
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Modeling Consumer Behavior in Electricity Markets - Theory and Applications

Permalink
https://escholarship.org/uc/item/3qp698mz

Author
Zhou, Datong Paul

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3qp698mz
https://escholarship.org
http://www.cdlib.org/


Modeling Consumer Behavior in Electricity Markets – Theory and Applications

by

Datong Paul Zhou

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Claire J. Tomlin, Chair
Professor Kameshwar Poolla
Professor Francesco Borrelli

Assistant Professor Anil J. Aswani

Fall 2018



Modeling Consumer Behavior in Electricity Markets – Theory and Applications

Copyright 2018
by

Datong Paul Zhou



1

Abstract

Modeling Consumer Behavior in Electricity Markets – Theory and Applications

by

Datong Paul Zhou

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Claire J. Tomlin, Chair

This thesis models consumer behavior in electricity markets from both a theoretical
and practical perspective. The main underlying theme of this thesis is residential demand
response, which is enabled by the development of smart grid technologies and the subsequent
collection of large amounts of data. The work in this thesis touches on themes at the
intersection of machine learning, economics, and game theory.

In the first part of this thesis, we seek to analyze the interaction between different players
in the modern smart grid. Topics discussed include the incentivization of residential users
to elicit their private information, how peer effects affect residential energy consumption,
as well as hedging strategies against quantity and price risks in the electric market. To
support these expositions with even more fundamental analyses, a framework for budget-
constrained and combinatorial multi-armed bandits is introduced. The motivation behind
including this rather generic topic lies in the sequential and repetitive nature of interactions
between different players in the smart grid, which - under certain assumptions - could be
captured with this methodology.

The second part of this thesis is concerned with the estimation of a residential Demand
Response program carried out by OhmConnect, Inc. during a 14-month period. To eval-
uate the effects of monetary (and non-monetary) incentives on the reduction in electricity
consumption, we first develop a short-term load forecasting method and compare various
estimators. The estimation accuracy is further improved by incorporating mixtures of Gaus-
sians and Hidden Markov Models into the estimators under consideration. Next, we develop
a two-stage estimation framework to estimate individual treatment effects of Demand Re-
sponse and compare the aggregated effect, namely the Average Treatment Effect, to the
outcome of a randomized controlled trial. The ability to estimate individual treatment ef-
fects allows us to design an adaptive targeting framework, which seeks to maximize cost
efficiency of this program. Lastly, the effect of moral suasion (non-monetary incentives) that
only appeal to the environmental consciousness of users is explored.
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Chapter 1

Introduction and Background

Information technology has arguably been the most fascinating, yet disruptive development
of the last few decades. Data from all possible sources is collected at an ever-increasing
rate, and while it appears that many people are growing more concerned about privacy
issues, it is undeniable that even the most skeptical person is likely to benefit from digital
products in at least some ways. What makes information technology such a dominant force
as opposed to other classical industries that have existed for centuries? While we certainly
will not be able to answer this question exhaustively, one possible answer is the innate
capability of information technology to use granular data to make predictions, infer causal
relationships, and to design policies that allow us make decisions quickly and often with a
provable guarantee on performance.

While data itself has no inherent value (it does not pay any dividend) and does not
improve in quality over time like a good bottle of wine, it is the academic community and
entrepreneurs who have developed new fields of study that harness the availability of “big
data”. Artificial Intelligence and Machine Learning have given rise to entirely new academic
areas of research. The “Internet of things” connects individual users in fundamentally new
ways, allowing fast and flexible communication between agents. Examples for such industries
are transportation, utilities, retail, healthcare, financial services, and manufacturing.

This thesis seeks to shed light on the role of large volumes of data on electricity markets,
which is a prime example for how a traditional industry has been disrupted and modernized
by the ability to collect, store, and transmit data between individual agents. The electricity
market has a few peculiarities that are worth mentioning, such as the difficulty of forecasting
both demand and supply, an issue that is exacerbated by the increasing penetration of
intermittent and variable renewable energy sources, the insensitivity of demand to price
fluctuations, and its prohibitive cost of storage. These issues result in highly volatile short-
term prices of electricity, which has spurred areas of research at the intersection of machine
learning and economics to alleviate the previously mentioned issues.

Demand-side management (DSM) is an umbrella term that encompasses a wide range
of interventions aiming to alleviate supply and demand imbalances of electricity, often by
integrating end-users of electricity as virtual power plants into the control loop that exists be-
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tween generators and load-serving entities (LSEs). The idea is to communicate the marginal
price of electricity in an approximately real-time fashion to end-users in order to incentivize
users to behave according to a certain objective, which often corresponds to temporarily re-
ducing or increasing their consumption to help align supply and demand of electricity. Such
end-users of electricity span a wide range of entities as small as residential customers and
as large as commercial buildings or factories. Timescales of such interventions range from
seconds to days ahead. While there exists a plethora of work from engineers and economists
on day-ahead interventions, the role of short-term interventions remains largely unexplored,
a gap that ultimately motivates the creation of this thesis.

Outline
This thesis consists of two main parts. The first part is a theoretical section in which we
develop a few tools that allow us to quantify the role of private information and peer effects
in electricity consumption as well as strategies to hedge against price and quantity risks
in dynamic electricity markets. The purpose of this section is two-fold: On one hand, it
contributes to the extant literature in mechanism design, game theory, and online learning,
and therefore are interesting topics in their own right. On the other hand, the theoretical
section lays the foundation for the second part of this thesis, which is concerned with the
investigation of demand-side management for commercial buildings and residential house-
holds. The tools and theorems introduced in the theoretical section thus naturally motivate
a more practical perspective, which is covered by case studies in California.

Chapter 2 explores the role of private information in Demand Response. The principal
agent model has long existed in literature and is a classical framework in economics to model
information asymmetries between a principal and its agents. To incentivize users to behave
according to a desired objective, the principal needs to design a suitable mechanism in order
to elicit private user information. We develop such a mechanism in the context of Residential
Demand Response, in which a principal requests a set of households to temporarily reduce
their electricity consumption in exchange for a monetary incentive. Each household, however,
has a certain willingness to reduce, which is parameterized by variables known only to the
household itself. The challenge for the principal is to design an incentive compatible and
individually rational mechanism that deals with the heterogeneity of users in their price
elasticity of demand, elicits aggregate reductions that are large enough, and does so in a cost-
efficient fashion. The success of this mechanism hinges on a reliable estimator that predicts
electricity consumption on the individual user level, as the amount of prediction inaccuracy
correlates negatively with cost efficiency, a fact we support with numerical simulations.

Chapter 2 is succeeded by Chapter 3, which shifts our attention to the interaction between
end-users of electricity, rather than the interactions between a principal and a pool of end-
users. This chapter is motivated by case studies that investigate the effect of peer pressure
on electricity consumption. To answer this question, we develop a two-stage game theoretic
model that reflects the behavior of both the principal and each individual agent. This
two-stage game can then be solved − under certain assumptions − by finding a subgame
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perfect equilibrium. We derive optimal pricing mechanisms for various information levels
and simulate the optimal profit of the principal. Further, we investigate the role of network
uncertainty on the pricing strategy.

Next, Chapter 4 aims to provide a more holistic model of price and quantity risks that
ensue from the interplay between generators of electricity, the electric wholesale market,
electric utilities, and end users of electricity. These risks are a logical consequence of the
peculiarities of electricity as a good, namely the inelasticity of user demand, prohibitive cost
of storage, and its steep supply curve. These factors imply that small changes in demand
or supply of electricity result in disproportionately large changes in prices. The purpose of
this chapter is to investigate to what extent such price risks can be hedged against with
bilateral contracts between electric utilities and generators. Such mechanisms could be
forward contracts, call options, as well as Demand Response, all of which we investigate
in more detail. Further, we quantify how the amount of uncertainty affects the optimal
expected profit of the load serving entity. Lastly, we use numerical simulations to do pairwise
comparisons between the options to illustrate decision boundaries of equal expected profit.

The last chapter of the theoretical section of this thesis (Chapter 5) analyzes the multi-
armed bandit problem with a budget. We extend the basic framework, which was first
introduced by Auer et al. 2002, to a setting in which the player has to play exactly K out
of N possible arms. Furthermore, playing each arm comes with a reward and a cost, both
of which are uniformly distributed (the original setting does not involve a cost component).
The idea of this chapter is to derive an abstract model that quantifies repeated interactions
between a principal and a pool of possible agents. Indeed, all previous chapters involve
repeated interactions between such a principal (load serving entity) and a set of possible
arms (end users of electricity), and taking an action at each round typically comes at a cost.
The principal has a budget B > 0 to spend on interventions and seeks to maximize the
reward. We investigate this problem for both the stochastic and adversarial setting.

The applied section of this thesis begins with a discussion about the controllability of
commercial buildings for frequency control (Chapter 6). We derive two distinct models for
the evolution of temperature as a function of the control input, which is the airflow by the
HVAC system. The first model is a purely data-driven model that makes no structural
assumptions other than its linearity between input and output. The second model, however,
is a physics-based model that is inspired by modeling individual components of the buildings
as a resistance-capacitance model. While the first model is a higher fidelity model, the
second one is capable of modeling individual zones of the building with higher accuracy, as
it naturally partitions the building into more states. The fact that the data-driven model
is leaner allows us to perform energy efficient control in a relatively straightforward fashion.
Respecting comfort constraints on the temperature, a model predictive control scheme can
noticeably reduce the cost of the HVAC system.

The final two chapters of this thesis are devoted to the investigation of a case study on
Residential Demand Response in California. Chapter 7 presents an overview of short-term
load forecasting methods that seek to predict the consumption of residential households
for the next hour. We contribute to this thoroughly researched field by proposing Hidden
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Markov Models and Conditional Mixtures of Gaussians that are specifically tailored to resi-
dential smart meter data. By assuming exactly two latent states, namely “low” and “high”
consumption, we can derive predictive models for each of these states, a mixture of which no-
ticeably improves prediction accuracy compared to a baseline estimator that does not make
use of such latent states. The Hidden Markov Model further assumes transition probabili-
ties between these latent states, as a user who is in the “low” (“high”) state is most likely
to remain in the “low” (“high”) state in the next hour, achieving the highest estimation
accuracy.

Chapter 8 presents the findings of a randomized controlled trial on approximately 10, 000
residential customers that investigates the causal effect of short-term monetary incentives
on the reduction in electricity consumption. This study is carried out in collaboration with
OhmConnect, Inc., a start-up company based in the San Francisco Bay Area. This experi-
ment includes three phases. Phase 1 aims to estimate the Average Treatment Effect across
the entire subject population. Phase 2 seeks to adaptively target residential customers by
sending customized messages with varying incentive levels in order to improve cost efficiency
from the perspective of the DR provider. Phase 3 is dedicated to the effect of moral suasion,
namely whether or not users respond to incentives that solely appeal to the environmental
consciousness of users. This experimental approach is replicated by using a non-experimental
estimation framework, which is able to provide more granular estimates of treatment effects,
namely on the individual user level. As these user-specific models are not inherently causal
− estimation bias plays an important role − the randomized controlled trial serves as a
ground truth benchmark for non-experimental estimates.

Finally, Chapter 9 concludes this thesis.
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Part I

Theory
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Chapter 2

Eliciting Private User Information in
Demand Response

2.1 Introduction
With the restructuring of the traditional, vertically integrated energy market towards a com-
petitive market, Demand-Side Management (DSM) has become a viable tool for alleviating
supply and demand imbalances of electricity. Facilitated by advancements in information
and communications technology, smart metering infrastructure allows end-users of electric-
ity to “participate” in the electric market as virtual power plants through properly designed
incentive mechanisms. DSM is motivated by the inelasticity of energy supply, which causes
small variations in demand to result in a price boom or bust, respectively. These price fluc-
tuations are aggravated by the inherent volatility of renewable generation resources, their
increasing levels of penetration, and the prohibitively high capital cost of energy storage.
Since a load-serving entity (LSE) is required to procure electricity at fluctuating prices to
cover the electricity demand of its residential households under contract instantaneously and
at quasi-fixed tariffs, price risks are almost entirely borne by the LSE. Incentivizing users
to temporarily reduce their consumption (and charging a fee if users do not reduce) during
periods of high prices therefore partially passes such price risks on to customers.

While the area of DSM has attracted a vast array of research across different domains
(see Palensky and Dietrich (2011) for a summary), we in this chapter focus on the area
of Demand Response (DR), where end-users of electricity are incentivized to reduce their
demand temporarily during designated hours, precisely when there is a shortage of electricity
supply. Users receive a reward for each unit of reduction, but incur a penalty for increasing
their consumption. Demand Response providers (DRPs) bundle these reductions and can
offer these reductions as a bid directly into the competitive wholesale electricity market, or
enter bilateral contracts with load-serving utilities. While DR is traditionally carried out on
a commercial level, residential customers are targeted for load reduction programs, as well.
For instance, in California, the Public Utilities Commission (CPUC) launched a “Demand
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Response Auction Mechanism” (DRAM) in July 2015 (Resolution E-4728. Joint Utility
Proposal for a DRAM Pilot) to allow DRPs to offer reduction capacity from residential
customers directly into the day-ahead electricity market, where they are subject to regular
market clearing prices and shortfall penalties. Utilities are required to purchase a fixed
minimum monthly amount of this reduction capacity.

To make an informed capacity bid into the market, the DRP must take various factors
into account, such as the expected Locational Marginal Price (LMP) which determines its
market clearing price, the elasticity of users’ demand given an incentive, and the number of
users under contract. If the DRP bids too much capacity, the aggregate reduction among its
user base will likely fail to reach the capacity volume, thereby incurring a shortfall penalty;
similarly, a suboptimal revenue arises from too small a bid. The DRP can improve its bidding
strategy by learning users’ behavior in response to incentives. However, users’ preferences are
typically private information and hence unknown to the utility. The challenge thus becomes
to elicit this private information. We cast this problem as a mechanism design problem,
where the DRP as the auctioneer solicits bids from each of its residential customers through
an incentive compatible and individually rational mechanism. The motivation behind this
approach is to increase allocative efficiency, that is, the utility would like to solicit reduc-
tions only from the highest reducers, who are most willing to reduce their consumption in
exchange for the lowest possible reward. In this chapter, we design such a mechanism that
fulfills these criteria and benchmark its performance against the omniscient case, where user
characteristics are common knowledge.

A crucial question that arises from this setting is how to measure the reduction of any
individual user during a DR event, given that only the consumption outcome under a treat-
ment can be observed, but not its counterfactual (the consumption had there been no DR
event). This is the fundamental problem of causal inference (Holland 1986). To estimate
the reduction during any particular DR event, it is thus essential to estimate the counterfac-
tual, which we refer to in this context as “baseline”. Estimating this baseline in the absence
of a Randomized Controlled Trial is a modern area of research at the intersection of eco-
nomics and machine learning. Examples for such baseline estimates can be found in Athey
and Imbens (2016), Abadie, Diamond, and Hainmueller (2012), Zhou, Balandat, and Tomlin
(2016b), and Zhou, Balandat, and Tomlin (2016a). In this chapter, we employ the “10-in-10”
baseline employed by the California Independent System Operator (CAISO) (CAISO Fifth
Replacement FERC Electric Tariff ), which estimates the counterfactual for a particular DR
event as the mean consumption of the 10 most recent days during the same hour as the DR
event. Using this baseline, the measured reduction for any selected user can be formulated
as the sum of a virtual reduction, which reflects the estimation error in the baseline predic-
tion, and the actual reduction due to price elasticity of user demand. We observe that the
DR provider can achieve a virtual reduction from those users for which the baseline is high.
That is, the DR provider receives payments for virtual, non-existent reductions which are
indirectly paid for by utilities. However, we show that a more accurate baseline diminishes
the impact of such virtual reductions.
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2.1.1 Related Work
Modeling consumer behavior in response to monetary incentives in DR and their heterogene-
ity is a growing area of research. In Kwac and Rajagopal (2013), the authors formulate the
problem of targeting the “right” customers for DR as a stochastic knapsack problem in order
to achieve a target reduction with high probability. However, users’ responses are modeled
as a linear model without private user information.

Other works have incorporated a contractual formulation between consumers and sup-
pliers in DR settings. For example, Li, Chen, and Dahleh (2015) design a DR market where
suppliers bid supply curves in the presence of a supply shortage to the load-serving entity
and analyze the ensuing market equilibria. In Balandat et al. (2014), the authors formu-
late a contract between an aggregator of buildings, individual buildings, and the wholesale
electricity market to exploit flexibility of commercial buildings’ HVAC consumption. In a
similar fashion, Han, Han, and Sezaki (2010) formulate a contract design problem between
an aggregator and individual electric vehicle owners to maximize its revenue by providing
power capacity to the grid operator.

To quantify the impact of DR signals on the reduction of consumption, Zhou, Balandat,
and Tomlin (2016b) and Zhou, Balandat, and Tomlin (2016a) estimate individual treatment
effects in response to hourly DR events by comparing the estimated counterfactual con-
sumption to the actual, observed consumption. Li and Zhang (2016) formulates an optimal
treatment assignment strategy to precisely measure the treatment effect of DR.

The application of Mechanism Design on DR is covered in Samadi et al. (2012), where
the authors maximize the social welfare of consumers and the energy provider by designing
a consumption controller with a Vickrey-Clarke-Groves auction. In Ma et al. (2016) and Li
and Li (2016), the authors incorporate uncertainty into consumers’ reduction behavior and
introduce the notion of reliability for achieving a designated amount of aggregate reduction.

2.1.2 Contributions
Unlike previous works, which modeled reductions as multiples of unit reductions, we account
for the Fundamental Problem of Causal Inference (Holland 1986) into the mechanism design
formulation between DRP and users, which is our main contribution. Specifically, we esti-
mate reductions using the CAISO “10-in-10” baseline as the counterfactual estimate. As a
consequence of uncertain baseline predictions, virtual reductions arise. Using observational
data from residential customers in California, we quantify the extent to which these virtual
reductions counteract DR, and how these reductions diminish as baseline estimates become
more precise.

2.1.3 Notation
Let [ · ]+ = max(0, ·). Vectors are printed in boldface. Let a−i denote the vector of all
components in a excluding i. 1(·) denotes the indicator function.
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2.1.4 Outline
The remainder of this chapter is organized as follows: Section 2.2 characterizes DR market
participants and their interactions, based on which Section 2.3 presents a mechanism for the
DR provider to elicit private user information and to achieve an aggregate reduction among
its users under contract. Section 2.4 elucidates the difference between virtual and actual
reductions as an artifact of an uncertain baseline estimate. The mechanism is simulated on
residential smart meter data in California in Section 2.5, where we experimentally show how
more accurate baselines reduce the amount of virtual reductions. Section 2.6 concludes. All
proofs are relegated to Appendix A.1.

2.2 Market Participants and Interactions

2.2.1 Residential Demand Response
Figure 2.1 describes the interaction between the DRP, end-users, the electric utility, and the
wholesale electricity market.

