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Causal Models and Learning from Data:
Integrating Causal Modeling and Statistical Estimation

Maya L. Petersen and Mark J. van der Laan
Divisions of Biostatistics and Epidemiology, University of California, Berkeley, School of Public
Health, Berkeley, CA

Abstract

The practice of epidemiology requires asking causal questions. Formal frameworks for causal

inference developed over the past decades have the potential to improve the rigor of this process.

However, the appropriate role for formal causal thinking in applied epidemiology remains a matter

of debate. We argue that a formal causal framework can help in designing a statistical analysis that

comes as close as possible to answering the motivating causal question, while making clear what

assumptions are required to endow the resulting estimates with a causal interpretation. A

systematic approach for the integration of causal modeling with statistical estimation is presented.

We highlight some common points of confusion that occur when causal modeling techniques are

applied in practice and provide a broad overview on the types of questions that a causal

framework can help to address. Our aims are to argue for the utility of formal causal thinking, to

clarify what causal models can and cannot do, and to provide an accessible introduction to the

flexible and powerful tools provided by causal models.

Epidemiologists must ask causal questions. Describing patterns of disease and exposure is

not sufficient to improve health. Instead, we seek to understand why such patterns exist and

how we can best intervene to change them. The crucial role of causal thinking in this process

has long been acknowledged in our field’s historical focus on confounding.

Major advances in formal causal frameworks have occurred over the past decades. Several

specific applications, such as the use of causal graphs to choose adjustment variables1 or the

use of counterfactuals to define the effects of longitudinal treatments,2 are now common in

the epidemiologic literature. However, the tools of formal causal inference have the

potential to benefit epidemiology much more extensively.

We argue that the wider application of formal causal tools can help frame sharper scientific

questions, make transparent the assumptions required to answer these questions, facilitate

rigorous evaluation of the plausibility of these assumptions, clearly distinguish the process

of causal inference from the process of statistical estimation, and inform analyses of data

and interpretation of results that rigorously respect the limits of knowledge. We, together
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with others, advocate for a systematic approach to causal questions that involves (1)

specification of a causal model that accurately represents knowledge and its limits; (2)

specification of the observed data and their link to the causal model; (3) translation of the

scientific question into a counterfactual quantity; (4) assessment of whether, under what

assumptions, this quantity is identified–whether it can be expressed as a parameter of the

observed data distribution or estimand; (5) statement of the resulting statistical estimation

problem; (6) estimation, including assessment of statistical uncertainty; and (7)

interpretation of results (Figure 1).3,4 We emphasize how causal models can help navigate

the ubiquitous tension between the causal questions posed by public health and the

inevitably imperfect nature of available data and knowledge.

A GENERAL ROADMAP FOR CAUSAL INFERENCE

1. Specify knowledge about the system to be studied using a causal model

Of the several models available, we focus on the structural causal model,5–10 which provides

a unification of the languages of counterfactuals,11,12 structural equations,13,14 and causal

graphs.1,7 Structural causal models provide a rigorous language for expressing both

background knowledge and its limits.

Causal graphs represent one familiar means of expressing knowledge about a data-

generating process; we focus here on directed acyclic graphs (Figure 2). Figure 2A provides

an example of a directed acyclic graph for a simple data-generating system consisting of

baseline covariates W, an exposure A, and an outcome Y. Such graphs encode causal

knowledge in several ways. First, graphs encode knowledge about the possible causal

relations among variables. Knowledge that a given variable is not directly affected by a

variable preceding it is encoded by omitting the corresponding arrow (referred to as “an

exclusion restriction”). Figure 2A reflects the absence of any such knowledge; baseline

covariates W may have affected the exposure A, and both may have affected the outcome Y.

