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Blinded, randomized trial of sonographer 
versus AI cardiac function assessment

Bryan He1, Alan C. Kwan2, Jae Hyung Cho2, Neal Yuan3, Charles Pollick2, Takahiro Shiota2, 
Joseph Ebinger2, Natalie A. Bello2, Janet Wei2, Kiranbir Josan2, Grant Duffy2, 
Melvin Jujjavarapu4, Robert Siegel2, Susan Cheng2,7 ✉, James Y. Zou1,5,7 ✉ & David Ouyang2,6,7 ✉

Artificial intelligence (AI) has been developed for echocardiography1–3, although it has 
not yet been tested with blinding and randomization. Here we designed a blinded, 
randomized non-inferiority clinical trial (ClinicalTrials.gov ID: NCT05140642; no 
outside funding) of AI versus sonographer initial assessment of left ventricular 
ejection fraction (LVEF) to evaluate the impact of AI in the interpretation workflow. 
The primary end point was the change in the LVEF between initial AI or sonographer 
assessment and final cardiologist assessment, evaluated by the proportion of studies 
with substantial change (more than 5% change). From 3,769 echocardiographic 
studies screened, 274 studies were excluded owing to poor image quality. The 
proportion of studies substantially changed was 16.8% in the AI group and 27.2% in the 
sonographer group (difference of −10.4%, 95% confidence interval: −13.2% to −7.7%, 
P < 0.001 for non-inferiority, P < 0.001 for superiority). The mean absolute difference 
between final cardiologist assessment and independent previous cardiologist 
assessment was 6.29% in the AI group and 7.23% in the sonographer group (difference 
of −0.96%, 95% confidence interval: −1.34% to −0.54%, P < 0.001 for superiority). The 
AI-guided workflow saved time for both sonographers and cardiologists, and 
cardiologists were not able to distinguish between the initial assessments by AI versus 
the sonographer (blinding index of 0.088). For patients undergoing echocardiographic 
quantification of cardiac function, initial assessment of LVEF by AI was non-inferior to 
assessment by sonographers.

Accurate quantification of cardiac function is necessary for disease 
diagnosis, risk stratification and assessment of treatment response4,5. 
LVEF, in particular, is routinely used to guide clinical decisions regard-
ing patient appropriateness for a wide range of medical and device 
therapies as well as interventions including surgeries4,6,7. Despite the 
importance of LVEF assessment in daily clinical practice and clinical 
research protocols, conventional approaches to measuring LVEF are 
well recognized as being subject to heterogeneity and variance given 
that they rely on manual and subjective human tracings8,9.

Clinical practice guidelines recommend when assessing LVEF based 
on cardiac imaging—most commonly echocardiography—that the 
measurements should be performed repeatedly over multiple cardiac 
cycles to improve precision and account for arrhythmic or haemody-
namic sources of variation10. Unfortunately, such repeated human 
measurements are rarely done in practice given logistical constraints 
present in most clinical imaging laboratories and single tracings or a 
visual estimation of LVEF is often used as a pragmatic alternative11,12. 
Such an approach is suboptimal for detection of subtle changes in 
LVEF, which is needed for making important therapeutic decisions 
(for example, eligibility for continued chemotherapy or defibrillator 
implantation)13.

Extending from tremendous progress in the field of AI over the past 
decade14, numerous algorithms have been developed with the goal of 
automating assessment of LVEF in real-world patient care settings1,3,15. 
Although such AI algorithms have demonstrated improved precision 
on limited retrospective datasets, to date, there are no current car-
diovascular AI technologies validated in blinded, randomized clinical 
trials16–19. In addition, human–computer interaction and the effect of 
AI prompting on clinical interpretations is underexplored in clinical 
studies. To address this need, we conducted a blinded, randomized 
non-inferiority clinical trial to prospectively assess the effect of initial 
assessment by AI versus conventional initial assessment by a sonogra-
pher on final cardiologist interpretation of LVEF.

