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Predicted 21st century changes in seasonal extreme precipitation events in the 

Parallel Climate Model 

 

Michael F. Wehner 

National Energy Research Supercomputer Center 

Lawrence Berkeley National Laboratory 

1 Cyclotron Road 

Berkeley, CA 94720 

mfwehner@lbl.gov 

 

Twenty-year return value of annual and seasonal maxima of daily precipitation are 

calculated from a set of transiently forced coupled general circulation model simulations. 

The magnitude and pattern of return values are found to be highly dependent on the 

seasonal cycle. A similar dependence is found for projected future changes in return 

values. 

The correlation between the spatial pattern of return value changes and mean 

precipitation changes is found to be low. Hence, the changes in mean precipitation do not 

provide significant information about changes in precipitation extreme values.  

 

1. Introduction 

The study of extreme events is the analysis of the tails of probability distributions. As the 

tails of the distributions of most natural phenomena are sparsely populated, such a 

statistical analysis benefits greatly from very large datasets.  However, the climate system 

has only been closely recorded for periods greater than a few decades in a limited number 
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of locations around the globe. As a result, the comparison of climate model output to the 

observational record of extreme climate events is a difficult task. Validation of the 

simulation of extreme climate events has not approached the level of sophistication that 

has been developed for other aspects of the climate system. Nonetheless, extreme climate 

events can have tremendous ramifications for human and ecological systems and it is 

vital to develop climate models to point where skillful forecasts of changes in extreme 

events due to changes in atmospheric composition can be made.  

 

Recently, Kharin and Zwiers (2000) used concepts from extreme value statistics to 

quantify the changes in extreme events predicted in a small ensemble of transiently 

forced climate change experiments with the Canadian Centre for Climate Modeling and 

Analysis (CCCma) coupled general circulation model. Following their analysis (Zwiers 

and Kharin, 1998) of the extreme events in a doubled CO2 experiment, annual maxima 

and minima were extracted from a parent data set of daily values. Their technique to 

estimate return values of such annual extrema is based on the determination of their 

probability distribution. L-moments (Hosking and Wallis 1997) provide them a 

convenient methodology to fit the parameters of a postulated distribution to sample data. 

Other traditional methods to fitting distribution functions, such as the method of moments 

or maximum likelihood methods (Von Storch and Zwiers 1999, Coles 2001) could also 

be used.  Under suitable regularity conditions, a theorem (Coles 2001, for instance) states 

that the maximum over a regular period of a large sample is distributed by the 

Generalized Extreme Value (GEV) distribution. The GEV distribution, F(x), is 

determined by three parameters, 
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where ξ, α and k are the location, scale and shape factors. The range of the random 

variable x is dependent on the value of the shape factor, k, 
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F(x) is the limiting cumulative distribution function of the maxima of a sample of 

independently and identically distributed random variables such as the annual extrema of 

a sample of daily averaged fields (Leadbetter et al. 1983). For the probability 

distributions commonly found in natural systems, this result is a consequence of the 

asymptotic nature of their tails (Castillo 1988). There are no other classes of distributions 

for this kind of extrema. However, there are classes of parent distributions for which no 

asymptotic extreme value distribution exists. The Gumbel distribution is a special case 

where the shape parameter, k, is zero. This distribution is the limiting distribution for 

maxima drawn from many of the common parent distributions, including normal, 

lognormal and exponential distributions (Leadbetter et al. 1983). However, when Kharin 

and Zwiers (2000) performed Kolmogorov-Smirnov goodness-of-fit tests on results from 

the CCCma model, they found that the GEV distribution, not the Gumbel distribution, 

better describes the annual maxima of surface air temperature, precipitation and surface 

wind speed.  

 

The return value of a random variable, XT is that value which is exceeded, on average, 

once in a period of time, T. For example, when considering annual maxima of daily 
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averaged variables, there is a 1/T chance of any daily average exceeding XT in a given 

year (where T is in years).  Formally, this is straightforwardly defined as 

TXF T /11)( −=  

Solving for XT using the above definition of the GEV distribution yields, 
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Hence, return values of annual extrema are readily obtained by this inversion of the GEV 

distribution after its three parameters have been estimated. Positive values of the shape 

factor k, skew the distribution function such that return values are lower than for the 

special case of the Gumbel distribution (k=0) with the same location and scale factors. 