In other cases, investigators may have knowledge that justifies exclusion restrictions. For

example, if A represents adherence to a randomly assigned treatment R (Figure 2B), it might

be reasonable to assume that random assignment (if effectively blinded) had no effect on the

outcome other than via adherence. Such knowledge is represented by omission of an arrow

from R to Y. Second, omission of a double-headed arrow between two variables assumes

that any unmeasured “background factors” that go into determining the values that these

variables take are independent (or, equivalently, that the variables do not share an

unmeasured cause, referred to as “an independence assumption”). Figure 2A makes no

independence assumptions, whereas Figure 2B reflects the knowledge that, because R was

randomly assigned, it shares no unmeasured common cause with any other variables.

The knowledge encoded in a causal graph can alternatively be represented using a set of

structural equations, in which each node in the graph is represented as a deterministic

function of its parents and a set of unmeasured background factors. The error term for a

given variable X (typically denoted as UX) represents the set of unmeasured background

factors that, together with variable X’s parents (nodes with arrows pointing to X), determine

what value X takes (Figure 2). The set of structural equations, together with any restrictions

placed on the joint distribution of the error terms (expressed on the graph as assumptions
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about the absence of unmeasured common causes between two nodes) together constitute a

structural causal model.5,6

Such a structural causal model provides a flexible tool for encoding a great deal of

uncertainty about the true data-generating process. Specifically, a structural causal model

allows for uncertainty about the existence of a causal relationship between any two variables

(through inclusion of an arrow between them), uncertainty about the distribution of all

unmeasured background factors that go into determining the value of these variables

(frequently, no restrictions are placed on the joint distribution of the errors, beyond any

independence assumptions), and uncertainty about the functional form of causal

relationships between variables (the structural equations can be specified

nonparametrically). If knowledge in any of these domains is available, however, it can be

readily incorporated. For example, if it is known that R was assigned independently to each

subject with probability 0.5, this knowledge can be reflected in the corresponding structural

equation (Figure 2B), as can parametric knowledge on the true functional form of causal

relationships.

In sum, the flexibility of a structural causal model allows us to avoid many (although not all)

unsubstantiated assumptions and thus facilitates specification of a causal model that

describes the true data-generating process. Alternative causal models differ in their

assumptions about the nature of causality and make fewer untestable assumptions.15–19

2. Specify the observed data and their link to the causal model

Specification of how the observed data were generated by the system described in our causal

model provides a bridge between causal modeling and statistical estimation.

The causal model (representing knowledge about the system to be studied) must be

explicitly linked to the data measured on that system. For example, a study may have

measured baseline covariates W, exposure A, and outcome Y on an independent random

sample of n individuals from some target population. The observed data on a given person

thus consist of a single copy of the random variable O = (W, A, Y). If our causal model

accurately describes the data-generating system, the data can be viewed as n independent

and identically distributed draws of O from the corresponding system of equations.

More complex links between the observed data and the causal model are also possible. For

example, study participants may have been sampled on the basis of exposure or outcome

status. More complex sampling schemes such as these can be handled either by specifying

alternative links between the causal model and the observed data or by incorporating

selection or sampling directly into the causal model.6,20

The structural causal model is assumed to describe the system that generated the observed

data. This assumption may or may not have testable implications. For example, the systems

described by Figures 2A, D, and E could generate any possible distribution of O = (W, A, Y).

We thus say that these causal models place no restrictions on the joint distribution of the

observed data, implying a nonparametric statistical model. In contrast, the system described

by Figure 2B can generate only distributions of O = (W, R, A, Y) in which R is independent
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of W (a testable assumption). This causal model thus implies a semiparametric statistical

model. Independence (and conditional independence) restrictions of this nature can be read

from the graph using the criterion of d-separation.5,7 (The set of possible distributions for

the observed data may also be restricted via functional or inequality constraints.)21–23

The statistical model should reflect true knowledge about the data-generating process,

ensuring that it contains the true distribution of the observed data. Although in some cases

parametric knowledge about the data-generating process may be available, in many cases a

causal model that accurately represents knowledge is compatible with any possible

distribution for our observed data, implying a nonparametric statistical model.