Cohort characteristics
We enroled 3,769 transthoracic echocardiogram studies originally 
performed at an academic medical centre between 1 June 2019 and 
8 August 2019; these studies were prospectively re-evaluated by 25 
cardiac sonographers (mean of 14.1 years of practice) and 10 cardiolo-
gists (mean of 12.7 years of practice). In total, 3,495 studies from 3,035 
patients were able to be annotated by sonographers using Simpson’s 
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method of disc calculation of LVEF, and 274 studies were excluded for 
being of insufficient image quality to contour the left ventricle (Fig. 1).  
The eligible studies were randomized 1:1 to AI versus sonographer 
for initial evaluation, with 1,740 studies assigned to the AI group and 
1,755 studies assigned to the sonographer group. The baseline charac-
teristics of the two groups were well balanced (Table 1). At a separate 
workstation and different time, cardiologists were presented with the 
full echocardiogram study with initial annotations for the final blinded 
assessment of LVEF.

Assessment of blinding
After completing each study, cardiologists were asked to predict the 
agent of initial interpretation. Cardiologists correctly predicted the 
method of initial assessment for 1,130 (32.3%) studies, incorrectly 
guessed for 845 (24.2%) studies and were unsure whether initial assess-
ment was provided by AI or sonographers for 1,520 (43.4%) studies. 
The Bang’s blinding index, a metric of blinding in which 0 is perfect 
blinding and −1 or 1 is perfectly unblinding, was used to assess the trial20. 
A blinding metric between −0.2 and 0.2 is typically considered good 
blinding, and the blinding index was 0.075 for the sonographer group 
and 0.088 for the AI group. The bootstrapped confidence interval was 
consistently within −0.2 and 0.2 (P > 0.99).

Primary outcome
The primary outcome of substantial change between the initial and final 
assessments occurred in 292 (16.8%) studies in the AI group compared 
with 478 (27.2%) studies in the sonographer group (difference of −10.4%, 
95% confidence interval: −13.2% to −7.7%, P < 0.001 for non-inferiority, 
P < 0.001 for superiority) (Table 2). The mean absolute difference 
between the initial and final assessments of LVEF was 2.79% in the AI 
group compared with 3.77% in the sonographer group (difference − 
0.97%, 95% confidence interval: −1.33% to −0.54%, P < 0.001 for  
superiority; Fig. 2).

Secondary safety outcome
The secondary safety outcome of substantial difference between final 
cardiologist-adjudicated LVEF compared with the previously clinically 
reported LVEF occurred in 871 (50.1%) studies in the AI group compared 
with 957 (54.5%) studies in the sonographer group (difference of −4.5%, 
95% confidence interval: −7.8% to −1.2%, P = 0.008). The mean absolute 
difference between previous and final cardiologist assessments was 
6.29% in the AI group compared with 7.23% in the sonographer group 
(difference −0.94%, 95% confidence interval: −1.34% to −0.54%, P < 0.001 
for superiority; Fig. 2).

Other outcomes and subgroup analyses
The reduction in the primary end point with the AI group was consistent 
across all major subgroups (Table 3). Between the initial and final assess-
ments, 1,100 (63.2%) studies in the AI group and 1,218 (69.4%) studies 
in the sonographer group had any change (difference of −6.2%, 95% 
confidence interval: −9.3% to −3.1%, P < 0.001 for superiority). Sonog-
raphers took a median of 119 s (interquartile range (IQR): 77–173 s) to 
assess and annotate LVEF. Cardiologists took a median of 54 s (IQR: 
31–95 s) to adjudicate initial assessments in the AI group and a median 
of 64 s (IQR: 36–108 s) to adjudicate initial assessments in the sonog-
rapher group. The mean difference in sonographer time between AI 
and sonographer groups was −131 s (95% confidence interval: −134  
to −127 s, P < 0.001). The mean difference in cardiologist time between 
AI and sonographer groups was −8 s (95% confidence interval: −12  
to −4 s, P < 0.001).

We additionally assessed the frequency of changes from initial to 
final assessment crossing a clinically meaningful threshold (that is, 
LVEF of 35% for consideration of implantable defibrillator therapy) 
post-hoc. In the AI group, 22 of 1,740 (1.3%) studies crossed the 35% 

Table 1 | Demographic and imaging study characteristics

Characteristic Total (n = 3,495) AI (n = 1,740) Sonographer (n = 1,755)

Age (year) 66.3 ± 17.0 66.1 ± 16.8 66.6 ± 17.1

Sex (n, %)

  Male 1,983 (57%) 982 (56%) 1,001 (57%)

  Female 1,512 (43%) 758 (44%) 754 (43%)

Race (n, %)

