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ABSTRACT OF THE DISSERTATION

Linear-Threshold Network Dynamics: Properties and Applications to Dynamical Brain
Behaviors

by

Michael Patrick Durrell McCreesh

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2024

Professor Jorge Cortés, Chair

The brain, composed of billions of interconnected neurons, forms a complex network

that exhibits an incredibly wide array of behaviors. Treating this structure as a dynamical system

provides a multitude of tools to use to model and understand the relationship between structure

and function in the brain. As subnetworks exist at all levels in the brain, ranging from networks

of individual neurons to networks of entire regions, a diverse set of models, each with different

properties have been considered to study different dynamic brain behaviors. One such class of

models are firing rate models, which monitor the average spike rate of populations of neurons. A

particular firing rate model is the linear-threshold network model, which exhibits a wide range of
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rich behaviors based on the underlying network structure and inputs. This ability to exhibit a

variety of behaviors motivates the use of this model to study a variety of dynamical behaviors

observed in the brain.

This dissertation considers three problems within the realm of modeling dynamical brain

behaviors with the linear-threshold model. First, motivated by the appearance of oscillatory

behavior when observing brain activity, we study the existence of oscillations in the linear-

threshold dynamics. In order to provide sufficient conditions for oscillations in specific network

topologies we also provide conditions for the stability of equilibrium points that maintain a

specific support. Second, we discuss the dynamical brain behavior of selective inhibition and

recruitment. We consider thalamocortical networks with both hierarchical and star-connected

topologies, and focus on how the inclusion of the thalamus can improve the stabilizability

properties of the linear-threshold dynamics relevant to the application. We finish by investigating

the problem of reference tracking for the linear-threshold dynamics, which can be used to frame

many brain behaviors. We approach this both analytically and with a data-driven approach to

better match observations on how the brain processes information.
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Chapter 1

Introduction

All cognitive and physical functions performed by the human body, both conscious

and unconscious, involve communication from and decisions made by the brain. As such,

understanding how the structure and activity in the brain result in function is a question of great

relevance. This question defines the field of neuroscience, but such an understanding of how

the brain works is relevant as well to engineers and scientists working to treat and cure brain

disorders. Computational modeling has long been an approach to gain such an understanding.

The interconnected neurons that make up the brain interact in countless ways forming

a highly complex dynamical system. The interactions in the system are dependent on both the

neuronal dynamics and the changing topological structure and play out across varying spatial

and temporal scales. Spatially, these range from the level of individual neurons, known as the

microscale, to considering populations of neurons, known as the mesoscale, and looking at

the interactions between large regions of the brain, known as the macroscale. Temporally, the

dynamics of neurons vary based on their spatial location, with neurons at the periphery of the

nervous system acting on a significantly faster timescale than those involved with higher-level

processing. These dynamical intricacies make it a natural choice to apply system-theoretic

techniques to analyze and understand computational models of the brain.

The system-theoretic approach to computational models of the brain ranges from analyz-

ing networks at the scale of individual neurons to networks composed of entire brain regions.
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With such diverse scales there is an equally diverse range of models that can be used to provide

effective computational models, ranging from partial differential equations at the the neuronal

level to linear models at the level of entire regions. Depending on the function that one is

interested in, every model has its benefits and drawbacks. As such, the use of any one model is

not sufficient to gain a full understanding of the brain.

At the individual level neurons communicate through spiking, where an electrical impulse

is sent between neurons corresponding to a change in the membrane potential of a neuron. As

such, many computational models of the brain are based on studying signals composed of

a sequence of spikes. In this dissertation, instead of looking directly at the spike patterns

of individual neurons, we consider the rate of spiking of populations of neurons exhibiting

similar levels and types of activity. This is known as a firing rate model, and allows for a more

streamlined mathematical description, but still maintains a tight connection with biological

descriptions of neuron function. In particular we will consider the linear-threshold network

model. The goal of this work is first to understand properties of the linear-threshold dynamics

before using these properties to model neural behavior with a linear-threshold network.

1.1 Literature Review

Computational neuroscience, and in particular the modeling of neurons with dynamical

systems traces back to the early 20th century with the integrate and fire model [3] in 1907.

Many models followed, including the Hodgkin and Huxley model [4], the FitzHugh-Nagumo

model [5, 6], and the Morris-Lecar model [7] at the scale of individual neurons. It later became

established that some information processing in the brain is performed through activity at the

population level rather than solely at the level of individual neurons [8, 9], leading to extensive

work on modeling the behavior of populations of neurons [10, 11, 12, 13, 14, 15, 16, 17]. One

of the most famous of these is the Wilson-Cowan model [18, 19]. Further models have been

considered at the level of entire brain regions, with linear models proving to be as accurate as
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many nonlinears. A comparison of such models can be found in [20].

Concurrently the study of control theory was vastly expanding its reach to many applica-

tions, with automobiles [21, 22], aircraft [23, 24], and robotics [25, 26, 27] being a small set of

examples. Advances were made in many areas, such as linear and nonlinear systems, optimal and

geometric control, controllability and observability, and many more. We direct the reader to [28]

for a collection of papers outlining some of the most important advances in the 20th century.

However, it was not until the latter part of the 20th century that control theory techniques

were applied to the variety of nonlinear dynamical models proposed for neuronal behavior [29,

30]. Over the last 30 years the number of works studying computational neuroscience from a

controls perspective has grown massively, see e.g. [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48]. Neural processes and behavior in the brain that have been studied using

control theory include visual processing [49, 50], voluntary movement [51, 52], and pathological

behavior due to disorders such as Parkinson’s or epilepsy [53, 54, 55, 56]

The combination of using control theory techniques to study neuronal behavior has

provided a variety of benefits to the field of study. By themselves, the neuronal dynamics

provide descriptive models of the activity in the brain, helping us understand the past behavior.

However, to enhance our understanding of the brain, we are interested in prescriptive models.

The application of control theory techniques provide these models, where we can predict and

explain future behavior based on expected or desired stimuli, provided as inputs or perturbations

in the neural dynamics [57, 34].

In addition, a control-theoretic analysis of brain networks provides an avenue to gain

a better understanding of the structure of the brain from a dynamical systems perspective. By

investigating properties of the network structure such as robustness and efficiency [58], we can

aim to uncover the benefits of the network architectures found in the brain and try to understand

why the brain has developed in the way it has. In addition to understanding the properties of

existing brain networks we can also apply the tools from control theory to learn how the networks

can be modified to fix damage or improve performance [48].
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One model that has been used when applying control-theoretic techniques to neural

models in the linear-threshold network model. The linear-threshold network dynamics has been

used to study a variety of brain processes and functions, ranging from the retinal behavior of a

crab [59], to memory [60, 61], seizures [62, 63], and goal-driven selective attention [64, 65, 2].

Properties of controlling networks governed by the linear-threshold dynamics have been studied

using both model-based [65, 66, 1] and data-based [67] control.

The dynamics has piecewise-affine nonlinearities, which generalize sigmoidal nonlineari-

ties [68], and in addition to being consistent with empirical descriptions of neural physiology,

include the celebrated Wilson-Cowan model [18, 69] as a particular case. Further, these dynamics

are able to generate a rich suite of behaviors that allow for the modeling a wide variety of the

dynamical activity seen in the brain. These include unique and multiple equilibria [70, 61],

mono- and multi-stability [71, 64, 72, 73], and oscillatory and chaotic behavior [1, 66, 63, 74].

In this dissertation we further extend on the application of control-theoretic techniques to

the linear-threshold dynamics as a model for neural behaviors.

1.2 Organization and Contributions

The overall contribution of this dissertation is twofold. First we aim to understand the

properties of the linear-threshold network (LTN) dynamics from a system-theoretic perspective.

Second, we explore how the dynamics and its properties can be used as a firing rate model for

the brain, with the goal of providing a model of different neural behaviors.

The dissertation is structured as follows. Chapters 2 and 3 provide general background

information relevant to the results provided in the following three chapters. Each of Chapters 4, 5,

and 6 provide the technical results of this dissertation. These chapters each include a literature

review specific to their topics and a further description of their contributions. An overview of the

contributions of each chapter is as follows.

Chapter 2: In this chapter we provide the neuroscientific background for the develop-
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ment of system-theoretic network models of the brain. In particular we discuss the construction

of the firing rate models discussed in this dissertation. We include a discussion of different

activation functions used in firing rate models, including the linear-threshold function used

throughout this work.

Chapter 3: We introduce the notations used throughout this dissertation and a review of

relevant mathematical concepts, beginning with an overview of control theory and tools from

singular perturbation theory. In addition we include preliminary properties and results on the

LTN dynamics considered throughout the dissertation.

Chapter 4: We consider system-theoretic properties of a network governed by the LTN

dynamics. By considering the possible behaviors of specific sets of nodes, where the remaining

components of the network have zero activity we first provide necessary and sufficient conditions

for the existence of stable equilibria with a specific support on a general network topology. We

then provide sufficient conditions for the appearance of oscillatory behavior, either periodic or

chaotic, on a subset of nodes in competitive network topologies.

Chapter 5: We consider the use of LTN dynamics to study goal-driven selective at-

tention (GDSA) in thalamocortical brain networks. Our first contribution is an analysis of the

mechanisms involved in selective inhibition and recruitment in hierarchical thalamocortical net-

works from a controls perspective. Using singular perturbation theory for non-smooth differential

equations, and leveraging the piecewise-affine nature of the LTN dynamics, we provide feedback-

feedforward control laws that provide selective inhibition and recruitment of the network to an

equilibrium trajectory.

For our second contribution we consider selective inhibition and recruitment in star-

connected thalamocortical networks. For star-connected networks with a temporal hierarchy

we again leverage singular perturbation theory, while for networks without such a hierarchy we

generalize results on the stability of slowly-varying systems. For both networks we illustrate the

benefits of the thalamocortical interconnections in relation to metrics such as failsafe mechanisms,

control magnitude and network performance.
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Chapter 6: In this chapter we consider the problem of reference tracking for the LTN

dynamics. Our first contribution is providing a sufficient condition such that the dynamics can

converge to a reference trajectory dependent on the properties of the synaptic weight matrix and

reference signal.

Our second contribution involves the use of a data-driven control method to achieve

reference tracking in the LTN dynamics which provides two benefits. First, it bypasses difficulties

in determining if a network satisfies the previously supplied sufficient condition. Second, as our

dynamics represent a brain model, using a data-driven control that is determined in an online

fashion is more realistic. In particular we modify the machine learning frameworks of Reservoir

Computing and Next-Generation Reservoir Computing to construct controllers to be applied to

networks governed by the LTN dynamics. Simulations are provided illustrating the success of

these controllers in the context of GDSA and seizure rejection through neuromodulation.

Chapter 7: We provide a summary of the contributions of this dissertation and discuss

directions for future work.
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Chapter 2

Computational Brain Models

Computational modeling of the brain is particularly challenging due, in part, to the

different scales of information in which one can phrase and approach the problem. At the

smallest level, or the “microscale”, the brain is composed of billions of neurons whose dynamics

can be measured at the individual level through their voltages. At the opposite end of the

spectrum, the “macroscale”, the brain can be divided into large regions each composed of tens of

millions of neurons with “activity” patterns recorded using imaging modalities such as functional

magnetic resonance imaging (fMRI) or electroencephalography (EEG). Various levels also fall

in-between the two extremes, often referred to as the “mesoscale”. Each scale is the host to

different network structures, elemental components, and connectivity patterns. This heterogeneity

of spatial scales alone makes it infeasible to study the brain and all its functions and emerging

phenomena using a single computational model.

Both microscale models, illustrating the voltage dynamics of individual neurons, and

macroscale models, showing functional connectivity between regions, have been the subject

of much research using computational models. Details on microscale models can be found

in [4, 75, 76, 68] and references therein, and for macroscale models, we direct the reader

to [20, 77] and references within. Interestingly, while the microscale dynamics at the neuronal

level must be nonlinear, at the macroscale this is not necessarily the case. Despite the frequent

assumption that accurate brain models must be nonlinear [78, 79], the recent comparison [20]
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of a large variety of linear and nonlinear macroscopic models did not find any advantage in the

latter.

In this work we discuss computational brain models at the mesoscale, describing the

interaction between populations of neurons each having similar function and statistical properties.

Two main types of mesoscale models are local field potential models (LFPs) and firing rate

models. LFP models are based upon measuring the electric potential in the extracellular space

around neuron populations, while firing rate models measure the average firing rate of all the

neurons within a population [68]. Both LFPs and firing rate models have been used extensively

for studying brain function [80, 81, 82, 83] and, in their simplest forms, can be transformed into

each other through an affine transformation [71]. In this work, we use firing rate models for our

study of selective inhibition and recruitment in thalamocortical networks.

In addition to these spatial scales of information in the brain, there exist vast temporal

differences between brain regions. Each region in the brain operates on its own different timescale,

which potentially vary greatly, even to the point of the activity in one area appearing constant

relative to that in another. As such, when considering a model at any scale of spatial information

it is necessary to also account for the differing timescales between regions, by encoding a

timescale into the model dynamics of each region.

Regardless of the scale of the brain network model, they all have basic graph-theoretic

elements in common. A brain network is modeled as a collection of nodes, with nodes rep-

resenting populations of neurons and edges representing the interconnections between these

populations. These populations of neurons could be as small as individual neurons or as large

as entire brain regions, depending on the scale of the model. Each of these nodes has its own

defining properties (e.g., consisting of excitatory or inhibitory neurons) and they are connected

to form a network structure as shown in Figure 2.1. Specific model aspects (functional forms,

parametric constraints, etc.) are then defined in accordance with the information scale of the

model. Our next section describes the particular assumptions made to describe firing rate models.

The reader familiar with these models can safely skip this discussion.
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Figure 2.1. Graph-theoretic model of a brain network. Excitatory neurons and connections are
shown in red, while inhibitory neurons and populations are shown in blue.

Figure 2.2. An intracellular recording showing a spike train as is used for communication
between neurons (top) and the corresponding firing rate (bottom). This is estimated by binning
spikes in 100ms bins and smoothing using a Gaussian window with 500ms standard deviation [64,
84, 85].

2.1 Firing Rate Models

In this section we outline the construction of firing rate models in the brain, as per [68, §

7]. At the level of neurons, brain dynamics consist of a series of spikes, corresponding to action

potentials, being transmitted between neurons, see Figure 2.2. The spike train is transmitted from

one neuron to another at a synapse, and as such the two neurons are referred to as the pre-synaptic

and post-synaptic neurons. The sequence of spikes (both input and output signals) transmitted

between neurons is defined by a neural response function, ρ(t), modeled as an impulse train of

the form ρ(t) =
∑

k δ(t− tk), with δ denoting the Dirac delta function.

In many areas of the brain, the spike trains defined by the neural response function appear

to be highly random, and observations have little trial-to-trial reproducibility, which makes
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accurate spike train models difficult to construct. Replacing the neural response function with

the average firing rate provides more trial-to-trial reproducibility (see Figure 2.2), along with

providing some other benefits. First, spiking models can only accurately predict spike trains

sequences if all inputs into a neuron are known. Given the complexity of the brain, knowing this

is highly unlikely. Second, the probability of any two randomly selected neurons being connected

is low. Hence, the construction of a network model that has a high degree of connectivity while

maintaining this property requires using a large number of nodes. Therefore it is standard practice

to instead model a single node in a network as the average response of a population of neurons.

This allows for a less sparse network model. In this case, it is difficult to describe what the

average response of the population would be when using spike trains. The use of firing rates

instead allows us to specify the average response simply as the average firing rate of the neurons

within the population.

We next explain how the firing rate model is constructed. First, we determine how the total

synaptic input of a neuron is dependent on the firing rates of its pre-synaptic afferents. Consider

a pair of pre- and post-synaptic neurons, with firing rates given by xpre(t) and xpost(t). Then, the

firing rate of the pre-synaptic neuron generates the synaptic input into the post-synaptic neuron

in the form of an electrical current, denoted Ipost(t). Assuming the synapse has fast dynamics,

Ipost(t) is approximately proportional to xpre(t) with proportionality constant wpost,pre, where

wpost,pre is known as the synaptic weight. The pre-synaptic neuron is excitatory if wpost,pre > 0

and is inhibitory if wpost,pre < 0. As such, an excitatory neuron increases the activity of its

out-neighbors while an inhibitory neuron decreases it. We note that excitation and inhibition

is a property of neurons, rather than synapses, so a neuron either excites or inhibits all of its

out-neighbors, but not a combination (this is known as Dale’s law). The synaptic current of a

neuron that receives multiple synaptic inputs follows a superposition law, with

Ipost(t) =
∑

j

wpost, jx j(t), (2.1)
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where the sum is taken over the neurons providing inputs. For simplicity we assume that Ipost(t)

is measured in Hertz in order to match the units of firing rates. This is accomplished through an

implicit multiplicative constant converting it from the traditional current unit of amperes, which

also renders the synaptic weights wpost, j dimensionless constants.

Next, we model how the firing rate of the post-synaptic neuron depends on the synaptic

input as xpost(t) = F(Ipost(t)), where F(·) is a typically nonlinear “activation” function. For an

individual neuron the firing rate dynamics is then described by as

τẋpost(t) = −xpost(t) + F(Ipost(t)), (2.2)

where τ is a timescale constant indicating a “lag” between the change in the synaptic input and

the change in the firing rate.

While this derivation of a firing rate model as described above uses individual neurons, it

is common to replace the individual neurons with populations of neurons with similar activation

patterns, resulting in a firing rate model at the mesoscale. In this case, the firing rates xpre and

xpost represent the average firing rate of the population of neurons. Finally, to move from the

dynamics of a single pair of neurons (or populations of neurons) to the dynamics of a brain

network, we take the following steps. We consider a network with n nodes and let x ∈ �n

represent the firing rates of the nodes. Then, combining the synaptic weights wi, j into a matrix

W and using (2.1) and (2.2), we obtain the network firing rate dynamics

τẋ = −x + F(Wx + d(t)), (2.3)

where the activation function is applied component-wise. The term d(t) is added to the synaptic

input to model external inputs to the network, such as un-modeled background activity, external

inputs, or non-zero thresholds. What completes the firing rate model, and distinguishes between

them, is the choice of activation function. A variety of different functions have been used in the

11



literature for studying firing rate models, with different benefits and drawbacks to each.

When considering activation functions for the firing rate model they must all satisfy a

set of base criteria in order to be a realistic representation of neuron firing rates. First, since

the unit of measurement in the model is frequency (Hz) it is necessary that the domain of the

dynamics is nonnegative, which is guaranteed by requiring that the activation function maps

from � to �≥0 for an individual neuron (population of neurons). Second, due to the refractory

period after an action potential, neurons have a maximum firing rate that can differ between types

of neurons [86]. As such the firing rate model needs to exhibit bounded activity, either through

having an upper bound on the activation function or other properties that bound the activty of the

dynamics. Beyond these base requirements other properties of different activation functions can

be beneficial, such as differentiability and computation complexity, and there is wide flexibility

in choice, ranging from highly nonlinear to linear [20]. For firing rate models in particular, three

common activation functions are the sigmoid [17], the threshold-linear function (also known as

rectified linear unit or ReLU) [87, 73] and the linear-threshold model [17, 64]. A comparison of

the properties of models is provided in Table 2.1 with graphs of the functions in Figure 2.3.

Table 2.1. A comparison of three commonly used activation functions: sigmoidal, threshold
linear and linear threshold. Images of the functions are shown in Figure 2.3.

Property Sigmoidal Threshold-Linear Linear-Threshold
Lower Bounded Yes Yes Yes
Upper Bounded Yes No Yes
Differentiable Yes Piecewise Piecewise

Nonlinearity Type Exponential Piecewise-affine Piecewise-affine
Computational Complexity High Low Low

In this work we consider the linear-threshold activation function, which gives the linear-

threshold network (LTN) firing rate model, governed by the following dynamics

τẋ = −x + [Wx + d(t)]m
0 . (2.4)

We note that the vector of firing rate upper bounds m can be modeled as either finite
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Figure 2.3. The sigmoidal (left), threshold-linear (middle), and linear-threshold (right) activation
functions. All have been used extensively in brain modeling and their necessary properties are
compared in Table 2.1.

or infinite. In the case of an infinite upper bound, the linear-threshold model reduces to the

threshold-linear model. While the linear-threshold activation function is more biologically

accurate, if it is assumed that the activity of the network is not approaching the firing rate

threshold, then using a threshold-linear network (TLN) model instead can be convenient for

network analysis.

2.2 Modeling Different Brain Regions

Since distinct functions utilize different areas in the brain, it is important for models to

accommodate different structures to describe multiple phenomena. A majority of the literature

on brain networks studies the cortex and cortical networks [80, 88, 89, 90] due to its role in

higher-level processes in the brain, including memory and attention [91]. However, most cortical

regions have inputs from subcortical areas, such as the thalamus, that play critical roles in the

many functions undertaken by the cortex [92]. With the distinct regions having such a variety of

functions, modeling them identically can be an overly simplistic assumption. In order to account

for the differences in properties between them, we can provide restrictions at various levels

(functional forms, hyper-parameters, or parameters) on the models used for different regions.

Assuming a homogeneous use of the firing rate model with a linear-threshold functional form

as derived in Section 2.1, the heterogeneity in properties of different regions can be encoded

into the structure of the synaptic weight matrices making up the model. Here we will discuss
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constraints on cortical and thalamic regions in the brain.

The cortex is composed of a mix of excitatory and inhibitory neuron populations and,

while excitatory neurons significantly outnumber inhibitory neurons, both play important roles

in the transmission and processing of information [89]. As such, we allow our firing rate model

for cortical regions to be composed of populations of excitatory and inhibitory neurons with

arbitrary numbers and connectivity patterns. The only restriction on the synaptic weight matrices

of cortical regions is based on the fact that populations of neurons care either excitatory or

inhibitory for all their outgoing connections. This is reflected in the matrices such that each

column has either nonnegative or nonpositive values [68].

The thalamus connects with cortical regions through a series of parallel pathways,

with most thalamic nuclei projecting to a unique cortical population [93]. However, lateral

connections within the thalamus (including both excitatory and inhibitory populations, the

latter of which lying primarily in the thalamic reticular nucleus) construct the transthalamic

pathways between cortical regions that can lie in different places within a hierarchical structure

in the cortex [92, 94]. Experimental observations indicate that along these pathways one of the

mechanisms through which the thalamus and cortex interact is feedforward inhibition mediated

by local interneurons [95, 96, 97]. In particular, these observations show that the cortex receives

excitatory thalamic input but is inhibited due to connections between the thalamic input and

inhibitory interneurons both for first-order sensory thalamic nuclei [98, 99, 100] and higher-order

thalamic nuclei [97].

Given the complexity of thalamic structure, we make the following simplifying assump-

tions towards its computational modeling. First, we allow for each thalamic nucleus to project to

any cortical population, potentially mediated in reality through the lateral connections within the

thalamus and its internal dynamics. Second, we model the projections (outgoing connections)

of the thalamus onto the cortical regions as being strictly inhibitory, mimicking the above-cited

experimental observations of feedforward inhibition of the cortex by the thalamus while also

simplifying the model. We note that the connections back from the cortical regions to the
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thalamus are allowed to be both excitatory and inhibitory. Finally, the internal dynamics of

the thalamus are restricted only such that each column has a nonpositive or nonnegative sign,

similarly to the cortical regions1.

2.3 Control Mechanisms in Brain Models

Brain models in general, and the simplified and tractable form of firing rate models in

particular, are natural pathways to the study of control mechanisms of and for the brain. Akin

to engineered systems, the types of control utilized in the brain can be (roughly) separated into

feedback and feedforward. Feedback control operates off of circuits where the populations

providing the control input are directly stimulated by the populations within the network. In

these circuits, the magnitude of the control input is directly dependent on the activity level in the

network. On the other hand, feedforward control is based upon input received from populations

of neurons that are further from the network and is not dependent upon current activity levels

within the network.

Feedback control is a mechanism based upon the interaction of two neuronal populations

that form a closed loop. While feedback exists across the brain, a large component of feedback

control occurs in local feedback loops. In the feedback circuit, the first population stimulates a

second “control” population, which in return stimulates the first population in order to control

its dynamics. As the “control” neuron population can be either excitatory or inhibitory, both

excitatory or inhibitory feedback control exists within the brain. However, despite the existence

of more excitatory than inhibitory neurons, the inhibitory neurons frequently exhibit higher firing

rates and are able to influence the firing rates of other neuronal populations more than excitatory

populations can, cf. [89]. As such, inhibitory feedback control is more common than excitatory

feedback [101]. Figure 2.4(left) illustrates a standard inhibitory feedback loop.

