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Enantioselective Allylation Using Allene, a Petroleum Cracking 
Byproduct

Richard Y. Liu†, Yujing Zhou†, Yang Yang, and Stephen L. Buchwald*

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., 
Cambridge, MA 02139, USA.

Abstract

Allene (C3H4) gas is produced and separated on million-metric-ton scale per year during 

petroleum refining but is rarely employed in organic synthesis. Meanwhile, the addition of an allyl 

group (C3H5) to ketones is among the most common and prototypical reactions in synthetic 

chemistry. Herein, we report that the combination of allene gas with inexpensive and 

environmentally benign hydrosilanes, such as PMHS, can serve as a replacement for 

stoichiometric quantities of allylmetal reagents, which are required in most enantioselective ketone 

allylation reactions. This process is catalyzed by copper catalyst and commercially available 

ligands, operates without specialized equipment or pressurization, and tolerates a broad range of 

functional groups. Furthermore, the exceptional chemoselectivity of this catalyst system enables 

industrially relevant C3 hydrocarbon mixtures of allene with methylacetylene and propylene to be 

applied directly. Based on our strategy, we anticipate the rapid development of methods that 

leverage this unexploited feedstock as an allyl anion surrogate.

Graphical Abstract

The production of valuable compounds from simple and widely available building blocks 

constitutes a core mission of synthetic chemistry. To date, considerable resources have been 

dedicated to the development of new organic transformations, intended to augment the space 
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of products that chemists can access.1 Meanwhile, as our community enters the age of 

sustainability, improving the ideality of starting materials and reagents has become an 

increasingly important focus of synthetic research.2 Particularly in the context of the most 

widely practiced reactions, the elimination of costly, inefficient, or dangerous reactants in 

favor of alternative precursors carries the potential for broad, long-term impact. In the past 

decade, a number of methods that employ widely available chemicals such as methane,3,4 

ethane,4 ethylene,5,6 2-butene,7 and butadiene8 in organic synthesis have been developed. 

Inspired by these collective efforts, we wondered whether we could take advantage of other 

underutilized feedstock chemicals that, despite their availability and advantageous 

properties, currently lack avenues for productive utilization.

Hydrocarbon cracking is among the largest-scale chemical processes in operation 

worldwide, converting over 500 million metric tons of material per year to products such as 

valuable α-olefins (Fig. 1A).9a Allene, or 1,2-propadiene, is a cumulene byproduct that 

constitutes 0.3–0.6 mass percent (wt%) of this total output, or roughly 6 mole percent (mol

%) of the crude C3 fraction.9b The development of synthetic methods that employ 

substituted allenes has been very successful, as evidenced by the large number of catalytic 

reactions that use these compounds.10a–g In contrast, useful transformations of the parent 

compound allene are significantly more challenging to discover for several reasons: it is a 

gas at room temperature, it is highly reactive, and it is often available as a mixture with other 

reactive compounds such as propylene or methylacetylene, which are difficult to separate 

completely (vide infra). Accordingly, synthetically useful transformations of parent allene 

are exceedingly rare.10h–k Without pathways for productive use, allene is currently 

considered to be an undesired contaminant in the supply of propylene. Therefore, allene-

containing mixtures are generally processed via catalytic hydrogenation to propane and 

recycled back into the cracking plant in an energy-intensive operation. In the context of our 

ongoing research on hydrofunctionalization of olefins, we considered whether this largely 

unexploited hydrocarbon feedstock might be productively engaged as an economical low-

molecular-weight C3 source in chemical synthesis.

We selected allylation of ketones as the model reaction due to the prevalence and versatility 

of the homoallylic alcohol products in organic synthesis, as well as the unique chemical 

challenges presented.11 Despite the ubiquity of this transformation in chemical research and 

manufacturing, many existing methods for the parent allylation of ketones are far from ideal 

(Fig. 1B). First, the high reactivity and basicity of organometallic allylation reagents can 

lead to poor chemoselectivity and incompatibility with functionalized substrates. For 

instance, Woerpel has shown that allylmagnesium chloride reacts at the diffusion limit, 

indiscriminately attacking esters, ketones, and aldehydes.12b,c In addition, the generation of 

insoluble metal salts and large quantities of heat limit the utility of these reactions on scale.
13 Finally, asymmetric reactions of ketones in general are difficult to achieve due to the 

reduced steric differentiation between carbonyl substituents and attenuated reactivity in 

relation to aldehydes. Many stereoselective ketone allylation reactions exist, either using 

stoichiometric chiral controllers14 or asymmetric catalysis.15–17 However, highly 

enantioselective installation of the parent allyl group is particularly challenging due to the 

existence of multiple potential pathways leading to the minor enantiomer (see the 

Supporting Information for additional discussion). Most crucially, even these “catalytic” 
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reactions almost always require the prior generation, in a separate operation, of 

superstochiometric quantities of allylmetal reagents, which is intrinsically wasteful in terms 

of energy, time, and material. In comparison, an alternative allylation method that relies 

directly on feedstock chemicals as reagents, eliminating the necessity of organometallic 

intermediates, would be highly desirable.