  Non-Hispanic white 2,041 (58%) 1,032 (59%) 1,009 (57%)

  Black 479 (14%) 230 (13%) 249 (14%)

  Hispanic 405 (12%) 203 (12%) 202 (12%)

  Asian 273 (8%) 123 (7%) 150 (9%)

  Other 237 (7%) 120 (7%) 117 (7%)

  Unknown 38 (1%) 20 (1%) 18 (1%)

  Pacific Islander 14 (0%) 8 (0%) 6 (0%)

  American Indian 8 (0%) 4 (0%) 4 (0%)

Body mass indexa 26.5 ± 6.3 26.6 ± 6.3 26.5 ± 6.2

Comorbidities (n, %)

  Hypertension 2,019 (58%) 990 (57%) 1,029 (59%)

  Diabetes 884 (25%) 441 (25%) 443 (25%)

  Coronary artery disease 1,099 (31%) 547 (31%) 552 (31%)

  Chronic kidney disease 882 (25%) 460 (26%) 422 (24%)

  Atrial fibrillation 867 (25%) 450 (26%) 417 (24%)

  Previous stroke 459 (13%) 225 (13%) 234 (13%)

Previous clinical EF 58.1 ± 14.3 58.1 ± 14.2 58.0 ± 14.4

Method of LVEF evaluation (n, %)

  Single plane (A4C) 2,249 (64%) 1,107 (64%) 1,142 (65%)

  Biplane 1,246 (36%) 633 (36%) 613 (35%)

Study quality (n, %)

  Poor 648 (19%) 314 (18%) 334 (19%)

  Adequate 1,725 (49%) 875 (50%) 850 (48%)

  Good 236 (7%) 114 (7%) 122 (7%)

  Not specified 886 (25%) 437 (25%) 449 (26%)

Location (n, %)

  Inpatient 2,067 (59%) 1,033 (59%) 1,034 (59%)

  Outpatient 1,428 (41%) 707 (41%) 721 (41%)

A4C, apical-4-chamber; EF, ejection fraction. aBody mass index missing in 52 studies.

3,769 Echocardiogram studies
were assessed for eligibility 

3,495 Studies underwent randomization

274 Studies were unable to 
be traced by sonographer

1,740 Studies assigned
to AI guidance

1,755 Studies assigned
to sonographer guidance

1,740 Studies underwent
cardiologist evaluation

1,755 Studies underwent
cardiologist evaluation

Fig. 1 | Consort diagram. Screening, randomization and follow-up.
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threshold between initial and final cardiologist assessments. In the 
sonographer group, 54 of 1,755 (3.1%) studies crossed the threshold 
between initial and final assessments (P = 0.0004, Chi-squared test).

Discussion
In this trial of board-certified cardiologists adjudicating clinical tran-
sthoracic echocardiographic exams, AI-guided initial evaluation of LVEF 
was found to be non-inferior and even superior to sonographer-guided 
initial evaluation. After blinded review of AI versus sonographer-guided 

LVEF assessment, cardiologists were less likely to substantially change 
the LVEF assessment for their final report with initial AI assessment. 
Furthermore, the AI-guided assessment took less time for cardiologists 
to overread and was more consistent with cardiologist assessment from 
the previous clinical report. Although not the first trial of AI technol-
ogy in clinical cardiology21–23, to our knowledge, this study represents 
the first blinded implementation of a randomized trial in this space.

In addition to prospectively evaluating the impact of AI in a clinical 
trial, our study represents the largest test–retest assessment of clinician 
variability in assessing LVEF to date. The degree of human variability 

Table 2 | Efficacy and safety outcomes

Outcome AI (n = 1,740) Sonographer (n = 1,755) Mean difference (95% confidence interval) P value

Primary efficacy outcome: initial versus final assessment

  Substantial change 292 (16.8%) 478 (27.2%) −10.5% (−13.2% to −7.7%) <0.001a

  Mean absolute difference 2.79 ± 5.53 3.77 ± 5.22 −0.97 (−1.31 to −0.61) <0.001

Key secondary safety outcome: final versus previous cardiologist assessment

  Substantial change 871 (50.1%) 957 (54.5%) −4.5% (−7.8% to −1.2%) 0.008

  Mean absolute difference 6.29 ± 5.94 7.23 ± 6.18 −0.94 (−1.34 to −0.54) <0.001

Other secondary outcomes

  Sonographer time (s), median (IQR) 0 (0–0) 119 (77–173) −131 (−134 to −127) <0.001