Feedforward control is more often studied in the context of (potentially unidirectional)

1We note that while in our models we restrict the sign pattern of the synaptic weight matrices for biological
reasons, the mathematical results provided are valid for matrices with arbitrary sign patterns.
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Figure 2.4. Feedback and feedforward mechanisms of control within brain networks. The left
panel shows an inhibitory feedback loop, where an excitatory signal (red) from the main neuronal
population (grey) stimulates an inhibitory interneuron (blue), which in turn inhibits the main
population. The right panel shows the feedforward inhibition mechanism, where an excitatory
signal from a separate neuronal population stimulates an inhibitory interneuron as well as the
main population. The interneuron then inhibits the main population, typically resulting in its net
inhibition.

non-local connections between neuronal populations. In the case of cortical populations, for

instance, they receive afferents from subcortical nuclei (i.e., the thalamus) as well as cortical

populations in distant regions. These long-distance connections may not form clear feedback

loops, but instead provide a feedforward control input that can modify the dynamics of the

receiving neuronal population. While long-range connections in the brain are almost universally

excitatory, they can indeed induce feedforward inhibition by exciting inhibitory “interneurons”

(neurons with only local output connections), which in turn inhibit their downstream neuronal

population. If this two-hop inhibition is stronger than the direct excitatory afferent received

by the downstream population, as is commonly the case, a net feedforward inhibition would

occur [101]. Figure 2.4(right) illustrates the feedforward inhibition mechanism.
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Chapter 3

Preliminaries

In this chapter we provide the mathematical preliminaries for the results in this disserta-

tion. Section 3.1 provides the notation for this work and Section 3.2 provides relevant matrix

analysis results. In Section 3.3 a brief introduction to control theory is provided and Section 3.4

discusses singular perturbation theory. Sections 3.5 provides a discussion of basic properties

of the LTN dynamics. The reader familiar with these topics can safely skip any or all of these

sections.

3.1 Notation

We introduce here the notations that will be used in the remainder of this dissertation. We

let �, �n, �n×m, denote reals, real-valued vectors and real-valued matrices, respectively. Vectors

and matrices are identified by bold-faced letters. For vectors (matrices) x,y ∈�n (resp. �n×m),

x ≤ y is the component-wise comparison (analogously with <,>,≥). For a vector x and set of

indices α ⊆ {1, . . . ,N} we denote by xα the vector composed of the elements of x by the indices

in α. For a set of indices α ⊆ {1, . . . ,N}, we denote by ᾱ the complement of α, that is {1, . . . ,N}\α.

For a vector x ∈�n we refer to the set of non-zero components as the support of x, and denote it

by supp(x).

For a matrix W ∈ �n×n we denote its eigenvalues by λ1(W) ≥ λ2(W) ≥ · · · ≥ λn(W).

When relevant we will denote λ1(W) by λmax(W) and λn(W) by λmin(W). For a matrix W and
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two sets of indices, α1,α2 we let Wα1α2 the submatrix defined by the rows indexed α1 and

columns indexed by α2. If α1 = α2 = α we will denote this principal submatrix by Wα. For a

2×2-partitioned block matrix

W =

W
00 W01

W10 W11

 ,

we use the notation W`,all =

[
W`0 W`1

]
and Wall,` =

[
(W0`)> (W1`)>

]>
for ` ∈ {0,1}. The

identity matrix of dimension n is In. 0n and 1n denote the n-vector of zeros and the n-vector

of ones, respectively. When clear from the context, we omit the dimensional subindex for the

identity or zero matrices. For W ∈ �n×n, we denote its element-wise absolute value, spectral

radius, and induced 2-norm by |W|, ρ(W), and ‖W‖, resp. Similarly, we let ‖x‖ denote the

2-norm of a vector x ∈�n.

For x ∈ � and m ∈ �>0, [x]m
0 denotes min{max{x,0},m}. For x ∈ �n, m ∈ �n

>0, this

operation is done component-wise as [x]m
0 = [[x1]m1

0 , . . . , [xn]mn
0 ]. For two vectors x ∈ �n and

y ∈�m, x⊕y ∈�n+m is the concatenation of vectors x and y. For scalar r > 0 and vector x ∈�n

let B(r,x) denote the ball of radius r centered at x. If x = 0 we will denote the ball centered at the

origin by Br.

3.2 Matrix Analysis

Due to the interplay between dynamics and topological structure when studying network

systems such as brain models, a variety of matrix classes are useful for characterizing properties

and behavior. When studying linear-threshold brain models the following matrix classes are of

interest.

Definition 3.2.1. (Matrix Classes): A matrix W ∈�n×n is

• a P-matrix if all principal minors of W are positive (denoted W ∈ P);
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Figure 3.1. Inclusions between the matrix classes from Lemma 3.2.2.

• totally Hurwitz if all principal submatrices of W are Hurwitz (denoted W ∈ H);

• totally L-stable if there exists P � 0 such that (−I + W>Σ) + (−I +ΣW) ≺ 0 for Σ = diag(σ)

and all σ = {0,1}n (denoted W ∈ L);

• absolutely Schur stable if ρ(|W|) < 1.

These matrix classes have a variety of relationships, which are given next.

Lemma 3.2.2. (Inclusions Between Matrix Classes [64, Lemma II.3]): For matrix W ∈�n×n

the following hold:

• if W is absolutely Schur stable then −I + W ∈ H;

• it ‖W‖ < 1 then W ∈ L;

• if W ∈ L then −I + W ∈ H;

• if −I + W ∈ H then I−W ∈ P.

In Chapter 4 we study competitive networks which are defined by Z-matrices, defined as

follows.
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Definition 3.2.3. (Z- and M-Matrices): A matrix W ∈ �n×n is called a Z-matrix if for all

i, j ∈ {1, . . . ,n} with i , j, Wi j ≤ 0. If additionally Re(λi) ≥ 0 for all i ∈ {1, . . . ,n}, W is called a

M-matrix.

In studying oscillations we are interested in checking the instability of all 2×2 principal

submatrices of a given matrix. Therefore, it is desirable to have a simple condition to check

for instability of a 2× 2 matrix. The determinant condition for instability reads as follows:

“given W ∈�2×2, if Tr(W) ≤ 0, W is unstable if and only if det(W) < 0; if Tr(W) > 0, then W

is unstable”. The next result details when the determinant condition for instability holds for

Z-matrices.

Lemma 3.2.4. (Requirements for Determinant Condition for Instability for Z-Matrices):

Let W ∈�2×2 be a Z-matrix. The determinant condition for instability holds for −I + W in the

following cases:

1. If w11 = w22 = 0 and 1
|w12|

< |w21|;

2. If one or both of w12,w21 = 0, then either w11 or w22 > 1;

3. If neither of the preceding cases hold and Tr(−I + W) ≤ 0, then (−1 + w11)(−1 + w22)−

w12w21 ≤ 0.

The proof follows directly from the equation for the determinant of a 2×2-matrix.

3.3 Introduction to Control Theory

To keep this dissertation as a self-contained exposition, in the section we give an overview

of the basics of dynamical systems and control theory tools that will be used going forward. A

reader familiar with control-theoretic tools will have no issues with moving past this section.

For the reader without a background in control further information, on nonlinear systems in

particular, can be found in [102], among other textbooks.

20



The overarching goal of control theory (in continuous-time) is to study the properties of

the dynamical system

ẋ = F(x,u), (3.1)

where x ∈�n is the system state and u ∈�m is the control, and design the control signal such that

the system exhibits a desired behavior. Typically we study the autonomous system ẋ = F(x,0)

before investigating how the behavior can be modified through the choice of a control signal u.

When analyzing dynamical systems, one of the most studied characteristics are the equilibria of

the system.

Definition 3.3.1. (Equilibrium Point [102]): A point x∗ is an equilibrium point of the au-

tonomous dynamical system ẋ = F(x) if F(x∗) = 0.

When studying the equilibrium points of the system we are interested in how the system

behaves in an area near the point. If the system stays near the equilibrium point it is referred to

as stable, otherwise it is unstable. A variety of stability concepts are defined as follows.

Definition 3.3.2. (Stability of a Dynamical System [102]): Consider the autonomous dynami-

cal system ẋ = F(x). An equilibrium point x∗ is

• locally stable if, for each ε > 0, there exists δ = δ(ε) > 0 such that

‖x(0)−x∗‖ < δ⇒ ‖x(t)−x∗‖ < ε,

for all t ≥ 0.

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)−x∗‖ < δ⇒ lim
t→∞

x(t) = x∗.
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Without loss of generality we can assume that 0 is an equilibrium point of the system.

• exponentially stable if it is asymptotically stable and there exist α,β,δ > 0 such that

‖x(0)−x∗‖ < δ⇒ ‖x(t)−x∗‖ ≤ α‖x(0)−x∗‖e−βt,

for all t ≥ 0.

• globally asymptotically (exponentially) stable if it asymptotically (exponentially) stable

for all δ > 0.

A variety of tests and conditions exist to determine if the system (3.1) satisfies any of

the stability concepts in Definition 3.3.2. The applicability of these tests are dependent on the

type of system being considered. One such test is Lyapunov’s method, which is utilized in some

proofs in this work. We outline this method as follows.

Definition 3.3.3. (Lyapunov Function [102]): Consider the autonomous system ẋ = F(x) and

without loss of generality assume that x = 0 is an equilibrium point. A continuously differentiable

function V :�n→� is a Lyapunov function for the system if:

i) V(0) = 0;

ii) V(x) > 0 for all x ∈ U\{0}, where U ⊂�n is a neighborhood including the origin;

iii) V̇(x) = ∂V
∂x

dx
dt ≤ 0 for all x ∈ U.

With this definition in hand we provide Lyapunov’s second method for stability.

Theorem 3.3.4. (Lyapunov’s Second Method [102]): Consider the autonomous dynamical

system ẋ = F(x) and assume without loss of generality that x = 0 is an equilibrium point. If there

exists a Lyapunov function V for the system on a neighborhood U, then the equilibrium point

x = 0 is locally stable. Further, if

V̇ < 0
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for all x ∈ U\{0}, the equilibrium point is locally asymptotically stable.

3.4 Singular Perturbation Theory

Here we consider the stability properties of the singularly perturbed system

ẋ = f (t, x,z, ε) (3.2a)

εż = g(t, x,z, ε), (3.2b)

where f ,g : [t0,T ]×Dx×Dz× [0, ε0]→ Dx×Dz with Dx ⊂�
n and Dz ⊂�

m. Assume that f and

g are locally Lipschitz in an domain that includes the origin and that the origin is an equilibrium

point. Here the parameter ε defines the timescale difference between the component of the

network defined by (3.2a) and the component defined by (3.2b). If ε is small then the dynamics

in z are faster than those in x. As such we refer to (3.2b) as the ‘fast’ dynamics, and (3.2a) as the

‘slow’ dynamics. We are interested in studying the stability of the system (3.2) as ε→ 0, which

gives a separation of timescales between the components in the dynamics.

In order to study the stability of the full system we define two additional systems when

ε = 0. First, when ε = 0 equation (3.2b) reduces to 0 = g(t,x,z,0). Defining the root of this

equation to be z = h(t,x) we define the reduced-order model (ROM)

ẋ = f (t,x,h(t,x),0), (3.3)

of which we can study the stability independently of the variable z. Using this model and the

change of variable y = z−h(t,x) we can rewrite the original system (3.2) as

ẋ = f (t,x,y + h(t,x), ε) (3.4a)

εẏ = g(t,x,y + h(t,x), ε)− ε
∂h(t,x)
∂t

− ε
∂h(t,x)
∂x

f (t,x,y + h(t,x), ε) (3.4b)
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Noting that (3.4b) is not necessarily zero when ε = 0, we let τ = (t − t0)/ε and define the

boundary-layer model (BLM)

dy
dτ

= g(t0,x0,y + h(t0,x0),0). (3.5)

Theorem 3.4.1. (Tikhonov Stability Theorem [102, Theorem 11.4]): Consider the singularly

perturbed system (3.2). Assume that the following are satisfied for all (t,x, ε) ∈ [0,∞)×Br× [0, ε0]

• f (t,0,0, ε) = 0 and g(t,0,0, ε) = 0.

• The equation 0 = g(t,x,z,0) has an isolated root z = h(t,x) such that h(t,0) = 0.

• The functions f ,g,h and their partial derivatives up to the second order are bounded for

z−h(t,x) ∈ Bρ for ρ > 0.

• The origin of the ROM (3.3) is exponentially stable.

• The origin of the BLM (3.5) is exponentially stable, uniformly in (t,x).

Then, there exists ε∗ > 0 such that for all ε < ε∗, the singularly perturbed system (3.2) is

exponentially stable to the origin.

Later we will use a generalization of this result for studying the stability of hierarchical

brain networks.

3.5 Preliminary Results on Linear-Threshold Networks

In this section we provide preliminary results regarding the linear-threshold brain model

that we consider throughout this dissertation. We consider the linear-threshold network (LTN)

dynamics

τẋ = −x + [Wx + d(t)]m
0 , (3.6)
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where x ∈ �n is the network state, W ∈ �n×n is the synaptic weight matrix and d(t) ∈ �n

represents any inputs or noise in the network. Here τ is a biological constant defining the

timescale of the network. For the following results we will assume that d(t) is equal to a constant

d. The LTN dynamics can be written as a state-dependent xwitched affine system, with regions

defined by the term [Wx + d]m
0 . The system has 3n switching regions represented by switching

variable σ = {0, `, s}n. The regions are defined

Ωσ =



(Wx + d)i ∈ (−∞,0] ∀i s.t. σi = 0,

x
∣∣∣∣∣ (Wx + d)i ∈ (0,mi) ∀i s.t. σi = `, and

(Wx + d)i ∈ [mi,∞] ∀i s.t. σi = s

The threshold term in (3.6) can then be expressed over each region using diagomal

matrices Σ` and Σs. These are defined, for each q ∈ {`, s}, as follows: Σ
q
ii = 1 if σi = q and Σ

q
ii = 0

otherwise. Using these matrices provides the piecewise-affine form of the dynamics (3.6) being

defined as

τẋ = (−I +Σ`W)x +Σ`d +Σsm, x ∈Ωσ. (3.7)

Throughout this work we will make the following assumption on the synaptic weight matrices

used with the LTN dynamics.

Assumption 3.5.1. Assume the synaptic weight matrix W satisfies

1. det(W) , 0;

2. det(−I +Σ`W) , 0 for each Σ` corresponding to a switching region Ωσ.

In practice this is not a restrictive assumption as the set of matrices that violate it has

measure zero. Instead it guarantees the right-hand side of (3.7) has unique solutions which allows

for the existence of well-defined equilibria. We now provide conditions on the synaptic weight
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matrix guaranteeing the existence and uniqueness of equilibria for the LTN dynamics (3.6) for

all inputs d.

Theorem 3.5.2. (Existence and Uniqueness of Equilibria in LTN Dynamics [64, Theorem

IV.1]): Consider the LTN network (3.6). The dynamics has a unique equilibrium for all inputs

d ∈�n if and only if I−W ∈ P.

We note that this result is equivalent for the threshold-linear dynamics that arise when

m =∞1. The matrix classes introduced in Definition 3.2.1 also provide structural conditions on

the synaptic weight matrix for stability of the LTN dynamics (3.6).

Theorem 3.5.3. (Stability of LTN Dynamics [64, Theorem IV.8]): Consider the LTN network

dynamics (3.6) and assume W satisfies Assumption 3.5.1. Then the following hold.

• If W ∈ L, then for all d ∈ �n, the network is globally exponentially stable to a unique

equilibrium x∗;

• If the network is locally asymptotically stable to a unique equilibrium x∗ for all d ∈�n,

then −I + W ∈ H .

This result provides a sufficient condition for global exponential stability and necessary

condition for local stability. It is further hypothesized that the necessary condition is also

sufficient for global exponential stability [64]. While Theorems 3.5.2 and 3.5.3 give a variety of

necessary and sufficient conditions for both existence and uniqueness of equilibria and stability,

they are dependent on determining if the synaptic weight matrix is in the classes P,H and L.

These are difficult conditions to check, particularly as the scale of the network increases. For

this reason the matrix inclusions of Lemma 3.2.2 are useful for providing more conservative, but

easily computable conditions.

26



Chapter 4

Conditions for Stability and Oscillations in
Linear-Threshold Networks

Oscillatory behavior is one of the most commonly observed phenomena in the brain,

appearing in both healthy and pathological states. Within healthy activity, oscillations are

linked to phenomena such as cognition [103] and consciousness [104], while also appearing in

pathological behaviour such as epileptic seizures and Parkinson’s disease [54]. The presence

of such oscillations in neural activity motivates the study of the dynamical mechanisms behind

their emergence. In contrast, stability in dynamical models of the brain is equally important to

understand. Behaviors such as memory [105, 106], selective attention [64, 65] and vision [107]

can all be modeled through varying forms of stability in the dynamical model. Further, direct

approaches for analysis of oscillations are limited, particularly in higher than 2 dimensions.

As such the analysis of oscillations is commonly approached using the proxy of lack of stable

equilibria in the network.

Motivated by this, in this chapter we aim to study the oscillatory properties of both the

linear-threshold and threshold-linear dynamics, and additionally provide results on the stability

of the dynamics beyond those provided in Chapter 3.
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4.1 Literature Review

Within the study of oscillatory behavior of the LTN and TLN dynamics, the literature is

largely divided based upon network structure. Two of the main structures are excitatory-inhibitory

networks and competitive networks (in the latter, all interneuronal interactions are inhibitory).

While oscillatory behavior in excitatory-inhibitory networks has been studied extensively [66,

108, 109] using both threshold-linear and linear-threshold dynamics, for competitive networks

the literature is largely restricted to threshold-linear dynamics. The works [74, 110] provide both

analytic and graph-theoretic conditions for oscillations in a general competitive network governed

by threshold-linear dynamics. The works [111, 112, 113] study combinatorial threshold-linear

networks, a specific form of competitive networks, and provide conditions related to the existence

of dynamic attractors, including limit cycles, and both quasi-periodic and chaotic attractors.

These studies explicitly rule out node self-excitation and restrict their attention to all-to-all

connectivity structures. This is a major difference with respect to this chapter, where we allow

for self-excitation and consider arbitrary network structures.

4.2 Contributions

We study firing rate brain network models described by linear-threshold and threshold-

linear dynamics as derived in Chapter 2. Our first contribution pertains to the existence of

asymptotically stable equilibria that have non-zero activity on only a given subset of nodes in the

network for a general linear-threshold dynamics. We provide a characterization of this in terms of

the network structure. We build on this result in our second contribution, which characterizes the

emergence of oscillatory behavior in competitive linear-threshold and threshold-linear dynamics.

We provide sufficient conditions on the synaptic structure and the input that ensure the network

does not have stable equilibria (a fact we use as a proxy for the existence of oscillations).
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4.3 Problem Formulation

We consider the linear-threshold and threshold-linear dynamics, given by

τẋ = −x + [Wx + u]m
0 (4.1)

τẋ = −x + [Wx + u]+, (4.2)

respectively. In this chapter we assume that the populations of neurons have similar timescales

and take τ = 1 without loss of generality.

In firing rate models such as linear-threshold or threshold-linear networks, the network

structure determined by the synaptic weight matrix W is classified based upon the properties

of the interneuron connections. An interneuron connection is excitatory if the corresponding

element in the synaptic weight matrix is positive, and is inhibitory if the entry is negative. The

diagonal elements in the synaptic weight matrix represent the impact a node’s activity has on

itself, which we refer to as self-excitatory if the matrix value is positive, and self-inhibitory

if the matrix value is negative. A particular class of networks to which we pay attention are

competitive networks, which represent inhibition-based competition between brain regions, a

widely-observed phenomenon [114].

Definition 4.3.1 (Competitive Network). Consider a linear-threshold (resp., threshold-linear)

network defined by synaptic weight matrix W. The network is competitive if W is a Z-matrix

(i.e., all interneuron connections are inhibitory) and the nodes are either self-excitatory or not

self-connected (wii ≥ 0 for all i).

This definition generalizes the standard definition of competitive network, e.g., [110],

which requires all diagonal elements to be zero. As oscillations in the brain are widely associated

with inhibition [115], our goal is to determine conditions under which oscillations arise in

competitive brain networks. We note that while these networks no longer satisfy Dale’s Law,

we make the same assumption as in [116], in which the network describes effective connections
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between excitatory nodes, and inhibition in the network is mediated by intermediate connections

with interneurons.

The notion of neural oscillation we consider here goes beyond periodic trajectories to

also include chaotic behavior, as chaotic trajectories are of significant interest in computational

neuroscience [117]. Formally, we say a trajectory x(t) of the LTN (4.1) or TLN (4.2) dynamics

is oscillatory if it does not converge asymptotically to an equilibrium.

In this chapter, we use the lack of stable equilibria (LoSE) as a proxy for the existence of

oscillations. This is because this criterion is widely applicable, whereas analytic tools for directly

studying oscillations (such as Poincarè-Bendixson theory [118]) are limited to 2-dimensional

systems or ones whose behavior can be confined to two dimensions. For the LTN dynamics, this

proxy has been shown to be tight [66]. We formalize the problem considered as follows.

Problem 4.3.2. Consider a competitive LTN (resp. TLN) with synaptic weight matrix W.

Determine conditions on the structure of W and the input vector u such that the network has no

stable equilibria.

4.4 Stable Equilibria in LTN and TLN Networks

This section studies the conditions for the existence of stable equilibria in a general

network topology as a precursor to our focus in Section 4.5 on the study of oscillations in

competitive networks. Given the dynamics of LTN (4.1) and TLN (4.2) networks, it is clear

that the location and stability of the equilibria depend upon the specific input. This brings up

two important observations when characterizing them: (i) stability statements could be made

for all possible inputs, several inputs, or just one input. Here, we focus on the latter; (ii) rather

than the specific location of the equilibria, we focus on its support. This means that we consider

equivalence classes of equilibria, as the same set of nodes could correspond to many different

actual equilibria.

The following definition makes this precise for TLN networks.
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Definition 4.4.1. (Stable Node Set in TLN Dynamics [74]): Consider a network governed by

the threshold-linear dynamics (4.2). A non-empty subset of nodes σ ⊆ {1, . . . ,N} is stable if there

exists an asymptotically stable equilibrium point x∗ such that supp(x∗) = σ for at least one input

u ∈�n.

For LTN dynamics, since they are guaranteed to have bounded trajectories, this definition

becomes trivial: for any subset σ, there always exists an input u ∈�n such that the point (0,mσ)

is an asymptotically stable equilibrium point (since, for u with uσ large enough and uσ̄ small

enough, the dynamics reduces to ẋσ = −xσ+mσ and ẋσ̄ = −xσ̄). In order to extend our treatment

of stable node sets for LTN networks, we first consider the support of a bounded vector.

Definition 4.4.2. (Support of a Bounded Vector): Let x ∈ [0,m] ⊂ �n, with m ∈ �n
>0. The

support of x is the set σ = (σm,σm̊) ⊆ {1, . . . ,N}, where xi = mi for all i ∈ σm, xi ∈ (0,mi) for all

i ∈ σm̊ and xi = 0 for all i ∈ σ̄.

The synaptic weight matrix can be block-partitioned according to the the support σ as

W =


Wσ̄ Wσ̄σm Wσ̄σm̊

Wσmσ̄ Wσm Wσmσm̊

Wσm̊σ̄ Wσm̊σm Wσm̊

 , (4.3)

where (σ̄,σm,σm̊) = {1, . . . ,N}. Next, we have the following notion of stability of node sets in

LTN networks.

Definition 4.4.3. (Non-trivially Stable Node Set in LTN Dynamics): Consider a network

defined by the linear-threshold dynamics (4.1) with synaptic weight matrix W and upper bound

m. A non-empty subset of nodes σ = (σm,σm̊) ⊆ {1, . . . ,N} is non-trivially stable if there exists

an asymptotically stable equilibrium point x∗ for the dynamics with supp(x∗) = σ = (σm,σm̊)

for at least one input u ∈�n and either σm̊ , ∅ or there exists i ∈ σm such that (Wx∗+ u)i = mi.

The key part of Definition 4.4.3 is that existence of the stable equilibrium cannot be
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guaranteed solely on the basis of forced saturation by the input. By requiring that either: one

of the non-zero components in the equilibrium point is not saturated (σm̊ , ∅); or, if it is at the

saturation value, it is not over-saturated ((Wx∗+ u)i = mi), it guarantees that the equilibrium is

dependent on the structure of the network and the dynamic behavior, rather than the input. This

definition, when applied to a TLN network reduces to Definition 4.4.1.

We next give a condition for the existence of non-trivially stable equilibria.

Theorem 4.4.4. (Existence of Non-trivially Stable Node Set): Consider a network defined by

either LTN or TLN dynamics with synaptic weight matrix W and upper bound m. A subset of

nodes σ = (σm,σm̊) is non-trivially stable with associated equilibrium x∗, with x∗i ∈ (0,mi) for

all i ∈ σm̊ and x∗i = mi for all i ∈ σm if and only if the matrix (−I + W)σm̊ is stable.

Proof of Theorem 4.4.4. For TLN dynamics, the result corresponds to [116, Theorem 1.2].

Hence, we focus on LTN dynamics. First suppose that (−I + W)σm̊ is stable. Let x∗σ be the

vector with support σ such that x∗σm = mσm and x∗σm̊
= αmσm̊ , where α ∈ (0,1) is arbitrary.

Define uσm̊ = α(I−W)σm̊mσm̊ . Choose uσ̄ such that uσ̄ < −Wσ̄σx∗σ and uσm such that uσm >

−Wσmσx∗σ+mσm . With this choice of u, the vector x∗σ satisfies (I−W)σx∗σ = uσ and is therefore

an equilibrium. We next prove it is stable.