Similarly, negative values of the shape factor cause the return values to be greater than 

the Gumbel case.  

 

As the return value is a property of the tail of the distribution, the parent sample size must 

be large in order to accurately estimate it. Samples of the annual extrema of daily 

averaged variables are by definition constructed from the endpoints of parent 

distributions of all daily averaged variables for a given year. To construct a sample of 

extrema large enough to accurately estimate the parameters of the GEV distribution from 

transiently forced climate model simulations presents a challenge because the statistical 

properties of such a simulation are not stationary. However, it is reasonable to assume 

stationarity over short periods of the simulation. By exploiting the statistical 

independence of climate model simulations initialized by slightly different initial 

conditions, sample size may be substantially increased resulting in a more robust estimate 

of the GEV parameters. Kharin and Zwiers (2000) chose to extract annual extrema over 
 4
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twenty year simulation periods from an ensemble of three integrations resulting in 

samples of extrema containing sixty elements. In these numerical experiments, where the 

forcings of trace atmospheric constituents are varied relatively slowly over a twenty year 

period, such an approximation to stationarity is likely to be adequate. However, for more 

realistic scenarios, such as those incorporating the roughly three to five year forcing 

effects of large volcanic eruptions, this approximation would not be valid. It is also 

important to point out that for annual extrema, the parent sample size of daily values 

cannot be considered to be truly a further 365 times larger than this for most climate 

variables because of the seasonal nature of the climate system.  

 

In this paper, we examine this seasonality issue, albeit somewhat indirectly, by 

calculating return values of seasonal maxima and comparing them to those obtained from 

analysis of the annual maxima. We also examine the relationship, if any, between 

predicted changes in precipitation extremes and predicted changes in mean precipitation. 

The parent data sets are constructed from the daily total precipitation combined from two 

independent transiently forced simulations of the period 1860 to 2100 from the Parallel 

Climate Model (PCM) developed at the National Center for Atmospheric Research 

(NCAR) (Washington, et al, 2000). The forcing scenario during the twentieth century is 

defined by realistic atmospheric concentrations of carbon dioxide and sulfate aerosol 

(direct effect) and tropospheric and stratospheric ozone concentrations (Dai, et al 2001). 

The forcing scenario of the twenty-first century assumes the IPCC “business-as-usual” 

evolution of these same trace constituents (Dai, et al 2001). Model output from these and 

many other PCM integrations are available for download (Wehner, 2003). 
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2. Simulated Present Day Climate 

Comparison between models and observations of quantities derived from extreme value 

statistics is hampered by several factors. For precipitation there are two major obstacles 

to a direct comparison. The first is simply the unavailability of long global time series of 

observed daily total precipitation. The second is a fundamental issue related to the local 

character of storms. The horizontal resolution of climate models is much greater than the 

scale of most precipitating cloud systems. This is especially true of the highly convective 

storms which often produce extreme values of precipitation. Reliable observations of 

daily precipitation come in the form of rain gauge data from individual stations. 

Techniques to aggregate this point-like station data to larger scales are well established 

for highly averaged quantities such as monthly means. However, the quantities derived 

by extreme value statistics are largely determined by a limited number of events at the 

tail of the distribution. Clearly, the extreme events in the point-like station data will 

reflect the localized nature of such individual intense storms whereas the extreme events 

in a climate model do not because of horizontal resolution constraints. However, it may 

be possible to construct time series suitable for extreme event analysis at climate model 

resolutions from the station data by exploiting the correlation of stations located within a 

model grid cell (Hoskings and Wallis, 1997). In fact, Osborn and Hulme (1997) 

examined the closely related issue of daily precipitation variance at several locations in 

just this manner. 