Electric Utility

Wholesale Market End Users

DR Provider

Payment Electricity Incen-
tives

Reduc-
tions

Signal

Reductions

Figure 2.1: Energy Market Participants for DR and their Interactions

The DRAM requires electric utilities to acquire demand flexibility from DRPs, which
they submit as part of their supply curves as a bid into the real-time wholesale electricity
market. If these bids are cleared, the utility sends the DRP a signal to ask for a specified
aggregate reduction among its users. The DRP elicits reductions by incentivizing a subset
of its customers T ⊆ I with user-specific per-unit rewards {ri ∈ R+ | i ∈ T }, where
I = {1, . . . , n} denotes the set of users. In exchange for the monetary incentive, users
reduce consumption by {δi ∈ R | i ∈ T }. A per-unit penalty q ∈ R+, which is assumed to
be identical for all users and common knowledge, is enforced for an increase in consumption
beyond the baseline. Users in the non-targeted group I \ T are excluded from the incentive
program. In this thesis, we only focus on the interaction between the DRP and the end-users
from the perspective of the DRP. To maximize its profit, the goal of the DRP is to achieve
an a-priori defined aggregate reduction with minimal payments to its users.
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2.2.2 Residential Customers
Each rational, profit-maximizing user i ∈ I is endowed with the “10-in-10” baseline x̂i ∈ R+
employed by the California Independent System Operator (CAISO) (CAISO Fifth Replace-
ment FERC Electric Tariff ), which is an estimate of her counterfactual consumption (PJM
Empirical Analysis of Demand Response Baseline Methods) for a particular hour. For no-
tational ease, we drop time indices, but we emphasize the need to re-calculate x̂i for any
individual hour. The baseline for a particular hour on a weekday is calculated as the mean
of the hourly consumptions on the 10 most recent business days during the hour of interest.
For weekend days and holidays, the mean of the 4 most recent observations is calculated.
User i’s measured load reduction δi, provided she is given incentive ri to reduce during a
particular hour, is simply the difference between the baseline x̂i and the actual, materialized
consumption xi:

δi =

0 , if i 6∈ T
x̂i − xi , if i ∈ T

(2.1)

Due to the widespread existence of advanced metering infrastructure, the baseline x̂i is
assumed to be common knowledge among the DRP and user i. The utility of user i is
defined as follows:

ui =

0 , if i 6∈ T
ri · [x̂i − xi]+ − q · [xi − x̂i]+ , if i ∈ T

(2.2)

which equals the payment from the DRP to user i. That is, if the user is under a DR contract
with the DRP, she is rewarded with ri ∈ R+ for each unit of reduction, and charged q for
each unit of consumption above the baseline x̂i.

We model users’ consumption in response to ri, denoted with xi(ri), with a semi-logarithmic
demand curve, an assumption frequently made in economics:

xi(ri) = x̄i · exp(−αiri)
log xi(ri) = log x̄i − αiri ∀ i ∈ I (2.3)

In (2.3), x̄i ∈ R+ and αi ∈ R+ are random variables signifying the base demand (the
intercept or the consumption with ri = 0) and the slope of the demand curve in log-linear
coordinates, respectively. This semi-logarithmic demand curve captures the fact that the
amount of reduction is marginally decreasing in the reward ri and saturates. User i’s type
θi is information correlated with (x̄i, αi) (not necessarily (x̄i, αi) itself) and user i’s private
information.

2.2.3 Demand Response Provider
The DRP aims to maximize its profit Π in expectation:

Π = r̄ ·min(∆,M)− q̄ · [M −∆]+ −
∑
i∈I

δi (ri · 1δi>0 + qi · 1δi≤0) . (2.4)
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Π is random in δ1, . . . , δn. ∆ = ∑
i∈I δi is the total sum of reductions and M ∈ R+ the target

capacity the DRP has to provide to the utility. r̄ and q̄ ∈ R+ denote the per-unit reward
and shortfall penalty the DRP is subject to in the wholesale electricity market. Note that
q̄ 6= q and r̄ 6= ri. The first term of (2.4) represents the profit the DRP earns for materialized
reductions, the second term captures the shortfall penalty for unfulfilled reductions, and the
last term is the sum of payments disbursed to individual customers.

Assumption 1. The DRP is risk-neutral and profit-maximizing.

Assumption 2. The per-unit penalty q̄ in the wholesale electricity market and the per-unit
reward r̄ are greater than the maximum per-unit reward disbursed to any customer, i.e.
min(q̄, r̄) > max1≤i≤n(ri).

With Assumptions 1 and 2, (2.4) can be rewritten as follows:

minimize
r1,...,rn

Eδ1,...,δn

[∑
i∈I

δi (ri1δi>0 + qi1δi≤0)
]

subject to Eδ1,...,δn

[∑
i∈I

δi

]
≥M.

(2.5)

That is, the DRP aims to find an optimal vector of per-unit rewards r∗ that minimizes
the expected total amount of payments disbursed to the users while satisfying the constraint
that the expected sum of reductions exceeds M .

2.3 Demand Response Mechanism
To find an approximation to the solution of (2.5), the utility needs to elicit user i’s private
type θi with an incentive compatible (IC) and individually rational (IR) mechanism. IR
guarantees that participation in the mechanism, provided users act rationally, results in an
expected payoff that is at least as large as in the case of non-participation (outside option),
which is zero in our case (2.2). IC is required to ensure that users report their types truthfully
to the DRP.

2.3.1 Mechanism Design Basics
We first introduce basic notation relevant to our problem. Let θ denote the collection of
types (θ1, . . . ,θn), where each θi ∈ Θi ∀ i ∈ I is drawn from its type space Θi. It is assumed
that θ is drawn from a commonly known joint distribution F defined on the product space
Θ = ×ni=1Θi. Each agent is assumed to seek expected utility maximization of her utility
function ui(y,θi) : Y ×Θi 7→ R, where y = (d, r) ∈ Y = {0, 1}n×Rn

+ is the collective choice
consisting of the vector of allocation decisions d and the vector of rewards r. The social
choice function f(θ) : Θ 7→ Y maps a particular collection of types θ to y.
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Let Si, . . . ,Sn denote the strategy spaces of users i ∈ I. A realized strategy vector
s ∈ ×ni=1Si defines an outcome function g(s1, . . . , sn) : ×ni=1Si 7→ Y . Together they define
a mechanism Γ = (S1, . . . ,Sn, g(·)), which transforms users’ strategies into a social choice
function through the outcome function g(·). (Γ, F, {ui}ni=1) defines a Bayesian Game with
payoffs ui(g(s1, . . . , sn),θi) and strategies si : Θi 7→ Si.

The revelation principle (Osborne and Rubinstein 1994) allows us to focus on direct
mechanisms, i.e. Si = Θi and g(s1, . . . , sN) ≡ g(θ) = f(θ), which is the well-known fact
that any equilibrium of any mechanism is identical to an equilibrium of a direct mechanism,
provided truthful reporting. We focus on the dominant strategy equilibrium:

Definition 1 (Dominant Strategy Equilibrium (DSE)). A Dominant Strategy Equilibrium
is given by

θi = arg max
zi∈Θi

Ezi [ui(f(zi, z−i),θi)] ∀i ∈ I, z ∈ Θ (2.6)

That is, if the supremum of user i’s expected utility ui is achieved with truthful reporting
s∗i (θi) = θi, regardless of other users reports z−i ∈ Θ−i, then the social choice function f(·)
is dominant strategy incentive compatible.

2.3.2 Timing, User Types, and Reward Calculation
The DR mechanism unfolds as follows:

• The users i ∈ I discover their types θ1, . . . ,θn. The baselines x̂1, . . . , x̂n become
common knowledge.

• The users reveal their types {zi}ni=1 to the DRP, where zi not necessarily corresponds
to the true type θi.

• The DRP implements the collective choice f(z) = y = (d, r) through mechanism Γ.

• Users observe f(z) and adjust their consumption according to (2.3) and di, ri.

For better visualization, Figure 2.2 depicts these steps.
An important observation is that, after the implementation of f(z) at t = 2, the DRP

calculates its expected profit E[Π] and the expected payments disbursed to each user i. Due to
the Myerson-Satterthwaite Theorem (Myerson and Satterthwaite 1983), we do not perform
any ex-post analysis on the realized consumptions x(r) at t = 3.

To model the fact that users’ base electricity consumption is often driven by habits rather
than rational profit-maximization (Maréchal 2010), we assume the user-specific intercept x̄i
to be drawn from an a-priori defined distribution G with characteristic parameters ξi encoded
in user i’s private type. ξi itself is distributed according to the joint distribution Fξ, and
so x̄i is a compound random variable. The slope, however, is assumed to be explicitly
known for each user and drawn from distribution Fα. Thus θi = (αi ∼ Fα, ξi ∼ Fξ),
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θ and x̂
materialize

t = 0

Users reveal
types z
to DRP

t = 1

DRP implements
f(z) = (d, r),
informs users

t = 2

Users’ consumptions
in response to
y materialize

t = 3

Figure 2.2: DR Mechanism Timeline

where x̄i ∼ Gξi ∼ Gξi∼Fξ
. All distributions have support on R+. We make the following

assumption:

Assumption 3. The types (αi, ξi) are drawn from independent, absolutely continuous dis-
tributions Fα and Fξ. Each component k in ξi is independently drawn from the marginal
distribution Fξk s.t. Fξ = Fξ1 · . . . · Fξm, where m is the dimension of ξi. G is pairwise
independent of Fα and Fξ.

User i’s expected utility µi, given the realized types αi and ξi, allocation di = 1, and
reward ri, is obtained by taking the expectation of (2.2) with respect to the random variable
x̄i ∼ Gξi :

µi(di = 1, ri) =
∫
R+
ui(αi, ri, x) dGξi(x), (2.7)

which is strictly monotonically increasing in reward ri, cf. (2.2). Letting G denote the CDF
of G, (2.7) for ri = 0 becomes

µi(di = 1, ri = 0) = qi

[
x̂i(1− G(x̂i))−

∫ ∞
x̂i

x dGξi(x)
]

which is negative. Hence, there is a unique r̃i such that µi(di = 1, r̃i) = 0, i.e. the unique
threshold reward level for which user i’s expected utility is zero. We approximate r̃i with
Newton’s method, exploiting the fact µi is monotonically increasing in ri. Due to the same
property, any reward ri ≥ r̃i fulfills the IR constraint as µi(di = 0) = 0 (cf. Eq. 2.2).

2.3.3 Mechanism for Demand Response
We now present the Demand Response Mechanism:

1. Each user announces her private type zi ∈ Θi to the DRP. We will later show that this
mechanism is incentive compatible, so that users report their types truthfully. In the
following, we thus let zi = θi.
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2. The DRP calculates the unique r̃i for each user based on the reports θi with Newton’s
method on (2.7).

3. The DRP sorts {r̃i | i ∈ I} in ascending order. Call this sorted set R.

4. The DRP implements the social choice y as follows:

jmax = min
j

j ∈ N+

∣∣∣∣ j∑
i=1

δi(r̃j|θi) ≥M

 (2.8a)

j(i) = min
k

k ∈ N+

∣∣∣∣ k∑
s=1,s 6=i

δs(r̃k|θs) ≥M

 ∀ i ∈ {1, . . . , jmax} =: T (2.8b)

ri ← r̃j(i) ≥ r̃i ∀ i ∈ T (2.8c)

The allocation decision and the reward vector are

d = (1, . . . , 1,0n−jmax), (2.9a)
r = (r̃j(1), . . . , r̃j(jmax),0n−jmax). (2.9b)

In the above mechanism, δi(r̃j|θi) denotes the expected reduction of user i, given the re-
ward level r̃j conditional on truthful reporting zi = θi, which is computed by taking the
expectation on (2.1) and (2.3) with respect to ξi.

The mechanism first determines the set of targeted users T by selecting the smallest
index jmax ∈ {1, . . . , n}, such that the sum of expected reductions of users 1 through jmax,
if each user were given the reward r̃jmax , exceeds the desired aggregate amount M (2.8a).
Notice that since the set R is sorted in ascending order, r̃jmax ≥ r̃i ∀ i ≤ jmax. Because
µi(di = 1, ri) is strictly monotonically increasing in ri, all targeted users will respond to
incentive level r̃jmax .

Next, the reward for each user i ∈ T is determined by running the same exact mechanism
(2.8a) on I \ i, i.e. the set of all users excluding i (2.8b). Denote the user with the largest
threshold reward r̃j(i) in this new set with j(i). This reward level is then assigned to user i
(2.8c).

In summary, the first jmax users (2.8a) with the smallest threshold rewards r̃i are offered
user-specific unit-rewards ((2.8b), (2.8c)). The remaining n− jmax users are not targeted.

Lastly, to ensure that the mechanism returns a valid index jmax, we restrict M to the
range

[
0, ∑n−1

i=2 δi(r̃n−1|θi)
]
. If M exceeds this range, there are not enough users to achieve

expected aggregate reduction M on the given n users.

Theorem 1. If M ∈
[
0, ∑n−1

i=2 δi(r̃n−1|θi)
]
, the DR Mechanism terminates. The mechanism

fulfills the IR constraint. Truthful reporting, i.e. s∗i (θi) = θi, establishes a DSE.

Since truthful reporting establishes a DSE (Theorem 1), Mechanism I is also IC, due to
the revelation principle (Milgrom 2004).
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Remark 1. Due to the fact that {(αi, ξi)}ni=1 are realizations of continuous random variables,
no ties need to be broken in (2.8a), (2.8b) and the sorting of the users intoR, because identical
threshold rewards r̃i = r̃j, i, j ∈ I, i 6= j, only occur with probability zero.

The presented mechanism runs inO(n log n) time, as it takesO(n log n) time to create the
sorted list R̃ and log n time to determine the correct index jmax (2.8a) with a binary search
on all possible values of j = 1, . . . , n. Once jmax has been found, we have to determine
the reward level for each user by running the same mechanism again, which amounts to
O(n log n). This yields a runtime of O(n log n).

Remark 2. This mechanism is motivated by the classic Vickrey-Clarke-Groves Mechanism
(Milgrom 2004), as it allocates an “item” (in our case reward) to the “highest” bidders (in
our case lowest threshold reward levels).

2.3.4 Numerical Example
Table 2.1 lists threshold rewards r̃i and reduction functions of 6 hypothetical users in a
synthetic user pool. The linearity of {δi}6

i=1 is assumed for ease of exposition. Let M = 4.3.

Pool of Users
User# 1 2 3 4 5 6
r̃i 0.5 1.0 1.5 1.8 2.0 2.1

δi(ri) 1 + r1 2 + r2
2 1 + r3

3 2 + r4
4 1 + r5

2 1 + r6
5

Table 2.1: Example User Characteristics

(2.8a) selects jmax = 2 such that δ1(r̃2) + δ2(r̃2) = (1 + 1) + (2 + 1
2 · 1) = 4.5 ≥M . Thus

T = {1, 2}. (2.8b) then determines j(1) and j(2) by solving (2.8a) on T \ 1 and T \ 2,
respectively:

• For i = 1, j(1) = 4 because δ2(r̃4) + δ3(r̃4) + δ4(r̃4) = (2 + 1.8/2) + (1 + 1.8/3) + (2 +
1.8/4) = 6.95 ≥M . Indeed, j(1) 6= 3 because δ2(r̃3)+δ3(r̃3) = (2+1.5/2)+(1+1.5/3) =
4.25 < M .

• For i = 2, j(2) = 4 because δ1(r̃4)+δ3(r̃4)+δ4(r̃4) = (1+1.8)+(1+1.8/3)+(2+1.8/4) =
6.85 ≥M . Indeed, j(2) 6= 3 because δ1(r̃3) + δ3(r̃3) = (1 + 1.5) + (1 + 1.5/3) = 4 < M

User 1 and 2’s rewards therefore are r̃4, see (2.8c).
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2.4 Effect of Baseline “Gaming”
By expanding user i’s reduction of consumption (2.1),

δi = (x̂i − x̄i) + x̄i(1− e−αiri) =: δBL
i + δri , (2.10)

it becomes clear that the measured reduction δi of user i is comprised of two components:
δBL
i , which captures the difference between the baseline x̂i and the base consumption (i.e.

the consumption with no reward), and the actual reduction δri due to the elasticity of user i
in response to the reward level ri. δBL

i is a “virtual reduction”, which, if positive (negative),
represents the amount of falsely measured reduction (increase). From an economic perspec-
tive, δBL

i > 0 results in falsely allocated credit from the utility to the DRP as well as from
the DRP to users i. On the contrary, δBL

i < 0 is synonymous with a misallocated monetary
transfer from user i to the utility as well as from the utility to the DRP proportional to the
amount of |δBL

i |. To diminish the effect of virtual reduction, the baseline estimates should
become as precise as possible. We make the following assumption:

Assumption 4. The random variables αi and ξi for different points in time are independent.

Assumption 4 excludes the possibility of baseline manipulation (Campaigne, Balandat,
and Ratliff 2016), which captures the fact that users can inflate or deflate their baseline, given
the knowledge of future DR events, in order to increase their calculated reduction δi (2.1).
For example, a user can increase her expected utility (2.2) for a DR event by consciously
over-consuming prior to the DR event so as to increase the baseline x̂i, which results in a
higher payment ri · [x̂i − xi]+, despite having a zero actual reduction δri . However, as DR
events are difficult to forecast, the mild assumption that users do not consciously manipulate
their baseline justifies Assumption 4, that is, users consume independently of the past and
the future.

As a result, averaging 10 recent observations for weekdays (or 4 for weekends and hol-
idays), excluding hours of past DR events, results in an unbiased estimate of the mean
consumption xi, but with considerable variance around xi. From a theoretical perspective,
the baseline estimate approaches zero variance as the number of previous observations to
estimate x̂i goes to infinity, due to the Central Limit Theorem and Assumption 4. In the
next Section, we simulate the effect of more precise baseline estimates on the quantity of
virtual reductions δBL

i .
As the analysis of the economic implications of this virtual baseline reduction component

is outside the scope of this thesis, the reader is referred to (Borenstein, Jaske, and Rosen-
feld 2002a), which explicitly characterizes the magnitude of marginal competitive rents in
California’s wholesale electricity market, and (Zhou, Balandat, and Tomlin 2016b; Zhou, Ba-
landat, and Tomlin 2016a), where the authors suggest alternative baselining methodologies
based on Machine Learning, which weaken the effect of such virtual reductions.
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2.5 Simulations
In this section, we simulate the presented mechanism and the effect of virtual reductions
stemming from imperfect baseline predictions. We utilize hourly smart meter data from
1,000 residential customers serviced by the three largest utilities in California (Pacific Gas
& Electric, San Diego Gas & Energy, and Southern California & Edison).

2.5.1 Approximation of Base Consumption
Figure 2.3 shows the distribution of the hourly base consumptions between 5-6 pm in the
absence of DR events of a selected user. The restriction to 5-6 pm is arbitrarily chosen. For
a more thorough analysis, we would have to analyze all 24 hours of the day separately.
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Figure 2.3: Lognormal Consumption Distribution Fit for Selected User, 5-6 pm

It is found that the base consumption x̄i can be approximated with a log-normal distri-
bution, whose density

N (log x) = 1
σ
√

2π
exp

(
−(log(x− `)− µ)2

2σ2

)
(2.11)

is fully parameterized by the shape σ > 0, scale s = eµ > 0, and location parameter `. As
(2.11) has support on (`,∞), the location ` denotes the lower bound on the support of the
base consumption distribution.