To do so, consider the following change of variables. Define (q,y,z) = x− x∗, with

q = (x−x∗)σ̄ ∈�|σ̄|, y = (x−x∗)σm ∈�
|σm| and z = (x−x∗)σm̊ ∈�

|σm̊|. These variables represent

the components of the dynamics corresponding to where the equilibrium is equal to 0, are on the

boundary m, and are in the interior of [0,m], respectively. This change of variables shifts the

equilibrium x∗ to the origin, and the system becomes

q̇ = −q + [Wσ̄q + Wσ̄σmy + Wσ̄σm̊z + (Wσ̄σx∗σ+ uσ̄)]mσ̄

0 (4.4a)

ẏ = −(y + mσm) + [Wσmσ̄q + Wσmy + Wσmσm̊z + (Wσmσx∗σ+ uσm)]mσm
0 (4.4b)

ż = −(z + x∗σm̊
) + [Wσm̊σ̄q + Wσm̊σmy + Wσm̊z + (Wσm̊σx∗σ+ uσm̊)]

mσm̊
0 . (4.4c)
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Note that with our choice of u above, the constant terms satisfy Wσ̄σx∗σ+ uσ̄ < 0, Wσmx∗σm +

uσm > mσm and Wσm̊x∗σm̊
+ uσm̊ ∈ (0,mσm̊). It follows that in a neighborhood of the origin,

the sign of the threshold terms are determined solely by the sign of the constant term. The

behavior of the system (4.4) is determined by the linear system d
dt [q,y,z] = W[q,y,z]> where W

takes the form (4.3), and in particular is lower triangular with diagonal elements −Iσ̄,−Iσm and

(−I + W)σm̊ . Then, since (−I + W)σm̊ is stable, the equilibrium point is stable, and therefore the

subset of nodes σ is non-trivially stable.

Now, suppose that (−I + W)σm̊ is not stable. We reason by contradiction. Assume

σ= (σm,σm̊) is a non-trivially stable node set. This means that there exists an input u such that x∗

is a stable equilibrium point with Wσ̄σx∗σ+uσ̄ ≤ 0, Wσmx∗σm +uσm ≥mσm and Wσm̊x∗σm̊
+uσm̊ ∈

(0,mσm̊). Now, since Wσm̊x∗σm̊
+ uσm̊ ∈ (0,mσm̊), in a neighborhood of x∗, the component of

the dynamics z acts linearly as ż = −(I + W)σm̊z + Wσm̊σ̄q + Wσm̊σmy. Since (−I + W)σm̊ is

not stable, it then follows that x∗ is not a stable equilibrium, providing a contradiction. This

completes the proof. �

The characterization in Theorem 4.4.4 for the existence of a stable equilibrium for an

arbitrary node set under LTN and TLN dynamics is useful for identifying and building networks

that possess such equilibria. Conversely, it can also be used for the opposite purpose: identify

and build networks that do not. The latter is aligned with seeing the LoSE as a proxy for the

existence of oscillatory or chaotic behavior. As such, in the ensuing discussion we focus on

identifying conditions on the network structure and the input that ensure that the characterization

of Theorem 4.4.4 is not satisfied.

4.5 Oscillations in Competitive Networks

In this section, we focus on competitive networks and provide conditions on the structure

of the synaptic weight matrix W and the input u such that a competitive linear-threshold

or threshold-linear network lacks stable equilibria, thus satisfying our criteria for enabling
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oscillations. We tackle the problem of LoSE by classifying equilibria by their support: equilibria

supported on two or more nodes in the interior of [0,m]; equilibria supported on a single node;

and equilibria with components lying on the boundary m. We then provide conditions such that

all equilibria in each class is not stable.

Theorem 4.5.1. (Oscillations in Competitive Networks with LTN Dynamics): Consider a

network defined by the LTN dynamics (4.1) with synaptic weight matrix W, upper bound m, and

constant input u ∈�n. Let W be a Z-matrix with at least two diagonal elements, indexed i1, i2,

such that wikik < 1 and 2| −1 + wikik | > ρ(−I + W), for k ∈ {1,2}. The following statements hold:

1. There are no stable equilibria x∗ with |supp(x∗)| ≥ 2 and x∗i ∈ (0,m) for all i ∈ supp(x∗) if

all 2×2 principal submatrices of −I + W are unstable;

2. There are no equilibria x∗ with |supp(x∗)| = 1 and

• x∗i = mi if, for each i ∈ {1, . . . ,N}, there exists k such that uk > −wkimi;

• x∗i ∈ (0,mi) if, for each i ∈ {1, . . . ,N} with wii , 1, there exists k such that sign(ui)
uk
ui
>

−sign(ui)
wki

wii−1 and for each i ∈ {1, . . . ,N} with wii = 1 either ui , 0 or ∃k , i such that

uk > −wkimi;

3. Consider a node set σ = (σm,σm̊) with |σ| ≥ 2 and |σm| ≥ 1. The following hold:

• If |σm̊| ≥ 2, then there do not exist any stable equilibria x∗ with support σ if all 2×2

principal submatrices of (−I + W)σm̊ are unstable;

• If |σ| = |σm| ≥ 2, then there do not exist any equilibria x∗ with support σ∗ if there

exists i ∈ σm such that ui < mi−
∑

j∈σm wi jm j;

• If σm̊ = {i}, then there do not exist any equilibria x∗ with support σ if u is such that

one or more of the following conditions hold:

(a) There exists i ∈ σm̊ such that:

i. If wii < 1, then ui < (−
∑

j∈σm wi jmi,mi(1−wii)−
∑

j∈σm wi jmi), or
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ii. If wii > 1, then ui < (mi(1−wii)−
∑

j∈σm wi jmi,−
∑

j∈σm wi jmi), or

iii. If wii = 1, then ui , −
∑

j∈σm wi jmi.

(b) There exists k ∈ σm such that if wii , 1

uk < mk −
∑
j∈σm

wk jmk −
( wki

1−wii

)( ∑
j∈σm

wi jmi + ui
)
,

or if wii = 1

uk ≤mk −
∑
j∈σm

wk jm j.

(c) There exists l ∈ σ̄ such that if wii , 1

ul > −
∑
j∈σm

wl jml−
( wli

1−wii

)( ∑
j∈σm

wi jmi + ui
)
,

or if wii = 1

ul ≥ −
∑
j∈σm

wl jm j−wlimi.

To prove this statement, the following result guaranteeing LoSE supported on multiple

nodes is useful.

Lemma 4.5.2. (Conditions for Unstable Equilibria Supported on Multiple Nodes): Con-

sider a network defined by the LTN dynamics (4.1) with a Z-matrix W. If all 2×2 principal sub-

matrices of −I + W are unstable and there exist i1, i2 with wikik < 1 and 2| −1 + wikik | > ρ(−I + W)

for k ∈ {1,2}, then the network has no stable equilibria supported on more than one node in the

interior of [0,m].

This result is a generalization of [74, Corollary 4.4] to the case of synaptic weight

matrices with non-zero elements in the diagonal. The next result is useful in our proof of
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Lemma 4.5.2.

Lemma 4.5.3. Let W ∈�n×n be a stable Z-matrix with two or more negative diagonal elements

wi1i1 < wi2i2 < 0 such that 2|wikik | > ρ(W) for k ∈ {1,2}. Then W has a stable 2× 2 principal

submatrix.

Proof of Lemma 4.5.3. As W is a Z-matrix, we can write it as W = αI−P, where α = maxi{wii}

and P is a non-negative matrix. Since W is a stable Z-matrix, ρ(P) > α and ρ(W) = ρ(P)−α.

Without loss of generality, assume that the two smallest diagonal elements are w11 <

w22 < 0. We then claim the submatrix W12 is stable. We can write this matrix to be

W12 =

 w11 −w̄12

−w̄21 w22

 = αI−P12,

where w̄12, w̄21 ≥ 0. Since P is a non-negative matrix, and P12 is a principal submatrix, we have

ρ(P12) < ρ(P) [119, Corollary 8.1.20] and therefore ρ(W) > ρ(W12). On the other hand, note that

since W12 is a Z-matrix, for γ ≥ ρ(W12), we have W12 +γI is a M-matrix. Since 2|w22| > ρ(W12),

the matrix B12 = W12 +γI with γ = 2|w22|, given as follows,

B12 =

w11 + 2|w22| −w̄12

−w̄21 |w22|

 ,
is a M-matrix. Since w11 < w22, it follows that |w11| > w11 + 2|w22|. Therefore the matrix B̃12

defined by

B̃12 =

 |w11| −w̄12

−w̄21 |w22|

 ,
satisfies B̃12 ≥ B12 and, by [120, Theorem 4.6], is a M-matrix. Then since B̃12 ≥W12 and

the diagonal elements of B̃12 are equal to the absolute value of the diagonal elements of W12,
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by [121, Section 2.5, Problem 34b)], the eigenvalues of W12 satisfy λ(W12) < −λmin(B̃12) < 0,

proving W12 is stable. �

We are now ready to prove Lemma 4.5.2.

Proof of Lemma 4.5.2. We recall from Theorem 4.4.4 that a subset of nodes σ ⊆ {1, . . . ,N}

supports a stable equilibrium in the interior of the range [0,m] iff the matrix (−I + W)σ is stable.

Since all 2×2 principal submatrices of −I + W are unstable, it is immediate that there are no

stable equilibria supported on subsets of nodes σ with |σ| = 2 taking values in the interior of

[0,m]. It remains to be shown that this holds for all subsets of nodes σ ⊆ {1, . . . ,N} with |σ| ≥ 3.

We reason by contradiction. Suppose (−I + W)σ is stable. Then, since there exist i1, i2 with

wikik < 1 and 2| −1 + wikik | > ρ(−I + W) for k ∈ {1,2}, we can invoke Lemma 4.5.3 to ensure that

−I + W has exists a stable 2×2 principal submatrix. This contradicts our assumption that all its

2×2 principal submatrices are unstable, and therefore (−I + W)σ cannot be stable, implying that

σ, with |σ| ≥ 3, does not support a stable equilibrium taking values in the interior of [0,m]. �

We are now ready to prove Theorem 4.5.1.

Proof of Theorem 4.5.1. We proceed by deriving conditions so that each classification of equi-

libria by their support contains no stable equilibria.

Statement 1): It directly follows from Lemma 4.5.2: if all 2×2 principal submatrices of

−I + W are unstable1, then there exist no stable equilibria supported on more than two nodes in

the interior of [0,m].

Statement 2): Without loss of generality, assume x∗ is a potential equilibrium point

supported only on node i. Then the equilibrium equations are x∗i = [wiix∗i + ui]
mi
0 and 0 =

[wkix∗i + uk]mk
0 , for all k , i. These conditions are satisfied iff wkix∗i + uk ≤ 0 for all k , i. There

are three possible cases for the remaining equation:

• wiix∗i + ui ≥mi, which implies x∗i = mi;

1Lemma 3.2.4 provides detailed expressions for this condition to hold.
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• wiix∗i + ui ∈ (0,mi), which implies x∗i =
ui

1−wii
unless wii = 1, in which case ui = 0 and x∗i

can take any value within the interval;

• wiix∗i + ui ≤ 0, which implies x∗i = 0, contradicting the assumption that x∗ is supported on

node i.

Therefore, we need to consider only the first two cases. For the case in which x∗i = mi, x∗ is

an equilibrium iff, for all k , i, it holds that wkimi + uk ≤ 0. As such there is no equilibrium

supported on a single node at the boundary if for all i ∈ {1, . . . ,N} there exists k , i such that

uk > −wkimi. For the case where x∗i ∈ (0,mi), first consider when wii = 1. In this case, x∗ is an

equilibrium for any x∗i ∈ (0,mi) iff ui = 0 and wkix∗i + uk ≤ 0 for all k , i. Rearranging these

conditions, we get that there is no equilibrium supported on a single node x∗i ∈ (0,mi) if either

ui , 0 or there exists k , i such that uk > −wkimi. If wii , 1, x∗ is an equilibrium iff for all k , i

wki

(
ui

1−wii

)
+ uk ≤ 0.

Rearranging this expression, we get that there is no equilibrium supported on a single node with

x∗i ∈ (0,mi) if, for each i ∈ {1, . . . ,N} with wii , 1, there exists k , i such that

sign(ui)
uk

ui
> −sign(ui)

wki

1−wii
.

Statement 3): Equilibria supported on two or more nodes, with at least one taking values

on the boundary m, come in the following three cases based upon the structure of the node set

σ = (σm,σm̊). The cases are: a) |σm| ≥ 1, |σm̊| ≥ 2; b) |σ| = |σm| ≥ 2; c) |σm| ≥ 1 and |σm̊| = 1.

Consequently,

a) If |σm̊| ≥ 2, these are equilibria supported on two or more nodes in the interior of

[0,m]. By Lemma 4.5.2, if all 2× 2 principal submatrices of (−I + W) are unstable, no such

equilibrium is stable.
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b) If |σ| = |σm| ≥ 2, then a point x∗ with support σ is an equilibrium if and only if mi ≤∑
j∈σm wi jx∗j +ui for all i ∈ σm. Rearranging this expression, we have that there is no equilibrium

with this structure if there exists i ∈ σm such that ui < mi−
∑

j∈σm wi jm j;

c) If |σm̊| = 1 and |σm| ≥ 1, let x∗ be a candidate point with node i supported on (0,mi) and let

us identify the interval of inputs u that would actually make x∗ an equilibrium. For x∗ to be an

equilibrium, the following must hold:

x∗i =
∑
j∈σ

wi jx∗j + ui, (4.5a)

mk ≤
∑
j∈σ

wk jx∗j + uk, ∀k ∈ σm, (4.5b)

0 ≥
∑
j∈σ

wl jx∗j + ul, ∀l ∈ σ̄. (4.5c)

From (4.5a), we get

(1−wii)x∗i =
∑
j∈σm

wi jm j + ui. (4.6)

To enforce the constraint that x∗i ∈ (0,mi), the input ui must satisfy the following:

• If wii < 1, then ui ∈ (−
∑

j∈σm wi jm j,mi(1−wii)−
∑

j∈σm wi jm j);

• If wii > 1, then ui ∈ (mi(1−wii)−
∑

j∈σm wi jm j,−
∑

j∈σm wi jm j);

• If wii = 1, then ui = −
∑

j∈σm wi jm j.

First suppose wii , 1, and considering (4.5b), by rearranging and substituting (4.6), we get

uk ≥mk −
∑
j∈σm

wk jm j−
( wki

1−wii

)( ∑
j∈σm

wi jm j + ui
)
,
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must be satisfied for all k ∈ σm in order for x∗ to be an equilibrium. Similarly, from (4.5c),

ul ≤ −
∑
j∈σm

wl jm j−
( wli

1−wii

)( ∑
j∈σm

wi jm j + ui
)
,

must be satisfied for all l ∈ σ̄ for x∗ to be an equilibrium. If instead wii = 1, by considering (4.5b)

and noting from (4.6) that all x∗i ∈ (0,mi) are possible equilibrium values, we get that there

exists an equilibrium iff uk > mk −
∑

j∈σm wk jm j is satisfied for all k ∈ σm. In the same fashion,

from (4.5c), there exists an equilibrium iff ul < −
∑

j∈σm wl jm j−wlimi holds for all l ∈ σ̄. Taking

the complement of this set of conditions on the input provides the conditions on equilibria for

the case |σm̊| = 1 and |σm| ≥ 1 given in the statement. �

Theorem 4.5.1 is noteworthy in that it provides quantitative conditions for the existence

of oscillations in competitive LTNs. Note that these conditions depend both on the network

structure and the inputs. This has physiological relevance in two ways. First, the structural

conditions, in particular the pairwise instability of the nodes, show that a small portion can pull

the network into a stable equilibrium rather than exhibiting oscillatory behavior. This aligns

with observations [122] made of brain injuries, where a small injury can lead to significant

behavioral changes. Second, the requirements on the inputs show that only the right ones

lead to the emergence of oscillatory behavior for a given network structure. Given that inputs

could come from other brain regions or external sources, this illustrates that the behavior of a

brain network is highly dependent on its connections with other parts of the nervous system.

Further, the dependence on the input opens the door to exciting design possibilities related to

the robustness (or lack thereof) of oscillatory behavior: as an example, for a given input (resp.

network structure), one might consider how to modify the network structure (resp. input) such

that oscillatory behavior is maintained, gained, or lost.

Remark 4.5.4. (Oscillations in Competitive Networks with TLN Dynamics): The result in

Theorem 4.5.1 is also applicable to threshold-linear networks by taking m =∞1. In this case,
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some of the conditions can be discarded right away since no equilibria exist with components on

an upper threshold: specifically, conditions 3), along with the first component of the condition 2)

can be discarded as they become trivially satisfied. This gives rise to a generalization to arbitrary

networks of [74, Theorem 2.2], which only considers the all-to-all case, with no self-loops, and

positive inputs. •

Remark 4.5.5. (Assumptions on Self-Excitatory Connections): We believe the assumption

in Theorem 4.5.1 requiring at least two diagonal elements to be small enough is not necessary. In

simulations, we have found that not enforcing this constraint still provides oscillatory behavior

provided the other conditions are satisfied. •

Example 4.5.6. (Oscillations in a Seven-Node Competitive network with LTN dynamics):

We consider a competitive LTN dynamics with n = 7 nodes that exhibits oscillatory behavior,

as per the conditions identified in Theorem 4.5.1, and illustrate the impact of the inputs on

network behavior. While Theorem 4.5.1 permits arbitrary inputs, in this example we consider

only homogeneous inputs of the form u = u17. The synaptic weight matrix W is as follows.

W =



0 −0.349 −0.055 −0.434 −0.745 −0.053 −0.381

−2.907 0 −0.338 0 −0.376 −0.556 −0.558

−18.07 −2.981 0 −0.764 −0.043 −0.823 −0.807

−0.696 −0.03 −0.01 1.435 −0.166 −0.331 −0.179

−1.425 −2.664 −23.347 −0.20 0 −0.353 −0.958

−18.83 −1.866 −1.255 −0.517 −2.887 0 −0.06

−2.643 −1.84 −1.325 −0.138 −1.064 −16.64 0


With such inputs, and according to Theorem 4.5.1, oscillations are possible when the network is

subject to inputs in the interval u ∈ (1.3914,1.9742). Figure 4.1 illustrates the network behavior

with different inputs, three inside the range and two outside. For those inside, the same three

nodes fall into limit cycles and one node saturates, but the relative values of the limit cycles vary
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Figure 4.1. Oscillatory behavior of a 7-node competitive network with LTN dynamics subject to
homogeneous inputs u = u17. According to Theorem 4.5.1, oscillations are possible in the input
range u ∈ (1.3914,1.9742), while outside it, there exists a stable equilibrium. The panels vary
based upon the system input and illustrate how the behavior changes. In panels with u = 1 and
u = 2.5, the input lies outside of the oscillatory range and the dynamics settles to an equilibrium.
In the other panels, the same three nodes exhibit oscillations while the remaining ones either
settle to zero or saturate (albeit not shown here, heterogeneous inputs can make different set of
nodes oscillate). The varying input values lead to settling into significantly different limit cycles.

significantly. For inputs outside the interval, the dynamics settles to a stable equilibrium. •

4.6 Conclusions

In this chapter we have studied both stable and oscillatory behaviors in the linear-threshold

and threshold-linear networks. We have provided conditions characterizing the existence of

a stable equilibrium supported on an arbitrary subset of nodes for linear-threshold networks.

Using LoSE as a proxy for the presence of oscillations, we have characterized the emergence of

oscillatory behavior in both linear-threshold and threshold-linear competitive networks, where all

interneuron connections are inhibitory. Specifically, we have provided conditions on the structure

of the network and the inputs such that the networks do not have stable equilibria. Future

work will further explore the physiological interpretation of the conditions along with possible
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additional requirements to be biologically plausible. We will also study dynamic attractors in

linear-threshold competitive networks, analyze the robustness of oscillatory behavior to neuron

addition and removal and its connection with neurogenesis in brain networks.

Acknowledgements

This chapter, in full, is a reprint of the material [1] where it appears as “Sufficient

Conditions for Oscillations in Competitive Linear-Threshold Brain Networks” by Michael

McCreesh, Tommaso Menara and Jorge Cortés in IEEE Control Systems Letters. The dissertation

author was the primary investigator and author of this paper.

43



Chapter 5

Selective Attention in Thalamocortical
Networks

The brain is a complex network composed of many subnetworks that perform a myriad

of different functions. Communication of information between regions and its subsequent

processing is one such function. Brain regions, such as the neocortex for example, have a

hierarchical structure in which different cognitive levels operate on distinct timescales. Within

this hierarchy, information travels from faster lower-level sensory brain regions to slower higher-

level cognitive brain regions (bottom-up communication). Upon processing in the higher-level

regions, information regarding decisions made by these regions is passed back down the hierarchy

to perform some task (top-down communication). In this process, certain regions are selectively

recruited to perform the given task, while other areas are selectively inhibited to ignore other

inputs into the brain network.

Such hierarchies are not restricted to the neocortex, and neither top-down and bottom-up

communications occur entirely inside the neocortex. In fact, most, if not all, direct corticocortical

communications have a parallel transthalamic pathway upon which the information is transmitted

and modulated [94]. Our goal here is to understand the role of transthalamic communication

in enabling selective attention, with a view to characterizing its benefits. We seek to provide a

dynamical explanation of this phenomena and validate the hypothesis that selective inhibition and

recruitment are feasible in thalamocortical networks via feedback and feedforward mechanisms.
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5.1 Literature Review

The hierarchical organization of the brain has been known for decades [123, 124] and has

been extensively studied from different viewpoints [125, 126, 127]. The role of the communica-

tion between the thalamus and cortical regions in a thalamocortical hierarchy is a more recently

studied problem. Historically, the thalamus has been viewed as a relay of sensory signals to the

cortex. However, in recent literature, it has been shown to also play a further role in cognitive

processes [128]. In particular, [94, 129] show that the thalamus transfers both sensory signals

to the cortex using first-order relays, but that for most direct corticocortical connection, there

exists a parallel transthalamic path made of higher-order thalamic relays. Further evidence is

given that these paths operate using feedforward inhibitory control, mediated by interneurons, to

communicate information from thalamic to cortical areas [130, 92, 95]. The works [131, 132]

show that depending on the purpose (e.g., visual, auditory, somatomotor) of the hierarchical

network, the thalamus connects to the hierarchy at different levels. In general, little theoretical

understanding is available about the network properties of thalamocortical structures and their

role in the hierarchical nature of the brain. To address this gap, we employ the linear-threshold

network model (2.4) and build on the hierarchical selective recruitment framework introduced

in [64, 65] for strictly cortical networks. Our results in this chapter expand the validity of this

framework to a larger class of brain topologies that include the thalamus. We also rely on results

from switched piecewise and affine systems [133] and singular perturbation theory [134, 135].

5.2 Contributions

We deal with thalamocortical brain networks where each brain region is modeled as a

state-dependent switched system governed by a linear-threshold rate dynamics. Given our focus

on selective attention, the neuronal populations in each region are divided into task-relevant and

task-irrelevant nodes. Inspired by the types of pathways in thalamic circuitry, we consider two
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interconnections topologies, multilayer hierarchical networks and star-connected networks. Our

first contribution provides an analysis from a control perspective of the mechanisms involved

in the selective inhibition and recruitment in hierarchical thalamocortical network topologies.

Using singular perturbation theory for non-smooth differential equations, and the piecewise-

affine nature of the linear-threshold dynamics, we provide conditions for the existence of

feedback-feedforward control laws that achieve selective inhibition and recruitment of the

network to a desired equilibrium trajectory. Our second contribution expands our results to

star-connected thalamocortical networks, both with and without a temporal hierarchy between

regions. For the latter class, we build on a generalization of stability results on slowly varying

nonlinear systems to the case of exponential stability to provide conditions for the existence of

a feedback-feedforward controller providing selective inhibition and recruitment. We achieve

analogous results for the case of star-connected networks with a temporal hierarchy again using

singular perturbation theory. Examples illustrate the beneficial role played by the thalamus

interconnections in these networks for metrics such as failsafe mechanisms, control energy,

and network performance. Taken together, our results provide a dynamical explanation from

a systems and control perspective of the mechanisms involved in the emergence of selective

attention in the brain and the role of the thalamus. Given the state-dependent switched nature of

the dynamics, the results on stabilizability and distributed feedforward/feedback design are also

of independent interest for the control of complex network systems.

5.3 Neuroscientific Background

Here we provide a summary of neuroscientific background beyond that found in Chap-

ter 2 behind the modeling assumptions adopted in this chapter. The material provided here is

focused on information related to our upcoming discussion of goal-driven selective attention

in thalamocortical networks. It includes observations about brain organization, information

transmission among brain regions, and the role that the thalamus is believed to play.
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Task-Relevant and Task-Irrelevant Neuron Populations: In the nervous system, stimuli

are represented using series of electric spikes generated by neurons that travel down nerve

fibres [68]. A given stimulus is defined by a characteristic pattern of spikes traveling between

neurons, which can also be represented as the firing rate of the neurons over time, as developed

in Chapter 2. In such a representation, some neurons generate spikes (have a non-zero firing rate)

during the transmission of the stimuli, known as being excited, while other neurons do not (have

a firing rate of zero), which is referred to as being inhibited. We refer to the subset of neuron

populations that are excited during the transmission of a stimuli as the ‘task-relevant’ nodes and

the remaining populations as the ‘task-irrelevant’ nodes.

