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Abstract

We present a theoretical approach to optical spectroscopy of open nonequilibrium

systems, which generalizes traditional nonlinear optical spectroscopy tools by impos-

ing charge and energy conservation at all levels of approximation. Both molecular

and radiation field degrees of freedom are treated quantum mechanically. The for-

mulation is based on the nonequilibrium Green’s function (NEGF) approach and a

double sided Feynman diagrammatic representation of the photon flux is developed.

Numerical simulations are presented for a model system. Our study bridges the the-

oretical approaches of quantum transport and optical spectroscopy and establishes a

firm basis for applying traditional tools of nonlinear optical spectroscopy in molecular

optoelectronics.

Introduction

Optical spectroscopy is a standard tool for probing and controlling electronic and vibrational

structure and dynamics in molecular systems. For example, attosecond pulses make real-time

observation of atomic scale electron dynamics possible,1 localized surface plasmons allow to

go beyond diffraction limit achieving single-molecule sensitivity,2 surface and tip enhanced

Raman spectroscopy yields information on single molecule vibrational structure and excita-

tions,3,4 tetrahertz electromagnetic radiation provides access to rotational degrees of freedom

of molecules5 and X-ray spectroscopy gives access to electronic transitions and nuclear dy-

namics.6,7 Recently, quantum effects of radiation have attracted attention as well.8–10

Advances in nanoscale fabrication techniques allow optical measurements in current-

carrying single-molecule junctions. In particular, bias-induced luminescence was used to

observe vibrationally resolved features with sub-molecular precision,11–14 visualize inter-

molecular dipole-dipole coupling,15 investigate energy transfer in molecular dimers,16 study

selective triplet exciton formation in single molecule,17 and to access information on elec-

tronic quantum shot noise in the junction.18 Raman spectroscopy was utilized to resolve bias-

2



dependent vibrational fingerprint of a molecule in a junction,19 to observe time-dependent

correlations between conductance and optical signal,20 and to estimate extent of bias-induced

vibrational and electronic heating in junctions.21,22 Optical read-out of the junction response

to nanosecond voltage pulses was utilized to enable access to transient processes.23 Perform-

ing and interpreting optical experiments in open non-equilibrium molecular systems requires

the combination of two research areas - optical spectroscopy and molecular electronics -

indicating the emergence of a new research direction coined molecular optoelectronics.24

The theory of nonlinear optical spectroscopy of molecules is well established.25–33 A uni-

fying framework for the interpretation of optical measurements in molecules was published

in the book “Principles of Nonlinear Optical Spectroscopy”,34 the very classification of ul-

trafast optical processes is based on double-sided Feynman diagrams first introduced in the

book. These represent a bare perturbation theory expansion of the molecular density matrix

in light-matter interaction. Caution should be exercised with the approach in open systems.

When the radiaton field is treated classically the bare perturbation expansion holds for closed

and open systems alike, and the double-sided Feynman diagrams are constructed in the usual

way. The only restriction is the necessity to avoid quantum regression statement,35 when

evaluating multi-time correlation functions of electronic operators.36 However, the treatment

of quantum radiation fields is more involved.37 Mutual influence of two quantum subsystems

(e.g., radiation field and electronic degrees of freedom) leads to restrictions on building per-

turbative expansions in their interaction.38 Bare perturbation theory for quantum light in

open systems does not conserve charge and energy39–42 and may even lead to qualitative

failures due to lack of account for back action from one system on the other in the bare

expansion.43

Here, we develop a Green’s function approach whereby charge and energy conservation

are built in. That is, total charge and total energy in the whole system do not change during

the evolution. A double sided Feynman diagrammatic expansion of the Green’s functions

that can describe the response of open systems to quantum fields in terms of pathways is
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developed.

The structure of the paper is as follows. After introducing a model of open system sub-

jected to quantum radiation, we consider consider diagrammatic expansion in light-matter

interaction in and discuss possible generalization of double-sided Feynman diagrams. Theo-

retical discussion is followed by illustrative numerical simulations. We conclude with short

summary and directions for future research.