Fitting a log-normal distribution to the hourly consumptions between 5-6 pm across all
users yields a distribution of the compound statistics ξi = (σ, s, `), given below:

x̄i ∼ Lognormal(σ, s, `) σ ∼ N (µn, σn)
s ∼ Cauchy(`c, sc) ` ∼ Exponential(λe)
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That is, the shape parameter σ is best approximated with a Gaussian distribution N (µn, σn),
the location ` by a Cauchy distribution parameterized by location `c and scale parameter
sc, and the scale parameter s by an exponential distribution with parameter λe. Figure 2.4
shows the distribution of these compound statistics across all 1,000 users.
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Figure 2.4: Compound Statistics for Lognormal Consumption Distribution. Left: Shape,
Middle: Location, Right: Scale

2.5.2 Performance of DR Mechanism
We compare the DR Mechanism (2.8a)-(2.8c) to the hypothetical case of an omniscient
DRP, which knows {(αi, ξi)}ni=1. Despite this being an unrealistic scenario, it provides a
near-optimal approximation of the minimum payment disbursed to the users necessary to
elicit a target reduction of M . Given the sorted list R of user-specific threshold rewards, the
omniscient DRP implements the social choice yo = (do, ro) as follows:

jo = min
j

j ∈ N+

∣∣∣∣ j∑
i=1

δi(r̃i) ≥M

 (2.12a)

T o = {1, . . . , jo} (2.12b)
roi = r̃i ∀ i ∈ T o (2.12c)
do = (1, . . . , 1,0n−jo) (2.12d)

That is, the DRP determines the smallest index jo to obtain the desired expected aggregate
reduction M (2.12a) where each user {1, . . . , jo} is given their individual threshold reward
r̃i (2.12c). These are the targeted users (2.12b), (2.12d).

Due to {(αi, ξi)}ni=1 being publicly known, users are unable to extract information rent
from the DRP, which is the payment to the users required to elicit their private information
(Laffont and Martimort 2002). Hence, the DRP can offer targeted users their threshold
reward r̃i, which keeps users at an expected utility (2.7) of zero. To guarantee user par-
ticipation, the DRP has to offer the reward level r̃i + ε to each user i ∈ T o, where ε is an
arbitrarily small positive number.
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Figure 2.5 compares the DR Mechanism (2.8a)-(2.8c) to the omniscient allocation with
respect to the number of targeted users (left) and the total amount of rewards disbursed
(right) on n = 500 users whose parameters ξi = (σi, si, `i) are sampled from the fitted
distributions in Figure 2.4. As expected, the omniscient allocation is more economical at
eliciting a particular aggregate reduction target M due to the lack of private user informa-
tion, namely about 45% better than the DR mechanism. However, it needs to target more
customers as each customer in the omniscient case receives a smaller reward level than in
the DR mechanism.
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Figure 2.5: Number of Targeted Users and Total Payment to Users for DR Mechanism (blue)
vs. Omniscient Allocation (green), n = 500, q = 5.0, αi ∼ unif[0.05, 0.06].

2.5.3 Virtual Reductions
Figure 2.6 shows the total reduction∑i∈T δi of all targeted users and its components∑i∈T δ

BL
i

and ∑i∈T δ
r
i as a function of M for n = 500 users, q = 5, and elasticities {αi}ni=1 drawn from

a uniform distribution with support [0.05, 0.06]. The baseline computed with a particular
number x of previous days taken into consideration is calculated as the mean of x randomly
drawn samples from the empirical consumption distribution (2.11).

As can be seen from Figure 2.6, almost the entire reduction is attributed to the baseline
component ∑i∈T δ

BL
i for small M . With larger values of M , the contribution of ∑i∈T δ

BL
i

decreases marginally and finally starts decreasing. This can be explained by the fact that
sorting users in R tends to put users with the highest δBL

i towards the start of the array,
while those with the lowest (and negative) δBL

i bunch up at the end of R. Consequently, as
more users are assigned to T , the sum of baseline reductions decreases. The actual reduction∑
i∈T δ

r
i increases exponentially with the number of users targeted, because as more users are

assigned to T , the per-unit reward levels also increase, which results in a superlinear growth
of ∑i∈T δ

r
i .

For increasing numbers of baseline averaging components, that is, the number of previous
days to calculate the baseline, the variance of the baseline estimate x̄i − x̂i decreases, and



CHAPTER 2. ELICITING PRIVATE USER INFORMATION IN DR 20

0 25 50 75 100 125 150 175
Aggregate Reduction Target M

0

50

100

150

R
ed

uc
ti

on
C

om
p

on
en

ts

Effect of BL Accuracy on δBL vs. δr

δBL,# = 4

δBL,# = 6

δBL,# = 8

δBL,# = 10

δBL,# = 14

δr,# = 4

δr,# = 6

δr,# = 8

δr,# = 10

δr,# = 14

Target M

Figure 2.6: Composition of Target Aggregate Reduction M for varying Baselines. Red:∑
i∈T δ

BL
i . Blue: ∑i∈T δ

r
i . Parameters: n = 500, q = 5.0, αi ∼ unif [0.05, 0.06]

so the virtual reductions decrease. For the limiting case of a perfect baseline, the virtual
reductions are zero.

Finally, Figure 2.7 depicts the total amount of payments the DRP has to make to the
users for varying baseline accuracies in the range M ∈ [0, 100], where virtual payments have
the largest effect (see Figure 2.6). For more inaccurate baselines (fewer number of averaging
days), the DRP has to pay users less as it can exploit the virtual reduction component.
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Figure 2.7: Payments to Users to Elicit M for varying Baseline Accuracies.
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2.6 Conclusion
We modeled Residential Demand Response with a Mechanism Design framework, in which
a Demand Response Provider asks a subset of its customers under contract to reduce their
electricity consumption temporarily in exchange for a monetary reward. Each user’s con-
sumption in response to a per-unit reduction incentive is modeled as a logarithmic demand
curve where the intercept and the slope are private information of users. While each user
has a fixed slope, the user-specific intercept, which corresponds to the consumption given
no incentive, is modeled as a realization of a compound random variable, capturing the fact
that users often do not consume electricity in a profit-maximizing fashion, but rather are
following habits, and hence have no explicit utility function. To make an informed choice
about the magnitude of reductions in response to incentives to achieve an a-priori defined
aggregate reduction target M , the Demand Response Provider asks for residential customers’
bids to elicit their private information. Reductions are measured against a counterfactual
estimate of the consumption in the hypothetical case of no DR event, which in this chapter
is the “10-in-10”-baseline employed by the California Independent System Operator. Since
this baseline is plagued by high variance, the Demand Response Provider can exploit “vir-
tual reductions” emanating from high baseline estimates, which are false-positive reductions
despite the users not having reduced, but whose role diminishes as the baseline becomes
more precise. The Demand Response mechanism is validated on hourly smart meter data of
residential customers in California.

Our analysis is an initial step towards quantifying economic implications of Demand
Response on a residential level. While we approximated users’ base demand (i.e. in the
absence of incentives) reasonably well with existing smart meter data, the price elasticity of
users in response to incentives is unknown, a fact that is complicated by the fundamental
problem of causal inference. Thus, to further validate our analysis on real data, credible
parameters for users’ slope of the demand curve would be necessary.

Lastly, extending the single period analysis employed in this chapter towards a dynamical
problem, which allows for baseline manipulation of users, is a logical next step. Comparing
the “10-in-10”-baseline to improved baseline estimates obtained with Machine Learning tech-
niques, which exploit serial correlation of consumption time series and are able to achieve
higher predictive accuracy, would shed further light on the economics of Residential Demand
Response, as the accuracy of prediction correlates negatively with the amount of virtual re-
ductions.
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Chapter 3

Analysis of Peer Effects on Electricity
Consumption

3.1 Introduction
While the previous chapter was concerned with the interactions between a principal (Demand
Response Provider), this chapter seeks to shift the focus towards the interaction between
users.

Energy efficiency programs have emerged as a viable resource to yield economic bene-
fits to utility systems and to reduce the amount of greenhouse gas emissions. Demand-side
management aims to modify consumer demand through financial incentive schemes and to
induce behavioral changes through education. Specifically, users are offered rewards to con-
serve energy during peak hours or to shift usage to off-peak times. With communications and
information technology constantly improving, which are characteristic elements of today’s
smart grid, demand-side management technologies are becoming increasingly feasible.

Previous academic work by psychologists, political scientists, and behavioral economists
has found that social comparisons can have a significant impact on people’s behavior, ex-
ploiting the willingness of individuals to conform to a standard, receive social acclaim, or
simply the belief that other people’s choices are informative in the presence of limited or
imperfect information (Akerlof and Kranton 2000; Mani, Rahwan, and Pentland 2013).

Motivated by this line of academic work and the pressing need to improve energy ef-
ficiency, various companies and groups, for instance OPOWER, have conducted randomized
control trials to investigate the impact of peer effects on energy consumption of residential
households by sending out quarterly energy reports (so called Home Energy Reports) to
users with a comparison of their usage to their closest neighbors (Ayres, Raseman, and Shih
2009). While all experiments unanimously found an average reduction among the highest
consuming users of around 1-2% (Allcott 2011), ambiguous results were found among low
consumers, with one study reporting a “boomerang effect”, that is, an increase of energy
demand among the most efficient households.
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Network effects in social networks and platforms often exhibit positive externalities, cap-
turing the intuitive fact that an increased amount of platform activity promotes a local in-
crease in platform activity. From a game-theoretic perspective, it is known that an analysis
of games under such strategic complements admits well-behaved solutions if utility functions
are supermodular with parameters drawn from a lattice (Topkis 1998; Zhou 1994). Examples
for such games can be found in modeling technology adoption, human capital decisions, and
criminal and social networks (Calvó-Armengol, Patacchini, and Zenou 2009). The opposite
effect, that is, in games of strategic substitutes where an increased amount of activity leads
to local reductions of activity, is observed in information sharing and the provision of public
goods (Bramoullé and Kranton 2007). However, since utility functions in this setting tend to
lose the feature of supermodularity, finding equilibria is an inherently hard problem (Jackson
and Zenou 2014), and so these settings have been significantly less studied.

In an attempt to characterize the most influential players in a network, (Ballester, Calvó-
Armengol, and Zenou 2006) develops a quadratic model with continuous action spaces,
a parameterization which we employ in this thesis. Other research directions aiming at
understanding the impact of network effects on social phenomena include diffusion models
for the spread of information with the goal of influence maximization (Kempe, Kleinberg,
and Tardos 2003), repeated games to learn user interactions over time (Acemoglu et al. 2011),
or the analysis of systemic risk and stability (Acemoglu, Ozdaglar, and Tahbaz-Salehi 2015)
in financial networks. The problem of profit maximization of a monopolist selling a divisible
good, which is closely related with our work, has been investigated in (Candogan, Bimpikis,
and Ozdaglar 2012), where the authors assume a constant marginal cost of production.
However, to the best of our knowledge, a modeling approach for the impact of peer effects
on energy consumption, whose generation typically has quadratic marginal cost, has yet to
be formulated.

In this thesis, we propose a two-stage game-theoretic model for the energy consumption
of a network of users, serviced by the load-serving entity that is obligated to cover the
households’ energy demand at all times. We analytically solve for the equilibria of this game
under full information of the network structure and users’ parameters to characterize the
influence of peer effects on aggregate consumption and utility profit, for both the case of
perfect price discrimination and a single price valid for all users. For the case of incomplete
information, we obtain approximations of the utility’s profit, user consumptions, and the
optimal pricing scheme. Further, we analyze the profit-maximization problem by selecting
the best subset of users to be exposed to peer effects, and present a heuristic solution to this
NP-hard selection problem. Lastly, we provide theoretical statements on the properties of
users which ensure that the consumption under peer effects is reduced.

The remainder of this chapter is organized as follows: Section 3.2 presents the two-
stage game-theoretic model between the utility and the network of consumers and derives
consumption and price equilibria. Based on this model, Section 3.3 presents various theorems
on the reduction of consumption in response to the peer effect as well as on the effect of
uncertainty of the network structure on the optimal profit. Section 3.4 compares the utility’s
profit under the pricing schemes derived in Section 3.2. Next, the challenge of maximizing the
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utility’s profit by imposing a binary constraint on the number of users exposed to peer effects
is formulated and solved with a heuristic approach in Section 3.5. Section 3.6 concludes this
chapter. All proofs are relegated to Appendix A.2.

3.2 Game-Theoretic Model

3.2.1 Players
Define the set of consumers as I = {1, . . . , n}. Let W ∈ Rn×n define the interaction matrix
which describes the network links and strengths between users. More precisely, let wij ∈ [0, 1]
denote the strength of influence of user j on i. We assume wii = 0 ∀ i ∈ I and normalize the
row sums, ∑j∈I wij = 1 ∀ i ∈ I. Each element wij > 0 in W corresponds to a directed edge
from agent j to agent i, that is, the adjacency matrix G of the resulting directed graph is the
transpose of W . Each user i derives a utility ui ∈ R from consuming xi units of electricity
as follows:

ui = aixi − bix2
i − pixi + γixi

∑
j∈I

wijxj − xi

 . (3.1)

In (3.1), ai and bi denote user-specific parameters to describe the concave and increasing
direct utility from consuming xi units of electricity, and pi denotes the unit price set by
the utility. The last term captures the strategic complementarity between user i and its
neighbors. It is positive if user i consumes less than the average of its neighbors, and vice
versa. The difference between the average consumption and the user consumption is scaled
by a proportionality constant γi and the consumption level xi.

Since each user consumes xi units of electricity at unit price pi, the utility’s profit reads
as follows:

Π =
∑
i∈I

pixi − cix2
i , (3.2)

where the marginal cost of production 2cixi is assumed to be linear in the production quantity
xi, which is a standard and often made assumption. For expositional ease, we further
assume that the utility generates electricity itself and does not procure it from the wholesale
electricity market. Relaxing this assumption would introduce uncertainty in wholesale prices,
a problem which is outside the scope of this thesis.

3.2.2 Two-Stage Game
To model the hierarchy between the utility, which acts as a monopolist that has the power
to set prices, and the users, we formulate a two-stage game as follows:
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1. The utility determines the optimal price p∗ so as to maximize its profit by taking into
account users’ consumption decisions as a function of any particular price vector p,
that is,

p∗ = arg max
p≥0

∑
i∈I

pixi(pi)− cix2
i (pi) (3.3)

2. Each agent observes the price p∗i and x−i and consumes x∗i units of electricity so as to
maximize her utility, that is, x∗i = arg maxxi≥0 ui(xi,x−i, γi,W ).

We will solve this two-stage game by finding a subgame perfect equilibrium for the cases
of perfect price discrimination and a single price for all users. We also differentiate between
the full-information case where the utility has knowledge about all {ai}ni=1 and {bi}ni=1, and
the case in which only their expectations E[a] and E[b] are known.

3.2.3 Subgame-Perfect Equilibrium
Assumption 5. ai > pi and bi > γi ∀ i ∈ I.

Theorem 2. Given the price vector p and consumption vector x−i, the utility maximizing
response of user i is

x∗i =
ai − pi + γi

∑
j∈I wijxj

2(bi + γi)
. (3.4)

Further, {x∗1, . . . , x∗n} constitute a unique Nash Equilibrium of the second stage game.

Recall that wii = 0 ∀ i ∈ I, which allows the right hand side of (3.4) to depend on x−i
only. Assumption 5 is necessary to ensure that (3.4) is indeed a maximum attained at a
non-negative value. With the definitions B := diag (2b1, . . . , 2bn) and Γ := diag (γ1, . . . , γn),
(3.4) can be rewritten as

x∗ = (B + 2Γ− ΓW )−1 (a − p). (3.5)

Definition 2 (Katz-Bonacich Centrality (Katz 1953; Bonacich 1987)). Given the adjacency
matrix G, the weight vector w, and the scalar 0 ≤ α < 1/ρ(G), where ρ(G) denotes the
spectral radius of G, the weighted Katz-Bonacich Centrality is defined as

Kw(G,α) = (I − αG)−1 w =
∞∑
k=0

(αG)kw. (3.6)

The centrality of a particular node i can be interpreted as the sum of total number of walks
from i to its neighbors discounted exponentially by α and weighted by wi.

For the special case γ1 = . . . = γn = γ, and noting that G = W>, (3.5) can be rewritten
in terms of the weighted Katz-Bonacich Centrality:

x∗ = (B + 2γI)−1
(
I − γW>(B + 2γI)−1

)−1
(a − p)

= (B + 2γI)−1Ka−p(W>(B + 2γI)−1, γ)
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We note that (B + 2Γ− ΓW ) is strictly diagonally dominant for all γ ≥ 0, with positive
diagonal entries. The Gershgorin Circle Theorem then states that all its eigenvalues are
strictly positive, from which invertibility follows.

We first focus on the full information case and present the equilibria in Theorems 3 and
4. Let C = diag(c1, . . . , cn).

Theorem 3. Under perfect price discrimination, the profit-maximizing solution p∗ to the
first stage game is

p∗ = a
2︸︷︷︸

(1)

+CZ
a
2︸ ︷︷ ︸

(2)

−W>ΓZ a
4︸ ︷︷ ︸

(3)

+ ΓWZ
a
4︸ ︷︷ ︸

(4)

, (3.7)

Z =
[
2Γ +B + C −

(
W>Γ

2 + ΓW
2

)]−1

.

The four components are interpreted as follows:

1. A constant term ai/2, c.f. ai in (3.1),

2. An additional cost that correlates with cost ci,

3. An incentive for strongly influential users W>Γ,

4. An additional cost for strongly influenced users ΓW .

The optimal consumption under this policy is

x∗ =
(
C +B + 2Γ− W>Γ

2 − ΓW
2

)−1 a
2 . (3.8)

For the special case of symmetric networks, i.e. W = W>, the optimal profit Π∗ becomes

Π∗ = 1
4a>(C +B + 2Γ− ΓW )−1a. (3.9)

Theorem 4. Under complete information, i.e. the utility knows ai and bi ∀ i ∈ I, the
profit-maximizing single price p∗u is

p∗u =
[
1− 1>A−11

2 · 1> (A−1 + A−1CA−1) 1

]
ā (3.10)

and the consumption equilibrium writes

x∗ = A−1
[
a −

(
1− 1>A−11

2 · 1> (A−1 + A−1CA−1) 1

)
ā1
]
, (3.11)

where A = B + 2Γ− ΓW and ā = ∑n
i=1 ai/n.
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Lemma 1. For symmetric networks, i.e. W = W>, the single profit-maximizing price (3.10)
and its corresponding consumption (3.11) simplify to

p∗u = 1
n

n∑
i=1

p∗i (3.12a)

x∗u = (B + 2Γ− ΓW )−1 (a − ā1) + (C +B + 2Γ− ΓW )−1 ā

21. (3.12b)

By construction of the optimal prices and consumptions, the optimal profit under a single
price is less than under perfect price discrimination, that is, Π∗u ≥ Π∗.

Next, for the incomplete information scenario and additional assumptions W = W> and
C = cI, the utility can approximate the profit-maximizing price as in Theorem 5.

Theorem 5. In the case of incomplete information, that is, only the expectations of {ai}ni=1
and {bi}ni=1 are known and denoted with E[a] and E[b], the optimal single profit-maximizing
price p̃∗u and the expected corresponding consumption equilibrium E[x̃i] are bounded below by

p̃∗u ≥
E[a]

2

[
1 + c

n
1> [2Γ + (2E[b] + c)I − ΓW ]−1 1

]
, (3.13a)

E[x̃i] ≥
E[a]− p̃∗u,LB

n
· 1> (2Γ + 2E[b]I − ΓW )−1 1. (3.13b)

where p̃∗u,LB denotes the lower bound on the single profit-maximizing price p̃∗u (3.13a).