Information Pathways: In the brain, there exist information pathways between different

spatial regions allowing for the transmission of stimuli between processing areas. The transmis-

sion of information can be seen as the activity in one region (that is, the firing rates of the neuron

populations defined by the stimuli) driving the activity in the following region by exciting the

task-relevant nodes and inhibiting the task-irrelevant nodes to propagate the stimuli (and any

processing of it) through the pathway. This enables the brain to generate appropriate responses

to the stimuli by propagating a response through the information pathway. This response, with

its own set of task relevant/irrelevant nodes, selectively recruits (excites) the task-relevant nodes,

and selectively inhibits the task-irrelevant nodes. Information pathways between brain regions

form both spatial and temporal hierarchies, allowing for different levels of processing occurring

in different regions [90]. The temporal timescale separation is directly related to the complexity

of processing occurring in a given region. For a low-level sensory area, where the inputs are

brief and are processed quickly, the timescales are fast. Meanwhile, further up the information

pathway, in regions such as the prefrontal cortex, higher-level cognitive processes use more

complex inputs from earlier in the pathway by integrating them over time, resulting in slower

timescales [136]. In strictly cortical networks, cf. Fig. 5.1(a), selective inhibition and recruitment

through these pathways has been studied [64, 65]. There, it is shown that achieving selective

inhibition and recruitment in such a network is highly dependent on both the individual regions
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dynamics and its interconnections with neighboring regions. Our motivation here stems from

the fact that elements of such networks also have multiple connections to the thalamus while

maintaining a temporal hierarchy [94], and there does not exist an analysis from a systems

and control viewpoint of selective inhibition and recruitment in network topologies with these

additional information pathways.

Pathways between the Thalamus and Cortical Regions: In studying thalamocortical

networks, we consider two topologies of interest, cf. Fig. 5.1(b),(c). Both share the common trait

that each cortical layer is connected to the thalamus layer: however, connections between cortical

layers differ in each case. These topologies are inspired by the fact that pathways in thalamic

circuitry can be identified into two classes [137]. The first represents the role of the thalamus as

a modulator of information being passed between cortical regions along a transthalamic route

parallel to the existing corticocortical information pathways (higher-order relay) [94]. Since these

cortical regions then form a temporal hierarchy, this leads to the hierarchical thalamocortical

network shown in Fig. 5.1(a). The second class represents the thalamus as the main route for the

transfer of information between two (or more) brain areas. In this case, the thalamus is relaying

an input to the cortical regions (first-order relay) [94], which gives rise to the star-connected

network shown in Fig. 5.1(b). The cortical regions to which information is being relayed can

be parts of separate temporal hierarchies, however, as the regions in the network do not form a

temporal hierarchy themselves, the timescales of the subnetworks are not directly related.

Role of the Thalamus: The thalamus is a component of many different brain networks and

thus plays a role in a large number of functions. Traditionally, the thalamus has been considered

primarily as being a sensory relay to the cortex, playing minimal other functional roles [138].

Despite being known since the late 19th century to have additional functions such as a role in

memory loss [139], up until recently the majority of the research into thalamic function has

studied its function as a sensory relay [92, 140, 141]. This view was gradually changed by

several works, including the pioneering work [142], establishing the thalamus as a heterogeneous

structure only a small portion of whose nuclei play the role of a sensory relay.
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Subnetwork i

Subnetwork i + 1

(a) hierarchical cortical network

...
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Subnetwork i−1
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Subnetwork i + 1

Thalamus

(b) hierarchical thalamocortical network

Thalamus

Subnetwork 1

Subnetwork 4 Subnetwork 2

Subnetwork 3

(c) star-connected thalamocortical network

Figure 5.1. Topologies for cortical and thalamocortical brain networks considered in this chapter.
In (a), a strictly cortical network, each layer is connected only to the layers immediately above
and below it. In (b), each layer is connected directly to the thalamus, as well as the layers directly
above and below it. In (c), each layer is connected to the thalamus, but no direct connections
exist between cortical regions. In both plots, task-relevant excitatory and inhibitory nodes are
depicted in red and blue, resp., and task-irrelevant nodes are depicted in grey.
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Through both the first-order and higher-order relays the thalamus can significantly

increase the information contained in signals both being transmitted to and between cortical

regions [94]. In hierarchical networks within the cortex, transthalamic pathways allow for layers

near the top of the hierarchy to directly receive the outputs from the lower levels, in addition to

the more processed inputs they receive from other cortical regions [92]. Thalamic signals into

the higher cortical regions can also allow for receiving further details of motor signals, such as

distinguishing between self-induced stimuli (such as those generated by eye movements) and

stimuli from the external environment [94]. The thalamus also has a role in controlling recurrent

cortical dynamics, as the cortical networks in Fig. 5.1a) are not able to self-sustain activity [130].

One mechanism for the interaction of thalamus with cortical regions is through feedfor-

ward inhibitory control [132, 95, 96]. As such, when studying thalamocortical networks, models

need to take into account that many of the net impacts from the thalamus onto cortical regions

are inhibitory, while returning connections are both excitatory and inhibitory.

5.4 Problem Setup

We start by providing details on the dynamic modeling of the thalamocortical network

layers, then describe the effect that the interconnection topology has on the input to each layer,

and finally formalize the problem under consideration.

5.4.1 Network Modeling

We consider a thalamocortical networkN composed of N cortical layers and the thalamus.

We use linear-threshold rate dynamics to model the evolution of each region in the network. These

dynamics provide a mesoscale model of the evolution of the average firing rate of populations of

neurons, rather than individual spike trains, by looking at the electrical currents flowing through

synaptic connections, see [68]. The dynamics of cortical layer Ni composed of ni nodes are

τiẋi = −xi + [Wixi + di(t)]
mi
0 0 ≤ xi(0) ≤mi, (5.1)
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where xi ∈ �
ni
≥0 represents the state of the nodes within the layer, and each component of xi

represents a population of neurons with similar firing rate. The matrix Wi ∈�
ni×ni is the synaptic

connectivity between neuron populations within the layer and di(t) ∈�ni encapsulates the input

into the model,

di(t) = wi(t) + Biui(t) + ci. (5.2)

Here wi(t) models the interconnections between layers, ui(t) is the control used for the ni nodes

inNi, and ci includes unmodeled background activity or external inputs. The firing rate threshold

is mi ∈�
ni
>0 and τi ∈�

ni
≥0 is the timescale.

In our study, the control ui inhibits ri ≤ ni task-irrelevant nodes (drives their state to zero),

while the remaining terms in (5.2) recruit the remaining ni− ri nodes and determine the desired

equilibrium or trajectory. To distinguish between task-relevant and task-irrelevant nodes, we use

the following partition of network variables in each layer Ni,

xi =

x
0
i

x1
i

 Wi =

W
00
i W01

i

W10
i W11

i

 (5.3a)

Bi =

B
0
i

0

 ci =

c
0
i

c1
i

 mi =

m
0
i

m1
i

 , (5.3b)

where x0
i ∈ �

ri
≥0 represent the task-irrelevant nodes, x1

i ∈ �
ni−ri
≥0 the task-relevant nodes and

Bi ∈ �
ni×pi is such that the task-relevant nodes are not impacted by the control term ui ∈ �

pi .

Throughout we shall assume that pi ≥ ri, and that the matrices B0
i have all full rank.

The thalamus layer NT is modeled in the same way as the cortical layers with the

difference appearing in the interconnection term wT (t).

A final word about the brain mechanisms for the inhibition of regions [101]. Feedforward

inhibition between two layers, Ni and N j, refers to when Ni sends an inhibitory signal to N j to
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achieve its goal activity pattern forN j regardless of the current state ofN j. In contrast, feedback

inhibition refers to when the inhibition applied in a layer Ni is dependent upon the current

activity level of the nodes desired to be inhibited [101]. We employ a combination of feedback

and feedforward inhibition.

5.4.2 Interconnection Topology Among Network Layers

We detail here the dynamical interconnection between the network layers for the topolo-

gies in Fig. 5.1(b),(c).

Hierarchical Thalamocortical Networks

Consider the hierarchical thalamocortical network depicted in Fig. 5.1(a). The hierarchi-

cal structure is encoded by the ordered timescales of the layers: τ1� τ2� ·· · � τN , prescribing

progressively faster dynamics as one moves down the hierarchy. For generality, the timescale

τT of the thalamus might fit anywhere within the hierarchy. For each cortical layer Ni, the

interconnection term wi(t) in (5.2) takes the form

wi(t) = Wi,i−1xi−1(t) + Wi,i+1xi+1(t) + Wi,T xT (t). (5.4)

Here, the terms Wi,i−1,Wi,i+1, and Wi,T represent the weights of the synaptic connections

between layers Ni and Ni−1, Ni+1 and NT , resp. It is important to note that since the thalamus

impacts the cortical regions using feedforward inhibition, the interconnection matrix between

the thalamus and the cortical layer satisfies Wi,T ≤ 0. Substituting (5.4) into the linear-threshold

dynamics (5.1), we get the dynamics for a cortical layer Ni

τiẋi = −xi + [Wi,ixi + Wi,i−1xi−1 + Wi,i+1xi+1 + Wi,T xT + Biui(t) + ci]
mi
0 , (5.5)

for i ∈ {1, . . . ,N}. For consistency W1,0 = 0 = WN,N+1, and we assume that r1 = 0, meaning no

nodes are being inhibited in the top layer of the network.
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For the thalamus layer, to reflect the different connectivity it has in the network, the

interconnection term wT (t) is

wT (t) =

N∑
i=1

WT,ixi(t). (5.6)

Here WT,i represents the weight of the synaptic connections between layers NT and Ni for

i ∈ {1, . . . ,N}. Then, substituting (5.6) into (5.1), the dynamics for the thalamus layer is

τT ẋT =−xT +[WT xT +

N∑
i=1

WT,ixi+BT uT (t)+cT ]mT
0 . (5.7)

We denote the timescale ratio between layers by ε = (ε1, . . . , εN , εT ), where εi = τi/τi−1 and

εT = τT/minτ j>τT τ j. For a subnetwork Ni such that the thalamus timescale fits in the hierarchy

directly above it, i.e. τT > τi but there does not exist j such that τT > τ j > τi, we let the timescale

ratio between NT and Ni be given by ε̄i = τi/τT .

Star-Connected Thalamocortical Networks

Consider the star-connected thalamocortical network depicted in Fig. 5.1(b). In contrast

to the hierarchical network, this topology does not form a hierarchical timescale, and as such

there is no direct relationship satisfied by the timescales. The lack of an explicit relation

encodes the thalamus’ role as a sensory relay to multiple brain regions, each part of potentially

unrelated temporal hierarchies. Without loss of generality, we assume subnetwork N1 represents

a subcortical structure and provides the input to the network for the thalamus to relay to the other

brain regions. As such, there are no nodes in N1 that are desired to be inhibited, meaning r1 = 0.

We model the subcortical input subnetwork with a linear-threshold dynamics, but without an

independent control term, instead modeling input changes by allowing c1 to be time-varying.
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That is

τ1ẋ1 = −x1 + [W1,1x1 + W1,T xT + c1(t)]m1
0 . (5.8)

For the cortical regions Ni, i ∈ {2, . . . ,N}, the interconnection term wi(t) is given by wi(t) =

Wi,T xT (t), and we recall that as the thalamus utilizes feedforward inhibition, Wi,T ≤ 0. Mean-

while, the interconnection of the thalamus with the cortical regions is defined by wT (t) =∑N
i=1 WT,ixi(t). Then, from (5.1), for i ∈ {2, . . . ,N} the dynamics takes the form

τiẋi = −xi + [Wi,ixi + Wi,T xT + Biui(t) + ci]
mi
0 , (5.9)

τT ẋT = −xT + [WT xT +

N∑
i=1

WT,ixi + BT uT (t) + cT ]mT
0 .

5.4.3 Problem Statement

For a purely cortical hierarchical brain network, as in Fig. 5.1a), selective inhibition and

recruitment can be achieved [64, 65] using a combination of feedback and feedforward control,

dependent on the subnetwork dynamics satisfying a set of stability properties. However, with the

thalamus mediating in the network topology and its impact on the dynamics of the individual

subnetworks, such results are inapplicable for the hierarchical thalamocortical network topology

considered here. In addition, for the star-connected thalamocortical topology, the results do

not apply, as the assumption of a hierarchical relationship between subnetwork timescales no

longer holds. These observations motivate our study of control mechanisms to achieve selective

inhibition and recruitment for both hierarchical and star-connected thalamocortical networks,

formalized next.

Problem 5.4.1. Consider a thalamocortical network with the interconnection topologies de-

scribed in Section 5.4.2. For each topology, determine conditions on the individual subnetworks

Ni,NT , i ∈ {1, . . . ,N} and the connections between them such that a feedback-feedforward control
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u(t) = Kx(t) + ū(t) exists making the network converge to an equilibrium trajectory x∗(t) of the

form

x∗(t) =

x
0∗(t)

x1∗(t)

 =

 0

x1∗(t)

 . (5.10)

Further, we study differences between the hierarchical and star-connected topologies,

particularly in how the latter can be considered as a failsafe topology for the former. In addition,

we seek to evaluate how the addition of the thalamus subnetwork to strictly cortical networks

results in improved performance. In particular we investigate how the thalamus layer impacts the

control energy needed to achieve selective inhibition and the convergence speed of the network.

5.5 Hierarchical Thalamocortical Networks

In this section, we consider a hierarchical multilayer thalamocortical network,

cf. Fig. 5.1(a), where the cortical layers are governed by (5.5) and the thalamus layer is governed

by (5.7).

5.5.1 Equilibrium Maps for Individual Layers

We note that, for a general linear-threshold dynamics (5.1) with W ∈�n×n, its equilibrium

map h :�n→�n
≥0

h(c) = hW,m(c) = {x ∈�n
≥0 | x = [Wx + c]m

0 }, (5.11)

maps a constant input c ∈ �n to the set of equilibria of (5.1). For thalamocortical networks,

the timescale of the thalamus layer impacts the specific form of the equilibrium maps. For

simplicity, we assume the thalamus lies inside the hierarchy, i.e., there exist a,b ∈ {1, . . . ,N} such

that b = a + 1 and τa � τT � τb. This choice results in a layer Na with an equilibrium map

different than any that appear in the cases when the thalamus timescale is on the boundary of the
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hierarchy. Our results can also be stated for the latter case with appropriate adjustments to the

derived control law for selective inhibition and recruitment.

The hierarchical nature of the topology plays an important role in defining these equilib-

rium maps. At the theoretical limit of timescale separation between two layers, the state of a

given layer becomes constant at the timescale of layers lower in the hierarchy as well as being a

static function of the above layer’s states. As such, when defining the equilibrium maps for a

given layer, the constant input into an equilibrium map can represent the state of layers higher in

the hierarchy, given that they are relative constants at that level of the dynamics. The equilibrium

maps for the layers fall into three categories: below or above the thalamus, and the thalamus

itself. In all cases, the maps are defined recursively from the bottom to the top of the network. At

each layer, the equilibrium map takes a constant input, representing the inputs from higher levels

in the hierarchy along with any external inputs to the system, and outputs the set of equilibrium

values.

We next give explicit expressions for the equilibrium maps of the task-relevant component

of a layer in each of the categories, denoted h1
i :�ni−ri →�

ni−ri
≥0 , by combining the hierarchical

model described in Section 5.4.2 with (5.11).

Equilibrium Maps for Layers below Thalamus

We begin by considering layers below the thalamus, i.e., with i ≥ b. Given values of

xT ∈�
nT and c1

i+1 ∈�
ni+1−ri+1 ,

h1
i (c) = {x1

i | x
1
i = [W11

i,i x1
i + W11

i,i+1h1
i+1(W11

i+1,ix
1
i + W11

i+1,T x1
T + c1

i+1) + c]
m1

i
0 }. (5.12)

We note that since WN,N+1 = 0 by convention, this recursion is well-defined for NN , the bottom

layer in the network. In particular, for layer N, (5.12) reduces to (5.11), the standard equilibrium

map for linear-threshold models.
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Equilibrium Map for Thalamus

Since the thalamus is connected to all the cortical layers, the recursive definition of its

equilibrium map is dependent on the equilibrium maps of all of the layers below it. Using the

notation of (5.12) for writing the recursion then becomes intractable for large networks. Instead,

we use the following notation. For layer Ni, i ∈ {1, . . . ,N}, in the thalamocortical hierarchy, let

x1
ie
∈�

ni−ri
≥0 be such that

x1
ie ∈ h1

i (W11
i,T x1

T + W11
i,i−1x1

i−1 + c1
i ).

Despite xie being dependent on a set of inputs, we do not specify them: when this notation is used,

it is implicitly assumed that the input values are given or determined in the recursion. Depending

on the point in the recursion being considered, the inputs xT and/or xi−1 will be replaced by their

equilibrium values. Now, given values c1
b, . . . ,c

1
N , where c1

i ∈ �
ni−ri , the thalamus equilibrium

map h1
T :�nT−rT →�

nT−rT
≥0 is

h1
T (c) = {x1

T | x
1
T = [W11

T x1
T +

N∑
j=b

W11
T, jx

1
je + c]

m1
T

0 }. (5.13)

Equilibrium Maps for Layers above Thalamus

We note that, in the recursive definition for the equilibrium maps above the thalamus, the

inputs to the thalamus equilibrium map (5.13) will include equilibrium values of layers above

the thalamus in the hierarchy, in addition to the equilibrium values from lower in the hierarchy.

To distinguish which maps are inputting equilibrium maps in a condensed manner, we introduce

the following notation. For i ∈ {1, . . . ,a}, we let x1
Te(i)
∈�nT−rT denote a value inside the thalamus

equilibrium set satisfying

x1
Te(i)
∈ h1

T (
i∑

j=1

W11
T, jx

1
j +

a∑
j=i+1

W11
T, jx

1
je + c1

T ).
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Using this notation, we define the remaining equilibrium maps. We first provide the equilibrium

maps for layers {Ni}
a−1
i=1 and finish with the map for Na. For i ∈ {1, . . . ,a−1}, given c1

i+1 ∈�
ni−ri ,

the equilibrium map h1
i :�ni−ri →�

ni−ri
≥0 is

h1
i (c) = {x1

i | x
1
i = [W1,all

i,i xi + Wi,i+1h1
i+1(W1,all

i+1,ixi + c1
i+1) + W11

i,T xTe(i) + c]
m1

i
0 }. (5.14)

The expression for the equilibrium map of the layer Na, which is directly above the thalamus,

differs from the other layers due to the fact that it depends directly on a layer below the

thalamus in addition to being dependent on the thalamus. Given c1
b ∈ �

nb−rb , the equilibrium

map h1
a :�na−ra →�

na−ra
≥0 is

h1
a(c) = {x1

a | x
1
a = [W11

a,ax1
a + W11

a,bh1
b(W11

b,ax1
a + W11

b,T x1
Te(a)

) + c1
b) + W11

a,T x1
Te(a)

+ c]m1
a

0 }. (5.15)

We conclude this section by establishing that all the equilibrium maps in the thalamo-

cortical network (5.12)-(5.15) are piecewise-affine and use this fact to justify they are globally

Lipschitz too. To begin, we note that since general linear-threshold dynamics are switched

affine, their equilibrium map (5.11) can be written in a piecewise-affine form. In particular, this

equilibrium map can be written as follows

h(c) = {Fσc + fσ | Gσc + gσ ≥ 0, σ ∈ {0, `, s}n}, (5.16)

for some matrices and vectors of the form

Fσ = (I−Σ`W)−1, fσ = (I−Σ`W)−1Σsm,

Gσ =

[
Σ` +Σs− I Σ` −Σ` Σs

]>
Fσ,

gσ =

[
f>σ (Σ` +Σs− I) f>σΣ` (m− fσ)>Σ` (fσ−m)>Σs

]>
,

where Σ` is a diagonal matrix with Σ`ii = 1 if σi = ` and zero otherwise, and Σs is defined
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analogously. Now, since WN,N+1 = 0, the equilibrium map for the bottom layer in the hierarchy,

h1
N , has the same form as (5.11), and hence can be written in the form (5.16). The following

result generalizes [65, Lemma IV.1] and shows that all the equilibrium maps in the hierarchical

thalamocortical network are piecewise-affine.

Lemma 5.5.1. (Piecewise-affinity of equilibrium maps in hierarchical thalamocortical

linear-threshold models): Let hi :�n→�n, i ∈ {1, . . . ,k}, be piecewise-affine functions,

hi(c) = Fi
λi

c + fi
λi
, ∀c ∈ Ψλi , {c | G

i
λi

c + gi
λi
≥ 0},

for λi ∈Λi, where Λi is a finite index set such that
⋃
λi∈Λi Ψλi =�n. Define Λ = Λ1×Λ2×· · ·×Λk,

λ = (λ1, . . . ,λk) and Ψλ = (Ψλ1 , . . . ,Ψλk). Given matrices W1,Wi
2,W

i
3 and vectors c̄i,c′ for all

i ∈ {1, . . . ,k} assume

x =

W1x +

k∑
i=1

Wi
2hi(Wi

3x + c̄i) + c′

m

0

, (5.17)

is known to have a unique solution x′ ∈ �n′ for each c′ ∈ �n′ , and let h′(c′) be this solution.

Then, there exists a finite index set Λ′ and {(F′λ, f
′
λ,G

′
λ,g
′
λ)}λ′∈Λ′ such that

h′(c′) = F′λ′c
′+ f′λ′ , ∀c′ ∈ Ψ′λ′ , {c

′ | G′λ′c
′+ g′λ′ ≥ 0}

for λ′ ∈ Λ′ and
⋃
λ′∈Λ′Ψλ′ =�n′ .

The equilibrium maps for the hierarchical thalamocortical network satisfy Lemma 5.5.1

with r = 1, r = N −b and r = 2 for the layers below the thalamus, the thalamus, and the layers

above the thalamus, resp., and therefore the maps are piecewise-affine. Finally, the fact that these

maps are globally Lipschitz follows from [65, Lemma IV.2]. This property is necessary to be

able to apply later the generalization of Tikhonov’s singular perturbation stability theorem to
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non-smooth ODEs given in [135, Proposition 1]1 to take advantage of the timescale separation

between the layers.

5.5.2 Stability Assumptions and Conditions

In the hierarchical thalamocortical model described in Section 5.4, only the task-irrelevant

components of the dynamics are directly controlled over, cf. (5.3b). This means that assumptions

on the stability of the task-relevant components of the dynamics are needed to guarantee their

stability and recruitment to an equilibrium trajectory. In particular, we are interested in the

reduced-order task-relevant dynamics, that is, the system dynamics in which the inputs from

layers lower in the hierarchy have been replaced by their equilibrium values. Here, we provide

details on these assumptions and identify sufficient conditions for them to hold.

Top Layer of the Hierarchy

The top layer N1 in the hierarchy does not have any nodes that are to be inhibited. In

addition, its role is in driving the selective recruitment in the lower levels, rather than being

recruited itself. As such, we only require that the trajectories of its dynamics are bounded.

Formally, for all sets of constants c1 ∈ �
n1 , c1

i ∈ �
ni−ri , i ∈ {2, . . . ,N}, and cT ∈ �

nT−rT , we

assume

τ1 ˙̄x1 = −x1 + [W1,1x̄1 + W11
1,2h1

2(W2,1x̄1 + c1
2) + W11

1,T xTe(1) + c1]m1
0 , (5.18)

has bounded solutions. We note that our earlier assumption that the thalamus is in the middle of

the hierarchy makes the top layer a cortical one. If, instead, the thalamus was the top layer, one

would instead assume here that its dynamics has bounded solutions, replacing (5.18) accordingly.

1To apply the result to a non-smooth ODE such as (5.1) we need to justify the following: 1) Lipschitzness of the
dynamics uniformly in t, 2) Existence, uniqueness and Lipschitzness of the equilibrium map of the fast dynamics, 3)
Lipschitzness and boundedness of the reduced-order model, 4) Asymptotic stability of the fast dynamics uniformly
in t and the slow variable, and 5) Global attractivity of the fast dynamics for any fixed slow variable.
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Lower Layers in the Hierarchy

In each of the layers below the top one, we seek to accomplish selective inhibition and

recruitment by having the dynamics converge to a parameter-dependent equilibrium trajectory.

For the task-irrelevant components, we aim to use a control law to stabilize them to zero. In such

a case, an additional challenge is then to identify conditions on the interconnected network layers

that ensure the coupled system displays the desired behavior. Due to the different reduced-order

dynamics throughout the network, we provide the details for this assumption in four categories:

layers above the thalamus, layer directly above the thalamus, thalamus, and layers below the

thalamus.

Layers above the Thalamus

For each layer Ni, with i ∈ {1, . . . ,a−1}, above the thalamus, the dynamics are directly

dependent on two layers below it, and hence the reduced-order dynamics are dependent on

two equilibrium maps. For achieving selective inhibition and recruitment, we assume that, for

all sets of constants c1
i+1 ∈ �

ni+1−ri+1 , c1
i ∈ �

ni−ri , and c1
j ∈ �

n j−r j , j ∈ {i + 2, . . . ,N} ∪ {T }, the

reduced-order dynamics

τiẋ1
i = −x1

i + [W11
i,i x1

i + W11
i,i+1h1

i+1(W11
i+1,ix

1
i + c1

i+1) + W11
i,T xTe(i) + c1

i ]
m1

i
0 , (5.19)

are GES to an equilibrium trajectory defined by the constants.

Layer Directly above the Thalamus

For the layer Na directly above the thalamus, while still dependent on two layers below

it in the hierarchy, one of these layers is below the thalamus. In the reduced-order model, this

changes the equilibrium maps. Thus, for all constants c1
a ∈�

na−ra , c1
b ∈�

nb−rb , and c1
i ∈�

ni−ri ,

i ∈ {b + 1, . . . ,N}∪ {T }, we assume its reduced-order dynamics
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τaẋ1
a = −x1

a + [W11
a,ax1

a + W11
a,bh1

b(W11
b,ax1

a + Wb,T xTe(a) + c1
b) + W11

a,T xTe(a) + c1
a]m1

a
0 , (5.20)

are GES to an equilibrium trajectory determined by the chosen constants.