3. Specify the target causal quantity

The formal language of counterfactuals forces explicit statement of a hypothetical

experiment to answer the scientific question of interest.

Specification of an ideal experiment and a corresponding target counterfactual quantity

helps ensure that the scientific question drives the design of a data analysis and not vice

versa.24 This process forces the researcher to define exactly which variables would ideally

be intervened on, what the interventions of interest would look like, and how the resulting

counterfactual outcome distributions under these interventions would be compared.

A causal model on the counterfactual distributions of interest can be specified directly (and

need not be graphical)2,11,12,25 or, alternatively, it can be derived by representing the

counterfactual intervention of interest as an intervention on the graph (or set of equations).

The initial structural causal model describes the set of processes that could have generated

(and thus the set of possible distributions for) the observed data. The postintervention causal

model describes the set of processes that could have generated the counterfactual variables

we would have measured in our ideal experiment and thus the set of possible distributions

for these variables. Figure 2C provides an illustration of the postintervention structural

causal model corresponding to Figure 2A, under an ideal experiment in which exposure A is

set to 0 for all persons.

One common counterfactual quantity of interest is the average treatment effect: the

difference in mean outcome that would have been observed had all members of a population

received versus not received some treatment. This quantity is expressed in terms of

counterfactuals as E(Y1−Y0), where Ya denotes the counterfactual outcome under an

intervention to set A = a. The corresponding ideal experiment would force all members of a

population to receive the treatment and then roll back the clock and force all to receive the

control.

In many cases, the ideal experiment is quite different. For example, if the exposure of

interest were physical exercise, one might be interested in the counterfactual risk of

mortality if all subjects without a contraindication to exercise were assigned the intervention

(an example of a “realistic” dynamic regime, in which the treatment assignment for a given

person depends on that person’s characteristics).26–28 Furthermore, if the goal is to evaluate

the impact of a policy to encourage more exercise, a target quantity might compare the
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existing outcome distribution with the distribution of the counterfactual outcome under an

intervention to shift the exercise distribution, while allowing each person’s exercise level to

remain random (an example of a stochastic intervention).17,29–31 Additional examples

include effects of interventions on multiple nodes and mediation effects.2,32–36 Figure 3 lists

major decision points when specifying a counterfactual target parameter and provides

examples of general categories of causal questions that can be formally defined using

counterfactuals.

4. Assess identifiability

A structural causal model provides a tool for understanding whether background knowledge,

combined with the observed data, is sufficient to allow a causal question to be translated into

a statistical estimand, and, if not, what additional data or assumptions are needed.

Step 3 translated the scientific question into a parameter of the (unobserved) counterfactual

distribution of the data under some ideal intervention(s). We say that this target causal

quantity is identified, given a causal model and its link to the observed data, if the target

quantity can be expressed as a parameter of the distribution of the observed data alone—an

estimand. Structural causal models provide a general tool for assessing identifiability and

deriving estimands that, under explicit assumptions, equal causal quantities.5,37–39

A familiar example is provided by the use of causal graphs to choose an adjustment set

when estimating the average treatment effect (or other parameter of the distribution of Ya).

For observed data consisting of n independent identically distributed copies of O = (W, A,

Y), when preintervention covariates W block all unblocked back-door paths from A to Y in

the causal graph (the “back-door criterion”),5,7 then the distribution of Ya is identified

according to the “G-computation formula” (given in Equation 1 for discrete valued O).6 The

same result also holds under the “randomization assumption” that Ya is independent of A

given W18:

(1)

Equation 1 equates a counterfactual quantity (the left-hand side) with an estimand (the right-

hand side) that can be targeted for statistical estimation. The back-door criterion can be

straightforwardly evaluated using the causal graph; it fails in Figure 2A and B but holds in

Figure 2D and E. Single world intervention graphs allow graphical evaluation of the

randomization assumption for a given causal model.17

Although the estimand in Equation 1 might seem to be an obvious choice, use of a formal

causal framework can be instrumental in choosing an estimand. For example, in Figure 2F,
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The use of a structural causal model in this case warns against adjustment for Z, even if it

precedes A. In other cases, adjustment for interventions that occur after the exposure may be

warranted.