Theoretical Methods

Model

We consider a junction consisting of molecule M coupled to two metallic contacts L and R

(each at its own equilibrium) and to external quantum radiation field modes. The system

Hamiltonian is

Ĥ = Ĥ0 + V̂ (1)

Ĥ0 = ĤM + ĤL + ĤR + Ĥrad (2)

V̂ = V̂ML + V̂MR + V̂M,rad (3)

where Ĥ0 represents uncoupled molecule (ĤM), contacts (ĤL and ĤR), and radiation field

(Ĥrad), while V̂ gives the interaction between the sub-systems. The molecular Hamiltonian

ĤM is assumed to be quadratic in the fermi operators (neglecting electron correlations), the

contacts are modeled as continua of free charge carriers, the radiation field is expanded in a
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set of modes.

ĤM =
∑
m1,m2

HM
m2m2

d̂†m1
d̂m2 (4)

ĤK =
∑
k∈K

εkĉ
†
kĉk (5)

Ĥrad =
∑
α

ωαâ
†
αâα (6)

V̂MK =
∑
m∈M

∑
k∈K

(
Vmkd̂

†
mĉk +H.c.

)
(7)

V̂M,rad =
∑

m1,m2∈M

∑
α

(
Uα,m1m2 â

†
αD̂m1m2 +H.c.

)
(8)

Here d̂†m (d̂m) and ĉ†k (ĉk) create (annihilate) electron in the molecular orbital m or orbital

k of the contacts, respectively. D̂m1m2 ≡ d̂†m1
d̂m2 is the molecular de-excitation operator. â†α

(âα) creates (annihilates) a photon in mode α of the radiation field.

We shall develop systematic approximations for electron and photon fluxes defined as the

rate of change of population in contacts and radiation field respectively that conserve the

fluxes, i.e. the charge and energy of the entire system does not change during evolution.

IK(t) ≡ − d

dt

∑
k∈K

〈ĉ†k(t)ĉk(t)〉 (K = L,R) (9)

Ipt(t) ≡ +
d

dt

∑
α

〈â†α(t)âα〉 (10)

and corresponding energy fluxes defined as rate of change of energy

JK(t) ≡ − d

dt

∑
k∈K

εk〈ĉ†k(t)ĉk(t)〉 (K = L,R) (11)

Jpt(t) ≡ +
d

dt

∑
α

ωα〈â†α(t)âα〉 (12)

We adopt the conventional notation in quantum transport whereby positive electron flux is

the flux from bath (contact) into system (molecule), while in optical spectroscopy positive
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photon flux goes from system (molecule) into bath (radiation field modes).

Expanding the fluxes in the light-matter interaction

The perturbative expansion is developed around the zero-order Hamiltonian Ĥ0. Standard

nonequilibrium Green’s function theory (NEGF) aims at calculating the electron and photon

Green’s functions defined on the Keldysh contour in the Heisenberg picture

Gm1m2(τ1, τ2) ≡ −i〈Tc d̂m1(τ1) d̂
†
m2

(τ2)〉 (13)

Fα1α2(τ1, τ2) ≡ −i〈Tc âα1(τ1) â
†
α2

(τ2)〉 (14)

These satisfy set of exact coupled Dyson equations44,45

∑
m

∫
c

dτ

[
δ(τ1, τ)

(
iδm1,m

∂

∂τ
−HM

m1m

)
−
∑

K=L,R

ΣK
m1m

(τ1, τ)

]
Gmm2(τ, τ2) (15)

= δm1,m2δ(τ1, τ2) +
∑
m

∫
c

dτ Σpt
m1m

(τ1, τ)Gmm2(τ, τ2)(
i
∂

∂τ1
− ωα1

)
Fα1α2(τ1, τ2) = δα1,α2δ(τ1, τ2) +

∑
α

∫
c

dτ Πel
α1α

(τ1, τ)Fαα2(τ, τ2) (16)

Here ΣK (K = L,R), Σpt and Πel are self-energies of electrons due to coupling to contact

K, electrons due to coupling to radiation field modes, and photons due to coupling to the

electronic subsystem.