 

A practical solution to the lack of daily global observations would be to compare the 

extreme statistics of the model with a reanalysis. Because reanalysis is a model, (albeit 

highly constrained by observations), both of these problems might be solved. However, 
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reanalysis precipitation products are not analyzed fields like the wind or humidity fields 

but rather prognostic results from parameterizations. Hence, reanalyses suffer the same 

precipitation deficiencies as models. In particular, the high frequency variance of 

precipitation in the NCEP/NCAR reanalysis is much lower than that observed in those 

few regions where such data has been collected (Kistler, et al 2001). If lower order 

measures of variability are not well reproduced, it is unlikely that higher order measures 

of variability such as extreme values can be well simulated. For these reasons, evaluation 

of climate model extreme values against the real world is deferred in this paper1.  

 

Annual vs. seasonal precipitation maxima 

Figure 1 shows the twenty-year return value of annual maxima of daily precipitation 

extracted from the years 1979-1998 of the PCM simulation. Figure 2 shows the twenty-

year return value of seasonal maxima calculated from the same data. Generally the 

seasonal return values are less than the corresponding annual quantities. Only isolated 

areas exhibit one seasonal return value that is nearly identical to the annual return value. 

Such agreement tells us that in these areas, the largest values occur mainly in the same 

season. For instance, the SON return values near Japan are close to the annual return 

values suggesting that most of the annual maxima occur in the autumn season. On the 

other hand, in areas such as the southeastern United States, all of the seasonal return 

values are quite a bit less than the annual return values. This suggests that the annual 

maxima are distributed among the seasons. Another interesting area is east of the Andes 

where both the DJF and SON return values are near in magnitude to the annual return 

value. This suggests that very large daily precipitation totals could occur in either of these 

 
1 Note that Kharin and Zwiers (2000) compare annual mean wet and dry periods obtained from the 
ECMWF reanalysis favorably with Canadian station data. 
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seasons. In any given year, the second larger value of these two seasons is then excluded 

from the annual maximum data set despite the possibility of it being one of the largest 

values attained. Examination of the data reveals that indeed some large seasonal events 

are not included in the annual maximum data set. This illustrates a subtle point 

concerning the definition of extreme values. The methodology as implemented here 

defines the “return value of the annual extreme event” rather than the “return value of all 

extreme events”. The exclusion of large events by utilizing only the largest value of the 

parent data set during a given period leads to calculated return values that are slightly 

lower for the former definition than for the latter. Thus, the frequency of extreme events 

might be underestimated. Other methodologies, such as choosing values that exceed a 

threshold (Von Storch and Zwiers 1999) are likely to be better suited in cases where the 

entire parent data set should be considered.  

 

3. Predicted changes in return value 

a) Annual Maxima 

The PCM exhibits a 2.1oC increase in the annual global mean surface air temperature 

from 1979 to 2079 under a business as usual forcing scenario (Dai, et al 2001). Over that 

same period the annual global mean daily total precipitation changes from 3.1 to 3.2 

mm/day. Of course for both fields, the mean value changes on smaller scales can be 

much larger and/or of opposite sign. 

 

Similar to that found by Kharin and Zwiers (2000) in the Canadian Global Climate Model 

(CGCM1), the PCM exhibits striking changes in the twenty-year return value of annual 

maxima of daily precipitation from the period 1979-1998 to the period 2079-2098. Not 
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surprisingly given the two models’ significant hydrological differences in both the 

control climatology and in their response to greenhouse gas changes (Covey, et al 2000), 

both the return values and associated changes in the PCM simulation are quite different 

than those seen in CGCM1. For instance in CGCM1, the largest return values, exceeding 

200 mm/day are seen over the western Pacific. The change in return value exceeds 70 

mm/day in parts of this region in the CGCM1 simulations. In the PCM, this strong 

feature does not appear. Rather, increases are mixed with decreases over this region and 

do not exceed 40 mm/day. For both models, biases in mean precipitation can manifest 

themselves in the return value spatial patterns. For instance, in the PCM simulation of 

Pacific Ocean, the annual mean precipitation is much too low on the equator itself 

compared to observations (Xie and Arkin, 1996 and 1997). The PCM return values 

exhibit low values in this same region. This equatorial structure does not exist in maps of 

the CGCM1 or ECMWF return values (Kharin and Zwiers, 2000). 

