accurate estimate of u is sufficient to preserve the third-

order truncation error in equation (1.20) since such estimate is multiplied by the length

of the interface, which itself is O (h).

29



The coefficients u0, ux and uy are obtained based on the values of u at Ci,j and its

neighboring cells and by taking into account the boundary conditions. Thus, we have 9

constraints of the form:

u0 + uxxi+I,j+J + uyyi+I,j+J = ui+I,j+J , I = −1, 0, 1, J = −1, 0, 1,

and nφ constraints of the form:

µ(ρpi,j) (uxn
p
x + uyn

p
y)︸ ︷︷ ︸

≈ ∂u

∂np
(ρpi,j)

+αp(ρ
p
i,j) (u0 + uxζ

p
i,j + uyη

p
i,j)︸ ︷︷ ︸

≈ u(ρpi,j)

= gp(ρ
p
i,j), p = 1, . . . , nφ,

where by ρpi,j =

ζpi,j
ηpi,j

, we denote the projection of the centroid, r̄pi,j, of the p-th interface

onto the interface itself (see Figure 1.7c). Such projection point can be approximately

calculated using the level-set function φp as:

ρpi,j = r̄pi,j −
(

φp
|∇φp|

np

)
r=r̄pi,j

.

Not all neighboring cells may be part of the discretization as well as not all of nφ

interfaces are present in a given finite volume cell. To ignore such invalid constraints we

introduce 9 + nφ weights wk, k = 1, . . . , 9 + nφ, such that wk = 0 if the kth constraint is

invalid. Moreover, to increase the influence of nearby constraints, we assign weights for

valid constraints based on the distance between the point where u needs to be estimated

and the point where a constraint is imposed. Specifically, we compute weights from a

Gaussian function:

30



wk(R) = exp(−σ(R− rk)2/h2),

where R and rk denote points where the approximation of u is needed and where the

kth constraint is imposed, respectively. Parameter σ is chosen such that wk = 10−3

if |R − rk| = h, i.e σ = 3 ln(10). Such a steep decrease of weight functions wk(R)

with distance allows the least-squares approach automatically pick the nearest points for

interpolation (as done in [41]).

Thus, at the centroid of the p-th interface r̄pi,j, u is approximated by:

u(r̄pi,j) = u0 + uxx̄
p
i,j + uyȳ

p
i,j +O

(
h2
)
,

where the coefficients u0, ux and uy are found as the least-squares solution to the following

linear system:

XW

u0

ux
uy

 = W



ui−1,j−1

ui,j−1

. . .
ui+1,j+1

g1(ρ̄1
i,j)

. . .
gnφ(ρ̄

nφ
i,j )


,

where matrices X and W are defined as:

31



X =



1 xi−1,j−1 yi−1,j−1

1 xi,j−1 yi,j−1
...

...
...

1 xi+1,j+1 yi+1,j+1

α1(ρ̄1
i,j) µi,j(ρ̄

1
i,j)n

1
x + α1(ρ̄1

i,j)ζ
1
i,j µ(ρ̄1

i,j)n
1
y + α1(ρ̄1

i,j)η
1
i,j

...
...

...
αnφ(ρ̄

nφ
i,j ) µi,j(ρ̄

nφ
i,j )n

nφ
x + αnφ(ρ̄

nφ
i,j )ζ

nφ
i,j µ(ρ̄

nφ
i,j )n

nφ
y + αnφ(ρ̄

nφ
i,j )η

nφ
i,j


and

W =

w1

. . .

w9+nφ

 .

It is well-known that the solution to such a least-squares problem is given by:

u0

ux
uy

 =
(
XTW X

)−1 (
W X

)T


ui−1,j−1

ui,j−1

. . .
ui+1,j+1

g1(ρ̄1
i,j)

. . .
gnφ(ρ̄

nφ
i,j )


.

The existence of the inverse in the above equation is insured by checking that at least

three/four points not lying on the same line/plane are used for interpolation in two/three

spatial dimensions. The approximation given in (1.20) also requires the values of the

Robin b.c. coefficients αp at the centroids, rpi,j, of the interfaces. However, strictly

speaking, these coefficients are not defined outside of their respective interfaces Γp, while

the centroids of Γp ∩ Ci,j do not necessarily lie on the interfaces themselves. We choose

constant-in-normal-direction extensions of the coefficients αp to obtain well-defined values

of αp(r
p
i,j), that is, we use αp(r

p
i,j) = αp(ρ

p
i,j).

32



The overall procedure to impose Robin boundary conditions is thus completely au-

tomated and only requires the inversion of the 3-by-3 matrix XTW X for finite volume

cells adjacent to the domain’s boundary. The approach described above is similar to the

one from [5] in that it approximates u by a linear interpolant. However, in [5], the value

u0 is always set to ui,j and the derivatives ux and uy are computed using standard finite

difference formulas based on available neighboring grid nodes. The approach presented

here is more flexible in that it allows u0 to be computed as part of a least-squares pro-

cedure. Another important difference is that it also takes into account the boundary

conditions while constructing a linear interpolant for u. We have found that such a least-

squares approach produces significantly better results than the simpler approach from

[5] in the presence of sharp kinks and corners.

1.4.3 Matrix structure

One of important advantages of the presented methods is that they use a small number

of neighboring cells to obtain a discretization of the Poisson-type equation (1.1). Namely,

the symmetric scheme uses only the nearest neighbors in the Cartesian directions (that is

4 and 6 neighbors in two and three spatial dimensions, resp.), while the superconvergent

scheme additionally uses the nearest neighbors in diagonal directions (that is, 8 and 26

neighbors in two and three spatial dimensions, resp.). Also, such localized numerical

stencils result in linear systems of a very simple structure. For example, the non-zero

pattern for rows in the resulting matrix in two spatial dimensions using the natural

33



ordering of cells has the following form for the symmetric scheme:

(
· · · an−nx · · · an−1 an an+1 · · · an+nx · · ·

)
i.e. non-zero entries are located only on the main diagonal, the 1-st and the nx-th

subdiagonals as well as the 1-st and the nx-th superdiagonals. Compared to the case

of symmetric scheme, the matrix in case of the superconvergent scheme additionally has

non-zero entries on (nx − 1)-th and (nx + 1)-th sub- and super-diagonals:

(
· · · an−nx−1 an−nx an−nx+1 · · · an−1 an an+1 · · · an+nx−1 an+nx an+nx+1 · · ·

)
As an example, Figure 1.8 shows the visualization of matrix structure in one of the tests

considered later in this work.

0 20 40 60 80

0

20

40

60

80

(a) Symmetric

0 20 40 60 80

0

20

40

60

80

(b) Superconvergent

Figure 1.8: Visualization of the linear system’s structure for the symmetric and super-
convergent schemes for example 1.5.2 on a 92 grid.

1.4.4 Truncation errors

In this section we analyze the truncation errors of the two schemes presented above. First,

for all interior nodes, i.e. nodes for which their associated finite volume is completely

34



inside of a compound domain, both schemes reduce to the standard 5-point scheme for

the Poisson equation with second-order truncation error. Let us now consider boundary

nodes, i.e. nodes for which their control volume is crossed by the irregular domain.

Assuming that all the integrals in (1.3) are computed with the required accuracy, it is easy

to see that the truncation error for the symmetric scheme is second order (see equations

(1.4), (1.5), (1.7), (1.14) and (1.19)), while the truncation error of the nonsymmetric

scheme is third order (see equations (1.4), (1.5), (1.8) and (1.20)). However, these are

truncation errors for the integrated Poisson-type equation (1.3), i.e. they need to be

scaled by the area (volume in 3D) of a finite cell, which is O
(
hD
)
, before they can be

compared with the conventionally defined truncation error. This leads to the following

estimates for truncation errors:

εsym
tr = O (1) ,

εnon-sym
tr = O (h) ,

that is, the symmetric scheme is formally inconsistent at the boundary nodes, while the

truncation error of the nonsymmetric scheme is first-order accurate. Taking into consider-

ation results of similar works [80, 58, 141, 27, 115, 128, 53, 54], we expect the symmetric

scheme to produce second-order accurate numerical solutions with first-order-accurate

gradients and the nonsymmetric scheme to produce second-order accurate solutions and

gradients. This will be confirmed in the numerical study in section 1.5.

35



Figure 1.9: examples when the superconvergent discretization is not possible. Arrows
indicate fluxes between cells that cannot be estimated with second order of accuracy. Red
points indicate missing grid nodes that are required by the superconvergent discretization.

1.4.5 Fall-back strategies for the superconvergent scheme

The superconvergent scheme (equations (1.8) and (1.20)) requires a certain number of

valid neighboring nodes, i.e. nodes whose finite volume overlaps with the compound

domain Ω, for calculating fluxes between cells. However, such a requirement may not be

satisfied in some cases. Regions near sharp edges and corners (Figure 1.9 (center and

right)) are prone to fail this requirement, but it can also happen in cases of smooth inter-

faces as well (Figure 1.9 (left)). The natural strategy in such situations is to “fall-back”

to the symmetric scheme (equations (1.7), (1.14) and (1.19)), which always produces a

valid discretization. While this provides a robust strategy for solving Poisson-type equa-

tions, one has to expect an increase in the numerical errors, especially the potential loss

of the superconvergent properties near cells where the symmetric scheme is applied.

A simple procedure that helps to avoid such an undesirable loss in accuracy consists

of merging “hanging” cells, i.e. cells that do not have enough of valid neighbors, to

neighboring cells for which the requirement on the number of valid neighboring cells is

satisfied. Specifically, when considering the discretization at a current cell, we first check

36



whether there exists a subset of its neighboring cells that are connected only to the present

cell. If such a subset exists, cells substituting the subset are merged with the present

cell. The described procedure eliminates “hanging” nodes as long as sharp corners of an

irregular domain are not extremely acute (see Figure 1.10). Once all “hanging” nodes

are merged to proper nodes the supercovergent scheme (equations (1.8) and (1.20)) is

successfully applied in all boundary cells.

Figure 1.10: examples of successful elimination of “hanging” cells using procedure de-
scribed in Section 1.4.5

This procedure can also be applied in the three-dimensional case. However, due to an

increased complexity of relative placements of irregular domains with respect to compu-

tational grids, the procedure is less successful in eliminating “hanging” cells. However,

from numerical experiments we have found that in practice superconvergent numerical

solutions can still be obtained by ignoring values of numerical solutions at cells in which

the symmetric scheme is used. It appears that the accuracy reduction due to fall-backs

to the symmetric scheme is localized to cells where such fall-backs occur and does not

affect the global accuracy due to the fact that the total amount of such cells is two orders

of magnitude lower than the total number of cells. Accurate and superconvergent val-

ues at such cells can be obtained by extrapolating numerical solutions from surrounding

37



valid cells in a post-processing step. Such an extrapolation must be at least third-order

accurate to retain the superconvergent properties of the numerical solutions. In sections

1.5.2 and 1.5.3, we present numerical results on this issue in two- and three-dimensional

cases, respectively.

1.4.6 Non-singularity of the symmetric scheme

The resulting approximation of equation (1.3) in case of the symmetric discretization can

be written in the form

ui,j

[
k(ri,j)Vi,j +

µi− 1
2
,jLi− 1

2
,j + µi+ 1

2
,jLi+ 1

2
,j

∆x
+
µi,j− 1

2
Li,j− 1

2
+ µi,j+ 1

2
Li,j+ 1

2

∆y

+ (add to diag)

]
− ui−1,j

µi− 1
2
,jLi− 1

2
,j

∆x
− ui+1,j

µi+ 1
2
,jLi+ 1

2
,j

∆x

− ui,j−1

µi,j− 1
2
Li,j− 1

2

∆y
− ui,j+1

µi,j+ 1
2
Li,j+ 1

2

∆y

= fi,jVi,j + (add to RHS) +O
(
hD
)
,

where (add to diag) and (add to RHS) denote terms that come from imposing boundary

conditions. For cells that are not crossed by the domain’s boundary

(add to diag) = 0,

(add to RHS) = 0.

For cells crossed by the domain’s boundary but without kinks and corners

38



(add to diag) =
µ(rp̂i,j)αp̂(r

p̂
i,j)L

p̂
i,j

µ(rp̂i,j)− αp̂(r
p̂
i,j)d

p̂
i,j

,

(add to RHS) =

∫
Ci,j∩Γp̂

gp̂(r) dΓ +
g(rp̂i,j)d

p̂
i,jαp̂(r

p̂
i,j)L

p̂
i,j

µ(rp̂i,j)− αp̂(r
p̂
i,j)d

p̂
i,j

.

Finally, for cells with sharp kinks

(add to diag) =
∑

p=p1,p2

∫
Ci,j∩Γp

αp(r) (1− ai,j · (r − ri,j)) dΓ,

(add to RHS) =

∫
Ci,j∩Γp̂

gp̂(r) dΓ +
g(rp̂i,j)d

p̂
i,jαp̂(r

p̂
i,j)L

p̂
i,j

µ(rp̂i,j)− αp̂(r
p̂
i,j)d

p̂
i,j

.

In case of non-negative k(r) and {αp(r)}nφp=0, and for sufficiently small grid spacings

satisfying:

µ(rp̂i,j)− αp̂(r
p̂
i,j)d

p̂
i,j > 0 and (1− ai,j · (r − ri,j)) > 0, (1.21)

the sum (k(ri,j)Vi,j + (add to diag)) is non-negative for all cells, which makes the matrix

associated with the linear system diagonally dominant. Moreover, by construction the

directed graph of the matrix is strongly connected2, hence the matrix is irreducible. Fi-

nally, assuming that at least for one cell (k(ri,j)Vi,j+(add to diag)) is positive (otherwise,

the equation being solved is the Poisson equation with Neumann boundary conditions,

which has infinitely many solutions), we conclude that the linear system is non-singular

[169, Theorem 1.21]. We have found that in practice, even when the grid resolution does

not satisfy the condition (1.21), the linear system is still invertible.

2We assume that the solution domain does not contain disjoint sets, otherwise the solution is inde-
pendent on disjoint sets and the same reasoning should be applied to each isolated area.

39



The question of whether the linear system remains non-singular in the case of ar-

bitrary k(r) and {αp(r)}nφp=0 (excluding identically zero case) is still open, however in

our numerical experiments we never encountered situations when the linear system was

not invertible. Likewise, we do not prove the non-singularity of the linear system in the

nonsymmetric case; however a large number of numerical tests indicate that resulting

linear systems are invertible. In our implementation we use the biconjugate gradient

stabilized method (BiCGSTAB) provided by PETSc library [9] and the HYPRE multi-

grid preconditioner [45] for solving the linear systems. We choose to use the BiCGSTAB

method even for the symmetric discretization because we are interested, first, in cases

when functions k(r) and {αp(r)}nφp=1 may be negative (which result in a non-positive

definite matrix) and, second, in applying this discretization in the context of adaptive

Quad-/Oc-tree grids along the lines of [129] (which produce non-symmetric matrices).

However, we note that in case of uniform grids and non-negative coefficients k(r) and

{αp(r)}nφp=1, the preconditioned conjugate gradient method would be used to efficiently

solve the linear system produced by the symmetric discretization.

1.4.7 Computation of integrals

The numerical schemes presented to solve (1.1)-(1.2) require the calculation of integrals

over compound domains that may have boundaries with kinks. Moreover, one needs

to calculate integrals with at least second-order accuracy in the case of the symmetric

scheme and with at least third-order accuracy in the case of the superconvergent scheme.

40



(a) Two spatial dimensions. (b) Three spatial dimensions.

Figure 1.11: The Kuhn triangulation of a rectangular cell.

As it was mentioned in the introduction, only geometric reconstruction methods are

readily extendable to integration over geometries with sharp features. Geometric re-

construction methods that admits a relatively simple extension to the case of domains

described by multiple level-set functions fall under the class of simplex-based methods

(see [99] for linear and [50, 51] for higher-order reconstructions). In such approaches, a

cell in which integration has to be performed is first decomposed into simplices (triangles

in 2D or tetrahedra in 3D - see Figure 1.11 for an example of the Kuhn triangulation of

a rectangular cell) and then the zero-isocontour of a level-set function is reconstructed

inside each of the simplices. Provided that an interface does not cross the edges or the

faces of a simplex multiple times, one has to take care of just a few (two in 2D and three

in 3D) non-trivial topologically different cases, as illustrated in Figures 1.12 and 1.13.

Once an interface is reconstructed, the integration can be performed by mapping Gauss

quadrature points from reference elements to reconstructed, possibly curved, geometric

elements.

What makes simplex-based approaches easy to extend to the case of crossing in-

terfaces, is the fact that the reconstruction of an interface within a simplex leads to

a splitting of the initial simplex into a set of smaller simplices (see Figures 1.12 and

41



Figure 1.12: The two topologically different possible cases of a simplex crossed by an
interface in 2D.

Figure 1.13: The three topologically different possible cases of crossing a simplex by an
interface in 3D.

1.13). Repeating the same reconstruction procedure on each of those smaller simplices

for another interface results in reconstructing an interface described by a combination of

the two intersecting interfaces. Figure 1.14 illustrates the idea in 2D. Since each of the

smaller simplices are split into sets of even smaller simplices during the reconstruction

of the second interface, it is clear that such an approach allows for the reconstruction of

any number of intersecting interfaces.

Figure 1.14: Geometric integration applied to compound domains.

Such an idea of reconstructing domains produced by several intersecting interfaces

was used in [113] for linear geometric reconstructions. The same idea was discussed

in [51] in case of high-order elements. However, neither [113] or [51] have studied the

42



accuracy of integration procedures over piecewise smooth geometries. We present a

hierarchical approach to reconstruct multiple interfaces within a simplex that is based

on representing a simplex as a collection of geometric elements such as vertices, edges,

triangles and tetrahedra (which can be regarded as 0-simplex, 1-simplex, 2-simplex and 3-

simplex) and performing the reconstruction of an interface on each of the geometric type

separately in the order of increasing dimensionality, i.e. vertices → edges → triangles →

tetrahedra. Such an approach simplifies the task of reconstruction rather significantly,

since when a geometric element is considered, all lower-dimensional elements have already

been processed. Another beneficial feature of this approach is that it avoids the potential

duplication of geometric elements, which not only saves computational resources, but

also enables integrations over intersections of interfaces. We also note that this approach

is suitable for reconstructing interfaces with geometric elements of any order. In the

present work, we report results for linear and quadratic geometric elements. Due to a

rather technical character of the integration algorithm, we provide a detailed description

in 1.A.

It is worth emphasizing that such an integration algorithm does not require any ex-

plicit information about the location of kinks and corners; such features are automatically

reconstructed with needed accuracy from implicit representation of domains by multiple

level-set functions. It is also capable of performing integration over distinct parts of

piece-wise smooth interfaces.

When solving the Poisson equation we use integration based on reconstruction with

43



quadratic geometric elements for both the symmetric and the superconvergent schemes,

although we note that for the symmetric scheme it would be sufficient to use an integra-

tion scheme based on linear reconstruction.

1.5 Numerical Results

This section is devoted to numerical examples. In Section 1.5.1, we provide numerical

examples for the integration algorithm in both in two and three spatial dimensions. In

sections 1.5.2 and 1.5.3, we numerically study the convergence of the numerical schemes

for Poisson-type equations (1.1) in two and three spatial dimensions, respectively. In

Section 1.5.4, we investigate the requirement of the methods on the accuracy of the level-

set representation. Finally, in Section 1.5.5 we test the presented methods on singular

solutions that have limited number of bounded derivatives.

To numerically analyze the accuracy of the numerical schemes for solving Poisson-type

equations, we compute the errors in the L∞-norm for the solutions and their gradients.

Gradients of numerical solutions are computed using standard second-order accurate

central finite differences. In addition, we also plot the error distributions of both methods

for sake of comparison.

1.5.1 Integration

It is standard knowledge that a circular domain in two spatial dimensions can be defined

by the level-set function:

44



φ(x, y) =
√

(x− xc)2 + (y − yc)2 − r,

while the level-set function of a spherical domain can be defined as:

φ(x, y, z) =
√

(x− xc)2 + (y − yc)2 + (z − zc)2 − r,

where r is the radius of the disk/sphere and (xc, yc) and (xc, yc, zc) are the centers’

coordinates. We use those level-set functions to build compound domains (see Table 1.1)

that are then used to test the integration methods.

example Geometry Radius 1 Center 1 Radius 2 Center 2
Union 2D Two disks r1 = 0.77 (0.13, 0.21) r2 = 0.49 (−0.33,−0.37)

Difference 2D Two disks r1 = 0.84 (0.03, 0.04) r2 = 0.63 (−0.42,−0.37)
Union 3D Two spheres r1 = 0.71 (0.22, 0.17, 0.21) r2 = 0.63 (−0.19,−0.19,−0.23)

Difference 3D Two spheres r1 = 0.86 (0.08, 0.11, 0.03) r2 = 0.83 (−0.51,−0.46,−0.63)

Table 1.1: Geometries used in the numerical tests for the integration procedures.

For each of the compound domains, we compute the following three types of integrals

in two (D = 2) and three (D = 3) spatial dimensions:

• The integral over the compound domain:

IΩ[f ] =

∫
Ω

f dxD

• The integrals over the smooth components of the compound domain boundary:

IΓi [f ] =

∫
Γi

f dxD−1, i = 1, 2

45



• The integral over the intersection of the smooth components of the boundary (case

of kinks):

IX1 [f ] =

∫
Γ1∩Γ2

f dxD−2

0 100 200 300 400 500 600 700 800 900

Case no.

10 -14

10 -11

10 -8

10 -5

In
te

gr
at

io
n 

er
ro

r

0.0005 0.008 0.1

Grid resolution

10 -12

10 -10

10 -8

10 -6

10 -4

In
te

gr
at

io
n 

er
ro

r

Figure 1.15: Left: dependence of the error in computing the area and perimeter of a circle
(with radius R = 0.75) on the relative placement of the irregular domain and the com-
putational grids (cases 1-100, 101-200, . . ., 801-900 are obtained by shifting boundaries
of computational domain for grid resolutions 162, 322, . . ., 40962, respectively). Right:
convergence of the error in the area and perimeter of the circle measured as the maximum
error for a given grid resolution.

During the numerical approximation of domain and boundary integrals, certain rela-

tive placements of irregular domains and computational grids may cause cancellations of

errors in the numerical values of such integrals. For example, Figure 1.15 (left) depicts

the errors in the area and the perimeter length of a circle with radius R = 0.75 and center

(0, 0), computed using quadratic geometric reconstruction for grid resolutions 162, . . .,

40982, where for each of the grid resolutions, boundaries of the [−1; 1]2 computational

domain are slightly shifted nx = 10 and ny = 10 times in the x- and y-directions by

amounts ∆x/nx and ∆y/ny, respectively. This procedure generates nx×ny different rel-

ative placements of the irregular domain with respect to the computational grid for each

of the grid resolutions, where in each of the cases the computational domain is described

46



by:

ΩI,J = [−1 + εx; 1 + εx]× [−1 + εy; 1 + εy], εx =
I − 1

nx
∆x, εy =

J − 1

ny
∆y,

I = 1, . . . , nx, J = 1, . . . , ny. (1.22)

As seen from Figure 1.15 (left) the accuracy of the approximate numerical values of the

area and of the perimeter oscillates quite significantly for any given resolution depending

on the relative placement of the irregular domain with respect to the computational grid.

Thus, to avoid untrue apparent experimental convergence rates and obtain more reliable

results, we measure the integration error for a given grid resolution as the maximum

error among all relative placements of the computational grid and an irregular domain

obtained by shifting boundaries of the computational domain 10×10 times in two spatial

dimensions and 5×5×5 times in three spatial dimensions. Convergence results obtained

in this way for the present example of a circular domain are given in Figure 1.15 (right).

Interestingly, although integral quantities are expected to converge with third order of

accuracy for quadratic geometric reconstructions, apparently due to cancellations of er-

rors in the integral sums for entire shapes, the experimental convergence rates are almost

one order higher and close to fourth. In [50], such effect was observed for even orders of

geometric reconstruction higher than quadratic in case of smooth geometries.

Numerical values of the integrals for the examples listed in Table 1.1 are computed

twice: first, when the interfaces are reconstructed using linear (L) geometric elements

and, second, when the interfaces are reconstructed using quadratic (Q) geometric ele-

ments. Convergence results for all test cases along with the visualization of the geomet-

47



10 -3 10 -2 10 -1

Grid resolution

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

In
te

gr
at

io
n 

er
ro

r
10 -3 10 -2 10 -1

Grid resolution

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

In
te

gr
at

io
n 

er
ro

r

Figure 1.16: Compound domain (left) and convergence in the L∞-norm of the computed
integrals in the cases f = 1 (center) and f = |x|2 (right) for the union of two disks. The
superscripts L and Q denote quantities computed using linear and quadratic geometric
reconstructions, respectively.

10 -3 10 -2 10 -1

Grid resolution

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

In
te

gr
at

io
n 

er
ro

r

10 -3 10 -2 10 -1

Grid resolution

10 -11

10 -8

10 -5

10 -2

In
te

gr
at

io
n 

er
ro

r

Figure 1.17: Compound domain (left) and convergence in the L∞-norm of the computed
integrals in the cases f = 1 (center) and f = |x|2 (right) for the difference of two
disks. The superscripts L and Q denote quantities computed using linear and quadratic
geometric reconstructions, respectively.

ric reconstruction of the compound domains produced by the integration algorithm are

provided in Figures 1.16, 1.17 1.18 and 1.19.

Numerical results indicate that the integration procedure based on reconstructions

of implicit interfaces with linear geometric elements produces second-order accurate so-

lutions for all types of integrals both in two and three spatial dimensions, as expected.

In case of quadratic geometric reconstructions we again observe a higher than third,

expected, order of convergence. However, unlike the case of entirely smooth shapes,

48



0.02 0.04 0.1

Grid resolution

10 -7

10 -5

10 -3

10 -1

In
te

gr
at

io
n 

er
ro

r
0.02 0.04 0.1

Grid resolution

10 -7

10 -5

10 -3

In
te

gr
at

io
n 

er
ro

r

Figure 1.18: Compound domain (left) and convergence in the L∞-norm of the computed
integrals in the cases f = 1 (center) and f = |x|2 (right) for the union of two spheres. The
superscripts L and Q denote quantities computed using linear and quadratic geometric
reconstructions, respectively.

0.02 0.04 0.1

Grid resolution

10 -7

10 -5

10 -3

10 -1

In
te

gr
at

io
n 

er
ro

r

0.02 0.04 0.1

Grid resolution

10 -7

10 -5

10 -3

In
te

gr
at

io
n 

er
ro

r

Figure 1.19: Compound domain (left) and convergence in the L∞-norm of the computed
integrals in the cases f = 1 (center) and f = |x|2 (right) for the difference of two
spheres. The superscripts L and Q denote quantities computed using linear and quadratic
geometric reconstructions, respectively.

experimental convergence rates for piecewise smooth shapes are not exactly one order

higher than expected and vary between third and fourth depending on the type of integral

and dimensionality. For purposes of presented discretizations of Poisson-type equations

it is not of big importance, first, because integration methods are required to be just at

least third order accurate and, second, because accuracy of integration within indepen-

dent cells, not for entire shapes, is what matters most for discretization in finite volume

methods.

49



1.5.2 Two spatial dimensions

In all the numerical examples, we consider a computational grid with size [−1, 1]D in D

spatial dimensions.

Triangular domain

Consider a triangular domain generated by the intersection of three half-spaces such that

the corners of the domain are located at (0.74,−0.86), (−0.83,−0.11) and (0.37, 0.87)

(see Figure 1.20 (left)). A “half-space” domain can be describe by a level-set function

φ(x, y) = nx(x− x0) + ny(y − y0),

where the vector (nx, ny) defines the normal to the domain’s boundary and (x0, y0) is a

point lying on the domain boundary. We take the exact solution to be u = sin(x) cos(y),

the diffusion coefficient µ = 1, the function k = 0 (in equation 1.1) and the Robin

coefficients α1 = 1, α2 = 0 and α3 = x − y + (x + y)2 for the right, bottom and left

boundaries, respectively. The compound domain and the numerical solution on a 2562

grid are shown in Figures 1.20a and 1.20b.

As for the integration tests, we analyze the sensitivity of the proposed numerical

schemes on the relative placement of the irregular domains and the computational grids

by performing shifts of boundaries of the computational domain (see Section 1.5.1): for

each grid resolution we consider nx×ny perturbed computational domains given by equa-

tion (1.22), where nx = ny = 10. Figures 1.21 (left) and 1.22 (left) give the L∞-norm of

the numerical error of the solutions and its gradients, respectively, obtained for each con-

50



(a) (b) (c)

(d)

Figure 1.20: Compound domain (a), numerical solution (b) and localization of the error
in the case of the symmetric (c) and the superconvergent (“SC 2”) (d) schemes on a 2562

grid for example 1.5.2.

sidered relative placements for grid resolutions 162, 322, . . ., 10242. Figures 1.21 (right)

and 1.22 (right) demonstrate the convergence of the numerical solution and its gradient,

where the error for each grid resolution is measured as the maximum error among all

relative placements of the irregular domain and the computational grid considered.

0 100 200 300 400 500 600
Case no.

10 -5

10 -4

10 -3

10 -2

S
ol

ut
io

n 
E

rr
or

10 -2 10 -1

Grid resolution

10 -5

10 -4

10 -3

10 -2

S
ol

ut
io

n 
E

rr
or

Figure 1.21: Left: Dependence of the L∞-norm of the solution error on the relative
placement of an irregular domain and a computational grid for grid resolutions 162,
322, . . ., 10242. Right: Convergence of numerical solution in the L∞ where the error is
measured as the maximum error among all considered relative placements.

The numerical results indicate that the symmetric numerical scheme produces second-

order accurate numerical solutions and first-order accurate gradients. Figure 1.20c depicts

the distribution of the error in the numerical solution for the symmetric scheme on a 2562

grid. Clearly, the behavior of the error near the domain boundary is discontinuous with

51



0 100 200 300 400 500 600
Case no.

10 -6

10 -5

10 -4

10 -3

10 -2

G
ra

di
en

t E
rr

or

10 -2 10 -1

Grid resolution

10 -6

10 -5

10 -4

10 -3

10 -2

G
ra

di
en

t E
rr

or

Figure 1.22: Left: Dependence of the L∞-norm of the error of the gradients on the
relative placement of an irregular domain and the computational grid for grid resolutions
162, 322, . . ., 10242. Right: Convergence of the gradients in the L∞-norm where the error
is measured as the maximum error among all considered relative placements.

many spikes, which results in the loss of one order of accuracy during differentiation when

computing the gradients.

For the nonsymmetric superconvergent scheme, we consider three different strategies

for dealing with cases where the superconvergent discretization is not possible for some

computational cells (see Section 1.4.5):

1. In cells where the superconvergent discretization is not possible, the symmetric

scheme is applied (denoted as “SC 1”);

2. Cells where the superconvergent discretization is not possible are attached to valid

neighboring cells (denoted as “SC 2”);

3. Same as strategy no. 1, but values of numerical solutions at cells in which symmetric

scheme is applied are discarded after the linear system has been solved (denoted as

“SC 3”).

As expected, when the superconvergent treatment is not possible at a particular

grid point, the simple switch to the symmetric scheme (strategy 1) may result in the

52



loss of the second-order accuracy in gradients. In this case, the error of the gradients

near such a grid point spikes up to the level of the error produced by fully symmetric

scheme. We have found that strategies 2 and 3 produce very similar results in two spatial

dimensions; for both approaches the gradients of numerical solutions are second-order

accurate. Figure 1.20c depicts the distributions of the error in the numerical solution for

the superconvergent scheme (strategy 2). Compared to the symmetric scheme, the error

is smooth everywhere including near the boundary of the irregular domain (in the sense

that the numerical differentiation of such an error field does not produce O (1/h) terms),

which leads to the preservation of the order of accuracy of the gradients.

Figure 1.23 shows the dependence of the condition number of the resulting linear

systems for the presented methods on the relative placement of the solution domain and

computational grid and the grid resolution. As one can see the condition numbers for all

considered methods are very close to each other and show little sensitivity to the solution

domain placement. The magnitude of the condition numbers demonstrates the inverse

proportionality to the second power of the mesh size h.

0 100 200 300 400 500 600
Case no.

10 4

10 5

10 6

10 7

C
on

di
tio

n 
nu

m
be

r

10 -2 10 -1

Grid resolution

10 4

10 5

10 6

10 7

M
ax

 c
on

di
tio

n 
nu

m
be

r

Figure 1.23: Left: Dependence of the condition number of the linear system on the relative
placement of an irregular domain and the computational grid for grid resolutions 162,
. . ., 10242. Right: Dependence of the maximum condition number among all considered
relative placements on the grid resolution.

53



In the following two-dimensional examples the same perturbation procedure of the

computational domains is performed. However, only the maximum errors and the max-

imum condition number for a given grid resolution are reported. Also, we report only

the results produced by strategy no. 2 for the superconvergent scheme, since it is a more

comprehensive approach that does not require any additional post-processing steps.

Union of two disks

We consider the compound domain to be the union of two disks with radii r1 = 0.77

and r2 = 0.49 that are located at (0.13, 0.21) and (−0.33,−0.37) (see Figure 1.24a). The

test function is u = 2 log ((x+ 0.8y)2 + x− 0.7y + 4) − 3. The parameters in equation

(1.1) are µ = 1 and k = 0 (Poisson equation). The Robin coefficients are α1 = 1 and

α2 = sin(x+ y) cos(x− y) for the larger and smaller disks, respectively.

The convergence results are presented in Figure 1.25. The numerical solution and

the localization of the error computed on a 2562 grid are plotted in Figures 1.24b, 1.24c

and 1.24d. Concerning the order of accuracy, behavior of the condition number and the

location of errors in the case of the symmetric and the superconvergent schemes, one can

draw the same conclusions as in the previous example, with the exception for convergence

of gradients. In this particular example, the convergence rate for the solution’s gradient

is found to be 1.75, i.e. slightly worse than 2. This may be related to the fact that acute

inner kinks are more prone to cause singular behavior of solutions.

54



(a) (b) (c)

(d)

Figure 1.24: Compound domain (a), numerical solution (b) and localization of the error
in the case of the symmetric (c) and the superconvergent (d) discretizations on a 2562

grid for example 1.5.2.

10 -2 10 -1

Grid resolution

10 -5

10 -3

S
ol

ut
io

n 
E

rr
or

10 -2 10 -1

Grid resolution

10 -4

10 -2

G
ra

di
en

t E
rr

or

10 -2 10 -1

Grid resolution

10 4

10 5

10 6

10 7

M
ax

 c
on

di
tio

n 
nu

m
be

r

Figure 1.25: Convergence of the numerical solution (left) and its gradient (center) in the
L∞-norm and dependence of the condition number on grid resolution (right) for example
1.5.2.

Difference of two disks

We consider the compound domain to be the intersection of a disk of radius r1 = 0.84 lo-

cated at (0.03, 0.04) and the exterior of a disk of radius r2 = 0.63 located at (−0.42,−0.37)

(see Figure 1.26a). The exact solution is taken to be u = 4 log

(
0.7x+ 3

y + 3

)
sin(x+ 0.5y).

The diffusion coefficient in this example is variable µ = 1 + 0.2 sin(x) + 0.3 cos(y) and

k = 1. The Robin coefficients are α1 = sin(x−y) cos(x+y) and α2 = sin(x+y) cos(x−y)

for the convex and concave parts of the boundary, respectively.

The convergence results are presented in Figure 1.27. The numerical solution and

55



the localization of the error computed on a 2562 grid are plotted in Figures 1.26b, 1.26c

and 1.26d. Concerning the order of accuracy, the behavior of the condition number and

the location of errors in the case of the symmetric and the superconvergent schemes, the

conclusions of the previous examples hold.

(a) (b) (c)

(d)

Figure 1.26: Compound domain (a), numerical solution (b) and localization of the error
in the case of the symmetric (c) and the nonsymmetric (d) discretizations on a 2562 grid
for example 1.5.2.

10 -2 10 -1

Grid resolution

10 -5

10 -3

S
ol

ut
io

n 
E

rr
or

10 -2 10 -1

Grid resolution

10 -5

10 -3

10 -1

G
ra

di
en

t E
rr

or

10 -2 10 -1

Grid resolution

10 5

10 7

M
ax

 c
on

di
tio

n 
nu

m
be

r

Figure 1.27: Convergence of the numerical solution (left) and its gradient (center) in the
L∞-norm and dependence of the condition number on grid resolution (right) for example
1.5.2.

Three flower-shaped domains

We consider a compound domain generated by three flower-shaped subdomains that are

defined by the level-set functions:

56



φp = sp

(√
X2
p + Y 2

p − rp + βp
X2
p + 5X4

pYp − 10X2
pY

3
p

(X2
p + Y 2

p )
5
2

)
, p = 1, 2, 3,

where

(
Xp

Yp

)
=

(
cos θp − sin θp
sin θp cos θp

)(
x− xp
y − yp

)
.

The parameters xp and yp define the center of mass of the pth shape. The parameter

θp defines the angle of rotation of the pth subdomain around its center. The parameter

sp = ±1 is a toggle switch controlling whether we consider the interior or the exterior

of a flower-shaped domain. Finally, the parameter βp determines the degree of non-

sphericity of a shape. The resulting compound domain is shown in Figure 1.28a. All

the parameters defining the subdomains are listed in Table 1.2. Table 1.2 also contains

the set operators that are used to construct the compound domain as well as the Robin

coefficients imposed on the different parts of its boundary. We consider the test function

u = sin(x + 0.3y) cos(x − 0.7y) + 3 log(
√
x2 + y2 + 0.5), the diffusion coefficient µ =

1 + 0.2 sin(x) + 0.3 cos(y) and k = sin(x) exp(y).

p rp xp yp βp sp Rotation θp Set operator Robin coeff. αp
1 0.73 0.13 0.16 0.08 1 0.1π - 1
2 0.66 −0.14 −0.21 −0.08 1 −0.2π union 1 + sin(x) cos(y)
3 0.59 0.45 −0.53 −0.08 −1 0.2π intersection exp(x+ y)

Table 1.2: Shape parameters for example 1.5.2.

The convergence results are presented in Figure 1.29. The numerical solution and

the localization of the error for a 2562 grid are plotted in Figures 1.28b, 1.28c and 1.28d.

57



Concerning the order of accuracy, the behavior of the condition number and the location

of errors in the case of the symmetric and the superconvergent schemes, one can draw

the same conclusions as in the previous examples.

(a) (b) (c)

(d)

Figure 1.28: Compound domain (a), numerical solution (b) and localization of the error
in the case of the symmetric (c) and the nonsymmetric (d) discretizations on a 2562 grid
for example 1.5.2.

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

S
ol

ut
io

n 
E

rr
or

10 -3 10 -2 10 -1

Grid resolution

10 -5

10 -3

10 -1

G
ra

di
en

t E
rr

or

10 -3 10 -2 10 -1

Grid resolution

10 2

10 4

10 6

M
ax

 c
on

di
tio

n 
nu

m
be

r

Figure 1.29: Convergence of the numerical solution (left) and its gradient (center) in the
L∞-norm and dependence of the condition number on grid resolution (right) for example
1.5.2.

58



1.5.3 Three spatial dimensions

Tetrahedral domain

As in the two dimensional case, we start with a tetrahedral domain produced by in-

tersecting four half-planes such that the corners of the tetrahedron are located at

r1 = (−0.86,−0.87,−0.83), r2 = (0.88,−0.52, 0.63), r3 = (0.67, 0.82,−0.87) and

r4 = (−0.78, 0.73, 0.85). We take the diffusion coefficient µ = 1, and k = 0. The

Robin coefficients are:

α1 = 1,

α2 = 0,

α3 = x− y + (x+ y)2,

α4 = x+ y,

and are imposed on the faces of the tetrahedron with vertices (r0, r1, r2), (r1, r2, r3),

(r0, r2, r3) and (r0, r1, r3), respectively. We take u = sin(x) cos(y) exp(z). A visualiza-

tion of the compound domain and of the numerical solution is given in Figures 1.30a and

1.30b.

(a) (b) (c) (d)

Figure 1.30: Compound domain (a), numerical solution (scaled by .3) (b) and localization
of the error in case of the symmetric (c) and the superconvergent (“SC 3”) (d) schemes
in planes z = 0 and ±0.5 on a 643 grid for example 1.5.3.

59



The sensitivity of the numerical schemes to the relative placement of the irregular

domain with respect to the computational grid is studied in the same fashion as in two

dimensional case by perturbing the boundaries of the computational domain nx×ny×nz

times, where nx = ny = nz = 5. Figures 1.31 (left) and 1.32 (left) report the L∞-norms

of the errors of the numerical solution and its gradients for all of the perturbed domains

considered. Figures 1.31 (right) and 1.32 (right) depict the convergence of the numeri-

cal solution and its gradient field. Figure 1.33 depicts the dependence of the condition

number on the domain placement and grid resolution. All three strategies described in

Section 1.5.2 for dealing with exceptional cells in case of the superconvergent scheme are

considered. Convergence results are almost entirely identical to the analogous example

in two spatial dimensions, with the exception of strategy no. 2 for the superconvergent

scheme. Due to an increased complexity of intersections of irregular domains with finite

volume cells in three dimensions compared to two-dimensional case, the algorithm pro-

posed in Section 1.4.5 does not always successfully eliminate “hanging” nodes in which

case the less accurate symmetric discretization has to be used. As a result, only strategy

no. 3 produces superconvergent results. The error of the numerical solution for the sym-

metric and the superconvergent (strategy 3) schemes are plotted in Figures 1.30c and

1.30d.

In the following examples, the same perturbation procedure is performed but the

maximum errors and condition numbers are only reported for a given grid resolution. In

addition, we only report the results produced by strategy no. 3 for the superconvergent

60



0 50 100 150 200 250 300 350 400 450
Case no.

10 -4

10 -3

10 -2

S
ol

ut
io

n 
E

rr
or

0.03 0.07
Grid resolution

10 -4

10 -3

10 -2

S
ol

ut
io

n 
E

rr
or

Figure 1.31: Left: dependence of the L∞-norm of the solution error on the relative place-
ment of an irregular domain with respect to the computational grid for grid resolutions
163, . . ., 1283. Right: convergence of numerical solution in the L∞-norm where the error
is measured as the maximum error among all considered relative placements.

0 50 100 150 200 250 300 350 400 450
Case no.

10 -3

10 -2

10 -1

G
ra

di
en

t E
rr

or

0.03 0.07
Grid resolution

10 -3

10 -2

10 -1

G
ra

di
en

t E
rr

or
Figure 1.32: Left: dependence of the L∞-norm of the error in gradients on the relative
placement of an irregular domain with respect to the computational grid for grid resolu-
tions 163, . . ., 1283. Right: convergence of gradients in the L∞-norm where the error is
measured as the maximum error among all considered relative placements.

0 50 100 150 200 250 300 350 400 450
Case no.

10 3

10 4

10 5

10 6

C
on

di
tio

n 
nu

m
be

r

0.03 0.07
Grid resolution

10 4

10 5

10 6

M
ax

 c
on

di
tio

n 
nu

m
be

r

Figure 1.33: Left: Dependence of the condition number of the linear system on the relative
placement of an irregular domain and the computational grid for grid resolutions 162,
. . ., 1282. Right: Dependence of the maximum condition number among all considered
relative placements on the grid resolution.

scheme.