  Cardiologist time (s), median (IQR) 54 (31–95) 64 (36–108) −8 (−12 to −4) <0.001

  Any change 1,100 (63.2%) 1,218 (69.4%) −6.2% (−9.3% to −3.1%) <0.001
aFor both non-inferiority and superiority tests, all other tests were for superiority. Fisher’s exact test was used for categorial outcomes and double-sided Student’s t-test was used for quantitative 
outcomes.
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Fig. 2 | Comparison of AI versus sonographer guidance on cardiologist assessment and difference between final versus previous cardiologist assessments. 
Dots represent individual studies and lines represent the lines of best fit. MAD, mean absolute difference.
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between repeated LVEF assessments in our study is consistent with 
previous studies11,12,24, and the introduction of AI guidance decreased 
variance between independent clinician assessments. In this trial, we 
utilized experienced sonographers as an active comparator versus 
the AI for the initial assessment of LVEF; however, different levels of 
experience and types of training can change the relative impact of AI 
compared with clinician judgement. The smaller difference between 
final and initial assessments, seen in this study for both methods of 
initial assessment, compared with the difference between final and 
previous cardiologist assessments highlights the anchoring effect of 
an initial assessment in practice, and the importance of blinding for 
quantifying effect size in clinical trials of diagnostic imaging. In both 
the anchored outcome (comparison of preliminary assessment to final 
assessment) and independent outcome (comparison of final assess-
ment in the trial versus historical cardiologist assessment), the AI arm 
showed less variation and more precision in the assessment of LVEF.

Notwithstanding tremendous interest in AI technologies, there have 
been few prospective trials evaluating their efficacy and effect on clini-
cian assessments. Important clinical trials of AI technology have already 
shown the efficaciousness of AI in cardiology21,25; however, given the dif-
ficulty of blinding a diagnostic tool, previous trials are often open-label 
and compared with a placebo or no diagnostic assistance. Previous 
works have shown that there can be a Hawthorne effect when studying 
novel technologies such as AI systems26,27. By introducing blinding with 
an active comparator arm, studies can better distinguish between the 
effect of the AI technology itself versus the impact of being observed 
or the act of introducing an intervention. Current FDA-approved tech-
nologies for LVEF assessment were not prospectively evaluated with 
randomization and blinding16. By integrating AI into the reporting 

software, our study sought to minimize bias in assessing the effect 
size of AI intervention.

To enable effective blinding, we implemented a single cardiac cycle 
annotation workflow representative of many real-world high-volume 
echocardiography laboratories. Despite this framework, there was 
a small signal for cardiologists to be more likely to be correct than 
incorrect in guessing the agent of initial assessment. However, the 
blinding index is within the range typically described as good blind-
ing, and regardless of whether the cardiologist thought the initial 
agent was AI, sonographer or uncertain, the results trended towards 
improved performance in the AI arm. Our findings of non-inferiority 
and even superiority of initial AI assessment are encouraging given 
that AI assessment reduces the time and effort required of the tedi-
ous manual processing that is typically required by routine clinical 
workflows. Given these promising results, further developments of 
AI could eventually facilitate additional workflows that are required 
for conducting comprehensive cardiac assessments in routine clini-
cal practice and in accordance with guideline recommendations28–31.

Several limitations of our trial should be mentioned. First, our study 
was single centre, reflecting the demographics and clinical practices 
of a particular population. Nevertheless, the AI model was trained on 
example images from another centre and the clinical trial was per-
formed as prospective external validation, suggesting generalizability 
of the AI techniques and workflow. Second, the study was not powered 
to assess long-term outcomes based on differences in LVEF assess-
ment. Although the results were consistent across subgroups, further 
analyses are needed to evaluate the impact of video selection, frame 
selection and intra-provider variability. Third, this trial used previ-
ously acquired echocardiogram studies, and although prospectively 

Table 3 | Subgroup analysis

Subgroup AI (n) AI (MAD) Sonographer (n) Sonographer (MAD) Difference (95% confidence interval)

Method of LVEF evaluation

  Single plane 1,107 3.20 ± 6.41 1,142 4.38 ± 5.75 −1.19 (−1.69 to −0.68)