 

In the top panel of figure 3, the fractional change in the twenty-year return value of 

annual maxima of daily precipitation from the period 1979-1998 to the period 2079-2098 

relative to the 1979-1998 values is shown. Fractional rather than total change is shown in 

this figure to illustrate that changes in dryer regions may be large in a relative sense 

compared to changes in wetter regions. This is important to note, as the consequences of 

extreme events may be higher in arid regions than in moist regions even if the magnitude 

of the events are many times smaller. Conversely, in the driest desert regions the 

computed precipitation can be so low that any change is insignificant from a practical 

viewpoint. 
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b) Seasonal Maxima 

Figure 4 shows the fractional changes in the twenty-year return value of seasonal maxima 

of daily precipitation from the period beginning in December 1978 to that beginning in 

December 2078. It is evident that these seasonal changes generally differ significantly 

from each other and the annual changes shown on the top panel of figure 3. A few of the 

dominant features in the annual changes do appear in some seasons. Most notably, large 

scale increases in return values over the equatorial Atlantic, Indian and Western Pacific 

Oceans are found in both the annual and SON results. However, most of the features in 

the seasonal changes are completely absent from the annual changes. This is particularly 

true in regions where the seasonal return value decreases, such as the DJF tropical 

oceans. Certain features are potentially important. For instance, extreme winter storms 

over mid-continental North America and China show rather dramatic increases. Given the 

potential for large amounts of snow in these events, their impact could be quite costly. 

 

Quantifying uncertainty of return value estimates is an important point which is difficult 

to fully address in the current study due to the limited ensemble size. A straightforward 

Monte Carlo algorithm (Hosking and Wallis, 1997) can be used to assess the statistical 

accuracy of the properties of a postulated GEV distribution.  The method is to first 

estimate the L-moments of the actual sample data. This is followed by generation of 

random samples distributed according to the GEV distribution associated with these L-

moments. Next, L-moments and thus return values for each of the random samples are 

determined.  
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For this study, two hundred random samples of forty elements each were generated at 

every grid point using the annual and seasonal values of the computed L-moments. From 

these randomly generated samples, an associated distribution of return values was 

calculated. At each grid point, confidence intervals on the return values were constructed 

by considering the percentiles of this distribution. Comparison of the projected changes 

in return values with these confidence intervals provides an estimate of their degree of 

statistical significance. The fractional return value changes in figures 3 and 4 exhibit a 

range of large and small values. The statistical significance of these changes depends 

strongly on their magnitudes and varies with the time interval considered. In general, the 

regions of larger change exhibit a high degree of spatially coherent statistical 

significance. In the first column of table 1, the fraction of the computational cells that 

exhibit a change in return value greater than 10% and statistically significant at the 95% 

level is shown. In the second column of table 2, results are shown for the cells exhibiting 

a change in return value greater than 25%. For all seasons, these numbers reveal that the 

roughly one third of the area of the globe that exhibits a change greater than 25% also 

exhibits a high degree of statistical certainty. These estimates of statistical significance 

were also repeated using only one hundred random samples. Very similar results were 

obtained indicating robustness to these estimates.  

 

Note that this uncertainty analysis does not directly address the issue of sample size. As 

the return values are determined by a small fraction of the parent sample, it is entirely 

possible that different realizations of the climate model integration could produce 

different return value estimates. While the methodology presented here can formally 

quantify the uncertainty of the return value properties of the given parent sample, it does 
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not reveal any information about the stability or repeatability of this parent sample. This 

issue could be better addressed by examining larger parent samples obtained from larger 

ensemble integrations or long control runs. 

  

4. Relationship between changes in extremes and changes in lower order statistics. 

 

It is natural to expect that there is some sort of relationship between changes in the mean 

climate and changes in extreme events. However, for the PCM, the weighted centered 

pattern correlation is globally about 0.26 between the fractional changes in the twenty-

year return value of annual maxima of daily precipitation (the upper panel of figure 3) 

and the fractional changes in the annual mean daily precipitation (the lower panel of 

figure 3). Correlations between the seasonal return value fractional changes (figure 4) and 

seasonal mean value fractional changes (figure 5) are significantly lower than that found 

for the annual results in all seasons and are shown in the first column of table 2a.  

