
Lawrence Berkeley National Laboratory
LBL Publications

Title
Storage resource managers: Essential components for the grid

Permalink
https://escholarship.org/uc/item/3qk459bb

Authors
Shoshani, Arie
Sim, Alexander
Gu, Junmin

Publication Date
2003

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3qk459bb
https://escholarship.org
http://www.cdlib.org/

Chapter 20

STORAGE RESOURCE MANAGERS

Essential Components for the Grid

Arie Shoshani, Alexander Sim, and Junmin Gu
Lawrence Berkeley National Laboratory

Abstract
Storage Resource Managers (SRMs) are middleware components whose func-

tion is to provide dynamic space allocation and file management of shared stor-
age components on the Grid. They complement Compute Resource Managers
and Network Resource Managers in providing storage reservation and dynamic
information on storage availability for the planning and execution of a Grid job.
SRMs manage two types of resources: space and files. When managing space,
SRMs negotiate space allocation with the requesting client, and/or assign default
space quotas. When managing files, SRMs allocate space for files, invoke file
transfer services to move files into the space, pin files for a certain lifetime, re-
lease files upon the clients request, and use file replacement policies to optimize
the use of the shared space. SRMs can be designed to provide effective sharing
of files, by monitoring the activity of shared files, and make dynamic decisions
on which files to replace when space is needed. In addition, SRMs perform
automatic garbage collection of unused files by removing selected files whose
lifetime has expired when space is needed. In this chapter we discuss the design
considerations for SRMs, their functionality, and their interfaces. We demon-
strate the use of SRMs with several examples of real implementations that are in
use today in a routine fashion or in a prototype form.

Keywords: storage resources, storage elements, storage management

1. INTRODUCTION

The grand vision of the Grid is to provide middleware services that give a
client of the Grid the illusion that all the compute and storage resources needed
for their jobs are running on their local system. This implies that the client
only logs in and gets authenticated once, and that the middleware software

330 GRID RESOURCE MANAGEMENT

figures out what is the most efficient way to run the job, reserves compute,
network, and storage resources, and executes the request. Initially, the Grid
was envisioned as a way to share large compute facilities, sending jobs to be
executed at remote computational sites. For this reason, the Grid was referred
to as a Computational Grid. However, very large jobs are often data intensive,
and in such cases it may be necessary to move the job to where the data sites
are in order to achieve better efficiency. Thus, the term Data Grid was used to

emphasize applications that produce and consume large volumes of data. In
some applications, the volume of data is so large (in the order of hundreds of
gigabytes to terabytes) that partial replication of the data is performed ahead
of time to sites where the computation is expected to take place.

In reality, most large jobs that require Grid services, especially in the scien-
tific domain, involve the generation of large datasets, the consumption of large
datasets, or both. Whether one refers to the Grid as a Computational Grid or
a Data Grid, one needs to deal with the reservation and scheduling of storage
resources when large volumes of data are involved, similar to the reservation
and scheduling of compute and network resources.

In addition to storage resources, Storage Resource Managers (SRMs) also
need to be concerned with the data resource (or files that hold the data). A
data resource is a chunk of data that can be shared by more than one client.
For the sake of simplifying the discussion, we assume that the granularity of
the data resource is a file. In some applications there may be hundreds of
clients interested in the same subset of files when they perform data analysis.
Thus, the management of shared files on a shared storage resource is also an
important aspect of SRMs. In particular, when a file has to be stored in the
storage resource that an SRM manages, the SRM needs to allocate space for
the file, and if necessary remove another file (or files) to make space for it.
Thus, the SRM manages both the space and the content of that space. The
decision of which files to keep in the storage resource is dependent on the cost
of bringing the file from some remote system, the size of the file, and the usage
level of that file. The role of the SRM is to manage the space under its control
in a way that is most cost beneficial to the community of clients it serves.

In general, an SRM can be defined as a middleware component that manages
the dynamic use of a storage resource on the Grid. This means that space can
be allocated dynamically to a client, and that the decision of which files to keep
in the storage space is controlled dynamically by the SRM.

The initial concepts of SRMs were introduced in [SSG02]. In this chapter
we expand on the concepts and functionality of SRMs. As described
in [SSG02], the concept of a storage resource is flexible; an SRM could be
managing a disk cache (we refer to this as a Disk Resource Manager - DRM),
or managing a tape archiving system (Tape Resource Manager - TRM), or a
combination of both, called a Hierarchical Resource Manager (HRM). Fur-

Storage Resource Managers 331

ther, an SRM at a certain site can manage multiple storage resources, thus
have the flexibility to be able to store each file at any of several physical stor-
age systems it manages or even to replicate the files in several storage systems
at that site. The SRMs do not perform file transfers, but can invoke middleware
components that perform file transfers, such as GridFTP [ABB A 02b].

All SRMs have the same uniform interface, thus allowing any current or fu-
ture hardware configurations to be addressed in the same manner. For example,
an archive does not have to be a robotic tape system; a disk system could serve
as archival storage as well. As far as the client is concerned, getting a file into
an SRM-managed space may incur a delay because the file is being retrieved
from a tape system or from a remote site over the network, or both.

This chapter is structured as follows: Section 2 overviews the basic func-
tionality of SRMS by walking through several related scenarios. The concepts
of permanent, volatile and durable files are defined in Section 3. Section 4 de-
scribes how to manage space reservations, and Section 5 details the concepts of
negotiations, site and transfer URLs, and the semantics of file pinning. Section
6 describes several projects currently using SRMs in practice. We conclude in
Section 7.