61



Union of two spheres

We consider a compound domain obtained by the union of two spheres with radii r1 = 0.71

and r2 = 0.63, and centers (0.22, 0.17, 0.21) and (−0.19,−0.19,−0.23), respectively. The

parameters of the Poisson equation are µ = 1 and k = 0. The Robin coefficients are

α1 = 1 and α2 = sin(x + y) cos(x − y) log(z + 4) for the larger and the smaller spheres,

respectively. The exact solution is u = 2 log(x+ 0.5y− 0.3z+ 3 + (x− 0.7y− 0.9z)2)− 3.

Visualizations of the compound domain, numerical solution and error distributions

on a 643 grid are plotted in Figure 1.34. Figure 1.35 shows the results of the convergence

analysis. Again, one can draw the same conclusions about the rates of convergence as in

the previous examples.

(a) (b) (c) (d)

Figure 1.34: Compound domain (a), numerical solution (scaled by .3) (b) and localization
of the error in case of the symmetric (c) and the superconvergent (“SC 3”) (d) schemes
in planes z = 0 and ±0.5 on a 643 grid for example 1.5.3.

Difference of two spheres

The compound domain is the intersection of a sphere of radius r1 = 0.86 with center

located at (0.08, 0.11, 0.03) with the exterior of a sphere of radius r2 = 0.83 with center

located at (−0.51,−0.46,−0.63). We choose the variable diffusion coefficient as µ =

1 + (0.2 sin(x) + 0.3 cos(y)) cos(z) and set k = 1. The Robin coefficients are α1 = cos(x+

62



10 -2 10 -1

Grid resolution

10 -4

10 -3

10 -2

S
ol

ut
io

n 
E

rr
or

10 -2 10 -1

Grid resolution

10 -4

10 -3

10 -2

10 -1

G
ra

di
en

t E
rr

or

10 -2 10 -1

Grid resolution

10 3

10 4

10 5

M
ax

 c
on

di
tio

n 
nu

m
be

r

Figure 1.35: Convergence of the numerical solution (left) and its gradient (center) in the
L∞-norm and dependence of the condition number on grid resolution (right) for example
1.5.3.

y) sin(x−y) exp(z) and α2 = sin(x+y) cos(x−y) log(z+4) for the convex and the concave

parts of the boundary, respectively. The test function is u = 4 log

(
x+ y + 3

y + z + 3

)
sin(x +

0.5y + 0.7z).

Visualizations of the compound domain, numerical solution and error distributions

on a 643 grid are plotted in Figure 1.36. Figure 1.37 shows the results of the convergence

analysis. One can draw the same conclusions about the rates of convergence as in the

previous examples.

(a) (b) (c) (d)

Figure 1.36: Compound domain (a), numerical solution (scaled by .3) (b) and localization
of the error in case of the symmetric (c) and the superconvergent (“SC 3”) (d) schemes
in planes z = 0 and ±0.5 on a 643 grid for example 1.5.3.

63



10 -2 10 -1

Grid resolution

10 -4

10 -3

10 -2

S
ol

ut
io

n 
E

rr
or

10 -2 10 -1

Grid resolution

10 -4

10 -3

10 -2

10 -1

G
ra

di
en

t E
rr

or

10 -2 10 -1

Grid resolution

10 4

10 5

10 6

M
ax

 c
on

di
tio

n 
nu

m
be

r

Figure 1.37: Convergence of the numerical solution (left) and its gradient (center) in the
L∞-norm and dependence of the condition number on grid resolution (right) for example
1.5.3.

Three star-shaped domains

We construct the compound domain with the help of three star-shaped domains defined

by the level-set functions:

φp = sp

(√
X2
p + Y 2

p + Z2
p − rp + βp

X2
p + 5X4

pYp − 10X2
pY

3
p

(X2
p + Y 2

p )
5
2

cos

(
π

2

Zp
r1

))
,

p = 1, 2, 3,

where

Xp

Yp
Zp

 = R(np, θp)

x− xpy − yp
z − zp


with R(np, θp) being the rotational matrix about the vector np by an angle θp:

R(np, θp) =

 cos θp + n2
x(1− cos θp) nxny(1− cos θp)− nz sin θp nxnz(1− cos θp) + ny sin θp

nynx(1− cos θp) + nz sin θp cos θp + n2
y(1− cos θp) nynz(1− cos θp)− nx sin θp

nznx(1− cos θp)− ny sin θp nzny(1− cos θp) + nx sin θp cos θp + n2
z(1− cos θp)

 .

The parameters of the three shapes, the set operators used and Robin coefficients for

each part of the boundary are summarized in Table 1.3. The parameters of the Poisson-

64



type equation are µ = 1 + (0.2 sin(x) + 0.3 cos(y)) cos(z) and k = cos(x+ z) exp(y). The

test function is u = sin(x+ 0.3y) cos(x− 0.7y) exp(z) + 3 log(
√
x2 + y2 + z2 + 0.5)

p rp xp yp zp βp sp np θp Set operator Robin coeff. αp
1 0.73 0.13 0.16 0.19 0.08 1 (1, 1, 1) 0.3π - 1
2 0.66 −0.21 −0.23 −0.17 −0.08 1 (1, 1, 1) −0.3π union 1 + sin(x) cos(y) exp(z)
3 0.59 0.45 −0.53 0.03 −0.08 −1 (−1, 1, 0) −0.2π intersection exp(x+ y + z)

Table 1.3: Shape parameters for example 1.5.3.

Visualizations of the compound domain, numerical solution and error distributions

on a 643 grid are plotted in Figure 1.38. Figure 1.39 shows the results of the convergence

analysis. One can draw the same conclusions about the rates of convergence as in the

previous examples.

(a) (b) (c) (d)

Figure 1.38: Compound domain (a), numerical solution (scaled by .3) (b) and localization
of the error in case of the symmetric (c) and the superconvergent (“SC 3”) (d) schemes
in planes z = 0 and ±0.5 on a 643 grid for example 1.5.3.

10 -2 10 -1

Grid resolution

10 -4

10 -3

10 -2

10 -1

S
ol

ut
io

n 
E

rr
or

10 -2 10 -1

Grid resolution

10 -3

10 -2

10 -1

G
ra

di
en

t E
rr

or

10 -2 10 -1

Grid resolution

10 3

10 4

10 5

M
ax

 c
on

di
tio

n 
nu

m
be

r

Figure 1.39: Convergence of the numerical solution (left) and its gradient (center) in the
L∞-norm and dependence of the condition number on grid resolution (right) for example
1.5.3.

65



1.5.4 Accuracy of the level-set representation

In the all above examples, the exact values of the level-set functions describing com-

pound domains were used. However, in real applications, especially involving moving

free boundaries, only approximate values of level-set functions are available. Inaccurate

descriptions of domains may lead to a reduction in the accuracy of numerical solutions

and, more importantly, the loss of the superconvergent property for the non-symmetric

scheme. In this section we investigate the requirement of the presented numerical meth-

ods on the accuracy of level-set representation of irregular domains. We demonstrate

that second-order of accuracy is sufficient for both considered methods; however, for the

superconvergent scheme to produce second-order gradients such a second-order accurate

level-set representation must be superconvergent itself in the sense that derivatives of the

level-set data are second-order accurate as well.

Specifically, we repeat the example from Section 1.5.2 with artificially perturbed val-

ues of level-set functions by a specific error function. We consider three different choices

of such perturbations:

1. Second-order discontinuous:

φ(1)(r) = φexact(r) + 0.1ζd(r)h2

2. Second-order continuous:

φ(2)(r) = φexact(r) + 0.1ζc(r)h2

66



3. Third-order discontinuous:

φ(3)(r) = φexact(r) + ζd(r)h3

where φexact(r) denotes the exact level-set function, ζd(r) is a uniformly distributed ran-

dom variable with values in [−1; 1] and ζc(r) is a continuous function. Specificaly, we use

ζc(r) = sin(10x) cos(10y). Such perturbations produce second-, second- and third-order

accurate level-set data with first-, second- and second-order accurate derivatives, respec-

tively. The convergence results are presented in Figure 1.40. For all types of considered

perturbations both schemes produce second-order accurate numerical solutions, however,

in case of noisy error of second order, these numerical solutions are not superconvergent

anymore for the non-symmetric scheme.

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

S
ol

ut
io

n 
E

rr
or

10 -3 10 -2 10 -1

Grid resolution

10 -3

10 -2

10 -1

G
ra

di
en

t E
rr

or

(a) Second-order noisy error

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

S
ol

ut
io

n 
E

rr
or

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

G
ra

di
en

t E
rr

or

(b) Second-order smooth error

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

S
ol

ut
io

n 
E

rr
or

10 -3 10 -2 10 -1

Grid resolution

10 -5

10 -4

10 -3

10 -2

10 -1

G
ra

di
en

t E
rr

or

(c) Third-order noisy error

Figure 1.40: Convergence of the numerical solution (top row) and its gradient (bottom
row) in the L∞-norm in cases of various level-set data perturbations for example 1.5.4.

67



1.5.5 Singular solutions

Throughout this work it has been implicitly assumed that the sought-for solutions are

sufficiently smooth, specifically, they need to have two and three bounded derivatives

in cases of the symmetric scheme and the superconvergent one, respectively, for the

presented error analysis to be valid. However, it is well-known that sharp features of

domain boundaries might lead to solutions that are not smooth [94]. The results of this

work are still of great importance, first, because the presented methods can be applied to

problems in which the required smoothness conditions are satisfied and, second, because

the presented methods can serve as a basis in the development of methods for singular

solutions, e.g. along the lines of [175].

(a) Domain (b) p = 1 (c) p = 2 (d) p = 3 (e) p = 4

Figure 1.41: Visualization of the irregular domain (a) and error distributions in case of
the superconvergent scheme (b)-(e) on a 2562 grid for example 1.5.5.

To validate the above smoothness requirement and study the behavior of the presented

discretizations in cases when such a requirement is not satisfied, we consider the following

example. The irregular domain is taken as a circular sector of angle Θ = γπ, with

γ = 1.25, radius R0 = 0.85, located at (x0, y0) = (0.03,−0.04) and rotated by θ0 = 0.1π

such that straight edges of the sector make angles θ0 and θ0 + Θ with the positive x-

direction as illustrated in Figure 1.41a. We solve problem (1.1) with µ = 1, k = 0, f = 0

68



subject to boundary conditions (1.2) with α0 = α1 = α2 = 1 and

g0 = g1 = up and g2 =
∂up
∂n

+ up,

where

up = r
p
γ cos

(
p

γ
(θ − θ0)

)
, p = 1, 2, . . . . (1.23)

The analytical solution to such a problem for every p = 1, 2, . . . is given by (1.23) and

has p− 1 bounded derivatives.

10 -3 10 -2 10 -1

Grid resolution

10 -3

10 -2

10 -1

S
ol

ut
io

n 
E

rr
or

10 -3 10 -2 10 -1

Grid resolution

1.5

2

2.5

G
ra

di
en

t E
rr

or

(a) p = 1

10 -3 10 -2 10 -1

Grid resolution

10 -5

10 -4

10 -3

10 -2

10 -1

S
ol

ut
io

n 
E

rr
or

10 -3 10 -2 10 -1

Grid resolution

10 -1

G
ra

di
en

t E
rr

or

(b) p = 2

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

S
ol

ut
io

n 
E

rr
or

10 -3 10 -2 10 -1

Grid resolution

10 -4

10 -3

10 -2

10 -1

G
ra

di
en

t E
rr

or

(c) p = 3

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

S
ol

ut
io

n 
E

rr
or

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

10 0

G
ra

di
en

t E
rr

or

(d) p = 4

Figure 1.42: Convergence of numerical solutions (top row) and their gradients (bottom
row) in the L∞-norm measured across the entire irregular domain for example 1.5.5.

The convergence results of numerical solution of this problem with the presented

methods for p = 1, 2, 3 and 4 are plotted in Figure 1.42. As expected, the symmetric

scheme achieves designed convergence rates in cases p = 3 and 4 (solution has at least two

bounded derivatives) while the superconvergent scheme produces second-order gradients

only for p = 4 (solution has at least three bounded derivatives). In case of p = 3 the

69



superconvergent scheme does produce significantly better results than the symmetric one,

however, the solution gradient converges only at rate ∼ 1.4. For p = 2 (one bounded

derivative) the numerical solutions and their gradients convergence with rates ∼ 1.6 and

∼ 0.6, respectively, for both schemes. For p = 1 (zero bounded derivatives) both schemes

produce only first-order accurate numerical solutions with non-convergent gradients.

10 -3 10 -2 10 -1

Grid resolution

10 -5

10 -4

10 -3

10 -2

10 -1

S
ol

ut
io

n 
E

rr
or

10 -3 10 -2 10 -1

Grid resolution

10 -4

10 -3

10 -2

10 -1

G
ra

di
en

t E
rr

or

(a) p = 1

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

S
ol

ut
io

n 
E

rr
or

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

G
ra

di
en

t E
rr

or

(b) p = 2

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

S
ol

ut
io

n 
E

rr
or

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

10 0

G
ra

di
en

t E
rr

or

(c) p = 3

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

S
ol

ut
io

n 
E

rr
or

10 -3 10 -2 10 -1

Grid resolution

10 -6

10 -4

10 -2

10 0

G
ra

di
en

t E
rr

or

(d) p = 4

Figure 1.43: Convergence of numerical solutions (top row) and their gradients (bottom
row) in the L∞-norm measured across a reduced domain Ω̃ that excludes the point of
singularity for example 1.5.5.

It is also important to study the convergence of numerical solutions in a domain that

excludes singular points. Specifically, we consider a domain Ω̃ obtained from the original

circular sector by subtracting a small circle of radius 0.1 located at (x0, y0). The conver-

gence results computed across this new domain are shown in Figure 1.43. Interestingly,

both methods achieve their designed rates of convergence in Ω̃ for both the numerical

solutions and their gradients with exception for case p = 1 (zero bounded derivative)

in which numerical solutions converge at rate of 1.6 for both schemes. High accuracy

70



of numerical solutions and their gradients away from the singularity are consistent with

results for the error distribution, examples of which on a 2562 grid are plotted in Figure

1.41 (b)-(e), that show that the largest errors are localized in the vicinity of the singu-

larity. These results can be exploited in the further extension of the presented methods

to problems with singular solutions along the lines of [175].

1.6 Conclusion

We have presented two finite volume discretizations of the Poisson equation subject

to Robin boundary conditions in irregular domains with piecewise smooth boundaries.

In the case of the symmetric discretization, fluxes between cells are evaluated at the

centers of the cell faces and boundary conditions are approximated either with the help

of a Taylor expansion in the normal to boundary in the case of smooth interfaces or

by a special treatment in the case where kinks occur. Our analysis suggests that such

a discretization has a O (1) truncation error near the domain’s boundary. A more-

accurate, albeit nonsymmetric, discretization with first order truncation error is obtained

by evaluating fluxes at the centers of cut cell faces and by using a linear least-squares

interpolant of the unknown to approximate the boundary conditions. An important part

of both schemes is a hierarchical integration algorithm that enables the computation of

volume and surface integrals over irregular geometries that may have sharp features.

On a number of numerical examples in two and three spatial dimensions, we have

illustrated that both schemes produce second-order accurate solutions. The difference

71



between the two methods is that (i) the magnitude of error for the nonsymmetric dis-

cretization is smaller (in some examples by an order of magnitude) and more importantly

(ii) numerical gradients are second-order accurate in the case of the nonsymmetric dis-

cretization, compared to first-order accurate in the case of the symmetric discretization.

Consequently, we conclude that in applications in which gradients play an important

role, it is desirable to use the nonsymmetric superconvergent discretization. However, in

applications in which only the numerical solution is of interest, the symmetric discretiza-

tion offers the advantage of resulting in a symmetric linear system that can be efficiently

solved using fast iterative methods such as the preconditioned conjugate gradient.

The requirement on the level-set representation’s accuracy is numerically investigated.

It is shown that a second-order accurate description of irregular domain is sufficient for

both the symmetric and superconvergent schemes. For the superconvergent method to

produce second-order accurate gradients the level-set representation must be “supercon-

vergent” itself in the sense that derivatives of level-set data is second-order accurate as

well.

The methods are also investigated on examples with singular solutions that have

limited number of bounded derivatives. It is demonstrated that the methods should be

used with care for such problems, since the accuracy of numerical solutions may severely

deteriorate in such cases. However, it is also shown that even for such problems, the

methods produce accurate solution away from singularities.

We also note that both discretizations use only immediate neighboring points, thus

72



making them excellent candidates for parallelization and/or extension to adaptive grids.

Besides these extensions, future work will include exploring such aspects as an improved

fall-back strategy for the superconvergent scheme in the three-dimensional case and spe-

cial methods for extrapolating functions across piecewise smooth interfaces.

1.A Hierarchical geometry reconstruction algorithm

The integration method we use is in large part based on the methods and results of Min

and Gibou [99, 101] and Fries et al. [50, 51]. We illustrate our hierarchical algorithm

using second order geometric elements. With modifying or removing certain steps, the

algorithm can either be extended to higher order elements or reduced to linear geometric

ones. Since an extension from two to three spatial dimensions is not straightforward, we

consider the three dimensional case here.

Let us consider the reconstruction of a compound domain described by nφ level-set

functions {φi}
nφ
i=1 with associated set operations {αi}

nφ
i=1 in a simplex S, which we shall

call the parent simplex. To describe the reconstruction of a compound domain in a

simplex, we introduce four types of basic geometric element: vertex, edge, triangle and

tetrahedron, defined as follows:

• vertex : defined by its coordinates (x, y, z).

• edge: defined by three vertices (v0, v1, v2).

• triangle: defined by three vertices (v0, v1, v2) and three opposing edges (e0, e1, e2).

73



• tetrahedron: defined by four vertices (v0, v1, v2, v3) and four opposing triangles (f0,

f1, f2, f3).

Each type of geometric element is illustrated in Figure 1.44 along with its corresponding

reference element.

Figure 1.44: Basic geometric types (top row) and corresponding reference elements (bot-
tom row).

For every type of geometric element, we associate an iso-parametric mapping from its

reference element:

r =

nnodes−1∑
i=0

riNi(a), (1.24)

where r is the coordinate in physical space, a is the coordinate in reference element

space, Ni(a) are Lagrangian shape functions, ri are coordinates of the vertices composing

an element and nnodes is their cardinal (3, 6 and 10 for edges, triangles and tetrahedra,

respectively). In addition, for every reference element we define the interpolation function

as:

74



φ(a) =

nnodes−1∑
i=0

φiNi(a), (1.25)

where the φi’s are the values of a level-set function at vertices of a reference element

(directly transferred from a physical element).

The reconstruction starts with creating empty sets of vertices V, edges E, triangles

F and tetrahedra T, and filling them with the initial structure of the simplex S, so that

V, E, F and T contain 10, 6, 4 and 1 elements, respectively. After the structure of the

parent simplex S is decomposed into basic geometric elements, our algorithm reconstructs

zero-isocontours of all level-set functions one after another.

Let us assume that k − 1 interfaces have been reconstructed, and consider the re-

construction of the zero-isocontour of the kth level-set function in more details. The

first step is to evaluate the values of the kth level-set function at all active vertices from

the set V . This can be done, for example, by interpolating the level-set function from

the parent simplex, assuming that values of the function are provided at vertices of the

parent simplex. Then, we ensure that the level-set values form a “valid” data set [50] in

the sense that the zero-isocontour does not cross any edges or triangles multiple times as

discussed in 1.A.5. Once a valid set of data is obtained, the algorithm reconstructs an

interface on each geometric type separately. Specifically, (1) the algorithm loops through

all the vertices of V, determining whether a vertex is inside or outside of the domain

described by φk and records this information; (2) the algorithm loops through all active

edges from E, finding an intersection of an edge with the interface and splitting edges

75



that are crossed; (3) the algorithm loops through all active triangles from F, splitting all

crossed triangles (note that when a crossed triangle is considered, then its edges have

already been split during the previous step); (4) the algorithm loops through all active

tetrahedra from T, splitting all crossed tetrahedra (note that when a crossed tetrahedron

is considered its faces and edges have already been split during previous steps). In the

case of intersecting elements (1.A.6) or elements with under-resolved curvature (1.A.7),

necessary geometric elements are refined and the reconstruction is attempted again. For

clarity the algorithm is summarized in Algorithm 1.

In what follows, we describe in details the splitting procedures for each basic geometric

types. We exploit the ideas of Min [99] to determine the topological relationship between

a geometric element and an interface. Specifically, we enumerate the corner vertices of

an element in the ascending order with respect to the values of the level-set function

φk and count the total number of corner vertices n(−) with negative values of φk
3. In

such a way, the number n(−) unequivocally corresponds to a certain splitting scheme of

a geometric element.

There exist two trivial cases: the case where n(−) = 0 corresponds to the situation

when an element is completely outside of the domain described by the kth level-set func-

tion and no splitting is required. Similarly, the case when n(−) is equal to the total

number of corner vertices of an element (i.e. n(−) = 1 for vertices, n(−) = 2 for edges,

n(−) = 3 for triangles, n(−) = 4 for tetrahedra) corresponds to the situation when the

3As in [99], we exclude cases where φk = 0 at a vertex by perturbing the value of φk at such a vertex
by a very small amount ε = 10−20

76



1: Create empty sets of vertices V, edges E, triangles F and tetrahedra T
2: Fill sets V, E, F and T with the initial structure of parent simplex S
3: for every level-set function φj from j = 1 to nφ do
4: Set valid reconstruction = false
5: while valid reconstruction = false do
6: Vtmp ← V, Etmp ← E, Ftmp ← F, Ttmp ← T
7: Set valid data = false
8: while valid data = false do
9: Sample values of φj at all active vertices from Vtmp

10: Set valid data = true
11: Check validity of level-set data(may set valid data = false)

12: if valid data = false then
13: Refine necessary elements in Etmp, Ftmp and Ttmp (1.A.5)
14: end if
15: end while
16: Set valid reconstruction = true
17: for every vertex v from Vtmp do
18: Apply procedure from 1.A.1 to v
19: end for
20: for every edge e from Etmp do
21: Apply procedure from 1.A.2 to e
22: end for
23: for every triangle f from Ftmp do
24: Apply procedure from 1.A.3 to f
25: (may set valid reconstruction = false (1.A.6 and 1.A.7))

26: end for
27: for every tetrahedron t from Ttmp do
28: Apply procedure from 1.A.4 to t
29: (may set valid reconstruction = false (1.A.6 and 1.A.7))

30: end for
31: if valid reconstruction = false then
32: Refine necessary elements in E, F and T (1.A.6 and 1.A.7)
33: Discard Vtmp, Etmp, Ftmp and Ttmp

34: else
35: V← Vtmp, E← Etmp, F← Ftmp, T← Ttmp

36: end if
37: end while
38: end for

Algorithm 1: Reconstruction of a compound domain in a 3D simplex S.

77



element is entirely inside the kth generating domain and no splitting is required as well.

In what follows, we describe the non-trivial cases for each geometric type.

1.A.1 Vertex (0-simplex)

In the case of vertices, it is only necessary to determine whether a vertex is located

inside or outside of the kth generating domain by checking whether φk < 0 or φk > 0 at

this vertex and store this information. Such information will be later used during the

post-processing step to determine the role of a vertex in the geometric reconstruction

such as inside vertex, outside vertex, vertex on an interface, vertex on an intersection of

interfaces, etc.

1.A.2 Edge (1-simplex)

Let us denote the vertices of an edge as v0, v1, and v2, such that φk(r0) ≤ φk(r1) ≤ φk(r2),

where r0, r1 and r2 are coordinates of the vertices v0, v1 and v2, respectively. Possible

values of n(−) for the edges are 0, 1 and 2. Cases n(−) = 0 and n(−) = 2 are trivial and

only in the case where n(−) = 1 is an edge crossed by the kth interface.

Figure 1.45: Finding an intersection of an edge with the zero-isocountor of a level-set
function.

78



To find an intersection between a possibly curved edge and an interface, a correspond-

ing reference element is considered (Figure 1.45 (b)). Values of a level-set function are

directly transferred from a physical element and the location of the zero-level-set, denoted

as vΓ, is found as a root of a quadratic interpolating polynomial (1.25) (Figure 1.45 (c)).

Next, midpoints between pairs of vertices (v0, vΓ) and (vΓ, v2), denoted as v0Γ and vΓ2,

respectively, are found (Figure 1.45 (d)). The three newly created vertices vΓ, v0Γ and

vΓ2 are mapped to the physical space using (1.24) and two new edges ec0 = (v0, v0Γ, vΓ)

and ec1 = (vΓ, vΓ2, v2) are created. Finally, the crossed edge and its vertex v1 are marked

as inactive.

1.A.3 Triangle (2-simplex)

Let us denote the corner vertices of a triangle as v0, v1, v2 and their opposite edges as

e0, e1, e2, such that φk(r0) ≤ φk(r1) ≤ φk(r2), where r0, r1 and r2 are the locations of

vertices v0, v1 and v2, respectively. Possible values of n(−) for triangles are 0, 1, 2 and 3.

Cases n(−) = 0 and n(−) = 3 are trivial and not considered here.

Case n(−) = 1: A triangle is crossed by the kth interface, i.e. the interface intersects

the edges e1 and e2 (Figure 1.46 (a)). We first note that these points of intersection have

already been found and edges e1 and e2 have been replaced with new elements (Figure

1.46 (b)). Let us denote the points of intersection as vc01 and vc02, the edge children of e1

as e1 → ec0 and e1 → ec1 and the edge children of e2 as e2 → ec0 and e2 → ec1. Two more

edges need to be created, one corresponding to the zero-level-set, denoted as ec0, and the

79



other one being an auxiliary edge that splits a quadrilateral into two triangles, denoted

as ec1. This is done on a corresponding reference triangle (Figures 1.46 (c)-(f)).

Figure 1.46: Splitting of a triangle by the zero-isocountor of a level-set function in the
case n(−) = 1.

The procedure for creating the midpoint for ec0 is as follows: (1) a midpoint between

the vertices vc0 and vc1 is found and denoted as ũc0 (Figure 1.46 (c)). This point serves

as the starting point for finding the midpoint for ec0; (2) To select the search direction

we consider a linear approximation of the original curved triangle in the physical space

(Figure 1.46 (d)), find the direction n normal to the (straight) line segment (vc01, v
c
02) and

map it back onto the reference triangle. Chosen in such a way, the direction approximates

the normal direction to the (curved) line segment (vc01, v
c
02) in the original curved triangle.

Note that such a direction may differ significantly from the normal direction to the line

segment (vc01, v
c
02) in the reference triangle; (3) the values of the kth level-set function,

its first and second derivatives in the chosen search direction are estimated based on

80



interpolating formula (1.25) (see Figure 1.46 (e)). These values are used to approximate

the level-set function in the normal direction by a quadratic polynomial, whose root

corresponds to the location of the interface, denoted as uc0. The midpoint for ec1, denoted

as uc1, is defined simply as the midpoint between vc01 and v2 (Figure 1.46 (f)).

Figure 1.47: New elements created during the splitting of a triangle in the case n(−) = 1.

The two newly created vertices uc0 and uc1 are mapped onto the physical space and two

new edges ec0 = (vc01, u
c
0, v

c
02) and ec1 = (vc01, u

c
1, v2) are created. Finally, the initial triangle

is replaced with three smaller triangles f0, f1 and f2, as illustrated in Figure 1.47.

Case n(−) = 2: in this case the interface crosses the edges e0 and e1. We note again

that the points of intersections of the interface with edges have already been found and

the edges e0 and e1 have already been split. Let us denote the points of intersection as

vc12 and vc02, the edge children of e0 as e0 → ec0 and e0 → ec1 and the edge children of e1

as e1 → ec0 and e1 → ec1.

The procedure for this case is very similar to the procedure used in the case n(−) = 1.

Two new vertices uc0 and uc1, representing the midpoints of two new edges, are found on a

reference triangle and mapped onto the physical space. Two new edges ec0 = (v0, u
c
0, v

c
12)

and ec1 = (vc02, u
c
1, v

c
12) are created and the initial triangle is replaced with three new

81



Figure 1.48: Splitting of a triangle by the zero-isocountor of a level-set function in the
case n(−) = 2.

triangle children f c0 , f c1 and f c2 , as illustrated in Figure 1.49.

Figure 1.49: New elements created during the splitting of a triangle in the case n(−) = 2.

1.A.4 Tetrahedron (3-simplex)

Let us denote the vertices of a tetrahedron as v0, v1, v2, v3 and the opposite triangles

as f0, f1, f2, f3, such that φk(r0) ≤ φk(r1) ≤ φk(r2) ≤ φk(r3), where r0, r1, r2 and r3

are the locations of the vertices v0, v1, v2 and v3, respectively. Possible values of n(−) for

triangles are 0, 1, 2, 3 and 4. Cases n(−) = 0 and n(−) = 4 are trivial and not considered

82



here.

Case n(−) = 1: the kth interface crosses the edges corresponding to the pairs of

vertices (v0, v1), (v0, v2) and (v0, v3) and the triangles f1, f2 and f3. These elements have

already been split during the previous steps. Let us denote the points of intersection

of the boundary with the tetrahedron’s edges as vc01, vc02 and vc03. To complete the

reconstruction of the kth interface in the tetrahedron, one only needs to create three new

triangles f c0 , f c1 , f c2 and four new tetrahedra tc0, tc1, tc2, tc3 (Figure 1.50 (a)), as illustrated

in Figures 1.50 (b) and 1.50 (c), respectively.

Figure 1.50: Splitting of a tetrahedron by the zero-isocountor of a level-set function in
the case n(−) = 1.

Case n(−) = 2: this case is more complicated than the cases n(−) = 1 and n(−) = 3.

The interface crosses the edges corresponding to pairs of vertices (v0, v2), (v0, v3), (v1, v2)

and (v1, v3) and all the triangles f0, f1, f2 and f3 (Figure 1.51 (a)). Let us denote the

points of intersection of the boundary with the tetrahedron’s edges as vc02, vc03, vc12 and

83



vc13 (Figure 1.51 (b)).

Figure 1.51: Splitting of a tetrahedron by the zero-isocountor of a level-set function in
the case n(−) = 2.

To complete the interface reconstruction in a tetrahedron, it is necessary to first create

one more edge, ec, connecting the vertices vc12 and vc03 (or vc13 and vc02, alternatively).

The midpoint of this new edge, uc, is found using a corresponding reference tetrahedral

element (Figure 1.51 (e)):

1. the starting point for search of uc, denoted as ũc, is found as the midpoint of the

line segment (vc12, v
c
03);

2. the search direction is defined by considering a linear approximation of the curved

triangle (v0, v
c
12, v3) in the physical space and taking the direction normal to line

segment (vc12, v
c
03) (Figure 1.51 (c));

3. the values of the level-set functions and its first and second derivatives along the

chosen search direction are estimated using interpolating formulas (1.25);

4. the location of uc is found as a root of the quadratic polynomial approximating the

level-set function in the chosen direction (Figure 1.51 (d));

84



5. finally, uc is mapped onto the physical space using (1.24) (Figure 1.51 (e)).

Figure 1.52: New triangles created during the splitting of a tetrahedron in the case
n(−) = 2.

Figure 1.53: New tetrahedra created during the splitting of a tetrahedron in the case
n(−) = 2.

The remaining steps in the interface reconstruction are to create a new edge ec =

(vc03, u
c, vc12), six new triangles f c0 , . . . , f

c
5 and six new tetrahedra tc0, . . . , t

c
5, as illustrated

in Figures 1.52 and 1.53.

Case n(−) = 3: this case is very similar to the case where n(−) = 1. The interface

crosses the edges corresponding to the pairs of vertices (v0, v3), (v1, v3) and (v2, v3) and

the triangles f0, f1 and f2. As usual, we denote the points of intersection of the interface

with the tetrahedron’s edges as vc03, vc13 and vc23. To complete the reconstruction of the

kth interface in the tetrahedron, one only needs to create three new triangles f c0 , f c1 , f c2

and four new tetrahedra tc0, tc1, tc2, tc3 (Figures 1.54 (a)), as illustrated in Figures 1.54 (b)

and 1.54 (c).

85



Figure 1.54: Splitting of a tetrahedron by the zero-isocountor of a level-set function in
the case n(−) = 3.

1.A.5 Valid level-set data

The algorithm described above assumes that the values of level-set functions that are

used form a “valid” data, i.e., that the implicit interface being reconstructed does not

cross any edge element multiple times and does not cross any triangular face without

crossing its edges (in 3D). In [50], such a condition was checked by evaluating the level-

set functions on sample grids of vertices distributed evenly in a geometric element. If it

is found that the condition is not satisfied, the geometric element is recursively refined

until “valid” level-set data is obtained.

We employ a different approach to address this issue. First, since we restrict ourselves

to geometric reconstructions with second order elements, on which level-set functions are

approximated by second-order polynomials (1.25), we make use of analytical form of level-

set functions’ approximations to check for multiple intersections of implicit interfaces with

86



(a) (b)

Figure 1.55: Refinement procedure to obtain valid level-set data for edges (a) and trian-
gles (b).

edges and triangles. Specifically, in case when a level-set functions has the same sign on

the boundary of an edge or a triangle, we find the point of extremum of the polynomial

approximating a level-set function on that geometric element, check whether such point

lies inside the element and whether the sign of the level-set at this point coincides with

the sign at the end points of the element. In case of opposite signs, the element is refined

by placing an additional vertex at the found point of extremum as illustrated in Figure

1.55.

To preserve consistency in the overall geometric reconstruction, higher-level elements

contained in refined edges and triangles also need to be refined. Clearly, it is straight-

forward to perform such a task when a higher-level element contains only one refined

sub-element as illustrated in Figure 1.56a for triangles and in Figure 1.57 for tetrahe-

dra. However, even when a higher-level element contains several refined sub-elements,

this task can easily be performed in an iterative fashion taking into account one refined

sub-element at a time as demonstrated Figures 1.56b and 1.58.

Such a refinement strategy has great advantages over the simple recursive refinement

used in [50]. First, it efficiently eliminates elements with invalid level-set data: only one

87



pass is needed for this geometry-aware refinement, while the simple recursive subdivision

may require several passes and in fact does not guarantee that the invalidity of data is

resolved in some limited number of refinements. Second, it generates much less geomet-

ric elements, thus saving computational time and resources: in [50], one simple recursive

refinement of a tetrahedron generates 8 new tetrahedra, while our geometry-aware re-

finement generates only 2 (refined edge) or 3 (refined triangle) new tetrahedra.

(a) (b)

Figure 1.56: Refinement of a triangle containing one (a) and multiple (b) refined edges.

(a) (b)

Figure 1.57: Refinement of a tetrahedron containing a refined edge (a) and a refined face
(b).

Figure 1.58: An example of iterative refinement of a tetrahedron containing multiple
refined sub-elements.

88



1.A.6 Removing invalid geometric reconstruction

Figure 1.59: Illustration of refinement procedure to eliminate intersecting elements.

During the reconstruction of implicit interfaces with high order geometric element,

much attention must be given to ensure that generated reconstructions do not contain

overlapping or intersecting elements. Problems of this type occur during the search for

midpoints of curved elements (cases n(−) = 1 and 2 for triangles). In the case where

intersecting edges are detected (see Figure 1.59 (a)), the edges of the underlying triangle

are refined by a line passing through the starting point of the midpoint search and oriented

along the search direction (see Figure 1.59 (b) and (c)). The intersection points of such

line with the edges of the triangle can be found by defining a local level-set function

describing the line:

φline(a) = τ line · (a− aline),

where τ line is a unit vector perpendicular to the line and aline is the coordinate vector

of a point lying on the line (in this particular case, it is convenient to use the starting

point). The line crosses an edge if the function φline has opposite signs at the endpoints

of that edge. Moreover, the location of the intersection is easily found as the root of the

restriction of the level-set function φline to the edge, which is itself a linear function. After

89



the required edges are refined, higher-level elements (triangles and tetrahedra) contained

refined edges are also refined as described the same iterative described in the previous

section (see Figure 1.59 (d)) and the reconstruction of an implicit interface is attempted

again (see Figure 1.59 (e))

1.A.7 On curvature resolution in three spatial dimensions

There exists a fundamental difference between geometric reconstructions of co-dimension

one surfaces in two and three dimensions on Cartesian grids: in the two-dimensional case,

the increase in grid resolution always leads to a decrease in the ratio of the mesh size to

the curvature radius of a surface being reconstructed, while in the three-dimensional case

this does not necessarily occur. Consider, for example, the calculation of the surface of a

sphere of radius R. Suppose the Cartesian grid used for the reconstruction is such that

one of the grid cells is located at the distance d =
√
R2 −

(
1
2
h
)2

from the sphere’s center

and oriented as shown in Figure 1.60, where h is the linear dimension of the cell. In that

case, the intersection of the cell and the sphere’s surface is a quarter of a spherical cap,

with base radius equal to r =
√
R2 − d2 = 1

2
h. Thus, the ratio of the mesh size to the

curvature radius for the cap’s base curve is equal to h/1
2
h = 2. Clearly, such a situation

can occur no matter how fine the computational grid is.

Now let us consider how the presence of such highly curved regions affects the accuracy

of the numerical integration. First, let us focus on the error in calculating the area

bounded by the sphere’s surface in the cell’s faces in the negative y-direction (in fact, the

90



Figure 1.60: An example of a highly curved region during integration on Cartesian grids
in three dimensions.

calculation of such areas is very important for computing the total fluxes between cells

in the finite volume methods), which is a quarter of circle of radius 1
2
h (Figure 1.61 (a)).

It is convenient to scale the dimensions of the cell to 1×1×1 (Figure 1.61 (b)). Suppose

for simplicity that all necessary intersections of the zero-isocontour of a level-set function

with the grid lines are found exactly and that the only error present is the error inherent

to the integration method used. For example, in the case of the surface reconstruction

with geometric elements, such an error is the difference in the areas bounded by the exact

surface and by the approximating element (Figure 1.61 (b)). Let us denote such error as

ε. Then, to obtain the error made in a cell with dimensions h× h× h, one just needs to

multiply this error by h2 (Figure 1.61 (c)). Thus, the presence of highly curved elements

leads to εh = εh2 = O (h2) errors in calculating areas bounded by implicit surfaces on

cells’ faces. A similar estimate holds for errors in calculating areas of surfaces themselves

(Figure 1.60 (right)). The analysis for this type of integration is complicated by the

fact that the radii of curvature of other curves bounding a piece of a surface depend on

h. However, for instance in the example considered, as h → 0 the area of the curved

91



surface’s piece becomes closer and closer to the area cut by the sphere’s surface in the

face of the cell.

Note that in this argument, we assume neither a specific type of integration method

nor a specific order of accuracy of the integration method. Therefore, the emergence of

O (h2) errors in the presence of regions of non-decreasing mesh-size-to-curvature-radius

ratios may occur in other methods for numerical integration as well.

In [50] it was reported that high-order geometric reconstructions of implicit interfaces

on three dimensional grids do not demonstrate expected optimal convergence rates for

integration. It was concluded that such a decrease in accuracy is caused by the constraint

that certain approximating elements must lie in (Cartesian) planes of grid cells’ faces,

which confirms the above argument. It was shown that if such a constraint is eliminated,

which effectively eliminates the presence of non-decreasing mesh-size-to-curvature-radius

ratio elements, then the optimal convergence rates are recovered.

Figure 1.61: O (h2) error emerging near highly curved regions

To confirm the above argument, we consider the geometric reconstruction (with

quadratic elements) of a sphere with radius R = 0.77 placed at the distance d =

R − 2h + 1
2
h from computational domain boundary, where h is the mesh size. Thus,

92



for every grid resolution there is a cell containing a quarter of a spherical cap of radius

1
2
h as depicted in Figure 1.60. We calculate the total sphere’s area and the area of a

quarter of a spherical cap located in a cell near the sphere’s pole as shown in Figure

1.60. The convergence results are presented in Figure 1.62 (left). As expected, once

the error associated with locating the intersections of the sphere’s surface with the grid

lines becomes negligible, the error in the area of the spherical cap’s quarter contained in

one cell scales as O (h2). Interestingly, the error in the total sphere’s area is often less

than the error coming from one cell, which is probably due to the cancellations of errors

from adjacent cells. However, for such applications as solving PDEs using finite volume

methods, it is the error for a single cell that affects the accuracy of numerical solutions.

One can also observe an oscillatory behavior of the error in the total sphere’s area with

peaks that decrease as O (h2).

To avoid such a disastrous drop to second order of accuracy, we employ the following

approach. Before reconstructing an irregular interface in a cell, we compute the absolute

values of the surface’s principal curvatures κ1 and κ2 and select the maximum one, which

we denote as κ3D = max(|κ1|, |κ2|). Principal curvatures κ1 and κ2 of an implicit interface

can be computed from its mean and Gaussian curvatures κM and κG as

κ1,2 =
1

2

(
κM ±

√
κ2
M − 4κG

)
,

which in their turn can be computed from the level-set function φ using formulas

93



κM = ∇ ·
(
∇φ
|∇φ|

)
and κG =

det

(
∇∇φ ∇φ
∇φT 0

)
|∇φ|4

Then, during the reconstruction we ensure that for all geometric elements the following

criterion is satisfied

κl < Cκ3Dh, (1.26)

where κ3D is the curvature of a geometric element, l is its length and C is a O (1) constant

(specifically, we choose C = 2). If this condition is violated, then the underlying element

(triangle or tetrahedron) is refined in the same way as that described in 1.A.6.

0.003 0.008 0.02 0.06

Grid resolution

10 -10

10 -8

10 -6

10 -4

In
te

gr
at

io
n 

er
ro

r

Full area
One cell
2nd order

0.003 0.008 0.02 0.06

Grid resolution

10 -11

10 -9

10 -7

10 -5

In
te

gr
at

io
n 

er
ro

r

Full area
One cell
4th order

Figure 1.62: Convergence of the area of the total sphere and the area of a quarter of a
spherical cap contained in one cell near the sphere’s pole without (left) and with (right)
enforcing condition 1.26.

The purpose of the procedure described above is to enforce that the mesh-size-to-

curvature-radius ratio decrease as the computational grid is refined. Examples of re-

constructions of a sphere with second-order geometric elements without and with this

procedure are shown in Figure 1.63. In Figure 1.62 (right) convergence results for the

94



Figure 1.63: Comparison between the geometric reconstructions of a sphere produced
without (left) and with (right) enforcing condition 1.26.

calculation of the total sphere’s area and the area contained in the single cell are plotted.

The expected convergence rates4 for both areas are recovered.

1.A.8 Integration

Once all interfaces are reconstructed in a simplex, it is straightforward to perform integra-

tion. One just needs to select appropriate geometric elements and map quadrature points

of any desired order onto these elements using (1.24), scaling the weights of integration

points by
√

det(J · J), where J is the Jacobian matrix of the mapping.

In our implementation of the quadratic geometric reconstruction, we use the following

quadrature rules, which is exact for polynomials of degrees ≤ 2

• edges : 3 points at ai = 0, 0.5 and 1.0 with weights wi = 1/6, 4/6 and 1/6 (Gauss-

Lobatto quadrature rule).

4As noted in [50], for (2k + 1)th-order accurate methods, a 2k + 2 convergence rate is observed (for
smooth surfaces).

95



• triangles : 3 points at (ai, bi) = (0.5, 0.0), (0.0, 0.5) and (0.5, 0.5) with equal weights

wi = 1/3.