Groundbreaking research on reductive C–C bond formation by Krische,8,18 Montgomery,19 

and Jamison,20 and elegant examples of copper-catalyzed borylative21 couplings have been 

described the past few years. Among these impressive precedents, however, the use of allene 

gas remains largely unexplored: in the only report of such a process, Krische was able to 

effect the racemic coupling reaction with a single, activated aldehyde electrophile, albeit in 

low yield.18b Our laboratory has recently developed several classes of copper-catalyzed 

stereoselective reactions of in situ generated olefin-derived nucleophiles with carbon-22 and 

nitrogen-centered electrophiles.7,23 We thought that the mildness and chemoselectivity of 

CuH catalysis might allow for more efficient coupling reactions using parent allene. As an 

additional advantage, while Ir- and Ru-catalyzed procedures work well for addition of many 

nucleophiles to aldehydes and imines, the Cu-catalyzed methods developed in our laboratory 

are among the few that can engage ketones.24 Thus, we saw the opportunity to develop an 

important complement to the existing olefin-carbonyl reductive coupling toolbox: a 

practical, asymmetric parent allylation of ketones using allene gas.

Our proposed transformation might proceed through the following catalytic mechanism, 

postulated on the basis of previous mechanistic and computational studies (Fig. 1C).22a,b 

Initially, insertion of allene (II) into a hydride complex I, formed in situ from a phosphine 

ligand, copper source, and silane reductant, could generate an allylcopper(I) species III. 

This nucleophilic species could react with a ketone IV through a six-membered, cyclic 

transition state to form alkoxide V. Subsequent metathesis with the hydrosilane VI would 

regenerate I, while releasing the desired product VII in a silyl-protected form, which would 

be deprotected during work-up.

Using copper(II) acetate as the precatalyst, a variety of commercially available ligands were 

evaluated for the proposed allylation process, using 2-acetonaphthone as a model substrate 

(Figure 1D, see the Supporting Information for details). An atmospheric pressure of allene 

gas was applied over the reaction mixture with the aid of aballoon. At ambient temperature, 

reactions using the inexpensive racemic BINAP ligand provided the desired product with 

high efficiency. Meanwhile, when P-stereogenic ligand QuinoxP*, which is also 

commercially available, was employed, the same product was produced with high 

enantiomeric excess, which was further enhanced upon lowering the temperature to −40°C 

and changing the solvent to MTBE. At cryogenic temperatures, we found that using 

copper(I) tert-butoxide, generated in situ from copper(I) chloride and sodium tert-butoxide, 

the active catalyst is formed more efficiently than when using common copper(II) salts. It is 

notable that direct reduction of the ketone, often an extremely rapid and competing reaction 

in the presence of copper–hydride complexes,22c is not observed in these experiments.

Using 0.5 mol% each of BINAP and copper(II) acetate, a range of symmetrical and 

unsymmetrical ketones were effectively allylated on a 1 mmol scale (Table 1). Simple linear 
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and cyclic ketones reacted cleanly and in near-quantitative isolated yield (2a, 2b). A 

cyclopropyl ketone was converted efficiently without any observable ring opening 

byproducts (2c). A carbamate protecting group (2d), an aryl chloride (2e), and free hydroxyl 

groups (2f), which are rapidly silyl-protected under our reaction conditions, were tolerated 

by the mild conditions of this procedure. Furthermore, haloperidol, a common anti-psychotic 

ketone drug bearing a tertiary alcohol, a tertiary amine, an aryl fluoride, and an aryl chloride, 

reacted in high yield (2g). In addition, Rotenone, a broad-spectrum insecticide, underwent 

allylation with high substrate-controlled diastereoselectivity (2h, >20:1 dr).

Next, we examined the scope of the enantioselective allylation procedure. Aryl methyl 

ketones bearing sulfur- (3b), oxygen- (3c), and nitrogen-based (3d) substituents performed 

the desired reaction in high yield and with good enantioselectivity. Substitution at the meta 

(3f) and ortho (3g) positions were well tolerated. Highlighting the chemoselectivity of this 

reaction, a methyl ester (3e) and a heteroaryl bromide (3h) reacted cleanly, with useful 

enantioselectivity, and without undesired reaction at these non-participating functional 

groups. Both five- (3f, 3h, 3j, 3k) and six-membered (3i) heterocyclic ketones were 

employed successfully. In addition, ketones with substituents other than methyl were 

suitable substrates for this reaction. For instance, an ethyl ketone (3l) and cyclic ketones 

(3m, 3n) provided the corresponding homoallylic ketone products with good-to-excellent 

enantioselectivity. A hindered dialkyl ketone also reacted stereoselectively (3o) and in high 

yield, despite bearing a very acidic α-proton. Finally, a vinyl ketone was found to be an 

effective substrate, providing 3p in high optical purity and without generating undesired 1,4-

allylation or conjugate reduction byproducts.