2. THE FUNCTIONALITY OF STORAGE RESOURCE
MANAGERS

2.1 Example Scenarios

To illustrate the functionality that SRM services expose to a client, let us
consider a series of related scenarios. Each will illustrate increasingly more
complex functionality required of the SRMs.

2.1.1 Local Data Consumption by a Single Client

Consider a simple scenario where a set of requested files are to be moved
to the clients system. Let’s assume that the client needs files from several
locations on the Grid, that the client knows exactly the site of each file (the
machine name and port), and the physical location of the file (i.e. directory
and file name). In this case, the client can go directly to each location and get
each file. In this case, the client needs to monitor the file transfers to make sure
that each is completed successfully, and to recover from failures.

Now, suppose that the client wants to get 500 files of 1 GB each, but the
amount of available space on the local disk is only 50 GBs. Suppose further
that the client can process each file independently of the other files, and there-
fore it is possible to bring in files incrementally. The client has the burden
of bringing in the files, monitoring the file transfers, recovering from failures,

332 GRID RESOURCE MANAGEMENT

keeping track of which files were brought in, removing each file after it is pro-
cessed to make space for additional files, and keeping track of available space.

An SRM can be used to alleviate this burden of dealing with a large number
of files by providing a service where the client issues a single request for all
500 files. The SRM deals with dynamic space allocation, removal of files, and
recovering from transient failures. This is illustrated schematically in Figure
1. Note that the local storage system is a disk, and that the two remote systems
shown are a disk, and a mass storage system that includes a robotic tape. The
solid line from the client to DRM represents a multi-file request. The dashed
line from the client to the disk represents file access (open, read, write, close,
copy, etc.).

File
Transfer Service

File
Transfer Service

D
B

isk
C

C
ache

D
B

isk
C

C
ache

f
D
ile

t
E
ransfer requests network

DRMDRMDisk
C

C
ache

Disk
C

C
ache

clientclient

...

D
B

isk
C

C
ache

D
B

isk
C

C
ache

File
T

F
ransfer Service

File
T

F
ransfer Service

multi-file
request

file
access

T
F

ape SystemT
F

ape System

Figure 20.1. A multi-file request service by an SRM.

Each file in the multi-file request can be represented as a Uniform Re-
source Identifier (URI) given that the protocol to get the file is known (such
as GridFTP, ftp [PR85], http [FGM A 99], etc.). For example, gridftp://
\verb+cs.berkeley.edu:4004/tmp/fileX+ represents a file fileX in the di-

rectory tmp of the machine cs.Berkeley.edu and the gridftp transfer
protocol that uses port 4004. In this manner, the multi-file request can be com-
posed of files on different systems.

The functionality provided by the SRM to support such a multi-file request
includes: (a) queuing the set of files requested, (b) keeping track of the files
in the disk cache, (c) allocating space for each file to be brought in, (d) if the
requested file is already in cache because of a previous use, mark it as needed,

Storage Resource Managers 333

so it is not removed by the SRM, (e) if the file is not in cache, invoke a file
transfer service to get the file.

2.1.2 Shared Local Data Consumption by Multiple Clients

Figure 2 shows a similar situation to Figure 1, except that multiple clients
share the local disk. This situation is not unusual, especially for applications
that need to process a large amount of data and it is prohibitive to provide each
client with a dedicated large disk. Another advantage of sharing a disk cache
is that files accessed by one client can be shared by other clients. In this case,
the file does not have to be brought in from the remote site again, saving time
to the clients and unnecessary traffic on the network. Of course, this can be
done for read-only files or when the master file has not been updated since the
last read.

F
G

ile
T

F
ransfer Service

F
G

ile
T

F
ransfer Service

Disk
C

C
ache

Disk
C

C
ache

file
t

E
ransfer requests network

DRMDRMD
B

isk
C

C
ache

D
B

isk
C

C
ache

...

Disk
C

C
ache

Disk
C

C
ache

F
G

ile
Transfer Service

F
G

ile
Transfer Service

multi-file
request

file
access

...clientclient clientclient

T
F

ape SystemT
F

ape System

Figure 20.2. Sharing a DRM-managed disk cache.

Even with this simple scenario, one can already notice an important concept
emerging: The concept of file pinning. When a file is brought into the disk
cache, there is no guarantee that it will stay there, because the space may be
needed by other clients. Thus, in order to keep the file in cache, it is necessary
for the SRM to pin the file. It is also necessary to provide the client with a
release pin call so that the SRM can unpin the file. Another related concept that
needs to be supported is the concept of a lifetime of a pin. This is necessary

334 GRID RESOURCE MANAGEMENT

in case that a client neglects to release (or unpin) the file. This can happen
if the clients program crashes, goes into a loop, or simply terminates without
releasing the file. The lifetime of a file is a necessary feature for automatic
garbage collection of unused files.

The above concepts are meaningful when dealing with shared temporary
space, which we refer to as volatile space. We use the term volatile rather than
temporary because there is a guarantee that files will not be removed so long
as they are pinned. As we’ll see in the next sub-section, other types of files and
spaces need to be supported as well.