• tetrahedra: 4 points at (ai, bi, ci) = (β, β, β), (α, β, β), (β, α, β) and (β, β, α) with

equal weights wi = 1/4, where α = (5 + 3
√

5)/20 and β = (5−
√

5)/20.

Note that quadrature points for edge and triangle elements coincide with the nodes of the

geometric elements. We have observed that such a choice of quadrature rules improves

the overall accuracy of the integration procedure.

In order to reduce the computational time in the case of linear geometric reconstruc-

tions, we calculate the integral over a d-dimensional simplex Sd using the formula

∫
Sd
f(r) drd ≈M(Sd)f(r1) + ...+ f(rd+1)

d+ 1
,

where M(Sd) is the measure (length for d = 1, area for d = 2 and volume for d = 3) of

Sd, and {ri}d+1
i=1 are the vertices of Sd. That is, an integral over a simplex is approximated

by the average of an integrand at the vertices of the simplex multiplied by its measure.

Such an approach requires neither the mapping of quadrature points nor the calculation

of Jacobians.

To select appropriate elements, i.e., determine which geometric elements represent a

compound domain, determine the smooth components of the domain boundary, the inter-

sections of different intersection, etc, we use the following simple procedure. During the

reconstruction of the interfaces in a simplex, we record for each element the information

about its relation (whether it is inside, outside or on the interface) to every generating

96



domain. At the end of the reconstruction, every geometric element owns a list containing

the information about the element’s relation to all generating domains. Post-processing

of such lists allows to robustly determine the role of the elements in the reconstruction

of a compound domain.

97



Chapter 2

Solving Elliptic PDEs with

Discontinuities across Irregular

Interfaces

2.1 Introduction

It is crucial, for simulating important processes in the physical and life sciences, to find

the numerical solution of elliptic equations with discontinuities in the diffusion coefficient,

the source term, the solution and its flux. In the case of interfacial flows for example,

jump conditions describe the discontinuity in stress that is balanced by forces that exist

between phases [23]. In the simulation of protein folding, it is the electrostatic potential

that has a jump across the protein’s Solvent-Excluded Surface [42, 106, 105, 176]. Other

98



examples include solidification of multicomponent alloys [159, 88, 17] or any diffusion

dominated processes with different materials properties. At the macroscale, changes

across the surface can only be represented by sharp jumps, hence the need to numerically

represent them as such. Failure to do so introduces errors that change the characteristics

of the problem.

Numerical approximations to solve such problems have been proposed and fall into

two categories, depending on whether the interface is represented explicitly or implicitly.

For example, finite element discretizations approximate the space in which the solution

is defined and rely on a mesh that explicitly describes the surface [8]. It is straightfor-

ward to impose boundary conditions in that framework, which is ideally suited for cases

where deformations are small. For large deformations, difficulties associated with the

mesh generation process are severe. Consequently, in this case, implicit representations

of the interface have proved to be a better choice; imposing jump conditions, however, is

a difficulty task in that framework. One of the first attempts is the Immersed Interface

Method (IIM), where the jump conditions are combined with Taylor expansions of the

solution on each side of the interface in order to modify the stencils of grid points adjacent

to the interface. The main difficulties are the need to evaluate high-order jump condi-

tions and surface derivatives. Several authors have further developed numerical methods

within the IIM framework, e.g. [30, 92, 93, 174, 14, 1, 2, 3, 159]. Another approach is

the Ghost Fluid Method (GFM) [46], first developed to treat shocks and contact discon-

tinuities in compressible flows. The idea is to define a ghost fluid in the regions across

99



the discontinuities by adding the interface jump to the true fluid. This simple treatment

avoids the large error incurred by differentiating discontinuous solutions, and thus gives

an elegant framework to manage jump conditions. The idea of the GFM was used for

solving the Poisson equation with jump conditions in [95]. In this case, the jump in the

normal derivative of the solution is projected onto the Cartesian directions in order to

use a dimension-by-dimension approach. The authors showed that the normal jump is

accurately captured, while the tangential jump is smeared; this, in turn, leads to a lack

of convergence in the flux. The Voronoi Interface Method [66] solved that problem by

first constructing a local Voronoi mesh adjacent to the interface and by then considering

a GFM treatment. In that case, the solution is second-order accurate in the L∞-norm

with first-order accurate fluxes in the same norm. This method has been applied to elec-

troporation problems [67, 108], where the unknown is the electric potential at each grid

points. While this method produces symmetric positive definite linear systems and only

requires the right-hand side of the linear system to be modified, it requires the generation

of a local Voronoi mesh and interpolation of numerical solutions from such unstructured

meshes back onto Cartesian grids, which may add some challenges, especially in three

spatial dimensions. The literature on solving elliptic problems with jump conditions is

quite vast and we refer the interested reader to the review [61] and to other approaches,

such as cut-cell approaches [34, 118], discontinuous Galerkin and the eXtended Finite

Element Method (XFEM) [91, 69, 110, 36, 13, 109, 79, 49, 65, 167], the Virtual Node

Method [111, 11, 111, 149, 132, 72] or other fictitious domain approaches [32, 31, 54].

100



In this work, we propose a finite volume discretization for elliptic interface problems

in a similar vein as in [116, 128, 18] for the treatment of Neuman and Robin boundary

conditions. To take into account the jump conditions, we adopt the ideas of relating the

values of discontinuous functions using Taylor expansions in the normal direction and em-

ploying one-sided local least-square interpolations. In these aspects, the present method

is similar to the variant of the augmented immersed interface method used in [75, 177].

The differences are, however, substantial: first, a finite volume approach is used instead

of finite differences; second, the resulting linear system contains no augmented variable,

which makes it straightforward to invert with “black-box” linear solvers (BiCGSTAB is

used in this work; in [75, 177] the system is solved iteratively using GMRES in conjunc-

tion with a fast Poisson solver); third, the method does not involve quadratic terms in

Taylor expansions and local interpolations are linear (compared to cubic ones in [75, 177]),

which keeps the discretization stencil quite compact while still resulting in second-order

accurate solutions (thanks to the finite volume approach). The small stencil size and the

simplicity of inverting the resulting linear system make the method a good candidate for

parallelization and application in the context of adaptive grids, which will be demon-

strated in this work as well. We consider a level-set representation of the interface so

that the method can be used in free boundary problems [122, 121, 144, 59].

101



2.2 Numerical Discretization

Consider a rectangular domain Ω = [xmin;xmax]× [ymin; ymax] with an immersed irregular

interface Γ that splits Ω into two sets Ω− and Ω+ as illustrated in Fig. 2.1a. We seek a

numerical solution u = u(r), with r = (x, y), to the following problem:

k±u± −∇ ·
(
µ±∇u±

)
= f±, in Ω±, (2.1)

[u] = α, on Γ, (2.2)

[µ∂nu] = β, on Γ, (2.3)

where the functions k± = k±(r), µ± = µ±(r) ≥ ε > 0, f± = f±(r), r ∈ Ω±, and

α = α(r), β = β(r), r ∈ Γ, are given. We denote by [q] the jump of a scalar quantity q

across Γ, i.e. [q] = q+ − q−. For simplicity, we impose Dirichlet boundary conditions on

the boundary of the computation domain, i.e. u+ = g on ∂Ω, where g = g(r) is given.

(a) (b) (c)

Figure 2.1: (a) Notation used in this work. (b) Illustration of a finite volume associated
with a grid point (i, j). (c) Illustration of the projection of a grid point onto the interface
Γ

We discretize the domain Ω into a uniform rectangular grid of Nx × Ny points with

102



spatial steps

∆x =
xmax − xmin

nx − 1
, ∆y =

ymax − ymin

ny − 1

and associate with each point ri,j = (xi, yj) = (xmin + (i− 1)∆x, ymin + (j − 1)∆y)

a finite volume Ci,j =
[
xi − 1

2
∆x;xi + 1

2
∆x
]
×
[
yj − 1

2
∆y; yj + 1

2
∆y
]
, i ∈ [2;Nx − 1],

j ∈ [2;Ny − 1] (see Fig. 2.1b). The Level-Set Method [122] is used to describe the

irregular interface Γ. That is, we use a Lipschitz-continuous function φ(r) such that

Ω+ = {r : φ(r) > 0}, Ω− = {r : φ(r) < 0} and Γ = {r : φ(r) = 0}.

At the grid points for which the interface Γ does not cross the finite volumes, equation

(2.1) is discretized using the standard five-point stencil. Let us consider a point ri,j with

its finite volume Ci,j crossed by Γ. Integrating equations (2.1) over Ci,j and applying the

divergence theorem, one gets the following expression:

∑
s=+,−

∫
Ωs∩Ci,j

ksus dΩ︸ ︷︷ ︸
Linear term

−
∑
s=+,−

∫
Ωs∩∂Ci,j

µs∂nsu
s dΓ︸ ︷︷ ︸

Flux between finite volumes

=
∑
s=+,−

∫
Ωs∩Ci,j

f s dΩ︸ ︷︷ ︸
Volumetric generation

+

∫
Γ∩Ci,j

[µ∂nu] dΓ,︸ ︷︷ ︸
Surface generation

where the superscript s refers to the sign ±.

Following [116, 128], that is, approximating the domain integrals by the integrand

value multiplied by the corresponding volumes, and estimating the fluxes between cells

using values at nearest-neighbor grid points and central difference formulas, one obtains:

103



∑
s=+,−

ksi,ju
s
i,j|Csi,j| −

∑
s=+,−

(
µs
i− 1

2
,j
As
i− 1

2
,j

usi−1,j − usi,j
∆x

+ µs
i+ 1

2
,j
As
i+ 1

2
,j

usi+1,j − usi,j
∆x

+

µs
i,j− 1

2
As
i,j− 1

2

usi,j−1 − usi,j
∆y

+ µs
i,j+ 1

2
As
i,j+ 1

2

usi,j+1 − usi,j
∆y

)
=
∑
s=+,−

f si,j|Csi,j|+
∫

Γ∩Ci,j
β dΓ +O

(
hD
)
, (2.4)

where D is the problem dimensionality, h = max(∆x,∆y), |C±i,j| denotes the volume of

Ci,j ∩Ω±, ui,j = u(ri,j), A
±
i± 1

2
,j

and A±
i,j± 1

2

are face areas of C±i,j in the x- and y-directions,

respectively. To compute the boundary and domain integrals required by the proposed

discretization, we use the geometric reconstruction approach from [99]. In case when an

immersed interface is only piece-wise smooth the method from [18] can be used.

The discretization given by equation (2.4) requires that both values of u− and u+

be available at grid points with a control volume crossed by Γ, thus, one more equation

is required at such grid points for the system of equations to be uniquely invertible.

We derive the additional equation based on the jump conditions (2.2)-(2.3) and Taylor

expansions of u± in the normal to the interface direction. Moreover, equations derived

in this way can be used to express u±i,j near the interface as a function of u∓i,j and the

jump conditions (2.2)-(2.3). As a result, it enables us to eliminate the additional degrees

of freedom, i.e., reduce the system’s size back to Nx ×Ny, and make its structure more

homogeneous (all of the equations in the linear system are of the same type). This

is expected to make the system of equations less difficult to invert by black-box linear

solvers. We select the Nx ×Ny unknowns to solve for as:

104



ui,j =

{
u+
i,j, ri,j ∈ Ω+,

u−i,j, ri,j ∈ Ω−.
(2.5)

We then develop formulas to express u+
i,j for ri,j ∈ Ω− and for u−i,j for ri,j ∈ Ω+ as a

function of the unknowns ui,j. This is described next.

Consider a grid point ri,j near the interface Γ and its projection, rpr
i,j, onto the interface

(see Fig. 2.1c). Taylor expansion relates the values of u± at ri,j and rpr
i,j as:

u±i,j = u±(rpr
i,j) + δi,j∂nu

±(rpr
i,j) +O

(
h2
)
, (2.6)

where δi,j is the signed distance from ri,j to rpr
i,j (±δi,j > 0 if ri,j ∈ Ω±). The geometrical

quantities n(rpr
i,j), r

pr
i,j and δi,j are estimated from the level-set function as:

n(rpr
i,j) = ni,j +O (h) where ni,j =

∇φ(ri,j)

|∇φ(ri,j)|
,

rpr
i,j = ri,j − δi,jni,j +O

(
h2
)
,

δi,j =
φ(ri,j)

|∇φ(ri,j)|
+O

(
h2
)
.

Subtracting u−i,j from u+
i,j given in (2.6) and taking into account the jump condition (2.2)

one obtains:

u+
i,j − u−i,j = α(rpr

i,j) + δi,j
(
∂nu

+(rpr
i,j)− ∂nu−(rpr

i,j)
)

+O
(
h2
)
.

Furthermore, eliminating either ∂nu
+(rpr

i,j) or ∂nu
−(rpr

i,j) in the above expression using

the jump condition (2.3) results in the following two equations:

105



u+
i,j − u−i,j =


α(rpr

i,j) + δi,j
β(rpr

i,j)

µ+(rpr
i,j)
− δi,j

µ+(rpr
i,j)− µ−(rpr

i,j)

µ+(rpr
i,j)

∂nu
−(rpr

i,j)

α(rpr
i,j) + δi,j

β(rpr
i,j)

µ−(rpr
i,j)
− δi,j

µ+(rpr
i,j)− µ−(rpr

i,j)

µ−(rpr
i,j)

∂nu
+(rpr

i,j)

+O
(
h2
)
.

(2.7)

If one approximates either ∂nu
+(rpr

i,j) or ∂nu
−(rpr

i,j) using u±i,j and

{up,q, p ∈ [1, Nx], q ∈ [1, Ny]} , then these formulas can be used to eliminate addi-

tional degrees of freedom. A straightforward way to do that is to use a suitable local

interpolants u±I = u±I (r) of unknown functions u± as:

∂nu
±(rpr

i,j) = n(rpr
i,j)∇u±I (rpr

i,j). (2.8)

Specifically, in this work we use the linear interpolation:

u±I (r) = u±i,j + (r − ri,j)T
(
∇u±

)
i,j

+O
(
h2
)
, (2.9)

where the gradient (∇u±)i,j is found as the least-square solution satisfying the constraints:

ui+p,j+q = u±i,j + (ri+p,j+q − ri,j)T
(
∇u±

)
i,j
, (p, q) ∈ N±i,j.

N±i,j denotes the set of neighboring grid points of ri,j, lying in the region Ω±, that is:

N±i,j =
{

(p, q) : p = −1, 0, 1, q = −1, 0, 1, (p, q) 6= (0, 0), ri+p,j+q ∈ Ω±
}
.

In other words, the local linear interpolants are constructed using available values at the

nearest-neighbor grid points of ri,j (in Cartesian and diagonal directions). Note also that

ui+p,j+q = u±i+p,j+q if (p, q) ∈ N±i,j.

106



Thus, the gradient (∇u±)i,j is the least-squares solution of the following linear system:

X
i,j
W±

i,j

(
∇u±

)
i,j

= W±
i,j


ui−1,j−1 − u±i,j
ui,j−1 − u±i,j

. . .
ui+1,j+1 − u±i,j

 ,

that is:

(
∇u±

)
i,j

= D±
i,j


ui−1,j−1 − u±i,j
ui,j−1 − u±i,j

. . .
ui+1,j+1 − u±i,j

 , D±
i,j

=
(
XT

i,j
W±

i,j
X

i,j

)−1 (
W±

i,j
X

i,j

)T
,

where the 3D ×D and 3D × 3D matrices X
i,j

and W
i,j

are given by:

X
i,j

=


(ri−1,j−1 − ri,j)T

(ri,j−1 − ri,j)T
. . .

(ri+1,j+1 − ri,j)T

 and

W±
i,j

=


ω±i,j(−1,−1)

ω±i,j(0,−1)
. . .

ω±i,j(1, 1)

 ,

ω±i,j(p, q) =

{
1, (p, q) ∈ N±i,j
0, (p, q) ∈ N∓i,j

.

Substitution of u±I (r) into (2.8) yields approximations of ∂nu
±(rpr

i,j) as linear com-

binations of {ui+p,j+q, p = −1, 0, 1, q = −1, 0, 1}. Specifically, let us write the D × 3D

matrix D±
i,j

as:

D±
i,j

=
(
d±i,j,−1,−1 d±i,j,0,−1 · · · d±i,j,1,1

)
,

where vectors d±i,j,−1,−1, . . ., d±i,j,1,1 represent the columns of the matrix D±
i,j

. Then the

107



normal derivative can be expressed as:

∂nu
±(rpr

i,j) = c±i,ju
±
i,j +

∑
(p,q)∈N±i,j

c±i,j,p,qui+p,j+q +O (h) , (2.10)

where the coefficients are given by:

c±i,j,p,q = nTi,jd
±
i,j,p,q, (p, q) ∈ N±i,j, and c±i,j = −

∑
(p,q)∈N±i,j

c±i,j,p,q.

Substitution of (2.10) into (2.7) produces formulas expressing u+
i,j and u−i,j in terms of

the selected Nx×Ny unknowns {up,q, p ∈ [1, Nx], q ∈ [1, Ny]}. Combining them with the

definition (2.5), we get the following two sets of rules (which are O (h2) accurate in the

value of u): one is based on approximating ∂nu
−(rpr

i,j):

u−i,j =


ui,j, ri,j ∈ Ω−,

ui,j − α− δi,j β
µ+

+ δi,j
[µ]
µ+

(
c−i,j

(
ui,j−α−δi,j β

µ+

)
+
∑

(p,q)∈N−
i,j
c−i,j,p,qui+p,j+q

)
(

1−δi,j [µ]

µ+
c−i,j

) , ri,j ∈ Ω+,

u+
i,j =

{
ui,j + α + δi,j

β
µ+
− δi,j [µ]

µ+

(
c−i,jui,j +

∑
(p,q)∈N−i,j

c−i,j,p,qui+p,j+q

)
, ri,j ∈ Ω−,

ui,j, ri,j ∈ Ω+,

while the other one is based on approximating ∂nu
+(rpr

i,j):

u−i,j =

{
ui,j, ri,j ∈ Ω−,

ui,j − α− δi,j β
µ−

+ δi,j
[µ]
µ−

(
c+
i,jui,j +

∑
(p,q)∈N+

i,j
c+
i,j,p,qui+p,j+q

)
, ri,j ∈ Ω+,

u+
i,j =

ui,j + α + δi,j
β
µ−
− δi,j [µ]

µ−

(
c+i,j

(
ui,j+α+δi,j

β

µ−

)
+
∑

(p,q)∈N+
i,j
c+i,j,p,qui+p,j+q

)
(

1+δi,j
[µ]

µ− c
+
i,j

) , ri,j ∈ Ω−,

ui,j, ri,j ∈ Ω+.

Thus, one has a certain flexibility in constructing the final discretization. For ex-

ample, one could choose, for each ri,j, the formula based on approximating ∂nu
−(rpr

i,j)

108



or ∂nu
+(rpr

i,j) depending on the largest number of neighboring points of ri,j that are in

Ω− or in Ω+ (let us denote this scheme as Random). However, this choice would ignore

the magnitude of the diffusion constants µ− and µ+ and their influence on the condi-

tion number of the linear system. To investigate this issue, we consider two additional

schemes: the first one (referred to as Bias Fast) uses interpolation in the fast-diffusion

region (i.e., if µ− > µ+ then the formula based on ∂nu
−(rpr

i,j) is used); the second scheme

(referred to as Bias Slow) uses interpolation in the slow-diffusion region (i.e., if µ− > µ+

then we use the formula based on ∂nu
+(rpr

i,j)).

Remarks:

• In the limiting cases µ−

µ+
→∞ or µ−

µ+
→ 0, only the scheme Bias Slow remains well

defined, thus, we expect it to perform the best and be well-conditioned for any ratio

of diffusion coefficients. We will illustrate in section 2.3 that only the scheme Bias

Slow produces a condition number that is bounded. This is consistent with the

results reported in [178] describing a variant of the augmented immersed interface

method.

• In the limiting case µ−

µ+
≡ 1, the three schemes coincide. Moreover, the matrix

associated with the resulting linear system is the same as for the case when no

interface is present (that is, as for the standard five-point stencil in 2D) and only

the right-hand is changed to account for jump conditions.

• The truncation error is the same for all three schemes. Therefore, we expect them

109



to have similar accuracies. Specifically, the truncation error1 is O (h2) for grid

points away from the immersed interface and O (1) for cells crossed by the inter-

face. Following the results of [80, 58, 141, 27, 115, 128, 53, 54, 18], we expect

the schemes to produce second-order accurate numerical solutions with first-order

accurate gradients.

• The truncation error can be improved to be O (h) for cells crossed by the interface

by making the following changes in the discretization scheme: 1) Estimate fluxes

between cells at the centroids of cell faces using linear interpolation as done, for

example, in [80, 18]; 2) Retain the quadratic term in Taylor expansion (2.6); 3) Use

a quadratic interpolant (instead of linear (2.9)) to approximate ∂nu
± at projection

points. This is expected to increase the accuracy of solution gradients to second

order. We leave this investigation to future work.

• In general the case where µ+ 6= µ−, the resulting linear system is nonsymmetric. In

the worst case scenario the computational stencil involves nearest neighbors (both

in Cartesian and diagonal directions) of the standard five-point stencil as illustrated

in Fig. 2.2a. An example of the matrix associated with the resulting linear system

structure is shown in Fig. 2.2b.

1After scaling the resulting discretization by the cell volume O
(
hD
)

to account for the integration of
the PDEs over a finite volume.

110



(a)

0 20 40 60 80

0

20

40

60

80

(b)

Figure 2.2: (a) Computational stencil (the red color indicates additional grid points used
in case µ+ 6= µ−). (b) Matrix structure of the resulting linear system in case of two-
dimensional example from Sec. 2.3.1 on a 82 grid (the red color indicates additional
elements in case µ+ 6= µ−).

2.3 Numerical tests

To numerically illustrate the properties of the proposed schemes, we study three charac-

teristics: the order of accuracy of the numerical solution in the L∞-norm, the order of

accuracy of the numerical gradients in the L∞-norm, and the condition number of the

linear system, estimated by the MATLAB condest function. We consider two tests: the

first one, the convergence test, studies the dependence of those three characteristics on

the grid resolution. The second one, the conditioning test, focuses on the dependence

of the three characteristics on the ratio, µ
−

µ+
, of the diffusion coefficients. We perform both

tests in two and three spatial dimensions. In all the examples, we use the implementation

of the BiCGStab algorithm provided by PETSc [10] with the Hypre preconditioner [45].

111



2.3.1 Two-dimensional case

Consider an annular region2 with inner and outer radii ri = 0.151 and re = 0.911, and

an immersed star-shaped interface (see Fig. 2.3a), described by the following level-set

function:

φ(x, y) =
√
x2 + y2 − r0

(
1 +

3∑
k=1

βk cos
(
nk

(
arctan

(y
x

)
− θk

)))
,

with parameters:

r0 = 0.483,

n1

β1

θ1

 =

 3
0.1
0.5

 ,

n2

β2

θ2

 =

 4
−0.1
1.8

 ,

n3

β3

θ3

 =

 7
0.15

0

 . (2.11)

Using the method of manufactured solutions, we take the exact solution to be (see Fig.

2.3c):

u− = sin(2x) cos(2y),

u+ =

(
16

(
y − x

3

)5

− 20

(
y − x

3

)3

+ 5

(
y − x

3

))
log (x+ y + 3) .

For the convergence test, we set the diffusion coefficients to

µ− = 10

(
1 +

1

5
cos(2π(x+ y)) sin(2π(x− y))

)
and µ+ = 1,

(see Fig. 2.3b), and we vary the grid resolution from 2−4 to 2−9. For the conditioning

test, we fix the grid resolution at 2−6 and µ+ = 1 and vary µ− from 10−4 to 104. The

2We enclose an immersed interface inside another region in order to be able to obtain results for
different placements of the immersed interface and the computational grid without changing the problem
statement. On the boundaries of the enclosing region, Dirichlet boundary conditions can be imposed
with any of the methods [58, 56, 147]

112



results are presented in Fig. 2.4 and 2.5, where each data point represents the maximum

value among 10 × 10 = 100 different relative placements of the immersed interface on

the computational grid (as done in [18]). The different placements thus account for cases

where the interface defines a control volume that is arbitrarily small or large, relative to

an elementary grid cell. Section 2.3.3 will draw some conclusions from these results.

(a) (b) (c)

Figure 2.3: (a) Problem geometry. (b) Diffusion coefficients (scaled by 0.1 for visualiza-
tion). (c) Numerical solution on a 2562 grid.

10 -2 10 -1

Grid resolution

10 -4

10 -3

10 -2

10 -1

S
ol

ut
io

n 
E

rr
or

10 -2 10 -1

Grid resolution

10 -2

10 -1

10 0

G
ra

di
en

t E
rr

or

10 -2 10 -1

Grid resolution

10 3

10 4

10 5

10 6

C
on

di
tio

n 
nu

m
be

r

Figure 2.4: convergence test in two spatial dimensions (each data point represents
the maximum value among 10 × 10 = 100 different relative placements of an immersed
interface on the computational grid).

113



10 -5 10 0 10 5

Ratio / +

2

3

4

5

6
S

ol
ut

io
n 

E
rr

or
10 -3

10 -5 10 0 10 5

Ratio / +

10 -2

10 -1

G
ra

di
en

t E
rr

or

10 -5 10 0 10 5

Ratio / +

10 5

10 10

C
on

di
tio

n 
nu

m
be

r

Figure 2.5: conditioning test in two spatial dimensions (each data point represents
the maximum value among 10 × 10 = 100 different relative placements of an immersed
interface on the computational grid).

2.3.2 Three-dimensional case

Consider a spherical shell3 with inner and outer radii ri = 0.151 and re = 0.911, and an

immersed star-shaped interface described by the level-set function:

φ(x, y, z) =
√
x2 + y2 + z2

− r0

(
1 +

(
x2 + y2

x2 + y2 + z2

)2 3∑
k=1

βk cos
(
nk

(
arctan

(y
x

)
− θk

)))
,

with the same parameters (2.11) as for the two-dimensional case. The problem geometry

is illustrated in Fig. 2.6. The exact solutions are taken to be:

u− = sin(2x) cos(2y) exp(z),

u+ =

(
16

(
y − x

3

)5

− 20

(
y − x

3

)3

+ 5

(
y − x

3

))
log (x+ y + 3) cos(z).

In the convergence test, the diffusion coefficients are set to:

3As in the two-dimensional case, Dirichlet boundary conditions are enforced on the boundaries of the
enclosing region

114



µ− = 10

(
1 +

1

5
cos(2π(x+ y)) sin(2π(x− y)) cos(z)

)
,

µ+ = 1.

In the conditioning test, the grid resolution is fixed at 2−4, µ+ = 1 and µ− is varied

from 10−4 to 104. The test results are presented in Fig. 2.7 and 2.8 ,where each data

point is obtained as the maximum (worse) value among 5 × 5 × 5 = 125 different rel-

ative placements of the immersed interface on the computational grid. As for the two

dimensional case, section 2.3.3 will draw some conclusions from these results.

Figure 2.6: Illustration of problem geometry in the three-dimensional case.

2.3.3 Analysis

From the results presented in sections 2.3.1 and 2.3.2, it is clear that the numerical

schemes have the same behavior in two and three spatial dimensions. The convergence

test results (see Fig. 2.4 and 2.7) indicate that, for a moderate diffusion coefficient ratio,

all three schemes have comparable convergence properties: the numerical solutions are

115



0.02 0.03 0.04 0.05 0.06
Grid resolution

10 -3

10 -2

10 -1
S

ol
ut

io
n 

E
rr

or

0.02 0.03 0.04 0.05 0.06
Grid resolution

10 -1

10 0

G
ra

di
en

t E
rr

or

0.04 0.05 0.06
Grid resolution

2000

4000

6000

8000

C
on

di
tio

n 
nu

m
be

r

Figure 2.7: convergence test in three spatial dimensions (each data point represents
maximum value among 5 × 5 × 5 = 125 different relative placements of an immersed
interface and the computational grid).

10 -5 10 0 10 5

Ratio / +

0.02

0.03

0.04

0.05

0.06
0.07
0.08

S
ol

ut
io

n 
E

rr
or

10 -5 10 0 10 5

Ratio / +

10 -1

10 0

G
ra

di
en

t E
rr

or

10 -5 10 0 10 5

Ratio / +

10 5

10 10

C
on

di
tio

n 
nu

m
be

r

Figure 2.8: conditioning test in three spatial dimensions (each data point represents
maximum value among 5 × 5 × 5 = 125 different relative placements of an immersed
interface and the computational grid).

second-order accurate with first-order accurate gradients in the L∞-norm. The condition

number scales with the grid resolution as h−2, which is similar to the scaling of the

condition number for the standard five-point (nine-point) stencil in 2D (3D). The only

difference between the three schemes is the magnitude of the errors and the magnitude

of the condition numbers, with the scheme Bias Slow giving the best results.

On the other hand, the conditioning test in two and three spatial dimensions

demonstrate that the three schemes behaviors are drastically different when the ratio µ−

µ+

varies (Fig. 2.5 and 2.8). In particular, the condition numbers for the schemes Random

and Bias Fast grow unboundedly as the ratio of the diffusion coefficients either decreases

116



or increases away from 1. As a result, the magnitude of the errors in the solution and its

gradient grow significantly. We also note that, for approximately µ−

µ+
> 10 and µ−

µ+
< 10−1,

the linear solver is not able to invert the resulting linear system in a given number of

iterations (we set that number to 50 in those numerical examples). In contrast, the

condition number for the scheme Bias Slow converges to finite values as µ−

µ+
→ 0 or

µ−

µ+
→∞. As a result, the linear solver is able to invert the resulting linear sytem for any

values of µ−

µ+
(the number of iterations depends only on the grid resolution). Moreover,

the errors of the numerical solutions and their gradients are only moderately affected by

small or large ratios µ−

µ+
.

2.3.4 Application to adaptive quadtree and octree grids

Thanks to its fairly small stencil, it is simple to apply the proposed scheme in the context

of adaptive grids. In this section, we demonstrate perhaps the easiest way of doing so:

we consider adaptive Cartesian quadtree (octree) grids that are locally uniform around

immersed interfaces. In the regions where an adaptive grid is non-uniform (and which

are away from immersed interfaces), we use the second-order accurate superconvergent

finite difference scheme of [100], while in the regions close to immersed interfaces (and

where the grid is locally uniform), we use the proposed scheme for imposing interface

jump conditions. Note that the discretization of [100] and the one described in this work

reduce to the standard 5-point (9-point in three spatial dimensions) stencil on uniform

117



grids and in the absence of immersed interfaces. This fact makes the combination of the

two discretizations seamless.

In this example, we consider 10 clusters of small star-shaped uniformly charged di-

electric particles in a 2m×2m vacuum domain and compute the electric field generated

by this configuration. The number of particles in each cluster varies from 3 to 10, the

average size of clusters is 1 cm, particles have between 2 and 6 bumps and sizes in the

range [0.1; 1] mm. Specifically, the total number of particles 67 each of which is described

by a level-set function of the form:

φ(r, θ) =
√

(r cos(θ − θ0)− xc)2 + (r sin(θ − θ0)− yc)2

− r0 (1 + δ cos(m(θ − θ0))) .

Parameters xc, yc, r0, δ, m and θ0 for each particle as well as the sign of its charge are

given in the following table:

No. xc yc r0 δ m θ0 Charge

1 0.294320 -0.731980 0.000948 0.177428 5 3.779031 +

2 0.292603 -0.722570 0.000196 0.120466 2 0.575194 +

3 0.296621 -0.730048 0.000553 0.195375 3 5.983689 +

4 0.301392 -0.723932 0.000374 0.161709 3 1.178485 +

5 0.293268 -0.730192 0.000798 0.193548 3 6.112317 -

6 0.289541 -0.732616 0.000755 0.088156 4 2.266495 -

7 0.290527 -0.736414 0.000341 0.140005 3 6.140219 -

8 0.295213 -0.726113 0.000792 0.121836 5 0.884964 -

118



9 0.300884 -0.733236 0.000857 0.078646 4 1.588758 -

10 0.935243 0.156877 0.000462 0.026599 4 1.152778 +

11 0.936367 0.165333 0.000946 0.129853 3 2.585702 +

12 0.937713 0.161907 0.000114 0.111576 3 3.069164 +

13 0.927721 0.160662 0.000653 0.059185 4 4.986538 -

14 0.926407 0.164860 0.000243 0.009826 2 3.613796 -

15 0.939303 0.170991 0.000443 0.141560 3 2.988958 +

16 0.926755 0.162948 0.000482 0.025398 5 3.380732 +

17 0.936908 0.160965 0.000713 0.179751 3 0.252419 +

18 0.934454 0.162162 0.000448 0.011111 6 2.899990 +

19 0.160228 -0.743358 0.000329 0.052804 6 4.507911 +

20 0.164293 -0.747939 0.000792 0.015578 3 3.753404 +

21 0.173756 -0.744021 0.000264 0.186352 4 6.101247 +

22 0.168733 -0.761421 0.000999 0.001466 5 4.162976 -

23 0.170695 -0.747981 0.000389 0.025428 4 0.952773 -

24 0.160737 -0.760843 0.000209 0.199829 6 0.814897 -

25 0.725447 0.889409 0.000966 0.064583 3 5.719127 -

26 0.740474 0.893693 0.000453 0.004282 3 5.779404 -

27 0.736547 0.884784 0.000708 0.036598 4 0.871440 -

28 0.723810 0.875899 0.000367 0.044844 3 0.309913 -

29 0.742820 0.874970 0.000306 0.191154 4 1.616747 -

119



30 0.728138 0.878376 0.000857 0.026387 4 5.913726 -

31 0.728254 0.880038 0.000451 0.069948 6 2.499319 +

32 0.052907 -0.344586 0.000660 0.184134 4 2.412480 -

33 0.034801 -0.356601 0.000834 0.079140 4 4.794653 -

34 0.048034 -0.350902 0.000961 0.175580 4 1.000997 -

35 0.038434 -0.350375 0.000546 0.119999 5 5.330543 -

36 0.037001 -0.361473 0.000859 0.104759 6 2.104655 -

37 0.048676 -0.344655 0.000590 0.018488 3 3.979605 -

38 -0.182697 0.433937 0.000642 0.191264 5 0.196232 -

39 -0.180690 0.449481 0.000499 0.107538 4 3.958288 +

40 -0.171622 0.442325 0.000714 0.162207 3 4.889946 -

41 -0.177232 0.435290 0.000706 0.108419 6 2.765306 +

42 -0.182553 0.446933 0.000927 0.139933 5 0.682710 -

43 -0.169332 0.440621 0.000652 0.197255 6 0.524252 -

44 0.082096 0.665721 0.000309 0.018026 6 3.925875 +

45 0.070903 0.669204 0.000229 0.189876 3 1.973639 +

46 0.086667 0.652859 0.000256 0.009732 4 5.337312 -

47 0.089332 0.668903 0.000778 0.189929 4 0.506358 +

48 -0.416502 -0.873554 0.000168 0.038622 2 4.772787 +

49 -0.435866 -0.873537 0.000167 0.040327 6 4.357852 +

50 -0.428412 -0.875426 0.000329 0.067637 4 4.422504 -

120



51 0.367410 -0.528637 0.000239 0.004636 6 1.018504 -

52 0.364188 -0.533808 0.000271 0.072883 3 2.058938 -

53 0.357943 -0.522965 0.000682 0.097692 3 4.725618 +

54 0.354170 -0.530541 0.000809 0.035313 5 0.726723 -

55 0.355478 -0.527060 0.000107 0.166186 4 5.450653 +

56 0.356304 -0.525395 0.000985 0.004988 2 3.471888 +

57 0.368282 -0.530008 0.000107 0.133467 5 5.475823 -

58 0.370185 -0.524812 0.000830 0.145549 5 6.126808 -

59 0.352045 -0.519527 0.000198 0.011507 4 3.886958 +

60 -0.187080 0.207027 0.000928 0.121431 2 1.730282 +

61 -0.177875 0.213721 0.000126 0.001767 3 0.076936 +

62 -0.177947 0.216082 0.000647 0.130215 4 6.002824 -

63 -0.193546 0.211842 0.000749 0.088286 6 4.366932 -

64 -0.190933 0.205428 0.000170 0.122096 3 0.951230 -

65 -0.184008 0.210547 0.000752 0.030592 3 3.986605 -

66 -0.192313 0.214133 0.000925 0.029170 4 1.284015 -

67 -0.190761 0.223399 0.000728 0.195173 4 5.881409 -

The absolute permittivity of particles is 10ε0 and their charge densities are ±105ε0

(the sign is assigned to each particle randomly), where ε0 is the vacuum permittivity.

The domain boundaries are assumed to be a good conductor. Thus, the electric potential

ϕ ≡ u satisfies the boundary value problem (2.1)-(2.3) with parameters k± = α = β = 0,

121



µ− = 10, µ+ = 1, f− = ±105 (depending which particle is considered), f+ = 0, g = 0,

where we denote the particles as Ω− and the vacuum as Ω+.

Figure 2.9 depicts the electric potential φ and the electric field E = −∇φ computed

on an adaptive grid with the coarsest and finest mesh sizes corresponding to uniform

resolutions of 210× 210 and 220× 220 grid points, respectively. Such a computational grid

contains 2754021 points, which is approximately just 0.00025% of the total number of

points in a uniform 220 × 220 grid.

(a) (b)

Figure 2.9: Application of the present method in the context of adaptive grids for com-
puting electric field around clusters of charged dielectric particles: (a) The entire com-
putational domain with successive zoom-ins for one of the clusters; (b) Zoom-ins for all
other clusters. The color map indicates the electric potential and thin lines represent the
electric field lines. The thicker white lines represent particles.

Remark: While the strategy of enforcing adaptive grids to be locally uniform around

immersed interfaces is quite common and justified from the point of view of accuracy in

122



many situations, it may not be very efficient for certain applications; in particular those

where parts of the interface has high curvature while other parts are rather flat. However,

it seems straightforward to adapt the described method to fully-adaptive (non-uniform

along immersed interfaces) and Voronoi grids (including Voronoi partitions generated

based on adaptive quadtree and octree grids). This will be considered in future works.

2.4 Conclusions

We have presented a simple finite volume numerical method for solving Elliptic equations

with jump conditions across irregular interfaces that are implicitly represented by a level-

set function on Cartesian grids. Second-order accurate solutions and first-order accurate

gradients are obtained in the L∞-norm. The linear system is non-symmetric but the

condition number is bounded, regardless of the ratio of the diffusion coefficients, so that

the linear system can be inverted in a constant number of iterations that depends only

on the grid resolution: the condition number scales as O (h−2), similarly to the linear

system obtained from the standard five-point stencil.

Future work will be focused on the analysis of the numerical scheme and its properties,

the improvement to a superconvergent scheme (i.e, with second-order accurate gradients)

and the extension to fully-adaptive (non-uniform along immersed interfaces) grids.

123



Chapter 3

PDE-Based Extrapolation of Scalar

Fields over Piecewise Smooth

Interfaces

3.1 Introduction

Extrapolation procedures are ubiquitous in scientific computing and generally allow one

to estimate a valid value of a quantity at points where data is not given; either in space

or in time. In the context of level-set methods [122], extrapolation procedures in space

have been frequently used since the advent of the ghost-fluid method [46], where constant

extrapolations were originally used. Generalized ghost-fluid methods were then designed,

in part based on higher-order extrapolations for which Aslam introduced a partial dif-

124



ferential equation (PDE) approach to perform linear and quadratic extrapolation [6] and

Gibou and Fedkiw introduced a cubic extrapolation in the same PDE framework [56]. It

is natural in the level-set context to perform such extrapolations using PDE formulations

for their solutions are based on Hamilton-Jacobi solvers that have been designed for other

standard level-set equations, see e.g. [157]. A typical situation that needs extrapolation

is that of an implicit treatment of a field in a free boundary problem. In this case, a

valid value of the field at time tn needs to be known when assembling the right-hand

side of the linear system of equations at time tn+1. Since the interface at the new time

step has swept grid points that are outside the domain at the previous time step, valid

values of the field at time tn are needed in the domain at time tn+1, which requires an

extrapolation procedure.

Typical use of extrapolation methods can be found in a multitude of level-set ap-

plications including multiphase flow simulations [96, 55, 90, 117, 38, 60, 133], in the

solution of Poisson-Boltzmann [106, 71] and Poisson-Nerntz-Planck equations [103] for

studying transport in ionic solutions, in heat and diffusion flow problems [56, 58, 18, 128],

in the study of epitaxial growth and diblock-copolymer self-assembly used in the semi-

conductor industry [129, 124], in shape optimization [4, 158], surface reconstruction of

biomolecules [106, 42] and in Stefan-type problems [57, 28, 107, 136]. PDE-based extrap-

olation procedures have also been extended to adaptive Quad-/Oc-tree grids and parallel

architectures [100, 104, 61]. In addition, fast methods have been introduced for compu-

tationally efficient extrapolation procedures using the Fast Marching method, including

125



parallel implementations [145, 146, 26] or the Fast Sweeping method [181, 7], including

efficient parallel algorithms on adaptive grids [40, 39]. We also refer the interested reader

to [112] for another implicit approach to extrapolation based on solving the biharmonic

equation.

However, those methods behave poorly in the case where the free boundary presents

high-curvature features or kinks. Typical examples of such situations are multimate-

rial flows with triple junction points, motion of sharp-edged bodies in fluids, contact

line dynamics in wetting phenomena, phase-change front propagation in the presence of

confining walls, etc. We introduce a method that solves that problem. We present the

method in section 3.2 and numerical examples in sections 3.3 and 3.4 that illustrate its

benefits and comment on its efficiency. Section 3.5 considers an example of solving a

diffusion equation on evolving domains that demonstrates the importance of accurate

extrapolation near sharp geometric features. Section 3.6 draws some conclusions.

3.2 Numerical Method

3.2.1 Level-set Representation

The level set representation [122] defines the interface of a domain by {x : φ(x) = 0}, its

interior and exterior by φ(x) < 0 and φ(x) > 0, respectively, where φ(x) is a Lipschitz

continuous function called the level-set function. In this work, the only geometrical

quantity that is needed is the outward normal to the interface, n, which can be computed

126



as:

n =
∇φ
|∇φ|

, (3.1)

using central differencing for φx and φy. In typical level-set simulations, the level-set

function is reinitialized as a signed distance function [157]. We refer the interested reader

to [144, 120] for a thorough presentation of the level-set method and [59] for a recent

review.

3.2.2 Normal-derivative based multidimensional PDE extrapo-

lation of [6]

High order extrapolations in the normal direction are traditionally performed in a series

of steps, as proposed by Aslam in [6] and referred to in the present manuscript as the

normal-derivative based partial differential equation (ND-PDE) extrapolation. For exam-

ple, suppose that we seek to extrapolate a scalar field q from the region where φ ≤ 0

to the region where φ > 0. In the case of a quadratic extrapolation, we first compute

qnn = ∇ (∇q · n) · n in the region φ ≤ 0 and extrapolate it across the interface in a

constant fashion, that is, such that its normal derivative is zero in the region φ > 0, by

solving the following partial differential equation:

∂qnn

∂τ
+H(φ) (n · ∇qnn) = 0, (3.2)

127



where H is the Heaviside function. Then, the value of q across the interface is found by

solving the following two partial differential equations:

∂qn
∂τ

+H(φ) (n · ∇qn − qnn) = 0, (3.3)

∂q

∂τ
+H(φ) (n · ∇q − qn) = 0, (3.4)

defining qn in such a way that its normal derivative is equal to the previously extrapolated

qnn and then defining q in such a way that its normal derivative is equal to the previously

extrapolated qn. These PDEs are solved in fictitious time τ for a few iterations (typically

15) since we only seek to extrapolate the values of q in a narrow band of a few grid cells

around the interface.