While reagent-grade purified allene gas is affordable on scale (<$20/mol), direct utilization 

of industrially produced methylacetylene–propadiene (MAPD) mixtures or ternary mixtures 

involving propane or propylene would render the process more practical yet. Although 

previous attempts to use allene gas as a reagent have found even trace (ppm) 

methylacetylene to be detrimental,18b our calculations indicated that insertion of allene into 

hydride complex I should be greatly favored over alkynes or terminal alkenes (Fig. 2A). 

Indeed, when a roughly equimolar mixture of propylene, methylacetylene, and allene was 

employed, allylation product 3a was obtained with nearly identical yield and 

stereoselectivity as when purified allene was used (84% yield, 93:7 er). Furthermore, this 

reaction was conducted using the very inexpensive polymer PMHS (<$1/mol), a waste 

product of the silicone industry, with identical results. The allylation process can be scaled 

easily to produce multigram quantities of product without specialized equipment (Fig. 2B). 

Using a reduced catalyst loading of 2 mol%, 3.7 g (19 mmol) of 3g was obtained with high 

stereoselectivity (95:5 er).

We further demonstrated the utility of the reaction in the synthesis of anti-psychotic drug 

Clopenthixol (Sordinol, 4d), first introduced by Lundbeck in 1961, and one of several 

structurally related thioxanthene antagonists of dopamine receptor D2, commercially 

available as either a mixture of E/Z-isomers or as the pure Z-isomer, obtained by selective 

crystallization25 (Fig. 2C). The traditional synthesis of this substance relies on cyclopropyl 

or allyl Grignard reagents, presenting challenges for scale-up or implementation in 

continuous flow processes14 due to large exotherm and formation of insoluble magnesium 
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salts. In our synthesis, the unpurified reaction mixture resulting from the allene–ketone 

coupling reaction was directly subjected to copper-catalyzed hydroamination conditions 

previously reported by our group.26 Acidic work-up efficiently removed the Boc protecting 

group and eliminated an equivalent of silanol to yield intermediate 4c, observed by high 

performance liquid chromatography (HPLC) but not purified before proceeding. Direct SN2 

alkylation of this mixture with 2-bromoethanol yielded Clopenthixol (4d) in 54% overall 

yield with only one chromatographic separation. Finally, the allylation procedure was also 

employed to synthesize alcohol 5, a core building block in elegant synthetic efforts toward 

the Veratrum alkaloid family, which previously required a three-step iodination/allylation/

Kumada coupling sequence starting from 2-cyclohexene-1-one (Fig. 2D).27

Density functional theory (DFT) calculations suggested an intuitive model for rationalizing 

the stereoselectivity of the allylation process. The steric profile of the C2-symmetric (S,S)-

QuinoxP* ligand is illustrated by a quadrant diagram (Fig. 3, top right). In the preferred 

transition state (Favored TSIII→V), the smaller ketone substituent (Me) occupies the 

pseudoaxial position of the chair-like cyclic construction, positioned in less sterically 

hindered quadrant I, thus forming the observed (S)-product. Due to the unsubstituted nature 

of the allyl nucleophile, the catalyst must destabilize two minor pathways, both of which 

lead to the undesired (R)-product. Relative to the favored transition state, rotation of the 

ketone to place the large group (Ph) pseudo-axial (Disfavored TS1III→V, +1.3 kcal/mol) 

incurs an energetic penalty due to increased steric interaction with the ligand Me group in 

quadrant I. Alternatively, inversion of the entire chair-like structure (Disfavored TS2III→V, 

+2.5 kcal/mol) is also disfavored since a ketone substituent is now directed toward the ligand 

t-Bu group in quadrant II.

In summary, we describe the application of allene, an underutilized hydrocarbon feedstock, 

as a surrogate for traditional allylmetal reagents in copper-catalyzed enantioselective ketone 

addition reactions. We anticipate that allene gas will serve as a versatile and economical 

reagent in a variety of additional carbon–carbon and carbon–heteroatom coupling reactions 

soon to be discovered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of Allene-Based Ketone Allylation.
For experimental details, see the Supporting Information.
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Figure 2. Extensions and applications of the allylation process.
Np = 2-naphthyl, for experimental details, see the Supplementary Information.
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Figure 3. Model for the enantioselectivity of the ketone allylation process.
Energy values represent relative Gibbs free energies for transition states calculated using the 

M06/6–311+G(d,p)-SDD(Cu)/SMD(PhMe)//B3LYP/6–31G(d)-SDD(Cu).
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Table 1.

Scope of copper-catalyzed allylation of ketones using allene gas.
a

a
Average results from two identical runs on 1 mmol scale of ketone. For experimental details, see the Supporting Information.
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Table 2.

Scope of enantioselective copper-catalyzed allylation of ketones using allene gas.
a

a
Average results from two identical runs on 1 mmol scale of ketone. For experimental details, see the Supporting Information.
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