There are several implications to the functionality described above. First,
in order to support multi-file requests for multiple users it is necessary to in-
troduce the concept of a quota per user. The management of the quota de-
pends on the policy of the specific SRM. It could be fixed, or change dy-
namically based on the number of clients at the time a request is made. Sec-
ond, a service policy must be supported. A good service policy will make
sure that all requests are serviced in a fair manner, so that no one request is
starved. Third, since files have to be removed when space is needed, a re-
placement policy has to be provided, whose function is to determine which
file (or files) to evict in order to make space for a file that needs to be brought
in. A good replacement policy would maximize the use of shared files. There
are many papers discussing good replacement policies in the domain of web
caching [AY97, CI97, DFJ H 96, Gue99] but these policies do not take into ac-
count the cost of bringing in the file if the SRM needs to get it again. Recent
work has shown that different policies need to be used when considering large
files over a Grid [OOS02].

2.1.3 Pinning Remote Files

When a file is needed from a remote site, there is no guarantee that the
file will be there when the file transfer starts, or whether the file is deleted or
modified in the middle of the file transfer. Normally, archived files are not
removed and this issue does not come up. However, on the Grid there may be
replicas that are stored temporarily in shared disk caches that may be removed
at any time. For example, one model of the Grid is to have a tier architecture
where the long term archive is a Tier 0 site, a shared disk cache may exist
in a Tier 1 regional site (such as Southern Europe), a shared disk may exist at
a Tier 2 local site (such as the Lyon area), and a Tier 3 disk cache may exist
at some university. The tier architecture is designed so that files are always
accessed from the closest tier if possible. However, over time the content of
the intermediary shared disk caches change depending on the access patterns.
Therefore, it is possible to have a file removed just before transfer is requested
or while the transfer is in progress.

Storage Resource Managers 335

To avoid this possibility, and also to make sure that files are not removed
prematurely, one can use the same pinning concept for remote files as well.
Thus, remote sites that have SRMs managing their storage resources can be
requested to pin a file. This is shown in Figure 3, where the remote sites have
SRMs associated with them.

Tape SystemTape System
D

B
isk

C
C

ache
D

B
isk

C
C

ache

f
D
ile

t
E
ransfer requests nI etwork

DRMDRMD
B

isk
C

C
ache

D
B

isk
C

C
ache

...

D
B

isk
C

C
ache

D
B

isk
C

C
ache

mJ ulti-f
D
ile

rK equest
f

D
ile

access

...clientclient clientclient

DRMDRMHRMHRM

Figure 20.3. Accessing remote SRMs.

For every file that needs to be brought into a local site, the following actions
take place: 1) the local SRM allocates space, 2) the local SRM requests that
the remote SRM pins the file, 3) the remote SRM acknowledges that the file
was pinned, and the physical location of the file is returned; this is referred to
as the transfer URL, 4) the local SRM invokes the file transfer service, and 5)
upon successful completion of the transfer, the local SRM notifies the remote
SRM to release the pin.

2.2 Where do SRMs Fit in a Grid Architecture?

Running jobs on the Grid requires the coordination of multiple middleware
components. It is convenient to think of these components as layered. One
popular view of layering of the Grid services is described in [FKT01]. There
are five layers, labeled: fabric, connectivity, resource, collective, and applica-
tion. Typically, an application at the top layer makes a request for running a

336 GRID RESOURCE MANAGEMENT

job to the request manager, a component at the collective layer. The request
manager may include a component called a request planner that figures out the
best way to run the job by consulting metadata catalogs, file replica catalogs,
monitoring information (such as the Network Weather Service [WSH99a]),
etc. The plan, which can be represented as a workflow graph (referred to as
execution DAG [DAG] by the Condor project [LL90] described Chapter 9) can
then be handed to a request executer that will then contact compute resource
managers and storage resource managers to allocate resources for executing
the job. Figure 4 shows the view where compute and storage resources can be
anywhere on the Grid, and the results returned to the clients site.

M
L

SSM
L

SS

Request
Executer
Request
Executer

S
M

torage
R

N
esource

M
L

anager

S
M

torage
R

N
esource

M
L

anager

M
O

etadata
C

P
atalog

R
Q

eplica
C

P
atalog

R
Q

eplica
C

P
atalog

N
R

etwork
W

S
eather

S
T

ervice

N
R

etwork
W

S
eather

S
T

ervice

logical
qU uery

network

C
P

lientC
P

lientC
P

lientC
P

lient ...

R
Q

equest
I

V
nterpreter
R

Q
equest

I
V
nterpreter

R
Q

equest
Planning
R

Q
equest

Planning

aW set of
l

X
ogical files

eY xecution plan
aW nd site-sZ pecific

f
[
iles

C
\

lient’s site

...
D

]
isk

C
^

ache

D
]

isk
C

^
ache

D
]

isk
C

^
ache

C
^

ompute
E

_
ngine

D
]

isk
C

^
ache

D
]

isk
C

^
ache

C
^

ompute
Resource
M

L
anager

S
M

torage
Resource
M

L
anager

C
^

ompute
E

_
ngine

Disk
C

^
ache

Disk
C

^
ache

requests for
d

`
ata placement and

ra emote computation

S
T

ite 2S
T

ite 1 S
T

ite N

S
M

torage
R

N
esource

M
L

anager

S
M

torage
R

N
esource

M
L

anager

C
^

ompute
R

N
esource

Manager

result
files

eY xecution
DAG

Figure 20.4. Interaction of SRMs with the request executer.