 

These low values of the global linear correlation factor between the fractional changes in 

mean and extreme precipitation of figures 3, 4 and 5 are obtained despite the fact that 

there are regions where large scale similarities between the two changes would appear to 

suggest a relationship. A number of properties of these fields cause this linear correlation 

to be lower than expected. First, consider the spatial noise in figures 3, 4 and 5. A simple 

regridding of these maps to resolutions corresponding to T21 and T10 yields values of 

weighted centered pattern correlation in columns 2 and 3 of table 2a. Significant 

correlation increases are seen for the DJF and JJA changes but not for the other seasonal 

changes or for the annual change. Next consider that there are regions of non-
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monotonicity where positive changes in mean coincide with negative changes in return 

value or vice versa. Some of the largest values where this occurs are in arid regions. 

Considering absolute rather than fractional changes in a correlation analysis tends to 

discount these regions due to the lower values of both mean and return value. Table 2b 

shows the global linear correlation factor between the absolute changes in mean and 

extreme precipitation at the original T42 resolution as well as those obtained by 

regridding to T21 and T10. Correlation values are considerably more uniform across the 

seasons at a fixed resolution. Reduction of the spatial noise by the regridding procedure 

also increases the correlation values more uniformly across the seasons. Finally, although 

nearly all of the larger changes in return value are statistically significant as shown in 

table 1, only about 1/3 of all changes are so. In table 2c, the global linear correlation 

factor between only the absolute changes in mean and extreme precipitation which are 

significant at the 90% level are shown at the three resolutions considered. These numbers 

are nearly identical to those in table 2b indicating that the statistically insignificant 

changes are so small as to not contribute much to the globalized result. 

 

Allen and Ingram (2002) suggest that future changes in the mean precipitation and future 

changes in extreme precipitation events will be driven by differing mechanisms. They 

maintain that while the mean precipitation is governed by the energy budget, extreme 

rainfall events occur when the entire moisture content in a volume of air is precipitated 

out. Changes in these latter events would be controlled by the Clausius-Clapeyron 

relationship. Centered pattern correlation is a measure of the linear relationship between 

two time series and would not necessarily reveal nonlinear relationships such as that 

between changes in the energy budget and saturation moisture content.  On the other 



 14

hand, one might suspect that the limited areas where the predicted changes in 

precipitation mean and return value are of an opposite sign cause the values of global 

linear correlation factor in table 2c to be low masking an otherwise linear relationship. 

These cells represent between 20% to 30% of the statistically significant changes 

depending on the season and the amount of regridding (Table 3).  However, even if these 

cells are arbitrarily removed from the correlation calculation, the values obtained are only 

slightly increased over those shown in table 2c. Hence, whatever the relationship is 

between local changes in precipitation mean values and return values, it is not likely to be 

linear and perhaps not even monotonic. 

 

 

Since extreme values are large yet infrequent excursions from the mean, they are a sort of 

higher order measure of the variability of a random variable. To explore the relationship, 

if any, between lower order measures of variability and extremes it is helpful to consider 

the nature of the distribution function. On daily time scales at any given location, the 

intermittent nature of precipitation mechanisms causes the parent distribution of 

precipitation to be far from Gaussian. Besides the obvious constraint of non-negativity, at 

such short durations, many points in the distribution will be near or at zero. Only at much 

longer time scales, e.g. annual or greater, is the normal distribution a good approximation 

(Lettenmaier, 1995). Hence the daily distribution of precipitation is very skewed with a 

long broad tail to its largest values. The standard deviation of this distribution is largely 

determined by this tail as the other side is highly peaked. Although not shown here, maps 

of the changes in the standard deviation of daily precipitation from the period spanning 

1979-1998 to the period spanning 2079-2098 do indeed exhibit reasonably high pattern 
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correlation with the changes in return value over this same period as shown in table 4. 

Each of the seasonal correlations is higher than the annual result illustrating that daily 

variability across the seasons dilutes this relationship.  