This extrapolation procedure produces accurate results in the case where the interface

is smooth, but generates large error in the case where sharp geometric features occur,

e.g. thin elongated shapes or interfaces with kinks as illustrated in sections 3.3 and 3.4.

3.2.3 Weighted-Cartesian-derivative based multidimensional

PDE extrapolation

Instead of calculating the normal derivatives in the negative region before extrapolating

them, we instead compute the derivatives in the Cartesian directions, extrapolate them

and then construct the normal derivatives. Specifically, consider the following quantities,

that are computed in the negative level-set region:

128



q∇ =

 qx
qy
qz

 and the symmetric matrix Q
∇∇

=

 qxx qxy qxz
qxy qyy qyz
qxz qzy qzz

 .

Similar to the method described in the previous section, we extrapolate the elements of

Q
∇∇

in a constant fashion:

∂Q
∇∇

∂τ
+H(φ)

(
n · ∇Q

∇∇

)
= 0, (3.5)

before successively solving the following equations:

∂q∇
∂τ

+H(φ)
(
n ·
(
∇q∇ −Q∇∇

))
= 0, (3.6)

∂q

∂τ
+H(φ) (n · (∇q − q∇)) = 0. (3.7)

Note that now, the normal vector field n enters the equations merely as some sort

of weighting factor. Thus, as long as field q is sufficiently smooth this approach to

multidimensional extrapolation is expected to produce accurate results even when the

normal vector field n is not smooth (as is the case of domains with sharp features). To

distinguish the proposed approach from the one in [6], we refer to it as the weighted-

Cartesian-derivative based partial differential equation (WCD-PDE) extrapolation.

Remark: It is possible to construct cubic and even higher-order extrapolations fol-

lowing this approach as well, however one needs to keep in mind the rapidly growing

computational cost, because an m-th order method requires solving advection equations

for tensor variables of order up to m (3× 3× 3 for cubic, 3× 3× 3× 3 for quartic, etc).

129



3.2.4 Implementation details

In this work we demonstrate the proposed method on uniform Cartesian grids and our

implementation follows very closely the one from [6] with just few differences. Consider

a two dimensional computational grid with nodes defined as:

ri,j =

(
xmin + (i− 1)∆x
ymin + (j − 1)∆y

)
, i ∈ [1;Nx], j ∈ [1;Ny],

∆x =
xmax − xmin

Nx − 1
, ∆y =

ymax − ymin

Ny − 1
,

where [xmin;xmax]× [ymin; ymax] denotes the computational domain, Nx and Ny are num-

ber of grid nodes in the Cartesian directions. Standard second-order accurate central

difference formulas are used for calculating the normal vector field n(r) (in the entire

domain) and derivatives (first and second) of q in the negative region. Normal derivatives

of q are computed as:

qn = ∇q · n and qnn = n · ∇∇q · n+ n · ∇n · ∇q.

Since the first and second order derivatives of q are not well-defined at all grid points

where φ < 0 we replace the Heaviside function H(φ) in equations (3.3), (3.6) and in

equations (3.2), (3.5) with discrete fields Hφ,∇ and Hφ,∇∇, respectively, where:

Hφ,∇
i,j =

{
0, if φ ≤ 0 at ri±1,j, ri,j±1,

1, otherwise,

Hφ,∇∇
i,j =

{
0, if φ ≤ 0 at ri±1,j, ri,j±1, ri±1,j±1, ri±1,j∓1

1, otherwise.

130



Applying an explicit first-order accurate in time discretization to equations (3.2)-(3.7)

one obtains the following updating formulas:

[qnn]k+1
i,j = [qnn]ki,j −∆τHφ,∇∇

i,j

(
[n · ∇qnn]ki,j

)
,

[qn]k+1
i,j = [qn]ki,j −∆τHφ,∇

i,j

(
[n · ∇qn]ki,j − [qnn]i,j

)
,

[q]k+1
i,j = [q]ki,j −∆τHφ

i,j

(
[n · ∇q]ki,j − [qn]i,j

)
,

(3.8)

and

[
Q
∇∇

]k+1

i,j
=
[
Q
∇∇

]k
i,j
−∆τHφ,∇∇

i,j

([
n · ∇Q

∇∇

]k
i,j

)
,

[q∇]k+1
i,j = [q∇]ki,j −∆τHφ,∇

i,j

(
[n · ∇q∇]ki,j −

[
n ·Q

∇∇

]
i,j

)
,

[q]k+1
i,j = [q]ki,j −∆τHφ

i,j

(
[n · ∇q]ki,j − [n · q∇]i,j

)
,

(3.9)

When extrapolating first- and second-order derivatives (i.e. qn, qnn, q∇ and Q
∇∇

), first-

order spatial derivatives in the equations above are computed using first-order accurate

upwind discretizations. For example, derivatives in the x-direction are approximated as:

[nx∂xf ]ki,j =


[nx]i,j

[f ]ki,j − [f ]ki−1,j

∆x
+O (∆x) , if [nx]i,j > 0,

[nx]i,j
[f ]ki+1,j − [f ]ki,j

∆x
+O (∆x) , if [nx]i,j < 0,

(3.10)

where f is qn, qnn, q∇ or Q
∇∇

. This is sufficient to achieve second-order accuracy in the

extended fields qn and q∇. For extrapolation of the field q itself (last equations in (3.8)

and (3.9)), however, second-order accurate upwind discretizations are used. For example,

derivatives in the x-direction are approximated as:

131



[nx∂xq]i,j =



[nx]i,j

(
[q]i,j − [q]i−1,j

∆x
+

∆x

2
minmod

(
[qxx]i,j , [qxx]i−1,j

))
+O

(
∆x2

)
, if [nx]i,j > 0,

[nx]i,j

(
[q]i+1,j − [q]i,j

∆x
− ∆x

2
minmod

(
[qxx]i,j , [qxx]i+1,j

))
+O

(
∆x2

)
, if [nx]i,j < 0,

(3.11)

where

minmod(a, b) =


0, if ab ≤ 0,

a, if |a| ≤ |b|,
b, if |b| ≤ |a|.

Derivatives in the y-directions are approximated in a similar fashion. We note that

approximation of derivatives is done in the same way for both, ND-PDE and WCD-PDE,

extrapolation methods. The difference between the approaches lies in which quantities

are extended over interfaces.

Since in the new method the approximation of second-order derivatives in all Cartesian

directions are already available during solving the PDE for q, the minmod corrections

in (3.11) can be computed only once during first iteration and reused in subsequent

iterations, reducing the cost of each iteration by approximately 2 times. Specifically,

the total count of arithmetic operations to compute [q]k+1
i,j using the ND-PDE method

is approximately 22 in two spatial dimensions and 32 in three spatial dimensions, while

for the WCD-PDE method the total count is 10 and 14, correspondingly. Thus, if we

denote as T the cost of solving a single advection equation using first-order accurate

approximations of derivatives, then the total cost of performing quadratic extrapolation

132



using the ND-PDE method is approximately (1 + 1 + 2)T = 4T in two and three spatial

dimensions, while the total cost of performing quadratic extrapolation using the WCD-

PDE method is (3 + 2 + 1)T = 5T in two spatial dimensions and (6 + 3 + 1)T = 10T in

three spatial dimensions.

Equations (3.8) and (3.9) are iterated in the fictitious time τ until steady-state. Time

step ∆τ is chosen based on consideration of satisfying the CFL condition as:

∆τ =
min(∆x,∆y)

2
and ∆τ =

min(∆x,∆y,∆z)

3

in two and three spatial dimensions, respectively. Iterations are terminated when the

maximum difference between two successive steps max
i,j

∣∣∣[f ]k+1
i,j − [f ]ki,j

∣∣∣ within the band

of interest, that is, among all grid nodes within the distance of 2
√

∆x2 + ∆y2 (or

2
√

∆x2 + ∆y2 + ∆z2 in three spatial dimensions) around the domain boundary, is less

than a specified tolerance εtol = 10−12.

Remark. Since in the proposed approach there is no need to recalculate second

derivatives and apply the nonlinear minmod operator at every iteration, it is possible to

obtain the steady-state solution of the advection equations in an implicit fashion. This

could be very beneficial in cases when a good guess for the extended field is available (for

example, solutions from preceding time instants in time-dependent problems). Such an

approach will be explored in future works.

Remark. In case of linear extrapolations, the first equations in (3.8) and (3.9) are not

solved, in second equations [qnn]i,j and
[
Q
∇∇

]
i,j

are set to zero and first-order accurate

133



formulas (3.10) are used during the extrapolation of both field q and its derivatives for

more efficient computations.

Extension to adaptive Quad-/Oc-tree grids

The methodology introduced in this work can be trivially extended to Quad-/Oc-tree

data structures. Specifically, we sample data fields at nodes of Quad-/Oc-tree grids and

use the second-order accurate discretizations of [100] for regions where grids are non-

uniform. A band of uniform grids are usually imposed near the interface in practical

free boundary applications (see Fig. 3.1). In this case the extrapolation within some

neighborhood around the interface (where it is primarily required) is as accurate as for

uniform grids, however, the extrapolation procedure is much faster on adaptive grids for

their significant reduction in the total number of grid points.

Figure 3.1: Examples of uniform (left) and adaptive (right) Cartesian grids for a circular
interface.

134



3.3 Numerical Results in Two Spatial Dimensions

We consider four physical domains: a disk, a star shape, a union of two disks and an

intersection of two disks (see figure 3.2). The disk is a smooth interface for which the

approach of [6] performs well. The star-shape domain is an example where regions of high

curvature are present (crest and trough of the wavy shape). The union/intersection of

two disks are examples where kinks occur and illustrate the case of typical free boundary

simulations where changes in topology occur. The definition of those domains are given

by the level-set functions:

φ0(x, y) =
√
x2 + y2 − 0.501,

φ1(x, y) =
√
x2 + y2 − 0.501− 0.25

y5 + 5x4y − 10x2y3

(x2 + y2)
5
2

,

φ2(x, y) = min
(√

(x+ .1)2 + (y + .3)2 − 0.501,√
(x− .2)2 + (y − .2)2 − 0.401

)
,

φ3(x, y) = max
(√

x2 + y2 − 0.501,
√

(x− .4)2 + (y − .3)2 − 0.401
)
,

(a) Disk, Ω0 (b) Star, Ω1 (c) Union, Ω2 (d) Intersection, Ω3

Figure 3.2: Computational domains considered in section 3.3.

In each case we consider a computational domain Ω = (−1, 1)×(−1, 1). We define the

function q = sin(πx) cos(πy) inside every domain and extrapolate it in the outside region.

135



Then the maximum difference between the exact values of q and extrapolated ones, that

is, the L∞ norm of the error, is computed within a band of thickness 2
√

∆x2 + ∆y2 in

the outside regions. Figures 3.3 and 3.4 summarize the convergence behavior of the ND-

PDE approach of [6] and the proposed WCD-PDE approach. Figure 3.5 demonstrates

the error distribution for both methods in the case of the quadratic extrapolation on a

1282 grid.

Figure 3.3: Accuracy of the linear extrapolation (in the L∞ norm) in two spatial dimen-
sions measured in a narrow band of thickness 2

√
∆x2 + ∆y2 around an interface using

the approach of [6] and the proposed approach.

Figure 3.4: Accuracy of the quadratic extrapolation (in the L∞ norm) in two spatial
dimensions measured in a narrow band of thickness 2

√
∆x2 + ∆y2 around an interface

using the approach of [6] and the proposed approach.

In case of the smooth domain Ω0 (disk), both approaches produce almost indistin-

136



(a) Disk, Ω0 (b) Star, Ω1 (c) Union, Ω2 (d) Intersection, Ω3

Figure 3.5: Comparison of error distributions in the case of the quadratic extrapolation
on a 1282 grid. Top row: the approach of [6]. Bottom row: the present approach. In each
case the error is multiplied by a factor of 30 for visualization purpose.

guishable results attaining second- and third-order rates of convergence for the linear and

quadratic extrapolation, respectively.

For the high-curvature domain Ω1 (star), both methods still reach optimal orders of

convergence; however the ND-PDE approach demonstrates the optimal order of conver-

gence only at relatively high grid resolutions when all geometric features are well-resolved.

Moreover, for a given grid resolution the WCD-PDE approach produces results that are

more than one order of magnitude more accurate in the case of the linear extrapolation

and almost three orders of magnitude more accurate in the case of the quadratic ex-

trapolation compared to the ND-PDE approach. Figure 3.5b shows that the ND-PDE

approach produces very large errors near regions with the highest curvature, while the

error in the case of the WCD-PDE approach is much smaller and exhibits very little

variation throughout all regions around the interface.

137



The results are even more significantly improved with the proposed approach in the

case of interfaces with kinks Ω2 (union) and Ω3 (intersection). Figures 3.5c and 3.5d

show that the ND-PDE method of [6] produces large errors near kinks; those errors are

significantly reduced with the WCD-PDE approach. In particular, Figures 3.3c-d and

3.4c-d demonstrate that the second-order (third-order) accuracy of the linear (quadratic)

extrapolations are recovered with the proposed approach; the rates of convergence for the

approach of [6] are close to first order, which corresponds to the constant extrapolation,

due to the fact that errors near kinks do not decrease despite grid refinement and the

apparent first order of convergence is only because the neighborhood in which errors are

computed is shrinking closer to the domain.

3.4 Numerical Results in Three Spatial Dimensions

We consider three different domains, Ω̃1, Ω̃2 and Ω̃3, that present high-curvature features

or kinks in three spatial dimensions. In addition, we consider a smooth spherical domain

Ω̃0 with center (0, 0, 0) and radius 0.501. The definition of those domains are given by

the level-set functions:

138



φ̃0(x, y, z) =
√
x2 + y2 + z2 − 0.501,

φ̃1(x, y, z) =
√
x2 + y2 + z2 − 0.501− 0.15

y5 + 5x4y − 10x2y3

(x2 + y2 + z2)
5
2

cos
(π

2

z

0.501

)
,

φ̃2(x, y, z) = min
(√

(x+ .1)2 + (y + .3)2 + (z + .2)2 − 0.501,√
(x− .2)2 + (y − .2)2 + (z − .1)2 − 0.401

)
,

φ̃3(x, y, z) = max
(√

x2 + y2 + z2 − 0.501,√
(x− .4)2 + (y − .3)2 + (z − .2)2 − 0.401

)
,

Figure 3.6 depicts those domains along with the octree grid refined near their boundaries.

(a) Sphere, Ω̃0 (b) Star, Ω̃1 (c) Union, Ω̃2 (d) Intersection, Ω̃3

Figure 3.6: Irregular domains considered in section 3.4 along with the octree grids refined
near their boundaries.

Similar to the two-dimensional examples, we consider a computational domain Ω =

(−1, 1)3. We extrapolate the function q = sin(πx) cos(πy) exp(z) from the inside to the

outside for every domain and compute the difference between the exact values of q and

the extrapolated ones, that is, the L∞ norm of the error, within a band of thickness

2
√

∆x2 + ∆y2 + ∆z2 in the outside region.

Conclusions similar to the two dimensional case can be drawn from the results in

figures 3.7 and 3.8. Specifically, for a smooth and well-resolved domain Ω̃0 (sphere) both

139



Figure 3.7: Accuracy of the linear extrapolation (in the L∞ norm) in three spatial dimen-
sions measured in a narrow band of thickness 2

√
∆x2 + ∆y2 + ∆z2 around an interface

using the approach of [6] and the proposed approach.

Figure 3.8: Accuracy of the quadratic extrapolation (in the L∞ norm) in three spatial
dimensions measured in a narrow band of thickness 2

√
∆x2 + ∆y2 + ∆z2 around an in-

terface using the approach of [6] and the proposed approach.

approaches produce almost indistinguishable results with optimal order of convergence

(second and third for the linear and quadratic extrapolations, respectively). When the

interface curvature is high (Ω̃1, star) the WCD-PDE approach produce extrapolated fields

that are several orders of magnitude more accurate than for the ND-PDE approach. For

geometries with sharp features Ω̃2 (union) and Ω̃3 (intersection) only the WCD-PDE

approach demonstrates optimal orders of convergence, while for the ND-PDE approach

the rate of convergence is stuck to 1.

140



3.5 Application to Solving the Diffusion Equation in

Time-Dependent Domains

In order to illustrate the importance of accurate extrapolation near sharp corners in

moving interface problems, we present a simple example of solving diffusion equation

around a moving object that may have a non-smooth boundary. Specifically, we consider

a two-dimensional rectangular region [−1; 1]×[−1; 1] and an object that moves diagonally

from its starting position at (xs, ys) = (−0.51, 0.52) at time t = 0 to the final position

(xf , yf ) = (0.49,−0.48) at time t = 1 while making half a turn around its center as

demonstrated in Figure 3.9. A diffusion equation subject to Neumann boundary condi-

tions is solved in the rectangular box excluding the region occupied by the moving object.

While the problem at hand does not correspond to any specific practical application, it

represents a prototypical situation arising in simulation of more relevant (and more com-

plex) processes and at the same time allows a precise analysis of numerical errors. Note

that a non-deformable shape is considered for the sake of simplicity, we expect the main

conclusions to hold true in more general cases, e.g. multiphase flow with triple junction

points.

The Eulerian framework is employed, more precisely, the region [−1; 1] × [−1; 1] is

discretized into a static uniform rectangular grid with N nodes in each Cartesian direction

141



while the object is implicitly described by a time-dependent level-set function.

(a) Smooth moving object (b) Moving object with corners

Figure 3.9: Problem geometry in diffusion equation example from Section 3.5.

Suppose the shape of the moving object in its local system of coordinate ξ is described

by a level-set function φ0(ξ) (such that φ0(ξ) > 0 inside the object). Then the object’s

motion in the global system of coordinates r can be expressed by a time-dependent level-

set function φ(t, r) = φ0(ξ(t, r)), where global-to-local coordinate transformation ξ(t, r)

is given by:

ξ(t, r) =

(
ξ(t, r)
η(t, r)

)
=

(
x− (xs + t(xf − xs))
y − (ys + t(yf − ys))

)(
cos(πt) sin(πt)
− sin(πt) cos(πt)

)
.

The solution domain Ω(t) can then be defined as:

Ω(t) = {r ∈ [−1; 1]× [−1; 1] : φ(t, r) < 0} .

The boundary of the computational box is denoted as ∂Ω and the boundary of the moving

object is denoted as Γ(t).

In order to investigate the influence of non-smooth interface, we consider two choices

142



of moving object, one having a smooth boundary, a disk of radius 0.25, and another one

having a non-smooth boundary, a union of two disk with radii 0.25 and 0.175, motivated

by multimaterial compound bubbles. In the first case the level-set function of the object

is given by (in the local system of coordinates):

φsmooth
0 (ξ) = (ξ) = r0 −

√
ξ2 + η2,

while in the latter case:

φnon-smooth
0 (ξ) = max

(
r0 −

√
(ξ + ξ0)2 + η2, r0q −

√
(ξ − ξ0)2 + η2

)
,

where r0 = 0.25, ξ0 = 1
2
r0

√
1 + q2 and q = 0.7.

We choose the following test solution:

u(t, r) =
3∑
i=0

3∑
j=0

ai,j cos

(
iπ

2
(x+ 1)

)
cos

(
jπ

2
(y + 1)

)
exp

(
−Dπ

2

4
(i2 + j2)t

)
,

with


a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

 =


−0.5 −0.1 −0.5 0.6
−0.6 −0.5 −0.1 −0.1
0.2 −0.2 −0.2 0.4
0.1 −0.9 0.8 0.4

 ,

which satisfies a homogeneous diffusion equation:

∂tu = D∇2u, for t ∈ [0, 1], r ∈ Ω(t), (3.12)

with initial conditions:

143



u(0, r) =
3∑
i=0

3∑
j=0

ai,j cos

(
iπ

2
(x+ 1)

)
cos

(
jπ

2
(y + 1)

)
, for r ∈ ∂Ω(0)

and boundary conditions:

D∂nu = 0, for t ∈ [0, 1], r ∈ ∂Ω,

D∂nu = g(t, r), for t ∈ [0, 1], r ∈ Γ(t),

where function g(t, r) is given by:

g(t, r) = D
∇φ(t, r) · ∇u(t, r)

|∇φ(t, r)|
.

The time range [0; 1] is discretized into time layers tn, n = 0, 1, 2 . . ., where the time

step between adjacent time layers ∆tn+1 = tn+1−tn is determined such that the maximum

displacement of the moving object boundary during the given time step is expected not

to exceed a user-defined fraction f of the grid cell diagonal
√

∆x2 + ∆y2, that is:

∆tn+1 =
f
√

∆x2 + ∆y2

max
Γ(tn)

vn(tn, r)
,

where vn denotes the normal velocity of the object’s boundary. Specifically, in this

example f = 0.8 is taken.

We use the second-order variable-step backward differentiation formula (BDF2) for

discretizing the diffusion equation (3.12) in time, that is:

(
α0 −∆tn∇2

)
un = −α1u

n−1 − α2u
n−2, (3.13)

where

144



α0 =
1 + 2ρ

1 + ρ
, α1 = −(1 + ρ), α2 =

ρ2

1 + ρ
and ρ =

∆tn
∆tn−1

,

and use the superconvergent second-order accurate method of [18] (which is specifically

designed to handle irregular domains with non-smooth boundaries) for solving the re-

sulting Poisson-type equation (3.13).

Solution of equation (3.13) produces values of un at all grid nodes that belong to

the current solution domain Ω(tn). However, as the object moves in time some of grid

nodes outside of Ω(tn) may become part of Ω(tn+1) or Ω(tn+2) and solving at subsequent

time layers tn+1 and tn+2 would require valid values of un at such grid nodes. This

is typically addressed in free boundary value problems by smoothly extrapolating un

into some neighborhood of Ω(tn). In this example we quadratically extrapolate solutions

using both the proposed in this work WCD-PDE approach and the ND-PDE approach of

[6]. Also, since solving Poisson-type equations on irregular domains produces additional

errors, we generate a reference solution where instead of performing extrapolation of

numerical values we fill the grid nodes outside of the current solution domain Ω(tn) with

exact values given by the analytical solution.

We investigate the influence of extrapolation procedures on the accuracy of the nu-

merical solution and its gradient. In order not to measure the error of extrapolation

procedure itself but rather only its influence on solving the diffusion equation, the solu-

tion error at time layer tn is calculated only for grid nodes in Ω(tn) and the gradient is

calculated only using values from Ω(tn) as well.

145



Obtained results are summarized in Figures 3.10, 3.11, 3.12 and 3.13. Figures 3.10

and 3.11 show error distributions at the final time t = 1 on a 1282 grid. As one can

see, for a smooth moving object (Fig. 3.10) using either the ND-PDE extension or the

WCD-PDE one, results in errors that are very close to ones of the reference solution,

while for a non-smooth moving object (Fig. 3.11) the WCD-PDE extension produces a

much more accurate solution that is also very close to the reference one, whereas using

the ND-PDE extension results in a significant accumulation of errors in the wake of the

moving object. More quantitative conclusions can be drawn from the convergence studies

shown in Figures 3.12 and 3.13, in which the dependence of the error in the L∞ norm

for both numerical solution and its gradient on the grid resolution is presented. In case

of a smooth moving object (Fig. 3.12) both extension methods lead to second-order

convergence both in the numerical solutions and its gradient (as what is expected from

the superconvergent method of [18]) with magnitude of errors being very close to the

ones of the reference solution. In case of a non-smooth moving object (Fig. 3.13) the

accuracy of numerical solutions obtained using the ND-PDE extension degrades severely

showing only first-order convergence in the solution itself and non-convergence in the

gradient. At the same time the accuracy of computations based on the proposed WCD-

PDE extension seems affected very slightly by the presence of sharp corners, retaining

the second-order convergence in the numerical solution and its gradient with errors very

close to the reference solution.

Remark: Note that the presented in this work extrapolation approach is designed

146



(a) Using exact values (b) Using method of [6] (c) Using proposed method

Figure 3.10: Error distribution at the final time moment (t = 1) in case of a smooth
moving object using different extrapolation approaches.

(a) Using exact values (b) Using method of [6] (c) Using proposed method

Figure 3.11: Error distribution at the final time moment (t = 1) in case of a non-smooth
moving object using different extrapolation approaches.

Figure 3.12: Accuracy of solving diffusion equation (in the L∞ norm) in case of a smooth
moving object using different extrapolation approaches.

for extending smooth scalar fields (as in the present example). However, in general,

solutions to partial differential equations in domains with sharp features may contain

147



Figure 3.13: Accuracy of solving diffusion equation (in the L∞ norm) in case of a non-
smooth moving object using different extrapolation approaches.

singularities. In such cases for best results the proposed extrapolation procedure should

only be applied to the regular part of the solution, the singular part must be dealt with

separately using special methods, for example, as in [175].

3.6 Conclusion

We have presented a numerical method for extrapolating scalar quantities across the

boundaries of irregular domains that may present high-curvature features or kinks. Linear

and quadratic extrapolations procedures produce second- and third-order accurate results

in the L∞ norm, respectively and do so regardless of the irregularity of the boundaries,

i.e. boundaries with kinks can readily be considered. These procedures are effective in

both two and three spatial dimensions and can be implemented on quadtree and octree

Cartesian grids. We have shown through numerical examples that errors associated with

extrapolations can be reduced by several orders of magnitude in some cases, compared

with the approach of [6] commonly used in level-set methods. We have also presented

148



an example of solving a diffusion equation on evolving domains in order to highlight

the importance of accurate extrapolation near sharp geometric features for practical

applications. The numerical method we introduced is based on solving PDEs in pseudo-

time, but we note that static solutions based on an implicit approach like Fast Marching

or Fast Sweeping could be obtained and we expect the results to follow the same general

behavior as that presented in the current manuscript.

149



Chapter 4

Sharp-Interface Simulations of

Multialloy Solidification

4.1 Introduction

Multicomponent alloys play a significant role in several areas of engineering such as en-

ergy, transportation, and propulsion due to their superior thermomechanical properties

compared to pure materials. The exploration of novel multicomponent alloys with de-

sired properties is hindered by the high dimensional nature of the parameter search space

formed by all possible combinations of alloy components. As a consequence, accurate and

reliable computational tools have a potential to significantly accelerate the discovery in

this area. While a range of problems at multiple scales from atomistic to macroscopic re-

quire the numerical investigation, in this work we focus on the simulation of solidification

150



processes. The importance of this problem comes from the fact that the microstructure

evolution and solutal segregation occurring during manufacturing processes have a strong

influence on the resulting thermomechanical properties. There are several difficulties as-

sociated with the numerical simulation of such phenomena: the multiscale nature of the

process, the highly irregular shape of the moving solidification front, the necessity of

solving the system of non-linearly coupled PDEs.

Given the importance of the predictive modeling of solidification phenomena a great

number of numerical approaches have been reported in the literature. These computa-

tional methods can be categorized in three categories: cellular automata methods [131],

phase-field methods [84, 86, 156], and sharp-interface methods [179, 159]. Each of these

frameworks has its own advantages and disadvantages. Cellular automata methods are

computationally efficient however they are not based on physical equations of solidifica-

tion but rather on special rules for interactions between automata. In phase field models

the solid-liquid interface is described as a smooth transition of a “phase-field” variable,

which allows efficient numerical implementations that do not require any specialized

methods for dealing with moving interfaces. The phase field theory of solidification is

mathematically well-justified and guarantees convergence to the sharp-interface equa-

tions as the transition width of the solid-liquid interface approaches zero, however, which

is difficult to achieve in practice. The sharp-interface methods are expected to be the

most accurate mathematically, however, are harder to develop. They require numerical

capabilities for explicit handling of evolving interfaces and solving nonlinear systems of

151



PDEs in irregular domains. So far only cases of binary alloys have been successfully

modeled [159, 179].

In this chapter we present a computational method for the simulation of the solidifica-

tion of multicomponent alloys based on the sharp-interface formulation of the governing

equations. Contrary to the case of binary alloys where a fixed point iteration is adequate

[159], we propose a Newton-type approach to solve the nonlinear system of coupled PDEs

arising from the time discretization of the governing equations. A combination of spa-

tially adaptive quadtree grids, Level-Set Method, and sharp-interface numerical methods

for imposing boundary conditions is used to accurately and efficiently resolve the complex

behavior of the solidification front. We validate the proposed computational method on

the case of axisymmetric radial solidification admitting an analytical solution and show

that the overall method’s accuracy is close to second order. Finally, we perform numeri-

cal experiments for the directional solidification of a Co-Al-W ternary alloy with a phase

diagram obtained from the PANDATTMthermodynamic database and analyze the solutal

segregation dependence on the processing conditions and alloy properties.

The rest of this chapter is organized in the following way. In section 4.2 we briefly

introduce the basic mathematical model of the multialloy solidification. Section 4.3 de-

scribes the overall computational approach including the proposed Newton-type method

for solving the nonlinearly coupled system of PDEs as well as numerical implementation

aspects. Section 4.4 presents validation tests and application of the proposed method for

investigation of solutal segregation of a Co-Al-W alloy. Finally, in 4.5 we draw conclusions

152



and discuss future work.

4.2 Physical Model

In this section we briefly present a mathematical model of the alloy solidification used in

this work. For a detailed discussion on the theory of crystallization processes, we refer

the interested reader to monograph [37].

Consider the solidification of an alloy containing N + 1 different elements: a solvent

that constitutes majority of the alloy and N solutes. Specifically, we assume that the

process occurs in a rectangular domain Ω (possibly periodic in some directions). In

this work we consider a mathematical model describing crystallization processes at the

macroscopic level without resolving atomistic details. Thus, the transition between solid

and liquid phases is assumed to be sharp. We denote this interphase boundary as Γ

and regions of Ω occupied by solid and liquid phases as Ωs and Ωl , correspondingly, as

demonstrated in Figure 4.1. The outward normal vectors to the boundaries of Ωl and Ωs

are denoted as nl and ns, respectively. The normal vector to interface Γ directed from

the solid to the liquid is denoted as n. Note that n = ns = −nl on Γ.

As time t proceeds, the solidification front, Γ = Γ(t), evolves with a normal veloc-

ity vn = vn(t, r), r ∈ Γ, according to the crystallization kinetics. In the case of pure

substances the process is mainly governed by the thermal transport: the phase transi-

tion occurs at the freezing temperature (that may depend on the curvature and normal

velocity of the solid-liquid interface) and releases the latent heat which is transported

153



n

Ωs

Ωl Γ

∂Ω

n

Ωl

Ωs

Γ

∂Ω

Periodic

Figure 4.1: Notation used in this work demonstrated on examples of crystal growth from
a seed (left) and directional solidification (right).

away by the thermal diffusion and, possibly, advection. The case of multicomponent

substances, like metal alloys, is complicated by the transport of species in a two-way

coupling: on the one hand, freezing temperatures depend on the local alloy composition,

on the other hand, the advancing crystallization front affects concentration fields due to

solute-rejection phenomena.

Thus, at any given moment of time t at every point r ∈ Ω the alloy is characterized

by the local temperature T = T (t, r) and the composition CJ = CJ(t, r), J ∈ [1, N ],

where CJ denotes the Jth solute’s concentration. For convenience, since temperature

and concentration fields are not generally smooth and/or continuous across interphase

boundaries, we use a separate set of fields for each of the two phases, that is:

T (t, r) =

{
Tl(t, r), r ∈ Ωl(t)

Ts(t, r), r ∈ Ωs(t)
,

CJ(t, r) =

{
ClJ(t, r), r ∈ Ωl(t)

CsJ(t, r), r ∈ Ωs(t)
, J ∈ [1, N ] ,

where subscripts s and l denote quantities in solid and liquid phases, respectively.

Suppose, at some initial time t = t0 the state of the system is described by the

154



following initial conditions:

Γ(t0) = Γ0,

Tν(t0, r) = T0ν(r), r ∈ Ων(t0), ν = s , l ,

CνJ(t0, r) = C0νJ(r), r ∈ Ων(t0), ν = s , l , J ∈ [1, N ] ,

(4.1)

where Γ0, T0ν(r), and C0νJ(r) describe the initial solid-liquid interface, temperature field

and concentration fields. In the absence of convective effects the transport of heat and

species is described by diffusion equations:

ρνcpν∂tTν − λν∇
2Tν = 0, r ∈ Ων(t), ν = s , l , (4.2)

∂tCνJ −DνJ∇2CνJ = 0, r ∈ Ων(t), ν = s , l , J ∈ [1, N ] , (4.3)

where ρν , cpν , and λν , ν = s , l , are the density, the specific heat, and the heat conductivity

of liquid and crystallized alloys; DνJ , ν = s , l , are the Jth solute’s diffusivity in liquid and

solid phases, respectively. We assume alloy parameters ρν , cpν , λν , {DνJ}NJ=1, ν = s , l ,

to be constant.

Since for typical metal alloys the diffusion of solutes in the solid phase is several orders

of magnitude slower than in the liquid phase we neglect the species transport in the solid,

that is, DsJ = 0, J ∈ [1, N ]. As a result, diffusion equations for the concentration fields

(4.3) only need to be solved in the liquid.

Temperature and concentration fields must satisfy several conditions on the solid-

ification front Γ. We assume that the phase transition occurs at the thermodynamic

equilibrium, that is, the temperature is continuous across the solidification front:1

1Square brackets denote the jump in the value of a quantity across the solidification front, i.e. [T ] =
Ts − Tl .

155



[T ] = 0, r ∈ Γ(t), (4.4)

and satisfies the Gibbs-Thomson relation:

Tl = Tliq(Cl1, . . . , ClN) + εv(n)vn + εc(n)κ, r ∈ Γ(t), (4.5)

where Tliq = Tliq(Cl1, . . . , ClN) describes the liquidus surface of the alloy (i.e., melting

temperature at a given composition), terms εc(n) and εv(n) account for the curvature

and kinetic undercoolings, and κ is the front’s mean curvature. Usually Tliq is assumed

to be a linear function of solutal concentrations:

Tliq(Cl1, . . . , ClN) = Tm +ml1Cl1 + . . .+mlNClN ,

where Tm is the melting temperature of the pure solvent and ml1, . . ., mlN are constants

called the liquidus slopes corresponding to each of the solutes. However, this work is not

restricted to such a case and considers Tliq(Cl1, . . . , ClN) an arbitrary function (hence,

the liquidus slopes mlJ =
∂Tliq
∂ClJ

, J ∈ [1, N ], are no longer constants but functions of the

local composition as well). Specifically, for the simulation results presented later in this

work the data from the PANDATTMthermodynamic database was used.

Note that undercooling coefficients εc(n) and εv(n) may depend on the normal vector

n to the solidification front accounting in such a way for specific crystalline structures

of alloys. For example, a two-dimensional four-fold crystalline structure is commonly

described as:

156



εc(n) = εc(1− 15ε cos(4 cos−1(n · n0))),

εv(n) = εv(1− 15ε cos(4 cos−1(n · n0))),

where εc and εv are curvature and kinetic undercooling magnitudes, ε is the degree of

anisotropy and n0 is the preferred crystal growth direction.

The thermal balance at the interface leads to the following (Stefan) condition:

[λ∂nT ] = vnLf , r ∈ Γ(t), (4.6)

where Lf is the latent heat of fusion of the alloy. Note that, as commonly done, the

change in surface energy due to stretching/contraction of the curved front’s surface in

the velocity field vn is neglected in the above expression.

At the solidification front the compositions of liquid and solid phases are related

to each other through chemical equilibrium. Typically such a relation is described by

parameters called partition coefficients kJ , J ∈ [1, N ], which represent the ratios of

component concentrations in solid and liquid phases, that is:

CsJ = kJClJ , r ∈ Γ(t), J ∈ [1, N ] .

Since in this work we do not restrict ourselves to linearized liquidus and solidus surfaces

the partition coefficients are also assumed to depend on the local composition of the

solidifying material, that is:

kJ = kJ(Cl1, . . . , ClN), J ∈ [1, N ] .

157



The conservation of species at the solidification front lead to the following so-called

solute-rejection equations

DlJ∂nlClJ − (1− kJ)vnClJ = 0, r ∈ Γ(t), J ∈ [1, N ] . (4.7)

The type of boundary conditions (Dirichlet, Neumann or Robin) on the boundary of

the solidification region Ω, denoted as ∂Ω, depends on particular physical circumstances.

We assume that the total heat flux is specified and the boundary is impermeable to

solutes:

λν∂nνTν = gTν , r ∈ Ων ∩ ∂Ω, ν = s , l ,

DlJ∂nlClJ = 0, r ∈ Ωl ∩ ∂Ω, J ∈ [1, N ] ,
(4.8)

where gTν = gTν (t, r), ν = s , l , are prescribed heat fluxes for liquid and solid phases.

We note, however, that switching to boundary conditions of another type (Dirichlet or

Robin) has minimal consequences on the computational method presented in this work.

To summarize, in this work we present a computational method for solving a mul-

tialloy solidification model in which the crystallization process is described by the tem-

poral evolution of temperature fields Tν = Tν(t, r), ν = s , l , solutes’ concentration fields

ClJ = ClJ(t, r), J ∈ [1, N ], and a solidification front Γ = Γ(t) according to partial dif-

ferential equations (4.2)-(4.3) with interface conditions (4.4)-(4.7) on Γ and boundary

conditions (4.8) on ∂Ω.

158



4.3 Numerical Approach

In this section we present the overall numerical approach in detail, specifically:

1. We begin with discussing the temporal discretization of the system of governing

equations and identify specific tasks needed to be performed during each time step

(section 4.3.1).

2. Second, in section 4.3.2, we present a numerical method for solving the nonlinear

system of elliptic PDEs resulted from the temporal discretization. The method

is based on breaking down the system of nonlinearly coupled equations into a

set of separate boundary value problems subject to classical boundary (Dirichlet,

Neumann or Robin) and interface conditions.

3. Finally, section 4.3.3 provides a detailed description of specific methods we use for

spatial discretization of the computational domain, evolving the solidification front

in time, solving elliptic partial differential equations with different boundary and

interface conditions on irregular interfaces.

4.3.1 Discretization in time

Consider a non-uniform discretization of time {tj}j≥0 with time steps {∆tj = tj − tj−1}i≥1

and denote the state of the system (i.e. temperature field, concentration fields, and

location of the solidification front) at a time moment tj as T jν , Cj
lJ and Γj, j ≥ 0. Given

states of the system for tj, j < n, the numerical solution at time instant tn is computed

159



in the following fashion.

First, the new front’s location Γn is obtained from Γn−1 in an explicit way based on

values of the normal velocity at previous time moments vjn, j < n, as discussed in section

4.3.3.

Secondly, equations (4.1)-(4.8) are solved implicitly for T ns , T nl , {Cn
lJ}

N
J=1 and vnn in

geometry defined by Γn. To this end, we use a second-order accurate implicit (BDF2)

discretization in time. Let us write the approximation of the temporal derivative of a

quantity A at a time instant t = tn as:

∂tA
n =

1

∆tn

∑
j≥0

ajA
n−j +O (∆tqmax) (4.9)

where ∆tmax = max
j≥0

(∆tn−j) and coefficients {aj}j≥0 are given by:

a0 =
1 + 2r

1 + r
, a1 = −(1 + r), a2 =

r2

1 + r
, aj = 0, j ≥ 3,

where r =
∆tn

∆tn−1

and q = 2. Using approximation (4.9) in diffusion equations (4.2) and

(4.3) we get:

(
ρνcpν

1

∆tn
a0 − λν∇2

)
T nν = −ρνcpν

1

∆tn

∑
j≥1

aJT
n−j
ν , r ∈ Ωn

ν , ν = s , l , (4.10)(
1

∆tn
a0 −DlJ∇2

)
Cn

lJ = − 1

∆tn

∑
j≥1

aJC
n−j
lJ , r ∈ Ωn

l , J ∈ [1, N ] , (4.11)

where known quantities are collected in the right-hand side. The above two expressions

are simple linear Poisson-type equations, however they must be solved subject to the non-

linear interface and boundary conditions (4.4)-(4.7) on Γn. The source of non-linearity

160



is in Robin-type boundary conditions (4.7) that contains the product of two unknowns

– concentration Cn
lJ and velocity vnn.2 Once a method for solving (4.10)-(4.11) subject to

(4.4)-(4.7) is available, then it is relatively easy to construct a time-stepping procedure

for solving the entire dynamic problem . Thus, the solution of (4.10)-(4.11) subject to

(4.4)-(4.7) is the cornerstone problem in simulating multialloy solidification.

4.3.2 Solving the non-linearly coupled system of Poisson-type

equations

For clarity of presentation we write the system of the coupled Poisson-type equations

(4.10)-(4.11) subject to (4.4)-(4.8) in a generic fashion and with abuse of notation as:

Heat transport:
(
sν − λν∇2

)
Tν = fTν , r ∈ Ων , ν = s , l , (4.12)

Species transport:
(
a−DJ∇2

)
CJ = fCJ , r ∈ Ωl , J ∈ [1, N ] , (4.13)

Conditions on Γ:

Temperature continuity: [T ] = hT , (4.14)

Stefan condition: [λ∂nT ] = hS + vnLf , (4.15)

Gibbs-Thompson: Tl = hG + Tliq(C1, . . . , CN) + εvvn, (4.16)

Solute-rejection: DJ∂nlCJ = (1− kJ)vnCJ + hCJ , J ∈ [1, N ] , (4.17)

Conditions on ∂Ω:

Heat supply/withdrawal: λν∂nνTν = gTν , ν = s , l , (4.18)

Impermeable boundaries: DJ∂nlCJ = gCJ , J ∈ [1, N ] , (4.19)

The original system of equations related to the solidification process is recovered by the

following substitutions:

2Note that even when the so-called Frozen Temperature Approximation is applied (i.e., the temper-
ature field is not solved for but prescribed by an analytical expression) the system of equations is still
non-linearly coupled for N > 1.

161



sν →
a0ρνcpν

∆tn
, λν → λν , Tν → T nν , fTν →

−ρνcpν
∆tn

∑
j≥1

ajT
n−j
ν ,

a→ a0

∆tn
, DJ → DlJ , CJ → Cn

lJ , fCJ → −
1

∆tn

∑
j≥1

ajC
n−j
lJ ,

hT → 0, hS → 0, hCJ → 0, hG → εc(n),

(1− kJ)→ (1− kJ), gCJ → gClJ
, gTν → gTν , Lf → Lf .

Fixed-point iteration

In [159] a simple fixed-point iteration algorithm was used for simulating the solidification

of bi-alloys, that is, in the case N = 1. It is based on breaking system (4.12)-(4.19)

down into separate boundary value problems (BVPs) for temperature and concentrations

fields with simple boundary (Dirichlet, Neumann or Robin) and interface conditions and

iterating . A direct extension of this algorithm to the case of arbitrary N has the following

form:

1. Let us denote the value of concentration C1 at the solidification front during the

qth iteration as C∗1
(q)(r), r ∈ Γ. Set q = 0 and some initial guess C∗1

(0) (e.g., using

the previous time step).