According to this view, SRMs belong in the resource layer, in that a com-
ponent, such as a request executer would rely on the SRMs to perform space
allocation and file management when requested to do so.

Figure 4 introduces another requirement that SRMs need to support. They
can be invoked not only by clients or client applications, but also by other
middleware software. This implies that SRMs should be able to report infor-
mation on how busy they are (in case that they have many files to serve on
their queue), how much free space they have, and what is the quota policy they
support. Similarly, they should be able to provide information on whether they
still have specific files in the managed storage resource.

Considering SRMs as belonging to the storage layer is not accurate, since
they do provide a limited service of brokering, a function usually considered

Storage Resource Managers 337

at the collective layer. Recall that the SRM can be handed a set of files to be
accessed, each with a source URL. If the file is found locally, either because
it was placed there permanently or because it was brought in by a previous
request, the SRM simply returns the location of the file. If it is not available
locally, the SRM will contact the source location to pin the file, and then invoke
a transfer service to get the file. This last action is a brokering action, which is
quite useful to clients. Thus, an SRM as we described it here, can be thought
of as being a local SRM that provides a brokering capability of getting files
from remote sites.

The general function of determining the site or sites where to reserve spaces
and to move data into the spaces, is referred to as storage scheduling and data
placement services, which are indeed at the collective layer. These should not
be confused with SRMs. Rather, their task is to negotiate space reservation,
and schedule data movement by requesting such services from multiple SRMs.

3. TYPES OF FILES

The concepts of permanent and temporary spaces are supported by most
shared file systems. A permanent space is a space that a user controls, and
only that user can put in and remove files from that space. A temporary space
is a shared space that is allocated to a user, but can be reclaimed by the file
system. If space is reclaimed, all the files in that space are removed by the file
system. The implication is that files in these spaces are also permanent and
temporary.

3.1 Permanent and Volatile Files

On the Grid, the same concepts of permanent and temporary can be ap-
plied to file types, but temporary files require additional functionality. Tempo-
rary files on shared Grid spaces cannot be removed arbitrarily. Some minimal
amount of time must be guaranteed by the SRM for the client to rely on. This
is the reason for a lifetime of a file. This feature of a lifetime for a file is as-
sociated with each user accessing the file. That is, a lifetime is associated with
a file for a user when the file is made available to the user. If another user
requests the same file later, the file gets a fresh lifetime associated with that
user. We refer to a file that is temporary in nature, but has a lifetime guarantee
as a volatile file. Since volatile files can be shared by multiple users at the
discretion of the SRM, volatile files can be thought of as owned by the SRM,
and permission to use them by the users is granted by the SRM on a temporary
basis enforced by the lifetime. Alternatively, an SRM can choose to replicate
files for each user, although this approach is less space efficient. The concept
of volatile files is very useful for sharing space, automatic garbage collection,

338 GRID RESOURCE MANAGEMENT

and sharing of files on a temporary basis. Most shared disk caches on the Grid
are likely to provide support only for volatile files.

In contrast, a permanent file is a file associated with long-term archival
storage that may or may not be shared by clients. Similar to file systems,
permanent files can only be removed by the owner.

3.2 Durable Files

For Grid applications, one needs another type of a file that has properties of
both permanent and volatile files. A durable file has the behavior of a volatile
file in that it has a lifetime associated with it, but also the behavior of a perma-
nent file in that when the lifetime expires the file is not automatically eligible
for removal. Instead, the SRM may advise the client or an administrator that
the lifetime expired or take some other action. For example, the SRM may
move the file to a permanent space, release the durable space, and notify the
client. A durable file type is necessary in order to provide temporary space
for files generated by large simulations, which need to be eventually archived.
Since the archiving process (for example, into a mass storage system) is usu-
ally slower than the data generation process, attempting to move files directly
to the archive will slow down and waste computational resources. By storing
durable files into available shared disk caches, the simulation can continue ef-
ficiently, yet it is guaranteed that the files will not be removed before they are
moved to the archive as a secondary task. This is a more reasonable approach
for sharing temporary space, while still protecting important files. Similar to
volatile files, durable files can be released by the client as soon as the files have
been moved to a permanent location.

4. MANAGING SPACE RESERVATIONS

Space reservation is a necessary feature of SRMs since reservations are
needed in order to support the request planning and request execution steps of
running jobs on the Grid. Space reservation is also needed in order to replicate
data to locations where computations take place, or to have space to store the
results of computations. However, space reservation brings up many difficult
issues. What policies to use when space is requested? Is the space guaranteed?
Should the SRM set aside the space requested? What if the space is not used
for a long time?

The answer to these questions depends on the cost model used. To support
space reservations, there needs to be a way to provide a ticket or a capabil-
ity to the user in order to claim the space. There needs to be an authority
that manages this capability. There needs to be a mechanism for reporting the
space-time consumed. And there needs to be a way of taking away the space
if it exceeds the reservation period.

Storage Resource Managers 339

Dynamic space reservation is not a concept generally supported by file sys-
tems, but is essential for supporting shared storage resources on the Grid. For
example, in the Unix system, space is allocated by the administrator (the root
owner) on a long-term basis. A user cannot request additional space dynam-
ically, or release space dynamically. SRMs are designed to provide dynamic
space allocation and release.