Theorem 6 (Profit Maximizing Price without Peer Effects). In the case of incomplete in-
formation and in the absence of any peer effects, the single profit-maximizing price p̂∗ and
the expected user consumption E[x̂i] are

p̂∗ = E[b] + c

2E[b] + c
E[a], (3.14a)

E[x̂∗i ] = E[a]
2(2E[b] + c) ∀ i ∈ I. (3.14b)

3.3 Theoretical Statements
We next seek to analyze under what conditions the aggregate consumption across all users
is less than in the absence of peer effects, which is a desirable goal from the energy efficiency
perspective.

Theorem 7. If ai =: a, bi =: b, and γi =: γ ∀ i ∈ I, and Assumption 5 holds, then x∗i (3.4)
is strictly monotonically decreasing in γ, independent of the network topology W .

Theorem 7 is interesting because identical consumers will reduce their optimal consump-
tion compared to the case of no peer effects, even though x∗i = x∗j ∀ i, j ∈ I and hence the
peer effect term γixi

(∑
j∈I wijxj − xi

)
is zero.
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Theorem 8 (Influence of High Consumer). Given that wij =
(∑

j∈I 1wij>0
)−1
∀ i ∈ I,

that is, all connections are of equal weight, and bi =: b and γi =: γ ∀ i ∈ I. Define the
set of users N := {i ∈ I \ j} with the characteristic ai − pi =: α ∀ i ∈ N . Further, let j
be a “high consumer”, that is, aj − pj =: ᾱ > nα. Denote the set of all neighbors of j as
Cj := {i ∈ N | wij > 0}. Then, independent of the network topology, for all users i ∈ Cj, x∗i
is increasing for small enough values of γ whereas x∗j is strictly monotonically decreasing in
γ.

Let mi denote the number of neighbors of consumer i. Theorem 8 can be restated as in
Lemma 2.

Lemma 2. x∗i , i ∈ Cj is increasing for small enough values of γ if ᾱ ≥ mj +1. Equivalently,
if ᾱ = kα, k ∈ N, only the subset {i ∈ Cj | mi ≤ k− 1}, i.e. the set of users with fewer than
k − 1 neighbors, shows an initial increase in consumption as a function of γ.

Theorem 8 and Lemma 2 describe conditions on the average consumption of any particu-
lar user’s neighbors to observe a “boomerang effect”, given there is a unique “high” consumer
among a pool of users of identical characteristics.

Theorem 9 (Targeted Peer Effects). For a general setting of n ≥ 2 users with non-
identical parameters ai, bi and a fixed price p among all users, exposing exactly two connected
users to the peer effect, w.l.o.g. referred to as users “1” and “2”, reduces the sum of their
consumptions under the following conditions:

b1 ≤
(a1 − p) [4(b2 + γ)− γw12w21]

4(b2 + γ)
n∑
j=3

w1jxj + 2w12

(
a2 − p+ γ

n∑
j=3

w2jxj

) (3.15a)

b2 ≤
(a2 − p) [4(b1 + γ)− γw12w21]

4(b1 + γ)
n∑
j=3

w2jxj + 2w21

(
a1 − p+ γ

n∑
j=3

w1jxj

) (3.15b)

where xj, j ∈ {3, . . . , n} is given by xj = (aj − p)/(2bj). For the special case of n = 2, this
condition reads

b1 ≤
(a1 − p) (4b2 + 3γ)

2(a2 − p)
and b2 ≤

(a2 − p) (4b1 + 3γ)
2(a1 − p)

Theorem 9 states that if two connected users both receive notifications of their neighbors’
consumption, the sum of their consumptions decreases as long as they are not “too different”
from each other and their neighbors. Thus, the total consumption of a network of users
correlates negatively with the number of users given the treatment. Analogous bounds can
be found for exposing more than two users to the peer effect at the expense of notational
ease.
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Finally, we investigate the case of incomplete information about the network structure
for the case of symmetric networks, i.e. W = W>. It is assumed that the monopolist
only knows an approximation of W , denoted with W̃ , where W̃ = W̃>. Under perfect
price discrimination, the utility can set profit-maximizing prices in the first stage of the
game, assuming that users’ consumption x̃ in the first stage is determined according to W̃ .
The real consumption x∗, however, follows the actual W (which is unknown to the utility).
Theorem 10 provides a lower bound on the ratio of the optimal expected profit under network
uncertainty to the profit obtainable under perfect network information.

Theorem 10 (Uncertainty in W ). Assume that W = W> and Γ = γI, γ ≥ 0. If the
monopolist has access only to the estimate W̃ with W̃ = W̃>, then, under perfect price
discrimination, the ratio of optimal expected profit Π̃∗ to profit Π∗ under perfect knowledge
of W is bounded below:

Π̃∗
Π∗ ≥

λmin(C +B + 2Γ− ΓW )
λmax(C +B + 2Γ− ΓW ) + γ‖W − W̃‖2

, (3.16)

where ‖ · ‖2 is the Euclidian matrix norm.

For the edge case W̃ = 0, we have ‖W‖2 = 1 due to the well-known fact that the maximal
eigenvalue of an adjacency matrix is the degree of the graph. Due to row normalizations
of W , the degree is 1, which corresponds to the eigenvector 1 associated with eigenvalue 1.
To qualitatively show that the bound (3.16) becomes tighter as W̃ approaches W , observe
that ‖W − W̃‖2 corresponds to the largest singular value of W − W̃ , which is identical to its
spectral radius because W − W̃ is Hermitian. Finally, the Gershgorin Circle Theorem states
that every eigenvalue of W − W̃ lies within at least one of the disks that is centered at the
origin, each of which has radius Ri = ∑

j 6=i |wij − w̃ij|. As wij → w̃ij, Ri → 0.
To illustrate the bound (3.16), let n = 24 and W ∈ R24×24 be the ground truth interaction

matrix of 12 randomly chosen, fully connected users, whose parameters ai, bi, and ci ∀ i ∈ I
are randomly drawn from appropriate distributions. Assuming that the monopolist knows
that 12 out of 24 users are fully connected, we iterate through all

(
24
12

)
combinations and

calculate ‖W̃ −W‖2 and the profit bound (3.16) as a function of the number of correct user
assignments, where we take the mean across any particular number of correct assignments.
As the number of correct assignments increases, the metric for the mismatch between W
and W̃ , namely ‖W̃ −W‖2 decreases, whereas the profit bound increases, see Figure 3.1.

Theorem 11 (Efficiency). The consumption equilibrium x∗ (3.8) is inefficient as the social
welfare S attained at (3.8) is suboptimal. Specifically, x∗i < xoi ∀ i ∈ I, where xo denotes the
consumption that maximizes social welfare, which reads

xo =
(
C + B

2 + Γ− W>Γ
2 − ΓW

2

)−1 a
2 . (3.17)

Allocating users per-unit subsidies si = (bi + γi)x2
i /2 (Pigouvian Subsidy) can restore the

social optimum.
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Figure 3.1: ‖W − W̃‖2 for 12 fully connected users embedded in a network of n = 24
customers, γ = 0.05.

3.4 Comparison of Pricing Schemes

3.4.1 Network Topologies
In the remainder of this chapter, we assume users to be connected to each other through one
of the basic network topologies displayed in Figure 3.2.

1

3 4

2 1

3 4

2 1

3 4

2

Figure 3.2: Basic network architectures for n = 4: Fully connected, star, ring

3.4.2 Simulation
We now simulate the consumption and price equilibria as well as the profit of the monopolist
as a function of the network strength parameter γ under the following three pricing scenarios:

• Case 1: Monopolist has complete information of a and b and sets prices with perfect
price discrimination (3.7);

• Case 2: Monopolist has complete information of a and b and sets the profit-maximizing
single price (3.10);

• Case 3: Monopolist has access only to E[a] and E[b] and sets the lower bound on the
single price (3.13a).
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We simulate a network of n = 10 fully connected users with ai and bi randomly drawn
from uniform distributions with support [8, 12] and [0.75, 1.25], respectively. The cost is set
to ci = 2 for all users. As the results for the star and ring network are qualitatively similar
to the fully connected network, we omit discussions of these cases. The optimal prices for
each of the cases (1)-(3) are then calculated, which fixes the users’ consumptions and the
monopolist’s profit. Repeating this process 10,000 times and taking the mean across all
iterations yields the characteristics in Figure 3.3.

As expected, the profit under perfect price discrimination (3.7) exceeds the profit obtained
with cases (2) and (3), where, somewhat surprisingly, setting the lower bound on the prices
(case (3)) does not give up too much profit, compared to case (2). This indicates that the
lower bound on the optimal price (3.13a) is “close” to the actual optimum, which is proven
by the second subplot, from which it follows that (3.13a) falls short of (3.10) by less than
< 1%.

Consequently, the lower price bound (3.13a) results in a higher average user consumption
than in case (2), which directly follows from the consumption equilibrium (3.4). The average
user consumption under perfect price discrimination is sandwiched between cases (2) and
(3).

Lastly, the maximum user consumption for perfect price discrimination is about 30%
lower than in cases (2) and (3), which has beneficial side-effects on grid operation. This ob-
servation also motivates the heuristic user-selection algorithm presented in the next section.

3.5 Profit Maximization with User Selection

3.5.1 Problem Formulation
We now seek to answer the following question: Given the single, exogenous price p and
the parameters {ai}ni=1 and {bi}ni=1 sampled from distributions with means E[a] and E[b],
respectively and are known to the monopolist, which users should be targeted to maximize
profit? This situation can arise if the utility is obligated to charge customers at a rate p per
unit of electricity and only wants to spend a limited budget on informing users about their
peers’ behavior. In other words, which best subset of all users should be exposed to the peer
effect such that the utility achieves maximum profit under exogenous price p? The profit
maximizing problem of the utility thus writes

maximize
δ1,...,δn

n∑
i=1

pxi − cix2
i

subject to x = (B + 2∆Γ−∆ΓW )−1 (a − p1)
n∑
i=1

δi = m, δi ∈ {0, 1}

(3.18)

where ∆ = diag(δ1, . . . , δn) and δi = 1 and δi = 0 denote that user i is targeted or non-
targeted, respectively. This is an NP-hard Mixed Integer Quadratically Constrained Program
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Figure 3.3: Profit of monopolist, single prices (3.10) and (3.13a), average user consumption,
and maximum consumption under perfect price discrimination (green), single pricing under
complete information (3.10) (yellow), and single pricing under incomplete information (3.13a)
(red). 10,000 iterations, a ∼ unif[8, 12], b ∼ unif[0.75, 1.25], ci = 2 ∀ i ∈ I.
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(MIQCP) due to the binary constraint to expose exactly m, 0 ≤ m ≤ n users to the network
effect and the quadratic objective, and so (3.18) does not admit a closed form solution.
An analytical solution requires exhaustive search, which is computationally infeasible for
any real network of users. Therefore, we resort to the following heuristic which was hinted
at at the end of Section 3.4: Given the user parameters a and b and the single price p,
we first compute the consumptions in the absence of any network effects, denoted with
x̃ = B−1(a − p1). Next, we calculate the optimal consumptions with the expectations of
E[a] and E[b], which we denote with E[x]. Lastly, the pairwise differences |E[x]− x̃i| are put
into a sorted list, and the heuristic selection algorithm returns the indices of the m largest
values in this list. That is, ∆h = diag(δh,1, . . . , δh,n), where δh,i = 1 if consumer i belongs to
the set of the m largest |E[x]− x̃i|, and δh,i = 0 otherwise.

The idea of this heuristic is motivated by Theorem 8, according to which a high consumer
in a network of low consumers can result in a consumption increase of low consumers. Since
the user parameters are sampled from a finite distribution, a single price on non-identical
users always results in suboptimal profit, but approaches optimality as users become more
similar. Exposing the highest and lowest consumers (measured against E[x]) to the network
effect nudges high users (low users) to consume less (more), thereby making the users more
similar in their consumption, which in turn increases the utility’s profit.

Further, the fact that the maximum user consumption under perfect price discrimination
(which achieves notably better profit than single pricing, see Figure 3.3) is about 30 % lower
than under single pricing corroborates the notion of exposing high consumers to the peer
effects. According to Theorem 8, such users reduce their consumption in response to the
peer effect, which reduces the maximum user consumption to increase profit.

The utility needs to find the sweet spot between the following two extremes: Targeting too
few users results in a suboptimal increase in profit. On the other hand, according to Theorem
9, targeting too many users leads to an overall consumption decrease because targeting a
customer whose neighbors are already exposed to the network causes the neighbors to reduce
their consumption further.

Note that this heuristic neither takes into account the interaction matrix W nor the
fact whether the deviation of the actual consumption from the expected one is positive or
negative, and so it could be improved by running a classification algorithm on the features
|E[x]− x̃i|+, |E[x]− x̃i|−, and γix̃i

(∑
j∈I wijx̃j − x̃i

)
.

3.5.2 Simulation
We let ci = 2, n = 10 as in Section 3.4 and analyze all three network topologies depicted
in Figure 3.2. ai and bi are sampled from the same uniform distributions. We set the
exogenous price as the profit-maximizing price in the absence of peer effects (3.14a), from
which the expected consumption E[x] is determined with (3.14b). The analytical solution to
the MIQCP (3.18) is determined with Gurobi (Gurobi Optimization 2016). We repeat this
calculation 10,000 times and take the mean across all iterations. To describe the performance
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of the heuristic, we define the performance metric S as follows:

Sm = Πh
m − ΠE

Π∗m − ΠE
· 100%, (3.19)

where Π∗m and Πh
m denote the profit under the analytical solution of (3.18) and the heuristic

with m targeted users, respectively. ΠE denotes the profit in the absence of any peer effects
(m = 0) achieved with exogenous price p where the users consume according to x̃ = B−1(a−
p1). Sm captures the fraction of the heuristic’s achieved profit improvement of the total
possible improvement.

Figure 3.4 shows the objective for the heuristic Πh (solid lines) and analytical solution
Π∗ (colored dashed line) for all network topologies as a function of m. The expected profit
with m = 0 follows by taking the expectation of the profit

E[Π]m=0 = n · Ea∼U [8,12]Eb∼U [0.75,1.25]
[
px− cx2

] ∣∣∣∣
x=a−p

2b

,

which is depicted as the black dashed line. Further, the percentage of cases where the
heuristic selects the identical subset of users as the analytical solution is depicted in the
second subplot. Sm and the maximum user consumption as a function of m are provided in
the third and fourth subplot, respectively.

For all network topologies, it can be seen that the optimal solution to (3.18) achieves an
increase in profit by ≈ 1% for m ∈ {2, 3, 4} compared to the case of no targeting, while at
the same time reducing the peak consumption by ≈ 4%. The performance of the heuristic
decreases in the number of consumers targeted and reaches its minimum at ≈ 75%, ≈ 82%,
and ≈ 90% for the ring, star, and fully connected network, respectively. The percentage of
optimal choices across all 10,000 iterations is always > 22%. These results suggest that the
presented heuristic achieves a good approximation of the optimal solution, which is NP-hard
and computationally intractable for larger, real-world networks.

3.6 Conclusion
Motivated by home energy reports that benchmark the consumption of individual users
against their neighbors, we proposed a two-stage game-theoretic model for a network of
electricity consumers, in which each consumer seeks to optimize her individual utility function
that includes a peer effect term. Specifically, users derive positive utility from consuming
less energy than the average of their neighbors, and vice versa. We investigated profit-
maximizing pricing schemes for the complete and incomplete information scenario as well as
for the single price and perfect price discrimination case. We provided theoretical statements
with regard to overall consumption, efficiency, and profit under network uncertainty. For
the case of targeting only a subset of all available consumers under an exogenous single
price, we formulated the monopolist’s profit maximization problem. The resulting NP-hard
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price (3.10). 10,000 iterations, a ∼ unif[8, 12], b ∼ unif[0.75, 1.25], ci = 2.
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optimization problem was solved with a heuristic approach, which simply targets those users
who deviate most from the expected consumption in the hypothetical absence of peer effects.
Compared to the analytical solution, this heuristic was shown to achieve acceptable accuracy.

This work could be extended by incorporating time. In particular, if we allow the monop-
olist to also procure electricity from the wholesale market whose prices are fluctuating, an
algorithmic and online treatment of this problem becomes necessary. The goal then becomes
to learn user preferences and the network structure over time. Further, the selection problem
to target the most valuable users for the objective of profit maximization calls for modeling
peer effects in auction settings, where the desired goal is to design a truthful and incentive
compatible mechanism to elicit user preferences.
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Chapter 4

Hedging Strategies in Electricity
Markets

4.1 Introduction
Historically, electricity was supplied by vertically integrated entities which maintained full
functional control over the entire supply chain, including generation, transmission, and dis-
tribution assets. This static structure constituted an impediment for new energy providers
on both the supply and retail end to participate in the energy market. In the United States,
the Federal Energy Regulatory Commission issued Orders 888 and 889 in April 1996 to re-
move such barriers of entry in an attempt to promote competition and market efficiency
(FERC Order No. 888. Transmission Open Access. Promoting Wholesale Competition
Through Open Access Non-discriminatory Transmission Services by Public Utilities; Recov-
ery of Stranded Costs by Public Utilities and Transmitting Utilities (Final Rule); FERC
Order No. 889: OASIS: Open Access Same-Time Information System and Standards of
Conduct (Final Rule)). The result of this market design process was a combination of a cen-
tral electricity pool operating day-ahead, overseen by Independent System Operators (ISOs),
and bilateral trading between generating companies and electric utilities, which supplanted
the traditional, vertically integrated entities.

As a consequence of the restructuring process, generators and utilities in the electricity
market started facing price and quantity risks ensuing from the inelasticity of user demand,
the steep supply curve due to the slowly changing nature of power plants’ output adjustment,
and prohibitive cost of energy storage. These factors allow small increases or decreases of
demand to result in a price boom or bust, respectively. Furthermore, despite the fact that
the economic consensus calls for passing along varying electricity prices to end-users in order
to increase economic efficiency (Borenstein, Jaske, and Rosenfeld 2002b; Borenstein 2005;
Borenstein and Holland 2005), policymakers have retained quasi-fixed electricity tariffs, e.g.
Time-of-Use pricing. In conjunction with the obligation of utilities to service end-users with
electricity at all times, risks associated with sudden price spikes are borne by the utility. This
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market situation has resulted in several crises. For instance, unseasonably warm climate in
the summer of 2000 resulted in California’s wholesale electricity prices rising to average
prices of more than 140 USD/MWh, leading to the bankruptcy of Pacific Gas & Electric,
California’s largest utility, and high profits of electricity generators (Borenstein, Jaske, and
Rosenfeld 2002a). Similar crises occurred in Texas (2004) and in the Midwestern United
States (1998).

These crises resulted in the following notable developments. Firstly, electric utilities
and generating companies started to hedge against price fluctuations through contracts on
different scales of time, ranging from short-term forward contracts to long-term contracts,
thereby locking in a fixed price and quantity to be delivered over a contractually specified
period of time. Secondly, Demand-Side Management (DSM), which aims to affect consumer
behavior during periods of peak demand, emerged as a viable tool to partially relay price
risks to end-users. For instance, companies like OPOWER provide Demand Response (DR)
services to utilities, allowing them to offer monetary rewards to end-users in exchange for a
reduction in electricity consumption during hours of peak demand (OPOWER).