2. Solve for C
(q)
1 imposing Dirichlet BC on Γ:


(
a−D1∇2

)
C

(q)
1 = fC1 , r ∈ Ωl ,

C
(q)
1 = C∗1

(q), r ∈ Γ,

D1∂nlC
(q)
1 = gC1 , r ∈ ∂Ω ∩ Ωl .

(4.20)

3. Compute the front’s velocity v
(q)
n using the solute-rejection equation (4.17):

162



v(q)
n =

1

(1− k1)C1

(
D1∂nlC

(q)
1 − hC1

)
, r ∈ Γ. (4.21)

4. Solve for C
(q)
J , J ∈ [2, N ], imposing Robin BC on Γ:


(
a−DJ∇2

)
C

(q)
J = fCJ , r ∈ Ωl ,

DJ∂nlC
(q)
J − (1− kJ)v(q)

n C
(q)
J = hCJ , r ∈ Γ,

DJ∂nlC
(q)
J = gCJ , r ∈ ∂Ω ∩ Ωl .

(4.22)

5. Solve for T
(q)
ν , ν = s , l , imposing jump conditions on Γ:



(
sν − λν∇2

)
T (q)
ν = fT , r ∈ Ων , ν = s , l ,[

T (q)
]

= hT , r ∈ Γ,[
λ∂nT

(q)
]

= hS + v(q)
n Lf , r ∈ Γ,

λν∂nνT
(q)
ν = gTν (r), r ∈ ∂Ω ∩ Ων , ν = s , l .

(4.23)

6. Compute error E (q)(r) in satisfying the Gibbs-Thomson relation (4.16) on Γ:

E (q)(r) = T
(q)
l − hG − Tliq

(
C

(q)
1 , . . . , C

(q)
N

)
− εvv(q)

n , r ∈ Γ. (4.24)

7. If the maximum error exceeds a user-defined tolerance εtol, i.e if

max
r∈Γ

∣∣E (q)(r)
∣∣ > εtol,

then adjust C∗1
(q) by inverting the Gibbs-Thomson relation (4.16):

C∗1
(q+1) = C∗1

(q) +
T

(q)
l − hG − Tliq

(
C

(q)
1 , . . . , C

(q)
N

)
− εvv(q)

n

ml1

(
C

(q)
1 , . . . , C

(q)
N

) (4.25)

set q = q + 1 and go to step 2.

163



In this procedure C1 should denote the slowest component, that is, D1 < DJ , J ≥ 2,

since it is the slowest component that limits the velocity of front propagation. The case

of arbitrary N differs from the case N = 1 by the presence of step 4, which is absent for

N = 1.

Clearly, the above splitting scheme of coupled system (4.12)-(4.19) into separate sim-

pler BVPs is not unique. In fact, perhaps a more “symmetric” way is to solve for

temperature fields both in solid and liquid phases using Dirichlet boundary conditions

on Γ, compute the front velocity using the Stefan condition (4.15), use the computed ve-

locity to solve for concentrations {CJ}NJ=1 imposing the solute-rejection equations (4.17)

as Robin boundary conditions and, finally, correct the guessed value for the temperature

on Γ using the Gibbs-Thompson relation (4.16). However, such an iterative procedure

showed to be very unstable in numerical experiments for typical parameters of metal

alloy, for which the thermal diffusivity is much less than the diffusivity of solutes, i.e.

λν
sνcpν

� DJ . It appears to be crucial to compute the front’s velocity based on values

of the slowest components in the system in order to obtain a stable iterative scheme (as

done in the scheme above).

The success, i.e., fast convergence, of the simple iterative scheme presented above in

case of binary alloys also seems to ought to the fact that the diffusivity of the quantity

which is used for velocity calculations (concentration C1) is much less than the diffusivity

of the quantity which is computed using the found velocity (temperatures Tl and Ts) .

In case of multialloys (N ≥ 2) this is no longer true because velocity vn is also used

164



in Robin boundary conditions while solving for concentrations CJ , J ≥ 2, which may

diffuse at a rate very close to the rate of C1, that is, D1 ≈ DJ , i = 2, . . . , N . We have

found from numerical experiments that in such a case the above iterative scheme exhibits

a slow convergence and even an unstable behavior in many situations.

Remark. Note that specification of function C∗1(r), r ∈ Γ, uniquely defines functions

vn, {CJ}NJ=1 and {Tν}ν=s,l through equations (4.20)-(4.23). Thus, these functions can

be considered as functionals of function C∗1 , that is, vn = vn[C∗1 ], {CJ = CJ [C∗1 ]}NJ=1 and

{Tν = Tν [C
∗
1 ]}ν=s,l (here the square brackets denote the functional argument), and the

above scheme as a fixed-point iteration for a non-linear functional equation:

C∗1 = Φ[C∗1 ],

where functional Φ[ϕ] is defined as:

Φ[ϕ] = ϕ+
Tl [ϕ]− hG − Tliq(C1[ϕ], . . . , CN [ϕ])− εvvn[ϕ]

ml1(C1[ϕ], . . . , CN [ϕ])
.

Approximate Newton iteration

In order to obtain an improved method we use the above scheme as a basis and apply

variational calculus to estimate how the error in satisfying the Gibbs-Thomson relation

E(r) at any given point changes when the boundary concentration C∗1(r) is changed by

some ∆C∗1(r). This information is then used to obtain an alternative updating formula

for C∗1 (instead of (4.25)) such that E(r) converges to zero as quickly as possible.

In general, the change in error E(r) due to a change in C∗1 up to linear order can be

165



expressed as:

∆E(r) =

∫
Γ

δE(r)

δC∗1(r′)
∆C∗1(r′) dΓ, r ∈ Γ,

where functional derivative
δE(r)

δC∗1(r′)
represents the sensitivity of E at point r to the change

in C∗1 at point r′. We refer the interested reader to 4.A where it is shown how
δE(r)

δC∗1(r′)

can be expressed as the solution to an adjoint system of PDEs corresponding to (4.20)-

(4.23). In principle, one could use the above expression to find the optimal ∆C∗1
,best(r)

that is expected to reduce E to zero everywhere on Γ, that is, ∆E(r) = −E(r) or:

E(r) +

∫
Γ

δE(r)

δC∗1(r′)
∆C∗1

,best(r′) dΓ = 0, r ∈ Γ. (4.26)

However solution of the above boundary integral equation is not a simple task that re-

quires, first, an efficient calculation of functional derivative
δE(r)

δC∗1(r′)
for all interface points

r ∈ Γ and, second, inversion of the convolution term. We defer the further investigation

of this avenue to future works. Instead, we propose to use a greatly simplified approach

in which we approximate the boundary integral in (4.26) as:

∫
Γ

δE(r)

δC∗1(r′)
∆C∗1

,best(r′) dΓ ≈ ∆C∗1
,best(r)

∫
Γ

δE(r)

δC∗1(r′)
dΓ.

Such an approach is reasonable provided the sensitivity
δE(r)

δC∗1(r′)
decays fast as the dis-

tance between r and r′ increases. Using such an approximation equation (4.26) is trivially

solved to obtain:

166



∆C∗1
,best(r) ≈ − E(r)∫

Γ

δE(r)

δC∗1(r′)
dΓ

. (4.27)

Thus, instead of using (4.25), we calculate C∗1
(q+1) as:

C∗1
(q+1) = C∗1

(q) − E
(q)(r)

G(q)(r)
, (4.28)

where G(r) =

∫
Γ

δE(r)

δC∗1(r′)
dΓ. Note that quantity G(r) has the meaning of the directional

derivative of E(r) in the “direction” δC∗1(r) ≡ 1, r ∈ Γ. Using results of 4.B, G(r) can

be efficiently computed as:

G(q)(r) = ΛTl −
N∑
J=1

mlJ(C1, . . . , CN)ΛCJ − εvΛv

where ΛTl , {ΛCJ}
N
J=1 and Λv is the solution to the following adjoint system of PDEs:


(
a−D1∇2

)
ΛC1 = 0 in Ωl

ΛC1 = 1 on Γ

D1∂nlΛC1 = 0 on ∂Ω ∩ Ωl

(4.29)

Λv =
1

(1− k1)C1

(D1∂nlΛC1 − vn(1− k1)ΛC1) on Γ (4.30)
(
a−DJ∇2

)
ΛCJ = 0 in Ωl

DJ∂nlΛCJ − (1− kJ)vnΛCJ = (1− kJ)ΛvCJ on Γ

DJ∂nlΛCJ = 0 on ∂Ω ∩ Ωl

(4.31)


(
sν − λν∇2

)
ΛTν = 0 in Ων , ν = s , l

[ΛT ] = 0 on Γ

[λ∂nΛT ] = LfΛv on Γ

λν∂nνΛTν = 0 on ∂Ω ∩ Ων , ν = s , l

(4.32)

For clarity, Algorithm 2 summarizes the overall Newton-like iterative procedure for

solving the system of nonlinearly coupled PDEs based on (4.28).

167



1: Provide an initial guess C∗1
(0), tolerance εtol, and maximum iterations allowed qmax

2: Set q = 0
3: Solve (4.20) for C

(q)
1

4: Compute velocity vn using (4.21)

5: Solve (4.22) for C
(q)
J , J = 2, N

6: Solve (4.23) for T
(q)
ν , ν = l , s

7: Compute error E(r)(q) on Γ (4.24)
8: if maxr∈Γ

∣∣E (q)(r)
∣∣ > εtol and q < qmax then

9: Solve (4.29) for Λ
(q)
C1

10: Compute Λ
(q)
v using (4.30)

11: Solve (4.31) for Λ
(q)
CJ

, J = 2, N

12: Solve (4.32) for Λ
(q)
Tν

, ν = l , s

13: Compute C∗1
(q+1) using (4.28)

14: Set q ← q + 1
15: Go to step 3
16: end if

Algorithm 2: An approximate Newton iteration for solving nonlinear system of equations
(4.12)-(4.19)

Remark. Note that the proposed Newton-type approach requires solving twice as

many BVPs compared to the simple fixed-point iteration, however the above adjoint

system of equations has the same structure as system of equations for physical quantities

(4.20)-(4.23). It means that the discretization matrices obtained for (4.20)-(4.23) can

be reused while solving (4.29)-(4.32) resulting in computational time savings. Also note

that quantity ΛC1 does not change form iteration to iteration, thus equation (4.29) needs

to be solved only once.

Convergence of iterative schemes

In order to gain some insight into convergence properties of the presented above iterative

schemes we analyze them from point of view of the linear stability analysis in a simple

168



setting of quasi one dimensional planar geometry. Specifically, we consider an infinity

domain with interface located at y = 0 such that the y > 0 and y < 0 half-spaces are

occupied by liquid and solid phases, respectively. For simplicity we assume the constitu-

tional undercooling is linear, that is, Tliq = Tm +
∑N

i=1 mlJCJ , partition coefficients are

constant, and the absence of kinetic and curvature undercoolings (εv = 0 and εc = 0).

Denote as C̃J = C̃J(y), J ∈ [1, N ], T̃s = T̃s(y) and T̃l = T̃l(y) the solution to nonlinear

system of equation of (4.12)-(4.19). Let us consider an infinitesimally perturbed boundary

concentration with magnitude δC and spatial frequency ωx, that is:

C∗1
(0) = C̃J(0) + δCe

−iωxx

We seek solutions satisfying iterative equations (4.25) and (4.28) up to linear order in δC

of the form:

C∗1
(q) = C̃J(0) + rqf.p.δC exp(−iωxx) +O

(
δ2
C

)
and

C∗1
(q) = C̃J(0) + rqa.N.δC exp(−iωxx) +O

(
δ2
C

)
,

respectively, where rf.p. = rf.p.(ωx) and ra.N. = ra.N.(ωx) denote amplification factors for

disturbances of frequency ωx in cases of fixed-point and approximate Newton iterations,

respectively. An iterative scheme is expected to be unstable if its amplification factor

is greater than one and stable otherwise where a smaller amplification factor indicating

a faster convergence. Substitution of the above expressions into (4.25) and (4.28) gives

(see 4.C):

169



rf.p.(ωx) =

(
Lf

ml1(1− k1)C̃1

)(
D1Ω1(ωx)− (1− k1)ṽn
λsΩs(ωx) + λlΩl(ωx)

)
−

N∑
i=2

(
mlJ

ml1

)(
1− kJ
1− k1

)(
C̃J

C̃1

)(
D1Ω1(ωx)− (1− k1)ṽn
DlJΩJ(ωx)− (1− kJ)ṽn

)
, (4.33)

and

ra.N.(ωx) = 1− 1− rf.p.(ωx)

1− rf.p.(0)
. (4.34)

where

ΩJ(ωx) =

√
ω2
x +

a

∆tDlJ

, J ∈ [1, N ] ,

Ων(ωx) =

√
ω2
x +

sν
∆tλν

, ν = s , l .

(4.35)

First, note that the second term in the expression for the amplification factor in the

case of the fixed-point iteration is O (1), depending on problem parameters it can be

greater or less than one. Thus, it follows immediately that the fixed-point iteration is

not a robust approach for solving the nonlinear system of PDEs at hand. The expression

for the amplification factor in the case of the proposed approximate Newton method is

quite involved, however it appears that for typical physical parameters the value of rf.p. is

always negative and reaches its maximum value at ωx = 0. It is straightforward to show

that under this conditions ra.N. < 1. Figure 4.2a shows the dependence of amplification

factors in cases of the fixed-point iterative scheme and the approximate Newton one for a

ternary alloy with parameters C1 = 10.7 at%, C2 = 9.4 at%, Tm = 1900 K, ml1 = −5.43

K/at%, ml2 = −10.4 K/at%, k1 = 0.94, k2 = 0.83, D1 = 10−5 cm2/s, D2 = 2 · 10−5

170



cm2/s, vn = 0.01 cm/s, Lf = 2600, ρl = ρs = 9.24 · 10−3, λl = λs = 1.3, cpl = cps = 356

(motivated by the Co-W-Al alloy simulated later in this work).

In order to further investigate the robustness of the proposed approximate Newton

approach we perform a parameter sweep in ranges C1 ∈ [1, 20] at%, C2 ∈ [1, 20] at%,

ml1 ∈ [−20,−1] K/at%, ml2 ∈ [−20,−1] K/at%, k1 ∈ [0.1, 0.9], k2 ∈ [0.1, 0.9], D1 ∈

[10−6, 10−4] cm2/s, D2 ∈ [10−6, 10−4] cm2/s and compute the maximum amplification

factor in each case. The worst case is found to have an amplification factor of 0.9536,

which still indicates convergence although a very slow one. However, the total number of

cases with relatively high amplification factors is found to be small. As demonstrated in

figure 4.2b the number of cases having the amplification factor 0.5 or better is more than

90%, thus we expect the proposed method to perform well for a wide range of alloys. A

further investigation into developing a more accurate Newton-type method as outlined

in section 4.3.2 in future works would likely result in a method performing well for alloys

with any parameters.

4.3.3 Numerical Methods

Besides dealing with a system of nonlinearly coupled partial differential equations the

simulation of the multialloy solidification also poses several big challenges from a more

“technical” point of view. First of all, the solidification front evolves in time and un-

dergo very large transformations (e.g., from a planar front into a forest of dendritic

structures). Second, the solution of PDEs for the temperature and concentration fields

171



10 0 10 2 10 4 10 6

Wavenumber

0

1

2

3

4

5

A
m

pl
ifi

ca
tio

n 
fa

ct
or

Fixed-Point
Approximate Newton

(a)

0 0.2 0.4 0.6 0.8 1
Amplification factor

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n 
of

 c
as

es

(b)

Figure 4.2: Results of linear stability analysis of the fixed-point and approximate Newton
iterations: (a) Dependence of the amplification factor on the perturbation’s wavenumber;
(b) Cumulative fraction of cases observed in the parameter sweep study with amplification
factors equal or less than a given one.

requires the imposition of Dirichlet and Robin boundary conditions and “jump” inter-

face conditions on this very irregular interface between liquid and solid phases. Third,

during the solidification of multicomponent alloys the solute-rejection phenomena leads

to the development of a steep solutal boundary layer ahead of the crystallization front.

It is crucial to accurately resolve such steep solutal boundary layers since they directly

influence the dynamics of the process. Similarly to [159], we address these challenges by

a combination of adaptive Cartesian quad-tree grids (to resolve steep gradients), Level-

Set Method (to describe the front and its evolution) and sharp numerical methods for

imposing boundary and interface conditions (to accurately solve BVPs). Specifically,

the present work is based on a second-order accurate Level-Set framework on adaptive

quadtree grids presented [100] and parallelized in [104] using scalable p4est grid man-

agement library [24].

172



Remark. Note that the proposed above Newton-type approach for solving the nonlin-

ear system of governing equations can also be implemented in other numerical frameworks

(e.g., interface-fitted finite element method).

Space discretization: Adaptive Quadtree grids

In order to efficiently address the multiscale nature of the solidification process without

compromising the accuracy of numerical approximations we employ adaptive Cartesian

quadtree grids to discretize the computational domain. Such grids are constructed using

a selective recursive refinement of rectangular cells into four smaller equal cells starting

from a root cell that represents the entire computational domain. Dimensions of cells

in such a grid are equal to (Lx × Ly) /2l, where (Lx × Ly) is the root cell’s size and l is

an integer called the level of refinement and which is equal to the number of refinements

necessary to make to obtain a given cell from the root cell. Usually the resolution of

quad-tree grids is specified by the minimum and maximum levels of refinement, lmin and

lmax, that grid cells can have. Fig. 4.3 (a) illustrates the construction process and the

concept of the refinement level for cells.

The spatially adaptive structure of a quad-tree grid allows to create high densities

of computational nodes in areas where the finest resolution is needed while keeping the

grid relatively coarse outside of such regions. Specifically, in this work we construct the

computational grid such that in the band of width B around the solidification front every

grid cell is refined to the highest level lmax, while any cell outside of this band is refined

if the Kth fraction of its diagonal is greater than the distance from that cell to the band.

173



Level 0

Level 1

Level 2

Level 3

Level 4

(a) (b)

Figure 4.3: (a) illustration of the hierarchical structure of a quad-tree grid. (b) example
of adaptive mesh refinement using Cartesian quad-tree grids and the refinement criterion
used in this work in case of a circular interface for lmin = 3, lmax = 6, and K = 1.4.

Mathematically this criterion can be expressed as: a grid cells C is refined if

min
r∈C
|dist(r)| < B +Kdiag(C) (4.36)

This simple refinement criterion creates a computational grid with a band of the most

finest grid cells with l = lmax around the solidification front that gradually coarsen to

cells with l = lmin away front the front (see Fig. 4.3 (b)). Such a refinement strategy is

adequate for simulating solidification processes considered in this work since the steepest

gradients are expected in the vicinity of interface Γ. In this work we use parameters

B = 2 and K = 1.

We choose to represent spatial fields by their values at corners of grid cells. Such

a choice allows an easy calculation of first and second Cartesian derivatives as well as

interpolation of spatial fields as described in [102, 100].

174



Description of solidification front: Level-Set Method

In the Level-Set Method [121] the boundary of an irregular domain is implicitly defined by

the zero-isocontour of a Lipschitz-continuous function φ(r), called the level-set function,

such that it has one sign inside the domain and the opposite one outside of it. In this

work we set the level-set function φ(r) to be negative in the liquid phase and positive in

the solid phase (see Fig. 4.4), i.e:

φ(r) < 0 ∀ r ∈ Ωl ,

φ(r) = 0 ∀ r ∈ Γ,

φ(r) > 0 ∀ r ∈ Ωs .

Following the common practice we choose the level-set function to be the signed distance

to the interface Γ.

Ωs

Ωl

φ > 0

φ < 0

Γ

∂Ω

Ωl

Ωs

φ < 0

φ > 0

Γ

∂Ω

Figure 4.4: Illustration of representing irregular domains by the Level-Set Method on
examples of crystal growth from a seed (left) and directional solidification (right).

Among advantages of the Level-Set Method is that it provides an easy way to compute

such geometric quantities of an interface as the normal vector and its mean curvature:

175



n = ns = −nl = − ∇φ
|∇φ|

,

H = −∇ · n = ∇ · ∇φ
|∇φ|

.

The evolution of a interface represented by a level-set function φ(r) in a velocity field

v is described by a simple advection equation:

∂tφ+ v · ∇φ = 0. (4.37)

We use a second-order accurate semi-Lagrangian method to solve the above equation.

That is, the value of the level-set functions φn(rJ) at a location rJ and time instant tn

is computed as the value of the level-set function at time instant tn−1 at the departing

point rd of the characteristic that passes through point (rJ , tn):

φn(rJ) = φn−1(rd),

where the departure point rd is computed by tracing the characteristic backward in time

using the midpoint rule as described, e.g., in [100].

To restore the signed distance property of the level-set function, which usually dete-

riorates during advection steps, we solve the reinitialization equation until steady state

after each advection step:

∂τφ
n(τ, r) + sgn(φn(0, r))(|∇φn(τ, r)| − 1) = 0, (4.38)

where τ is a fictitious time and sgn is the signum function. Specifically, we employ a

176



method based on using the Godunov Hamiltonian for discretization of |∇φ|, TVD RK-2

time-stepping scheme and the sub-cell fix of [135] as described in [100].

During the course of simulation the solidification front may evolve in such a way

that it leads to significantly under-resolved geometries. A typical situation is the slow

solidification of narrow inter-dendritic gaps. The poor resolution by computational grid

of such regions may cause an unstable behavior of the computational scheme. To avoid

such issues after each motion of the front underresolved region (if any) are regularized as

described in 4.D.

Solving BVPs

The advantages of using adaptive grids and the level-set method come at price of (1)

discretizing PDEs on complex nonuniform grid structures and (2) imposing boundary

conditions on implicitly defined interfaces that cut through grid lines arbitrary. We note,

however, that the refinement criterion used in this work ensures that the computational

grid is locally uniform near the solidification front, thus, nonuniform node arrangements

(such as T-junctions and missing neighbors) are present only away from it and one needs

to deal with the two tasks separately. Specifically, to for discretization of Poisson-type

equations (4.12)-(4.19) on adaptive quadtree structures we use the second-order accurate

approach of [102]. Dirichlet boundary conditions (for C1) are imposed using the Shortley-

Weller method [147]. Robin boundary conditions (for {CJ}NJ=2) are imposed using the

finite volume method described in [18]. Finally, to impose jump conditions (for {Tν}ν=s,l)

we use a finite-volume approach of [19]. All the aforementioned numerical methods reduce

177



to the standard five-point discretization on uniform grids and away from the solidification

front. This allows their seamless combination on adaptive Cartesian grids provided grids

are locally uniform in the vicinity of boundaries and interfaces.

After solving each BVP, its numerical solution is smoothly extended across the in-

terface Γ. This simplifies the calculation of the front’s velocity (4.21) and also defines

valid values at grid points near interface that will become part of solution domain during

next time step. Specifically, we use the PDE-based quadratic extension presented in [16].

This approach consists in computing the first and second order Cartesian derivatives

q = ∇u and Q = ∇∇u of a given spatial field u inside the domain where u is well-

defined followed by the hierarchical extension of these quantities as well as the numerical

values of u themselves to grid nodes outside of the domain by solving the following three

advection-type equations until steady state one after another:

∂τQ+ χ∇∇

(
∇Q

)
· n = 0,

∂τq + χ∇

(
∇q −Q

)
· n = 0,

∂τu+ χ (∇u− q) · n = 0,

where τ is a fictitious time and χ, χ∇ and χ∇∇ denote characteristic functions representing

grid nodes which did not contain valid values of u, ∇u and ∇∇u, correspondingly. The

above advection-type equations are solved using an explicit upwind scheme (see [16] for

details).

178



Determining time-step

From the point of view of accuracy it is reasonable to select the time step such that the

solidification front advances no more than a predefined fraction fCFL of the smallest cell

size. From the point of view of stability one has to choose the time step small enough to

satisfy the stability constraint due to an explicit discretization of the curvature dependent

evolution of the solidification front. In case of the solidification of pure materials such

a criterion has the form (see [73]) ∆tcrit = B (∆x)
3
2 , where constant B depends on

parameters of the problem but not on the mesh size ∆x. For the problem at hand we

expect a similar dependence, however we do not attempt to analytically establish such

a relation and simply find the critical time step ∆tcrit by a trial and error approach for

each run. The overall value of the time step is thus given by:

∆tn = min

(
fCFL

∆x

maxr∈Γ(vnn)
,∆tcrit

)
(4.39)

In numerical experiments presented in this work we use fCFL = 0.4 unless stated other-

wise.

Composition of the solid phase

The mathematical model of the solidification process presented in this work assumes

infinitely slower transport of solutes within the solid phase compared to the liquid phase

(which is a good approximation for typical metal alloys), as result the solid phase’s

composition has no influence on the evolution of the crystallization front. While it is

179



not necessary to solve for and keep track of concentration fields inside the solid phase

{Cs
J(t, r)}NJ=1 for simulating the solidification process, such information is of greatest

importance for the analysis of resulting crystals.

Assuming negligible diffusion in the solid, the governing equations for solutes’ con-

centrations can be formally written as:

{
∂tC

s
J = 0, in Ωs ,

Cs
J = kJClJ , on Γ.

, J ∈ [1, N ]

In other words, once the alloy at a point in space r∗ ∈ Ω has crystallized at

some time t = t∗, that is, r∗ ∈ Γ(t∗), its compositions at this point, given by

{Cs
J(t, r∗) = kJClJ(t∗, r∗)}NJ=1, stays unchanged for t > t∗.

Our numerical method for determining the solid composition mimics this behavior.

Specifically, after each motion of the solidification front, for each grid node rp belonging

to the solid phase, i.e, rp ∈ Ωs , it is checked whether the phase transition happened

during the last front’s movement, that is, whether φn(rp) > 0 and φn−1(rp) < 0. If so,

the time moment of the phase transition at node rp is approximated as:

t(p)∗ = tn−1 +
|φn−1|

|φn−1|+ |φn|
∆tn,

which is used to estimate interface Γ composition when it travels across the grid node:

CsJ = kJClJ(t(p)∗ ) = kJ

(
tn − t(p)∗

∆tn
Cn−1

lJ +
t
(p)
∗ − tn−1

∆tn
Cn

lJ +O
(
∆t2
))

,

where we used a linear interpolation between time instants tn−1 and tn to compute

180



ClJ(t
(p)
∗ ). Once the solid’s composition is obtained at a “just solidified” grid node it

is stored unchanged for the remaining of a simulation run. In addition to the com-

position values we also compute and store such quantities of the front as the normal

velocity, temperature, curvature, orientation at the moment of crystallization to obtain

a comprehensive information about the process.

Since there is no species transport in the solid any frozen steep concentration gradients

persist in time even when the solidification front has moved significantly far (in some sense

concentration profiles in the solid phase remember the history of all front’s locations).

Thus the simple refinement strategy used for simulating the dynamics of the solidification

process, namely, a very fine grid near interface Γ that coarsens away from it, is not

adequate for representing composition fields in the solid. We address this issue by having

a second grid which is refined to lmax everywhere in Ωs for storing values of {Cs
J}

N
J=1.

Because no other mathematical operations are performed on this grid such an approach

has negligible effect on the overall computational time.

4.3.4 Overall simulation procedure

The overall computational procedure for simulating the multialloy solidification can be

summarized in the following way:

1. Set n = 0 and t0 = 0.

2. Provide initial conditions for the front’s shape Γ0 and velocity v0
n, temperature field

{T 0
ν }ν=l ,s , and concentration fields {C0

J}
N
J=1.

181



3. Set n← n+ 1.

4. Compute time step ∆tn according to (4.39) and set tn = tn−1 + ∆tn.

5. Advance solidification front Γn−1 → Γn by solving (4.37).

6. Refine/coarsen computational grid according to (4.36).

7. Reinitialize the level-set function by solving (4.38) to restore the signed-distance

property.

8. Compute properties of the just solidified material as described in section 4.3.3.

9. Solve nonlinear system of equations (4.12)-(4.19) for {T nν }ν=l ,s , {Cn
J }

N
J=1 and vnn

using Algorithm 2 and initial guess C∗1
(0) = Cn−1

1 .

10. If tn < tfinal, go to step 3.

4.4 Results

In this section we present a number of simulation related to solidification of a Co-W-Al

alloy with initial composition C∞W = 10.7 at% and C∞Al = 9.4 at% studied experimentally

in [165]. First, we present tests for validation of the computational approach and then

analyze the solutal segregation during the directional solidification. The parameters of the

alloy are selected in the following way. The density, heat capacity, thermal conductivity

and latent heat of fusion are estimated as weighted averages of those of pure elements:

ρl = ρs = 9.24 ·10−3 kg ·cm−3, cpl = cps = 356 J ·kg−1 ·K−1, λl = λs = 1.3 W ·cm−1 ·K−1,

182



Lf = 2590 J · cm−3. Parameters of the kinetic and curvature undercoolings are taken as

ε = 0, εc = 10−5 cm, and εv = 5 · 10−2 s · cm−1. Solutes diffusivities are set to DW = 10−5

cm2 · s−1, DAl = 2 · 10−5 cm2 · s−1. The dependence of the liquidus surface and partition

Figure 4.5: Phase-diagram of Co-W-Al as predicted by the PANDATTMdatabase and
polynomial approximations used in this work.

coefficients on the alloy composition are approximated by the fourth-order polynomials

∆TC(CW, CAl) =
4∑
p=0

p∑
q=0

a∆T
p−q,qC

p−q
W Cq

Al,

kW(CW, CAl) =
4∑
p=0

p∑
q=0

aW
p−q,qC

p−q
W Cq

Al,

kAl(CW, CAl) =
4∑
p=0

p∑
q=0

aAl
p−q,qC

p−q
W Cq

Al,

fitted to data obtained from the PANDATTMdatabase (see Figure 4.5).

4.4.1 Validation of the numerical approach: Axisymmetric sta-

ble solidification

To validate the proposed computational approach we consider the problem of an axisym-

metric solidification of a ternary alloy in the infinite domain due to a line sink, which

183



has an analytical similarity solution (see 4.E) in the case of absence of kinetic and cur-

vature undercooling effects, that is, εc = 0 and εv = 0. In order to avoid the necessity

of simulating a singular heat source and an infinite domain, we confine the solidification

process into an annular region with the internal radius rin = 0.1L and external radius

rout = 0.45L, impose on boundaries of this region Dirichlet boundary conditions for

the heat and concentration fields based on the analytical solution, and set the starting

position of the solidification front at rstart = 0.2L, where L = 0.02 cm denotes the simu-

lation scale. We select the analytical solution that satisfies the following conditions: at

the infinity concentration of solutes approaches the nominal alloy composition, that is,

C∞W = 10.7 at% and C∞Al = 9.4 at%; the normal front’s velocity at the initial moment is

equal to v0
n = 0.01 cm/s; and the ratio of the compositional to thermal gradients at the

solidification front is M0 = 0.75 (see 4.E for details).

Figure 4.6 illustrates simulation results for the distribution of W in the solid and

liquid phases at several moments of time.

Figure 4.6: Visualization of the W concentration field obtained in the case of axisymmetric
solidification at several moments of time.

Figure 4.7 shows the convergence of the Newton-type approach to the Gibbs-Thomson

condition during a single time step and the deviation from the Gibbs-Thomson condition

for all time steps on a 128 × 128 computational grid. As one can see the proposed

184



approach is able to maintain the error in satisfying interface conditions under 10−5 K

throughout the entire course of simulation.

Figure 4.7: Performance of the proposed approximate Newton method in the case of stable
axisymmetric solidification. Left: convergence to the Gibbs-Thomson condition during
one time step. Right: deviation from the Gibbs-Thomson condition at all time steps.

The accuracy analysis for the temperature field, concentration fields, front’s velocity

and position is presented in Figure 4.8. The error of each quantity is defined as the

maximum error in the L∞-norm occurred throughout the entire course of simulation. The

observed convergence rates are close to 2, which is consistent with the fact that second-

order accurate numerical methods are used in all components of the overall computational

approach.

Figure 4.8: Overall accuracy of the computational method in the case of stable axisym-
metric solidification

185



4.4.2 Directional solidification of a Co-W-Al ternary alloy

In this example we demonstrate the robustness of the proposed approach under different

solidification regimes. In order to simulate the directional solidification of the Co-W-Al

alloy, we consider a rectangular computational domain periodic in the x direction and

having dimensions L×10L, where L is the scale of the simulation domain. The solidifica-

tion front travels along the positive y direction. The processing conditions are modeled by

imposing thermal fluxes at the top and bottom boundaries of the computational domain,

such that

λl∂nTl = λlGT , y = 10L,

λs∂nTs = −λlGT + V
(
Lf + ρlcplGT (10L)

)
, y = 0.

where GT is desired temperature gradient and V has the meaning of the approximate

front velocity if the solidification were to occur in the planar regime. As the initial

conditions we take a planar solidification front traveling upwards with the velocity V

with temperature and concentration fields satisfying:

CW = C∞W +
1− kW

kW

exp

(
− V

DW

(y − y0)

)
,

CAl = C∞Al +
1− kAl

kAl

exp

(
− V

DAl

(y − y0)

)
,

Tl = Tliq

(
C∞W
kW

,
C∞Al

kAl

)
+
αl

V
GT

(
1− exp

(
−V
αl

(y − y0)

))
,

Ts = Tliq

(
C∞W
kW

,
C∞Al

kAl

)
+
αl

V

(
λl
λs
GT +

V Lf
λs

)(
1− exp

(
−V
αl

(y − y0)

))
,

where y0 = 0.1L is the initial front’s location.

186



Figure 4.9 shows the obtained crystallized microstructures in the case L = 0.04 cm,

V = 0.01 cm/s, and GT in the range from 100 K/cm to 5000 K/cm while Figure 4.10

demonstrates corresponding numerical deviations from the Gibbs-Thomson condition for

each time step. Despite a very high complexity of the front evolution the proposed

computational method is able to maintain the maximum deviation at the level around

10−2 K and the average deviation at the level of 10−4-10−3 K.

Figure 4.9: Solidification microstructures obtained for L = 0.04 cm, V = 0.01 cm/s, and
GT =100 K/cm, 250 K/cm, 500 K/cm, 1000 K/cm, 2500 K/cm, and 5000 K/cm (left
to right). Displayed in color is the concentration field of W.

Figure 4.10: Maximum and average deviation (in K) from the Gibbs-Thomson conditions
for all time steps during simulation runs corresponding to shown in Figure 4.9

187



4.4.3 Analysis of solutal segregation

Now we turn our attention to analyzing the dependence of solutal segregation on process-

ing conditions and alloy parameters. In order to characterize concentration distributions

inside the solidified material we apply a similar procedure to the one used in experimental

studies: we sample concentration fields in the region form 1.8L to 2.0L and apply the

sorting procedure based on the concentration of Co. Each sampling point is assigned

a value of the solid fraction from 0 to 1 based on its ranking in the sorted array. To

account for the fact that in numerical simulations the interdendritic region remains not

completely solidified due to a finite computational time we directly compute the solid

fraction in the region from 1.8L to 2.0L at the end of simulations, which corresponds

to the maximum solid fraction achieved, and the originally assigned values of the solid

fraction are then scaled by the computed quantity. Figure 4.11 demonstrates the con-

centration profiles for both solutes W and Al in cases of different solidification regimes

corresponding to the ones presented in 4.9. First, one can note that up until the value of

solid fraction of approximately 0.3, which corresponds to the cores of dendrites or cells,

the obtained concentration profiles rise very slowly at an nearly constant concentration

level. This indicates that the cores of dendrites/cells have a nearly uniform concentration

distribution with the value that depends on the growth regime. From figure 4.11 it can

be seen this concentration value varies rapidly from the planar regime to the cellular

one, however, with a further transition into the dendritic regime this value very quickly

saturates and remains the same and independent of the imposed thermal gradient. This

188



can be explained by the fact that dendritic tips become more isolated from each and

their growth becomes almost independent. Sections of concentration profiles beyond the

value of solid fraction of 0.3 corresponds to the growth of the side branches. As one can

see the rate of concentration growth with respect to solid fraction is much higher than

in the preceding section and strongly depends on the value of imposed thermal gradient.

The more unstable is the growth regime (the lower temperature gradient) the higher is

the tip velocity of side branches, which allows them to penetrate into regions with lower

concentration levels and, thus, the observed rate of concentration rise is lower. Finally,

at a certain value of solid fraction (different for each processing conditions) the concen-

tration in the interdendritic region starts to rise rapidly causing the further solidification

in this region to become very slow, compared to the tip velocity of primary dendrites. A

further investigation of this stage requires much longer computational times and will be

performed in future works.

Solid Fraction Solid Fraction

Figure 4.11: Segregation profiles for W (left) and Al (right) for different processing con-
ditions

Next we investigate the influence of solutes’ diffusivity on the segregation behavior.

189



(a) GT = 100 K/cm (b) GT = 250 K/cm

(c) GT = 500 K/cm (d) GT = 1000 K/cm

Figure 4.12: Visualization of simulated microstructures and concentration distributions
of W for diffusivity ratios DAl/DW = 1, DAl/DW = 2, and DAl/DW = 4 (left to right in
each subfigure).

Specifically, we keep the diffusivity of W unchanged DW = 10−5 while varying the diffu-

sivity of Al from DAl = 1 to DAl = 2 to DAl = 4. Figure 4.12 illustrates the obtained

microstructures and concentration distributions for each of the values of diffusivity ratio

190



in different growth regimes. Comparing these results with figure 4.9, one can conclude

that increasing the diffusivity of the third alloy component has an effect similar to in-

creasing the imposed thermal gradient. Specifically, the interdendritic region solidifies

faster and side branches are coarser. This can be explained by the fact that the higher

diffusivity of Al allows this component to escape the interdendritic region faster, thus

lowering the effective crystallization temperature. Figures 4.13-4.16 show the depen-

dence of concentration profiles for each considered ratio of solutal diffusivities. As one

can see the concentration profiles are changed only very slightly and likely due to the

aforementioned changes in solidified microstructures.

Figure 4.13: Dependence of segregation profiles for W (left) and Al (right) on the ratio
of solutal diffusivities in the case GT = 100 K/cm.

Figure 4.14: Dependence of segregation profiles for W (left) and Al (right) on the ratio
of solutal diffusivities in the case GT = 250 K/cm.

191



Figure 4.15: Dependence of segregation profiles for W (left) and Al (right) on the ratio
of solutal diffusivities in the case GT = 500 K/cm.

Figure 4.16: Dependence of segregation profiles for W (left) and Al (right) on the ratio
of solutal diffusivities in the case GT = 1000 K/cm.

4.5 Conclusion

In this chapter we have presented a computational method for the simulation of multialloy

solidification. This method is based on a novel Newton-type approach for solving the

nonlinearly coupled system of PDEs describing the solidification processes. The numerical

implementation employs adaptive Cartesian quadtree grids, the Level Set method, and a

combination of finite-volume and finite-difference schemes for solving PDEs in irregular

domains. In validation tests involving stable axisymmetric solidification the presented

method demonstrated second order of accuracy. Finally, the directional solidification of a

Co-Al-W alloy was considered and the dependence of the solute segregation on processing

192



conditions and alloy parameters was analyzed.

The further development of the presented numerical method will include addition of

convective effects and remelting processes. Additionally, alternative Newton-type proce-

dures based on solving (4.26) more accurately, e.g. using the Fourier transform, will be

investigated.

193



4.A Functional derivative with respect to δC∗1

Consider a generic functional F defined as an integral of some function ζ(r) over interface

Γ:

F =

∫
Γ

ζ(r) dΓ, (4.40)

where function ζ(r) is a combination of solutions {CJ}NJ=1, {Tν}ν=s,l , and vn to BVPs

(4.20)-(4.23). In the case considered in this work:

ζ(r) = δ(r − r0)E(r)

= δ(r − r0)(Tl(r)− hG(r)− Tliq(C1(r), . . . , CN(r))− εvvn(r)).

The deferential of F with respect to C∗1 can be obtained using a Lagrange multiplier

approach. “Constraints” (4.20)-(4.23) can be incorporated into a Lagrangian in different

ways. One approach is to treat every equations from (4.20)-(4.23) as a separate constraint.

Another approach is to first obtain variational formulations of BVPs (4.20)-(4.23) and

then use them in the Lagrangian definition. For sufficiently regular functions, the two

approaches are equivalent and, roughly speaking, merely define the order of mathemat-

ical operations and number of Lagrange multipliers (the latter approach introduces less

multipliers since for each BVP several equations, namely, a PDE and BCs, are combined

into a single constraint, a variational form of BVP). For its conceptual simplicity, we

employ the former approach. That is, we formally define a Lagrangian as:

194



L = F +
∑
ν=s,l

{
ωTν · (PDE for Tν) + βTν · (BC for Tν on ∂Ω)

}
+ γT · (Cond for [T ] on Γ) + γS · (Cond for [λ∂nT ] on Γ)

+
N∑
J=1

{
ωCJ · (PDE for CJ) + γCJ · (BC for CJ on Γ) + βCJ · (BC for CJ on ∂Ω)

}
+ γv · (Equation for vn) (4.41)

where {ωTν , βTν}ν=s,l , γT , γS, {ωCJ , γCJ , βCJ}
N
J=1, and γv are Lagrange multipliers. Note

that these multipliers are functions of spatial variables with dimensionalities correspond-

ing to constraints they enforce, that is, ωTl and {ωCJ}
N
J=1 are defined in Ωl ; ωTs is defined

in Ωs ; γT , γS, {γCJ}
N
J=1, and γv are defined on Γ; βTl and {βCJ}

N
J=1 are defined on ∂Ω∩Ωl ;

finally, βTs is defined on ∂Ω ∩ Ωs . Then the differential of F is equal to a variation of L

with respect to C∗1 :

dF = δC∗1L =

∫
Γ

δL
δC∗1

(r)δC∗1(r) dΓ,

provided the following conditions are satisfied:

δωTνL = 0 ∀ δωTν , ν = s , l , δTνL = 0 ∀ δTν , ν = s , l ,

δωCJL = 0 ∀ δωCJ , J ∈ [1, N ] , δCJL = 0 ∀ δCJ , J ∈ [1, N ] ,

δγvL = 0 ∀ δγv. δvnL = 0 ∀ δvn,
δγCJL = 0 ∀ δγCJ , J ∈ [1, N ] ,

δγTL = 0 ∀ δγT ,
δγSL = 0 ∀ δγS,
δβTνL = 0 ∀ δβTν , ν = s , l ,

δβCJL = 0 ∀ δβCJ , J ∈ [1, N ] ,

(4.42)

195



Conditions from the left column above ensure that “constraints” for {CJ}NJ=1, {Tν}ν=s,l

and vn are satisfied, while conditions from the right column give equations for Lagrange

multipliers.