4.1 Types of Spaces

In order to support space reservations, we found it useful to apply the con-
cepts of permanent, durable, and volatile to spaces as well. The semantics are
similar. Permanent space is owned by the user and has an indefinite lifetime.
Durable space is also owned by the user, but when a lifetime expires there are
two cases to consider. If the durable space does not contain any files, the space
is released. If it contains durable files, the system claims all the unused space,
and notifies the file owner that the lifetime of the durable files has expired.
Volatile space also has a lifetime, but when it expires, all the space and the
files in it can be removed by the SRM.

Reserving permanent space is obviously needed for dynamic archival stor-
age reservation. Similarly, reserving volatile space is necessary for shared disk
resources that are intended to be used on a temporary basis. However, support
for reservation of durable space requires an explanation as to its value.

Recall that durable files are files that have a lifetime associated with them,
but the SRM cannot remove them without some explicit action. Durable files
are especially useful when a client generates a large number of files that need
to be stored temporarily in some shared disk cache before being archived. The
purpose of durable space is similar: reserving a guaranteed space on a tem-
porary basis that cannot be removed without an explicit action by the client.
Similar to volatile space, durable space can be released by the client. Durable
space is particularly useful for request planning.

In contrast to durable space, which is a space that cannot be removed with-
out an explicit action, volatile space can be reclaimed by the SRM if space
is needed. For example, suppose that a client asks for 200 GB volatile space
when there are very few clients using the SRM. The SRM can initially allocate
this space, but when many new clients request space the SRM can reduce the
space used by the first client to say, 50 GBs, provided that there are no pinned
files in that space.

4.2 Best Effort Space

The concept of best effort is well known in association with reservations
[BS98]. It stems from the wish to use the resources efficiently, even if there is a
way to charge for the space. For example, suppose that an SRM controls some

340 GRID RESOURCE MANAGEMENT

space, and that a client asks and is granted a space reservation of 200 GBs for
5 hours. If this space is reserved and not used by the client, and if as a result
some other clients were denied, then the space was wasted, and the client was
charged for space that was not used. This can be thought of as fair, but it may
not be the clients fault. It could be that another resource that was scheduled
(such as a compute resource) was not available. A good request planner would
have released the space, but this cannot be depended on. The result is that the
allocation was lost, and the space was wasted.

Best effort is an alternative that requires some flexibility on the part of the
client, but makes more efficient use of resources. The reservation is considered
advisory. The SRM will try to honor the request within the reservation time
window. Space is only allocated as it is claimed, i.e. when files move into the
space. If competition is high, the client may not get all the space requested, and
may need to look for additional space elsewhere dynamically. This is difficult
for human beings to manage, but may be perfectly reasonable to expect from
a request planner since in general it needs to deal with various failure modes
on the Grid (such as a temporary network partition, archive temporarily down,
unscheduled maintenance, etc.)

Best effort can be flexible in that some minimum is guaranteed. This min-
imum can vary with the type of space. For example, a durable space should
have priority in honoring the reservation over volatile space. Here again, the
policy of best effort reservation is a local policy for each SRM.

The above discussion implies that in order for a request planner to optimize
resource usage, it needs to find out the policies provided by various SRMs it
might want to use. The general policies can be advertised, but the SRMs need
to provide dynamic information as well, such as the quota currently available
in the case that a quota policy is variable. These issues are quite complex, and
so far there are no standard methods for advertising and requesting policy and
quota information.

4.3 Assignment of Files to Spaces

Can a volatile file reside in permanent space? At first glance, one would
consider a one-to-one mapping between file types and the space types they are
assigned to. However, it is actually useful to support volatile files in perma-
nent space, for example. If a client has the right to get permanent space, it is
reasonable for the client to use it for volatile files, so that space can be auto-
matically reclaimed if it is needed. If we rank volatile, durable, and permanent
files types from low to high rank, then a file of a particular type should be able
to be stored in a higher ranking space type. We note, however, that such a
policy of assigning files to spaces is a choice of the local SRM policies. In
general, such policies may be used for more efficient space utilization, but it

Storage Resource Managers 341

is harder to manage. For this reason, most SRMs will most likely assign file
types to spaces of the same type.

There is a condition that needs to be enforced when assigning files to spaces:
no file can be pinned for a lifetime longer than the lifetime of the space it is
put into. This condition guarantees that when the space lifetime expires, the
lifetime of all the files in that space expired too.

5. OTHER IMPORTANT SRM DESIGN CONCEPTS

In this section we discuss additional items that were added to the design of
SRMs as a result of experience of their development by several groups.

5.1 Transfer Protocol Negotiation

When making a request to an SRM, the client needs to end up with a pro-
tocol that the storage system supports for the transfer of files. In general, sys-
tems may be able to support multiple protocols and clients may be able to
use multiple protocols depending on the system they are running on. While
it is advantageous to select a single standard transfer protocol that each SRM
should support (such as GridFTP), this approach is too restrictive. There could
be some university researcher without access to GridFTP who wishes to ac-
cess files through regular FTP, or there could be another FTP service that some
community prefers to use. There needs to be a way to match the transfer pro-
tocol that a client wishes to use with protocols supported by the SRMs storage
system. This is referred to as protocol negotiation.

The mechanism to support protocol negotiation is to allow clients to specify
an ordered list of protocols in their requests, and let the SRM respond with
the protocol that matches the highest possible ranking. For example, suppose
that the client wants to use a new FTP service called FastFTP. The client can
submit in the request the ordered list: FastFTP, GridFTP, FTP. An SRM whose
storage system has a FastFTP service will respond with Fast FTP, otherwise it
will respond with GridFTP, or with FTP if it does not have a GridFTP service.
In this way all SRM sites that support FastFTP will be able to use it. This
mechanism will allow a community to adopt their preferred transfer protocol,
and to introduce new protocol services over time without modifying the SRMs.