The bilinear molecule-contacts coupling, eq 7, results in an exact expression for the self-

energy ΣK

ΣK
m1m2

(τ1, τ2) =
∑
k∈K

Vm1k gk(τ1, τ2)Vkm2 , (17)

where gk(τ1, τ2) ≡ −i〈Tc ĉk(τ1) ĉ†k(τ2)〉 is Green’s function for free electrons in state k of

contact K. Its projections are grk(t1, t2) = −iθ(t1− t2) e−iεk(t1−t2), g<k (t1, t2) = i nk e
−iεk(t1−t2),

g>k (t1, t2) = −i[1 − nk] e−iεk(t1−t2). The self-energy projections in the frequency domain are
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(K = L,R)

ΣK r
m1m2

(E) = ΛK
m1m2

(E)− i

2
ΓKm1m2

(E) (18)

ΣK<
m1m2

(E) = iΓKm1m2
(E) fK(E) (19)

ΣK>
m1m2

(E) = −iΓKm1m2
(E) [1− fK(E)] (20)

Here r, < and > superscripts indicate retarded, lesser and greater projections, fK(E) is the

Fermi-Dirac thermal distribution in the contacts.

ΓKm1m2
(E) ≡ 2π

∑
k∈K

Vm1k Vkm2 δ(E − εk) (21)

is a dissipation matrix due to coupling to contact K, and ΛK is the Lamb shift related to to

ΓK via the Kramers-Kronig relations.

Σpt and Πel must be calculated approximately. Within the NEGF self-energies are defined

as functional derivatives of the Luttinger-Ward functional Φ45–47 (see, e.g., eq 3.12 in Ref.

47)

Σpt
m1m2

(τ1, τ2) = +
δΦ

δGm2m1(τ2, τ1)
(22)

Πel
α1α2

(τ1, τ2) = − δΦ

δFα2α1(τ2, τ1)
(23)

Diagrams for the Luttinger-Ward functional to fourth order in light-matter interaction V̂M,rad,

eq 8, are shown in Figure 1.

Φ = i
∑
{α}

∑
{m}

∫
c

dτ1

∫
c

dτ2 Um1m2,α1 Fα1α2(τ1, τ2)Uα2,m3m4 Gm1m3(τ1, τ2)Gm4m2(τ2, τ1)

−
∑
{α}

∑
{m}

∫
c

dτ1

∫
c

dτ2

∫
c

dτ3

∫
c

dτ4 Um1m2,α1 Fα1α3(τ1, τ3)Uα3,m3m4 (24)

× Um5m6,α2 Fα2α4(τ2, τ4)Uα4,m7m8 Gm1m6(τ1, τ2)Gm5m3(τ2, τ3)Gm4m7(τ3, τ4)Gm8m2(τ4, τ1)
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Self-energies constructed in this way are known to preserve all conservation laws in each

order.39–41 Explicit expressions for the self-energies to fourth order in V̂M,rad are given in the

Supporting Information.

Figure 1: Diagrammatic perturbation theory within NEGF. Shown are the Luttinger-Ward
generating functionals for second (left) and fourth (right) order expansion in light-matter
interaction. Directed solid line (black) represents the electron Green function G, eq 13.
Wavy line (blue) is the photon Green function F , eq 14; both directions are implied here.
Solid circles indicate vertices. Summation over all degrees of freedom and integration over
contour variables is assumed at the vertices.

We note that the diagrammatic expansion is performed in the entire V , eq 3, which

includes both molecule-contacts and molecule-radiation field couplings. However, since the

coupling to the contacts, eq 7, is quadratic, it is exactly resummed into the self-energy ΣK ,

eq 17, while the molecule-radiation interaction can be accounted for through a perturbative

expansion in the light-matter interaction.

Computing the Green’s functions and self-energies is a bit different for time-dependent

and steady-state applications. In the former case one has to solve time-dependent problem,

which consists of setting initial conditions for the Green’s functions. Because of causality

self-energies required for a particular time step only depend on Green’s functions at earlier

times. So that starting from an initial condition one is able to propagate equations of

motion step-by-step. Details of time propagation were discussed in, e.g., Ref. 48. Note that

the initial condition may include either decoupled system and baths (contacts and radiation

field) with sudden or adiabatic switching of the coupling, or steady-state junction (coupling
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to contacts switched at infinite past) subjected at time t0 to laser pulse. Also propagation

on two-dimensional time grid is extremely heavy numerically, so that approximate schemes

reducing to a single time propagation were developed.49

For steady-state, coupling to both contacts and radiation field are assumed to happen in

the infinite past, and particular form of the switching (sudden or adiabatic) is not impor-

tant because by the time steady-state was established, transients die out. In this case we

Fourier transform the Dyson equations, Green’s functions and self-energies to energy space.