  Biplane 633 2.09 ± 3.37 613 2.61 ± 3.77 −0.52 (−0.92 to −0.11)

Race

  White 1,032 2.58 ± 5.36 1,009 3.71 ± 5.18 −1.13 (−1.57 to −0.66)

  Black 230 3.91 ± 7.59 249 4.00 ± 5.27 −0.08 (−1.22 to 1.14)

  Hispanic 203 2.44 ± 4.26 202 3.39 ± 4.57 −0.95 (−1.82 to −0.09)

  Asian 123 3.11 ± 5.44 150 4.29 ± 6.04 −1.18 (−2.55 to −0.23)

  Other 152 2.77 ± 4.11 145 3.74 ± 5.26 −0.97 (−2.07 to −0.08)

Sex

  Male 982 2.75 ± 5.92 1,001 3.67 ± 5.18 −0.92 (−1.40 to −0.42)

  Female 758 2.85 ± 4.97 754 3.89 ± 5.26 −1.04 (−1.56 to −0.52)

Image quality

  Poor 314 4.22 ± 7.12 334 4.27 ± 5.92 −0.05 (−1.04 to 0.97)

  Adequate 875 2.45 ± 5.36 850 3.53 ± 5.01 −1.08 (−1.56 to −0.58)

  Good 114 2.01 ± 3.15 122 3.51 ± 5.11 −1.51 (−2.62 to −0.45)

  Not specified 437 2.66 ± 4.82 449 3.90 ± 5.02 −1.24 (−1.89 to −0.58)

Location

  Inpatient 1,033 3.09 ± 5.59 1,034 4.01 ± 5.49 −0.92 (−1.40 to −0.45)

  Outpatient 707 2.36 ± 5.41 721 3.42 ± 4.78 −1.05 (−1.57 to −0.51)

Cardiologist prediction of group

  AI 557 3.64 ± 6.42 418 3.82 ± 5.09 −0.18 (−0.91 to 0.54)

  Sonographer 427 3.38 ± 4.95 573 4.00 ± 4.62 −0.62 (−1.21 to 0)

  Uncertain 756 1.85 ± 4.95 764 3.56 ± 5.68 −1.72 (−2.26 to −1.17)

  Correct prediction 557 3.64 ± 6.42 573 4.00 ± 4.62 −0.36 (−0.98 to 0.31)

  Incorrect prediction 427 3.38 ± 4.95 418 3.82 ± 5.09 −0.44 (11.12 to 0.22)
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evaluated by sonographers and cardiologists, there can be bias when 
a different sonographer than the scanning sonographer interprets the 
images. Last, consistent with findings from most AI studies, we found 
model performance improvement scales with the number of training 
examples. Thus, we anticipate that future studies could improve on 
the AI performance that we observed in the current study by imple-
menting AI models developed based on an even greater number of 
training examples derived from a broad and diverse cohort of patients. 
Of note, this clinical trial utilized an AI model entirely trained from 
an independent site, representing external validation of the model. 
Effective deployment of AI models in cardiology clinical practice will 
require additional regulatory oversight, adoption and appropriate 
use by clinicians, and functional integration with clinical systems, all 
of which need to be carefully considered and further studied.

In summary, we found that an AI-guided workflow for the initial 
assessment of cardiac function in echocardiography was non-inferior 
and even superior to the initial assessment by the sonographer. Car-
diologists required less time, substantially changed the initial assess-
ment less frequently and were more consistent with previous clinical 
assessments by the cardiologist when using an AI-guided workflow. This 
finding was consistent across subgroups of different demographic and 
imaging characteristics. In the context of an ongoing need for preci-
sion phenotyping, our trial results suggest that AI tools can improve 
efficacy as well as efficiency in assessing cardiac function. Next steps 
include studying the effect of AI guidance on cardiac function assess-
ment across multiple centres.
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Methods

Study design and oversight
Cardiologists with board certification in echocardiography were 
assigned to read independent transthoracic echocardiogram studies 
randomized to initial assessment by AI versus sonographer. Imaging stud-
ies were initially acquired and interpreted clinically by a board-certified 
cardiologist between 1 June 2019 and 8 August 2019 at Cedars-Sinai Medi-
cal Center. Studies were randomly sampled within the time range without 
regard to patient identity, so that multiple studies from the same patient 
would be randomized and assessed independently. Sonographers were 
asked to use their standard clinical practice to annotate the left ventri-
cle for either single-plane or biplane method-of-discs calculation of 
LVEF10. Studies were excluded from randomization if the sonographer 
was unable to quantify the LVEF owing to inadequate image quality.