5.2 Other Negotiations and Behavior Advertising

In general, it should be possible to negotiate any meaningful quantities that
may affect the behavior of SRMs. In particular, it should be possible to nego-
tiate the lifetime of spaces and files, and the space-time quantities of reserva-
tions. It may also be possible to negotiate how many simultaneous requests the
same user may have. In all such cases, it is up to each SRM what policies to

342 GRID RESOURCE MANAGEMENT

use, and how to respond to negotiable requests. An SRM may simply choose
to always respond with the same fixed lifetime period, for example.

SRMs can also choose what type of spaces they support. For example,
SRMs that manage shared disk caches may not be designed to support perma-
nent spaces. Other SRMs may not support durable space, only volatile space.
SRMs may also choose to give one type of service to certain user groups, but
not to others. Furthermore, SRMs should be able to change these choices dy-
namically. To accommodate this dynamic behavior, it is necessary to have a
way of advertising the SRMs capabilities, policies, and dynamics loads. An-
other approach is the passive approach, where SRMs respond to inquiries about
their capabilities, dynamic resource capacity available, and dynamic load of the
SRM (i.e. how much work they still have in their queue). The passive approach
is preferable since the SRMs do not need to find out and coordinate where to
advertise except when they are first added to the Grid.

5.3 Source URLs, Transfer URLs, and Site URLs

In previous sections we represented to the location of a file on the Grid as a
URL. The example used for such a URL was gridftp://
cs.berkeley.edu:4004/tmp/fileX. In this example, we refer to
gridftp as the protocol, and cs.berkeley.edu:4004/tmp/fileX
as the Physical File Name (PFN). Since on the Grid there may be many repli-
cas of a file, each will have a different PFN. This necessitates a unique file
name that is location and machine independent. This is referred to as a Log-
ical File Name(LFN). A middleware component, such as the Globus Toolkit
Replica Catalog [SSA H 02] or the Replication Location Service
(RLS) [CDF H 02] can provide a mapping of the LFNs to one or more PFNs.
SRMs are not concerned with LFNs, since it is the task of the client or the
Request Planner to consult with the RLS ahead of time and to make the choice
of the desired PFN.

Because SRMs support protocol negotiation, it is not necessary to specify a
specific protocol as part of the source URL. Thus, a file that is controlled by an
SRM would have srm instead of a specific protocol. For the example above,
the source URL will be srm://cs.berkeley.edu:4004/tmp/fileX.
Assume that the preferred transfer protocol in the request is GridFTP, and that
it is supported at cs.berkeley.edu, then the transfer URL the SRM will
return will be: gridftp://cs.berkeley.edu:4004/tmp/fileX.

The transfer URL returned to the client does not have to have the same PFN
that was provided to the SRM. This is the case when the client wants the SRM
to get a file from a remote site. For example, suppose that the source URL
srm://cs.berkeley.edu:4004/tmp/fileX was provided to an SRM
with the host address dm.fnal.gov:4001. That SRM will act as a bro-

Storage Resource Managers 343

ker, requesting the file from the SRM at cs.berkeley.edu:4004. It may
choose to place the file in a local directory /home/cs/newfiles/, keep the
same file name fileX, and select the protocol gridftp. In this case, after
the file is transferred to the SRM at dm.fnal.gov:4001, the transfer URL
that will be returned will be gridftp://dm.fnal.gov:4001/home/
cs/newfiles/fileX.

Another important case where the PFN in the transfer URL may be different
from the PFN in the source URL is that an SRM at some site may be control-
ling multiple physical resources, and may want to move the files dynamically
between these resources. Such an SRM maintains a mapping between the ex-
ternal PFN exposed to the outside world and the internal PFN of the file de-
pending on which storage component it is stored on. Furthermore, the SRM
may choose to keep the same file in multiple storage components, each having
its own internal PFN. Note, that the external PFN is not really a physical file
name, but a file name maintained by the site SRM. We refer to the URL that
contains this external PFN as the site URL.

5.4 On the Semantics of the Pinning Concept

In database systems the concept of locking is commonly used to coordinate
the content of objects in the database (records, disk blocks, etc.) when they are
subject to updates. Furthermore, the concept of locking is tightly coupled with
the concept of a transaction in that locking is used as a means of ensuring that
the entire transaction that may involve multiple objects completes correctly.
This led to the well-known theory of serializability and concurrency control
[BHG87], and to the widely used two-phase locking algorithm [GR94]. How
does the concept of pinning differ from locking? Below, we will limit our
discussion to files, without loss of generality. The same concepts apply to any
granularity of data, but on the Grid most applications deal with files.

The concept of pinning is orthogonal to locking. While locking is associated
with the content of a file to coordinate reading and writing, pinning is associ-
ated with the location of the file. Pinning a file is a way of keeping the file in
place, not locking its content. Both locks and pins have to be released. Releas-
ing a lock implies that its content can now be read. Releasing a pin means that
the file can now be removed.

The concept of a lifetime is important to both locks and pins. A lifetime on
a lock is a way of ensuring that the lock is not unreasonably long, making that
file unavailable to others. A lifetime on a pin is a way of ensuring that the file
does not occupy space beyond the time necessary for it to be accessed. Pinning
is used mainly to manage space allocated to the pinned files. It is necessary
for garbage collection of un-released files, cleaning up, or releasing space for
reuse.