Motivated by these shortcomings, a large body of research, particularly in operations
research, has studied optimal hedging contracts, most often from the utility perspective,
including (Oum, Oren, and Deng 2006; Oum and Oren 2009), where the authors construct
an optimal one-step hedging portfolio with standard power options, or (Hatami, Seifi, and
Skeikh-El-Eslami 2009), which finds an optimal energy procurement policy with stochastic
programming over a specified period. Borenstein 2006 analyzes hedging instruments against
price volatility for industrial customers. Wolak 2001 investigates hedging strategies for elec-
tricity generators.

While there exists a large body of literature on operational and algorithmic aspects of
DR (e.g. load scheduling and shifting (Mohsenian-Rad et al. 2010; Li, Chen, and Low
2011; Aalami, Moghaddam, and Yousefi 2010)), significantly less research has focused on
the role of DR programs as an alternative way of hedging. Notable examples are Deng and
Xu (2009), where the authors discuss interruptible service contracts, and Sezgen, Goldman,
and Krishnarao (2007), which estimates the economic value of DR programs for commerical
customers by adapting models used to value energy options. To the best of our knowledge,
no significant research has investigated the option value of residential DR programs. To
close this gap, we derive a stylized model for the utility’s profit under such DR schemes and
determine its optimal profit. The methodology we use is closest in spirit with Bitar et al.
(2012), where the authors determine the optimal bidding volume of wind generators in a
conventional energy market. We compare the profit under Demand Response to the case of
forward contracts and call options by incorporating the conditional value at risk (Rockafellar
and Uryasev 2002) measure. Using smart meter data of residential customers in California,
we find that DR can yield higher expected profits than under forward contracts and call
options, especially in the presence of high wholesale electricity prices.

The remainder of this chapter is organized as follows: In Section 4.2, we describe the
interactions between the participants in energy markets. Section 4.3 introduces forward
contracts, options, and Demand Response as hedging instruments for the Demand Response
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Provider. The effect of uncertainty in the user demand on the expected profit of the Demand
Response Provider is investigated in Section 4.4. We compute optimal, profit-maximizing
portfolios for load-serving entities in Section 4.5 and simulate decision boundaries between
them in Section 4.6. Section 4.7 concludes. All proofs are relegated to Appendix A.3.

Notation
Let E[·] denote the expectation of a random variable. Let [·]+ denote the hinge function,
i.e. [x]+ = max(0, x).

4.2 Market Participants
Figure 4.1 illustrates the interaction between generating companies, load-serving entities
(utilities), the wholesale electricity market, and end-users of electricity.

Generators

Wholesale Market

Utility

End Users

λf , r

d, h(r)

[d− q̄]+
λs

Supply
Payment

q̄

λ̄, P

Figure 4.1: Energy Market Participants and their Interactions

The electric utility can strike one-to-one contracts with generating companies to purchase
a fixed amount of electricity q̄ at a locked-in price λ̄ to be delivered at some a-priori specified
time in the future. P denotes the premium for each reserved unit of electricity. The utility
provides end-users with electricity at a fixed unit rate λf and is obligated to cover the random
demand d at all times. The rate λf is exogenously set by the Public Utilities Commission.
However, the utility can use DR to incentivize users to temporarily reduce their demand.
This is achieved by offering the reward r to end-users, which elicits a demand reduction
h(r). If the demand d exceeds q̄, i.e. the purchased amount of electricity through one-to-one
contracts with generators, the utility has to procure [d − q̄]+ units of electricity from the
wholesale market at uncertain wholesale price λs per unit. The market clearing price λs,
reflected by Locational Marginal Prices (LMPs), is a random variable and depends on the
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ratio of energy supply by generators, the total demand [d− q̄]+, operational constraints, as
well as congestion of the grid.

The interactions between generators and the utility as well as between end-users and
the utility are instruments to hedge utilities against high prices λs. If the utility expects
high wholesale prices λs, then it has an incentive to reduce customer demand d by engaging
in DR, or to procure cheaper electricity through contracts with generating companies. We
make the following assumptions:

Assumption 6. The utility is risk-neutral.

Assumption 7. The utility is price-taking.

Assumption 7 is a natural assumption, stating that the utility cannot influence prices by
exerting market power. Together with Assumption 6, the question we seek to answer in the
remainder of this chapter is how the utility maximizes its expected profit in the presence of
the random variables d and λs and hedging instruments. For simplicity, we focus on a single
load zone to avoid spatial heterogeneity of LMPs.

4.3 Optimal Hedging Strategies
Let λs and d be random variables with cumulative distribution functions (CDF) G(·) and
F (·), respectively. G and F are assumed to have support [0,∞) and [dmin, dmax], respectively,
where 0 ≤ dmin ≤ dmax. We assume the absence of any energy storage capabilities and focus
on a single-period setting, where the LSE can purchase hedging instruments at time 0,
possessing only an estimate of consumer demand d and real-time spot price λs at time 1. At
time 1, the random variables d and λs materialize and the LSE’s profit Π as a function of the
hedging instruments purchased at time 0 is determined. Figure 4.2 illustrates the hedging
process. The LSE aims to maximize its expected profit E[Π] by deciding on its portfolio of
hedging instruments at t = 0.

λ̄, P, h(r) are announced.
Utility purchases hedging

instruments to maximize E[Π]
as function of random d, λs.

t = 0

d and λs materialize.
Profit Π is determined.

Settlements between generators,
LSE, and end users take place.

t = 1

Figure 4.2: Timeline of Hedging

In the following, we analyze the cases for (a) no hedging instruments, (b) forward contract,
(c) call option, and (d) DR and derive explicit expressions for the optimal contracts and
corresponding profits for cases (b)-(d).
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4.3.1 Base Case (No Hedging)
If the LSE does not buy any options at stage 0, its expected profit at time 1 is simply

E[Π] = (λf − E[λs]) · E[d]. (4.1)

We will compare the profit of this base case to the forward contract, call option, and DR in
the following.

4.3.2 Forward Contract
A forward contract is a one-on-one agreement between the LSE and an electricity generator,
which obligates the generator (at time 0) to deliver a fixed amount of electricity q̄ at a
locked-in price λ̄F to the LSE at some point in the future (time 1). Forward contracts
possess high flexibility and are traded as over-the-counter products. The LSE seeks to sign
such a contract if it has reason to believe the expected wholesale price at the time of delivery
to exceed λ̄F , and the generator will do so in the opposite case. If, at time 1, q̄ > d, the LSE
has purchased too much volume at time 0, and so q̄ − d are wasted. Conversely, if q̄ < d at
time 1, d− q̄ units of electricity have to be bought at real-time spot price λs.

The profit ΠF under a forward contract of volume q̄ at unit price λ̄ is therefore expressed
as

ΠF = λfd− λ̄F q̄ − λs[d− q̄]+. (4.2)

Theorem 12 (Optimal Forward Contract). With E[λs] > λ̄F , the optimal contract volume
q̄∗ and the optimal expected profit E[Π∗F ] become

q̄∗ = F−1
(

1− λ̄F
E[λs]

)
, (4.3a)

E[Π∗F ] = λfE[d]− E[λs]
∫ ∞
F−1

(
1− λ̄F

E[λs]

) xf(x) dx. (4.3b)

4.3.3 Call Option
Similar to fixed forward contracts, the LSE can strike one-on-one deals with a counterparty
over an agreed volume q̄ at strike price λ̄C . The key difference is that the LSE can, but is
not obliged to, exercise the call option if λ̄C < λs at time 1. Typically the buyer of the call
option pays a premium P for each unit of the call option.

The profit ΠC under a call option with volume q̄ at strike price λ̄C at the premium P
per unit can thus be written as

ΠC = λfd− λs [d− q̄]+ − P q̄ −min(λ̄C , λs) ·min(d, q̄). (4.4)

The last term of (4.4) encodes the fact that the LSE can cover up to q̄ units at the cheaper
of the strike price λ̄C or the wholesale price λs. The remainder [d− q̄]+ has to be purchased
from the spot market at price λs.
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Theorem 13 (Optimal Call). With E[λs] > P + λ̄C−
∫ λ̄C

0 G(y)dy, the profit-maximizing call
volume q̄∗ and the corresponding optimal expected profit E[Π∗C ] are

q̄∗ = F−1

1− P

E[λS]− λ̄C +
∫ λ̄C

0 G(y)dy

 , (4.5a)

E[Π∗C ] =
(
λf − λ̄+

∫ λ̄C

0
G(y)dy

)
E[d]−

(
E[λs]− λ̄C +

∫ λ̄C

0
G(y)dy

)∫ ∞
q̄∗

xf(x)dx. (4.5b)

4.3.4 Demand Response
We model the effect of demand response as a shift in the distribution of the consumer towards
zero, induced by the monetary reward r ∈ R+ transferred from the LSE to the consumer as
a lump sum. Note that the real reduction of the consumer in response to the DR signal has
to be estimated by constructing the counterfactual consumption in the absence of the DR
signal, whose estimation is analyzed in the second part of this thesis (cf. Chapters 7 and 8).
The interested reader is referred to (Zhou, Balandat, and Tomlin 2016b; Zhou, Balandat,
and Tomlin 2016a) before jumping to these chapters.

Let f(d) denote the probability density function of d in the absence of any reward with
support [dmin, dmax]. Let F (d|r) denote the cumulative distribution function of the random
variable d, given the reward level r. Then the distribution shift is modeled as

F (d|r) =

0, if d < dmin

F (d+ h(r)), if d ≥ dmin
(4.6)

where h(r) is a concave, increasing function representing the elasticity of the user in response
to reward r, i.e. the relative reduction of consumption as a function of r. h(r) is equivalent to
the shift of the location parameter of distribution f(·). We make the following assumption:

Assumption 8. The reward r ≥ 0 induces a linear shift, i.e.

h(r) = αr, α > 0. (4.7)

With Assumption 8 and the definition of the distribution shift, it becomes clear that the
distribution f(·|r), given a reward r > 0, has support [dmin, dmax − h(r)] with discrete mass∫ dmax
dmax−h(r) f(x) dx at dmin.

Assumption 8 is necessary for analytical tractability of the DR hedging case. We note
that the linearity of h(r) is unrealistic, since it implies that for large enough reward levels r,
the user consumes zero with probability 1. However, for small reward levels, a linear price
elasticity of demand h(r) can be justified.

The LSE’s profit ΠDR with Demand Response is

ΠDR = (λf − λs)d(r)− r. (4.8)
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From (4.8), it immediately follows that DR only makes sense in the presence of large expected
spot prices E[λs] at time 1 which exceed the fixed contractual price λf . Then the optimal
profit Π∗DR is the minimal expected loss of the LSE.

Theorem 14 (Optimal Demand Response). With E[λs] > λf , the profit-maximizing reward
r∗ and the optimal expected profit EΠ∗DR are

r∗ =


1
α
F−1

(
1− 1

α·(E[λs]−λf)

)
, if 1

α
< E[λs]− λf

0, otherwise
(4.9a)

EΠ∗DR =

(λf − E[λs])
∫∞
αr∗ xf(x)dx, if 1

α
< E[λs]− λf

(λf − E[λs]) E[d], otherwise
(4.9b)

The condition α > (E[λs]− λf )−1 for the optimal reward means that the ability to shift,
1/α, must be greater than the inverse of the expected price difference (E[λs]−λf )−1 to make
DR profitable. The higher the expected price difference E[λs] − λf , the less stringent the
requirement on α, which agrees with intuition.

Theorem 15 (Diversified Portfolios). For general demand distributions, the optimal portfolio
can either consist of a unique option or a combination of call and forward contract options,
but never of a combination of DR and either call or forward contract options. For the special
case of a uniform demand distribution, the optimal portfolio always consists of a unique
option, i.e. diversified portfolios consisting of more than one option are always suboptimal.

Depending on the properties of the demand distribution F (·), a mixed portfolio of call
and forward contract options can exist, but is impossible to obtain in closed form for general
distributions. This is consistent with the approach in (Oum, Oren, and Deng 2006) where
the authors replicate the optimal portfolio (which would be continuous) with a finite set of
options. Due to Theorem 15, we restrict our attention to optimal portfolios consisting of a
unique option in the remainder of this chapter.

4.4 The Effect of Uncertainty
For a better understanding of the optimal profits under the different contracts Π∗F ,Π∗C ,Π∗DR
introduced in the previous section, we relate these quantities to properties of the consumption
distribution F (·).

4.4.1 Influence of Distribution Tail
By incorporating the Conditional Value-at-Risk (CVaR) measure (Rockafellar and Uryasev
2002), we can relate the optimal profits to the tail properties of the consumption density f(·).
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The CVaR at confidence level α ∈ (0, 1) of a random variable X with CDF F (·) representing
loss is formally defined as

CVaRα(X) = E[X | X ≥ F−1(α)] (4.10)

and can be interpreted as the expected loss attained in the worst (1−α)·100% of cases or the
expectation of the (1− α) probability tail of X. With this definition, the optimal expected
profits under the different options Π∗F ,Π∗C , and Π∗DR are reformulated in Proposition 1.

Proposition 1. With α > (E[λs] − λf )−1 and the definition of CVaR, the optimal ex-
pected profits under the forward contract E[Π∗F ], the call option E[Π∗C ], and Demand Response
E[Π∗DR] can be expressed as follows:

E[Π∗F ] = λfE[d]− λ̄FE[d | d ≥ F−1(1− λ̄F/E[λs])]
= λfE[d]− λ̄F · CVaRαF (d) (4.11a)

E[Π∗C ] =
(
λf − λ̄C +

∫ λ̄C

0
G(y)dy

)
E[d]− P · CVaRαC (d) (4.11b)

E[Π∗DR] = − 1
α
· CVaRαDR(d) (4.11c)

where we used the definitions

αF = 1− λ̄F
E[λs]

(4.12a)

αC = 1− P

E[λs]− λ̄C +
∫ λ̄C

0 G(y)dy
(4.12b)

αDR = 1− 1
α · (E[λs]− λf )

(4.12c)

From Proposition 1, it follows that the optimal profit decreases as the conditional ex-
pectation of the tail increases, that is, the more heavy-tailed the consumption distribution
f(·) becomes. It is illustrative to analyze the optimal decisions and corresponding optimal
expected profits for perfect information of d, which are given in the following:

q̄∗F |d = d, q̄∗C |d = d, r∗|d = d/α

E[Π∗F |d] = (λf − λ̄F ) · d (4.13a)

E[Π∗C |d] =
(
λf − λ̄C +

∫ λ̄C

0
G(y)dy − P

)
d (4.13b)

E[ΠDR|d] = − d/α (4.13c)

q̄∗F |d and q̄∗C |d denote the optimal forward contract and call volume, respectively. r∗|d signifies
the optimal DR reward.
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4.4.2 Influence of Statistical Dispersion
In this section, we attempt to construct a relationship between the statistical dispersion of
the consumption distribution F (·) and the optimal expected profit. Intuitively, the more
spread out the distribution F (·), the lower the expected profit. While many measures for
statistical dispersion exist in the literature, such as interquartile ranges, absolute deviation,
variance-to-mean-ratio, etc., we express the optimal expected profits E[Π∗F ], E[Π∗C ], and
E[Π∗DR] in terms of the standard deviation σ for the special case of a uniform distribution
with support [dmin, dmax] for expositional ease and analytical tractability.

Proposition 2. For the uniform distribution F (·) with support [dmin, dmax], the optimal
expected profits under the conditions E[λs] > max

(
λ̄F , P + λ̄C −

∫ λ̄C
0 G(y) dy

)
and α >

(E[λs]− λf )−1 are expressed as follows:

E[Π∗F ] = λfE[d]− λ̄Fdmin −
√

3E[λs](1− α2
F )σ (4.14a)

EΠ∗C =
(
λf − λ̄C +

∫ λ̄C

0
G(y)dy

)
E[d]− Pdmin (4.14b)

−
√

3
(
E[λs]− λ̄C +

∫ λ̄C

0
G(y)dy

)
(1− α2

C)σ

E[Π∗DR] = −dmin/α−
√

3(E[λs]− λf )(1− α2
DR)σ (4.14c)

For the case of perfect information, i.e. σ = 0 and dmin = dmax = d, the equations for the
optimal expected profit under perfect information (4.13a)-(4.13c) are recovered. Equations
(4.14a)-(4.14c) explain that the optimal expected profit for each case decreases linearly in
σ, giving rise to the notion that more “spread out” distributions diminish the expected
profit. The rate of decrease depends on case-specific parameters, whose relation to each other
determines which hedging option is profit-maximizing for a particular case. As consumption
distributions typically are plagued by a large amount of uncertainty (large σ), improved load
predictions to decrease σ have a direct economic benefit to the utility.

4.5 Choosing the Best Option
We now derive conditions on the random variables λs and d with distributions G(·) and
F (·) and the option parameters λ̄F , λ̄C , P , and α announced at time 0 to determine the
best hedging strategy consisting of a unique option. For analytical tractability, we make the
following assumptions:

Assumption 9. The real-time spot price λs is uniformly distributed with support [0, smax],
that is, G(y) = 1

smax
10≤y≤smax.

Assumption 10. The consumption is uniformly distributed in [0, dmax], that is, F (x) =
1

dmax
10≤ x≤ dmax.
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Theorem 16. Under Assumptions 9 and 10 and E[λs] > λf , the forward contract is preferred
over the call option, if

λ̄F ≤ E[λs]−
E[λs]− λ̄C + λ̄2

C/(4E[λs])− P√
1− λ̄C−λ̄2

C/(4E[λs])
E[λs]

. (4.15)

DR is preferred over the forward contract, if

1
α
≤ (E[λs]− λf )

1−

√√√√ E[λs]
E[λs]− λf

(
1− λ̄F

E[λs]

) . (4.16)

Finally, DR is preferred over the call option, if
1
α
≤ (E[λs]− λf )

[
1−

√
L

(E[λs]− λf )

(
1− P

L

)]
. (4.17)

with L = (E[λs] − λ̄C + λ̄2
C)/(4E[λs]) and where λ̄F and λ̄C denote the unit price for each

reserved unit of electricity under the forward contract and the call option, respectively.

4.6 Simulations
Assumptions 9 and 10 admitted a closed form solution to the best hedging instrument, stated
in (4.15)-(4.17). For a more elaborate analysis, we now repeat this exercise by approximating
the demand distribution F (·) as well as the distribution of spot prices G(·) with real data
from California to approximate decision boundaries for which the expected profits under dif-
ferent hedging instruments are identical. Since closed-form solution under this more realistic
scenario do not exist, we plot these optimal decision boundaries as a function of the hedging
parameters P, λ̄F , λ̄C , and α.