Eligible studies were randomly assigned, in a 1:1 ratio, to initial assess-
ment by AI or sonographer and presented to the cardiologists in the stand-
ard clinical reporting workflow and software (Siemens Syngo Dynamics 
VA40D) for adjusting the LV annotation and calculating EF. Although 
the AI model could annotate every single frame and cardiac cycle, to 
facilitate blinding, one representative cardiac cycle was annotated and 
presented to the cardiologist in the AI group. To preserve blinding, the 
same proportion of single-plane-annotated and biplane-annotated stud-
ies was generated for the AI group as the sonographer group.

The trial was designed as a blinded, randomized non-inferiority trial 
with a prespecified margin of difference by academic study investiga-
tors without industry sponsorship or representation in trial design. 
Approval by the Cedars-Sinai Medical Center Institutional Review Board 
was obtained before the start of the study. All reading echocardiogra-
phers gave informed consent and were excluded from the data analysis. 
The last author prepared the first draft of the manuscript. The first and 
last authors had full access to the data. All the authors vouch for the 
accuracy and completeness of the data and analyses and for the fidel-
ity of the study to the protocol. This study satisfies the requirements 
set forth by the CONSORT-AI and SPIRIT-AI reporting guidelines27,31.

Model design and clinical integration
The architecture and design of the AI model have been previously 
described1. The AI model was trained using 144,184 echocardiogram 
videos from Stanford Healthcare and was never exposed to videos from 
the Cedars-Sinai Medical Center. An end-to-end workflow was developed 
including view classification, LV annotation and LVEF assessment. The 
AI model was fully embedded within the clinical reporting system at 
the start of the trial without subsequent changes or adjustments. An 
in-depth technical description can be found in Supplementary Appendix.

For both sonographers and cardiologists, the entire study (most 
often between 60 and 120 videos) was shown in the standard clinical 
reporting software. The study was shown without any annotations to the 
sonographer, who chose the apical-4-chamber and apical-2-chamber 
videos and traced the endocardium to assess LVEF. For the cardiologist, 
the study was shown with one set of annotations (provided by either 
AI or the sonographer) and can adjust the endocardium to change the 
reported LVEF (example video 1). Standard method of discs evalua-
tion of the left ventricle, either biplane or single plane depending on 
sonographer input, was used to calculate LVEF.

Outcomes assessment
The primary outcome was the change in LVEF between the initial assess-
ment by AI or sonographer and the final cardiologist assessment. The 
primary outcome was evaluated both as the proportion of studies with 
substantial change and the mean absolute difference between initial 
and final assessments. Substantial change was defined as greater than 
5% change in LVEF between initial and final assessments. The analysis 
was performed as randomized and there was no crossover between 
the two groups.

The duration of time for contouring and adjustment by the sonogra-
pher and cardiologist was tracked and compared between the sonog-
rapher and AI arms. To assess blinding, cardiologists were asked to 
predict whether the initial interpretation was by AI, sonographer or 
unable to tell for each study. A key secondary safety end point was 
change in final cardiologist-adjudicated LVEF compared with the pre-
vious cardiologist-reported LVEF. An additional secondary end point 
includes the proportion of studies with no change in LVEF between 
initial and final interpretations.