Dyson equations, eqs 15-16, with self-energies, eqs S1-S2, have to be solved self-consistently

until convergence starting from Green’s function for, e.g., decoupled electronic and photon

systems. In summary, such procedure consists of the following steps:

1. Obtain Green’s functions for decoupled electrons and photons (e.g., solve problem for

molecular junction in the absence of the field to get electron Green’s function and

assume free photon field - e.g., CW laser, for photon Green’s function).

2. Use the Green’s functions to evaluate the self-energies, eqs S1-S2.

3. Use the self-energies to calculate Green’s functions by numerically solving the Dyson

equations, eqs 15-16.

4. Check convergence by, e.g., calculating populations of electronic levels and photon

modes. If difference on two steps of the procedure is less than predefined tolerance,

stop the calculation; otherwise return to step 2.

Once the self-energies and Green’s functions are known, one can calculate the fluxes, eqs 9-

12. Within NEGF exact expressions for the fluxes are obtained by following the celebrated
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Jauho-Wingreen-Meir derivation44,50,51

IK(t) = 2 Re

∫ t

−∞
dt′Tr

[
ΣK<(t, t′)G>(t′, t)− ΣK>(t, t′)G<(t′, t)

]
(25)

Ipt(t) = 2 Re

∫ t

−∞
dt′Tr

[
F<(t, t′) Πel >(t′, t)− F>(t, t′) Πel <(t′, t)

]
(26)

JK(t) = 2 Im

∫ t

−∞
dt′Tr

[
∂ΣK>(t, t′)

∂t
G<(t′, t)− ∂ΣK<(t, t′)

∂t
G>(t′, t)

]
(27)

Jpt(t) = 2 Im

∫ t

−∞
dt′Tr

[
∂F>(t, t′)

∂t
Πel <(t′, t)−

∂

[
F<(t, t′)

∂t
Πel >(t′, t)

]
(28)

+ 2 Re

∫ t

−∞
dt′
∫ t′

−∞
dt′′Tr

[
Πel <(t, t′′)F>(t′′, t′) Πel >(t′, t)

+ Πel >(t, t′′)F<(t′′, t′) Πel <(t′, t)

]

Here the trace is over molecular orbitals in eqs 25 and 27 and over radiation field modes

in eqs 26 and 28. Note that the fluxes are coupled, because the self-energies entering their

definitions are derived form the same Luttinger-Ward functional (see Figure 1). Thus, they

should be treated on equal footing. This interdependence of fluxes results in charge and

energy conservation (see below for a simple illustration). Note that in the usual NEGF

approach the molecule-contacts coupling is switched on at the infinite past - thus minus

infinity as lower limit in integrals in eqs 25-28. However, other switchings are possible.

Results and Discussion

Double-sided Feynman diagrams for the Green’s functions

Below we present a double-sided Feynman diagram expansion of the fluxes, based on the dia-

grammatic expansion of the self-energies. It is important to stress the difference in language

between Green’s function (Hilbert space) and density matrix (Liouville space) formulations.

Original double-sided Feynman diagrams act in Liouville space. Corresponding construc-
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Figure 2: Diagrams contributing to photon self-energy due to coupling to electrons Πel.
Shown are contributions of (a) second, (b) fourth, and (c) sixth orders. Directed solid line
(black) represents the electron Green function G, eq 13. Wavy line (blue) is the photon
Green function F , eq 14; both directions are implied here. Open and solid circles indicate
outer and inner vertices. Summation over all degrees of freedom and integration over contour
variables is assumed for inner vertices.
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tion in the Hilbert space within Green’s function technique is called projection, while term

diagram is reserved for representation of irreducible contributions within perturbative ex-

pansion. Figure 2 shows second (a), fourth (b), and sixth (c) order Feynman diagrams

contributing to photon self-energy due to coupling to electrons, Πel. Each diagram can be

projected on the Keldysh contour resulting in a set of contributions, which in Liouville space

language are denoted double-sided Feynman diagrams. An important point is that while in

second and fourth order, where only one diagram contributes to the self-energy, difference in

the languages is of secondary importance, one has to be careful with sixth order contribution,

where two different diagrams (see Figure 2c) representing different physical processes will

have same set of time projections. Another difference to keep in mind is time ordering in

the two approaches: while Green’s function projections only account for ordering along the

Keldysh contour, Liouville space formulation requires also ordering in physical time. Thus,

one Hilbert space projection represents several Liouville space diagrams (see, e.g., Ref. 52

for more details).