4.6.1 Empirical Distribution of Demand
We use hourly smart meter data from residential customers in California from the utilities
Pacific Gas & Electric, San Diego Gas & Electric, and Southern California Edison to create a
demand distribution for different sizes of user aggregations. The observations are restricted
to hourly consumptions between 4-5 pm and 5-6 pm. Figure 4.3 shows the empirical PDFs
and CDFs for different sizes of user aggregations. We approximate both functions as follows:

f̂(x) = a(x− dmin)e−cx, a, c ∈ R+, x ∈ [dmin, dmax] (4.18a)

F̂ (x) = a

c2 (cdmin − cx− 1) e−cx + γ, γ ∈ R (4.18b)

With the constraints F̂ (dmin) = 0 and F̂ (dmax) = 1, the parameters a and γ can be found
as a function of the decay parameter c. It can be seen that the approximations (4.18a) and
(4.18b) fit the observed data reasonably well.
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Figure 4.3: Distribution of Aggregate Hourly Consumption for Varying Aggregation Sizes,
4-6 pm. Top: 250 Users, Middle: 150 Users, Bottom: 50 Users.

4.6.2 Empirical Distribution of Wholesale Prices
To obtain the price distribution G(·), we convert 5-minute locational marginal prices (LMPs)
λs set by the California Independent System Operator into an hourly format. The distri-
bution G(·) of “high” LMPs is obtained by fitting a density function to the normalized
histogram of those LMPs for which the two previous LMPs exceed the threshold ξ > 0, i.e.
we consider all {λs|λs,t−1 ≥ ξ, λs,t−2 ≥ ξ} for different thresholds ξ. We approximate the
density function with a log-normal distribution:

N (ln x;µ, σ) = 1
σ
√

2π
exp

(
−(ln x− µ)2

2σ2

)
(4.19)

which has support [0,∞), that is, we disregard negative LMPs. Figure 4.4 shows the observed
data and the approximations for thresholds ξ = 80, 90, 100 USD

MWh .
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Figure 4.4: Distributions of CAISO LMPs conditional on previous prices exceeding threshold
ξ for ξ ∈ {80 USD

MWh , 90 USD
MWh , 100 USD

MWh}.

4.6.3 Pairwise Comparison of Hedging Instruments
We now compute decision boundaries of equal expected profit for all 3 pairs of hedging
instruments with Newton’s method, using the demand and price distributions derived in
(4.18a), (4.18b), and (4.19).

4.6.3.1 DR vs. Forward Contract

Figure 4.5 shows the decision boundary of elasticity α above which the optimal expected
profits under DR is greater than under the forward contract, that is, E[ΠDR] ≥ E[ΠF ], for
different expected spot prices E[λs] and forward contract prices λ̄F , assuming λf ≤ E[λs].
It is observed that α decreases as λ̄F or the expected wholesale price E[λs] increase. The
negative correlation of α with λ̄F is consistent with expectations as a higher λ̄F makes
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Figure 4.5: Boundaries and contours of equal expected profit for forward option and DR,
250 users, λf = 0.05USD

kWh .

forward contracts more expensive. The fact that decreasing wholesale prices E[λs] make DR
more competitive than forward contracts can be explained by comparing (4.3b) to (4.9b),
which states that the entire demand d has to be covered at price λs in the DR case, compared
to only [d− q̄]+ in the forward contract case. Also shown in Figure 4.5 is the lower bound on
α (gray transparent surface) below which DR is non-profitable, i.e. {(E[λs] − λf )−1 | 70 ≤
E[λs] ≤ 150}, where we set the residential tariff to λf = 0.05 USD/kWh.

4.6.3.2 DR vs. Call

Figure 4.6 shows the decision boundary of α for different call strike prices λC and premium
levels P above which E[ΠDR] ≥ E[ΠC ] with ξ = 80. As the premium and strike price for the
call option increase (and hence the call option becomes less attractive), DR becomes more
profitable because α decreases.

4.6.3.3 Forward Contract vs. Call

Lastly, Figure 4.7 shows the decision surface for λ̄F as a function of the call option parameters
P and λ̄C above which the forward contract is more profitable in expectation, i.e. E[ΠF ] ≥
E[ΠC ]. As expected, the forward contract becomes more attractive as either the premium P
or the call strike price λ̄C increase.
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4.6.4 Evaluation
Assuming a residential tariff of 0.05USD

kWh , a lower bound on the elasticity α of approximately
0.02MWh

USD = 20 kWh
USD at first glance seems to be an unachievable goal. However, note that

wholesale prices can spike at up to 1000 USD
MWh , which is far outside the range of our calcula-

tions. Further, we disregarded transmission losses and capacity costs inherent to generators
and utilities, which make the delivery of electricity under the forward contract and the call
option more expensive, thereby lowering the bound on α.

4.7 Conclusion
We analyzed hedging instruments for load-serving entities to mitigate price risks associated
with volatile energy supply and demand. Hedging against such risks is motivated by the fact
that load-serving entities are obligated to meet energy demand of customers under contract
instantaneously, which, in the absence of any hedging instruments, has to be procured in its
entirety from the wholesale electricity market (at potentially high prices). Forward contracts
and call options between load-serving entities and generating companies as well as Demand
Response programs for end-users are methods to share this risk with other market partici-
pants. We formulated the optimal hedging strategy as a profit maximization problem which
is random in the aggregate demand and wholesale electricity price. The optimal expected
profit under each hedging instrument was found to be monotonically decreasing in the sta-
tistical dispersion of the demand distribution, and linearly decreasing for the special case of
a uniform distribution. Using smart meter consumption data and locational marginal prices
in California, we compared the optimal expected profits between the hedging methods in a
pairwise fashion to generate decision boundaries of equal profit.

Our results can be extended in several regards. Firstly, a more involved analysis that
takes into account operational constraints of the smart grid, e.g. transmission capacities and
grid congestion, would add credibility to the suggestions of this chapter. Secondly, analyzing
how the optimal expected profit increases as a function of diminished uncertainty in electric
wholesale prices and aggregate consumer demand due to forecasting is interesting from the
perspective of profit maximization. Lastly, forgoing Assumptions 6 and 7 allows utilities and
generating companies to exercise market power. This calls for a game-theoretic formulation
of the profit-maximization problem from the perspective of both generating companies and
utilities, where each player seeks bids from the other in a mechanism design framework.



52

Chapter 5

Budget-Constrained Combinatorial
Multi-Armed Bandits

5.1 Introduction
Chapters 2, 3, and 4 modeled the effect of repeated interactions between various actors in
the electricity market. The purpose of this chapter is to formalize these sequential actions
into a more general framework that “learns” which actions are the “best” over time.

The multi-armed bandit (MAB) problem has been extensively studied in machine learning
and statistics as a means to model online sequential decision making. In the classic setting
popularized by Auer, Cesa-Bianchi, and Fischer 2002 and Auer et al. 2002, the decision-maker
selects exactly one arm at a given round t, given the observations of realized rewards from
arms played in previous rounds 1, . . . , t− 1. The goal is to maximize the cumulative reward
over a fixed horizon T , or equivalently, to minimize regret, which is defined as the difference
between the cumulative gain achieved, had the decision-maker always played the best arm,
and the realized cumulative gain. The analysis of this setting reflects the fundamental
tradeoff between the desire to learn better arms (exploration) and the possibility to play
arms believed to have high payoff (exploitation).

A variety of practical applications of the MAB problem include placement of online
advertising to maximize the click-through rate, in particular online sponsored search auctions
(Rusmevichientong and Williamson 2005) and ad-exchange platforms (Chakraborty et al.
2010), channel selection in radio networks (Huang, Liu, and Ding 2008), or learning to rank
web documents (Radlinski, Kleinberg, and Joachims 2008). As acknowledged by Ding et al.
2013, taking an action (playing an arm) in practice is inherently costly, yet the vast majority
of existing bandit-related work used to analyze such examples forgoes any notion of cost.
Furthermore, the above-mentioned applications rarely proceed in a strictly sequential way.
A more realistic scenario is a setting in which, at each round, multiple actions are taken
among the set of all possible choices.

These two shortcomings motivate the theme of this chapter, as we investigate the MAB
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problem under a budget constraint in a setting with time-varying rewards and costs and
multiple plays. More precisely, given an a-priori defined budget B, at each round the decision
maker selects a combination of K distinct arms from N available arms and observes the
individual costs and rewards, which corresponds to the semi-bandit setting. The player
pays for the materialized costs until the remaining budget is exhausted, at which point the
algorithm terminates and the cumulative reward is compared to the theoretical optimum and
defines the weak regret, which is the expected difference between the payout under the best
fixed choice of arms for all rounds and the actual gain. In this chapter, we investigate both
the stochastic and the adversarial case. For the stochastic case, we derive an upper bound
on the expected regret of order O(NK4 logB), utilizing Algorithm UCB-MB inspired by the
upper confidence bound algorithm UCB1 first introduced by Auer, Cesa-Bianchi, and Fischer
2002. For the adversarial case, Algorithm Exp3.M.B upper and lower-bounds the regret
with O(

√
NB log(N/K)) and Ω((1 −K/N)2

√
NB/K), respectively. These findings extend

existing results from Uchiya, Nakamura, and Kudo 2010 and Auer et al. 2002, as we also
provide an upper bound that holds with high probability. To the best of our knowledge, this
is the first case that addresses the adversarial budget-constrained case, which we therefore
consider to be the main contribution of this chapter.

5.1.1 Related Work
In the extant literature, attempts to make sense of a cost component in MAB problems
occur in Tran-Thanh et al. 2010 and Tran-Thanh et al. 2012, who assume time-invariant
costs and cast the setting as a knapsack problem with only the rewards being stochastic. In
contrast, Ding et al. 2013 proposed algorithm UCB-BV, where per-round costs and rewards
are sampled in an IID fashion from unknown distributions to derive an upper bound on
the regret of order O(logB). The papers that are closest to our setting are Badanidiyuru,
Kleinberg, and Slivkins 2013 and Xia et al. 2016. The former investigates the stochastic case
with a resource consumption. Unlike our case, however, the authors allow for the existence
of a “null arm”, which is tantamount to skipping rounds, and obtain an upper bound of
order O(

√
B) rather than O(logB) compared to our case. The latter paper focuses on the

stochastic case, but does not address the adversarial setting at all.
Slightly less relevant settings to the setup investigates in this thesis are found in the best

arm identification problem (Audibert, Bubeck, and Munos 2010), (Gabillon, Ghavamzadeh,
and Lazaric 2012), where, given a budget, the goal is to identify the best arm rather than
maximizing the cumulative reward. A different, rather experimental line of work is concerned
with budgeted learning (Deng et al. 2007). Lastly, Seldin et al. 2014 discusses MABs with
paid observations, where the player can query the rewards of any number of arms for an
additional payment, even for the arm that has not been played at any given round.

The extension of the single play to the multiple plays case, where at each round K ≥ 1
arms have to be played, was introduced in Anantharam, Varaiya, and Walrand 1986 and
Agrawal, Hegde, and Teneketzis 1990. However, their analysis is based on the original
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bandit formulation introduced by Lai and Robbins 1985, where the regret bounds only
hold asymptotically (in particular not for a finite time), rely on hard-to-compute index
policies, and are distribution-dependent. Influenced by the works of Auer, Cesa-Bianchi,
and Fischer 2002 and Agrawal 2002, who popularized the usage of easy-to-compute upper
confidence bounds (UCB), a recent line of work has further investigated the combinatorial
bandit setting. For example, Gai, Krishnamachari, and Jain 2012 derived an O(NK4 log T )
regret bound in the stochastic semi-bandit setting, utilizing a policy they termed “Learning
with Linear Rewards” (LLR). Similarly, Chen, Wang, and Yuan 2013 utilize a framework
where the decision-maker queries an oracle that returns a fraction of the optimal reward.
Other, less relevant settings to this chapter are found in Cesa-Bianchi and Lugosi 2009 and
later Combes et al. 2015, who consider the adversarial bandit setting, where only the sum of
losses for the selected arms can be observed. Furthermore, Kale, Reyzin, and Schapire 2010
investigate bandit slate problems to take into account the ordering of the arms selected at
each round. Lastly, Komiyama, Honda, and Nakagawa 2015 utilize Thompson Sampling to
model the stochastic MAB problem.

5.2 Main Results
In this section, we formally define the budgeted, multiple play multi-armed bandit setup
and present the main theorems, whose results are provided in Table 5.1 together with a
comparison to existing results in the literature. We first describe the stochastic setting
(Section 5.3) and then proceed to the adversarial one (Section 5.4). Illuminating proofs for
the theorems in this chapter are presented in Section 5.5. Technical proofs are relegated to
Appendix A.4 of this thesis.

Algorithm Upper Bound Lower Bound Authors
Exp3 O

(√
NT logN

)
Ω
(√

NT
)

Auer et al. 2002

Exp3.M O
(√

NTK log N
K

)
Ω
((

1− K
N

)2√
NT

)
Uchiya, Nakamura, and Kudo 2010

Exp3.M.B O
(√

NB log N
K

)
Ω
((

1− K
N

)2√
NB/K

)
This thesis

Exp3.P O
(√

NT log (NT/δ) + log(NT/δ)
)

Auer et al. 2002

Exp3.P.M O
(
K2
√
NT N−K

N−1 log (NT/δ) + N−K
N−1 log(NT/δ)

)
This thesis

Exp3.P.M.B O
(
K2
√

NB
K

N−K
N−1 log

(
NB
Kδ

)
+ N−K

N−1 log
(
NB
Kδ

))
This thesis

UCB1 O(N log T ) Auer, Cesa-Bianchi, and Fischer 2002
LLR O(NK4 log T ) Gai, Krishnamachari, and Jain 2012

UCB-BV O(N logB) Ding et al. 2013
UCB-MB O(NK4 logB) This thesis

Table 5.1: Regret Bounds in Adversarial and Stochastic Bandit Settings
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5.3 Stochastic Setting
The definition of the stochastic setting is based on the classic setup introduced in Auer,
Cesa-Bianchi, and Fischer 2002, but is enriched by a cost component and a multiple play
constraint. Specifically, given a bandit with N distinct arms, each arm indexed by i ∈ [N ] is
associated with an unknown reward and cost distribution with unknown means 0 < µir ≤ 1
and 0 < cmin ≤ µic ≤ 1, respectively. Realizations of costs ci,t ∈ [cmin, 1] and rewards
ri,t ∈ [0, 1] are independently and identically distributed. At each round t, the decision
maker plays exactly K arms (1 ≤ K ≤ N) and subsequently observes the individual costs
and rewards only for the played arms, which corresponds to the semi-bandit setting. Before
the game starts, the player is given a budget 0 < B ∈ R+ to pay for the materialized costs
{ci,t | i ∈ at}, where at denotes the indexes of the K arms played at time t. The game
terminates as soon as the sum of costs at round t, namely ∑j∈at cj,t exceeds the remaining
budget.

Notice the minimum cmin on the support of the cost distributions. This assumption is not
only made for practical reasons, as many applications of bandits come with a minimum cost,
but also to guarantee well-defined “bang-per-buck” ratios µi = µir/µ

i
c, which our analysis in

this thesis relies on.
The goal is to design a deterministic algorithmA such that the expected payout E [GA(B)]

is maximized, given the budget and multiple play constraints. Formally:

maximize
a1,...,aτA(B)

E

τA(B)∑
t=1

∑
i∈at

ri,t


subject to E

τA(B)∑
t=1

∑
i∈at

ci,t ≤ B


|at| = K, 1 ≤ K ≤ N ∀ t ∈ [τA(B)]

(5.1)

In (5.1), τA(B) is the stopping time of algorithm A and indicates after how many steps the
algorithm terminates, namely when the budget is exhausted. The expectation is taken over
the randomness of the reward and cost distributions.

The performance of algorithm A is evaluated on its expected regret RA(B), which is
defined as the difference between the expected payout (gain) E[GA∗ ] under the optimal
strategy A∗ (which in each round plays a∗, namely the set of K arms with the largest
bang-per-buck ratios) and the expected payout E[GA] under algorithm A:

RA(B) = E[GA∗(B)]− E[GA(B)]. (5.2)

Our main result in Theorem 17 upper bounds the regret achieved with Algorithm 17. Similar
to Auer, Cesa-Bianchi, and Fischer 2002 and Ding et al. 2013, we maintain time-varying
upper confidence bounds Ui,t for each arm i

Ui,t = µ̄it + ei,t, (5.3)



CHAPTER 5. BUDGET-CONSTRAINED COMBINATORIAL MULTI-ARMED
BANDITS 56

where µ̄it denotes the sample mean of the observed bang-per-buck ratios up to time t and ei,t
the exploration term defined in Algorithm 17. At each round, the K arms associated with
the K largest confidence bounds are played. For initialization purposes, we allow all N arms
to be played exactly once prior to the while-loop.

Theorem 17. There exist constants c1, c2, and c3, which are functions of N,K, cmin,∆min, µi, µc
only, such that Algorithm 1 (UCB-MB) achieves expected regret

RA(B) ≤ c1 + c2 log(B + c3) = O(NK4 logB). (5.4)

In Theorem 17, ∆min denotes the smallest possible difference of bang-per-buck ratios
among non-optimal selections a 6= a∗, i.e. the second best choice of arms:

∆min =
∑
j∈a∗

µj − max
a,a6=a∗

∑
j∈a

µj. (5.5)

Similarly, the proof of Theorem 17 also relies on the largest such difference ∆max, which
corresponds to the worst possible choice of arms:

∆max =
∑
j∈a∗

µj − min
a,a6=a∗

∑
j∈a

µj. (5.6)

Comparing the bound given in Theorem 17 to the results in Table 5.1, we recover the
O(N logB) bound from Ding et al. 2013 for the single-play case.

Algorithm 1 UCB-MB for Stochastic MAB
Initialize: t = 1. Play all arms together exactly once. Let µ̄ir,1 = ri,1, µ̄ic,1 = ci,1, µ̄i1 =
µ̄ir,1
µ̄ic,1
∀ i ∈ [N ], ni,1 = 1, ei,1 = 0 ∀ i ∈ [N ], GA = 0.

1: while true do
2: at ← Indexes of K arms with K largest Ui,t.
3: if ∑j∈at cj,t > B then
4: return Gain GA, stopping time τA(B) = t
5: end if
6: GA ← GA +∑

i∈at ri,t, B ← B −∑i∈at ci,t
7: ni,t ← ni,t + 1 ∀ i ∈ at
8: t← t+ 1
9: ei,t ←

√
(K+1) log t/ni,t(1+1/cmin)
cmin−
√

(K+1) log t/ni,t
10: end while

5.4 Adversarial Setting
We now consider the adversarial case that makes no assumptions on the reward and cost
distributions whatsoever. The setup for this case was first proposed and analyzed by Auer
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et al. 2002 for the single play case (i.e. K = 1), a fixed horizon T , and an oblivious
adversary. That is, the entire seqence of rewards for all arms is fixed in advance and in par-
ticular cannot be adaptively changed during runtime. The proposed randomized algorithm
Exp3 enjoys O(

√
NT logN) regret. Under semi-bandit feedback, where the rewards for a

given round are observed for each arm played, Uchiya, Nakamura, and Kudo 2010 derived
a variation of the single-play Exp3 algorithm, which they called Exp3.M and enjoys regret
O
(√

NTK log(N/K)
)
, where K is the number of plays per round.