344 GRID RESOURCE MANAGEMENT

The length of a lifetime is dependent on the application. Locking lifetimes
are usually short (measured in seconds), since we do not want to make files
unavailable for a long time. Pinning lifetimes can be made long (measured in
minutes) since pinned read-only files can be shared. The only penalty for a
long pin lifetime is that the space of the pinned file may not be available for
that lifetime period. Releasing a pin as soon as possible ensures the efficient
use of resources, and should be used by any middleware or applications using
SRMs.

In many scientific applications, the order that the files are retrieved for pro-
cessing may not be important. As an example, suppose that client A on site
X needs 60 files (1 GB each) from site Y, and a client B on site Y needs 60
files (1 GB each) from site X. Suppose that each site has 100 GBs altogether.
Now, for each request the 60 files have to be pinned first. If the pins happened
simultaneously, each system has only 40 GBs available, no additional space
can be released. Thus, the two processes will wait for each other forever. This
is a pin-lock.

There are many elaborate schemes to deal with deadlocks, ranging from co-
ordination between processes to avoid deadlock, to optimistic solutions that
assume that most of the time deadlocks do not occur and that it is only nec-
essary to detect a deadlock and preempt one of the processes involved. For
SRMs, the lifetime on a file should be a natural mechanism for preemption.
However, since we also have durable and permanent file types, it is worth in-
corporating some mechanism to prevent pin-locks. Assuming that pin-locks
are rare, a mechanism similar to two-phase locking is sufficient, which we
may call two-phase pinning. It simply states that all spaces and pins must be
acquired first before any transfers take place. Otherwise, all pins and spaces
must be relinquished, and the process can be tried again. It is unlikely, but
possible that this will lead to thrashing. If this is the case, then there must be
additional coordination between processes.

6. SOME EXAMPLES OF SRM IMPLEMENTATION
AND USE

In this section we describe several efforts that have already shown the value
of SRMs.

6.1 Using SRMs to Access Mass Storage Systems

SRMs have been developed at four laboratories as components that facil-
itate Grid access to several different Mass Storage Systems (MSSs). At the
Thomas Jefferson National Accelerator Facility (TJNAF) an SRM was de-
veloped to provide Grid access to the JASMine MSS [BHK01]. At Fermi
National Accelerator Laboratory (Fermilab) an SRM was developed as part

Storage Resource Managers 345

of the Enstore MSS [BBH H 99]. At Lawrence Berkeley National Laboratory
(LBNL), an SRM was build to function as an independent component in front
of HPSS [HPS]. At CERN, a prototype SRM was recently developed for the
CASTOR system [CAS]. All these systems use the same interface using the
WSDL and SOAP web service technology. The interoperability of these SRMs
was demonstrated to allow files to be accessed through the same interface over
the Grid.

The above experience showed the flexibility of the SRM concepts. In the
case of JASMine and Enstore, it was possible to develop SRMs as part of the
MSSs because the developers are either the developers of the MSSs as was the
case at TJNAF, or the developers had access to the source code, as was the
case at Fermilab. The reason that the SRM-HPSS was developed as an inde-
pendent component in front of HPSS was that HPSS is a product supported by
a commercial vendor, IBM. It would have been impossible to develop an SRM
as part of HPSS without negotiating with the commercial vendor. Instead, the
SRM was build as an independent component that controls its own disk.

6.2 Robust File Replication Service Using SRMs

File replication of thousands of files is an extremely important task in data
intensive scientific applications. For example, large Climate Modeling sim-
ulations [CGD] may be computed in one facility, but the results need to be
stored in an archive in another facility. This mundane, seemingly simple task
is extremely time consuming and prone to mistakes. Moving the files by writ-
ing scripts requires the scientist to monitor for failures, to have procedures for
checking that the files arrived at their destination correctly, and to recover from
transient failures, such as a refusal by an MSS to stage a file.

This task is particularly problematic when the files have to be replicated
from one MSS to another. For each file, three conditions have to occur prop-
erly: staging of the file in the source MSS, transferring the file over the net-
work, and archiving the file at the target MSS. When staging files, it is not
possible to ask for all files to be staged at once. If too many staging requests
are made, the MSS will refuse most of the requests. The scientist’s script have
to monitor for refusals and any other error messages that may be issued by
the MSS. Also, if the MSS is temporarily out of order, the scripts have to be
restarted. Similar problems can occur on the target MSS in the process of
archiving files. In addition, since we are transferring hundreds of large files
(order of GBs each), it is possible that network failures occur while transfers
are taking place. There is a need to recover from these as well. Replicating
hundreds of large files is a process that can take many hours. Providing a ser-
vice that can support massive file replication in a robust fashion is a challenge.

346 GRID RESOURCE MANAGEMENT

We realized that SRMs are perfectly suited to perform massive file repli-
cation automatically. The SRMs queue the multi-file request, allocate space,
monitor the staging, transfer, and archiving of files, and recover from transient
failures. Only a single command is necessary to request the multi-file transfer.
Figure 5 shows the setup of having SRMs at NCAR and LBNL to achieve con-
tinuous file replication of hundreds of files in a single request. We note that in
this setup the source MSS is the NCAR-MSS, and the target MSS is HPSS.