 

5. Conclusion 

Consideration of future climate change must include analysis of changes in extreme 

events due to the potential for significant damage to human and natural systems. A 

definition of extreme event is somewhat subjective due to the locality of climate at 

differing locations. However, it is clear that such rare events are best described as lying in 

the tails of a larger parent distribution. Following previous authors, (Kharin and Zwiers 

2000), (Zwiers and Kharin 1998), maximum daily precipitation rates achieved over 

annual and seasonal periods are considered in this paper as a population of extreme 

events. Because the Generalized Extreme Value distribution well describes this type of 

data, return values are readily calculated. 

 

The ability of current climate models to simulate extreme daily events is yet to be 

examined (AMIP II Diagnostic Subproject 18). For extreme precipitation events, direct 

comparison of models with observations is complicated by the local nature of intense 

storms. A sparcity of lengthy global observations further restricts such assessments.  

 

The seasonal nature of precipitation mechanisms is reflected in the twenty-year return 

values. Many of the features exhibited by the seasonal maxima are absent when 

considering the annual maximum. Changes in the seasonal return values are also shown 

to be considerably different than changes in the annual return value. Seasonal changes in 
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extreme events may have far more impact on human and natural systems than do annual 

changes. For instance, in the model considered here, PCM, mid-latitude wintertime return 

values are significantly increased. The consequences of larger snowstorms could be 

severe. Other important seasonal disasters, for example floods and cropland erosion, are 

also better understood from the study of seasonal return values.  

 

The relationship between changes in mean precipitation and changes in twenty-year daily 

precipitation return values is complex as simulated by PCM. A weighted centered pattern 

linear correlation between the two fields is uniformly low across seasons or the annual 

period. Removal of statistically insignificant changes, reduction of spatial noise by a 

regridding procedure and even an arbitrary removal of cells with changes of opposite 

signs do not increase the linear correlation. The relationship is concluded to be certainly 

nonlinear and possibly non-monotonic thereby limiting the ability to accurately predict 

changes in extreme events from predicted changes in mean precipitation rates. 

However, linear correlations between changes in precipitation daily standard deviation 

and changes in return values are relatively high implying that changes in the shape of the 

distribution of daily precipitation are more important than changes in the average of the 

distribution when trying to understand changes in extreme events.  

 

Daily output data from lengthy climate model integrations is cumbersome and often not 

saved. The addition of a simple monthly diagnostic, the maximum daily precipitation rate 

achieved in the month, allows for the calculation of the extreme value statistics described 

in this paper. Although, other forms of extreme event analysis are not enabled by this 

diagnostic (Frich, et al 2002) , it is recommended that the coupled climate model 
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community add this type of quantity to their lists of monthly output if higher frequency 

output is not routinely saved. 

 

The author would like to thank Ben Santer and Tom Wigley for comments on this paper.  
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Table 1. Percentage of cells with a calculated change in return value greater than 10% or 

25% that exhibit statistical significance at the 95% level. 

 ∆ > 10%  ∆ > 25% 
Annual 60% 89% 
DJF 74% 88% 
MAM 67% 90% 
JJA 63% 86% 
SON 66% 89% 
 

Table 2a. The weighted centered pattern correlation relating fractional changes in return 

values and fractional changes in the mean for the various parts of the year. 

 T42 T21 T10 
Annual 0.26 0.30 0.27 
DJF 0.16 0.24 0.27 
MAM 0.04 0.11 0.15 
JJA 0.002 0.12 0.19 
SON 0.04 0.06 0.04 
 

Table 2b. The weighted centered pattern correlation relating absolute changes in return 

values and absolute changes in the mean for the various parts of the year. 

 T42 T21 T10 
Annual 0.26 0.34 0.36 
DJF 0.19 0.22 0.23 
MAM 0.28 0.33 0.35 
JJA 0.27 0.35 0.43 
SON 0.16 0.29 0.29 
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Table 2c. The weighted centered pattern correlation relating absolute changes in return 

values and absolute changes in the mean for the various parts of the year computed only 

for those cells exhibiting statistical significance at the 90% level. 