The explicit expression for the Lagrangian can be written as:

L =

∫
Γ

ζ(r) dΓ

+
∑
ν=s,l

{∫
Ων

PDE for Tν︷ ︸︸ ︷(
sνTν − λν∇2Tν − fTν

)
ωTν dΩ +

∫
∂Ω∩Ωl

BC for Tν︷ ︸︸ ︷
(λν∂nνTν − gTν )βTν dΓ

}
+

∫
Γ

(Ts − Tl − hT )︸ ︷︷ ︸
Cond for [T ]

γT dΓ +

∫
Γ

(λs∂nsTs + λl∂nlTl − Lvn − hS)︸ ︷︷ ︸
Cond for [λ∂nT ]

γS dΓ

+
N∑
J=1

{∫
Ωl

(
aCJ −DJ∇2CJ − fCJ

)︸ ︷︷ ︸
PDE for CJ

ωCJ dΩ +

∫
∂Ω∩Ωl

(DJ∂nlCJ − gCJ )︸ ︷︷ ︸
BC for CJ on ∂Ω

βCJ dΓ

}

+

∫
Γ

(C1 − C∗1)︸ ︷︷ ︸
BC for C1 on Γ

γC1 dΓ +
N∑
J=2

∫
Γ

(DJ∂nlCJ − (1− kJ)vnCJ − hCJ )︸ ︷︷ ︸
BC for CJ on Γ

γCJ dΓ

+

∫
Γ

(D1∂nlC1 − (1− k1)vnC1 − hC1)︸ ︷︷ ︸
Equation for vn

γv dΓ

Taking variations of the Lagrangian with respect to multipliers {ωTν , βTν}ν=s,l , γT , γS,

{ωCJ , γCJ , βCJ}
N
J=1, and γv, it is trivial to confirm that conditions from the left column

of (4.42) lead to equations (4.20)-(4.23).

Variations with respect to {CJ}NJ=1, {Tν}ν=s,l and vn are equal to:

196



δC1L =

∫
Γ

ζ ′C1
δC1 dΓ

+

∫
Ωl

(
aδC1 −D1∇2δC1

)
ωC1 dΩ +

∫
∂Ω∩Ωl

βC1D1∂nlδC1 dΓ

+

∫
Γ

(γC1 − (1− k1)vnγv) δC1 dΓ +

∫
Γ

γvD1∂nlδC1 dΓ,

δCJL =

∫
Γ

ζ ′CJ δCJ dΓ

+

∫
Ωl

(
aδCJ −DJ∇2δCJ

)
ωCJ dΩ +

∫
∂Ω∩Ωl

βCJDJ∂nlδCJ dΓ

−
∫

Γ

γCJ (1− kJ)vnδCJ dΓ +

∫
Γ

γCJDJ∂nlδCJ dΓ, i = 2, . . . , N,

δTsL =

∫
Γ

ζ ′TsδTs dΓ

+

∫
Ωs

(
ssδTs − λs∇2δTs

)
ωTs dΩ +

∫
∂Ω∩Ωs

βTsλs∂nsδTs dΓ

+

∫
Γ

γT δTs dΓ +

∫
Γ

γSλs∂nsTs dΓ,

δTlL =

∫
Γ

ζ ′TsδTs dΓ +

∫
Ωl

(
slδTl − λl∇2δTl

)
ωTl dΩ +

∫
∂Ω∩Ωl

βTlλl∂nlδTl dΓ

−
∫

Γ

γT δTl dΓ +

∫
Γ

γSλl∂nlTl dΓ,

δvnL =

∫
Γ

(
ζ ′vn − (1− k1)C1γv −

N∑
J=2

(1− kJ)CJγCJ − LγS

)
δvn dΓ,

where ζ ′Tν , ζ
′
CJ

and ζ ′vn denote classical partial derivatives of function ζ with respect to Tν ,

CJ and vn, correspondingly. Using the Green’s second identity the first four expressions

can be transformed into:

197



δC1L =

∫
Ωl

(
aωC1 −D1∇2ωC1

)
δC1 dΩ

+

∫
∂Ω∩Ωl

(βC1 − ωC1)D1∂nlδC1 dΓ +

∫
∂Ω∩Ωl

D1∂nlωC1δC1 dΓ

+

∫
Γ

(
γC1 − (1− k1)vnγv +D1∂nlωC1 + ζ ′C1

)
δC1 dΓ

+

∫
Γ

(γv − ωC1)D1∂nlδC1 dΓ,

δCJL =

∫
Ωl

(
aωCJ −DJ∇2ωCJ

)
δCJ dΩ

+

∫
∂Ω∩Ωl

(βCJ − ωCJ )DJ∂nlδCJ dΓ +

∫
∂Ω∩Ωl

DJ∂nlωCJ δCJ dΓ

+

∫
Γ

(
DJ∂nlωCJ − (1− kJ)vnγCJ + ζ ′CJ

)
δCJ dΓ

+

∫
Γ

(γCJ − ωCJ )DJ∂nlδCJ dΓ, i = 2, . . . , N,

δTsL =

∫
Ωs

(
ssωTs − λs∇2ωTs

)
δTs dΩ

+

∫
∂Ω∩Ωs

(βTs − ωTs )λs∂nsδTs dΓ +

∫
∂Ω∩Ωs

λs∂nsωTsδTs dΓ

+

∫
Γ

(
γT + λs∂nsωTs + ζ ′Ts

)
δTs dΓ +

∫
Γ

(γS − ωTs )λs∂nsTs dΓ,

δTlL =

∫
Ωl

(
slωTl − λl∇2ωTl

)
δTl dΩ

+

∫
∂Ω∩Ωl

(βTl − ωTl )λl∂nlδTl dΓ +

∫
∂Ω∩Ωl

λl∂nlωTlδTl dΓ

+

∫
Γ

(
−γT + λl∂nlωTl + ζ ′Tl

)
δTl dΓ +

∫
Γ

(γS − ωTl )λl∂nlTl dΓ,

It is easy to see now that conditions from the right column of (4.42) lead to the following

equations for Lagrange multipliers:

198





(
a−D1∇2

)
ωC1 = 0 in Ωl

ωC1 = γv on Γ

D1∂nlωC1 = 0 on ∂Ω ∩ Ωl

γC1 = (1− k1)vnγv − ζ ′C1
−D1∂nlωC1 on Γ

βC1 = ωC1 on ∂Ω ∩ Ωl

(
a−DJ∇2

)
ωCJ = 0 in Ωl

DJ∂nlωCJ − (1− kJ)vnγCJ = −ζ ′CJ on Γ

DJ∂nlωCJ = 0 on ∂Ω ∩ Ωl

γCJ = ωCJ on Γ

βCJ = ωCJ on ∂Ω ∩ Ωl

(
ss − λs∇2

)
ωTs = 0 in Ωs

ωTs = γS on Γ

λs∂nsωTs = −γT − ζ ′Ts on Γ

λs∂nsωTs = 0 on ∂Ω ∩ Ωl

βTs = ωTs on ∂Ω ∩ Ωs

(
sl − λl∇2

)
ωTl = 0 in Ωl

ωTl = γS on Γ

λl∂nlωTl = γT − ζ ′Tl on Γ

λl∂nlωTl = 0 on ∂Ω ∩ Ωl

βTl = ωTl on ∂Ω ∩ Ωl

γv =
1

(1− k1)C1

(
ζ ′vn −

N∑
J=2

(1− kJ)CJγCJ − LγS

)
on Γ

(4.43)

which after several eliminations and rearrangements can be expressed as:

199




(
sν − λν∇2

)
ωTν = 0 in Ων , ν = s , l

[ωT ] = 0 on Γ

[λ∂nωT ] = −
(
ζ ′Tl + ζ ′Ts

)
on Γ

λν∂nνωTν = 0 on ∂Ω ∩ Ων , ν = s , l


(
a−DJ∇2

)
ωCJ = 0 in Ωl

DJ∂nlωCJ − (1− kJ)vnωCJ = −ζ ′CJ on Γ

DJ∂nlωCJ = 0 on ∂Ω ∩ Ωl

γv =
1

(1− k1)C∗1

(
ζ ′vn −

N∑
J=2

(1− kJ)ωCJCJ − LωTl

)
on Γ


(
a−D1∇2

)
ωC1 = 0 in Ωl

ωC1 = γv on Γ

D1∂nlωC1 = 0 on ∂Ω ∩ Ωl

Finally, by taking variation of the Lagrangian with respect to C∗1 we obtain the full

differential of the cost functional:

dF = δC∗1L = −
∫

Γ

γC1δC
∗
1 dΓ,

or, after taking into account equations (4.43):

dF = δC∗1L =

∫
Γ

(
ζ ′C1

+D1∂nlωC1 − (1− k1)vnωC1

)
δC∗1 dΓ,

thus, the functional derivative of F with respect to C∗1 is

δF
δC∗1

= ζ ′C1
+D1∂nlωC1 − (1− k1)vnωC1 .

Note that for the functional considered in 4.3.2:

200



ζ ′Tl = δ(r − r0),

ζ ′Ts = 0,

ζ ′CJ = −∂∆TC
∂CJ

δ(r − r0),

ζ ′vn = −εvδ(r − r0).

4.B Directional derivative with respect to δC∗1

The expressions derived in 4.A predict the change in a functional in response to any

perturbation of C∗1 , however, they require solution of an adjoint system of PDEs for

every point on the boundary, which is hardly achievable in practice. Instead, sometimes

it is necessary to only know the derivative of a functional along a given perturbation in

C∗1 , e.g. as in the approximate Newton described in 4.3.2.

Let us again consider a generic functional F defined in (4.40). Let us consider system

of equations (4.20)-(4.23) for C∗1 and C∗1 + εδC∗1 , where ε � 1. It is easy to show that

solutions of (4.20)-(4.23) in these two cases are related to each other as:

CJ |C∗1+εδC∗1
= CJ |C∗1 + εΛCJ +O

(
ε2
)
, J ∈ [1, N ]

Tν |C∗1+εδC∗1
= Tν |C∗1 + εΛTν +O

(
ε2
)
, ν = s , l

vn|C∗1+εδC∗1
= vn|C∗1 + εΛvn +O

(
ε2
)
,

where {ΛCJ}
N
J=1, {ΛTν}ν=s,l , and Λvn satisfy the following adjoint system of equations:


(
a−D1∇2

)
ΛC1 = 0, in Ωl ,

ΛC1 = δC∗1 , on Γ,

D1∂nlΛC1 = 0, on ∂Ω ∩ Ωl .

201



Λvn =
1

(1− k1)C1

(D1∂nlΛC1 − vn(1− k1)ΛC1)


(
a−DJ∇2

)
ΛCJ = 0, in Ωl ,

DJ∂nlΛCJ − (1− kJ)vnΛCJ = (1− kJ)ΛvnCJ , on Γ,

DJ∂nlΛCJ = 0, on ∂Ω ∩ Ωl .


(
sν − λν∇2

)
ΛTν = 0 in Ων , ν = s , l

[ΛT ] = 0 on Γ

[λ∂nΛT ] = LfΛvn on Γ

λν∂nνΛTν = 0 on ∂Ω ∩ Ων , ν = s , l

Using this result the derivative of F in the direction δC∗1 can be computed as:

∫
Γ

δF
δC∗1

δC∗1 dΓ = lim
ε→0

1

ε

(
F|C∗1+εδC∗1

− F|C∗1
)

=

∫
Γ

(∑
ν=s,l

ζ ′TνΛTν +
N∑
J=1

ζ ′CJΛCJ + ζ ′vnΛvn

)
dΓ.

4.C Details of linear stability analysis of iterative

schemes for solving nonlinear system of PDEs

In the simple case of a planar geometry considered in section 4.3.2 the fixed-point and

approximate Newton iterations can be explicitly written as:

C∗1
(q+1)(x) = C∗1

(q)(x)− T
(q)
l (x, 0)−

∑N
J=1mlJC

(q)
J (x, 0)− hG(x)

ml1

, (4.44)

C∗1
(q+1)(x) = C∗1

(q)(x)− T
(q)
l (x, 0)−

∑N
J=1mlJC

(q)
J (x, 0)− hG(x)

ΛTl (x, 0)−
∑N

J=1 mlJΛCJ (x, 0)
. (4.45)

202



It is straightforward to show that the solution of (4.20)-(4.23) corresponding to a per-

turbed boundary concentration of the form

C∗1
(q) = C̃∗1 + rqδC exp(−iωxx)

can be found in the form:

C
(q)
J (x, y) = C̃J(y) + AJr

νδ0 exp(−iωxx) exp(−ΩJy) +O
(
δ2
C

)
, J ∈ [1, N ] ,

T (q)
ν (x, y) = T̃ν(y) +Bνr

νδ0 exp(−iωxx) exp(−Ωνy) +O
(
δ2
C

)
, ν = s , l

v(q)
n (x) = ṽn + Erνδ0 exp(−iωxx) +O

(
δ2
C

)
,

where ΩJ = ΩJ(ωx), J ∈ [1, N ], and Ων = Ων(ωx), ν = l , s , satisfy (4.35) and

E =
D1Ω1 − ṽn(1− k1)

(1− k1)C̃1(0)
,

AJ =

(
C̃J(0)

C̃1(0)

)(
1− kJ
1− k1

)(
D1Ω1 − ṽn(1− k1)

DJΩJ − ṽn(1− kJ)

)
, J = 1, . . . , N,

Bs = Bl =
Lf

(1− k1)C̃1(0)

D1Ω1 − ṽn(1− k1)

λsΩs + λlΩl

.

The adjoint system of equation (4.29)-(4.32) in this case has the solution:

203



Λ
(q)
C1

(x, y) = exp(−Ω1(0)y) +O (δC) ,

Λ(q)
v (x) =

D1Ω1(0)− (1− k1)ṽn

(1− k1)C̃1(0)
+O (δC) ,

Λ
(q)
CJ

(x, y) =

(
1− kJ
1− k1

)(
C̃J(0)

C̃1(0)

)(
D1Ω1(0)− (1− k1)ṽn
DlJΩJ(0)− (1− kJ)ṽn

)
exp(−ΩJ(0)y)

+O (δC) , J = 2, . . . , N

ΛTl =
Lf

(1− k1)C̃1(0)

D1Ω1(0)− ṽn(1− k1)

λsΩs(0) + λlΩl(0)
exp(−Ωl(0)y) +O (δC) ,

ΛTs =
Lf

(1− k1)C̃1(0)

D1Ω1(0)− ṽn(1− k1)

λsΩs(0) + λlΩl(0)
exp(Ωs(0)y) +O (δC) .

Note that it is not necessary to obtain linear correction while solving the adjoint system

of equations because

T
(q)
l (x, 0)−

N∑
J=1

mlJC
(q)
J (x, 0)− hG(x) = O (δC)

Substitution of the above expressions into (4.44) produces amplification factors (4.33)

and (4.34)

4.D Removing extremely underresolved regions

In order to ensure the robustness of numerical simulations we use the following two-pass

strategy that regularize underresolved geometries.

During the first pass, narrow gaps of liquid material of the size less than two grid

spacings are “bridged”. Specifically, we compute an auxiliary level-set function φaux as

the signed distance to the φn = −∆x isocontour of the original level-set function φn and

204



shift it back by ∆x. In the case when the geometry is sufficiently resolved, φaux and φn

have coinciding signs on all grid nodes and very close in values. In the case when narrow

regions of liquid material of width less than 2∆x are present φaux and φn will have different

signs on grid nodes in such regions (more precisely, φaux > 0 and φn < 0). Substituting

values of φn with values of φaux effectively eliminates such too narrow regions. Note that

φn remains unchanged whenever the front’s geometry is sufficiently resolved.

Ωs

Ωl

(a)

Ωs

Ωl

Ωl

(b)

Ωs

Ωl

(c)

Figure 4.17: Illustration of the procedure used for removing extremely under-resolved
regions of liquid: (a) identification of grid nodes at which locally distinct parts of Ωs are
separated just by a single node; (b) “bridging” narrow liquid gaps at such grid nodes;
(c) identification and “solidification” of liquid pools left behind by the previous step.

During the second pass, isolated pools of liquid created as a result of such “bridging”

procedure are identified and “solidified” as well (if any). The identification of isolated

pools on distributed computational grids is done using the parallel “island counting”

algorithm described in [107].

We have observed that such a procedure ensures an excellent robustness of the com-

putational scheme across all crystal growth regimes. It is especially useful for simulating

the cellular regime and its transition to the planar one.

205



4.E Similarity solution for the solidifying infinite

cylinder due to a heat sink

Let us consider the axisymmetric solidification of an infinite cylinder from a line heat sink

of strength Q located at the cylinder’s center into an infinite liquid alloy of composition

{C∞J }
N
J=1 and temperature T∞. In this case spatial distributions of temperature Tν =

Tν(t, r), ν = s , l , and concentrations ClJ = ClJ(t, r), J ∈ [1, N ], are only functions of

time t and distance from the cylinder’s center r, which without loss of generality can

be assumed at r = 0. In addition to assumption made in section 4.2, further assume

that the constitutional undercooling has a linear dependence on the composition (Tliq =

Tm +
∑N

J=1mlJClJ), the kinetic and curvature undercoolings are negligible (εc = εv = 0)

and partition coefficients {ki}NJ=1 are constant. Denote the cylinder’s radius as R(t).

Mathematically such a problem can be formulated as:

206



Governing equations:

Heat transport: ρscps∂tTs − λs∇
2Ts = 0 for 0 < r < R(t),

ρlcpl∂tTl − λl∇
2Tl = 0 for R(t) < r <∞,

Species transport: ∂tClJ −DlJ∇2ClJ = 0 for R(t) < r <∞,
J ∈ [1, N ]

Interface conditions:

Temperature continuity: [T ] = 0,

Stefan condition: [λ∂rT ] = vnL,

Gibbs-Thomson: Tl = Tm +
N∑
J=1

mlJCJ ,

Solute-rejection: DlJ∂rCJ = −(1− kJ)vnCJ , J ∈ [1, N ] ,

Boundary conditions:

Line source: lim
r→0

(2πrλs∂rTs) = Q,

Temperature: lim
r→∞

Tl = T∞,

Composition: lim
r→∞

ClJ = C∞J , J ∈ [1, N ] ,

Initial conditions:

Front location: R|t=0 = 0,

Temperature: Tl |t=0 = T∞,

Composition: ClJ |t=0 = C∞J , J ∈ [1, N ] ,

(4.46)

where the same notation as in section 4.2 is used. Note that in the axisymmetric case

the Laplace operator has the form:

∇2 =
1

r
∂r (r∂r) .

It can be shown that similarly to other Stefan-type problems the considered problem

admits a similarity solution of the form:

207



R(t) = 2
√
θt,

vn(t) =

√
θ

t
,

Ts(t, r) = As +BsE1

(
r2

4αst

)
,

Tl(t, r) = Al +BlE1

(
r2

4αl t

)
,

ClJ(t, r) = AJ +BJE1

(
r2

4DlJt

)
, J ∈ [1, N ] ,

(4.47)

where αs = λs
ρscps

, αl = λl
ρlcpl

are thermal diffusivities and E1 denotes the exponential

integral:

E1(z) =

∫ ∞
x

e−s

s
ds, z > 0.

Indeed, using direct substitution one can show that (4.47) is the solution to (4.46) pro-

vided the values of constants As, Bs, Al, Bl, AJ , BJ , J ∈ [1, N ], are given by:

As = T ∗(θ) +
Q

4πλs
E1

(
θ

αs

)
, Bs = − Q

4πλs
,

Al = T∞, Bl =
T ∗(θ)− T∞

E1

(
θ
αl

) ,

AJ = C∞J , J ∈ [1, N ] , BJ =
C∗J(θ)− C∞J
E1

(
θ
DlJ

) , J ∈ [1, N ] ,

and quantity θ, called the growth constant, satisfies the nonlinear algebraic equation:

T ∗(θ) = Tm +
N∑
J=1

mlJC
∗
J(θ)

where

208



C∗J(θ) =
C∞J

1− (1− kJ) θ
DlJ

exp
(

θ
DlJ

)
E1

(
θ
DlJ

) , J ∈ [1, N ]

T ∗(θ) = T∞ +
θ

αl

exp

(
θ

αl

)
E1

(
θ

αl

) L

ρlcpl
− Q

4πλs

ρscps
ρlcpl

1

θ
αs

exp
(
θ
αs

)
 .

Note that:

lim
θ→0

C∗J = C∞J , lim
θ→∞

C∗J =
C∞J
kJ

, J ∈ [1, N ] ,

lim
θ→0

T ∗ = −∞, lim
θ→∞

T ∗ = T∞ +
L

ρlcpl
.

Thus, for Q > 0 and 0 < kJ < 1 such a solution exists as long as:

T∞ > Tm +
N∑
i=1

mlJ
C∞J
kJ
− L

ρlcpl
.

Existing of such an analytical solution allows creating of a non-trivial benchmark

test for a multidimensional solidification code. Specifically, in this work we consider

an annular region with internal and external radii Rin and Rout. We start with initial

conditions given by the analytical solution at some initial time t0, such that Rin < R(t0) <

Rout, and impose time-dependent boundary conditions (Dirichlet or Neumann) on the

inner and outer boundaries of the region based on the analytical solution.

Interesting features of this similarity solution are that the values of temperature and

concentration at the solidification front are constant throughout the entire solidification

process, that is:

Tl = Ts(t, R(t)) = T ∗ and C l
J(t, R(t)) = C∗J , J ∈ [1, N ] , ∀ t > 0,

209



and that the ratio of compositional and thermal gradients at the solidification front is

constant as well

M =

∑N
J=1mlJ∂rC

l
J

∂rTl

∣∣∣∣∣
r=R(t)

=
N∑
J=1

mlJ
C∞J − C∗J
T∞ − T ?

exp
(
θ
αl

)
E1

(
θ
αl

)
exp

(
θ
DlJ

)
E1

(
θ
DlJ

) .
Recall that the solidification front is expected to be stable for M < 1 and unstable for

M > 1 (compositional undercooling ahead of the front). For purposes of verification of

multidimensional solidification codes it is desired to consider stable processes, otherwise

due to unavoidable numerical errors the numerical solution would quickly diverge from the

symmetric configuration predicted by the analytical solution and a comparison would not

be possible. For this reason it is more convenient to select an analytical solution based on

the value of the gradients’ ratio M = M0 instead of imposing the strength of heat sink Q

and the temperature value at infinity T∞. In addition, to more easily and independently

select the characteristic front velocity we impose a specific value of the front velocity

vn(t0) = v0 at the beginning of simulation t0 when the seed radius is equal to a given

R(t0) = R0. Thus, alternatively to (4.46), boundary conditions can be formulated as:

M = M0,

vn(t0) = v0, where t0 is such that R(t0) = R0

lim
r→∞

CJ(t, r) = C∞J , J ∈ [1, N ] .

In this case the integration constants in the analytical solution are given by:

210



θ =
1

2
v0R0

AJ = C∞J , J ∈ [1, N ] , BJ =
C∗J(θ)− C∞J
E1

(
θ
DlJ

) , J ∈ [1, N ] ,

Al = T ∗(θ)−BlE1

(
θ

αl

)
, Bl =

1

M0

N∑
J=1

mlJBJ

exp
(
θ
αl

)
exp

(
θ
DlJ

) ,
As = T ∗(θ)−BsE1

(
θ

αs

)
, Bs = Bl ρlcpl

ρscps

θ
αs

exp
(
θ
αs

)
θ
αl

exp
(
θ
αl

) − L

ρscps

θ

αs

exp

(
θ

αs

)
,

where

C∗J(θ) =
C∞J

1− (1− kJ) θ
DlJ

exp
(

θ
DlJ

)
E1

(
θ
DlJ

) , J ∈ [1, N ] ,

T ∗(θ) = Tm +
N∑
J=1

mlJC
∗
J(θ).

Note that the initial moment of time for setting up numerical simulations is given by:

t0 =
1

2

R0

v0

.

It is also easy to extend the above similarity solution to the case of a nonlin-

ear liquidus surface Tliq = Tliq(C
∗
l1, . . . , C

∗
lN) and nonconstant partition coefficients

{kJ = kJ(C∗l1, . . . , C
∗
lN)}NJ=1. In such a case the interfacial concentration are found by

solving the nonlinear algebraic system of equations (we found that the fixed-point itera-

tion suffices):

C∗J(θ) =
C∞J

1− (1− kJ(C∗l1, . . . , C
∗
lN)) θ

DlJ
exp

(
θ
DlJ

)
E1

(
θ
DlJ

) , J ∈ [1, N ] ,

211



and the interfacial temperature is simply given by:

T ∗(θ) = Tliq(C
∗
l1, . . . , C

∗
lN).

212



Chapter 5

Moving Boundary Problems in

Physics of Block Copolymer

Materials

5.1 Introduction

Block copolymers are materials made-up of polymer chains that consist of blocks of dis-

similar chemical species. For example, figure 5.1 schematically illustrates the structure

of a diblock copolymer melt (e.g. polystyrene-b-poly(methyl methacrylate)). The inho-

mogeneity of polymer chains leads to a rich self-assembling behavior of such materials

at the nanoscale. Even in the simplest case of symmetric diblock copolymers, a number

of morphologies can form: lamellar, hexagonal cylindrical, cubic spherical, bicontinuous

213



gyroid. The formation and stability of a particular phase depend on the architecture of

polymer chain and interaction properties between chemical species and are governed by

an intricate balance between entropic and enthalpic contributions to the free energy of

the system that promote disodered and ordered configurations, correspondingly. Given

such a large variety of self-assembling nanomorphologies BCP materials have attracted

a great attention as a promising avenue for a number of applications such as the fabri-

cation of nanoelectronics [74], the nanophotonics [155], the targeted drug delivery [134],

and others. From the theoretical point of view, probably the most common approach

to study the self-assembly of BCPs is the Self-Consistent Field Theory (SCFT) [98, 47].

This framework is based on applying the Hubbard-Stratonovich transformation to con-

vert the particle-based representation of the polymer material into a field-based one and

has been successfully applied to qualitatively and quantitatively predict the self-assembly

of BCPs in a countless number of applications [47].

Figure 5.1: A schematic illustration of an AB diblock copolymer chain.

In its standard form, the SCFT is suitable for investigating periodic (bulk) morpholo-

gies of self-assembling BCPs or in static confinements. However, in certain situations,

such as the presence of polymer-air interface or immersed nanoparticles, the confining

boundaries are free to move and in fact must be considered as part of the solution.

The importance of simulating free surface block copolymer melts comes from the fact

214



that it is not uncommon in practical applications for the polymer material to be exposed

to a gaseous or liquid phase. Besides the meniscus near confining walls, this can also

lead to the formation of unique free surface features of block copolymers such as holes,

islands, and terraces [35, 97]. The simulation of block copolymer free surfaces is chal-

lenging due to the two-way coupling between the free surface and the internal polymer

morphology. Within the SCFT framework, free polymer surfaces are typically modeled

by introducing into the system an additional chemical species that play the role of the

air, see, for example, [85, 154, 25]. While being simple and straightforward to imple-

ment, this approach is not free of caveats. Among them is the fact that only relatively

low interaction strengths between dissimilar species can be used in the SCFT for numer-

ical calculations to remain stable. This leads to the inability to impose physically high

incompatibility between the polymer material and the surrounding air as well as to a

smeared-out polymer-air interface. In [123], a conceptually different framework has been

proposed, where the polymer-air interface is assumed to be sharp and where its governing

equation is derived based on the PDE-constrained shape sensitivity analysis. The ap-

proach presented in in [123] is, however, limited to neutral polymer-air interfaces due to

the well-known inconsistency within the SCFT to model selectively attractive/repulsive

boundaries. Moreover, [123] does not consider situations when polymer-air interfaces

can terminate at solid walls, hence forming a triple junction line. In order to model such

situations, an equation governing the value of contact angle is necessary.

BCP nanocomposites is a promising avenue for the creation of functional materi-

215



als and advanced polymer self-assembly applications [20]. Similar to the case of free

polymer surfaces, the theoretical description of these systems is complicated by two-way

couplings: on the one hand, the self-assembling polymer structures guide the placement

of nanoparticles but, on the other hand, the presence of nanoparticles influence the re-

sulting polymer morphologies. The problem of co-assembly of BCPs and nanoparticles

in the SCFT framework has been approached from explicit and implicit perspectives.

In the former case, each nanoparticle in the system is described explicitly while in the

latter case, the distribution of nanoparticles is described in terms of density fields. Each

framework has its own advantages: the first methodology allows for a straightforward

incorporation of such features as excluded volume effects, arbitrary shapes of particles,

complex particle-particle interactions; the second methodology is more efficient at ob-

taining statistical information about particles configurations. The explicit approach was

employed in the hybrid particle-field method proposed in [148], in which nanoparticles

were modeled by the so-called cavity function that represents a gradual transition be-

tween polymer and particle’s material and the relaxation of nanoparticles towards the

equilibrium state is accomplished using an approximate derivatives of the system’s en-

ergy with respect to the particles’ positions. Among implicit approaches are the hybrid

SCFT-DFT method proposed in [160] and the field-theoretic method described in [87].

Another problem, which is of a different nature but can also be categorized as a

moving boundary problem, is the inverse design problem for the Directed Self-Assembly

(DSA) of BCPs used for lithography applications. Here, one is interested in finding con-

216



fining domains that drive the self-assembly of BCPs into desired patterns. Specifically, in

this work we focus on the design of confining masks for placement of cylindrical domains.

One of the approaches for this challenging inverse problem presented in [89] is based on

parameterizing the confinement geometry with several degrees of freedom and approx-

imating the derivatives of the cost functional with respect to these degrees of freedom

either using a brute-force finite difference approach or a linearization of SCFT equations.

In [125], a non-parametric description of the confining mask was employed leveraging

the Level-Set Method, thus eliminating the constraint on the degrees of freedom needed.

However, only approximate deformation velocities based on physical intuition were used

in [125].

In this chapter, we present adjoint-state approaches for the solution of the three mov-

ing boundary problems described above by considering them in a unified PDE-constrained

shape optimization framework: in the simulation of the self-assembly of free surface BCPs

and the co-assembly of BCP nanocomposites, one needs to minimize the free energy of

the system, while in solving the inverse design problem for the directed self-assembly,

one needs to minimize the discrepancy between an actual polymer configuration and a

desired one. Similar to [123], in all cases the moving boundaries are treated in a sharp

fashion using the Level-Set Method and the full derivatives of the minimization quantity

(the system’s energy or the cost functional) with respect to these moving boundaries are

analytically derived based on the theory of PDE-constrained shape sensitivity analysis.

To address the singular behavior of the pressure field near selectively attractive/repulsive

217



boundaries a novel consistent approach for imposing surface energies is proposed.

The numerical implementation closely follows that of [124]. Specifically, adaptive

Cartesian quadtree grids are used for spatial discretizations, the irregular interfaces are

described using the Level Set Method, and the modified diffusion equations at the core of

SCFT are solved using the second-order accurate finite-volume discretizations from [18].

The rest of this chapter is organized as follows. Section 5.2 presents a consistent

approach for imposing arbitrary surface energies for incompressible BCP melts in the

SCFT framework. In sections 5.3, 5.4, and 5.5, we provide detailed calculations of shape

sensitivities for cases of an evolving free surface, a moving particle, and a confining mask,

respectively. In section 5.7, we present numerical examples demonstrating the capabilities

of the proposed methods. Finally, section 5.8 draws conclusions and discusses future

research directions.

5.2 A consistent approach for imposing arbitrary

surface energies in SCFT

Let us consider an incompressible melt of n continuous Gaussian AB diblock copolymer

chains in a region Ω with a (possibly, piecewise) smooth boundary Γ (figure 5.2). Suppose

that the total number of monomers in a polymer chain is N , the fraction of monomers

A is f and the surface energy of blocks A and B on boundary Γ are γA and γB (possibly

varying in space), correspondingly. Furthermore, as a common practice it is assumed

218



that A and B monomers have equal volumes v0. The presented below derivation of a

mean-field approximation for this system follows [47] very closely but differs in that it

results in a system of equations that consistently models arbitrary surface energies.

Figure 5.2: Problem geometry and notation used in section 5.2.

Polymer chains are parameterized using a contour variable s ∈ [0, 1], such that the

A-block spans from s = 0 to s = f and the B-block spans from s = f to s = 1. We

denote the shape of the jth polymer chain as rj = rj(s), j ∈ [1, n].

The stretching energy of the n continuous Gaussian chains can be written as:

βU0 =
n∑
j=1

1∫
0

3

2Nb2

∣∣∣∣drj(s)ds

∣∣∣∣2 ds
where b = b(s) is the statistical length of the polymer bead at location s and β = 1

kBT
.

Specifically, we assume that b is constant for each of the distinct blocks, that is:

b(s) =

{
bA, s ∈ [0, f ]

bB, s ∈ [f, 1]

The interaction energy between dissimilar chemical blocks is taken into account

through a Flory-Higgins effective interaction parameter χAB:

219



βU1 =
1

v0

χAB

∫
Ω

ρ̂Aρ̂B dr,

where the microscopic number concentrations are given by:

ρ̂A = v0N

n∑
j=1

f∫
0

δ(r − rj(s)) ds

ρ̂B = v0N
n∑
j=1

1∫
f

δ(r − rj(s)) ds.

Finally, the total surface energy of the polymer melt can be expressed as:

βU2 = β

∫
Γ

(γAρ̂A + γBρ̂B) dr = β

∫
Ω

(γAρ̂A + γBρ̂B) δΓ dr,

where it is assumed that the local surface energy of the polymer material is equal to a

weighted averaged of surface energies of A and B blocks, and where δΓ represents the

surface delta function associated with Γ.

Taking into account the stretching, interaction and surface energies, the canonical

partition function of the system under consideration can be written as:

ZC =
1

n! (λ3
T )

nN

n∏
j=1

∫
Drje−βU0−βU1−βU2δ[ρ̂A + ρ̂B − ρ0]

where λT =
h√

2πmkBT
is the thermal length. In the above expression, the integral is

taken among all possible configurations for each of the chains and the delta function

enforces the incompressibility.

Using the Hubbard-Stratonovich transformation, the canonical partition function can

220



be expressed as:

ZC = Z0

∫∫
exp (−H[µ+, µ−])Dµ+Dµ−,

where Z0 denotes the ideal gas partition function, µ+ and µ− are fluctuating pressure-like

and exchange-like potential fields, and the effective Hamiltonian H is given by:

H =
n

V

∫
Ω

(
µ2
−

χABN
− µ+

)
dr − n log(Q).

The single-chain partition function Q can be computed from the chain propagator q =

q(s, r) or the complimentary chain propagator qc = qc(s, r) as:

Q =
1

V

∫
Ω

q(1, r) dr =
1

V

∫
Ω

qc(0, r) dr, (5.1)

which, in their turn, are solutions to the following modified diffusion equations:


∂sq + (µ(s) + σγ(s)δΓ) q = D(s)∇2q, (s, r) ∈ [0, 1]× Ω,

∂nq = 0, (s, r) ∈ [0, 1]× Γ,

q(0, r) = 1, r ∈ Ω,

(5.2)

and


−∂sqc + (µ(s) + σγ(s)δΓ) qc = D(s)∇2qc, (s, r) ∈ [0, 1]× Ω,

∂nqc = 0, (s, r) ∈ [0, 1]× Γ,

qc(1, r) = 1, r ∈ Ω,

(5.3)

where σ = Nv0
Rg

1
kBT

and

221



D(s) =

{
DA = b2

A/6, s ∈ [0, f ],

DB = b2
B/6, s ∈ [f, 1],

µ(s) =

{
µ+ − µ−, s ∈ [0, f ],

µ+ + µ−, s ∈ [f, 1],

γ(s) =

{
γA, s ∈ [0, f ],

γB, s ∈ [f, 1].

A mean-field approximation for this system is obtained by accounting only for in-

stances of fields µ+ = µ∗+ and µ− = µ∗− that have the largest contribution in ZC , that

is:

ZC ≈ exp
(
−H[µ∗+, µ

∗
−]
)
,

where

δH
δµ+

[µ∗+, µ
∗
−] = 0 and

δH
δµ−

[µ∗+, µ
∗
−] = 0. (5.4)

This results in the following so-called SCFT equations:

ρA + ρB = 1, (5.5)

ρA − ρB =
2µ−
χN

, (5.6)

where concentrations of A and B blocks are given by:

ρA =
1

Q

f∫
0

qqc ds and ρB =
1

Q

1∫
f

qqc ds. (5.7)

Note that equations (5.2) and (5.3) involve delta-like potentials which may be diffi-

222



cult to deal with from the numerical point of view. Some of the previous works avoided

this issue by approximating the delta-like potential by a smooth function. Such an ap-

proach, however, introduces an artificial scale over which the delta function is smoothed.

Alternatively, it can be shown (see 5.B) that the diffusion equations (5.2) and (5.3) are

equivalent to:


∂sq + µ(s)q = D(s)∇2q, (s, r) ∈ [0, 1]× Ω,

D(s)∂nq + σγ(s)q = 0, (s, r) ∈ [0, 1]× Γ,

q(0, r) = 1, r ∈ Ω,

(5.8)

and


−∂sqc + µ(s)qc = D(s)∇2qc, (s, r) ∈ [0, 1]× Ω,

D(s)∂nqc + σγ(s)qc = 0, (s, r) ∈ [0, 1]× Γ,

qc(1, r) = 1, r ∈ Ω,

(5.9)

where the surface energy terms now enter as a Robin (mixed) boundary conditions. This

formulation contains no delta-like terms, thus, is immediately amenable to standard

numerical methods. However, one can also clearly see that density fields obtained from

solutions of these equations will not be able to satisfy equation (5.5) representing the

incompressibility of the system. Indeed, taking the derivative of (5.7) on the domain

boundary in the normal direction and using the boundary conditions from (5.8) and

(5.9) one obtains:

∂n (ρA + ρB) = −2σ (γAρA + γBρB) ,

while differentiating the incompressibility equation (5.5) leads to:

223



∂n (ρA + ρB) = 0,

and, generally, (γAρA + γBρB) 6= 0. Attempting to solve the entire system of SCFT equa-

tions with chain propagators satisfying the above diffusion equations produces pressure

fields with a singular behavior near domain boundaries. While for certain applications

such a singular behavior does not have an adverse effect, it is crucial to have well-defined

values of the pressure field for modeling polymer-air and polymer-particle interactions.

We now show that the described inconsistency is only apparent and can be completely

removed. Using again the results of 5.A, we can write the diffusion equations (5.8) and

(5.9) in yet another equivalent form:


∂sq + (µ(s)− σγ̃δΓ) q = D(s)∇2q, (s, r) ∈ [0, 1]× Ω,

D(s)∂nq + σ (γ(s)− γ̃) q = 0, (s, r) ∈ [0, 1]× Γ,

q(0, r) = 1, r ∈ Ω,

(5.10)

and


−∂sqc + (µ(s)− σγ̃δΓ) qc = D(s)∇2qc, (s, r) ∈ [0, 1]× Ω,

D(s)∂nqc + σ (γ(s)− γ̃) qc = 0, (s, r) ∈ [0, 1]× Γ,

qc(1, r) = 1, r ∈ Ω,

(5.11)

where we added and subtracted an arbitrary function γ̃ = γ̃(r) defined on the domain’s

boundary Γ from the surface energy terms of the boundary conditions. Having this

freedom in choosing the exact form of γ̃ allows one to ensure that the boundary conditions

in equations (5.10) and (5.11) are consistent with the incompressibility equation (5.5).

Indeed, taking the normal derivative of the total density on the domain boundary and

224



equating it to zero leads to the following equation for γ̃:

−2
γA − γ̃
DA

ρA − 2
γB − γ̃
DB

ρB = 0,

from which it follows that if γ̃ is chosen as:

γ̃ =
γAD

−1
A ρA + γBD

−1
B ρB

D−1
A ρA +D−1

B ρB
.

then there is no inconsistency between the incompressibility equation (5.5) and the

boundary conditions in (5.10) and (5.11). In the case where A and B blocks have equal

statistical segment lengths, that is, DA = DB, the expression for γ̃ simplifies to:

γ̃ = γAρA + γBρB

Finally, redefining the pressure field as µ̃+ = µ+ + σγ̃δΓ, or in other words, explicitly

subtracting from it the singular part, one arrives to the following equations for chain

propagators:


∂sq + µ̃(s)q = D(s)∇2q, (s, r) ∈ [0, 1]× Ω,

D(s)∂nq + σ (γ(s)− γ̃) q = 0, (s, r) ∈ [0, 1]× Γ,

q(0, r) = 1, r ∈ Ω,

(5.12)

and


−∂sqc + µ̃(s)qc = D(s)∇2qc, (s, r) ∈ [0, 1]× Ω,

D(s)∂nqc + σ (γ(s)− γ̃) qc = 0, (s, r) ∈ [0, 1]× Γ,

qc(1, r) = 1, r ∈ Ω,

(5.13)

where

225



µ̃(s) =

{
µ̃+ − µ−, s ∈ [0, f ],

µ̃+ + µ−, s ∈ [f, 1],

and the system’s energy:

H =
n

V

∫
Ω

(
µ2
−

χABN
− µ̃+

)
dr − n log(Q) + σ

n

V

∫
Γ

γ̃ dΓ, (5.14)

which are completely free of inconsistencies.

It is interesting that such a procedure automatically results in an additional term in

the energy functional of the form:

σ
n

V

∫
Γ

γ̃ dΓ = σ
n

V

∫
Γ

(γAρA + γBρB) dΓ,

which has a straightforward meaning of the total surface energy of a mixture of A and

B species.

For convenience, we drop the tilde symbol above µ̃+ in the rest of this manuscript.

In the numerical experiments, we characterize the strength of surface energy using

the expression for interfacial tension of a symmetric polymer-polymer interface estimated

in the case of strong segregation [47]:

γ =
1

σ

√
χN.

Imposing surface energies using the above formula in terms of χN allows straightforward

comparison with A-B interaction strength χABN .

226



5.2.1 Solving the SCFT equations for µ∗+ and µ∗−

The common approach for obtaining a saddle point (µ+, µ−) =
(
µ∗+, µ

∗
−
)

of the Hamilto-

nian H is to start from some initial guess (seed) (µ+, µ−) =
(
µ

(0)
+ , µ

(0)
−

)
and to iteratively

evolve the fields (µ+, µ−) in the steepest descent/ascent directions until a saddle point is

reached (within a specified tolerance εtol), that is, given values at the kth iteration fields

at the (k + 1)th iteration are updated as:

µ
(k+1)
+ = µ

(k)
+ + λ+

δH
δµ+

[µ
(k)
+ , µ

(k)
− ] = µ

(k)
+ + λ+

(
ρ

(k)
A + ρ

(k)
B − 1

)
,

µ
(k+1)
− = µ

(k)
− − λ−

δH
δµ−

[µ
(k)
+ , µ

(k)
− ] = µ

(k)
− − λ−

(
2µ

(k)
−

χABN
− ρ(k)

A + ρ
(k)
B

)
,

(5.15)

where λ+ and λ− are step sizes in moving along steepest descent/ascent directions (typ-

ically, taken as λ+ = λ− = 1), and iterations are terminated once

1

V

√√√√∫
Ω

(
δH
δµ+

)2

dr < εtol and
1

V

√√√√∫
Ω

(
δH
δµ−

)2

dr < εtol. (5.16)

The solution of the proposed modified system of the SCFT equations accounting for

surface energies is further complicated by the presence of terms depending on γ̃, which in

turn is a function of the local densities ρA and ρB. One possible strategy could be simply

to recalculate the values for γ̃ every few fields updates µ− and µ+. However, we observed

that this approach still results in numerical artifacts in the pressure field µ+. This seems

to be linked to the fact that in such a case, the density fields ρA and ρB generally do not

satisfy the condition ∂n (ρA + ρB) = 0 during such iterations. Once the pressure field

is polluted with features of small enough scale they persist for extremely long times. It

227



showed to be a better strategy to iteratively find γ̃ that satisfies ∂n (ρA + ρB) = 0 (we

observed that a small number of iterations nγ = 2-4 is sufficient) before every update of

fields µ− and µ+. The overall procedure for solving modified system of SCFT equations

can be summarized as follows:

1. Set a desired seed for µ
(0)
− and µ

(0)
+ = 0.