Disk
C

b
ache

Disk
C

b
ache

Disk
C

b
ache

Disk
C

b
ache

HRM-C
c

OPY
(

d
thousands of files)

H
e

RM-G
f

ET (
d
one file at a time)

HRM-Client
Command-line Interface

HRM
(

g
performs writes)

HRM
(

g
performs reads)

LBNL N
h

CAR

G
f

ridFTP G
f

ET (pull mode)

Anywhere

si tage filesaj rchive files

network transfer

NCAR-MSS

gk et list
ol f files

HPSS

Figure 20.5. The use of SRMs for file replication between two different mass storage systems.

In Figure 5 we refer to the SRMs as Hierarchical (storage) Resource Man-
agers (HRMs) because each HRM has its own disk and it accesses an MSS that
has a robotic tape. As can be seen in the figure the request for a multi-file repli-
cation can be initiated anywhere. The request can be for an entire directory to
be replicated. The SRM-Command-Line-Interface connects first to the source
HRM to get the list of files to be moved, and then a single request to replicate
these files is submitted to the target HRM.

The great value of using HRMs is that they perform all the operations nec-
essary for multi-file replication as part of their functionality. This setup of file
replication is in routine use between an HPSS system at Brookhaven National
Laboratory (BNL) and Lawrence Berkeley National Laboratory (LBNL). Each
multi-file transfer involves hundreds of files and 10-100s of gigabytes. A typ-
ical multi-file replication can take many hours. Another important feature of
this setup is that multiple files can be staged at the source concurrently, mul-
tiple files can be transferred over the network concurrently, and multiple files

Storage Resource Managers 347

can be archived concurrently. Consequently, we achieve a greater efficiency in
the end-to-end transfer rate.

This setup can also replicate files from multiple sites. Since URLs are used
for the source files, the multi-file transfer request can be from any SRM, includ-
ing SRMs that manage only disk caches (DRMs). This generality of the SRM
design can support a data production scenario that involves multiple sites. For
example, a simulation can be run at one or more sites, and the files dumped
into several disk caches. A single request to the target SRM where the files
have to be archived can get the files from all the temporary disks, and release
the space when the files are safely in the archival storage.

6.3 Providing GridFTP to a Storage System Through an
SRM

Some storage systems may not be accessible using GridFTP. It is not un-
common to need access to a mass storage system that has not been retrofitted
to support GridFTP since this is a non-trivial task and GridFTP would need
to be implemented as part of the code base of that system. Using SRMs it is
possible to alleviate this problem by having the GridFTP server daemon and
the SRM run on a Grid-enabled machine external to the MSS hardware.

A prototype of this nature was developed for HPSS at LBNL. It works as
follows. When a GridFTP request for a file is made, the GridFTP code was
modified to send a request to HRM. HRM issues a request to HPSS to stage a
file. When this completes, the HRM returns the location of the file to GridFTP,
which proceeds to transfer the file to the requester. When this completes,
GridFTP issues a release to the HRM, so that the space on the HRM disk can
be reused. The opposite occurs when a file archiving is requested.

The implementation of this setup did not require any changes to the HRM.
The HRM functionality was sufficient to support all the interaction with the
GridFTP server daemon. We note that this can be applied with any HRM,
not just HRM-HPSS without any modification to the HRM using the same
modified GridFTP server code. Also, this can be applied to any system that
supports a DRM, and therefore can be applied to any file system not connected
to the Grid to make it accessible by GridFTP.

7. CONCLUSIONS

In this Chapter we introduced the concepts necessary to support storage
resources on the Grid. Similar to compute and network resources, storage re-
sources need to be dynamically reserved and managed in order to support Grid
jobs. In addition to managing space, Storage Resource Managers (SRMs) man-
age the content (or files) in the spaces used. Managing the content permits file
sharing between clients in order to make better use of the storage resources.

348 GRID RESOURCE MANAGEMENT

We have shown that the concepts of file pinning, file releasing (or unpinning)
and lifetime of files and spaces are necessary and useful to support the reli-
able and efficient use of SRMs. We have also shown that the same standard
SRM functionality and interfaces can be used for all types of storage resources,
including disk systems, robotic tape systems, mass storage systems, and mul-
tiple storage resources managed by a single SRM at a site. SRMs have already
been implemented on various systems, including specialized mass storage sys-
tems, and their interoperability demonstrated. They are also routinely used to
provide massive robust multi-file replication of 100-1000s of files in a single
request.

Acknowledgments

While the initial ideas of SRMs were first developed by people from the
Lawrence Berkeley National Laboratory (LBNL), many of the ideas and con-
cepts described in this chapter were developed over time and suggested by
various people involved in joint meetings and discussions, including from the
European Data Grid: Jean-Philippe Baud, Jens Jensen, Emil Knezo, Peter Kun-
szt, Erwin Laure, Stefano Occhetti, Heinz Stockinger, Kurt Stockinger, Owen
Synge, from US DOE laboratories: Bryan Hess, Andy Kowalski, Chip Wat-
son (TJNAF), Don Petravick, Rich Wellner, Timur Perelmutov (FNAL), Brian
Tierney, Ekow Otoo, Alex Romosan (LBNL). We apologize for any people we
might have overlooked.

This work was supported by the Office of Energy Research, Division of
Mathematical, Information, and Computational Sciences, of the U.S. Depart-
ment of Energy under Contract No. DE-AC03-76SF00098.