Many scientific questions imply more complex counter-factual quantities (Figure 3), for

which no single adjustment set will be sufficient and alternative identifiability results are

needed. Causal frameworks provide a tool for deriving these results, often resulting in new

estimands and thereby suggesting different statistical analyses. Examples include effect

mediation,19,32–34 the effects of interventions at multiple time points,2,18,41 dynamic

interventions,17,18,42 causal and non-causal parameters in the presence of informative

censoring or selection bias,2,6,20 and the transport of causal effects to new settings.27,43–45

5. Commit to a statistical model and estimand

A causal model that accurately represents knowledge can help to select an estimand as close

as possible to the wished-for causal quantity, while emphasizing the challenge of using

observational data to make causal inferences.

In many cases, rigorous application of a formal causal framework forces us to conclude that

existing knowledge and data are insufficient to claim identifiability—in itself a useful

contribution. The process can also often inform future studies by suggesting ways to

supplement data collection.46 However, in many cases, better data are unlikely to become

available or “current best” answers are needed to questions requiring immediate action.

One way to navigate this tension is to rigorously differentiate assumptions that represent real

knowledge from assumptions that do not, but which if true, would result in identifiability.

We refer to the former as “knowledge-based assumptions” and the latter as “convenience-

based assumptions.” An estimation problem that aims to provide a current best answer can

then be defined by specifying: (1) a statistical model implied by knowledge-based

assumptions alone (and thus ensured to contain the truth); (2) an estimand that is equivalent

to the target causal quantity under a minimum of convenience-based assumptions; and (3) a

clear differentiation between convenience-based assumptions and real knowledge. In other

words, a formal causal framework can provide a tool for defining a statistical estimation

problem that comes as close as possible to addressing the motivating scientific question,

given the data and knowledge currently available, while remaining transparent regarding the

additional assumptions required to endow the resulting estimate with a causal interpretation.

For example, measured variables are rarely known to be sufficient to control confounding.

Figure 2A may represent the knowledge-based causal model, under which the effect of A on

Y is unidentified; however, under the augmented models in Figure 2D and E, result (1)

would hold. If our goal is to estimate the average treatment effect, we might thus define a

statistical estimation problem in which: (1) the statistical model is nonparametric (as implied

by Figure 2A and by Figure 2D and E); and (2) we select

(2)
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as the estimand. We can then proceed with estimation of Equation 2, while making explicit

the conditions under which the estimand may diverge from the causal effect of interest.

6. Estimate

Choice between estimators should be motivated by their statistical properties.

Once the statistical model and estimand have been defined, there is nothing causal about the

resulting estimation problem. A given estimand, such as Equation 2, can be estimated in

many ways. Estimators of Equation 2 include those based on inverse probability

weighting,47 propensity score matching,40 regression of the outcome on exposure and

confounders (followed by averaging with respect to the empirical distribution of

confounders), and double robust efficient methods,48,49 including targeted maximum

likelihood.4

To take another example, marginal structural models (Figure 3) are often used to define

target causal quantities, particularly when the exposure has multiple levels.2,35 Under causal

assumptions, such as the randomization assumption (or its sequential counterpart), this

quantity is equivalent to a specific estimand. However, once the estimand has been

specified, estimation itself is a purely statistical problem. The analyst is free to choose

among several estimators; inverse probability–weighted estimators are simply one popular

class.