2. Iterate in k until conditions (5.16) are satisfied:

(a) Iterate nγ times:

i. Set γ̃ =
γAρA + γBρB
ρA + ρB

ii. Solve diffusion equations (5.12) and (5.13)

iii. Compute density fields according to (5.7)

(b) Compute µ
(k+1)
+ and µ

(k+1)
− using (5.15)

5.3 Sensitivity of free energy to shape of free surface

Let us now consider a polymer droplet on a (possibly curved) substrate as illustrated

in figure 5.3. Denote the polymer-air and the polymer-wall interfaces by Γa and Γw,

respectively, and by γaA, γaB and γwA, γwB the surface energies of the A and B blocks

on these interfaces, correspondingly. Denote by γaw the surface energy of the air-wall

interface. We assume that surface energies γaA, γaB, and γaw are constant while γwA =

γwA(r) and γwB = γwB(r) may be non-uniform in space (as, for example, for chemically

228



Figure 5.3: Problem geometry and notation used in section 5.3.

patterned substrates). Given the results of section 5.2, the energy of such a system can

be expressed as:

H =
n

V

∫
Ω

(
µ2
−

χABN
− µ+

)
dr − n log(Q) + σ

n

V

∫
Γa

γ̃a dΓ + σ
n

V

∫
Γw

(γ̃w − γaw) dΓ,

where the single chain partition function Q is given by (5.1) and where the chain propa-

gator q satisfies the modified diffusion equation (5.12) provided Γ = Γa ∪ Γw and

γA =

{
γaA, r ∈ Γa,

γwA, r ∈ Γw,
γB =

{
γaB, r ∈ Γa,

γwB, r ∈ Γw.

For the derivation of the system’s energy sensitivity with respect to the shape of free

surface Γa, it is convenient to consider a situation in which the free surface is being

deformed with an arbitrary normal velocity vn = vn(τ, r) in fictitious time τ , i.e., Ω =

Ω(τ), Γa = Γa(τ), and Γw = Γw(τ), as illustrated in figure 5.4. In such a case the

Figure 5.4: Deformation of free surface in normal velocity field vn.

shape sensitivity of the free energy can be expressed as the derivative of H with respect

229



to τ . This derivative must be obtained taking into account the fact that the fields

µ+ and µ− and the chain propagator q are also functions of τ , satisfying the system of

nonlinear SCFT equations (5.5)-(5.6) for any given domain configuration Ω(τ). However,

by applying the chain rule:

dH
dτ

=

∫
Ω

δH
δµ+︸︷︷︸
=0

dµ+

dτ
dr +

∫
Ω

δH
δµ−︸︷︷︸
=0

dµ−
dτ

dr +
dH
dτ

∣∣∣∣
µ=const

=
dH
dτ

∣∣∣∣
µ=const

one can see that since µ+ and µ− satisfy the saddle point conditions (5.4) they could

be assumed constant during the derivation, and thus, only the equation for the chain

propagator q (5.12) needs to be taken into account. Using the weak form of that equation

(see 5.A), we define the following Lagrangian:

L =
n

V

∫
Ω

(
µ2
−

χN
− µ+

)
dr − n log

 1

V

∫
Ω

q(1) dr


+ σ

n

V

∫
Γa

γ̃a dΓ + σ
n

V

∫
Γw

(γ̃w − γaw) dΓ

+

∫
Ω

1∫
0

(−q∂sλc + µ(s)qλc +D(s)∇q · ∇λc) ds dr +

∫
Ω

(q(1)λc(1)− λc(0)) dr

+

∫
Γa

1∫
0

σ(γa − γ̃a)qλc ds dr +

∫
Γw

1∫
0

σ(γw − γ̃w)qλc ds dr,

where λc is a Lagrangian multiplier associated with the PDE-constraint. The full deriva-

tive of H with respect to τ is then equal to the partial derivative of L, that is, dH
dτ

= ∂L
∂τ

,

provided that the following optimality conditions are satisfied:

230



δλcL = 0, ∀λc,
δqL = 0, ∀q.

It is trivial to show that the first expression recovers the weak form of (5.12). The second

equation provides an equation for Lagrangian multiplier λc. After explicitly taking the

variation of L with respect to q, one obtains the following expression:

δqL =

∫
Ω

(
λc(1)− n

QV

)
δq(1) dr

+

∫
Ω

1∫
0

(−δq∂sλc + µ(s)δqλc +D(s)∇δq · ∇λc) ds dr

+

∫
Γa

1∫
0

σ(γa − γ̃a)δqλc ds dr +

∫
Γw

1∫
0

σ(γw − γ̃w)δqλc ds dr.

Using the integration by parts formula (5.25) leads to which is a weak of the following

diffusion equation:

δqL =

∫
Ω

(
λc(1)− n

QV

)
δq(1) dr

+

∫
Ω

1∫
0

(
−∂sλc + µ(s)λc −D(s)∇2λc

)
δq ds dr

+
∑
ν=a,w

∫
Γν

1∫
0

(D(s)∂nλc + σ(γν − γ̃ν)λc) δq ds dr.

As one can see δqL = 0, ∀q, leading to a weak formulation of the diffusion equation for

the Lagrange multiplier λc that is completely analogous to the equation for the compli-

mentary chain propagator qc (5.13) with the exception that the initial conditions for λc

231



are λc(1, r) = n
QV , r ∈ Ω. This means that the Lagrange multiplier λc is nothing but the

complimentary chain propagator multiplied by a factor of n
QV , that is, λc = n

QV qc.

We now turn our attention to computing the partial derivative of the Lagrangian L

with respect to τ . It can be shown (see 5.B) that for integrals of the form:

∫
Ω(τ)

f dr,

∫
Γa(τ)

f dr, and

∫
Γw(τ)

f dr, (5.17)

where f(τ, r) is some function, the following equations hold true:

∂

∂τ

∫
Ω

f dr =

∫
Ω

∂f

∂τ
dr +

∫
Γa

fvn dr,

∂

∂τ

∫
Γw

f dr =

∫
Γw

∂f

∂τ
dr +

∫
Γa∩Γw

f
vn

sin(θc)
dr,

∂

∂τ

∫
Γa

f dr =

∫
Γa

∂f

∂τ
dr +

∫
Γa

(κ+ ∂n) fvn dr +

∫
Γa∩Γw

f cot(θc)vn dr,

(5.18)

where κ is the curvature of the polymer-air interface Γa and θc is the angle between Γa

and Γw at their intersection. Applying these formulas while differentiating L with respect

to τ , one arrives at (assuming the volume of the system V is constant):

232



L =
n

V

∫
Γa

(
µ2
−

χN
− µ+

)
vn dr −

n

QV

∫
Γa

q(1)vn dr

+ σ
n

V

∫
Γa

vn (κ+ ∂n) γ̃a dΓ + σ
n

V

∫
Γa∩Γw

(γ̃a cos(θc) + γ̃w − γaw)
vn

sin(θc)
dΓ

+

∫
Γa

1∫
0

(−q∂sλc + µ(s)qλc +D(s)∇q · ∇λc) vn ds dr

+

∫
Γa

(q(1)λc(1)− λc(0)) vn dr + σ

∫
Γa

1∫
0

vn (κ+ ∂n) (γa − γ̃a) qλc ds dr

+ σ

∫
Γa∩Γw

1∫
0

((γa − γ̃a) cos(θc) + γw − γ̃w)
vn

sin(θc)
qλc ds dr.

Furthermore, using ∇q · ∇λc = 1
2
∇2 (qλc) − 1

2
q∇2λc − 1

2
λc∇2q, the diffusion equations

(5.12) and (5.13) and the SCFT equations (5.5)-(5.6), the expression for the full derivative

of the system’s energy can be simplified to:

dH
dτ

=
n

V

∫
Γa

(
µ2
−

χN
− µ+ −

q(1) + qc(0)

2Q
+ σ

(
κ+

∂

∂n

)
γeff
a

)
vn dΓ

+ σ
n

V

∫
Γa∩Γw

(
γeff
w − γ0 + γeff

a cos(θc)
) vn

sin(θc)
dΓ, (5.19)

where the effective surface energies γeff
w and γeff

a are defined as:

γeff
w = ρAγwA + ρBγwB,

γeff
a = ρAγaA + ρBγaB.

The polymer material is in the equilibrium whenever the integrands in the above expres-

sions are equal to zero. This produces the following two equilibrium conditions:

233



µ2
−

χN
− µ+ −

q(1) + qc(0)

2Q
+ σ

(
κ+

∂

∂n

)
γeff
a = 0,

γeff
w − γaw + γeff

a cos(θc) = 0.

The first of these equations dictates the overall shape of free surface Γa, while the second

one governs the value of the contact angle at the wall-polymer-air triple junction point

and can be recognized as the extension of the Young equation for contact angles to block

copolymer materials.

Numerically, the equilibrium shape can be achieved by starting from some initial free

surface shape and deforming it according to:

vn = −
(
µ2
−

χN
− µ+ −

q(1) + qc(0)

2Q
+ σ

(
κ+

∂

∂n

)
γeff
a

)
,

while imposing the contact angle:

θc = cos−1

(
γaw − γeff

w

γeff
w

)
.

In such a way, the energy of the system is forced to decrease until it reaches a local

minimum.

234



Figure 5.5: Problem geometry and notation used in section 5.4.

5.4 Sensitivity of free energy to position and orien-

tation of a nanoparticle

We now consider a particle of arbitrary shape and arbitrary, possibly varying along the

particle’s boundary, surface energies γAp = γAp(r) and γBp = γBp(r) immersed in a block

copolymer melt as illustrated in figure 5.5. The energy of the system in this case is

given by expression (5.14) with the chain propagators satisfying (5.12). Similarly to the

derivation in the case of a free surface, we assume that the particle moves with some

translational and rotational velocities v = v(τ) and ω = ω(τ) in fictitious time τ (see

figure 5.6).

Let us first consider the case of spatially uniform surface energies γAp = const and

γBp = const. For such a situation, the derivative of the system’s energy can be immedi-

ately obtained from the expression derived in the previous section. Indeed, the normal

velocity of the particle is equal to

235



Figure 5.6: Motion of a nanoparticle in a block copolymer melt.

vn = n · (v + ω × (r − rc)) ,

where rc denotes the particle’s center. Substituting the above expression into (5.19) leads

to

dH
dτ

=

∫
Γ

G · v dΓ +

∫
Γ

((r − rc)×G) · ω dΓ, (5.20)

where

G =

(
µ2
−

χN
− µ+ −

q(1) + qc(0)

2Q
+

(
κ+

∂

∂n

)
(γAρA + γBρB)

)
n.

In order to obtain analogous expressions in the general case of non-uniform surface

energies γAp = γAp(r) and γBp = γBp(r), one just needs to add the terms that result

from their differentiation. Using

∂γAp
∂τ

= − (v + ω × (r − rc)) · ∇γAp,

∂γBp
∂τ

= − (v + ω × (r − rc)) · ∇γBp,

236



it is straightforward to show that the energy derivative in this case is given by the same

formula (5.20), but where G is now given by:

G =

(
µ2
−

χN
− µ+ −

q(1) + qc(0)

2Q
+

(
κ+

∂

∂n

)
(γAρA + γBρB)

)
n

+

(
∂γA
∂τ

ρA +
∂γB
∂τ

ρB

)
τ ,

where τ denotes the tangential vector to the particle’s boundary.

The equations

G = 0 and (r − rc)×G = 0

represent the equilibrium conditions for a particle in a block copolymer melt. Such a

state can be numerically obtained by starting with some initial placement of the particle

and iteratively adjusting its position and orientation according to

v = −G and ω = − (r − rc)×G.

This procedure trivially extends to the case of many particles.

5.5 Sensitivity of polymer morphology to confining

mask’s geometry

The SCFT provides the means for obtaining BCP density fields for any confining geom-

etry, that is, for solving the forward problem. In order to solve the inverse problem, that

is, find the confining geometry that results in a specified density profile, we define a cost

237



functional that measures the deviation between an actual density field and a desired one

and analytically derive its sensitivity to the confinement shape. Specifically, noting that

Figure 5.7: Problem geometry and notation used in section 5.5. The desired density field
configuration is represented by the three disks.

the density fields ρA and ρB are directly related to the exchange field µ− through the

SCFT equation (5.6), we define the cost functional as:

F =

∫
Ω

1

χABN
(µ− − µt)2 dr + α

∫
Γ

dΓ,

where Ω and Γ denotes the confining geometry and its boundary, µt is a desired density

field configuration (see figure 5.7), and α is the curvature penalization parameter. The

factor 1
χABN

is introduced solely for the sake of convenience in further calculations. Since

the efficiency and viability of the directed self-assembly is based on the ability to produce

ordered nanostructures of characteristic dimensions smaller than those of guiding masks,

it is important to have the means for controlling the maximum allowable curvature of

the confining masks. To do so, we introduce a term penalizing for the total perimeter of

the shape into the cost functional. However, we note that more intricate strategies can

potentially be employed as well.

238



Following the approach used in section 5.3 for determining shape derivatives of the

system’s energy, we consider the situation in which the confining boundary is evolving

with some normal velocity vn = vn(τ, r) in fictitious time τ and compute the derivative of

the cost functional with respect to τ . Compared to the case of section 5.3 where the fields

µ− and µ+ can be assumed to be constant in τ in the derivation, this assumption does

not hold in the present case and the entire nonlinear system of SCFT equations needs to

be taken into consideration while estimating the derivative of the cost functional. Thus,

we define the Lagrangian as:

L =

∫
Ω

(µ− − µt)2

χABN
dr + α

∫
Γ

dΓ +

∫
Ω

λ+

V 1∫
0

qqc ds−
∫
Ω

1∫
0

qqc ds dr
′

 dr

+

∫
Ω

λ−

 2

χN
µ−

∫
Ω

1∫
0

qqc ds dr
′ + V

1∫
0

sign(s− f)qqc ds

 dr

+

∫
Ω

(q(1)λc(1)− λc(0)) dr +

∫
Ω

1∫
0

(−q∂sλc + µqλc +D(s)∇q · ∇λc) ds dr

+

∫
Ω

(qc(0)λ(0)− λ(1)) dr +

∫
Ω

1∫
0

(qc∂sλ+ µqcλ+D(s)∇qc · ∇λ) ds dr

+

∫
Γ

1∫
0

σ(γ(s)− γ̃)qλc ds dr +

∫
Γ

1∫
0

σ(γ(s)− γ̃)qcλ ds dr,

where the diffusion equations (5.12) and (5.13) are incorporated using their weak from

and λ, λc, λ−, and λ+ are the Lagrange multipliers. The full derivative of the cost

functional with respect to τ is equal to the partial derivative of the above Lagrangian

239



provided the following optimality conditions are satisfied:

δqL = 0, δλL = 0,

δqcL = 0, δλcL = 0,

δµ+L = 0, δλ+L = 0,

δµ−L = 0, δλ−L = 0.

It is trivial to show that the conditions from the right column simply recover equations

(5.12), (5.13), (5.5), and (5.5), respectively. The conditions from the left column provide

the equations for the Lagrange multipliers. Taking the corresponding variations of the

Lagrangian and equating them to zero, one obtains the following integral equations:

δqL =

∫
Ω

1∫
0

(−δq∂sλc + µδqλc + µλδqqc +D(s)∇δq · ∇λc) ds dr

+

∫
Ω

δq(1)λc(1) dr +

∫
Γ

1∫
0

σ(γ(s)− γ̃)δqλc ds dr = 0,

δqcL =

∫
Ω

1∫
0

(δqc∂sλ+ µδqcλ+ µλqδqc +D(s)∇δqc · ∇λ) ds dr

+

∫
Ω

δqc(0)λ(0) dr +

∫
Γ

1∫
0

σ(γ(s)− γ̃)λδqc ds dr = 0,

240



δµ−L =

∫
Ω

2
µ− − µt
χABN

δµt dr +

∫
Ω

2

χN
λ−

∫
Ω

1∫
0

qqc ds dr
′δµ− dr

+

∫
Ω

1∫
0

sign(s− f) (qλc + qcλ) δµ− ds dr = 0,

δµ+L =

∫
Ω

1∫
0

(qλc + qcλ) δµ− ds dr = 0,

where

µλ = λ+ − 〈λ+〉+ sign(s− f)λ− +

〈
2µ−λ−
χN

〉
.

Using the divergence theorem, it can be shown that the first two of the above equations

are weak forms of the following diffusion equations for λ and λc:


∂sλ+ µ(s)λ+ µλ(s)q = D(s)∇2λ,

D(s)∂nλ+ σ (γ(s)− γ̃)λ = 0,

λ(0, r) = 0,

and


−∂sλc + wλc + wλqc = D(s)∇2λc,

D(s)∂nλc + σ (γ(s)− γ̃)λc = 0,

λc(1, r) = 0.

The latter two integral equations are weak formulations of

ρλA(r) + ρλB(r) = 0,

ρλA(r)− ρλB(r) = 2
λ−(r) + µ−(r)− µt(r)

χABN
,

241



where ρλA and ρλB are defined as

ρλA(r) =
1

Q

f∫
0

(qλc + qcλ) ds,

ρλB(r) =
1

Q

1∫
f

(qλc + qcλ) ds.

Thus, the Lagrange multipliers λ, λc, λ−, and λ+ satisfy a nonlinear system with a similar

structure as the original system of the SCFT equations.

Finally, taking the partial derivative of L with respect to τ produces:

dF
dτ

=
∂L
∂τ

=

∫
Γ

{
(µ−(r)− µt(r))2

χN
− λ(1) + λc(0)

2Q
+

2µ−λ−
χN

−
〈

2µ−λ−
χN

〉

− λ+ + 〈λ+〉+ ακ

}
vn dΓ, (5.21)

where κ is the mean curvature of the confining geometry. The derived expression can

be used for finding the confinement shapes that results in the closet match between the

desired configuration µt and the actual one µ− by iteratively evolving the shapes under

the velocity field:

vn = −

{
(µ−(r)− µt(r))2

χN
− λ(1) + λc(0)

2Q
+

2µ−λ−
χN

−
〈

2µ−λ−
χN

〉

− λ+ + 〈λ+〉+ ακ

}
.

242



5.6 Numerical aspects

The application of the presented framework for investigating non-trivial situation requires

quite advanced numerical capabilities. Specifically, one needs tools for the description and

evolution of irregular interfaces as well as capabilities to solve modified diffusion equations

(5.12) and (5.13) subject to Robin boundary conditions on such irregular interfaces. In

this work, we use a combination of the Level-Set Method, adaptive Cartesian grids and

sharp-interface finite-volume methods for solving PDE along the lines of [124], with the

exception that the diffusion equations are solved with a more accurate schemes presented

in [18]. The evolution of the free surface in the normal direction is performed by the semi-

implicit advection scheme described [100].

5.7 Results

In this section, we present a number of numerical examples to validate the proposed

framework and demonstrate its capabilities.

5.7.1 Imposing surface energies

We demonstrate the importance of the consistent approach for imposing surface energies

presented in section 5.2 on the following three examples.

In the first example, we consider a flower-shaped domain defined by the zero-

isocontour of the following function:

243



φ1(x, y) =
√
x2 + y2 − 5 (1 + 0.3 cos(5θ)) ,

where θ = arctan
(
x
y

)
is the polar angle. In this example the surface energies are uniform

and equal to γA = 1
2σ

and γB = − 1
2σ

, that is, the domain’s boundary preferentially

attracts the polymer component B.

In the second example, we consider a domain formed by the intersection of a disk of

radius r2 = 6.5Rg and a horizontal stripe of width w2 = 8Rg. The straight segments of

the domain’s boundary preferentially attract the polymer component B, such that the

surface energies there are equal to γAs = 1
2σ

and γBs = − 1
2σ

. The curved segments of

the domain’s boundary preferentially attract the polymer component A, such that the

surface energies there are equal to γAc = − 1
2σ

and γBc = 1
2σ

.

Finally, in the third example we consider a circular disk of radius r3 = 6.5Rg located

at (x3, y3) = (0.1Rg, 2.1Rg) that is cut by a corrugated horizontal line defined as the

zero-isocontour of function:

φ3(x, y) = −y + 0.01− 0.25 cos
(

2π
x

λ

)
,

where λ = 4 6

√
8χABN

3π4 . The circular section of the domain’s boundary has uniform surface

energies γAc = 1
2σ

and γBc = − 1
2σ

(attraction of the component B), while the bottom

segment has nonuniform surface energies given by expressions:

γAb = −2.5 cos
(

2π
x

λ

)
,

γBb = 2.5 cos
(

2π
x

λ

)
.

244



As a result, the grooves attract the component B while the hills attract the component

A.

In all the examples, the parameters of the polymer material are set to χABN = 30,

f = 0.33. Polymer chains are discretized using ns = 60 beads and the grid resolution is

20/256Rg. The simulations begin with the field µ− initialized with random values.

Figures 5.8 and 5.9 depict the confining geometries considered and the resulting den-

sity fields obtained using the original system of SCFT equations and the modified system

in (5.12)-(5.13), while figures 5.10 and 5.11 demonstrate the resulting pressure fields ob-

tained using the two approaches. As one can see, the solution of the two systems of

equations leads to practically indistinguishable density fields, however, the standard ap-

proach leads to a singular behavior of µ+ near domains boundaries, while the proposed

approach results in pressure fields with well-defined values everywhere.

Figure 5.8: Resulting polymer morphologies obtained using the standard SCFT approach
for imposing surface energies.

245



Figure 5.9: Resulting polymer morphologies obtained using the proposed approach for
imposing surface energies.

Figure 5.10: Resulting pressure field µ+ obtained using the standard SCFT approach for
imposing surface energies.

Figure 5.11: Resulting pressure field µ+ obtained using the proposed approach for im-
posing surface energies.

5.7.2 Free surface block copolymers

Validation test

To validate the obtained expressions for the system energy sensitivity to the free surface

shape, we consider a synthetic test in which we externally impose a velocity field for

246



the free surface, we track the change in energy at each iteration and we compare the

numerical results to the prediction given in (5.19). Specifically, we consider a polymer

droplet of radius r = 0.611Rg and deform it in the velocity field (vx, vy):

vx = x cos(5τ),

vy = −y cos(5τ).
(5.22)

Figure 5.12 visualize deformations that the polymer droplet undergoes and figure 5.13

Figure 5.12: Visualization of imposed deformations in example 5.7.2.

compares the predicted and actual changes in energy for each iteration. The predicted

values match the actual values very well almost everywhere, expect for two spikes that

correspond to topology changes in the polymer morphologies and that cannot be de-

scribed within the assumption of smooth behaviors.

Figure 5.13: Comparison between changes in energy computed using (5.19) and numeri-
cally.

247



Substrate-supported BCP droplets

To demonstrate the capabilities of the proposed framework we consider several represen-

tative examples, specifically:

1. A droplet of lamella-forming diblock copolymer (χABN = 30, f = 0.5) on a sub-

strate with lamellae oriented parallel to the substrate;

2. A droplet of lamella-forming diblock copolymer (χABN = 30, f = 0.5) on a sub-

strate with lamellae oriented perpendicular to the substrate;

3. A droplet of cylinder-forming diblock copolymer (χABN = 30, f = 0.3) on a

substrate;

4. A droplet of cylinder-forming diblock copolymer (χABN = 30, f = 0.3) in a groove.

(a) (b)
(c)

Figure 5.14: Equilibration of a droplet of a lamella-forming BCP on a substrate with
lamellae oriented horizontally: (a) initial state, (b) final state, (c) energy evolution.

The simulation results for these cases are presented in figures 5.16, 5.14, 5.15, and 5.17.

Specifically, they demonstrate the initial shape of a polymer droplet, the final shape, and

the energy evolution. As one can see, in all cases the simulated system reaches a local

energetic minimum.

248



(a) (b) (c)

Figure 5.15: Equilibration of a droplet of a lamella-forming BCP on a substrate with
lamellae oriented vertically: (a) initial state, (b) final state, (c) energy evolution.

(a) (b) (c)

Figure 5.16: Equilibration of a droplet of a cylinder-forming BCP on a substrate: (a)
initial state, (b) final state, (c) energy evolution.

(a) (b) (c)

Figure 5.17: Equilibration of a droplet of a cylinder-forming BCP in a groove: (a) initial
state, (b) final state, (c) energy evolution.

Meniscus formation in graphoepitaxy applications

Finally, we apply the presented method to study the meniscus formation in graphoepi-

taxy applications of block copolymers [76, 77]. Specifically, we consider vertically ori-

ented lamellar-forming and horizontally oriented cylindrical-forming block copolymers in

grooves and analyze the influence of the polymer-air surface tension as well as the value

249



of the contact angle on the resulting self-assembling structures of polymer material. The

parameters of the problem are chosen in the following way: the width of the groove is

20Rg, the height of the unperturbed film is 5Rg, the interaction strength between A

and B polymer species is χABN = 30, the fraction of the A component is f = 0.5 and

f = 0.3 in the case of lamellae- and cylinder-forming diblock copolymers, respectively.

For simplicity, the surface tensions between the polymer species and the groove’s walls

are assumed to be equal (i.e., no preferential attraction).

Figures 5.18 and 5.19 demonstrate the stable shapes of the polymer films obtained in

cases when the contact angle formed by the polymer material with the groove’s wall is 60o,

90o, or 120o and for values of polymer-air surface tensions corresponding to χapN = 1, 9,

25, and 100.

χapN 120o 90o 60o

1

9

25

100

Figure 5.18: Equilibrium shapes of a lamellae-forming diblock copolymer film of height
4Rg in a groove of width 20Rg for several values of the polymer-air surface tension and
contact angle.

These equilibrium shapes can be qualitatively explained in terms of the balance be-

250



χapN 120o 90o 60o

1

9

25

100

Figure 5.19: Equilibrium shapes of a cylinder-forming diblock copolymer film of height
4Rg in a groove of width 20Rg for several values of the polymer-air surface tension and
contact angle.

tween the internal polymer stiffness and the polymer-air surface tension. In cases when

the polymer-air surface tension χapN = 1 is much lower than the interaction strength

between the polymer components χABN = 30, the overall film shape remains almost flat

with the curvature caused by the meniscus propagating only a very small distance away

from the walls. Note that the low surface tension also allows a small-scale corrugation

of polymer-air interface due to the internal film morphology. In the other limit when

the polymer-air surface tension χapN = 100 is much higher than the polymer interaction

strength χABN = 30, the overall film shapes are very close to the spherical ones expected

for simple liquids with only a slight small-scale corrugations. Note that in this case, the

polymer domains next to groove’s walls also undergo significant deformations. Finally,

in intermediate cases χapN = 9 and χapN = 25, which are comparable to χABN = 30,

the curvature due to the meniscus formation propagates a significant distance away from

251



the walls, while the center region of the film is still flat.

It is also interesting to see that the degree of the film deformation is slightly higher

in the case of lamellae-forming diblock copolymer as demonstrated in figure 5.20. This

indicates that the stiffness of the cylindrical morphology is higher and the deformation of

a cylindrical arrangement of polymer chains causes a higher energetic penalty compared

to the deformation of the lamellar arrangements.

χapN 120o 90o 60o

1

9

25

100

Figure 5.20: Comparison of the equilibrium shapes of lamellae-forming (blue line) and
cylinder-forming (red line) diblock copolymer films of height 4Rg in a groove of width
20Rg for several values of the polymer-air surface tension and contact angle.

To summarize, the result presented in this example demonstrate that the overall equi-

librium shapes of copolymer films in guiding grooves are defined by the balance between

the internal stiffness of polymer morphologies and the polymer-air surface tension. These

results indicate that in graphoepitaxy applications of block copolymer, the surface ener-

gies of guiding templates must be carefully selected to prevent significant deformations

of the self-assembling films.

252



5.7.3 Block copolymer nanocomposites

Validation test

Similarly to the case of block copolymers with a free surface, we validate the expression for

the energy sensitivity to particles’ positions and orientations by considering a synthetic

example with imposed velocity, which allows us to compare the predicted and the actual

changes in energy. Specifically, we consider three particles – a disk, a rod, and a star –

rotating in a circular trajectory and spinning around their center of mass as illustrated in

figure 5.21. Note that the rod has a uniform surface energy, while the disk and the star

have variable surface energies along their boundaries. Figure 5.22 compares the predicted

and actual values of the energy change for each iteration and confirms the validity of the

derived expressions.

Figure 5.21: Visualization of imposed motion in example 5.7.3.

Placement of Janus rods in lamellae-forming BCP

We now apply the proposed computational approach for investigating the co-assembly

of lamellar diblock copolymer (χABN = 30, f = 0.5) with rod-like Janus particles, that

is, particles that are attracted to the A polymer component on the one end and to the

the B polymer component on the other end. On the one hand, the elongated shape

253



Figure 5.22: Comparison between changes in energy computed using (5.20) and numeri-
cally.

of such particles promotes the orientation parallel to the AB interface to reduce the

system’s energy, while the selective attraction on opposite sides of such particles favors

the perpendicular orientation. As the result, one can expect the resulting placement of

the nanoparticle to be a function of its length and the magnitude of its surface energy.

Another factor expected to affect the particle placement is the particles density because

the crowding may result in insufficient space for nanoparticles to assume their equilibrium

orientation.

In numerical simulations, we consider particles of capsule-like shapes with radius of

curvature r0 = 0.1Rg and nonuniform surface energies given by:

γAp =
1

σ

1

2

√
χapN (1 + cos(θ)) ,

γBp =
1

σ

1

2

√
χapN (1− cos(θ)) ,

where θ is the angle of rotation from the particle’s axis and χapN characterizes the

strength of preferential attraction between the nanoparticle and polymer species and, for

convenience, is also referred to as the polarization strength.

254



Figure 5.23 depicts a representative simulation result for the co-assembly of lamellae-

forming diblock copolymer (χABN = 30, f = 0.5) with Janus nanorods of length 0.4Rg

in a computational domain of dimensions 3Rg × 3Rg. One observes that, while a small

number of nanoparticles are trapped inside of A or B domains the majority of nanorods

tend to aggregate at the interface between A and B polymer components and form a

certain angle with the interface. In order to investigate this co-assembly behavior in

Figure 5.23: Representative simulation results for co-assembly of a lamellar diblock
copolymer (χABN = 30, f = 0.5) and Janus nanorods of length 0.4Rg (periodically
tiled for visualization purposes).

greater detail, we first consider a single nanorod in a smaller rectangular domain with

dimension 1.8 × 1.8Rg, which approximately corresponds to the single diblock lamellar

spacing. Periodic boundary conditions are imposed in the x-direction and homogeneous

Neumann boundary conditions are imposed in the y-direction. Figure 5.24 depicts the

equilibrium placements of nanorods of different lengths and for several values of the

polarization strength χapN , while figure 5.25 summarizes the quantitative values for the

equilibrium angles. It is clear from these results that the stable orientation of an isolated

Janus nanorod in a lamellar diblock copolymer with respect to the interface between

polymer components is a smooth function of the particle’s length and of the polarization

255



strength.

χpN 0.2Rg 0.3Rg 0.4Rg 0.5Rg 0.6Rg 0.7Rg

1

2

3

4

5

6

Figure 5.24: Equilibrium orientation of a Janus nanorod at the interface between A and
B blocks obtained for different values of the particle’s lengths and of the polarization
strength.

Next, we perform similar simulations but this time with different numbers of nanopar-

ticles inside the computational domain. Figures 5.26 illustrate the obtained particles

configurations and figure 5.27 presents the quantitative results describing these configu-

rations. One can observe that, as long as the density of particles is low (1-3 particles)

256



Figure 5.25: Dependence of the Janus nanorod orientation on the polarization strength
for several values of the particle’s length.

and no crowding occurs, the equilibrium orientations of nanorods are almost identical to

those of a isolated nanorod. As the density of particles is increased, the equilibrium orien-

tations of nanorods dramatically changes due to crowding effects. First, the equilibrium

orientation angle increases for each polarization strength value as the particle density

increases. Second, as the polarization strength decreases to low values the equilibrium

orientation converges to a minimal nonzero value, which is dictated by the geometrical

constraint due to crowding, and, thus, the accessible range of the particles’ orientation

is reduced.

To summarize the findings from numerical simulations of the co-assembly of Janus

nanorods in a lamellar-forming diblock copolymer, we observed an aggregation of

nanoparticles along interfaces between dissimilar polymer species oriented at a well de-

fined angle with respect to these interfaces. The angle value of the equilibrium orientation

continuously depend on the nanorod’s length and on the polarization strength. High par-

ticle densities influence the equilibrium placement of nanorods due to the crowding effect,

257



χpN

1

2

3

4

5

6

Figure 5.26: Equilibrium orientation of Janus nanorods at the interface between A and B
blocks obtained for different values of the particles density and the polarization strength.

limiting the minimum achievable angle values.

5.7.4 Inverse Design for Directed Self-Assembly

In all the numerical examples of this section, we consider a cylinder-forming diblock

copolymer described by parameters f = 0.3 and χABN = 30. All target patterns consist

258



Figure 5.27: Dependence of the Janus nanorod orientation on the polarization strength
for several values of the particles density.

of cylindrical domains and the target field µt of each cylindrical domain is taken as:

µt =
1

2
χABNsgn(φ)

(
exp
(
− |φ|

√
χABN

)
− 1
)
,

where

φ(x, y) =

√
(x− xc)2 + (y − yc)2 − r0,

and r0 and (xc, yc) are the target domain’s radius and center, respectively.

Validation test

Before presenting some practical applications of the proposed algorithm for the inverse

design problem in DSA, we first validate it on a synthetic test. Specifically, we consider a

circular confining domain of radius 3.5Rg, a circular target domain of radius 1.0Rg, and

impose deformation velocities according to (5.22). Figure 5.28 illustrate the self-assembly

under an imposed deformation of the surface. Figure 5.29 shows the comparison between

259



the change in the cost functional calculated directly and as predicted by the analytical

expression (5.21). The close match between the actual change and the predicted one

illustrates the accuracy of the proposed approach.

Figure 5.28: Visualization of imposed motion in example 5.7.4.

Figure 5.29: Comparison between changes in energy computed using (5.21) and numeri-
cally.

Influence of domain size and spacing

We start with a simple case of designing confining masks for the placement of two cylindri-

cal domains formed by the minority component. Specifically, we investigate the influence

of the domains’ size and spacing on the resulting mask shapes. Figure 5.30 illustrates

mask shapes obtained using the proposed optimization algorithm for cylindrical radii

ranging from r0 = 0.9Rg to r0 = 1.2Rg and domain spacings ranging from ∆r = 2.75Rg

to ∆r = 4Rg, where Rg is the radius of gyration of the block copolymer chains. The

260



value of α = 0.1 is used for curvature penalization. The results indicate that the proposed

d r0 = 0.9 r0 = 1.0 r0 = 1.1 r0 = 1.2

2.75

3.00

3.25

3.50

3.75

4.00

Figure 5.30: Confining masks for placement of two cylinders for different design param-
eters. Coloring shows the density configuration of the self-assembled polymer while the
solid black line represent the target template.

method is successful for almost every case considered and produces confining geometries

that results not only in accurate placement of domain centers but their overall shapes

as well. In some cases, the algorithm is enable to find a mask geometry that will guide

the self-assembly towards the target design. However, those cases consider small well

distances and/or large cylinders radii, which forces the cylindrical polymer domains to

be placed too close to each other and eventually merge. Thus, it should be interpreted

261



as the non-existence of solution in these cases rather than the deficiency of the method.

One can notice that depending on the target pattern geometry, the resulting confining

masks can have either concave or convex features to accommodate for the polymer chains

jammed between cylindrical domains. In either cases, such features have scales smaller

than the target pattern, which makes such confining masks of a little practical value.

However, we now show how the mask’s smoothness can be controlled through adjusting

the curvature penalization parameter α. Specifically, we consider a case with concave

features (d = 4Rg, r0 = Rg) and a case with convex features (d = 3Rg, r0 = 1.1Rg).

Figure 5.31 demonstrates the resulting confining mask in the cases where the curvature

penalization parameter take the values 0.1, 0.2, 0.4, 0.8, and 1.6. As one can see, the

(a) α = 0.1 (b) α = 0.2 (c) α = 0.4 (d) α = 0.8 (e) α = 1.6

Figure 5.31: Confining masks for two cylindrical domains placed 3Rg (top row) and 4Rg

(bottom row) apart and varying the parameter α controlling the smoothness of the mask.
Coloring shows the density configuration of the self-assembled polymer while the solid
black line represent the target template.

proposed approach performs well under curvature constraints producing confining masks

of desired smoothness that, at the same time, guide the polymer self-assembly very

precisely to its target design.

262



Influence of relative orientation

Now we turn our attention to designing confining masks for the placement of a line of five

cylinders making a turn at a specified angle. We consider angles ranging from θ = 60o to

θ = 150o. In addition, we investigate several cylinder spacing values ranging from ∆r =

3Rg to ∆r = 4Rg. Figure 5.30 illustrates the resulting confining masks. As one can see,

d 60o 90o 120o 150o

3.00

3.25

3.50

3.75

4.00

Figure 5.32: Confining mask for the placement of a line of cylinders making a specified
turn. Coloring shows the density configuration of the self-assembled polymer domains
while the solid black line represent the target template.

the proposed algorithm was able to find confining masks that result in very close matches

263



between actual polymer morphologies and the desired ones, except for the case θ = 90o

and domain spacing ∆r = 3Rg. However, we do not interpret this as a deficiency of the

numerical method but as a more fundamental incommensurability between the desired

template and the intrinsic properties of the polymer material considered. Indeed, in the

cases of angles θ = 60o and θ = 120o, which are more commensurate with the intrinsically

favorable hexagonally packed polymer morphology, the inverse design is successful.

Confining mask for more complex templates

Finally, in order to demonstrate the robustness and the flexibility of the proposed op-

timization algorithm, we apply it to the design of confining masks for more complex

templates. Specifically, we consider the C, A, S, L, U, and B shaped patterns guiding

6, 9, 7, 6, 8, and 9 cylindrical domain, correspondingly. In all cases, the characteristic

distance between the cylindrical domains and their size are chosen to be ∆r = 3.5Rg and

r0 = Rg. Figure 5.33 illustrates the output of the optimization algorithm and demon-

strates that successful and non-trivial confining masks are obtained for all patterns.

5.8 Conclusion

In this chapter we have presented an adjoint-state based approaches for three moving

boundary problems relevant to the physics of inhomogeneous polymers: the self-assembly

of free surface BCPs, the co-assembly of BCP nanocomposites, and the inverse design

problem for DSA. These numerical approaches are based on exact analytical shape deriva-

264



Figure 5.33: Confining masks for guiding cylindrical domains in the C, A, S, L, U, and B
shaped patterns. Coloring shows the density configuration of the self-assembled polymer
domains while the solid black line represent the target template.

tives of the underlying quantity for minimization (the system’s energy in the first two

cases, and the deviation of the actual density field from the desired one in the third

case). In all cases, the polymer-air and the polymer-solid interfaces are treated in a

sharp, physically meaningful fashion. The surface tensions between the polymer mate-

rial and its surroundings are imposed using a novel consistent approach that results in

pressure fields free of numerical singularities. All proposed methods have been validated

on benchmark examples with imposed velocities and demonstrated a very close match

between predicted and actual changes in the minimization quantity.

The computational method for modeling free surface BCPs was applied to the in-

vestigation of the meniscus formation in the context of graphoepitaxy applications for

lamellar and cylindrical diblock copolymers. It was shown that in case of the lamella-

forming copolymer the polymer-air surface tension, as well as the contact angle value

at the air-polymer-wall triple junction point affect the distribution of polymer material

265



inside the guiding groove and also cause the bending of polymer lamellar domains. At

the same time the cylinder-forming polymer morphology demonstrated less sensitivity to

these parameters.

The computational method for the co-assembly of BCP nanocomposites was applied

to investigate the placement and orientation of “polarized” nanorod particle in lamellar

diblock copolymer. It was demonstrated that such particles aggregate at the interface

between dissimilar polymer blocks and that their resulting orientation is controlled by

the balance of the particles’ length, the “polarization” strength, and the particles density.

Finally, the computational method for the inverse design problem for DSA was applied

to obtain confining masks for placement of cylindrical domains of BCP in a number of

different patterns. The method was shown to be able to produce masks that result not

only in an accurate placement of cylindrical domains but accurate dimensions as well.

Additionally, it was applied to cases of rather complicated patterns to demonstrate the

method’s robustness.

Interesting future work will include the application of the presented methods to cases

of grafted polymers, polymers of more complex architectures, and blends of copolymers.

Another direction of future work will be the extension of the presented methods to a

more accurate fluctuating field-theoretic description of block copolymers.

266



5.A Weak formulations and equivalence of modified

diffuion equations

To demonstrate the equivalence of (5.2) and (5.8) we invoke their weak forms. Multi-

plying the diffusion equation in (5.2) by an test function ψ(s, r) and integrating over

domain Ω and contour variable range s ∈ [0, 1] we obtain:

∫
Ω

1∫
0

(
∂sq + (µ(s) + σγ(s)δΓ) q −D(s)∇2q

)
ψ dr ds = 0. (5.23)

Using integration by parts and the divergence theorem it is straightforward to show that:

∫
Ω

1∫
0

∂sqψ dr ds =

∫
Ω

∂s (qψ) dr ds−
∫
Ω

1∫
0

q∂sψ dr ds

=

∫
Ω

(q(1, r)ψ(1, r)− q(0, r)ψ(0, r)) dr ds−
∫
Ω

1∫
0

q∂sψ dr ds (5.24)

and

∫
Ω

1∫
0

D(s)∇2qψ dr ds =

∫
Ω

1∫
0

D(s)∇ · (∇qψ) dr ds−
∫
Ω

1∫
0

D(s)∇q · ∇ψ dr ds

=

∫
Γ

1∫
0

D(s)∂nqψ dr ds−
∫
Ω

1∫
0

D(s)∇q · ∇ψ dr ds. (5.25)

Using the above two expressions in (5.23) along with the initial and boundary conditions

for q produces the following weak form of (5.2):

267



∫
Ω

(q(1, r)ψ(1, r)− ψ(0, r)) dr ds

+

∫
Ω

1∫
0

(−q∂sψ + (µ(s) + σγ(s)δΓ) qψ +D(s)∇q · ∇ψ) dr ds = 0, ∀ψ

Converting the term containing surface delta function δΓ into a boundary integral as

∫
Ω

1∫
0

σγ(s)δΓqψ dr ds =

∫
Γ

1∫
0

σγ(s)qψ dr ds

the obtained weak form can be transformed into

∫
Ω

(q(1, r)ψ(1, r)− ψ(0, r)) dr ds

+

∫
Ω

1∫
0

(−q∂sψ + µ(s)qψ +D(s)∇q · ∇ψ) dr ds

+

∫
Γ

1∫
0

σγ(s)qψ dr ds = 0, ∀ψ,

which represents a weak form an altered diffusion equation. Indeed, using formulas (5.24)

and (5.25) in the reverse way, one can write the above expression as

∫
Ω

(q(0, r)− 1)ψ(0, r) dr ds

+

∫
Ω

1∫
0

(
∂sq + µ(s)q −D(s)∇2q

)
ψ dr ds

+

∫
Γ

1∫
0

(D(s)∂nq + σγ(s)q)ψ dr ds = 0, ∀ψ

268



from which it immediately follows that q satisfies (5.8). The equivalence of (5.3)-(5.9),

(5.8)-(5.10), and (5.9)-(5.11) can be demonstrated in the analogous fashion.