We consider the extension of the classic setting as in Uchiya, Nakamura, and Kudo 2010,
where the decision maker has to play exactly 1 ≤ K ≤ N arms. For each arm i played
at round t, the player observes the reward ri(t) ∈ [0, 1] and, unlike in previous settings,
additionally the cost 0 < cmin < ci(t) < 1. As in the stochastic setting (Section 5.3), the
player is given a budget B > 0 to pay for the costs incurred, and the algorithm terminates
after τA(B) rounds when the sum of materialized costs in round τA(B) exceeds the remaining
budget. The gain GA(B) of algorithm A is the sum of observed rewards up to and including
round τA(B) − 1. The expected regret RA(B) is defined as in (5.2), where the gain of
algorithm A is compared against the best set of arms that an omniscient algorithm A∗,
which knows the reward and cost sequences in advance, would select, given the budget B.
In contrast to the stochastic case, the expectation is now taken with respect to algorithm
A’s internal randomness.

5.4.1 Upper Bounds on the Regret
We begin with upper bounds on the regret for the budget constrained MAB with multiple
plays and later transition towards lower bounds and upper bounds that hold with high
probability. Algorithm 2, which we call Exp3.M.B, provides a randomized algorithm to
achieve sublinear regret. Similar to the original Exp3 algorithm developed by Auer et al.
2002, Algorithm Exp3.M.B maintains a set of time-varying weights {wi(t)}Ni=1 for all arms,
from which the probabilities for each arm being played at time t are calculated (line 10). As
noted in Uchiya, Nakamura, and Kudo 2010, the probabilities {pi(t)}Ni=1 sum to K (because
exactly K arms need to be played), which requires the weights to be capped at a value
vt > 0 (line 3) such that the probabilities {pi(t)}Ni=1 are kept in the range [0, 1]. In each
round, the player draws a set of distinct arms at of cardinality |at| = K, where each arm
has probability pi(t) of being included in at (line 11). This is done by employing algorithm
DependentRounding introduced by Gandhi, Khuller, and Parthasarathy 2006, which runs in
O(K) time and O(N) space. At the end of each round, the observed rewards and costs for
the played arms are turned into estimates r̂i(t) and ĉi(t) such that E[r̂i(t) | at, . . . , a1] = ri(t)
and E[ĉi(t) | at, . . . , a1] = ci(t) for i ∈ at (line 16). Arms with wi(t) < vt are updated
according to (r̂i(t)− ĉi(t)), which assigns larger weights as r̂i(t) increases and ĉi(t) decreases,
as one might expect.
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Algorithm 2 Exp3.M.B: Budget Constrained Multi-Armed Bandit, Multiple Play, Adver-
sarial
Initialize: wi = 1 for i ∈ [N ], gain GA = 0.

1: while B > 0 do
2: if arg maxi∈[N ] wi(t) ≥

(
1
K
− γ

N

)∑N
j=1

wi(t)
1−γ then

3: Determine vt as follows: 1/K − γ/N =

vt(1− γ)∑N
i=1 vt · 1(wi(t) ≥ vt) + wi(t) · 1(wi(t) < vt)

4: Define set S̃(t) = {i ∈ [N ] | wi(t) ≥ vt}.
5: Define weights w̃i(t) = vt for i ∈ S̃(t).
6: else
7: Define set S̃(t) = {}.
8: end if
9: Define weights w̃i(t) = wi(t) for i ∈ [N ] \ S̃(t).

10: Calculate probabilities for each i ∈ [N ]:

pi(t) = K

(
(1− γ) w̃i(t)∑N

j=1 w̃j(t)
+ γ

N

)
.

11: Play arms at ∼ p1, . . . , pN .
12: if ∑i∈at ci(t) > B then
13: return Gain GExp3.M.B, stopping time τA(B) = t
14: end if
15: B ← B −∑i∈at ci(t), GA ← GA +∑

i∈at ri(t).
16: Calculate estimated rewards and costs to update weights for each i ∈ [N ]:

r̂i(t) = ri(t)/pi(t) · 1(i ∈ at)
ĉi(t) = ci(t)/pi(t) · 1(i ∈ at)

wi(t+ 1) = wi(t) exp
[
Kγ

N
[r̂i(t)− ĉi(t)]1i∈S̃(t)

]

17: end while

Theorem 18. Algorithm Exp3.M.B achieves regret

R ≤ 2.63
√

1 + B

gcmin

√
gN log(N/K) +K, (5.7)

where g is an upper bound on Gmax, the maximal gain of the optimal algorithm. This bound
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is of order O(
√
BN log(N/K)).

The runtime of Algorithm Exp3.M.B and its space complexity is linear in the number of
arms, i.e. O(N). If no bound g on Gmax exists, we have to modify Algorithm 2. Specifically,
the weights are now updated as follows:

wi(t+ 1) = wi(t) exp
[
Kγ

N
[r̂i(t)− ĉi(t)] · 1i∈at

]
. (5.8)

This replaces the original update step in line 16 of Algorithm 2. As in Algorithm Exp3.1
in Auer et al. 2002, we use an adaptation of Algorithm 2, which we call Exp3.1.M.B, see
Algorithm 3. In Algorithm 3, we define cumulative expected gains and losses

Ĝi(t) =
t∑

s=1
r̂i(s), (5.9a)

L̂i(t) =
t∑

s=1
ĉi(s). (5.9b)

and make the following, necessary assumption:

Assumption 11. ∑i∈a ri(t) ≥
∑
i∈a ci(t) for all a ∈ S possible K-combinations and t ≥ 1.

Assumption 11 is a natural assumption, which is motivated by “individual rationality”
reasons. In other words, a user will only play the bandit algorithm if the reward at any given
round, for any possible choice of arms, is at least as large as the cost that incurs for playing.
Under the caveat of this assumption, Algorithm Exp3.1.M.B utilizes Algorithm Exp3.1.M
as a subroutine in each epoch until termination.

Algorithm 3 Algorithm Exp3.1.M.B with Budget B
Initialize: t = 1, wi = 1 for i ∈ [N ], r = 0.

1: while ∑T
t=1

∑
i∈at ci(t) ≤ B do

2: Define gr = N log(N/K)
(e−1)−(e−2)cmin

4r
3: Restart Exp3.M.B with γr = min (1, 2−r)
4: while maxa∈S

∑
i∈a(Ĝi(t)− L̂i(t)) ≤ gr − N(1−cmin)

Kγr
do

5: Draw at ∼ p1, . . . , pN , observe ri(t) and ci(t) for i ∈ at, calculate r̂i(t) and ĉi(t).
6: Ĝi(t+ 1)← Ĝi(t) + r̂i(t) for i ∈ [N ]
7: L̂i(t+ 1)← L̂i(t) + ĉi(t) for i ∈ [N ]
8: t← t+ 1
9: end while

10: end while
11: return Gain GExp3.1.M.B
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Proposition 3. For the multiple plays case with budget, the regret of Algorithm Exp3.1.M.B
is upper bounded by

R ≤ 8 [(e− 1)− (e− 2)cmin] N
K

+ 2N log N
K

+K+

8
√

[(e− 1)− (e− 2)cmin] (Gmax −B +K)N log(N/K). (5.10)

This bound is of order O((Gmax−B)N log(N/K)) and, due to Assumption 11, not directly
comparable to the bound in Theorem 18. One case in which (5.10) outperforms (5.7) occurs
whenever only a loose upper bound of g on Gmax exists or whenever Gmax, the return of the
best selection of arms, is “small”.

5.4.2 Lower Bound on the Regret

Theorem 19 provides a lower bound of order Ω((1−K/N)2
√
NB/K) on the weak regret of

algorithm Exp3.M.B.

Theorem 19. For 1 ≤ K ≤ N , the weak regret R of Algorithm Exp3.M.B is lower bounded
as follows:

R ≥ ε

B − BK

N
− 2Bc−3/2

min ε

√
BK log(4/3)

N

 , (5.11)

where ε ∈ (0, 1/4]. Choosing ε as

ε = min
1

4 ,
(1−K/N)c3/2

min

4
√

log(4/3)

√
N

BK


yields the bound

R ≥ min
c3/2

min(1−K/N)2

8
√

log(4/3)

√
NB

K
,
B(1−K/N)

8

 . (5.12)

This lower bound differs from the upper bound given in Theorem 17 by a factor of√
K log(N/K)(N/(N −K))2. For the single-play case K = 1, this factor is

√
logN , which

recovers the gap from Auer et al. 2002.

5.4.3 High Probability Upper Bounds on the Regret
For a fixed number of rounds (no budget considerations) and single play per round (K = 1),
Auer et al. 2002 proposed Algorithm Exp3.P to derive the following upper bound on the
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regret that holds with probability at least 1− δ:

Gmax −GExp3.P ≤ 4
√
NT log (NT/δ)

+ 4
√

5
3NT logN + 8 log

(
NT

δ

)
. (5.13)

Theorem 20 extends the non-budgeted case to the multiple play case.

Theorem 20. For the multiple play algorithm (1 ≤ K ≤ N) and a fixed number of rounds
T , the following bound on the regret holds with probability at least 1− δ:

R = Gmax −GExp3.P.M

≤ 2
√

5
√
NKT log(N/K) + 8N −K

N − 1 log
(
NT

δ

)

+ 2(1 +K2)
√
NT

N −K
N − 1 log

(
NT

δ

)
. (5.14)

For K = 1, (5.14) recovers (5.13) save for the constants, which is due to a better ε-tuning
in this thesis compared to Auer et al. 2002. Agreeing with intuition, this upper bound
becomes zero for the edge case K ≡ N .

Theorem 20 can be derived by using a modified version of Algorithm 2, which we name
Exp3.P.M. The necessary modifications to Exp3.M.B are motivated by Algorithm Exp3.P in
Auer et al. 2002 and are provided in the following:

• Replace the outer while loop with for t = 1, . . . , T do

• Initialize parameter α:

α = 2
√

(N −K)/(N − 1) log (NT/δ).

• Initialize weights wi for i ∈ [N ]:

wi(1) = exp
(
αγK2

√
T/N/3

)
.

• Update weights for i ∈ [N ] as follows:

wi(t+ 1) = wi(t) exp
[
1i 6∈S̃(t)

γK

3N

(
r̂i(t) + α

pi(t)
√
NT

)]
. (5.15)

Since there is no notion of cost in Theorem 20, we do not need to update any cost terms.
Lastly, Theorem 21 extends Theorem 20 to the budget constrained setting using algorithm

Exp3.P.M.B.
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Theorem 21. For the multiple play algorithm (1 ≤ K ≤ N) and the budget B > 0, the
following bound on the regret holds with probability at least 1− δ:

R = Gmax −GExp3.P.M.B

≤ 2
√

3
√
NB(1− cmin)

cmin
log N

K
+ 4
√

6N −K
N − 1 log

(
NB

Kcminδ

)
(5.16)

+ 2
√

6(1 +K2)
√
N −K
N − 1

NB

Kcmin
log

(
NB

Kcminδ

)
.

To derive bound (5.16), we again modify the following update rules in Algorithm 2 to
obtain Algorithm Exp3.P.M.B:

• Initialize parameter α:

α = 2
√

6
√

(N −K)/(N − 1) log (NB/(Kcminδ)).

• Initialize weights wi for i ∈ [N ]:

wi(1) = exp
(
αγK2

√
B/(NKcmin)/3

)
.

• Update weights for i ∈ [N ] as follows:

wi(t+ 1) = wi(t) exp
[
1i 6∈S̃(t)

γK

3N

(
r̂i(t)− ĉi(t) + α

√
Kcmin

pi(t)
√
NB

)]
.

The estimated costs ĉi(t) are computed as ĉi(t) = ci(t)/pi(t) whenever arm i is played at
time t, as is done in Algorithm 2.

5.5 Proofs

5.5.1 Proof of Theorem 17
The proof of Theorem 17 is divided into two technical lemmas introduced in the following.
Due to space constraints, the proofs are relegated to Appendix A.4.

First, we bound the number of times a non-optimal selection of arms is made up to
stopping time τA(B). For this purpose, let us define a counter Ci,t for each arm i, initialized
to zero for t = 1. Each time a non-optimal vector of arms is played, that is, at 6= a∗, we
increment the smallest counter in the set at:

Cj,t ← Cj,t + 1, j = arg min
i∈at

Ci,t. (5.17)
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Ties are broken randomly. By definition, the number of times arm i has been played until
time t is greater than or equal to its counter Ci,t. Further, the sum of all counters is exactly
the number of suboptimal choices made so far:

ni,t ≥ Ci,t ∀ i ∈ [N ], t ∈ [τA(B)].
N∑
i=1

Ci,t =
t∑

τ=1
1(aτ 6= a∗) ∀ t ∈ [τA(B)].

Lemma 3 bounds the value of Ci,t from above.

Lemma 3. Upon termination of algorithm A, there have been at most O (NK3 log τA(B))
suboptimal actions. Specifically, for each i ∈ [N ]:

E
[
Ci,τA(B)

]
≤ 1 +K

π2

3 + (K + 1)
(

∆min + 2K(1 + 1/cmin)
cmin∆min

)2

log τA(B).

Secondly, we relate the stopping time of algorithm A to the optimal action a∗:

Lemma 4. The stopping time τA is bounded as follows:
B∑
i∈a∗ µic

− c2 − c3 log
(
c1 + 2B∑

i∈a∗ µic

)
≤ τA ≤

2B∑
i∈a∗

µic + c1,

where c1, c2, and c3 are the same positive constants as in Theorem 17 that depend only on
N,K, cmin,∆min, µ

i
c, µ

i
r.

Utilizing Lemmas 3 and 4 in conjunction with the definition of the weak regret (5.2)
yields Theorem 17. See Appendix A.4 for further technicalities.

5.5.2 Proof of Theorem 18
The proof of Theorem 18 in influenced by the proof methods for Algorithms Exp3 by Auer
et al. 2002 and Exp3.M by Uchiya, Nakamura, and Kudo 2010. The main challenge is the
absence of a well-defined time horizon T due to the time-varying costs. To remedy this
problem, we define T = max (τA(B), τA∗(B)), which allows us to first express the regret as
a function of T . In a second step, we relate T to the budget B.

5.5.3 Proof of Proposition 3
The proof of Proposition 3 is divided into the following two lemmas:

Lemma 5. For any subset a ∈ S of K unique elements from [N ], 1 ≤ K ≤ N :
Tr∑
t=Sr

∑
i∈at

(ri(t)− ci(t)) ≥
∑
i∈a

Tr∑
t=Sr

(r̂j(t)− ĉj(t)) (5.18)

− 2
√

(e− 1)− (e− 2)cmin

√
grN log(N/K),

where Sr and Tr denote the first and last time step at epoch r, respectively.
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Lemma 6. The total number of epochs R is bounded by

2R−1 ≤ N(1− cmin)
Kc

+

√
Ĝmax − L̂max

c
+ 1

2 , (5.19)

where c = N log(N/K)
(e−1)−(e−2)cmin

.

To derive Proposition 3, we combine Lemmas 5 and 6 and utilize the fact that algorithm
Exp3.1.M.B terminates after τA(B) rounds. See Appendix A.4 for details.

5.5.4 Proof of Theorem 19
The proof follows existing procedures for deriving lower bounds in adversarial bandit settings,
see Auer et al. 2002, Cesa-Bianchi and Lugosi 2006. The main challenges are found in gen-
eralizing the single play setting to the multiple play setting (K > 1) as well as incorporating
a notion of cost associated with bandits.

Select exactly K out of N arms at random to be the arms in the “good” subset a∗. For
these arms, let ri(t) at each round t be Bernoulli distributed with bias 1

2 + ε, and the cost
ci(t) attain cmin and 1 with probability 1

2 + ε and 1
2 − ε, respectively, for some 0 < ε < 1/2 to

be specified later. All other N −K arms are assigned rewards 0 and 1 and costs cmin and 1
independently at random. Let Ea∗ [ · ] denote the expectation of a random variable conditional
on a∗ as the set of good arms. Let Eu[ · ] denote the expectation with respect to a uniform
assignment of costs {cmin, 1} and rewards {0, 1} to all arms. Lemma 7 is an extension of
Lemma A.1 in Auer et al. 2002 to the multiple-play case with cost considerations:

Lemma 7. Let f : {{0, 1}, {cmin, 1}}τmax → [0,M ] be any function defined on reward and
cost sequences {r, c} of length less than or equal τmax = B

Kcmin
. Then, for the best action set

a∗:

Ea∗ [f(r, c)] ≤ Eu[f(r, c)] + Bc
−3/2
min
2

√
−Eu[Na∗ ] log(1− 4ε2),

where Na∗ denotes the total number of plays of arms in a∗ during rounds t = 1 through
t = τA(B), that is:

Na∗ =
τA(B)∑
t=1

∑
i∈a∗

1 (i ∈ at) .

Lemma 7, whose proof is relegated to Appendix A.4, allows us to bound the gain under the
existence of K optimal arms by treating the problem as a uniform assignment of costs and
rewards to arms. The technical parts of the proof can also be found in Appendix A.4.
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5.5.5 Proof of Theorem 20
The proof strategy is to acknowledge that Algorithm Exp3.P.M uses upper confidence bounds
r̂i(t) + α

pi(t)
√
NT

to update weights (5.15). Lemma 8 asserts that these confidence bounds are
valid, namely that they upper bound the actual gain with probability at least 1− δ, where
0 < δ � 1.

Lemma 8. For 2
√

N−K
N−1 log

(
NT
δ

)
≤ α ≤ 2

√
NT ,

P
(
Û∗ > Gmax

)
≥ P

( ⋂
a⊂S

∑
i∈a

Ĝi + ασ̂i >
∑
i∈a

Gi

)
≥ 1− δ,

where a ⊂ S denotes an arbitrary subset of K unique elements from [N ]. Û∗ denotes the
upper confidence bound for the optimal gain.

Next, Lemma 9 provides a lower bound on the gain of Algorithm Exp3.P.M as a function
of the maximal upper confidence bound.

Lemma 9. For α ≤ 2
√
NT , the gain of Algorithm Exp3.P.M is bounded below as follows:

GExp3.P.M ≥
(

1− 5
3γ
)
Û∗ − 3N

γ
log(N/K)− 2α2 − α(1 +K2)

√
NT, (5.20)

where Û∗ = ∑
j∈a∗ Ĝj +ασ̂j denotes the upper confidence bound of the optimal gain achieved

with optimal set a∗.

Therefore, combining Lemmas 8 and 9 upper bounds the actual gain of Algorithm
Exp3.P.M with high probability. See Appendix A.4 for technical details.

5.5.6 Proof of Theorem 21
The proof of Theorem 21 proceeds in the same fashion as in Theorem 20. Importantly, the
upper confidence bounds now include a cost term. Lemma 10 is the equivalent to Lemma 8
for the budget constrained case:

Lemma 10. For 2
√

6
√

N−K
N−1 log NB

Kcminδ
≤ α ≤ 12

√
NB
Kcmin

,

P
(
Û∗ > Gmax −B

)
≥ P

( ⋂
a⊂S

∑
i∈a

Ĝi − L̂i + ασ̂i >
∑
i∈a

Gi − Li
)
≥ 1− δ,

where a ⊂ S denotes an arbitrary time-invariant subset of K unique elements from [N ]. Û∗
denotes the upper confidence bound for the cumulative optimal gain minus the cumulative
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cost incurred after τa(B) rounds (the stopping time when the budget is exhausted):

a∗ = max
a∈S

τa(B)∑
t=1

(ri(t)− ci(t)),

Û∗ =
∑
i∈a∗

ασ̂i +
τa∗ (B)∑
t=1

(r̂i(t)− ĉi(t))
 . (5.21)

In Lemma 10, Gmax denotes the optimal cumulative reward under the optimal set a∗
chosen in (5.21). Ĝi and L̂i denote the cumulative expected reward and cost of arm i after
exhaustion of the budget (that is, after τa(B) rounds), respectively.