Thalamus Layer

Since the thalamus layer depends on all the other layers in the network, its reduced-order

dynamics are dependent on the N −b equilibrium maps of all the layers (from Nb to NN) below

the thalamus. For all constants c1
b ∈ �

nb−rb , . . . ,c1
N ∈ �

nN−rN and c1
T ∈ �

nT−rT , we assume the

reduced-order dynamics

τT ẋ1
T = −x1

T +
[
W11

T x1
T +

a∑
j=1

W1,all
T, j x1

j +

N∑
j=b

W11
T, jx

1
je + c1

T
]m1

T
0 , (5.21)

are GES to an equilibrium trajectory defined by the constants c1
b, . . . ,c

1
N and c1

T .

Layers below the Thalamus

Finally, the layers below the thalamus are directly dependent on only one layer below

them in the hierarchy. For all constants c1
i+1 ∈�

ni+1−ri+1 and c1
i ∈�

ni−ri , we assume its reduced-

order dynamics

τiẋ1
i = −x1

i + [W11
i,i x1

i + W11
i,i+1h1

i+1(W1,all
i+1,ixi + W1,all

i+1,T xT + c1
i+1) + W1,all

i,T xT + c1
i ]

m1
i

0 , (5.22)

and we assume they are GES to an equilibrium trajectory dependent upon the constants c1
i+1 and

c1
i .

The stability of task-relevant dynamics in specific regions (subnetworks) is a reasonable

assumption, given that this phenomenon has been widely observed within the brain [143]. In

our model above, we do not fully control the task-relevant components of these dynamics
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since they are mediated through the interconnection with other subnetworks. is why we next

turn our attention to identifying conditions under which the reduced-order dynamics for layers

N2, . . . ,NN ,NT are indeed GES. The following result makes use of the fact that the equilibrium

maps are piecewise-affine, cf. Lemma 5.5.1.

Lemma 5.5.2. (Sufficient condition for existence and uniqueness of equilibria and GES

in multilayer linear-threshold networks with parallel connections): Let hi : �n → �n, i ∈

{1, . . . ,K}, be piecewise-affine functions,

hi(c) = Fi
λi

c + fi
λi
, ∀c ∈ Ψλi , {c | G

i
λi

c + gi
λi
}

for all λi ∈ Λi where Λi is a finite index set such that
⋃
λi∈Λi Ψλi =�n. Define F̄i ,maxλi∈Λi |Fi

λi
|

as the matrix made of the entry-wise maximum of the elements in {|Fi
λi
|}λi∈Λi . For i ∈ {1, . . . ,K}

let the matrices Wi
1,W

i
2, be arbitrary and also consider arbitrary matrix W. Then, if ρ

(
|W|+∑K

i=1 |W
i
1|F̄i|Wi

2|
)
< 1, the dynamics

τẋ = −x +
[
Wx +

K∑
i=1

Wi
1hi(Wi

2x + c̄i) + c
]m
0

is GES to a unique for all constants c̄i,c.

Lemma 5.5.2 generalizes [65, Theorem IV.4] to thalamocortical networks and its proof

follows a similar line of arguments. The application of this result to our setting results in, if

ρ(|W11
i,i |+ |W

11
i,i+1|F̄i+1|W11

i+1,i|+ |W
11
i,T |F̄T |W11

T,i|) < 1 ∀ i ∈ {2, . . . ,a−1}

ρ(|W11
i,i |+ |W

11
i,i+1|F̄i+1|W11

i+1,i|) < 1 ∀ i ∈ {b, . . . ,N}

ρ(|W11
T |+

N∑
i=b

|W11
T,i|F̄i|W11

i,T |) < 1,

then the dynamics (5.19)-(5.22) are GES to an equilibrium.
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Remark 5.5.3. (Comparison with conditions for a strictly cortical hierarchical network):

Sufficient conditions for GES of the reduced-order dynamics of a strictly cortical network can be

obtained from the above by allowing W11
i,T = 0 for all i, and then these conditions reduce to those

found in [65], as expected. These sufficient conditions to guarantee GES, for layers above the

thalamus, are harder to satisfy in the thalamocortical network than in a cortical one. However,

as the conditions are only sufficient, this does not mean that it is in fact more difficult to achieve

GES of the reduced-order dynamics in the thalamocortical case, as the proof above does not

explicitly invoke the inhibitory nature of the thalamus. •

5.5.3 Selective Inhibition and Recruitment

We are ready to illustrate how selective inhibition and recruitment can be achieved in the

hierarchical thalamocortical network model. Here, we first formalize the concept mathematically

and then provide a feedforward-feedback control that achieves it. Recall that selective inhibition

corresponds to the task-irrelevant components of the network converging to zero, and recruitment

corresponds to having the task-relevant components converge to an equilibrium trajectory. The

timescale ratio between layers, ε, must approach zero to encode the separation of timescales

observed in the brain. As such, we require convergence of the task-relevant components of

the network to an equilibrium as this ratio approaches zero. Formally, selective inhibition and

recruitment is achieved if the following equations are satisfied for any 0 < t1 < t2 <∞: first, for

all layers Ni, i ∈ {2, . . . ,N}∪ {T }, it holds that

[inhibition]: lim
ε→0

sup
t∈[t1,t2]

‖x0
i (t)‖ = 0; (5.23a)

second, for the top layer N1 in the hierarchy,

[driving layer]: lim
ε→0

sup
t∈[t1,t2]

‖x1
1(t)− x̄1

1(t)‖ = 0; (5.23b)
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for all layers {Ni}
a
i=2 above the thalamus,

[recruitment]: lim
ε→0

sup
t∈[t1,t2]

‖x1
i (t)−h1

i (W11
i,i−1x1

i−1(t) + c1
i )‖ = 0; (5.23c)

for the thalamus layer,

[recruitment]: lim
ε→0

sup
t∈[t1,t2]

‖x1
T (t)− xTe(a)‖ = 0; (5.23d)

and finally, for the layers {Ni}
N
i=b below the thalamus,

[recruitment]: lim
ε→0

sup
t∈[t1,t2]

‖x1
i (t)−h1

i (W1,all
i,i−1xi−1(t) + W1,all

i,T xT (t) + c1
i )‖ = 0. (5.23e)

Intuitively, we note from (5.23) that achieving selective inhibition and recruitment means that one

can make the error between the network trajectories and the equilibrium trajectories arbitrarily

small if the timescale ratio is small enough. The following result shows that selective inhibition

and recruitment can be achieved in the hierarchical thalamocortical network by means of a

combination of feedforward and feedback control.

Theorem 5.5.4. (Selective inhibition and recruitment in hierarchical thalamocortical net-

works with Feedforward-Feedback Control): Consider an N-layer thalamocortical network

as shown in Fig. 5.1(a), with layer dynamics given by (5.5) and (5.7). Without loss of gen-

erality, let τ1 � τ2 � ·· · � τT � ·· · � τN and a,b ∈ {1, . . . ,N} such that τa � τT � τb, with

b = a + 1. Assume the stability conditions (5.18)-(5.22) for the reduced-order subnetworks are

satisfied. Then, for i ∈ {1, . . . ,N}∪ {T } and constants ci ∈�
ni and cT ∈�

nT , there exist control

laws ui(t) = Kixi(t)+ ūi(t), with Ki ∈�
pi×ni and ūi :�≥0→�

pi
≥0, such that the closed-loop system

achieves selective inhibition and recruitment (5.23).

Proof of Theorem 5.5.4. We prove the result by constructing a control and iteratively apply-

ing the generalization of Tikhonov’s theorem from [135]. Throughout the proof, we make
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use of the following notation. For i ≤ a, let x1:i =

[
x>1 . . . x>i

]>
and, for i ≥ b, let x1:T :i =[

x>1 . . .x
>
a x>T x>b . . . x>i

]>
. We first define the control for layer NN . Let KN and ūN(t) be

such that

B0
NKN ≤ −W0,all

N,N , (5.24a)

B0
N ūN(t) ≤ −W0,all

N,N−1xN−1(t)−W0,all
N,T xT (t)− c0

N . (5.24b)

The inequalities (5.24) can be satisfied due to our assumption that the matrices B0
i have full rank

and pi ≥ ri for all i ∈ {1, . . . ,N}∪ {T }. Substituting (5.24) into the dynamics,

τ1ẋ1 = −x1 + [W1,1x1 + W1,2x2 + W1,T xT + c1]m1
0 ,

...

τT ẋT = −xT +

[
WT xT +

N∑
j=1

WT, jx j + BT uT + cT

]mT

0
,

...

εNτN−1ẋ0
N = −x0

N ,

εNτN−1ẋ1
N = −x1

N + [W1,all
N,N xN + W1,all

N,N−1xN−1 + W1,all
N,T xT + c1

N]
m1

1
0 .

Taking εN → 0 then provides a separation of timescales between xN and x1:T :N−1. Note that, by

assumption, the reduced-order dynamics (5.22) is GES. Using then the fact that the cascaded

interconnection of a GES system with an exponentially vanishing system is also GES, cf. [64,

Lemma A.1], we deduce that, for any constants xN−1 and xT , xN is GES to (0rN ,h
1
N(W1,all

N,N−1xN−1 +

W1,all
N,T xT + c1

N)). Recalling that, by Lemma 5.5.1 and [65, Lemma IV.2], the equilibrium maps h1
i

are globally Lipschitz for all i ∈ {1, . . . ,N}∪ {T }, and noting that the entire network is Lipschitz

due to the Lipschitzness of the linear-threshold function [·]m
0 , we can apply [135, Proposition 1],
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giving for 0 < t1 < t2 <∞,

lim
ε1→0

sup
[t1,t2]
‖x0

N(t)‖ = 0,

lim
ε1→0

sup
[t1,t2]

∥∥∥x1
N(t)−h1

N(W1,all
N,N−1xN−1(t) + W1,all

N,T xT (t) + c1
N)

∥∥∥ = 0,

lim
ε1→0

sup
[t1,t2]
‖x1:T :N−1−x(1)

1:T :N−1‖ = 0, (5.25)

where x(1)
1:T :N−1 represents the first-step reduced-order model coming from replacing xN by its

equilibrium value (0rN ,h
1
N(W1,all

N,N−1xN−1 +W1,all
N,T xT +c1

N)). We continue the proof by iterating the

above process for each network layer, utilizing constructed control laws and applying [135, Propo-

sition 1] to the corresponding reduced-order models built from substitution of the equilibrium

values.

We now construct control laws for layers Ni with i ∈ {b, . . . ,N −1}. We choose Ki and

ūi(t) such that

B0
i Ki ≤ −|W0,all

i,i | − |W
01
i,i+1|F̄i+1|W1,all

i+1,i|, (5.26a)

B0
i ūi(t) ≤ −W0,all

i,i−1xi−1(t)−W0,all
i,T xT (t)− c0

i − |W
01
i,i+1|F̄i+1|W1,all

i+1,T xT (t) + c1
i+1|, (5.26b)

in which F̄i ∈ �
(ni−ri)×(ni−ri) is the entry-wise maximal gain of the equilibrium map h1

i (·) as

defined in Lemma 5.5.2. We use the control law (5.26) to construct the reduced-order model,

consider the timescale separation by letting εi→ 0 for i ∈ {b, . . . ,N −1}, and finally apply [135,

Proposition 1] to obtain

lim
ε→0

sup
t∈[t1,t2]

‖x(N−i)0

i (t)‖ = 0,

lim
ε→0

sup
t∈[t1,t2]

‖x(N−i)1

i (t)−h1
i (W1,all

i,i−1x(N−i)
i−1 (t) + W1,all

i,T x(N−i)
T (t) + c1

i )‖ = 0,

lim
ε→0

sup
t∈[t1,t2]

‖x(N−i)
1:T :i−1(t)−x(N−i+1)

1:T :i−1 (t)‖ = 0,

67



for all i ∈ {b, . . . ,N −1}. For the thalamus layer, we note that provided the initial conditions lie

in [0,mi] for all i ∈ {1, . . . ,N}∪ {T }, by the properties of the linear-threshold dynamics, we have

that xi(t) ≤mi for all t ≥ 0. Utilizing these bounds, we define the control for the thalamus layer

such that it satisfies

B0
T KT ≤ −|W0,all

T | −

N∑
j=b

|W01
T, j|F̄ j|W0,all

j,T |, (5.27a)

B0
T ūT (t) ≤

1∑
j=1

W0,all
T, j x j(t)− c1

T − |W
0,all
T,b |F̄b|W1,all

b,a xa(t) + c1
b| −

N∑
j=b+1

|W01
T, j|F̄ j|W1,all

j, j−1m j−1 + c1
j |.

(5.27b)

Then, after constructing the reduced-order model using the control laws (5.27a) and (5.27b) and

letting εT → 0 to create the timescale separation, we again apply [135, Proposition 1] to get

lim
ε→0

sup
t∈[t1,t2]

‖x(T )0

T (t)‖ = 0,

lim
ε→0

sup
t∈[t1,t2]

‖x(T )1

T (t)−h1
T (

a∑
j=1

W1,all
T, j x(T )

j (t) + c1
T )‖ = 0,

lim
ε→0

sup
t∈[t1,t2]

‖x(T )
1:a(t)−x(N−b+1)

1:a (t)‖ = 0.

What remains is to consider the layers above the thalamus. These layers maintain the same form

of control law except for the layer immediately above the thalamus. For layer Na we define

terms Ka and ūa(t) such that

B0
aKa ≤ −|W0,all

a,a | − |W01
a,b|F̄b|W1,all

b,a |, (5.28a)

B0
aūa(t) ≤ −W0,all

a,a−1xa−1(t)− |W01
a,b|F̄b|W1,all

b,T xTe(a) + c1
b|. (5.28b)

Now, for layers Ni, i ∈ {2, . . . ,a−1}, we let the controls Ki and ūi(t) be such that the following
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hold

B0
i Ki ≤ −|W0,all

i,i | − |W
01
i,i+1|F̄i+1|W1,all

i+1,i|, (5.29a)

B0
i ūi(t) ≤ −W0,all

i,i−1xi−1(t)− |W01
i,i+1|F̄i+1|c1

i+1|, (5.29b)

Once the reduced-order models are constructed, letting εi→ 0 for i ∈ {2, . . . ,a}, applying [135,

Proposition 1] gives

lim
ε→0

sup
t∈[t1,t2]

‖x(N−i)0

i (t)‖ = 0,

lim
ε→0

sup
t∈[t2,t2]

‖x(N−i)1

i (t)−h1
i (W1,all

i,i−1x(N−i)
i−1 (t) + c1

i )‖ = 0,

lim
ε→0

sup
t∈[t1,t2]

‖x(N−i)
1:i−1 (t)−x(N−i+1)

1:i−1 (t)‖ = 0.

for i ∈ {2, . . . ,a}. The equations (5.23) for selective inhibition and recruitment, are then obtained

through repeated application of the triangle inequality, completing the proof. �

Fig. 5.2 illustrates Theorem 5.5.4. While the result is for the case in which the thalamus

has a timescale inside the hierarchy, it still holds when this timescale is at the top or bottom of

the hierarchy (the proof remains the same, with the appropriate modifications to the inequalities

derived in (5.24)-(5.29)).

Remark 5.5.5. (Comparison with strictly cortical networks): Regarding selective inhibition

and recruitment, Theorem 5.5.4 is to multilayer thalamocortical networks what [65, Theorem

IV.3] is to multilayer cortical networks. Despite the analytical similarities, the consideration of

the thalamus provides a significant generalization from a biological perspective, as transthalamic

connections exist in most brain networks [94]. Technically, the addition of the thalamus, while

only adding a layer, significantly complicates the analysis due to its connection with all of the

cortical layers. These connections result in every layer having connections from timescales

not simply immediately above or below it in the hierarchy, which impacts the determination of
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Figure 5.2. Trajectories of a three-layer hierarchical thalamocortical network under a periodic
input. Red and blue lines correspond with excitatory and inhibitory nodes, resp. Each layer
consists of three nodes with the top layer in the network containing only excitatory nodes, the
thalamus being strictly inhibitory and layers two and three having both excitatory and inhibitory
nodes. Using a control law designed through Theorem 5.5.4, in each layer other than the top layer,
nodes are able to be either selectively inhibited to zero or recruited into a periodic equilibrium
trajectory. Timescale ratios are ε2 = 0.54, ε3 = 0.15 and εT = 0.61.

convergence to equilibrium values for layers above the thalamus. The control laws (5.24)-(5.29)

allow for smaller energy sufficient controls than for the strictly cortical networks in [65] due to

the inhibitory properties of the thalamic connection matrices Wi,T , cf. Section 5.7. •

Remark 5.5.6. (Timescale separation): The assumption of timescale separation between layers

in Theorem 5.5.4 allows us to use singular perturbation theory and is justified by the different

complexities involved in processing information along pathways in the brain, cf Section 5.3.

Such temporal hierarchies naturally occur in many other network systems, e.g., social networks

or electric circuits [134]. In practice, a ratio of timescales as small as 0.5 can provide selective
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recruitment within a small error bound, see e.g., [65, Example III.4] and our simulation results

in Section 5.7. •

Remark 5.5.7. (Recruited Equilibrium Trajectory): In the definition of selective recruit-

ment (5.23) we see that the task-relevant component of the network gets recruited to a trajectory

defined by the equilibrium maps (5.12)- (5.14). Due to their recursively-defined nature, the

actual values of these maps can only be selected through choice of the constant inputs c1
i , and it

is difficult to choose any particular equilibrium trajectory in this manner. However for many

applications, including selective attention, it is desirable to be able to converge to a given

reference signal. This difficulty will be addressed in Chapter 6. •

5.6 Star-connected Thalamocortical Networks

In this section we consider star-connected thalamocortical networks, cf. Fig. 5.1(b), where

the cortical regions are each connected only to the thalamus and the dynamics are governed

by (5.8)-(5.9). In this topology, there is no direct relationship between the timescales of each

layer and as such, no hierarchical structure. Without timescale separation, the specifics of

selective inhibition and recruitment, both in terms of equilibria and stability criteria, differ from

the hierarchical case.

5.6.1 Equilibria and Stability Conditions

With the lack of timescale separation, the decomposition described in Section 5.5.1 of

the network equilibrium map as a collection of equilibrium maps for each layer, with the state

of layers higher in the hierarchy represented by a constant input, no longer holds. As such,

equilibrium values must be determined concurrently for all the layers. Since the task-irrelevant

components get selectively inhibited to zero, the equilibrium for the task-relevant components is
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given by the solution x1∗
i , i ∈ {1, . . . ,N}∪ {T } to the system of equations:

x1
i = [W1,all

i,i xi + W1,all
i,T xT + c1

i ]
m1

i
0 , i = 1, . . . ,N,

x1
T = [W1,all

T xT +

N∑
i=1

W1,all
T,i xi + c1

T ]
m1

T
0 . (5.30)

The task-relevant equilibrium to which the system converges is dependent upon ci ∈ �
ni−ri ,

i ∈ {1, . . . ,N} and cT ∈�
nT−rT , and so we represent it by x1∗

i (c1, . . . ,cN ,cT ). In keeping with the

role of layerN1 as driving the selective recruitment in the other layers, rather than being recruited

itself, we consider in what follows an input signal c1 :�≥0→�
ni−ri , rather than a constant, that

gives rise to an equilibrium trajectory x1∗
i (c1(t), . . . ,cN ,cT ) for the dynamics.

As per the description of the star-connected thalamocortical network, cf Section 5.4, only

the task-irrelevant component of the dynamics is directly controlled, and as such the ability

to achieve selective inhibition and recruitment is dependent on the stability properties of the

task-relevant components. To ensure this, we employ below the fact [64, Theorem IV.8] that,

for a generic linear-threshold network mode τẋ = −x + [Wx + c]m
0 , the condition ρ(|W|) < 1 is

sufficient to ensure that, for all c ∈�n, the dynamics is GES to an equilibrium.

5.6.2 Selective Inhibition and Recruitment

We are ready to formalize selective inhibition and recruitment for star-connected networks

and provide conditions for its achievement. We recall that the subnetwork N1 corresponds with

a subcortical region applying a sensory input signal to the thalamus to be relayed to the cortical

regions. As such, we do not inhibit any components in this subnetwork and instead assume that

it is stable to a trajectory x̄1(c1(t)) dictated by its own input signal. For the remaining layers, we

wish to inhibit the task-irrelevant components to zero and recruit the task-relevant components

to the equilibria trajectory x1∗
i (c1(t), . . . ,cN ,cT ), i ∈ {2, . . . ,N} ∪ {T }. This can be formalized to
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selective inhibition and recruitment is achieved if for the input layer N1,

[driving layer]: lim
t→∞
‖x1(t)− x̄1(c1(t))‖ = 0; (5.31a)

and for all layers {Ni}
N
i=2 and NT ,

[inhibition]: lim
t→∞
‖x0

i (t)‖ = 0; (5.31b)

[recruitment]: lim
t→∞
‖x1

i (t)−x1∗
i (c1(t), . . . ,cN ,cT )‖ = 0. (5.31c)

We also employ a weaker notion, referred to as ε-selective inhibition and recruitment, which is

met if there exists t∗ such that the functions in (5.31) are all upper bounded by ε > 0 for t > t∗.

For convenience, we also introduce the notation:

W̄11 =



W1,1 0 . . . 0 W11
1,T

0 W11
2,2 . . . 0 W11

2,T
... . . .

. . .
...

...

0 0 . . . W11
N,N W11

N,T

W11
T,1 W11

T,2 . . . W11
T,N W11

T


. (5.32)

Note the Schur decomposition W̄11 = Q>(DW̄11 + NW̄11)Q, where Q is unitary, DW̄11 is diagonal,

and NW̄11 is upper triangular with a zero diagonal [144]. The next result establishes conditions

to achieve selective inhibition and recruitment in star-connected systems without a hierarchy of

timescales.

Theorem 5.6.1. (Selective inhibition and recruitment of star-connected networks): Con-

sider an N-layer star-connected thalamocortical network as shown in Fig. 5.1(b), with layer dy-

namics given by (5.8) and (5.9). Suppose the following hold for all values of ci ∈�
ni , i ∈ {1, . . . ,N},

and cT ∈�
nT :
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(i) The input layer N1 has no nodes to be inhibited, ρ(|W1,1|) < 1, and the input c1(t) lies in a

compact set and has a bounded rate derivative;

(ii) For each i ∈ {2, . . . ,N}∪ {T }, the matrix W11
i,i satisfies ρ(|W11

i,i |) ≤ αi, with αi < 1;

(iii) If ρ
(∑N

i=1 |W
11
i,T W11

T,i|
)
, 0, then α+ max(δ,δ1/p) < 1, where p is the dimension of NW̄11 and

α = max
i∈{2,...,N}∪{T }

{αi}, δ = γ

p−1∑
j=1

‖NW̄11‖
j,

γ = max{
N−1∑
i=1

W11
i,T W11>

i,T ,

N−1∑
i=1

W11
T,iW

11>
T,i }.

Then, there exist control laws ui(t) = Kixi(t) + ūi(t), with Ki ∈ �
pi×ni and ūi : �≥0 → �

pi
≥0,

and ε > 0 such that the cortical and thalamic regions within the closed-loop system achieve

ε−selective inhibition and recruitment. Furthermore, if ‖ċ1(t)‖ → 0 as t→∞, then the network

achieves selective inhibition and recruitment (5.31).

Proof of Theorem 5.6.1. First, for cortical regionNi, i ∈ {2, . . . ,N}, define the control laws ui(t) =

BiKixi(t) + Biū(t) such that

BiKi ≤ −W0,all
i,i , (5.33a)

Biūi(t) ≤ −W0,all
i,T xT (t)− c0

i . (5.33b)

In a similar fashion, define the control law for the thalamus, NT by uT (t) = BT KT xT (t) + BT ū(t)

such that it satisfies

BT KT ≤ −W0,all
T , (5.34a)

BT ūT (t) ≤ −W0,all
T,1 x1(t)− c0

T . (5.34b)
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Now, we permute the system variables and define corresponding timescale matrices as follows

x̄ =

x
0

x1

 x0 =

[
x0

2 . . . x0
N x0

T

]>
x1 =

[
x1 x1

2 . . . x1
N x1

T

]>
τ0 = diag(τ2, . . . , τN , τT )

τ1 = diag(τ1, τ2, . . . , τN , τT ).