We are now ready to introduce double-sided Feynman diagrams for the photon flux, eq 26.

Indeed, double-sided Feynman diagrams were originally introduced as contributions to the

flux.34 In this expression we substitute photon self-energy with its explicit expression, eq S2,

separating orders of contributions to the latter. Projections of contributions of different

orders will yield analog of double-sided Feynman diagrams corresponding to optical processes

at the order of the diagram. For example, second order double-sided Feynman diagram

results from second order contribution to Πel - first term in the right-hand-side of eq S2:

I
(2)
pt (t) = 2 Im

∫ t

−∞
dt′

∑
α1,α2

∑
n1,n2
n3,n4

∈M

Uα1,n1n2 Un3n4,α2 (29)

×
(
G<
n2n4

(t, t′)G>
n3n1

(t′, t)F>
α2,α1

(t′, t)−G>
n2n4

(t, t′)G<
n3n1

(t′, t)F<
α2,α1

(t′, t)

)

The corresponding double-sided Feynman diagrams are shown in Figure 3. Two additional

diagrams (accounted for by Im . . . in the expression above) are obtained by switching contour

12



Figure 3: Double-sided Feynman diagrams for second order optical processes in the photon
flux, eq 29. Wavy line (blue) is the photon Green function F , eq 14. Top (bottom) diagram
corresponds to first (second) term in the right side of eq 29. Indices ni indicate molecular
orbitals.
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Figure 4: Double-sided Feynman diagrams for fourth order optical processes in the photon
flux. Wavy line (blue) is the photon Green’s function F , eq 14. Left (right) column corre-
sponds to first (second) term in the right side of eq 26. Wavy line without arrow stands for
F (τ3, τ4) of eq S2. Both arrow directions are possible in this line.
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branches and flipping arrows in the photon Green’s function.

Similarly, fourth order double sided Feynman diagrams are obtained by substituting

fourth order contribution to self-energy Πel, second term in the right side of eq S2, into

expression for photon flux, eq 10. Corresponding diagrams are shown in Figure 4. Note,

only projections along the contour (Green’s function Hilbert space projections) are shown.

We note that simulating double-sided Feynman diagrams following bare perturbation

expansion is not feasible also due to the fact that such expansion takes into account also

decoupled diagrams which should not contribute. Complicated subtraction of terms should

be performed in such expansion as was discussed in Refs.53,54 The problem does not appear

in the present Green’s function based approach.52

Figure 5: Donor (1) - bridge (2) - acceptor (3) junction model for photo-assisted electron
transport.

Numerical example

The following simulations of particle and energy fluxes illustrate the conserving character of

the double-sided Feynman diagram approach. We assume a three level model representing

donor-bridge-acceptor (DBA) molecular structure with donor coupled to left and acceptor

to right contacts. Bridge is assumed to be weakly coupled to both contacts (Figure 5). The

donor and acceptor energies (ε1 and ε3) are lower than the bridge energy (ε2). The system is
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subjected to external radiation which facilitates electron transfer from donor to bridge and

from bridge to acceptor (see Figure 5). The Hamiltonian is

ĤM =
3∑

m=1

εmd̂
†
md̂m +

2∑
m=1

(
tm,m+1d̂

†
md̂m +H.c.

)
(30)

V̂ML =
∑
`inL

(
V1`d̂

†
1ĉ` + V2`d̂

†
2ĉ` +H.c.

)
(31)

V̂MR =
∑
r∈R

(
V3rd̂

†
3ĉr + V2rd̂

†
2ĉr +H.c.

)
(32)

V̂M,rad =
∑
α

(
Uα,12â

†
αd̂
†
1d̂2 + Uα,32â

†
αd̂
†
3d̂2 +H.c.