Any given class of estimator itself requires, as “ingredients,” estimators of specific

components of the observed data distribution. For example, one approach to estimating

Equation 2 is to specify an estimator of E(Y|A, W). (P(W = w) is typically estimated as the

sample proportion.) In many cases, the true functional form of this conditional expectation is

unknown. In some cases, E(Y|A, W) can be estimated non-parametrically using a saturated

regression model; however, at moderate sample sizes or if W or A are high dimensional or

contain continuous covariates, the corresponding contingency tables will have empty cells

and this approach will break down. As a result, in many practical scenarios, the analyst must

either rely on a parametric regression model that is likely to be misspecified (risking

significant bias and misleading inference) or do some form of dimension reduction and

smoothing to trade off bias and variance.

Similar considerations arise when specifying an inverse probability–weighted or propensity

score–based estimator. In this case, estimator consistency depends on consistent estimation

of the treatment mechanism or propensity score P(A = a|W). An extensive literature on data-

adaptive estimation addresses how best to approach this tradeoff for the purposes of fitting a

regression object such as E(Y|A, W) or P(A = a|W).50 An additional literature on targeted

estimation discusses how to update resulting estimates to achieve an optimal bias-variance

tradeoff for the final estimand, as well as how to generate valid estimates of statistical

uncertainty when using data-adaptive approaches.4

In sum, there is nothing more or less causal about alternative estimators. However,

estimators have important differences in their statistical properties, and these differences can

result in meaningful differences in performance in commonly encountered scenarios, such as
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strong confounding.51–53 Choice among estimators should be driven by their statistical

properties and by investigation of performance under conditions similar to those presented

by a given applied problem.

7. Interpret

Use of a causal framework makes explicit and intelligible the assumptions needed to move

from a statistical to a causal interpretation of results.

Imposing a clear delineation between knowledge-based assumptions and convenience-based

assumptions provides a hierarchy of interpretation for an analysis (Figure 4). The use of a

causal framework to define a problem in no way undermines purely statistical interpretation

of results. For example, an estimate of Equation 2 can be interpreted as an estimate of the

difference in mean outcome between exposed and unexposed subjects who have the same

values of observed baseline covariates (averaged with respect to the distribution of the

covariates in the population). The same principle holds for more complex analyses—for

example, if inverse probability weighting is used to estimate the parameters of a marginal

structural model.

The use of a formal causal framework ensures that the assumptions needed to augment the

statistical interpretation with a causal interpretation are explicit. For example, if we believe

that Figure 2D or E represents the true causal structure that generated our data, then our

estimate of Equation 2 can be interpreted as an estimate of the average treatment effect. The

use of a causal model and a clear distinction between convenience-based and knowledge-

based assumptions makes clear that the true value of an estimand may differ from the true

value of the causal effect of interest. The magnitude of this difference is a causal quantity;

choice of statistical estimator does not affect it. Statistical bias in an estimator can be

minimized through data-driven methods, while evaluating the likely or potential magnitude

of the difference between the estimand and the wished-for causal quantity requires

alternative approaches (sometimes referred to as sensitivity analyses).54–58

There is nothing in the structural causal model framework that requires the intervention to

correspond to a feasible experiment.6,59,60 In particular, some parameters of substantive

interest (such as the natural direct effect) cannot be defined in terms of a testable experiment

but can nonetheless be defined and identified under a structural causal model.32 If, in

addition to the causal assumptions needed for identifiability, the investigator is willing to

assume that the intervention used to define the counterfactuals corresponds to a conceivable

and well-defined intervention in the real world, interpretation can be further expanded to

include an estimate of the impact that would be observed if that intervention were to be

implemented in practice (in an identical manner, in an identical population, or, under

additional assumptions, in a new population).27,43–45 Finally, if the intervention could be

feasibly randomized with complete compliance and follow-up, interpretation of the estimate

can be further expanded to encompass the results that would be seen if one implemented this

hypothetical trial. The decision of how far to move along this hierarchy can be made by the

investigator and reader based on the specific application at hand. The assumptions required