 T42 T21 T10 
Annual 0.28 0.34 0.34 
DJF 0.26 0.28 0.25 
MAM 0.36 0.37 0.39 
JJA 0.34 0.39 0.45 
SON 0.20 0.22 0.31 
 

Table 3. Fraction of cells with statistically significant (at the 90% level) changes in return 

value of the same sign as changes in mean precipitation 

 T42 T21 T10 
Annual 0..83 0.85 0.86 
DJF 0.80 0.80 0.78 
MAM 0.78 0.75 0.77 
JJA 0.75 0.76 0.75 
SON 0.73 0.71 0.72 
 

Table 4. The weighted centered pattern correlation relating changes in return values and 

changes in the standard deviation at the original T42 resolution for the various parts of 

the year. 

Annual 0.55 
DJF 0.65 
MAM 0.72 
JJA 0.73 
SON 0.77 
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Table Captions 

Table 1. Percentage of cells with a calculated change in return value greater than 10% or 

25% that exhibit statistical significance at the 95% level. 

 

Table 2a. The weighted centered pattern correlation relating fractional changes in return 

values and fractional changes in the mean for the various parts of the year. 

 

Table 2b. The weighted centered pattern correlation relating absolute changes in return 

values and absolute changes in the mean for the various parts of the year. 

 

Table 2c. The weighted centered pattern correlation relating absolute changes in return 

values and absolute changes in the mean for the various parts of the year computed only 

for those cells exhibiting statistical significance at the 90% level. 

 

Table 3. Fraction of cells with statistically significant (at the 90% level) changes in return 

value of the same sign as changes in mean precipitation. 

 

Table 4. The weighted centered pattern correlation relating changes in return values and 

changes in the standard deviation at the original T42 resolution for the various parts of 

the year. 
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Figure Captions 

Figure 1. Values of the twenty-year return value of annual maxima of daily precipitation 

in mm/day for the Parallel Climate Model in the period 1979-1999.  

 

Figure 2. Values of the twenty-year return value of seasonal maxima of daily 

precipitation in mm/day for the Parallel Climate Model in the period 1979-1999. 

 

Figure 3. Upper panel: Fractional change from 1979 to 2079 in the twenty-year return 

value of annual maxima of daily precipitation for the Parallel Climate Model. The 

difference is obtained by subtracting the return values associated with the period 1979-

1999 from those obtained associated with the period 2079-2099. Reduction to a fractional 

change is obtained by dividing by the 1979-1999 results. Lower panel: Fractional change 

from 1979 to 2079 in the average seasonal mean precipitation for the Parallel Climate 

Model. 

 

Figure 4. Fractional change from 1979 to 2079 in the twenty-year return value of 

seasonal maxima of daily precipitation for the Parallel Climate Model. Compare to the 

upper panel of figure 3. 

 

Figure 5. Fractional change from 1979 to 2079 in the decadally averaged seasonal mean 

precipitation for the Parallel Climate Model. Compare to the lower panel of figure 3.
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Figure 1. Values of the twenty-year return value of annual maxima of daily precipitation 

in mm/day for the Parallel Climate Model simulated in the period 1979-1999. 
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Figure 2. Values of the twenty-year return value of seasonal maxima of daily 

precipitation in mm/day for the Parallel Climate Model simulated in the period 1979-

1999.  
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Figure 3. Upper panel: Fractional change from 1979 to 2079 in the twenty-year return 

value of annual maxima of daily precipitation for the Parallel Climate Model. The 

difference is obtained by subtracting the return values associated with the period 1979-

1999 from those obtained associated with the period 2079-2099. Reduction to a fractional 

change is obtained by dividing by the 1979-1999 results. Lower panel: Fractional change 

from 1979 to 2079 in the average seasonal mean precipitation for the Parallel Climate 

Model. 
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Figure 4. Fractional change from 1979 to 2079 in the twenty-year return value of 

seasonal maxima of daily precipitation for the Parallel Climate Model. Compare to the 

upper panel of figure 3. 
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Figure 5. Fractional change from 1979 to 2079 in the decadally averaged seasonal mean 

precipitation for the Parallel Climate Model. Compare to the lower panel of figure 3. 
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