)
(33)

A similar model was used in Ref. 42, where non-conserving character of standard tools

of nonlinear optical spectroscopy was illustrated. Here we demonstrate that the present

expansion satisfies conservation laws.

We focus on steady-state and check the conservation of charge

IL = −IR (34)

and energy

JL + JR − Jpt = 0 (35)

Note that the minus sign in the energy balance is due to opposite convention about flux

positivity for electron fluxes (positive is flux going into the system) and photons (positive is

flux going out of the system). At steady state. all fluxes eqs 25-28, are time-independent.

They can be expressed in terms of Fourier transforms of corresponding Green’s functions

16



-6

-3

0

3

10
-2

I
/

I 0

-20 -10 0 10 20

|e|Vsd / E0

-6

-3

0

3

10
-2

I
/

I0

-20 -10 0 10 20

|e|Vsd / E0

-2

0

2

10
-7

I
/

I 0

-20 -10 0 10 20

|e|Vsd / E0

-10

-5

0

5

10
-2

I
/

I0

-20 -10 0 10 20

|e|Vsd / E0

(a) (b)

(c) (d)

Figure 6: Charge conservation, eq 34, for the junction model of Figure 5. Shown are IL
(dashed line, blue), IR (dash-dotted line, blue) and their sum (dotted line, black) for (a)
zero, (b) second. and (c) fourth order contributions; (d) shows total fluxes, eq 36. See text
for parameters.
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and self-energies as (K = L,R)

IK =

∫ +∞

−∞

dE

2π
iK(E) (36)

Ipt =

∫ +∞

−∞

dω

2π
ipt(ω) (37)

JK =

∫ +∞

−∞

dE

2π
E iK(E) (38)

Jpt =

∫ +∞

−∞

dω

2π
ω ipt(ω) (39)

where

iK(E) ≡ Tr

[
Σ<
K(E)G>(E)− Σ>

K(E)G<(E)

]
(40)

ipt(ω) ≡ Tr

[
F<(ω) Π>(ω)− F>(ω) Π<(ω)

]
(41)

The radiation field is described as set of modes (oscillators). populated by CW laser

characterized by its frequency ω0, intensity N0, and bandwidth δ, so that the population

Npt(ω) is

Npt(ω) = N0
δ2

(ω − ω0)2 + δ2
(42)

Further details of the steady-state simulation can be found in Ref. 42.

The simulation parameters are (all numbers are given in terms of arbitrary unit of energy

E0): kBT = 0.25, ε1 = −5, ε2 = 5, ε3 = −2, t12 = t23 = 0.1. ΓL1 = ΓR3 = 1 and

ΓL2 = ΓR2 = 0.1 are electron escape rates from donor, bridge and acceptor into left and right

contacts. γ0 = 0.1 is energy escape rate from the molecule into radiation field modes. The

molecule is subjected to external laser radiation with frequency ω0 = 7 and width δ = 0.1.

The laser frequency is chosen at resonance for the transition between bridge and acceptor.

Fermi energy is taken as the origin, EF = 0, and bias is assumed to be applied symmetrically,

µL/R = EF ±|e|Vsd/2. Simulations were performed on energy grid spanning region from −15

to +15 with step 0.01. Self-consistent NEGF simulation was assumed to converge when

18
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Figure 7: Energy conservation, eq 35, for the junction model of Figure 5. Shown are JL
(dashed line, blue), JR (dash-dotted line, blue), Jpt (solid line, red) and their sum (dotted
line, black) for (a) zero, (b) second. and (c) fourth order contributions; (d) shows total
fluxes, eqs 38 and 39. See text for parameters.
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levels populations difference at consecutive steps is less than 10−12. Results for particle and

energy fluxes are presented in terms of flux units I0 ≡ 1/t0 and J0 ≡ E0/t0, respectively

(t0 ≡ ~/E0 is unit of time).
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Figure 8: Particle fluxes vs. pumping frequency ω0 for the junction model of Figure 5.
Shown are (a) IL = −IR, eq 36, and (b) Ipt, eq 37, at biases |e|Vsd = −16E0 (dashed line,
blue), |e|Vsd = 0 (dotted line, black), and |e|Vsd = 16E0 (solid line, red) in left panels.
Right column shows map of the fluxes vs. pumping frequency ω0 and bias Vsd. See text for
parameters.