Substituting in the control laws (5.33) and (5.34), we have the following controlled system

dynamics

τ0ẋ0 = −x0 (5.35a)

τ1ẋ1 = −x1 + [W̄x̄ + c(t)]m̄
0 , (5.35b)

where W̄ =

[
W̄10 W̄11

]
, with W̄11 as in (5.32), and c(t) the permutation of the signal c1(t) and

the constants ci, i ∈ {2, . . . ,N}∪ {T } corresponding to the permuted variables. Now, we consider a

‘frozen’ version of the dynamics (5.35), in which we fix c1(t) to a constant c̄1. By [64, Lemma

A.1] the frozen version of the dynamics (5.35) is GES to an equilibrium x∗, with x0 → 0, if

ẏ = −y + [W̄11y + c]m̄
0 is GES to an equilibrium. By assumptions (ii) and (iii), along with [144,

Theorem 2], we have that ρ(W̄11) < 1 and therefore, the dynamics ẏ = −y + [W̄11y + c]m̄
0 is GES

to an equilibrium, cf. [64, Theorem IV.8]. Therefore the frozen version of (5.35) is GES to

an equilibrium using the control laws defined above. From here, the combined application of

Theorems 5.9.1 and 5.9.2 gives that selective inhibition and recruitment (5.31) is achieved if

‖ċ1(t)‖ → 0 and is ε-selectively inhibited and recruited if it is bounded but does not tend to

zero. �

Note that in addition to requiring the stability of the task-relevant dynamics of each net-

work layer when considered independently, Theorem 5.6.1 relies on two main assumptions. First,

the result requires that the time derivative of the input is bounded. This is reasonable, as it corre-
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sponds to the physical input to the network not changing instantaneously. Second, Theorem 5.6.1

requires that the magnitude of the combination of thalamocortical and corticothalamic intercon-

nections does not exceed a certain stability margin. This aligns with neuroscientific observations:

in fact, enhanced corticothalamic feedback may result in pathological behavior [93, 145]

Remark 5.6.2. (Remote synchronization in star-connected brain networks): Remote syn-

chronization is a phenomenon observed in the brain in which distant brain regions with similar

structure synchronize their activity despite the lack of a direct link [146]. This should then

naturally arise in star-connected networks if there is morphological symmetry between cortical

regions, as this topology directly shows regions without direct links. From (5.30), we note that if

any two cortical regions Ni and N j have identical task-relevant dynamics, i.e., W1,all
i,i = W1,all

j, j ,

W1,all
i,T = W1,all

j,T and c1
i = c1

j , it follows that the equilibrium points will satisfy x1∗
i = x1∗

j , meaning

that remote synchronization is achieved provided that the conditions of Theorem 5.6.1 are sat-

isfied. Remarkably, this conclusion seems to be independent of the particular dynamics of the

individual layers. In fact, the work [147] studies remote synchronization in star-connected brain

networks, cf. Fig. 5.1(b), with layer dynamics given by Kuramoto oscillator dynamics,

θ̇T = ω0 +

N∑
i=1

Ki sin(θi− θ0− ξ)

θ̇i = ω+ Ai sin(θ0− θi− ξ), i = 1, . . . ,N. (5.36)

According to [147], the outer cortical regions in star-connected brain networks can remotely

synchronize despite no direct links between the regions provided the network dynamics satisfy

conditions that parallel those required for the star-connected linear-threshold networks studied

above. In particular, to be able to achieve remote synchronization, the network weights must

satisfy Ai ≥ (N −1)Ki for all i ∈ {1, . . . ,N}. This condition guarantees the existence of a locally

stable equilibrium point, and is equivalent to the requirement of the matrices defining the

task-relevant components of the linear-threshold network being individually stable. •
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We conclude by noting that the thalamus, as a relay, can function as a failsafe for the

hierarchical thalamocortical network, allowing for selective inhibition and recruitment even

if corticocortical connections become damaged. In fact, the hierarchical topology where the

matrices Wi,i−1,Wi,i+1 are equal to zero for all i reduces to the star-connected topology, while

maintaining the timescale separation between layers. Therefore, the star-connected topology

with a hierarchical timescale structure can be considered as a failsafe for the hierarchical network.

The next result provides conditions for selective inhibition and recruitment for this topology.

Corollary 5.6.3. (Selective inhibition of a star-connected hierarchical thalamocortical net-

work): Consider a hierarchical star-connected thalamocortical network of the form shown in

Fig. 5.1(b) with timescales τ1 � τ2 � ·· · � τN and layer dynamics given by (5.5) and (5.7).

Without loss of generality let τT be such that τ1 � τT � τN and let a,b ∈ {1, . . . ,N} such that

τa� τT � τb and b = a+1. Assume the stability assumptions (5.18)-(5.22) for the reduced-order

subnetworks are satisfied. Then, for i ∈ {1, . . . ,N} ∪ {T } and constants ci ∈ �
ni and cT ∈ �

nT ,

there exist control laws ui(t) = Kixi(t)+ ūi(t), with Ki ∈�
pi×ni and ūi :�≥0→�

pi
≥0, such that the

closed-loop system achieves selective inhibition and recruitment (5.23).

The proof of the result is similar to that of Theorem 5.5.4, with differences occurring in

the constructed control laws on the basis that Wi,i+1 = Wi,i−1 = 0 for all i ∈ {1, . . . ,N}. The loss

of these connections plays a significant role in the form of the control. In particular, the amount

of feedforward control coming from the thalamus to the cortical regions increases, due to the

fact that direct feedforward control between cortical regions is not possible. Fig. 5.3 illustrates

Corollary 5.6.3 on the star-connected network obtained by removing the direct connections

between cortical regions in the network of Fig. 5.2.
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Figure 5.3. Illustration of the star-connected thalamocortical network as a safety net for the
hierarchical network. The trajectories of the network in Fig. 5.2 with the connections between
the cortical regions removed. The star-connected topology allows for successful selective
inhibition of the desired set of nodes despite the lack of connections between cortical regions (cf.
Corollary 5.6.3), providing a failsafe topology.

5.7 Quantitative Comparison of Cortical and Thalamocorti-
cal Networks

This section seeks to quantitatively illustrate ways in which the presence of the thalamus

might have a beneficial effect in the behavior and performance of the dynamic models for brain

networks adopted here. Fig. 5.3 has already illustrated the failsafe role played by the thalamus

in hierarchical thalamocortical networks. Here we focus on two other beneficial impacts of the

thalamus we observed in simulation: the control energy required to achieve selective inhibition

and the convergence time in thalamocortical networks versus cortical ones.

Example 5.7.1. (Reduced average control energy in thalamocortical vs cortical networks):
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We investigate the control energy required to achieve selective inhibition. Control energy here

refers to the aggregate of the inputs at all layers integrated over time and averaged across

trials. We consider hierarchical pairs of thalamocortical and cortical networks, where the latter

is obtained by disconnecting the thalamus in the former. Fig. 5.4 shows that thalamocortical

networks require a lower control energy to achieve selective inhibition in the cortical regions

relative to the corresponding strictly cortical networks, matching the intuition that they are

easier to selectively inhibit due to the thalamus impacting the cortical regions in an inhibitory

fashion. •

Figure 5.4. Comparison of average control energy for selective inhibition and recruitment
between cortical and thalamocortical networks. The plot displays the control energy required to
selectively inhibit the bottom cortical layer averaged over 100 random thalamocortical networks
and the corresponding cortical network in which the thalamus is removed. Shaded regions
correspond to the error bars. All networks are composed of two three-node cortical regions. The
top cortical layer has two excitatory nodes and the bottom layer has only one. The thalamus is
composed of two inhibitory nodes. Each thalamocortical and cortical network generated satisfies
the assumptions of Theorem 5.5.4 and [65, Theorem IV.3], resp., along with biological sign
constraints. To make the required control energy directly comparable, the thalamocortical and
cortical networks are inhibiting the same set of nodes within the bottom cortical layer.
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Example 5.7.2. (Convergence time of thalamocortical and cortical networks): We consider

the speed at which thalamocortical networks converge to an equilibrium as another metric to

evaluate the role of the thalamus. We compare the convergence time for a cortical network with

that of a thalamocortical network maintaining the same cortical regions. While performing

the comparison is interesting as a function of multiple network parameters (e.g., network size,

layer size, ratio of excitatory-inhibitory nodes), we focus specifically on the thalamus and,

in particular, on varying its timescale with respect to the cortical regions. Thalamocortical

networks with varying timescales are of particular interest, as even restricting only to the visual

thalamus, the thalamus operates at both slow and fast timescales [148]. Fig. 5.5 shows that

thalamocortical networks have faster average convergence time, with the margin between the two

networks decreasing as the timescale τT increases. This validates the beneficial role played by

the thalamus, with faster thalamus dynamics (smaller τT ) helping the cortical regions converge

faster, leading to overall decreased convergence time. •

5.8 Conclusions

In this chapter we have investigated the properties of both multilayer hierarchical and

star-connected thalamocortical brain networks modeled with linear-threshold dynamics. Our

primary motivation was understanding the role played by the thalamus in achieving selective

inhibition and recruitment of neural populations. For both types of interconnection topologies, we

have described how the equilibria at each layer depends on the rest of the network and identified

suitable stability conditions. For hierarchical networks, these take the form of GES requirements

of the reduced-order dynamics of individual layers. For star-connected thalamocortical network

without a hierarchy of timescales, these take the form of stability of the task-relevant dynamics of

each layer when considered independently and the magnitude of the combination of thalamocor-

tical and corticothalamic interconnections not exceeding a certain stability margin. We note that,

while we have shown these properties for thalamocortical networks using the linear-threshold
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Figure 5.5. Comparison of convergence time between the cortical and thalamocortical networks
with changing timescales. The graph illustrates the average convergence time to the equilibrium
for 30 randomly generated cortical and thalamocortical networks with 20 layers, each containing
two excitatory and two inhibitory nodes. For each simulation the initial condition is set to be
a uniform distance away from the equilibrium and the set of nodes to be inhibited is randomly
selected. The average convergence time for nodes within the thalamocortical network is lower
than for the cortical network. As the timescale τT of the thalamus increases, the margin of
improvement decreases.
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dynamics considered throughout this dissertation, we expect them to also hold for other rate

dynamics models, as they also share the underlying hierarchical and star-connected topologies,

which are key to the results.

One of the difficulties encountered in selective attention and recruitment as treated in

this chapter is the determination of the equilibrium signal to which the task-relevant component

of the network is recruited. In the linear-threshold network model this is dependent on the

recursively-defined piecewise-affine equilibrium maps, parameterized by the input term. With

this formulation it is difficult to recruit the network to a specific desired equilibrium. In the next

chapter we will aim to address this difficulty by considering the problem of reference tracking

with the linear-threshold dynamics.

Future work will seek to analytically characterize the robustness and performance of

thalamocortical networks, study the role of the thalamus in other cognitive tasks beyond selective

attention (e.g., sleep consciousness, oscillations, and learning), and explore the impact of the

addition and deletion of neuronal populations in the performance and expressivity of brain

networks.

5.9 Chapter Appendix

For completeness, here we include two results on the stability of slowly varying nonlinear

systems to a continuum equilibria, generalized from [149, Theorem 3.1] to the case of exponential

stability. Let

ẋ = f (x(t),d(t)), (5.37)

where x(t) ∈�n and d(t) ∈ D, andD is a compact subset of �m. We assume f is continuous on

�n×D and is locally Lipschitz in both x and d. We further consider the ‘frozen’ version of the
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system (5.37) with a fixed parameter d,

ẋ = f (x(t),d), d ∈ D. (5.38)

We denote the solution to (5.38) for each initial condition x(t0) = x0 and d ∈ D by x(t,x0,d). Let

A be a forward invariant set of the system (5.38).

Theorem 5.9.1. (Exponential Stability of Slowly Varying Nonlinear Systems): Consider

the nonlinear system (5.37) and assume there exists a continuously differentiable function

V :�n×D→� such that

k1|x|2A ≤ V(x,d) ≤ k2|x|2A (5.39a)

∂V(x,d)
∂x

f (x,d) ≤ −k3|x|2A (5.39b)∣∣∣∣∣∂V(x,d)
∂d

∣∣∣∣∣ ≤ k, (5.39c)

for all x ∈ �n and d ∈ D, with k1,k2,k3 and k nonnegative constants. If ‖ḋ(t)‖ is uniformly

bounded in time, then there exist constants γ,λ and T such that

|x(t,x0,d)|A ≤ γ‖x0‖e−λ(t−t0) ∀ t0 ≤ t ≤ t0 + T (5.40a)

|x(t,x0,d)|A ≤
k3

k2
|x0|A ∀ t ≥ t0, (5.40b)

If limt→∞ ‖ḋ(t)‖ = 0, then the system is exponentially stable.

The proof follows a similar line of reasoning as in [149, Theorem 3.1] with slight

modifications in the use of stability results from [102] to account for exponential stability. We

now provide a converse Lyapunov result, modified from [149, Theorem 3.2], complementary to

the above result.

Theorem 5.9.2. (Converse Lyapunov Theorem for Slowly Varying Nonlinear Systems): If,
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for every fixed d ∈ D, the nonlinear system (5.37) is GES to an equilibrium, then there exists a

Lyapunov function that satisfies (5.39a), (5.39b) and (5.39c).

The proof of this result is identical to [149, Theorem 3.2], with the assumption of GES

giving the desired function form in the final step.
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Chapter 6

Reference Tracking in Linear-Threshold
Networks via Reservoir Computing

When a function is performed by any part of the human body, it is associated with patterns

of activity in the brain. Examples include actions such as eye movements, where gaze direction

is associated with particular cognitive processes [150], recollection of memories, where stored

memories are associated with specific sequences of activity [151], and motion planning and

movement [152]. In dealing with network models for brain dynamics, it is therefore important to

ascertain their ability to exhibit a given activity pattern at a certain time. For mathematical models

of neuronal activity, such as Wilson-Cowan [18], Hodgkin-Huxley [4], integrate and fire [153],

sigmoidal or threshold-based firing rate models [68], among others which vary significantly in

scale and properties [76, 20], this ability translates into the problem of reference tracking.

The classical approach to solving the reference tracking problem for a controlled dynam-

ical system is the computation of an explicit input signal (that might be state-dependent) such

that the desired activity pattern is exhibited by the network model. In the present context, this

is undesirable for various reasons. First, the brain functions by processing the constant stream

of information in the form of electrical signals it receives to achieve the desired activity pattern

rather than a priori computing explicit control inputs. Second, the actual computation of these

explicit expressions requires precise knowledge of the strength of synaptic interconnections in

the brain, which is both impractical and challenging. Furthermore, the required conditions on

85



network structure for these inputs to work become increasingly difficult to check with the scale

of the model.

An alternative approach to tackle both of these problems is using learning methods.

Neural networks in various forms have increasingly been used to model the way that the brain

learns from, and adapts to, its surroundings and stimuli [154, 155, 156, 157]. Machine learning

techniques allow for the online determination of controls that result in the desired activity based

on data, rather than computing explicit expressions, matching the functioning of the brain by

constantly processing information, and also removes the requirement for exact knowledge of the

synaptic connections. These observations motivate our study here of two brain functions that can

be modeled with reference tracking using learning methods: selective inhibition/recruitment and

seizure rejection.

6.1 Literature Review

To learn controls in an online fashion that solve the reference tracking problem for a

brain network with a known reference, we employ machine learning techniques, which allow

to consider large-scale complex networks, such as those seen in the brain [158, 159, 160]. In

particular, we use reservoir computing [161, 162], which is based on training an output vector

(the readout) from a Recurrent Neural Network (RNN), rather than its internal weights.

Reservoir computing has a variety of advantages over classical gradient-descent based

RNN training, the main one being that the training process is faster and computationally inex-

pensive compared to standard RNN training [163]. Further, reservoir computing displays certain

parallels with biological activity. First, it gives an interpretation as to how arbitrary cortical cir-

cuits without supervised adaptation are able to perform purposeful computations [164]. Second,

the ability of a single reservoir to perform multiple tasks by training multiple output vectors cor-

responding with each task mimics neural circuits’ ability to have multiple purposes [163]. Due to

these parallels, reservoir computing has been used to study a variety of dynamical brain behaviors,
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including connectivity and memory tasks [165], cortical dynamics in monkeys [166] and seizure

detection [167]. Reservoir computing has also been used as a controller for dynamical systems,

in which the reservoir output is used to determine an input such that the system converges to a

desired equilibrium trajectory [168]. This has led to the framework of next-generation reservoir

computing (NG-RC), proposed in [169, 170] for both prediction and control. In Section 6.5 we

provide an overview of the RC and NG-RC frameworks, but for more details we refer the reader

to [171, 163, 172, 169] and the references therein.

6.2 Contributions

Our first contribution relates to the ability to achieve reference tracking for the LTN

dynamics. We begin by providing conditions for both existence and uniqueness of equilibrium

trajectories for the dynamics. Using this fact we illustrate that under certain conditions on the

reference signal and the network structure, reference tracking can be achieved for LTN networks

and provide examples of controls that result in tracking. Our second contribution relates to

achieving reference tracking using the data-driven machine learning frameworks. Considering

the problem of reference tracking in the context of selective inhibition and recruitment and

seizure rejection, we use examples to show that the reservoir computing and next-generation

reservoir computing frameworks can be used as controllers to achieve reference tracking. Our

contributions expand on state of the art results by considering convergence to equilibrium

trajectories rather than constant equilibrium points and applying a machine learning approach.

6.3 Problem Formulation

We consider a brain model governed by the linear-threshold dynamics

τẋ = −x + [Wx + c(t)]m
0 , (6.1)
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as developed in Chapter 2, where each component of x ∈ �n represents the firing rate of a

population of neurons, W ∈ �n×n represents the synaptic connectivity between populations,

and c(t) captures any inputs to the network. These inputs could be internal, representing

connections from neurons not in the model, or external, such as either invasive or non-invasive

neurostimulation signals. The constant m provides a threshold on the firing rate of the neurons,

and τ is a diagonal matrix defining the timescale of the dynamics for each population.

Recall from Section 3.5 that the LTN dynamics can be represented as a state-dependent

switched affine system, which has switching regions defined by the threshold term [Wx + c(t)]m
0 .

The dynamics has 3N switching regions, each defined by a switching variable σ ∈ {0, `, s}N , and

are defined as follows

Ωσ = {x | (Wx + c)i ∈ (−∞,0]∀i s.t. σi = 0,

(Wx + c)i ∈ (0,mi)∀i s.t. σi = `, and

(Wx + c)i ∈ [mi,∞]∀i s.t. σi = s}. (6.2)

The threshold term can then be expressed over each of these regions using diagonal matrices Σ`

and Σs. These are defined, for q ∈ {`, s}, as follows: Σ
q
ii = 1 if σi = q and Σ

q
ii = 0 otherwise. This

leads to the piecewise-affine form of the dynamics (6.1) being defined as

τẋ(t) = (−I +Σ`W)x(t) +Σ`c(t) +Σsm, x ∈Ωσ. (6.3)

We recall from Section 3.5 that one can identify conditions on the synaptic weight

matrix W that ensure existence and uniqueness of equilibrium, and stability properties of the

dynamics. Of interest in this chapter are the following two results:

i) if W satisfies I−W ∈ P, then for each constant input c(t) = c the dynamics (6.1) has a

unique equilibrium;
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ii) if W ∈ L, then for all constant inputs c, the dynamics is globally exponentially stable to a

unique equilibrium.

Beyond having the network converge to stable equilibria, for many applications it is

instead desirable to have the network track a particular reference trajectory. This requires

non-constant inputs c(t), designed in a way that makes the network activity converge to the

desired trajectory. Due to the complexity of brain networks and the fact that their structure is

not precisely known, designing such a controller analytically is challenging. This motivates the

use of a data-driven learning techniques to determining appropriate control signals to achieve

trajectory tracking. In this chapter we use reservoir computing, which we discuss in detail in

Section 6.5, to determine controls. We formalize the problem as follows.

Problem 6.3.1. Consider a network defined by the LTN dynamics (6.1) with state x(t) ∈�n and

reference signal r : �→ �n. Determine a control signal c∗ : �→ �n such that the network

converges to the reference signal, i.e.,

lim
t→∞
‖x(t)− r(t)‖ = 0.

6.4 Linear Threshold Networks and Reference Tracking

In this section we show that, given a reference trajectory, there exists a control that makes

the LTN dynamics track it asymptotically. This result sets the basis for our forthcoming use of

reservoir computing techniques to synthesize the controller.

Given a reference signal r, consider the error with the system state, e(t) = x(t)− r(t). The

corresponding LTN error dynamics is given by

τė(t) = −e(t) + [We(t) + Wr(t) + c(t)]m
0 − r(t)−τṙ(t). (6.4)

To show that reference tracking is achieved, we show that the error dynamics is globally
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exponentially stable (GES) to the origin. We first provide conditions for the existence and

uniqueness of an equilibrium trajectory for the dynamics (6.4), i.e., a trajectory that, at each

t ∈�≥0, specifies an equilibrium e∗(t).

Theorem 6.4.1. (Existence and Uniqueness of Equilibrium Trajectories in LTN Error Dy-

namics): Consider the LTN error dynamics given by (6.4). If I−W ∈ P then the dynamics (6.4)

has a unique equilibrium trajectory.

Proof of Theorem 6.4.1. We illustrate that a unique equilibrium trajectory exists by showing

that, for each time t ∈�≥0, a unique equilibrium exists. This generates the unique equilibrium

trajectory as t evolves. For fixed t, let d1 = Wr(t) + c(t) and d2 = r(t) +τṙ(t). This leaves us with

the time-invariant dynamics

τė(t) = −e(t) + [We(t) + d1]m
0 −d2.

To show existence and uniqueness of an equilibrium, we note that this dynamics can be written

in a similar piecewise-affine form to the original LTN dynamics (6.3),

τė(t) = (−I +Σ`W)e(t) +Σ`d1 +Σsm−d2,

defined over the same switching regions given in (6.2) and with the same system matrix (−I +

Σ`W). Then, by following the proof of [64, Theorem IV.1], we have that this dynamics has

a unique equilibrium for any values of d1,d2 if and only if I−W ∈ P. Now, to construct the

equilibrium trajectory we can denote an equilibrium point corresponding to d1,d2 by e∗(d1,d2).

Substituting in the expressions for d1,d2 gives e∗(Wr(t)+c(t),r(t)+τṙ(t)) as the equilibrium point

for a time t. Allowing t to vary in �≥0 we have the trajectory {e∗(Wr(t) + c(t),r(t) +τṙ(t))}t∈�≥0 ,

composed of the equilibrium points at each time. �

The equilibrium trajectory corresponds to the reference signal r being tracked, possibly

with a steady-state error. We next provide conditions to ensure this steady-state error is zero. We
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note that to do so, r(t) must lie in [0,m] for all t due to the bounding of the dynamics. The next

result identifies an additional condition.

Theorem 6.4.2. (Reference Tracking for LTN Dynamics): Consider the LTN dynamics (6.1)

and let r :�→ [0,m] be a desired reference trajectory that satisfies r(t) +τṙ(t) ∈ [0,m] for all

t ∈�. Then, if W ∈ L, under the input col(t) = −Wr(t) + r(t) +τṙ(t), the dynamics is GES to the

reference trajectory r.

Proof of Theorem 6.4.2. We prove the result by showing that with the input col(t) = −Wr(t) +

r(t) +τṙ(t) the error dynamics (6.4) is GES to the origin. With this control, the dynamics (6.4)

becomes

τė(t) = −e(t) + [We(t) + r(t) +τṙ(t)]m
0 − r(t)−τṙ(t)

Since r +τṙ ∈ [0,m], it is immediate that e(t) = 0 is an equilibrium for these dynamics for all t.

Then, since W ∈ L implies I−W ∈ P, by Theorem 6.4.1, this is the unique equilibrium trajectory.

To conclude the proof, we show that, under the assumption that W ∈ L, the origin is globally

asymptotically stable under this dynamics, following a similar argument to [64, Theorem IV.8].

Let Wi denote the i’th row of W. After some manipulations, we can rewrite the error

dynamics as

τė(t) = (−I + M(t)W)e(t),

where M(t) is a diagonal matrix given by

Mii(t) =


[Wie+(r+τṙ)i]

mi
0 −[(r+τṙ)i]

mi
0

Wie if Wie , 0,

0 otherwise.

Since the threshold operator is monotonically increasing and Lipschitz with constant one, we
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have Mii(t) ∈ [0,1]. Therefore, M(t) lies in the convex hull of {Σ`(σ)}σ∈{0,`}n for all t. Thus, there

exists a time-varying convex combination (ασ(t))σ∈{0,`}n such that

M(t) =
∑

σ∈{0,`}n
ασ(t)Σ`, t ≥ 0.

Now, since W ∈ L, there exists a matrix P � 0 and a scalar λ > 0 such that

(−I + W>Σ`)P + P(−I +Σ`W) ≤ −λI, ∀σ ∈ {0, `}n.

Consider then the candidate Lyapunov function V(e) = e>Pe. Its derivative along the dynamics

satisfies

τV̇(e(t)) = e>[(−I + W>M(t))P + P(−I + M(t)W)]e

= e>
[ ∑
σ∈{0,`}n

ασ(t)
[
(−I + W>Σ`)P + P(−I +Σ`W)

]]
e

≤ −λ‖e‖2 ≤ −
λ

ρ(P)
V(e(t)),

which ensures the origin is GES under (6.4). �

Remark 6.4.3. (Lack of Uniqueness of Input Map for Reference Tracking): We note that,

while the input col(t) in Theorem 6.4.2 is sufficient for ensuring GES of the origin for the error

dynamics, and hence reference tracking, it is not unique. For example, due to the thresholding of

the LTN dynamics, any (constant) reference trajectory that lies on the lower or upper threshold

can be converged to using a higher magnitude control (either positive or negative, depending on

the network and which threshold) than the one defined in col(t) in order to drive the signal to the

boundary. •

The open-loop control in Theorem 6.4.2 requires the network to satisfy W ∈ L to achieve

reference tracking. However, this condition is not always met, as there exist many brain networks
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that are not stable on their own, see e.g., [64, 173]. Our next result shows that tracking can

still be achieved with unstable synaptic weight matrices using feedback control of the form

c(t) = Kx(t) + d(t), where K ∈ �n×n is the feedback gain. Note that K may have rows entirely

composed of zeros, corresponding to nodes in the network that cannot be directly impacted by

feedback. With this control, the effective network is described by W + K, and the next result

shows that as long as this matrix belongs to L, reference tracking for (6.1) can be achieved.