are explicit and, when expressed using a causal graph, readily understandable by subject

matter experts.
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The debate continues as to whether causal questions and assumptions should be restricted to

quantities that can be tested and thereby refuted via theoretical experiment.15–17,19,61 Given

that most such experiments will be done, if ever, only after the public health relevance of an

analysis has receded,17,19 the extent to which such a restriction will enhance the practical

impact of applied epidemiology seems unclear. However, while we have chosen to focus on

the structural casual model, our goal is not to argue for the supremacy of a single class of

causal model as optimal for all scientific endeavor. Rather, we suggest that the systematic

application of a roadmap will improve the impact of applied analyses, irrespective of formal

causal model chosen.

CONCLUSIONS

Epidemiologists continue to debate whether and how to integrate formal causal thinking into

applied research. Many remain concerned that the use of formal causal tools leads both to

overconfidence in our ability to estimate causal effects from observational data and to the

eclipsing of common sense by complex notation and statistics. As Levine articulates this

position, “the language of ‘causal modeling’ is being used to bestow the solidity of the

complex process of causal inference upon mere statistical analysis of observational data…

conflating statistical and causal inference.”62 We argue that a formal causal framework,

when used appropriately, represents a powerful tool for preventing exactly such conflation

and overreaching interpretation.6,63

Like any tool, the benefits of a causal inference framework depend on how it is used. The

ability to define complex counterfactual parameters does not ensure that they address

interesting or relevant questions. The ability to formally represent causal knowledge as

graphs or equations is not a license to exaggerate what we know. The ability to prove

equivalence between a target counterfactual quantity and an estimand under specific

assumptions does not make these assumptions true, nor does it ensure that they can be

readily evaluated. The best estimation tools can still produce unreliable statistical estimates

when data are inadequate.

Good epidemiologic practice requires us to learn as much as possible about how our data are

generated, to be clear about our question, to design an analysis that answers this question as

well as possible using available data, to avoid or minimize assumptions not supported by

knowledge, and to be transparent and skeptical when interpreting results. Used

appropriately, a formal causal framework provides an invaluable tool for integrating these

basic principles into applied epidemiology. We argue that the routine use of formal causal

modeling would improve the quality of epidemiologic research, as well as research in the

innumerable disciplines that aim to use statistics to learn how the world works.
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FIGURE 1.
A general roadmap for approaching causal questions.
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FIGURE 2.
Causal graphs and corresponding structural equations representing alternative data

generating processes. (A), Assumes that W may have affected A, both A and W may have

affected Y, and W, A, and Y may all share unmeasured common causes. (B), Assumes that

subjects were randomly assigned to an exposure arm R with probability 0.5 and that

assigned exposure arm R does not affect the outcome Y other than via uptake of the

exposure A. (C), Figure 2A after a hypothetical intervention in which all subjects in the

target population are assigned exposure level 0 (however this is defined). (D) and (E),

Figure 2A augmented with additional assumptions to ensure identifiability of the distribution

of Ya (and thus target quantities such as the average treatment effect) given observed data

(W,A,Y). (F), Assumes that Z does not affect A or Y, that A shares no common causes with

W or Y, and that W shares no common causes with Y or Z. Figures 2A, 2D, and 2E have no

testable implications with W,A,Y observed, and thus imply non-parametric statistical

models for the distribution of (W,A,Y). In contrast, Figure 2B implies that R is independent

of W, and thus implies a semi-parametric statistical model for the distribution of (W,R,A,Y).
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FIGURE 3.
Translating a scientific question into a target causal quantity.
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FIGURE 4.
Interpreting the results of a data analysis: a hierarchy. The use of a statistical model known

to contain the true distribution of the observed data and of an estimator that minimizes bias

and provides a valid measure of statistical uncertainty helps to ensure that analyses maintain

a valid statistical interpretation. Under additional assumptions, this interpretation can be

augmented.
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