Figure 6 shows charge currents, eq 36, at the left and right interfaces (dashed and

dash=dotted lines, respectively). Their sum (dotted line) by charge conservation, eq 34,

should be zero at steady-state. Panels (a)-(c) present contributions to the fluxes of the zero,

second, and fourth order diagrams in molecule-radiation field coupling strength; panel (d)

shows sum of all the contributions. Similarly, Figure 7 shows energy currents due to elec-

trons, eq 38 at the left (dashed line) and the right (dash-dotted line) interfaces and due to

photons (solid line), eq 39. Their sum (dotted line) by energy conservation, eq 35, is zero at
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Figure 9: Energy fluxes vs. pumping frequency ω0 for the junction model of Figure 5.
Shown are (a) JL, eq 38, (b) JR, eq 38, and (c) Jpt, eq 39, at biases |e|Vsd = −16E0 (dashed
line, blue), |e|Vsd = 0 (dotted line, black), and |e|Vsd = 16E0 (solid line, red) in left panels.
Right column shows map of the fluxes vs. pumping frequency ω0 and bias Vsd. See text for
parameters.
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steady-state. Note that the conservation laws are satisfied at each order of our diagrammatic

expansion in light matter interaction, i.e. the sum of all double sided Feynman diagrams of

a particular order satisfies charge and energy conservation.

Figures 8 and 9 present spectroscopy of particle, eqs 36 and 37, and energy, eqs 38 and

39, fluxes for the junction model of Figure 5. While for the choice of parameters charge

current (Figure 8a) mostly depends on bias, the photon flux (Figure 8b) is sensitive to the

radiation field frequency. At zero bias the photon flux has dips at molecular resonances

ε2 − ε1 = 10E0 and ε2 − ε3 = 7E0 due to photon absorption by the electronic system (see

dotted line and map in Fig. 8b). At higher biases laser induced absorption competes with

bias induced emission. Thus, the photon flux is suppressed at molecular resonances (see

solid an dashed line in Fig. 8b).

The energy fluxes show a similar frequency dependence. In particular, dips in JL, JR

and Jpt at donor-bridge molecular resonance ε2 − ε1 = 10 and ε2 − ε1 = 10at low biases

(see dotted lines and maps in Figures 9a, b and c) indicate increased L to M and R to M

energy fluxes caused by increased electron transfer into the donor and acceptor facilitated by

the radiation field pumping. Note that for ε1 = −5E0 and ε3 = −2E0 energy flux coming

from the contacts will be negative. Similarly, dips in the photon flux indicate increase in

energy coming into the system. At higher biases radiation field pumping is counteracted by

bias induced emission, so that the energy curves become smoother, although JL and Jpt still

show dips at molecular resonance corresponding to donor-bridge transition (see solid lines

in Figures 9a and c).

Note that while in the numerical illustration we focus on steady-state, where the initial

state of the field and way of switching on of the light-matter interaction are not important,

description of light pulses will require solving corresponding time-dependent problem, eqs 25-

28
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Conclusions

We had developed a theoretical description of optical spectroscopy for open nonequilibrium

systems, where both molecular degrees of freedom and radiation field are treated quantum

mechanically and where charge and energy conservations in the system are built in. Starting

from nonequilibrium Green’s function formulations we show connection with Liouville space

description and introduce generalization of double-sided Feynman diagrams. The latter is

standard tool widely used by theorists and experimentalists for design and interpretation of

experiments.

We performed an expansion in the light-matter coupling strength within the standard

NEGF, and presented different contributions to the photon flux by double-sided Feynman

diagrams. In particular, the order of diagrammatic expansion in photon self-energy due

to coupling to electrons is identified as order of optical process. Double-sided Feynman

diagrams are shown to be projections of corresponding Feynman diagrams on the Keldysh

contour. Light-matter interaction events in double-sided Feynman diagrams are accompanied

by change of molecular orbital, as is expected for weak coupling case.

Our study bridges the theoretical approaches used in quantum transport and optical

spectroscopy. It establishes firm theoretical basis for applying traditional tools of nonlin-

ear optical spectroscopy in molecular optoelectronics. Developing theoretical description

of optical spectroscopy for strongly interacting open molecular systems is a goal for future

research.
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