Statistical analysis
The trial was designed to test for non-inferiority, with a secondary objec-
tive of testing for superiority with respect to the primary end point. 
Non-inferiority is shown if the lower limit of the 95% confidence interval 
for the between-group difference in the primary end point was less than 
5% (less than the natural variation of test–retest variability in the blinded 
human assessment of LVEF)8,24. With an α = 0.05, power of 0.9 and estimat-
ing a 5% occurrence rate of substantial change in the AI-driven workflow 
versus 8% in the sonographer-driven workflow, we estimated a sample 
size of 2,834 studies needed for statistical power and pre-hoc planned 
to enrol 3,500 studies for this trial as a buffer for dropout and unfore-
seen challenges. Non-block randomization was performed once at the 
beginning of the trial, and the analyses included all imaging studies that 
underwent randomization (intention-to-treat population). All reported 
P values for non-inferiority are one-sided, and all reported P values for 
superiority are two-sided. Bang’s blinding index was used to evaluate the 
quality of blinding during the trial20. Statistical analyses were performed 
with the use of R 4.1.0 (R Foundation for Statistical Computing).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The AI model was trained using echocardiogram videos from Stanford 
Healthcare following Stanford IRB protocol 43721 with waiver of indi-
vidual consent. A set of de-identified Stanford Healthcare echocardio-
gram videos is publicly available at EchoNet-Dynamic (https://echonet.
github.io/dynamic/). The clinical trial was performed at Cedars-Sinai 
Medical Center under IRB protocol STUDY1707, and the study protocol, 
statistical analysis plan and de-identified trial results will be available 
at https://github.com/echonet/blinded_rct.

Code availability
The code for the AI model is available at GitHub (https://github.com/
echonet/dynamic). 
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data was collected from the echocardiography laboratories at Stanford Healthcare and Cedars-Sinai Medical Center. Medical imaging were 
de-identified from initial DICOM files prior to processing by deep learning algorithm. The deep learning algorithm, written in Python with 
OpenCV (4.5.1.48), Pytorch (1.8.0) and Torchvision (0.9.0). A full list of dependencies is at https://github.com/echonet/dynamic/blob/master/
requirements.txt.  Code is available at https://github.com/echonet/dynamic, was used to assess the echocardiogram videos. 

Data analysis Statistical analysis is detailed in the statistical analysis plan, to be made available at: https://github.com/echonet/blinded_rct.  
Analyses were performed in R 4.1.0. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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The AI model was trained using echocardiogram videos from Stanford Healthcare following Stanford IRB protocol 43721 with waiver of individual consent. A set of 
de-identified Stanford Healthcare echocardiogram videos is publicly available at https://echonet.github.io/dynamic/. The clinical trial was performed at Cedars-Sinai 
Medical Center under IRB protocol STUDY1707, and the study protocol, statistical analysis plan, and de-identified trial results will be available at https://github.com/
echonet/blinded_rct.  Data requests for identifiable data will be evaluated by the authors to maintain compliance with IRB protocol and data privacy protections. 
Please email david.ouyang@cshs.org for requests for identifiable data. 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Stratified data analysis was reported by sex and the cohort demographics were described in Table 1

Population characteristics Detailed cohort characteristics given in Table 1 and Supplementary Table 1

Recruitment Consecutive echocardiograms from August 2019 were to train the model. Sonographers and cardiologists from the Cedars 
Sinai Medical Center echo lab were recruited for the study and performed evaluation between February 1, 2022 and July 5, 
2022. 

Ethics oversight  
The AI model was trained using echocardiogram videos from Stanford Healthcare following Stanford IRB protocol 43721 with 
waiver of individual consent. The clinical trial was performed at Cedars-Sinai Medical Center under IRB protocol STUDY1707

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Non-inferiority Design: 8% vs. 5%, alpha of 0.05 and power of 0.9 
2834 studies needed, pre-planned to enroll 3500 studies as buffer against dropout 

Data exclusions A pre-specified run in period was performed where sonographers traced all echocardiogram studies and studies that sonographers could not 
trace were excluded from randomization. All studies randomized were revaluated by cardiologists.  

Replication 95% Confidence interval of reported metrics were determined by boot strapping. Trial was only performed once without replication.

Randomization Studies were individually randomized 1:1 to AI vs. sonographer as agent of initial interpretation. 

Blinding Cardiologists were blinded to agent of initial interpretation and asked to guess agent of initial interpretation (AI vs. sonographer) in blinded 
fashion.

Reporting for specific materials, systems and methods
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT05140642

Study protocol Study protocol in supplementary materials

Data collection Data collected from Cedars Sinai Medical Center between February 2, 2021 and July 5, 2022

Outcomes Primary Outcome: Frequency and degree of change from initial (AI vs. sonographer) assessment to final cardiologist assessment 
Substantial change defined as more than 5% LVEF  
 
Secondary Outcomes:  
Cardiologist Prediction of Agent of Initial Assessment (Blinding Assessment) 
Sonographer Time 
Cardiologist Time  
Change from Historical Cardiologist Assessment 
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