Theorem 6.4.4. (Reference Tracking for LTN Dynamics with Closed-Loop Control): Con-

sider the LTN dynamics (6.1) and let r : �>0 → [0,m] be a desired reference trajectory that

satisfies r(t) +τṙ(t) ∈ [0,m] for all t ∈�>0. Let K ∈�n×n such that W + K ∈ L. Then, under the

input ccl(t) = Kx(t)− (W + K)r(t) + r(t) +τṙ(t), the dynamics is GES to the reference signal r.

Proof of Theorem 6.4.4. With a feedback-feedforward control of the form ccl(t) = Kx(t) + d(t),

the error dynamics (6.4) can be written as

τė(t) = −e(t) + [(W + K)e(t) + (W + K)r(t) + d(t)]m
0 − r(t)−τṙ(t). (6.5)

In turn, this corresponds to the error dynamics (6.4) with the synaptic weight matrix W+K = W̃.

By Theorem 6.4.2, if W̃ ∈ L, the dynamics is GES to the origin with the input d(t) = −W̃r(t) +

r(t) + τṙ(t). Therefore the LTN dynamics (6.1) achieves reference tracking with the input

ccl(t). �

Remark 6.4.5. (Reference Tracking in Under-actuated LTN Systems): In the results above,

we have assumed that the network is fully actuated for the purpose of determining a control

such that reference tracking can be achieved. For systems that are not fully actuated, i.e., the

control is of the form Bc(t), where B is a diagonal matrix with zeros indicating components of

the network that cannot be actuated, it is generally not possible to achieve reference tracking in

all components. If W ∈ L, then the non-actuated component still converges to an equilibrium

trajectory, but this depends on the interconnection with the other network components rather
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than the desired reference signal. The only case when the under-actuated component i will

converge to the reference trajectory is if [Wir(t)]m
0 = r(t) + τṙ(t) for all t ∈ �≥0. We note that

the actuated components of the network will still converge to their desired reference under the

controls of Theorems 6.4.2 or 6.4.4. •

Having established reference tracking under the LTN dynamics with both open-loop (cf.

Theorem 6.4.2) and closed-loop (cf. Theorem 6.4.4) controls, we note that the implementation of

the corresponding inputs, either as inputs from other neuronal populations or through neurostim-

ulation, is challenging, and becomes increasingly unrealistic with larger network dimensions,

characteristic of brain modeling. First, evaluating the controls provided is difficult because it

requires full knowledge of the synaptic weight matrix W. Due to both the complexity of the

brain and the difficulty in measuring the individual impact of individual neuron populations,

particularly those deep in the brain [174], this is unrealistic. Beyond knowledge of its structure,

the results require that W (or W + K) are in L. This becomes computationally difficult to check

as the network scales up, and the known sufficient conditions to ensure being in L become

increasingly conservative. As such, for large networks, it is preferable to divide the network

into layers based on the timescales, where each layer has an individual constant τi. In this case,

dependent on the timescales, the results of Theorems 6.4.2 and 6.4.4 are no longer directly

applicable due to the activity of the interconnection terms affecting the dynamics of each layer.

In such a case, one can use a singular perturbation argument [65], but the recursively-defined

equilibrium maps involved make the determination of the exact control signals particularly

challenging.

Second, explicitly computing a direct control signal is not a realistic representation of

the way the brain is believed to operate. However, implementing a data-driven approach, where

all that is needed is the desired reference signal and the control is determined through internal

dynamics, seems more realistic and not as computationally expensive. In the following section

we provide an explanation of the reservoir computing and next-generation reservoir computing
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frameworks. We demonstrate both can be used to achieve reference tracking in linear-threshold

networks later in Sections 6.6 and 6.7.

6.5 Reservoir Computing

Here we provide an overview of the mathematical basis of the reservoir computing

framework, which we later apply to control synthesis for reference tracking in LTN networks.

We begin by discussing reservoir computing for predicting system outputs and for control

before considering the same problems using next-generation reservoir computing. We finish by

discussing parameter selection and comparing the two frameworks.

6.5.1 Reservoir Computing for Prediction

We first overview the basic structure of a reservoir computer for predicting the outputs of

an unknown system. Assume we have a dynamical system defined by

y(t) = f (c(t)) (6.6)

where y ∈�m is the system output, c ∈C ⊆�n is the input and the driving function f :�n→�m

for the system is unknown. We define a reservoir as a dynamical system

ẋ(t) = F(Jx(t) + Jinc(t)), (6.7)

where x ∈ X ⊆ �N is the internal state of the reservoir, J ∈ �N×N is a matrix that provides the

reservoir structure, and Jin ∈�
N×n in an input matrix. We assume that N� n and F : X×C→ X

is a nonlinear activation function. The goal of the reservoir computing framework is to use the

activity of the high-dimensional reservoir dynamical system (6.7) to estimate the outputs of the

unknown system (6.6).
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The output estimate is defined

ỹ(t) = Joutx(t),

where Jout ∈�
m×N is an output vector trained to achieve an accurate estimate of the unknown

system. The key component for the reservoir computing framework to be able to achieve this

goal is the echo state property [163]. This property is dependent on the activation function F and

the reservoir matrix J. For the activation function, we require [175] that F : X×C→ X is defined

on compact sets X and C. The compactness of the state space X is given for the most commonly

used activation functions in machine learning, such as tanh or the logistic sigmoid function, and

importantly, also for the linear-threshold function [·]m
0 . We assume the compactness of the input

set C, which is realistic in most applications.

To define the echo state property, we introduce the following notations. We will denote

the reservoir dynamical system (6.7), which combines the activation function, F, and the reservoir

matrix, J, by F(x(t),c(t)) = F(Jx(t) + Jinc(t)). Let X+∞ B {x+∞ = {x(t)}∞t=0 | x(t) ∈ X, ∀t ≥ 0} and

C+∞B {c+∞ = {c(t)}∞t=0 | c(t) ∈C, ∀t ≥ 0} denote sets of right infinite state and input sequences. A

right infinite state sequence x+∞ is compatible with input state sequence c+∞ when ẋ = F(x(t),c(t))

for all t ≥ 0.

Definition 6.5.1. (Echo State Property [175]): A reservoir F : X×C→ X defined on compact

sets X and C satisfies the echo state property with respect to C if and only if for any right

infinite input sequence c+∞ ∈C+∞ and any two right infinite state vector sequences x+∞
1 ,x+∞

2 ∈

X+∞ compatible with c+∞, there exists a sequence {δt}
∞
t=0 such that ‖x1(t)− x2(t)‖ ≤ δt, where

limt→∞ δt = 0.

The echo state property relates to the asymptotic convergence of the state of the reservoir,

which is influenced by a driving input. It can be thought of as the concept of fading memory,

in that trajectories of the reservoir should converge to the same point given the same input,

regardless of the prior history of the reservoir. Necessary and sufficient conditions for the echo
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state property to hold are dependent on both the reservoir matrix, J, and the activation function,

F. Regardless of the activation function, guaranteeing the echo state property depends on the

stability of the reservoir matrix1.

What remains is to train the reservoir computing framework to get an accurate estimate

ỹ of the output y. The defining feature of reservoir computing is that we only train the output

vector Jout, rather than the internal weights of the reservoir. In order to train the reservoir output

matrix, we take a training input {cT (t)} and drive the system (6.6) using this input, getting a

driven training output timeseries {yT (t)}. Then, using the training signal {cT (t)}, we drive the

reservoir (6.7) to get a timeseries of driven reservoir states {xT (t)}. Compiling the set of training

outputs and driven reservoir states into matrices YT and XT , we compute the output matrix Jout

using a Tikhonov regularization,

argminJout
‖YT −JoutXT ‖

2 + ‖βJout‖
2, (6.8)

where β > 0 is a regularization parameter. The performance of the reservoir computer for

predicting outputs can then be measured by using the trained system to provide a prediction of a

second set of arbitrary inputs and comparing the accuracy with the true outputs for this set. The

main parameter for how well the reservoir computer works is the size of the reservoir, N. As

N increases, the higher-dimensional reservoir can then exhibit an increasingly large number of

possible behaviors, especially relatively to the size of the system being predicted. Then, in the

process of training the system, we are able to relate these behaviors to the system trajectories

through the linear output operator Jout. Based on this, with a randomly defined reservoir, by

increasing N sufficiently, the reservoir computer can achieve good prediction of the system

outputs. Parameters such as the reservoir weight matrix J, the input matrix Jin, the training input,

and the regularization parameter β can also impact the quality of the output prediction.

1Much of the reservoir computing literature is in discrete time, which also impacts sufficient conditions for the
echo state property. In the discrete-time case with F(·) = tanh(·), a sufficient condition for the echo state property is
that J is diagonally Schur stable.
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6.5.2 Reservoir Computing as a Controller

We are interested in applying a reservoir computer as a controller for a dynamical system,

with the goal of controlling the system to a given reference trajectory [168]. Consider a dynamical

system

ẋ(t) = f (x(t),c(t)) y(t) = g(x(t)), (6.9)

where x(t),c(t) ∈�n are the state variables and inputs, respectively, and y(t) ∈�m is the output

of the system. The functions f and g define the system evolution and measurable outputs, and

potentially are unknown. Let r(t) ∈�m denote a desired reference trajectory for the output. The

reservoir dynamics is defined as

u̇(t) = F(Ju(t) + Jiny(t) + Jrefr(t +δ)), (6.10)

where u(t) ∈ �N is the reservoir state, J ∈ �N×N defines the internal reservoir connections,

Jin ∈ �
N×m scales the system output y(t) into the reservoir, Jref ∈ �

N×m scales the reference

signal, and δ > 0 dictates how far ahead we provide a desired reference value. The function F is

the activation function, and we assume that F and J are chosen such that the reservoir has the

echo state property. We then connect the output of the reservoir dynamics (6.10) with the input

of the system (6.9) by defining

c(t) = Joutu(t).

Figure 6.1 illustrates this setup.

To train the reservoir computer, we use an open-loop version of the schematic shown in

Figure 6.1 with a training input and a delay on the output. Here, instead of inputting the reference

trajectory into the reservoir, we use the current system output, y(t), along with the future output,
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Figure 6.1. A reservoir computer steers the dynamical system (6.9) to a reference signal r(t).

y(t +δ), which is directly computable from the system and training input. The future output acts

in the role of the reference signal, with the goal of determining how the training signal moves

the system from y(t) to y(t +δ). The reservoir training dynamics is then

u̇(t) = F(Ju(t) + Jiny(t) + Jrefy(t +δ)).

Figure 6.2 illustrates this training setup. The output vector for the reservoir computer, Jout, is then

Figure 6.2. Schematic for training a reservoir computer to steer the dynamical system (6.9) to a
desired reference trajectory.

trained using the Tikhonov regularization (6.8) to minimize the difference between ctrain and the

reservoir prediction, Joutudriven. This setup can be extended by providing different information to
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the reservoir, either about the reference signal r(t), or the system output, y(t). A common choice

is providing the reservoir with ẏ(t). However, this is typically discretely estimated from y(t) and

as such it is just a transform from providing y(t) [168]. Instead, in our treatment, we provide

additional information regarding the reference signal, in particular ṙ(t), which we can compute

since it is known in advance. This leads to the final schematic for the reservoir controller in

Figure 6.3.

Figure 6.3. Schematic for using a reservoir computer as a controller incorporating additional
information on the reference signal r(t).

6.5.3 Next-Generation Reservoir Computing

The observation, cf. [176], that the underlying equations of the reservoir computing

framework have similarities with nonlinear vector autoregression (NVAR) and dynamic mode

decomposition led to the construction of the next-generation reservoir computing (NG-RC)

framework [169] based on NVAR. We explain this framework below, both for prediction and

control.

NG-RC for Prediction

Similarly to the classical RC, we consider the dynamical system (6.6). Instead of

defining a reservoir, we define two feature vectors, Olin,t and Onl,t, defined as follows: Olin,t =

c(t)⊕ c(t− i1)⊕ · · · ⊕ c(t− ip) is the linear feature vector defined for p discretely sampled prior
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points of the system inputs. Onl,t is a nonlinear feature vector that is an arbitrary nonlinear

function of the vector Olin,t. Any nonlinear function can be chosen, albeit it is common [169] to

employ the monomials up to some order k. These feature vectors are then used to predict the

outputs of the unknown system (6.6) in place of the activity of the reservoir (6.9).

The two feature vectors are then concatenated, commonly with an additional constant

d ∈�, to give Ototal,i = d⊕Olin,i⊕Onl,i and the predicted output is defined by ỹ(t) = JoutOtotal,t.

The output vector Jout is then determined with a Tikhonov regularization as

argminJout
‖y(t)−JoutOtotal,t‖

2 + ‖βJout‖
2, (6.11)

which requires running the system with a minimum of ip + 1 inputs in order to fully determine

the vector Ototal,t. This setup, with one prior timestep and quadratic monomials, is shown in

Figure 6.4.

Figure 6.4. Schematic for using next-generation reservoir computing to predict system outputs
with quadratic monomials used for the nonlinearity. The matrix Jout is trained with a known
input/output sequence {(c(t),y(t))} with a minimum length of two points, before being able to
predict future outputs based on the input.
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NG-RC for Control

Similarly to the RC, we are interested in applying the NG-RC as a controller to bring

a dynamical system to a desired reference trajectory. To do so, we use an open-loop training

period followed by a closed-loop control period. To construct the NG-RC controller we follow

the approach in [170] and consider an extension to employ deep learning which we leverage in

our simulations.

We consider the control system given by (6.9). We define linear and nonlinear feature

vectors Olin,t and Onl,i. Unlike NG-RC for prediction, Olin,t is not dependent on prior time steps

and instead Olin,t = y(t), the observable outputs. The nonlinear feature vector is then a function

of the outputs, where again we typically use polynomial expressions.

What differs between the prediction and control setups is the definition of the total feature

vector, Ototal,t. Rather than just combining the linear and nonlinear feature vectors with a constant,

we also include the system input, giving Ototal,t = c(t)⊕d⊕Olin,t ⊕Onl,t. With this feature vector,

Tikhonov regularization (6.11) is used to learn the output vector Jout in an open-loop fashion

such that the prediction is given by ŷ(t) = JoutOtotal,t, as in the top schematic of Figure 6.5.

Then, for the purpose of defining a control, we split the output and feature vector in the

following way.

JoutOtotal,t = JX
out


d

Olin,t

Onl,t

+ Jc
outc(t) = JX

outOX,t + Jc
outc(t).

From here, a closed-loop system is created where the matrices JX
out and Jc

out, along with the

reference signal r(t), are used to define the control term. With the error term e(t) = x(t)−r(t), the

control is defined by

c(t) = (Jc
out)
−1[r(t +δ)−JX

outOX,t + Ke(t)], (6.12)
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where K is a proportional control matrix determined by trial-and-error to optimize performance.

The closed-loop control period is shown in the bottom schematic of Figure 6.5. This control is

derived in [170] for a discrete-time system with the control input entering linearly, i.e., of the

form y(t + 1) = F(X(t)) + Bc(t). While the LTN dynamics is not of this form, our simulations in

Sections 6.6 and 6.7 show that this control still achieves satisfactory performance.

Figure 6.5. Schematics of the training and control phases of a next-generation reservoir computer
controller. The top schematic shows the open-loop learning component of using the NG-RC
as a controller. The closed-loop control component is shown in the second schematic, with the
control given as in (6.12).

We can also extend this approach to construct a controller out of multiple NG-RCs rather

than just one. In this approach each successive NG-RC is used to minimize the error remaining

from the control determined by the prior NG-RC. The additional NG-RC layers are added by

training output vectors Jout,i for each layer with the feature vector Ototal,t such that the output

prediction is

ỹ(t) =

M∑
i=1

Jout,iOtotal,t,

where M is the number of layers. The layers are trained successively, with each layer being
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dependent on the output of the layers before. Each successive layer is trained using Tikhonov

regularization on the error between the true output and the predicted output by the sum of the

layers before. Formally, if we denote ỹ1:i(t) to be the predicted output from the first i layers, the

output vector for layer i + 1 is determined by the following

Ji+1
out = argmin‖(ỹ1:i(t)−y(t))−Ji+1

outOtotal,t‖
2 + ‖βJi+1

out ‖
2.

The control signal is then given by

c(t) = (
m∑

i=1

Jc
out,i)

−1(r(t +δ) +

m∑
j=1

(JX
out, jOX,t) + Ke(t)).

e note that this process could be modified to use different feature vectors across the multiple NG-

RC’s. The process for computing the output vectors would be the same, with some differences

appearing in the determination of the final control signal.

Remark 6.5.2. (Comparison of Parameter Selection in RC and NG-RC): The selection of

parameters is of paramount importance to the performance of the RC and NG-RC algorithms.

One of the benefits of RC compared to traditional machine learning algorithms is that there are

significantly fewer parameters to optimize [171]. This is even more so for NG-RC, cf. [169]. In

comparing RC and NG-RC, one of the biggest differences is in the number of parameters that

need to be selected, and the difficulty in their selection. In RC, the parameters to be selected

are the reservoir matrix, J, the activation function, F, the input vector Jin, the regularization

parameter, β and the training signal, ctrain. Of these, the most important is the selection of

the reservoir matrix, which is typically done randomly, and its relation with the activation

function to guarantee the echo state property. Despite significant research into choices of the

reservoir [171, 177, 178, 172] an optimal choice is not known. In NG-RC for control, the

parameters to be tuned are the nonlinear feature vector, Onl,t, the proportional control vector K,

and the training signal, ctrain. In NG-RC for prediction, one needs to additionally choose the
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linear feature vector, Olin,t. •

Remark 6.5.3. (System Output for Reference Tracking): We note that in in this section we

have defined the reservoir computing framework for an arbitrary system output y(t), while in

Problem 6.3.1 we aim for reference tracking of the system state. As such, in the following

applications we consider the specific case of y(t) = x(t), which matches the problem description.

•

6.6 Application to Selective Inhibition and Recruitment

In this section, we provide our first illustration of the use of RC and NG-RC controllers

to achieve reference tracking for linear-threshold networks. We consider the problem of selective

inhibition and recruitment in cortical networks, and illustrate the recruitment of a subset of a

network to a chosen reference signal. We do this with both the RC and NG-RC controllers and

include a comparison of their performance. We first give a brief review of the selective inhibition

and recruitment framework from Chapter 5.

Selective inhibition and recruitment is the problem of reacting to stimuli by inhibiting

task-irrelevant neuron populations to zero, while recruiting the remaining task-relevant neuron

populations to a particular activity pattern. Due to the hierarchical nature of the brain [179], this

problem has been studied in networks composed of subnetworks operating at different timescales,

and leads to the following formalization of the network structure. Consider a network composed

of N subnetworks, each of composed of ni nodes and with corresponding timescale τi. We

construct a hierarchy by organizing the subnetworks such that τN ≤ τN−1 ≤ · · · ≤ τ1 and each

subnetwork is connected only to the subnetworks directly above and below it in the hierarchy, cf.

Figure 6.6. Subnetworks at the bottom of the network, with fast timescales, represent regions

in the brain that operate quickly, such as sensory areas, while the top of the network represents

regions such as the prefrontal cortex, which operate relatively slowly.

The problem of selective inhibition and recruitment is then formalized as follows. For
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each subnetwork let x1
i ∈�

ri denote the set of task-relevant nodes and x0
i ∈�

ni−ri denote the set

of task-irrelevant nodes. Then, determine a control c∗i :�≥0→�
ni such that the task-relevant

nodes are recruited to a non-zero equilibrium trajectory r∗i :�≥0→�
ni , i.e., x1

i = r∗i (t) and the

task-irrelevant nodes are inhibited to zero, i.e., x0
i (t) = 0.

...

...
Subnetwork i−1

Subnetwork i

Subnetwork i + 1

Figure 6.6. A hierarchical cortical brain network as considered for selective inhibition and
recruitment. Nodes are divided between excitatory (red), inhibitory (blue), and those to be
inhibited (gray). Edge colors match the direction of the node from which they originate, indicating
that they provide either an excitatory (red) or inhibitory (blue) connection, while gray labels
indicate that their node of origin has been inhibited and the connection provides no activity.

This problem has been addressed in [65, 2] for constant, recursively-defined equilibrium

trajectories r∗(t) = r. However, this involves the explicit computation of a control with complexity

that increases significantly with scale based on the size and hierarchical nature of the network.

Here, instead, we show how the problem can be solved in a data-driven way using the RC and

NG-RC frameworks. Once the readout has been learned, the reservoir computer determines a

control that produces the desired reference tracking behavior.

6.6.1 Setup

We consider a network composed of three subnetworks, each one being an excitatory-

inhibitory pair. We then aim to recruit one node in each network, while inhibiting the other to zero

using reservoir controllers. In this example, the controllers are representing the impact of other
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neuronal populations, outside the explicitly modeled ones, that impact behavior. The subnetworks

considered are defined by the following randomly generated synaptic weight matrices:

W1 =

0.0112 −0.9903

0.4101 −0.5115

 , W2 =

0.4614 −0.7342

0.0950 −0.5115

 ,
W3 =

0.1136 −0.2110

0.7732 −0.0800

 .
These networks are combined with the timescales τ1 = 4, τ2 = 1 and τ3 = 1/3 to create a hierarchy.

The interconnections between the networks are also randomly generated, cf. Section 6.6.3.

When tuning the RC and NG-RC controllers, as the size of the network increases, the

number of parameters and difficulty in tuning them all concurrently increases drastically. As

such, instead of training an RC or NG-RC to control the entire network at once, we begin by

training each subnetwork individually. Following the determination of a controller for each

individual layer, we train a second RC on the error remaining from using the first controller on

the interconnected network.

We use a randomly generated 100-node reservoir, and provide inputs related to both the

reference signal and its derivative. For the NG-RC, we use a nonlinear feature vector composed

of the unique quadratic monomials, and the constant term in the feature vector Ototal,t is equal to

0.5. The training signals for the networks are created by sampling a N(0,0.1) distribution.

In the following sections we illustrate that the with this reservoir and NG-RC the proposed

controllers provide successful convergence to provided reference signals. The plots in Figures 6.7-

6.11 show this visually, with details and error values in the text.

6.6.2 Individual Layers

We begin by training each excitatory-inhibitory pair individually to track a given reference

signal without the interconnections in the network. While training both RC and NG-RC, we
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tune the regularization parameter β (RC and NG-RC) and feedback vector K (NG-RC) for each

layer. Figures 6.7, 6.8, and 6.9 show plots of both the RC and NG-RC converging to the desired

reference signal. In each plot, the system evolves without control until t = 25 when the controller

is turned on. Control parameters are provided in Table 6.1, along with the root-mean-square

error (RMSE) between the reference and actual signal, calculated from the point the controller is

turned on. Further parameters related to the training and control of the systems are discussed in

Section 6.6.4.

For the top layer, we recruit the excitatory node to the reference signal r∗(t) = sin( πt
100 )+2,

while the inhibitory node is inhibited to zero, cf. Figure 6.7. Here we see that both the NG-RC

and RC controllers track the reference signal successfully, though the RC works slightly better in

terms of tracking, with a RMSE of 0.0293 versus a RMSE of 0.0401 for the NG-RC.

Figure 6.7. Selective inhibition and recruitment without considering interconnections between
the layers using NG-RC and RC controllers for the subnetwork in the top layer. Control
parameters and the RMSE between the system and reference signal are given in Table 6.1.

For the middle layer, we again recruit the excitatory node, this time to the reference
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Table 6.1. The parameters and errors for the NG-RC (left) and RC (right) controllers for each
network layer. The NG-RC parameters are the regularization parameter β and the proportional
control K. For the RC we consider only the regularization parameter. For both controllers, the
RMSE is between the reference signal and the network state, including both the excitatory and
inhibitory nodes.

NG-RC
Layer β K RMSE

Top 0.5 −5 0.0401
Middle 1.2 −1 0.0805
Bottom 0.7 −0.1 0.0752

RC
Layer β RMSE

Top 0.3 0.0293
Middle 0.5 0.0255
Bottom 0.1 0.0835

signal r∗(t) = sin( 2πt
100 ) + 2, cf. Figure 6.8. Again both the NG-RC and RC controllers result in the

tracking of the reference signal, though for this network and timescale, the NG-RC fluctuates

rapidly around the desired values rather than following it exactly. This is reflected in the RMSE,

where the NG-RC takes a value of 0.0805 versus a value of 0.0255 for the RC controller.

Figure 6.8. Selective inhibition and recruitment without considering interconnections between
the layers using NG-RC and RC controllers for the subnetwork in the middle layer. Control
parameters and the RMSE between the system and reference signal are given in Table 6.1.
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For the bottom layer, we recruit the inhibitory node to the triangle wave with frequency

1
100 Hz and amplitude 1, centered at 2, while inhibiting the excitatory node to zero, cf. Figure 6.9.

Both the NG-RC and RC controllers result in effective recruitment to the desired signal, with

the NG-RC (resp. RC) controlled system lying slightly above (resp. below) the reference signal.

Here the RMSE for the NG-RC is slightly lower than for the RC, at 0.0752 versus 0.0835.