5.B Shape derivatives of integral quantities

In order to calculate derivatives of integral quantities (5.17) we invoke the Level-Set

methodology [121]. Specifically, we assume, first, that domain Ω(τ) can be represented

Figure 5.34: Problem geometry and notation used in section 5.B.

as the intersection of two smooth domains Ωa(τ) and Ωw as demonstrated in figure 5.34,

and, second, that boundaries of domains Ωa(τ) and Ωw are described as zero-isocontours

of higher-dimensional functions φa(τ) and φw, called level-set functions, such that:

φa(τ)

{
< 0, r ∈ Ωa,

> 0, r /∈ Ωa,
and φw(τ)

{
< 0, r ∈ Ωw,

> 0, r /∈ Ωw.

In this setting the evolution of interface Γa(τ) in the velocity field vn(τ) corresponds to

the following advection equation for function φa(τ):

∂φa
∂τ

+ vn |∇φa| = 0. (5.26)

269



The description of the problem geometry in this way allows to write the boundary and

domain integrals using the Heaviside step functions H(x), Dirac delta distribution δ(x)

and the co-area formula as

∫
Ω

f dr =

∫
<D

fH(−φa)H(−φw) dr,

∫
Γw

f dr =

∫
<D

fH(−φa)δ(φw) |∇φw| dr,∫
Γa

f dr =

∫
<D

fδ(φa) |∇φa|H(−φw) dr,

where D denotes the problem’s dimensionality. Taking the derivative of these expression

with respect to τ leads to

∂

∂τ

∫
Ω

f dr =

∫
<D

∂f

∂τ
H(−φa)H(−φw) dr −

∫
<D

fδ(−φa)
∂φa
∂τ

H(−φw) dr,

∂

∂τ

∫
Γw

f dr =

∫
<D

∂f

∂τ
H(−φa)δ(φw) |∇φw| dr −

∫
<D

fδ(−φa)
∂φa
∂τ

δ(φw) |∇φw| dr,

∂

∂τ

∫
Γa

f dr =

∫
<D

∂f

∂τ
δ(φa) |∇φa|H(−φw) dr +

∫
<D

fδ′(φa)
∂φa
∂τ
|∇φa|H(−φw) dr

+

∫
<D

fδ(φa)
∇φa
|∇φa|

· ∇∂φa
∂τ

H(−φw) dr,

(5.27)

Applying integration by parts to the last term in the third expression it can be shown

that

270



∫
<D

fδ(φa)
∇φa
|∇φa|

· ∇∂φa
∂τ

H(−φw) dr

= −
∫
<D

∂φa
∂τ
∇ ·
(
fδ(φa)

∇φa
|∇φa|

H(−φw)

)
dr

= −
∫
<D

∂φa
∂τ

(
∇f · ∇φa

|∇φa|
δ(φa)H(−φw) + fδ′(φa) |∇φa|H(−φw)

+ fδ(φa)∇ ·
(
∇φa
|∇φa|

)
H(−φw)− fδ(φa)δ(−φw)∇φw ·

∇φa
|∇φa|

)
dr.

Substituting the above expression into (5.27), using advection equation (5.26) and the

fact that the normal vectors and curavtures of Γa and Γb are equal to

na =
∇φa
|∇φa|

, κa = ∇ ·
(
∇φa
|∇φa|

)
,

nw =
∇φw
|∇φw|

, κw = ∇ ·
(
∇φw
|∇φw|

)
,

results in the following formulas

271



∂

∂τ

∫
Ω

f dr =

∫
<D

∂f

∂τ
H(−φa)H(−φw) dr +

∫
<D

fvnδ(φa) |∇φa|H(−φw) dr,

∂

∂τ

∫
Γw

f dr =

∫
<D

∂f

∂τ
H(−φa)δ(φw) |∇φw| dr

+

∫
<D

fvnδ(φa) |∇φa| δ(φw) |∇φw| dr,

∂

∂τ

∫
Γa

f dr =

∫
<D

∂f

∂τ
δ(φa) |∇φa|H(−φw) dr

+

∫
<D

vn (κf + ∂nf) δ(φa) |∇φa|H(−φw) dr

−
∫
<D

fvnδ(φa) |∇φa| δ(φw) |∇φw|na · nw dr,

which after applying the coarea formulas and converting integrals into more traditional

notation become (5.18). Note that these expressions contain integrals over intersection

of Γa and Γw. These terms can be interpreted as additional surface generation as Γa

travels along Γw (see figure 5.35).

Figure 5.35: Interpretation of resulting expression for shape derivatives in case of sharp
features.

272



Bibliography

[1] L. Adams and T. Chartier. New geometric immersed interface multigrid solvers.
SIAM J. Sci. Comput., 25:1516–1533, 2004.

[2] L. Adams and T. Chartier. A comparison of algebraic multigrid and geometric im-
mersed interface multigrid methods for interface problems. SIAM J. Sci. Comput.,
26:762–784, 2005.

[3] L. Adams and Z. Li. The immersed interface/multigrid methods for interface prob-
lems. SIAM J. Sci. Comput., 24(2):463–479, 2002.

[4] Grégoire Allaire, François Jouve, and Anca-Maria Toader. Structural optimization
using sensitivity analysis and a level-set mehtod. J. Comput. Phys., 194(1):363–393,
2004.

[5] Victoria Arias, Daniil Bochkov, and Frederic Gibou. Poisson equations in irregu-
lar domains with Robin boundary conditions - solver with second-order accurate
gradients. J. Comput. Phys., 365:1–6, 2018.

[6] Tariq Aslam. A partial differential equation approach to multidimensional extrap-
olation. J. Comput. Phys., 193(1):349–355, 2004.

[7] Tariq Aslam, Songting Luo, and Hongkai Zhao. A static pde approach for mul-
tidimensional extrapolation using fast sweeping methods. SIAM J. Sci. Comput.,
36(6):A2907–A2928, 2014.

[8] Ivo Babus̆ka. The finite element method for elliptic equations with discontinuous
coefficients. Computing, 5:207–213, 1970.

[9] Satish Balay, Jed Brown, , Kris Buschelman, Victor Eijkhout, William D. Gropp,
Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith,
and Hong Zhang. PETSc Users Manual. Argonne National Laboratory, 2012.

273



[10] Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang.
Petsc web page, 2012.

[11] Zhaosheng Bao, Jeong-Mo Hong, Joseph Teran, and Ronald Fedkiw. Fracturing
rigid materials. IEEE Trans. Vis. Comput. Graph, 13:370–378, 2007.

[12] John W. Barrett, Harald Garcke, and Robert Nürnberg. On stable parametric
finite element methods for the Stefan problem and the Mullins–Sekerka problem
with applications to dendritic growth. J. Comput. Phys., 229(18):6270 – 6299,
2010.

[13] Ted Belytschko, Nicolas Moës, Shuji Usui, and Chandu Parimi. Arbitrary discon-
tinuities in finite elements. Int. J. Numer. Methods Eng., 50:993–1013, 2001.

[14] P. A. Berthelsen. A decomposed immersed interface method for variable coefficient
elliptic equations with non-smooth and discontinuous solutions. J. Comput. Phys.,
197:364–386, 2004.

[15] Wurigen Bo, Xingtao Liu, James Glimm, and Xiaolin Li. A robust front tracking
method: Verification and application to simulation of the primary breakup of a
liquid jet. SIAM J. Sci. Comput., 33(4):1505–1524, 2011.

[16] Daniil Bochkov and Frederic Gibou. Pde-based multidimensional extrapolation of
scalar fields over interfaces with kinks and high curvatures. Accepted in SIAM J.
Sci. Comput., 2019.

[17] Daniil Bochkov and Frederic Gibou. A sharp computational method for the simu-
lation of the solidification of multicomponent alloys. In Preparation, 2019.

[18] Daniil Bochkov and Frederic Gibou. Solving poisson-type equations with robin
boundary conditions on piecewise smooth interfaces. J. Comput. Phys., 376:1156–
1198, 2019.

[19] Daniil Bochkov and Frederic Gibou. Solving elliptic interface problems with jump
conditions on cartesian grids. J. Comput. Phys., 407:109269, 2020.

[20] Michael R Bockstaller, Rafal A Mickiewicz, and Edwin L Thomas. Block copolymer
nanocomposites: perspectives for tailored functional materials. Advanced materials,
17(11):1331–1349, 2005.

[21] François Bouchon and Gunther H. Peichl. A second-order immersed interface tech-
nique for an elliptic Neumann problem. Numer. Meth. Part. D. E., 23(2):400–420,
mar 2007.

274



[22] J. H. Bramble and B. E. Hubbard. Approximation of solutions of mixed boundary
value problems for Poisson’s equation by finite differences. J. ACM, 12(1):114–123,
1965.

[23] Christopher E. Brennen. Fundamentals of Multiphase Flows, volume ISBN 0521
848040. Cambridge University Press, 2005.

[24] Carsten Burstedde, Lucas C Wilcox, and Omar Ghattas. p4est: Scalable algorithms
for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput.,
33(3):1103–1133, 2011.

[25] Corinne L. Carpenter, Kris T. Delaney, Nabil Laachi, and Glenn H. Fredrickson.
Directed self-assembly of diblock copolymers in cylindrical confinement: effect of
underfilling and air-polymer interactions on configurations. SPIE Advanced Lithog-
raphy, 9423:94231Z, 2015.

[26] Adam Chacon and Alexander Vladimirsky. A parallel two-scale method for Eikonal
equations. SIAM J. Sci. Comput., 37(1):A156–A180, 2015.

[27] Han Chen, Chohong Min, and Frederic Gibou. A supra-convergent finite difference
scheme for the Poisson and heat equations on irregular domains and non-graded
adaptive Cartesian grids. J. Sci. Comput., 31:19–60, 2007.

[28] Han Chen, Chohong Min, and Frederic Gibou. A numerical scheme for the Stefan
problem on adaptive Cartesian grids with supralinear convergence rate. J. Comput.
Phys., 228(16):5803–5818, 2009.

[29] Susan Chen, Barry Merriman, Stanley Osher, and Peter Smereka. A simple level
set method for solving Stefan problems. J. Comput. Phys., 135:8–29, 1997.

[30] T. Chen and J. Strain. Piecewise-polynomial discretization and krylov-accelerated
multigrid for elliptic interface problems. J. Comput. Phys., 227(16):7503–7542,
2008.

[31] Marco Cisternino and Lisl Weynans. A parallel second order cartesian method for
elliptic interface problems. Comm. Comput. Phys., 12:1562–1587, 2012.

[32] A. Coco and G. Russo. Second order multigrid methods for elliptic problems with
discontinuous coefficients on an arbitrary interface, i: One dimensional problems.
Numer. Math.-Theory Me., 5:19, 2012.

[33] Armando Coco and Giovanni Russo. Finite-difference ghost-point multigrid meth-
ods on Cartesian grids for elliptic problems in arbitrary domains. J. Comput. Phys.,
241:464–501, 2013.

275



[34] R.K. Crockett, P. Colella, and D.T. Graves. A cartesian grid embedded boundary
method for solving the poisson and heat equations with discontinuous coefficients
in three dimensions. J. Comput. Phys., 230(7):2451 – 2469, 2011.

[35] Andrew B. Croll, Michael V. Massa, Mark W. Matsen, and Kari Dalnoki-Veress.
Droplet shape of an anisotropic liquid. Physical Review Letters, 97(Novem-
ber):204502, 2006.

[36] Christophe Daux, Nicolas Moës, John Dolbow, Natarajan Sukumar, and Ted Be-
lytschko. Arbitrary branched and intersecting cracks with the extended finite ele-
ment method. Int. J. Numer. Methods Eng., 48:1741–1760, 2000.

[37] Stephen H Davis. Theory of solidification. Cambridge University Press, 2001.

[38] Charles Cleret de Langavant, Arthur Guittet, Maxime Theillard, Fernando
Temprano-Coleto, and Frédéric Gibou. Level-set simulations of soluble surfactant
driven flows. J. Comput. Phys., 348:271 – 297, 2017.

[39] Miles Detrixhe and Frédéric Gibou. Hybrid Massively Parallel Fast Sweeping
Method for static Hamilton-Jacobi Equations. J. Comput. Phys., 322:199–223,
2016.

[40] Miles Detrixhe, Frédéric Gibou, and Chohong Min. A parallel fast sweeping method
for the eikonal equation. J. Comput. Phys., 237:46–55, 2013.

[41] Dharshi Devendran, Daniel Graves, Hans Johansen, and Terry Ligocki. A fourth-
order cartesian grid embedded boundary method for poissons equation. Comm.
App. Math. Com. Sc., 12(1):51–79, 2017.

[42] Raphael Egan and Frédéric Gibou. Fast and scalable algorithms for constructing
solvent-excluded surfaces of large biomolecules. J. Comput. Phys., 374:91 – 120,
2018.

[43] B Engquist, A K Tornberg, and R Tsai. Discretization of Dirac delta functions in
level set methods. J. Comput. Phys., 207:28–51, 2005.

[44] Doug Enright, Duc Nguyen, Frederic Gibou, and Ron Fedkiw. Using the particle
level set method and a second order accurate pressure boundary condition for free
surface flows. In Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer
Engineering Conference. Volume 2: Symposia, Parts A, B, and C., volume 36975,
pages 337–342, 2003.

[45] R. D. Falgout and U. M. Yang. Hypre: A library of high performance precondition-
ers, volume 2331. Springer Berlin Heidelberg, 2002.

276



[46] Ronald P Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. A non-
oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid
method). J. Comput. Phys., 152(2):457–492, 1999.

[47] Glenn H. Fredrickson. The equilibrium theory of inhomogeneous polymers, volume
134. Oxford University Press, USA, 2006.

[48] Thomas-Peter Fries. Higher-order conformal decomposition fem (cdfem). Comput.
Method. Appl. M., 328:75–98, 2018.

[49] Thomas-Peter Fries and Ted Belytschko. The intrinsic XFEM: a method for arbi-
trary discontinuities without additional unknowns. Int. J. Numer. Methods Eng.,
68:1358–1385, 2006.

[50] Thomas-Peter Fries and Samir Omerović. Higher-order accurate integration of
implicit geometries. Int. J. Numer. Methods Eng., 106(5):323–371, may 2016.

[51] Thomas-Peter Fries, Samir Omerović, Daniel Schöllhammer, and Jakob Steidl.
Higher-order meshing of implicit geometries—Part I: Integration and interpolation
in cut elements. Comput. Method. Appl. M., 313:759–784, 2017.

[52] Thomas-Peter Fries and Daniel Schöllhammer. Higher-order meshing of implicit
geometries, part ii: Approximations on manifolds. Comput. Method. Appl. M.,
326:270–297, 2017.

[53] Olivier Gallinato and Clair Poignard. Superconvergent Cartesian methods for Pois-
son type equations in 2d – domains. Technical report, 2015.

[54] Olivier Gallinato and Clair Poignard. Superconvergent second order Cartesian
method for solving free boundary problem for invadopodia formation. J. Comput.
Phys., 339:412–431, 2017.

[55] Frederic Gibou, Liguo Chen, Duc Nguyen, and Sanjoy Banerjee. A level set based
sharp interface method for the multiphase incompressible navier–stokes equations
with phase change. J. Comput. Phys., 222(2):536–555, March 2007.

[56] Frédéric Gibou and Ronald Fedkiw. A fourth order accurate discretization for the
Laplace and heat equations on arbitrary domains, with applications to the Stefan
problem. J. Comput. Phys., 202(2):577 – 601, 2005.

[57] Frédéric Gibou, Ronald Fedkiw, Russel Caflisch, and Stanley Osher. A level set
approach for the numerical simulation of dendritic growth. J. Sci. Comput., 19(1-
3):183–199, 2003.

[58] Frederic Gibou, Ronald Fedkiw, Li-Tien Cheng, and Myngjoo Kang. A second-
order accurate symmetric discretization of the Poisson equation on irregular do-
mains. J. Comput. Phys., 176(1):205–227, 2002.

277



[59] Frederic Gibou, Ronald Fedkiw, and Stanley Osher. A review of level-set methods
and some recent applications. J. Comput. Phys., 353:82 – 109, 2018.

[60] Frederic Gibou and Chohong Min. Efficient symmetric positive definite second-
order accurate monolithic solver for fluid/solid interactions. J. Comput. Phys.,
231:3246–3263, 2012.

[61] Frederic Gibou, Chohong Min, and Ronald Fedkiw. High resolution sharp compu-
tational methods for elliptic and parabolic problems in complex geometries. J. Sci.
Comput., 54:369–413, 2013.

[62] J Glimm, J Grove, X L Li, K Shyue, Y.Zeng, and Q Zhang. Three dimensional
front tracking. SIAM J. Sci. Comput., 1998:703–729, 1998.

[63] James Glimm, John W. Grove, Xiaolin Li, and Nailiang Zhao. Simple front track-
ing. Contemporary Math., 238:133–149, 1999.

[64] D Greenspan. On the numerical solution of problems allowing mixed boundary
conditions. J. Franklin I., 277(1):11–30, 1964.

[65] S. Gróı and A. Reusken. An extended pressure finite element space for two-phase
incompressible flows with surface tension. J. Comput. Phys., 224:40–58, 2007.

[66] Arthur Guittet, Mathieu Lepilliez, Sebastien Tanguy, and Frédéric Gibou. Solving
elliptic problems with discontinuities on irregular domains – the Voronoi interface
method. J. Comput. Phys., 298:747 – 765, 2015.

[67] Arthur Guittet, Clair Poignard, and Frederic Gibou. A voronoi interface approach
to cell aggregate electropermeabilization. J. Comput. Phys., 332:143 – 159, 2017.

[68] Arthur Guittet, Maxime Theillard, and Frédéric Gibou. A stable projection method
for the incompressible Navier–Stokes equations on arbitrary geometries and adap-
tive Quad/Octrees. J. Comput. Phys., 292:215 – 238, 2015.

[69] Grégory Guyomarc’h, Chang-Ock Lee, and Kiwan Jeon. A discontinuous Galerkin
method for elliptic interface problems with application to electroporation. Comm.
Numer. Meth. Eng., 25(10):991–1008, 2009.

[70] J Heinrich and P Zhao. Front tracking finite element method for dendritic solidifi-
cation. J. Comput. Phys., 173:765–796, 2001.

[71] Ásd́ıs Helgadóttir and Frederic Gibou. A Poisson-Boltzmann solver on irregular
domains with Neumann or Robin boundary conditions on non-graded adaptive
grid. J. Comput. Phys., 230:3830–3848, 2011.

278



[72] Jeffrey Lee Hellrung, Luming Wang, Eftychios Sifakis, and Joseph M. Teran. A
second order virtual node method for elliptic problems with interfaces and irregular
domains in three dimensions. J. Comput. Phys., 231(4):2015 – 2048, 2012.

[73] Thomas Y Hou, John S Lowengrub, and Michael J Shelley. Removing the stiffness
from interfacial flows with surface tension. J. Comput. Phys., 114(2):312–338, 1994.

[74] Hanqiong Hu, Manesh Gopinadhan, and Chinedum O Osuji. Directed self-assembly
of block copolymers: a tutorial review of strategies for enabling nanotechnology
with soft matter. Soft matter, 10(22):3867–3889, 2014.

[75] Wei-Fan Hu, Ming-Chih Lai, and Yuan-Nan Young. A hybrid immersed boundary
and immersed interface method for electrohydrodynamic simulations. J. Comput.
Phys., 282:47–61, 2015.

[76] Seong-Jun Jeong, Ji Eun Kim, Hyoung-Seok Moon, Bong Hoon Kim, Su Min Kim,
Jin Baek Kim, and Sang Ouk Kim. Soft graphoepitaxy of block copolymer assembly
with disposable photoresist confinement. Nano letters, 9(6):2300–2305, 2009.

[77] Seong-Jun Jeong, Ju Young Kim, Bong Hoon Kim, Hyoung-Seok Moon, and
Sang Ouk Kim. Directed self-assembly of block copolymers for next generation
nanolithography. Materials today, 16(12):468–476, 2013.

[78] Espen Jettestuen, Johan O. Helland, and Masa Prodanovic. A level set method
for simulating capillary-controlled displacements at the pore scale with nonzero
contact angles. Water Resour. Res., 49(8):4645–4661, 2013.

[79] H. Ji and J. Dolbow. On strategies for enforcing interfacial constraints and evaluat-
ing jump conditions with extended finite element method. Int. J. Numer. Methods
Eng., 61(14):2508–2535, 2004.

[80] H. Johansen and P. Colella. A Cartesian grid embedded boundary method for
Poisson equation on irregular domains. J. Comput. Phys., 147:60–85, 1998.

[81] Z. Jomaa and C. Macaskill. The Shortley-Weller embedded finite-difference method
for the 3d Poisson equation with mixed boundary conditions. J. Comput. Phys.,
229(10):3675–3690, 2010.

[82] Ziad Jomaa and Charlie Macaskill. Numerical solution of the 2-d poisson equation
on an irregular domain with robin boundary conditions. In Proceedings of the 14th
Biennial Computational Techniques and Applications Conference, volume 50, pages
1–10, 2008.

[83] Damir Juric and Grétar Tryggvason. A front tracking method for dendritic solidi-
fication. J. Comput. Phys, 123:127–148, 1996.

279



[84] Alain Karma. Phase-field formulation for quantitative modeling of alloy solidifica-
tion. Physical Review Letters, 87(11):115701, 2001.

[85] Jaeup U. Kim and Mark W. Matsen. Droplets of structured fluid on a flat substrate.
Soft Matter, 5(15):2889–2895, 2009.

[86] Seong Gyoon Kim. A phase-field model with antitrapping current for multi-
component alloys with arbitrary thermodynamic properties. Acta Materialia,
55(13):4391–4399, 2007.

[87] Jason Koski, Huikuan Chao, and Robert A Riggleman. Field theoretic simulations
of polymer nanocomposites. The Journal of chemical physics, 139(24):244911, 2013.

[88] W. Kurz and D. J. Fisher. Fundamentals of Solidification. Trans Tech Publication,
1998.

[89] Azat Latypov. Computational solution of inverse directed self-assembly problem. In
Alternative Lithographic Technologies V, volume 8680, page 86800Z. International
Society for Optics and Photonics, 2013.

[90] Mathieu Lepilliez, Elena Roxana Popescu, Frederic Gibou, and Sébastien Tanguy.
On two-phase flow solvers in irregular domains with contact line. J. Comput. Phys.,
321:1217–1251, 2016.

[91] Adrián J Lew and Gustavo C Buscaglia. A discontinuous-Galerkin-based immersed
boundary method. Int. J. Numer. Methods Eng., 76:427–454, 2008.

[92] Zhilin Li. A fast iterative algorithm for elliptic interface problems. SIAM J. Numer.
Anal., 35:230–254, 1998.

[93] Zhilin Li and Kazufumi Ito. The Immersed Interface Method – Numerical Solutions
of PDEs Involving Interfaces and Irregular Domains, volume 33. SIAM Frontiers
in Applied mathematics, 2006.

[94] Zi-Cai Li and Tzon-Tzer Lu. Singularities and treatments of elliptic boundary value
problems. Math. Comput. Modell., 31(8-9):97–145, 2000.

[95] X.-D. Liu, R. P. Fedkiw, and M. Kang. A boundary capturing method for Poisson’s
equation on irregular domains. J. Comput. Phys., 160:151–178, 2000.

[96] Frank Losasso, Frederic Gibou, and Ron Fedkiw. Simulating water and smoke with
an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.), pages 457–462,
2004.

[97] Michael J Maher, Jeffrey L Self, Pawel Stasiak, Gregory Blachut, Christopher J
Ellison, Mark W Matsen, Christopher M Bates, and C Grant Willson. Structure,
stability, and reorganization of 0.5 l 0 topography in block copolymer thin films.
ACS nano, 10(11):10152–10160, 2016.

280



[98] Mark W Matsen. The standard gaussian model for block copolymer melts. Journal
of Physics: Condensed Matter, 14(2):R21, 2001.

[99] Chohong Min and Frederic Gibou. Geometric integration over irregular domains
with application to level-set methods. J. Comput. Phys., 226:1432–1443, 2007.

[100] Chohong Min and Frederic Gibou. A second order accurate level set method on
non-graded adaptive Cartesian grids. J. Comput. Phys., 225(1):300–321, 2007.

[101] Chohong Min and Frederic Gibou. Robust second-order accurate discretizations
of the multi-dimensional Heaviside and Dirac delta functions. J. Comput. Phys.,
227(22):9686–9695, November 2008.

[102] Chohong Min, Frédéric Gibou, and Hector D Ceniceros. A supra-convergent finite
difference scheme for the variable coefficient poisson equation on non-graded grids.
J. Comput. Phys., 218(1):123–140, 2006.

[103] Mohammad Mirzadeh and Frédéric Gibou. A conservative discretization of the
Poisson–Nernst–Planck equations on adaptive cartesian grids. J. Comput. Phys.,
274:633–653, 2014.

[104] Mohammad Mirzadeh, Arthur Guittet, Carsten Burstedde, and Frederic Gibou.
Parallel level-set methods on adaptive tree-based grids. J. Comput. Phys., 322:345
– 364, 2016.

[105] Mohammad Mirzadeh, Maxime Theillard, and Frédéric Gibou. A second-order dis-
cretization of the nonlinear Poisson–Boltzmann equation over irregular geometries
using non-graded adaptive Cartesian grids. J. Comput. Phys., 230(5):2125 – 2140,
2011.

[106] Mohammad Mirzadeh, Maxime Theillard, Asd́ıs Helgadöttir, David Boy, and
Frédéric Gibou. An adaptive, finite difference solver for the nonlinear Poisson-
Boltzmann equation with applications to biomolecular computations. Comm. Com-
put. Phys., 13(1):150–173, 2012.

[107] Pouria Mistani, Arthur Guittet, Daniil Bochkov, Joshua Schneider, Dionisios Mar-
getis, Christian Ratsch, and Frederic Gibou. The island dynamics model on parallel
quadtree grids. J. Comput. Phys., 361:150–166, 2018.

[108] Pouria Mistani, Arthur Guittet, Clair Poignard, and Frederic Gibou. A parallel
voronoi-based approach for mesoscale simulations of cell aggregate electroperme-
abilization. J. Comput. Phys., 380:48 – 64, 2019.

[109] Nicolas Moës, Mathieu Cloirec, Patrice Cartraud, and Jean-Francois Remacle. A
computational approach to handle complex microstructure geometries. Comput.
Method. Appl. M., 192:3162–3177, 2003.

281



[110] Nicolas Moës, John Dolbow, and Ted Belytschko. A finite element method for crack
growth without remeshing. Int. J. Numer. Methods Eng., 46:131–150, 1999.

[111] Neil Molino, Zhaosheng Bao, and Ron Fedkiw. A virtual node algorithm for chang-
ing mesh topology during simulation. ACM Trans. Graph. (SIGGRAPH Proc.),
23:385–392, 2004.

[112] Timothy J Moroney, Dylan R Lusmore, Scott W McCue, and DL Sean McElwain.
Extending fields in a level set method by solving a biharmonic equation. J. Comput.
Phys., 343:170–185, 2017.

[113] Mohammed Moumnassi, Salim Belouettar, Éric Béchet, Stéphane P.A. Bordas,
Didier Quoirin, and Michel Potier-Ferry. Finite element analysis on implicitly de-
fined domains: An accurate representation based on arbitrary parametric surfaces.
Comput. Method. Appl. M., 200(5-8):774–796, jan 2011.

[114] Björn Müller, Florian Kummer, and Martin Oberlack. Highly accurate surface and
volume integration on implicit domains by means of moment-fitting. Int. J. Numer.
Methods Eng., 96(8):512–528, nov 2013.

[115] Yen Ting Ng, Han Chen, Chohong Min, and Frederic Gibou. Guidelines for Poisson
solvers on irregular domains with Dirichlet boundary conditions using the Ghost
Fluid Method. Journal of Scientific Computing, 41(2):300–320, May 2009.

[116] Yen Ting Ng, Chohong Min, and Frédéric Gibou. An efficient fluid–solid coupling
algorithm for single-phase flows. J. Comput. Phys., 228(23):8807 – 8829, 2009.

[117] Duc Nguyen, Frederic Gibou, and Ronald Fedkiw. A Fully Conservative Ghost
Fluid Method and Stiff Detonation Waves. In 12th Int. Detonation Symposium,
San Diego, CA, 2002.

[118] M. Oevermann, C. Scharfenberg, and R. Klein. A sharp interface finite volume
method for elliptic equations on Cartesian grids. J. Comput. Phys., 228:5184–5206,
2009.

[119] Samir Omerović and Thomas-Peter Fries. Conformal higher-order remeshing
schemes for implicitly defined interface problems. Int. J. Numer. Methods Eng.,
109(6):763–789, 2017.

[120] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit Sur-
faces. Springer-Verlag, 2002. New York, NY.

[121] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit Sur-
faces. Springer, 2003.

282



[122] Stanley Osher and James A. Sethian. Fronts propagating with curvature depen-
dent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.,
79(1):12–49, 1988.

[123] Gaddiel Ouaknin, Nabil Laachi, Daniil Bochkov, Kris Delaney, Glenn H Fredrick-
son, and Frederic Gibou. Functional level-set derivative for a polymer self consistent
field theory hamiltonian. J. Comput. Phys., 345:207–223, 2017.

[124] Gaddiel Ouaknin, Nabil Laachi, Kris Delaney, Glenn H. Fredrickson, and Frederic
Gibou. Self-consistent field theory simulations of polymers on arbitrary domains.
J. Comput. Phys., 327:168 – 185, 2016.

[125] Gaddiel Ouaknin, Nabil Laachi, Kris Delaney, Glenn H Fredrickson, and Frederic
Gibou. Level-set strategy for inverse DSA-lithography. J. Comput. Phys., 375:1159–
1178, 2018.

[126] A Pandolfi, P Krysl, and M Ortiz. Finite element simulation of ring expansion and
fragmentation. Int. J. Fract., 95(1–4):279–297, 1999.

[127] Joe Papac, Dionisios Margetis, Frederic Gibou, and Christian Ratsch. Island-
dynamics model for mound formation: Effect of a step-edge barrier. Phys. Rev. E,
90(2):022404, 2014.

[128] Joseph Papac, Frederic Gibou, and Christian Ratsch. Efficient symmetric dis-
cretization for the Poisson, heat and Stefan-type problems with Robin boundary
conditions. J. Comput. Phys., 229:875–889, 2010.

[129] Joseph Papac, Asdis Helgadottir, Christian Ratsch, and Frederic Gibou. A level set
approach for diffusion and Stefan-type problems with Robin boundary conditions
on Quadtree/Octree adaptive Cartesian grids. J. Comput. Phys., 233:241–261,
2013.

[130] J. Qian, G. Tryggvason, and C.K. Law. A front tracking method for the motion of
premixed flames. J. Comput. Phys., 144(1):52–69, July 1998.

[131] K Reuther and M Rettenmayr. Perspectives for cellular automata for the simulation
of dendritic solidification–a review. Computational materials science, 95:213–220,
2014.

[132] Casey L Richardson, Jan Hegemann, Eftychios Sifakis, Jeffrey Hellrung, and
Joseph M Teran. An XFEM method for modeling geometrically elaborate crack
propagation in brittle materials. Int. J. Numer. Methods Eng., 88:1042–1065, 2011.

[133] Avi Robinson-Mosher, Tamar Shinar, Jon Gretarsson, Jonathan Su, and Ronald
Fedkiw. Two-way coupling of fluids to rigid and deformable solids and shells. ACM
Trans. Graph., 27(3):1–9, 2008.

283



[134] Annette Rösler, Guido WM Vandermeulen, and Harm-Anton Klok. Advanced drug
delivery devices via self-assembly of amphiphilic block copolymers. Advanced drug
delivery reviews, 64:270–279, 2012.

[135] Giovanni Russo and Peter Smereka. A remark on computing distance functions. J.
Comput. Phys., 163(1):51–67, 2000.

[136] Chris H Rycroft and Frédéric Gibou. Simulations of a stretching bar using a
plasticity model from the shear transformation zone theory. J. Comput. Phys.,
231(5):2155–2179, 2012.

[137] G Ryskin and LG Leal. Numerical solution of free-boundary problems in fluid
mechanics. part 1. the finite-difference technique. J. Fluid Mech., 148:1–17, 1984.

[138] Rajiv Sampath and Nicholas Zabaras. Numerical study of convection in the direc-
tional solidification of a binary alloy driven by the combined action of buoyancy,
surface tension, and electromagnetic forces. J. Comput. Phys., 168(2):384 – 411,
2001.

[139] R. I. Saye. High-order quadrature methods for implicitly defined surfaces and
volumes in hyperrectangle. SIAM J. Sci. Comput., 37(2):A993–A1019, jan 2015.

[140] Alfred Schmidt. Computation of three dimensional dendrites with finite elements.
J. Comput. Phys., 125:293–312, 1996.

[141] Peter Schwartz, Michael Barad, Phillip Colella, and Terry Ligocki. A Cartesian
grid embedded boundary method for the heat equation and Poisson’s equation in
three dimensions. J. Comp. Phys., 211(2):531–550, 2006.

[142] Peter Schwartz, Julie Percelay, Terry Ligocki, Hans Johansen, Daniel Graves,
Dharshi Devendran, Phillip Colella, and Eli Ateljevich. High-accuracy embedded
boundary grid generation using the divergence theorem. Comm. App. Math. Com.
Sc., 10(1):83–96, mar 2015.

[143] Guus Segal, Kees Vuik, and Fred Vermolen. A conserving discretization for the
free boundary in a two-dimensional Stefan problem. J. Comput. Phys., 141(1):1 –
21, 1998.

[144] James A Sethian. Level set methods, volume 3 of Cambridge Monographs on Applied
and Computational Mathematics. Cambridge University Press, Cambridge, 1996.
Evolving interfaces in geometry, fluid mechanics, computer vision, and materials
science.

[145] James A. Sethian. Level set methods and fast marching methods. Cambridge Uni-
versity Press, 1998.

284



[146] James A Sethian and Alexander Vladimirsky. Ordered upwind methods for static
hamilton-jacobi equations. Proc. Natl. Acad. Sci, 98/20:11069–11074, 2001.

[147] George H Shortley and Royal Weller. The numerical solution of laplace’s equation.
J. Appl. Phys., 9(5):334–348, 1938.

[148] Scott W Sides, Bumjoon J Kim, Edward J Kramer, and Glenn H Fredrickson. Hy-
brid particle-field simulations of polymer nanocomposites. Physical review letters,
96(25):250601, 2006.

[149] Eftychios Sifakis, Kevin G Der, and Ronald Fedkiw. Arbitrary cutting of
deformable tetrahedralized objects. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, volume 2007, pages
73–80, 2007.

[150] P Smereka. The numerical approximation of a delta function with application to
level set methods. J. Comput. Phys., 211:77–90, 2006.

[151] Gihun Son. A level set method for incompressible two-fluid flows with immersed
solid boundaries. Numer. Heat. Tr. B-Fund., 47(5):473–489, apr 2005.

[152] David P. Starinshak, Smadar Karni, and Philip L. Roe. A New Level-Set Model for
the Representation of Non-Smooth Geometries. J. Sci. Comput., 61(3):649–672,
2014.

[153] David P. Starinshak, Smadar Karni, and Philip L. Roe. A new level set model for
multimaterial flows. J. Comput. Phys., 262:1–16, 2014.

[154] P. Stasiak, J. D. McGraw, K. Dalnoki-Veress, and M. W. Matsen. Step edges in
thin films of lamellar-forming diblock copolymer. Macromolecules, 45(23):9531–
9538, 2012.

[155] Morgan Stefik, Stefan Guldin, Silvia Vignolini, Ulrich Wiesner, and Ullrich Steiner.
Block copolymer self-assembly for nanophotonics. Chemical Society Reviews,
44(15):5076–5091, 2015.

[156] Ingo Steinbach. Phase-field models in materials science. Modelling and simulation
in materials science and engineering, 17(7):073001, 2009.

[157] Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach for com-
puting solutions to incompressible two-phase flow. J. Comput. Phys., 114:146–159,
1994.

[158] Maxime Theillard, Landry Fokoua Djodom, Jean-Léopold Vié, and Frédéric Gibou.
A second-order sharp numerical method for solving the linear elasticity equations
on irregular domains and adaptive grids – application to shape optimization. J.
Comput. Phys., 233:430–448, 2013.

285



[159] Maxime Theillard, Frédéric Gibou, and Tresa Pollock. A sharp computational
method for the simulation of the solidification of binary alloys. J. Sci. Comput.,
63(2):330–354, 2015.

[160] Russell B Thompson, Valeriy V Ginzburg, Mark W Matsen, and Anna C Bal-
azs. Predicting the mesophases of copolymer-nanoparticle composites. Science,
292(5526):2469–2472, 2001.

[161] A.-K. Tornberg and B Engquist. Numerical approximations of singular source terms
in differential equations. J. Comput. Phys., 200:462–488, 2004.

[162] J Towers. Two methods for discretizing a delta function supported on a level set.
J. Comput. Phys., 220:915–931, 2007.

[163] John D. Towers. Finite difference methods for approximating Heaviside functions.
J. Comput. Phys., 228(9):3478–3489, 2009.

[164] G Tryggvason, B Bunner, A Esmaeeli, D Juric, N Al-Rawahi, W Tauber, J Han,
S Nas, and Y.-J. Jan. A front-tracking method for the computations of multiphase
flow. J. Comput. Phys., 169:708–759, 2001.

[165] Masafumi Tsunekane, Akane Suzuki, and Tresa M Pollock. Single-crystal solidifi-
cation of new co–al–w-base alloys. Intermetallics, 19(5):636–643, 2011.

[166] S O Unverdi and G Tryggvason. A front-tracking method for viscous, incompress-
ible, multifluid flows. J. Comput. Phys., 100:25–37, 1992.

[167] F. van der Bos and V. Gravemeier. Numerical simulation of premixed combustion
using an enriched finite element method. J. Comput. Phys., 228:3605–3624, 2009.

[168] H. J. van Linde. High-order finite-difference methods for Poisson’s equation. Math.
Comput., 28(126):369–369, may 1974.

[169] Richard S Varga. Matrix iterative analysis, volume 27. Springer Science & Business
Media, 2009.

[170] J. Villain. Continuum models of crystal growth from atomic beams with and
without desorption. J. Phys. I, 1, 1991.

[171] Xin Wen. High order numerical methods to two dimensional delta function integrals
in level set methods. J. Comput. Phys., 228(11):4273–4290, jun 2009.

[172] Xin Wen. High order numerical methods to three dimensional delta function inte-
grals in level set methods. SIAM J. Sci. Comput., 32(3):1288–1309, jan 2010.

[173] Xin Wen. High order methods to Heaviside function integrals. J. Comput. Math.,
29(3):305–323, 2011.

286



[174] A. Wiegmann and K. Bube. The explicit jump immersed interface method: finite
difference method for pdes with piecewise smooth solutions. SIAM J. Numer.
Anal., 37(3):827–862, 2000.

[175] Neil M Wigley. An efficient method for subtracting off singularities at corners for
laplace’s equation. J. Comput. Phys., 78(2):369–377, 1988.

[176] Kelin Xia, Xin Feng, Zhan Chen, Yiying Tong, and Guo-Wei Wei. Multiscale
geometric modeling of macromolecules i: Cartesian representation. J. Comput.
Phys., 257:912 – 936, 2014.

[177] Jian-Jun Xu, Weidong Shi, Wei-Fan Hu, and Jun-Jie Huang. A level-set im-
mersed interface method for simulating the electrohydrodynamics. J. Comput.
Phys., 400:108956, 2020.

[178] Sheng Xu. An iterative two-fluid pressure solver based on the immersed interface
method. Comm. Comput. Phys., 12(2):528–543, 2012.

[179] Yi Yang and HS Udaykumar. Sharp interface cartesian grid method iii: Solidifi-
cation of pure materials and binary solutions. Journal of Computational Physics,
210(1):55–74, 2005.

[180] Sara Zahedi and Anna Karin Tornberg. Delta function approximations in level
set methods by distance function extension. J. Comput. Phys., 229(6):2199–2219,
2010.

[181] Hongkai Zhao. A fast sweeping method for eikonal equations. Math. Comput.,
74:603–627, 2004.

[182] P. Zhao, M. Vénere, J.C. Heinrich, and D.R. Poirier. Modeling dendritic growth of
a binary alloy. J. Comput. Phys., 188(2):434–461, July 2003.

287


	Contents
	Permissions and Attributions
	Solving Elliptic PDEs with Robin Boundary Conditions in Domains with Piecewise Boundaries
	Introduction
	Relevant Literature
	Compound Domains
	Numerical Method
	Discretization of fluxes between cells
	Discretization of the Robin b.c. term
	Matrix structure
	Truncation errors
	Fall-back strategies for the superconvergent scheme
	Non-singularity of the symmetric scheme
	Computation of integrals

	Numerical Results
	Integration
	Two spatial dimensions
	Three spatial dimensions
	Accuracy of the level-set representation
	Singular solutions

	Conclusion
	Hierarchical geometry reconstruction algorithm
	Vertex (0-simplex)
	Edge (1-simplex)
	Triangle (2-simplex)
	Tetrahedron (3-simplex)
	Valid level-set data
	Removing invalid geometric reconstruction
	On curvature resolution in three spatial dimensions
	Integration


	Solving Elliptic PDEs with Discontinuities across Irregular Interfaces
	Introduction
	Numerical Discretization
	Numerical tests
	Two-dimensional case
	Three-dimensional case
	Analysis
	Application to adaptive quadtree and octree grids

	Conclusions

	PDE-Based Extrapolation of Scalar Fields over Piecewise Smooth Interfaces
	Introduction
	Numerical Method
	Level-set Representation
	Normal-derivative based multidimensional PDE extrapolation of Aslam:04:A-partial-differenti
	Weighted-Cartesian-derivative based multidimensional PDE extrapolation
	Implementation details

	Numerical Results in Two Spatial Dimensions
	Numerical Results in Three Spatial Dimensions
	Application to Solving the Diffusion Equation in Time-Dependent Domains
	Conclusion

	Sharp-Interface Simulations of Multialloy Solidification
	Introduction
	Physical Model
	Numerical Approach
	Discretization in time
	Solving the non-linearly coupled system of Poisson-type equations
	Numerical Methods
	Overall simulation procedure

	Results
	Validation of the numerical approach: Axisymmetric stable solidification 
	Directional solidification of a Co-W-Al ternary alloy
	Analysis of solutal segregation

	Conclusion
	Functional derivative with respect to C1
	Directional derivative with respect to C1
	Details of linear stability analysis of iterative schemes for solving nonlinear system of PDEs
	Removing extremely underresolved regions
	Similarity solution for the solidifying infinite cylinder due to a heat sink

	Moving Boundary Problems in Physics of Block Copolymer Materials
	Introduction
	A consistent approach for imposing arbitrary surface energies in SCFT
	Solving the SCFT equations for +* and -*

	Sensitivity of free energy to shape of free surface
	Sensitivity of free energy to position and orientation of a nanoparticle
	Sensitivity of polymer morphology to confining mask's geometry
	Numerical aspects
	Results
	Imposing surface energies
	Free surface block copolymers
	Block copolymer nanocomposites
	Inverse Design for Directed Self-Assembly

	Conclusion
	Weak formulations and equivalence of modified diffuion equations
	Shape derivatives of integral quantities

	Bibliography