Figure 6.9. Selective inhibition and recruitment without considering interconnections between
the layers using NG-RC and RC controllers for the subnetwork in the bottom layer. Control
parameters and the RMSE between the system and reference signal are given in Table 6.1.

6.6.3 Interconnected Network

We now consider an interconnected system defined by the subnetworks W1,W2, and

W3. Due to the difficulty in tuning the parameters as the network size increases, we do this by

using a multi-layer approach, as described for the NG-RC in Section 6.5. We use the reservoir

controller as determined for the individual layers before training a second layer to cover the error

110



introduced by the interconnection. Here we show that as the magnitude of the interconnection

weight increases it becomes more difficult to control the overall network, and also illustrate that

the NG-RC controller is more robust to changes in the weights of the network interconnections

than the RC controller.

We consider a network W defined by Wlayers +γWconnections, with

Wlayers =


W1 0 0

0 W2 0

0 0 W3

 ,

Wconnections =


0 W12 0

W21 0 W23

0 W32 0

 ,

where W12,W21,W23 and W32 are interconnection matrices between the layers, while γ ∈�≥0

weights the connection strength. The interconnection matrices are randomly generated and scaled

such that ‖Wconnections‖ ≈ 0.01. In this way, small γ values give a network that is close to having

no connections.

For a interconnection weight γ = 20, Figure 6.10 shows that the two-layer NG-RC

controller tracks the desired reference signals for each layer. This occurs after re-tuning weights,

in particular the regularization parameter for the deep layer and the feedback parameter K.

For the same interconnection weight, Figure 6.11 shows the performance of the two-layer RC

controller, exhibiting general recruitment of the network to the reference signal, but with worse

performance than both the individual-layer recruitment and the NG-RC controller. In particular,

we note that recruitment is not achieved as well for the middle layer, with the network moving

both above and below the reference at different points.

To directly compare the performance of the NG-RC and RC controllers, Figure 6.12 plots

the RMSE of the signals with the references for both controllers as the interconnection weight
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Figure 6.10. Selective inhibition and recruitment for all three layers in the interconnected
network with γ = 20 using the two-layer NG-RC controller. With this level of interconnection,
the controller provides performance similar to the single-layer recruitment, with RMSE errors
for each layer being 0.0433,0.0819, and 0.0572 for the top, middle, and bottom layers, resp.

γ increases. The NG-RC controller is significantly more robust to increasing interconnection

weights compared to the RC controller, which quickly moves away from satisfactory recruitment

of the network to the reference trajectory. One explanation for this improved robustness by the

NG-RC controller is in the determination of the control input. For the RC controller, the control

input is determined strictly from the output of the reservoir. Meanwhile, the NG-RC controller

additionally reconsiders the error between the reference signal and the system state, and modifies

the control accordingly using the parameter K. Therefore, despite the increasing magnitude of

interconnections adding additional error to the attempted tracking, the NG-RC controller is able

to control these errors for longer due to its proportional control term.
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Figure 6.11. Selective inhibition and recruitment for all three layers in the interconnected
network with γ = 20 using the two-layer RC controller. With this level of interconnection, the
controller provides similar levels of performance to the individual networks for the top and
bottom layers, while some additional error is introduced in the middle layer. The errors for the
top, middle, and bottom layers are 0.0308,0.1222 and 0.0716, resp.

6.6.4 Comparison between the RC and NG-RC Frameworks

From the results and plots above, we see that the RC and NG-RC frameworks both

have scenarios where they more successfully selectively recruit the system to a reference. In

particular, for smaller networks, the RC framework produces a similar, or slightly improved,

quality recruitment. Meanwhile, the NG-RC controller is more robust to increasing the magnitude

of interconnections between layers. However, these comparisons are made only on the error

between the reference signal and predicted signal. Depending on the situation, further metrics

may be important in comparing the two controllers, such as training signal length, training

time, and control signal and magnitude. In Table 6.2, we compare the training parameters and
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Figure 6.12. Comparison of recruitment error between the NG-RC and RC controllers as the
magnitude of interconnections in the multilayer network increases. The NG-RC controller
maintains a smaller error for significantly larger interconnections than the RC controller, before
both become unsuccessful with large interconnections.

times, listed for the single-layer NG-RC controller, the single-layer RC controller, the multilayer

NG-RC, and multilayer RC controller2.

Table 6.2. Comparison of training parameters and times.

Network Signal
Length

Training
Time

Control
Time

NG-RC Single 500 0.0093 1.1543
NG-RC Multi 500 0.0655 1.6158

RC Single 80000 4.9564 6.0179
RC Multi 80000 26.18 18.17

Table 6.2 shows that the NG-RC framework allows for a much shorter training signal,

and results in much faster times, both for the learning and controlling portion of the simulation.

This aligns with the discussion of the frameworks in Section 6.5 and illustrates that, if training

time is important when using these frameworks, NG-RC performs significantly better. We note

that the training signal lengths for both frameworks was determined after experimentation, with

the lengths chosen to be the minimum lengths ensuring that performance in terms of recruitment
2Simulations were all computed in MATLAB r2023a on a 2019 MacBook Pro with a 2.8GHz Quad-Core Intel

Core i7 processor.
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error were acceptable.

Figure 6.13 shows the control signal being generated by the RC and NG-RC controllers

for the bottom layer without any interconnections, and compares it with the one obtained in

Theorem 6.4.2. It is clear that while the two frameworks use similar controls to achieve selective

recruitment, for selective inhibition they use significantly different controls in terms of magnitude

(this is consistent with our observation in Remark 6.4.3). In particular, both frameworks apply

a control to the node being inhibited that is significantly higher magnitude (more inhibitory)

than the analytically determined control from Theorem 6.4.2. Further, the NG-RC control is

significantly higher magnitude than the RC control. Due to the observed difference in generated

controls, depending on physical system constraints (such as those on control magnitude), the RC

controller could be preferred, despite the longer training time.

6.7 Application to Seizure Rejection

In our second application of reference tracking for LTN dynamics using reservoir comput-

ing, we consider the problem of epileptic seizure rejection. Epilepsy is a disease which impacts

50 million people worldwide and up to 30 percent of those have drug-resistant epilepsy [180],

which instead can be treated with neuromodulation [181]. Data-driven methods have been been

used in seizure detection [182] to predict seizure activity based on electroencephalogram (EEG)

data. During epileptic seizures, brain activity becomes highly synchronized in a pathological

manner, which results in the seizure symptoms. A key problem in epilepsy research is the

detection of seizures in the early stages before symptoms begin to appear. This is desirable as

then an interjection could be made in order to prevent the remainder of a seizure, and ideally,

prevent most or all of the associated symptoms. Here we wish to look at how the reservoir

computer controller network design, representing an external neurostimulation device, can be

used to apply the control action to prevent seizure behavior upon detection through having the

network track a desired ‘safe’ signal.
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Figure 6.13. Comparison of control signals from the RC and NG-RC controllers with the analyti-
cally determined control from Theorem 6.4.2. Both the RC (top) and NG-RC (bottom) controllers
generate control inputs that match the analytically determined control in Theorem 6.4.2 for the
recruited node, in this case the inhibitory node. Meanwhile, the excitatory node is inhibited to
zero using excessive inhibition, with significantly more inhibition being used by the NG-RC
controller. Both result in high-performance tracking.
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We first train a LTN model of a brain network with input and output restrictions to track

EEG data that includes seizures. Then, we use the reservoir controller so that, when a seizure

is predicted, the network activity is brought to a desired pattern that does not exhibit seizure

symptoms. In this section we utilize an arbitrary ‘safe’ signal that does not predict seizure

activity using a synchrony-based approach. However, in clinical application the desired reference

trajectory during intervention would be carefully determined by physicians to avoid any other

possible pathological behaviors. Following the intervention we then allow the brain network to

return to normal function without additional input from the controller.

6.7.1 Overview of the Approach

We consider EEG data taken from the “CHB-MIT Scalp EEG Database” [183, 184]. In

the data, the seizure locations are noted and are also predicted in [185]. The seizure prediction

method in [185] is based on the synchrony measure weighted phase lag index (WPLI) [186],

which we also use here. Other seizure prediction approaches are discussed in [187].

WPLI is defined to measure synchrony between two signals, and is used in particular

to compare electrophysiological signals. In [185], this is used comparing channels of an EEG

for the purpose of seizure prediction. While their prediction technique involves further analysis

on top of computing the WPLI, what is important to note is that the metric attains a high value

(excessive synchrony) before a seizure. In our seizure rejection approach, we aim to have the

network track a signal that reduces the WPLI between the brain regions as determined by the

EEG data, in order to move away from seizure activity. In particular, whenever the WPLI is

computed and determined to be above threshold mintervene, we will intervene with a control term,

computed using a RC, for a pre-determined amount of time tintervene, that drives the network to

a safe activity pattern, rsafe. After this, the intervention will be stopped and only begin again

if the next computation of the WPLI is above the threshold. This procedure is summarized in

Algorithm 1.

117



Algorithm 1. Seizure Rejection with RC Controller
Input: T,mintervene, t0, tintervene,rsafe

1: Train RC on brain network model
2: Initialize control v(t0) = 0
3: Initialize counter k = 1
4: while t ≥ t0 do
5: if t = kT + t0 for k ∈ � and not intervening then
6: Compute and update WPLI
7: k = k + 1
8: end if
9: if WPLI > mintervene and t < (k−1)T + tintervene then

10: Compute control v(t) with RC to drive system to rsafe
11: Propagate brain network model with control v(t)
12: else
13: Do not intervene and set v(t) = 0
14: Propagate brain network model with control v(t)
15: end if
16: end while

6.7.2 Weighted Phase Lag Index and Data Processing

The WPLI measures synchrony between two signals based on the instantaneous phase

of the two signals over a given time window. We compute the instantaneous phase through the

Hilbert transform of a signal [188]. In particular, the instantaneous phase of a signal x(t) with

Hilbert transform x̂(t) is given by

φ(t) = arctan
(
x̂(t)
x(t)

)
.

For a time window ∆t containing N points, the WPLI between signals x1(t) and x2(t) is then

defined as:

WPLI∆t =
| 1N

∑N
p=1 sin(φ1(t)−φ2(t))|

1
N
∑N

p=1 |sin(φ1(t)−φ2(t))|
. (6.13)

The WPLI takes values in the interval [0,1], with low values corresponding to no coupling

between the signals or a phase difference equal to 0 (mod π), while stronger phase locking gives
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higher values for the WPLI. If the signal is phase-locked with a non-zero difference, then the

WPLI is equal to 1.

Using the WPLI to compare to EEG signals on raw data fails to capture any trends due

to the artifacts and noise characteristic of EEG. We therefore take two steps to process the raw

signal and reduce noise. First, the data is filtered using a passband filter on a specified, typically

small, band. These are typically experimentally determined and we use, following [185], the

range of 8−13 Hz. Second, the signal is differentiated with respect to time and the absolute value

is computed. This is done to flatten the basic noise and emphasize the peaks of the signal [189].

6.7.3 Reproducing the EEG Data

As seizure activity is based on synchrony between brain regions, and the WPLI is

computed between two signals, we consider a network with two outputs, each representing a

channel of the EEG. In particular, we consider an 6-node brain network governed by linear-

threshold dynamics, with two outputs. In addition, to match neurostimulation constraints due

to implanting electrodes, we also limit the inputs to two of the nodes. Here, we consider the

second seizure of patient 3 in the MIT EEG database, which is clinically found to occur at time

t = 730 seconds within the EEG file and lasts 65 seconds. Following [185], we let the network

outputs represent channels F4-C4 and T8-P8 of the EEG. We use a NG-RC setup as in Figure 6.5

to learn a control signal, c :�→�2, such that each network mimics the EEG data of channels

F4-C4 and T8-P8.
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The synaptic weight matrix of the randomly generated network is given by

W =



0.3711 0.0642 0.3530 −0.2614 −0.2079 −0.0668

0.1369 0.03837 0.1442 −0.0067 −0.1887 −0.3239

0.1001 0.1440 0.2700 −0.1189 −0.1174 −0.0091

0.2363 0.0310 0.0015 −0.2568 −0.1436 −0.1791

0.0542 0.0760 0.1080 −0.557 −0.0440 −0.3020

0.2213 0.1887 0.1996 −0.2418 −0.3127 −0.0345



, (6.14)

with inputs in nodes 1 and 3. The outputs are defined by

yF4−C4

yT8−P8

 =

1 0 0 0 0 1

0 0 1 0 1 0

x, (6.15)

and actuation is limited to the first and third nodes. The replication of the EEG data is done using

an NG-RC controller with a 500-point training signal sampled from a N(0,0.1) distribution.

Figure 6.14 illustrates the replication of the EEG data, along with the original data, shown for

a 9-second time period preceding the seizure by tracking the original data with the NG-RC

controller. For the purposes of computing the WPLI and seizure rejection, we consider the

data from t = 490 seconds to t = 855 seconds, which corresponds to four minutes before the

seizure and one minute after the seizure. On this timescale, it is more difficult to visually observe

the success of the replication of the EEG data using the NG-RC. Figure 6.15 shows the EEG

replication over the extended time period along with the WPLI over this time. The WPLI

computed from the original data is also included to illustrate accuracy of the replication. For

both the replicated and original data, the WPLI is computed with a time window of 6 seconds

and overlap of one second as in [185]. It is evident that as the seizure approaches the WPLI

is increasing, reaching the maximum value of 1 prior to the seizure (which begins at t = 730),

before dropping to a low level during and after the pathological behavior.
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Figure 6.14. Illustration of the replication of the EEG data from the second seizure of patient 3
over the timeframe t = (506,515) seconds for channels F4-C4 and T8-P8 using a NG-RC with
network matrix (6.14) and outputs (6.15). This precedes the beginning of the seizure at t = 730.
The replication achieves a root-mean-square error (RMSE) of 0.0310 for the F4-C4 channel and
0.0316 for the T8P8 channel on this time interval.

6.7.4 Rejecting Seizure Behavior

Medical interventions will seek to prevent the seizure behavior displayed in Figure 6.15.

In this section, we apply the seizure rejection method described in Algorithm 1 to accomplish

this by interjecting in the model to keep the WPLI between the channels F4-C4 and T8-P8 below

a threshold. To do so, we run the system with the base control c learned in the prior section

using the NG-RC, so that the network exhibits the same behavior as the EEG data. Then, we

interject the system with an additional control v :�→�2 each time the computed WPLI reaches

or exceeds a threshold of 0.8, so that the WPLI is reduced by utilizing the NG-RC controller to

have the network track a pair of signals that do not exhibit excessive synchrony.

In our simulations we use a control (determined by the NG-RC controller) that modulates

the network to a pre-determined safe signal for a period of 60 seconds, a duration based on

the average length of a generalized tonic-clonic seizure [190]. We define our safe signal based

on two sinusoids with different frequencies to guarantee a lack of synchrony and add white

noise to match the noisy nature of EEG measurements. Figure 6.16 illustrates the application of

Algorithm 1 to the EEG with a first rejection at t = 625, when the WPLI first meets the threshold

of 0.8, and a second intervention at t = 700. We see from here on that, with the intervention, the
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WPLI stops increasing towards the upper limit of 1 (which is the expected marker for leadup to

seizure behavior [185]).

Remark 6.7.1. (Real-time Seizure Rejection): In the above computations, we have used WPLI

as a metric for seizure prediction, which depends on the instantaneous phase of the EEG signals

as computed using the Hilbert transform. However, since the Hilbert transform is non-causal,

this means that the above method cannot be applied in a real-time manner due to the requirement

of future knowledge of the EEG signal for compuation of the phase. In order to address this

problem and apply Algorithm 1 in real-time, we would need to be able to compute the phase in a

causal manner. However, the problem of accurately computing the phase of a signal in real-time

is difficult and current methods are not always accurate [191] depending on the signal. Various

methods have been considered using filter models [192], machine learning techniques [193]

and autoregressive models [194]. Due to differences in phase definition, along with the inherent

noise in the EEG measurements, applying these approaches to the WPLI computation did not

accurately reproduce the expected results. Our future work will aim to determine a method

for causal instantaneous phase calculation that allows for the accurate implementation of

Algorithm 1 in real-time. •

6.8 Conclusions and Future Work

We have tackled the problem of control design for reference tracking in linear-threshold

firing rate network models through the reservoir computing framework. We first formally

designed explicit open- and closed-loop controllers that achieve reference tracking under suitable

conditions on the synaptic connectivity. To overcome the difficulty of determining precisely

the strength of interconnections in the brain, required by these controllers, and the fact that the

identified conditions become increasingly difficult to check with network size, together with

considerations of biological implausibility, we have proposed the use of reservoir computing

to synthesize the control signals. We have shown how the RC and NG-RC frameworks can be
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used as controllers for the problem of selective recruitment and inhibition of LTN networks,

allowing for an arbitrarily chosen equilibrium trajectory. We have also used an NG-RC controller

to replicate EEG data as well as reject epileptic seizure activity. Future work will apply the

reservoir computing control framework to larger networks, with the limiting factor being the

determination of optimal parameters for learning. Another direction for future work is the study

of how the composition of the network and reservoir, and symmetries between them due to

their structure as linear-threshold networks, could be exploited to achieve improved control

performance. Finally, we will investigate how different reservoir or feature vector structures can

improve performance and explore reference tracking with limited sensing.
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Figure 6.15. The replicated EEG from four minutes prior to and one minute after the second
seizure of patient 3 (t ∈ (490,855)). The first panel illustrates the activity of the F4-C4 electrode
while the second panel is the T8-P8 electrode. Over this time frame the RMSE on the replication
for the F4-C4 electrode is 0.0737, while for the T8-P8 electrode it is 0.0896. The third panel
shows the WPLI for both the replicated EEG and the original data, which has a RMSE of 0.0474.
We note that the WPLI increases and peaks prior to the seizure, the start and end of which are
indicated by the red lines.
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Figure 6.16. The EEG in channels F4-C4 and T8-P8 from t = 490 to t = 855, with two interven-
tions, at t = 625 and at t = 700, when the WPLI reaches the threshold of 0.8. The controlled
portions of the EEG are shown in red. We see that after interventions the WPLI moves below the
threshold of 0.8, and does not exhibit the drastic drop in WPLI at the beginning of the seizure.
During normal periods, a low-magnitude control (of average amplitude 100) is applied to track
the base EEG activity, before an additional high-magnitude control (of average amplitude 4000)
is applied during the seizure rejection periods to modulate to a safe signal. These controls are of
high amplitude due to the high-frequency EEG activity requiring fast changes in value.
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Chapter 7

Conclusions

7.1 Summary

In this dissertation we have studied the application of system-theoretic methods to brain

networks. The use of analytic tools from fields outside of neuroscience, such as Granger

causality from econometrics or entropy from information theory, have led to advances in our

understanding of how the brain functions. Seeing the benefits of bringing in outside tools, along

with improvements in systems and control theory tools, has led to the significant expansion in the

use of system-theoretic methods to study brain networks. One method for modeling the brain is

through firing rate models, in which the activity of the brain is measured by the average spiking

rate of populations of neurons. We use the linear-threshold dynamics to provide such a model,

due to the richness of behavior that it exhibits. We examine the properties of the dynamics along

with its application to specific neural activities.

In Chapter 4, motivated by the appearance of oscillations in observed brain activity,

we have studied the properties of oscillatory behavior in the linear-threshold dynamics. Prior

works have studied the properties and emergence of oscillatory behavior in certain classes of the

unbounded threshold-linear dynamics but these do not extend directly to the linear-threshold case.

We limit our discussion to the case of competitive networks which, while being a restriction, can

still be used to represent certain brain networks.

Due to the difficulties of direct analysis of oscillations in greater than two dimensions we
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use the lack of stable equilibria as a proxy for oscillations, which then encompasses both the

periodic and chaotic behavior that have been observed in the brain. Our approach characterizes

the loss of stable equilibria in a case-by-case basis related to the support of a potential equilibrium

point. This solution allows for the analysis of the oscillatory behavior of specific groups of nodes,

as can be desired for individual applications. We provided necessary and sufficient conditions

for the existence of a stable equilibrium point supported on a given set, along with sufficient

conditions for the lack of stable equilibria with a given support.

In Chapter 5, we have considered the use of the linear-threshold network dynamics in

modeling selective attention in thalamocortical brain networks. This problem has been studied

prior when considering only hierarchical cortical networks, however such a topology misses

components that are believed to play a significant role in communication between regions,

in particular, the thalamus. Selective attention, and its subproblems of selective inhibition

and recruitment, pertain to the stabilization of the network to specific equilibrium trajectories.

Through tools provided by singular perturbation theory, and leveraging the piecewise-affine

properties of the linear-threshold dynamics, we provided sufficient conditions such that in both

hierarchical and star-connected thalamocortical network topologies, selective inhibition and

recruitment can be achieved. In addition to being able to achieve this goal, we illustrated through

simulation that the addition of the thalamus components results in achieving selective inhibition

and recruitment both faster and with a lower control energy.

Motivated by difficulties in determining a control to achieve selective recruitment to an

arbitrary equilibrium trajectory, in Chapter 6 we address the problem of reference tracking for

networks governed by the linear-threshold dynamics. Based on the synaptic weight matrix, we

provide a closed-form control to achieve exponential convergence to sufficiently well-behaved

reference signals. However, since in the context of a brain network, the synaptic weight matrix

is typically not fully known, the analytic approach is not directly applicable. To address this

complication a data-driven approach was taken, utilizing both reservoir computing and next-

generation reservoir computing, in order to achieve reference tracking. The effectiveness of this
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approach was shown using two example applications. First, as per the original motivation of the

work, it was shown that selective recruitment to an arbitrary reference signal is possible. Second,

it was shown that with the data-driven controller a linear-threshold network can effectively

replicate EEG signals and be utilized in the context of seizure rejection. Each of these studies

leaves open avenues for future research, which we describe next.

7.2 Future Directions

The results obtained in this dissertation lay the groundwork for future research in a variety

of directions. First, there are a variety of different properties of the linear-threshold dynamics

that warrant further research. The results on oscillations in the linear-threshold dynamics in

this work are focused on sufficient conditions for the existence of oscillations in competitive

network topologies. Immediate future work is in order to extend these to necessary and sufficient

conditions if possible. In addition, while competitive networks are observed in the brain and

are related to a variety of behaviors, they do not explain all brain activity. As such it is of

interest to explore oscillations in the LTN dynamics for other network topologies, such as the

high-resolution models found using functional brain data from diagnostic tools including fMRI,

EEG, and MEG. Further, while it is useful to understand when oscillations do exist, research into

the properties of such oscillations is of interest. In particular, investigating conditions that lead to

different types of dynamic attractors, along with the robustness of the oscillatory behavior to both

network and input perturbations is a possible direction to explore. Understanding the properties

of the oscillations that appear in the dynamics can allow for better modeling of behaviors related

with oscillations, such as Parkinson’s disease.

During our treatment of selective attention in thalamocortical networks, we illustrated

how the inclusion of the thalamus in the topology can improve network performance in multiple

metrics. However, while the thalamocortical topologies are a helpful extension on the original

modeling of hierarchical selective recruitment, which considered only cortical networks, it does
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not cover the extensive number of topologies that appear in brain networks. As such an interesting

avenue for further research is into how different topologies can improve our modeling of selective

attention. By using topologies that include additional brain regions to the cortex and thalamus,

each of which will have their own properties, we can look to gain a further understanding into

how different components of the brain impact selective attention.

In addition to investigating further topologies, further research into the control signal

being applied is warranted. In the model-based control we allow for a non-zero control signal on

all task-relevant components of the network, while in the data-driven formulation we place no

restrictions. However, it is unlikely that this is the case in the brain, and as such research into

the determination of satisfactory controls with input constraints is an interesting and important

avenue of future study.

For the study of reference tracking in brain models, particularly with the linear-threshold

dynamics, there are a variety of future avenues for research. First, we have provided results

guaranteeing lossless tracking of a desired signal. However this requires assumptions on the

behavior of the signal. An important extension is to loosen the requirements on the reference

signal and provide a characterization of if reference tracking is still possible with a potential

bounded steady state error.

Second, the data-driven approach we took to achieving reference tracking using reservoir

computing has multiple available extensions. Direct avenues of further research include investi-

gating properties of the reservoir computing framework itself, with an important direction being

the determination of conditions that define a reservoir that will provide good performance. Both

the reservoir computer and next-generation reservoir computer could also be further modified

to include aspects of deep learning, in the hopes of improving performance related to error and

convergence properties. Finally, testing the reservoir computing approach with a live system,

rather than using a model constructed from historical data, is a particularly important direction

for future research.

The systems and controls approach to modeling neural behavior also provides an avenue
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to study a variety of problems other than those discussed in this dissertation. One particularly

interesting problem that lends itself to using a system-theoretic approach is neurogenesis, or the

addition of new neurons into a network. While not as common in adults as in the developing

brain, it does occur in regions such as the hippocampus throughout our lifetime, which is involved

in processes including learning and memory. This problem can be approached as the addition of

new nodes into the network, and we can study how the properties of the new neurons and the

original network interact to maintain, alter or improve behavior. An interesting subproblem is the

design of new components that provide desired behavior when added to the network. While the

addition of artificial neurons is likely beyond our current technical capacity, it is something that

could be possible in the future and as such is an interesting problem to study. Conversely, one

could study the opposite problem, that is the removal of neurons from the network due to death

or damage, to better understand how individual neurons or populations impact overall behavior.
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