Lastly, Lemma 11 lower bounds the actual gain of Algorithm Exp3.P.M.B as a function
of the upper confidence bound (5.21).

Lemma 11. For α ≤ 2
√

NB
Kcmin

, the gain of Algorithm Exp3.P.M.B is bounded below as
follows:

GExp3.P.M.B ≥
(

1− γ − 2γ
3

1− cmin

cmin

)
Û∗ − 3N

γ
log N

K
− 2α2 − α(1 +K2) BN

Kcmin
.

Combining Lemmas 10 and 11 completes the proof, see the appendix.

5.6 Discussion and Conclusion
We discussed the budget-constrained multi-armed bandit problem with N arms, K multiple
plays, and an a-priori defined budget B. We explored the stochastic as well as the adversarial
case and provided algorithms to derive regret bounds in the budget B. For the stochastic set-
ting, our algorithm UCB-MB enjoys regret O(NK4 logB). In the adversarial case, we showed
that algorithm Exp3.M.B enjoys an upper bound on the regret of order O(

√
NB log(N/K))

and a lower bound Ω((1−K/N)2
√
NB/K). Lastly, we derived upper bounds that hold with

high probability.
Our work can be extended in several dimensions in future research. For example, the

incorporation of a budget constraint in this thesis leads us to believe that a logical extension
is to integrate ideas from economics, in particular mechanism design, into the multiple plays
setting (one might think about auctioning off multiple items simultaneously), c.f. Babaioff,
Sharma, and Slivkins (2009). A possible idea is to investigate to what extent the regret
varies as the number of plays K increases. Further, it would not be a stretch to imagine that
in such settings, repeated interactions with customers (playing arms) give rise to strategic
considerations, in which customers can misreport their preferences in the first few rounds
to maximize their long-run surplus. While the works of Amin, Rostamizadeh, and Syed
2013 and Mohri and Munoz 2014 investigate repeated interactions with a single player only,
we believe an extension to a pool of buyers is worth exploring. In this setting, we would
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expect that the extent of strategic behavior decreases as the number of plays K in each
round increases, since the decision-maker could simply ignore users in future rounds who
previously declined offers.
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Part II

Applications
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Chapter 6

HVAC Temperature Control in
Commercial Buildings

6.1 Introduction
Part I of this thesis was concerned with developing a theoretical framework for the interac-
tion of agents in the smart grid. Part II, however, focuses on practical applications, namely
the investigation of dynamic loads, forecasting smater meter data, Demand Response, and
temperature control in commercial buildings. This chapter intends to shed light on con-
trolling the interior temperature of commercial buildings in a way that maximizes energy
efficiency while respecting comfort constraints of occupants.

According to Pérez-Lombard, Ortiz, and Pout 2008, residential and commercial buildings
account for up to 40% of the total electricity consumption in developed countries, with an
upward trend. Heating, ventilation and air-conditioning (HVAC) systems are a major source
of this consumption (U.S. Department of Energy Buildings Energy Data Book; McQuade
2009). Nevertheless, their power consumption can be flexibly scheduled without compromi-
sing occupant comfort, due to the thermal capacity of buildings. As a result, HVAC systems
have become the focal point of research, with the goal of utilizing this source of consumption
flexibility. From the point of view of energy efficiency, researchers have studied optimization
of building control in order to minimize power consumption (Ma, Anderson, and Borrelli
2011; Široky et al. 2011; Parisio et al. 2014). Further, by participating in the regulation of
electricity’s frequency, buildings can assist in supporting the supply quality of electricity and
the grid stability (Balandat et al. 2014; Vrettos et al. 2014; Lin et al. 2015; Baccino et al.
2014).

In frequency regulation, there are several focal points of research based on the formula-
tion and solution of optimization problems. First, Baccino et al. 2014 and Lin et al. 2015
have implemented the optimization scheme into the operation system of a building and
experimentally tested it. Second, the robustness of frequency reserve provision has been
studied by Vrettos et al. 2014, using Model Predictive Control (MPC). Third, the contract
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design problem for the scenario when an aggregation of commercial buildings provide their
total regulation capacity to the wholesale electricity market through an aggregator has been
investigated with a game-theoretical approach by Balandat et al. 2014.

All of the above research activities are based on a valid mathematical model describing the
thermal behavior of buildings, which is an essential part of controller design as well as in sil-
ico assessment of the performance of any proposed controller. Traditionally, buildings have
been modeled with high-dimensional physics-based models such as resistance-capacitance
(RC) models (Maasoumy et al. 2014; Hao et al. 2013), TRNSYS (Duffy et al. 2009), and En-
ergyPlus (Zhao, Lam, and Ydstie 2013). These models are motivated by the thermodynamics
of the building and explicitly model the heat transfer between building components. The
advantage of such models is their high granularity of temperature modeling, but a drawback
is their high dimensionality, rendering them computationally expensive. Although there has
been extensive work on model reduction, this remains to be a non-trivial task.

A large body of this work focuses on linear models, whereas physics-based models for
commercial buildings with a variable air volume (VAV) HVAC system are bilinear in nature.
Furthermore, existing model reduction techniques often result in a loss of interpretability
of states (Dobbs 2012) and disproportionate increase in the model’s prediction error (Goyal
and Barooah 2012). This justifies the identification procedure of a purely data-driven, low-
dimensional model, as it cannot be obtained from the reduction of physics-based models
with acceptable prediction accuracy.

Motivated by these shortcomings, a new direction of research attempts to identify low-
dimensional, data-driven models with Input-Output models (Lin et al. 2015) and semipara-
metric regression (Aswani et al. 2012). The intention is to alleviate the computational
complexity in expense for coarser and less accurate temperature predictions.

A crucial question that arises within these two extremes is the extent to which the
estimated temperature model is compatible with controller design. Take Model Predic-
tive Control (MPC) for example, where the classical physics-based models require an MPC
strategy to be solved online with high computational demand. Even then, the inherent bi-
linearity ensuing from the physics of the HVAC system often requires robustification, in the
form of stochastic MPC formulations with chance constraints (Ma et al. 2012). In contrast,
regression-based models provide convenient difference equations that are easy and fast to
use for MPC. A logical question to ask is how lean a model can be for a reasonable con-
trol application, without trading off too much accuracy and granularity of the temperature
predictions.

The contribution of this chapter is two-fold. First, we aim to improve existing data-driven
model identification techniques. Unlike Radecki and Hencey 2012; Radecki and Hencey 2013,
who model the evolution of the building’s energy consumption without a specific control
input, we identify a model for temperature evolution in multiple building zones amenable to
control design, i.e. with airflows as inputs. Our model also differs from Aswani et al. 2012,
which uses HVAC supply air temperature as the single control input, resulting in a simpler
identification problem, but, on the other hand, offers less flexibility for control.

Second, and more importantly, we perform a quantitative comparison of data-driven
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and physics-based models in terms of open-loop prediction accuracy and closed-loop control
strategies, based on the same testbed (the entire floor of an office building) using experimental
data collected from the building, as opposed to simulated data.

We conclude that a low-dimensional data-driven model is suitable for building control
applications, such as frequency regulation, due to its minor loss of prediction accuracy com-
pared to high-dimensional physics-based models, but significant gain in computational ease.

To the best of our knowledge, the extant body of literature has analyzed data-driven and
physical models for the identification of temperature evolution in commercial buildings only
in an isolated fashion (in particular not on the same testbed), (Široky et al. 2011; Hu et al.
2016). In addition, some of these models were identified for fictitious buildings with synthetic
data (Cole, Hale, and Edgar 2013; Goyal, Ingley, and Barooah 2013), while others used
experimental data collected under environments with little or no disturbance, e.g. without
occupants (Lin et al. 2015). Our work differs from these existing works in two aspects.
First, we use experimental data to identify models for a multi-zone commercial building
under regular operation, which is subject to significant disturbances such as occupancy.
Second, although the existing literature mentions the differences between data-driven and
physics-based models, the prevailing isolationist approach does not provide any quantitative
comparison with respect to building control applications - a gap we aim to fill by juxtaposing
a data-driven with a physics-based model.

The remainder of this chapter is organized as follows: In Section 6.2, we describe the
testbed and the experimental data. Section 6.3 presents the identification process for a purely
data-driven model with semiparametric regression, followed by Section 6.4, which details the
procedure for identifying a physics-based model. Section 6.5 then compares the performance
of both models in terms of open-loop prediction accuracy and closed-loop energy efficient
optimal control. We show that, despite the higher accuracy of the complex physics-based
model, the optimal control strategies with respect to HVAC operation cost while maintaining
the thermal comfort of occupants is almost identical for both systems. Section 6.6 concludes.

6.2 Preliminaries

6.2.1 Testbed for System Identification
We model the temperature evolution of the fourth floor of Sutardja Dai Hall (SDH), a
building on the University of California, Berkeley campus. This floor contains offices for
research staff and open workspaces for students, and is divided into six zones for modeling
purposes (Figure 6.1).

SDH is equipped with a variable air volume (VAV) HVAC system, which consists of large
supply fans driving air through heat exchangers, cooling it down to a desired supply air
temperature (SAT), and then distribute air to VAV boxes located throughout the building.
There are 21 VAV boxes located on the fourth floor that govern the airflow to each room. In
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addition, the supply air may be reheated at the VAV box before entering the room. Table
6.1 provides information about the mapping of the 21 VAV boxes to the zones they serve.

Figure 6.1: Zones for the 4th Floor of Sutardja Dai Hall (SDH)

Zone VAV Boxes
Northwest (NW) 6, 8, 11

West (W) 1, 2, 3
South (S) 5, 9, 15, 16
East (E) 20, 21

Northeast (NE) 10, 14, 17, 19
Center (C) 4, 7, 12, 13, 18

Table 6.1: VAV Boxes by Zone

6.2.2 Collection of Experimental Data
We collected 51 weeks of one-minute resolution temperature data for the six zones along
with the airflow rates of the 21 VAV boxes, SAT, and the outside air temperature. The
hourly global horizontal solar radiation data was obtained from a nearby weather station
(CIMIS Station Reports 2015), from which the incidence solar radiation of the four geographic
directions was calculated with the PV LIB toolbox (PV Performance Modeling Collaborative).
All collected data were down-sampled or interpolated to 15 minute intervals.

These 51 weeks of data span periods when the building was under normal operation as well
as periods with excitation experiments. For accurate parameter identification, temperatures
of neighboring zones should not have strong correlation (Lin, Middelkoop, and Barooah
2012). For buildings in regular operation, this is generally possible through forced response
experiments. Because of commercial buildings’ large thermal inertia, each forced excitation
must last sufficiently long before temperature changes are observed. With these points in
mind, we conducted our experiment as follows: Starting at 8 am, every 2 hours, the air
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inflow rate to one zone is set to its maximum value, minimum air flow rates are set for each
of its neighboring zones and a random air flow rate is chosen for each remaining zone. This
is repeated for each of the 6 zones. This experiment is performed during Saturdays to (a)
minimize effects due to occupancy on our data, and thus facilitate subsequent parameter
identification; (b) minimize disturbance to building operation (Hu et al. 2016).

For accurate parameter identification, temperatures of neighboring zones should not have
strong correlation (Lin, Middelkoop, and Barooah 2012). Our testbed is a regular office
building in operation, thus forced response experiments were performed during Saturdays to
(a) increase identifiability of the building model; (b) minimize effects due to occupancy on
our data, and thus facilitate subsequent parameter identification; (c) minimize disturbance
to building operation (Hu et al. 2016).

6.2.3 Data Splitting
Next, we defined the seasons “fall” (early September - mid December), “winter” (mid Decem-
ber - late January), and “spring” (late January - mid May) to account for different occupancy
levels during the fall and spring semesters and the winter break. A 90%-10% random split
into training and test data was used for fitting and testing the models, respectively.

6.2.4 Notation
Let (̂·) denote either the conditional expectation or the estimated value of a variable. Let
(̃·) the predicted value of a variable, respectively.

6.3 Data-Driven Model
Using semiparametric regression, we identify a difference equation for the temperature evolu-
tion, for a lumped zone model and a multi-zone model of the fourth floor of SDH. Semipara-
metric regression in buildings has been proposed by Aswani et al. 2012, where the authors
used only one week of historic data to model the temperature evolution and used the HVAC’s
supply air temperature as the single control input including an exogenous heating load that
captures the effect of occupancy, electric devices, outside air temperature, and solar radia-
tion.

We extend this approach by taking into account multiple weeks, which we separate into
three seasons (fall, winter, spring) so as to characterize the different levels of the exogenous
heating load for different temporal seasons. In addition, we model the room temperatures as
a function of airflow rates from multiple VAVs to obtain a model which can be used for more
sophisticated control strategies. We make use of cross-validation across all weeks to find
the optimal model, therefore allowing for a more general analysis of the thermal behavior
rather than restricting ourselves to identifying a model tailored to a single week, as is done
in Aswani et al. 2012.
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6.3.1 Lumped Zone
6.3.1.1 Model Setup

In order to facilitate analysis, the entire 4th floor of SDH is treated as a single zone, with
the scalar temperature x corresponding to the average temperature on the entire floor and
the input u as the sum of the inflow of all 21 VAV boxes. This lumped model assumes a
uniform temperature on the entire floor, x, and has been commonly used in literature (Ma
et al. 2012; Oldewurtel et al. 2010). Then, the temperature evolution is assumed to have the
following form:

x(k + 1) = ax(k) + bu(k) + c>v(k) + qIG(k) + ε(k), (6.1)
where u denotes the total air inflow to the entire floor and v := [vTa, vTs, vsolE, vsolN, vsolS, vsolW]>
is a vector of known disturbances that describes ambient air temperature, the HVAC sys-
tem’s supply air temperature, and solar radiation from each of the four geographic directions.
In addition, qIG represents the internal gains due to occupancy and electric devices, and ε
denotes independent and identically distributed zero mean noise with constant and finite
variance which is conditionally independent of x, u, v, and qIG. Finally, a, b ∈ R and c ∈ R6

are unknown coefficients to be estimated using semiparametric regression (Ruppert, Wand,
and Carroll 2003).

6.3.1.2 Smoothing of Time Series

The qIG term of Equation (6.1) is treated as a nonparametric term, so that (6.1) becomes
a partially linear model (Härdle, Liang, and Gao 2000). By taking conditional expectations
on both sides of (6.1), we obtain

x̂(k + 1) = ax̂(k) + bû(k) + c>v̂(k) + E [qIG(k)|k] + E [ε(k)|k] , (6.2)
where the conditional expectations x̂(·) = E [x(·)|·], û(·) = E [u(·)|·], and v̂(·) = E [v(·)|·] are
used. Noting that E [ε(·)|·] = 0 and assuming E [qIG(·)|·] = qIG(·), subtracting (6.2) from
(6.1) gives

x(k + 1)− x̂(k + 1) = a (x(k)− x̂(k)) + b (u(k)− û(k)) + c> (v(k)− v̂(k)) + ε(k). (6.3)

The unknown internal gains term has been eliminated, and thus the coefficients a, b, c in
(6.3) can be estimated with any regression method. The conditional expectations x̂(·), û(·)
and v̂(·) are obtained by smoothing the respective time series (Aswani et al. 2012). We made
use of locally weighted linear regression with a tricube weight function, where we use k-fold
cross-validation to determine the optimal kernel width that assigns weights ψi

ψi =
1−

∣∣∣∣∣z − zid(z)

∣∣∣∣∣
3
3

, (6.4)

that belong to zi ∈ Z, which is a neighbor of the data point z to be smoothed along the
abscissa within the span Z (all data points around z taken into account to smooth the time
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series at z), and d(z) the distance from z to the farthest predictor within Z. The width d(z)
of the span Z is determined with k-fold cross-validation.

The error measure used for in-sample estimates is the Root Mean Squared (RMS) Error
between the measured temperatures x̄(k) and the model’s predicted temperatures x(k) over
a time horizon of N steps (e.g. we chose 24 hours, N = 96):

RMS error =
( 1
N

∑N
k=1 [x̄(k)− x(k)]2

)1/2
. (6.5)

6.3.1.3 Bayesian Constrained Least Squares

A major challenge in identifying the model is that commercial buildings are often insuffi-
ciently excited. For example, SDH’s room temperatures under regular operation only vary
within a range of 2◦C whereas inflow of the VAV boxes hardly varies at all. To overcome this,
forced response experiments (Section 6.2.2) were conducted to compensate for the lack of
excitation. Further, we use Bayesian regression, which allows prior knowledge of the building
physics to be incorporated in the identification of coefficients. Specifically, Gaussian prior
distributions are used for the coefficients a and b, i.e., a ∼ N (µa,Σa) and b ∼ N (µb,Σb),
where N (µ,Σ) denotes a jointly Gaussian distribution with mean µ and covariance matrix
Σ. In addition, a, b and c are constrained to be identical for the different seasons, since they
model the underlying physics of the building which are assumed to be invariant throughout
the year.

Let T = {1, 2, · · · , N} denote N weeks of training data. Let the set of training weeks
from the fall season be represented by F = {i ∈ T such that i is a week in fall}. Similarly,
define the sets of training weeks from the winter and spring as W and S. The coefficient
identification problem reads as follows:

(â, b̂, ĉ) = arg min
a,b,c

(JF + JW + JS) + ‖Σ−1/2
a (a− µa)‖2 + ‖Σ−1/2

b (b− µb)‖2

s.t. JX =∑
i∈X ‖xi(k + 1)− x̂i(k + 1)− a (xi(k)− x̂i(k))
− b (ui(k)− ûi(k))− c> (vi(k)− v̂i(k)) ‖2 (6.6)
for X ∈ {F ,W ,S},
0 < a < 1, b ≤ 0, c ≥ 0.

where subscripts f, w, and s represent fall, winter and spring, respectively. JF , JW and JS
denote the sum of squared errors between actual and predicted temperatures for fall, winter,
and spring, respectively. The sign constraints on the parameters b and c capture the fact
that temperature correlates positively with all components in v and negatively with VAV
airflow. The range of a is a consequence of Newton’s Law of Cooling.

To find the effect of the VAV inflow on the 15-minute temperature evolution, we computed
the 15-minute incremental reductions in temperature ∆x recorded during the excitation
experiments. It is assumed that the large inflow u dominates all other effects such that we
can assume ∆x = x(k + 1) − x(k) = b · u(k) for all k during the excitation period. The
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estimated prior µb can then be isolated. The prior µa was set as the optimal â identified by
(6.6) without the prior terms. The covariance matrices Σa and Σb were chosen subjectively.

6.3.1.4 Estimation of Internal Gains

With the estimated coefficients â, b̂, ĉ in hand, the internal gains qIG can be estimated by
manipulating (6.2):

q̂IG(k) = x̂(k + 1)−
(
âx̂(k) + b̂û(k) + ĉ>v̂(k)

)
. (6.7)

(6.7) is used to estimate an instance of the internal gains function for each week i in the
training set T . The qIG for each season is defined as the average of estimated weekly gains
for all weeks i ∈ X and X ∈ {F ,W ,S}.

6.3.1.5 Results

The estimated internal gains for each season are shown in Figure 6.2. Observe that, for

Day of Week
Mon Tue Wed Thu Fri Sat Sun Mon

In
te

rn
a

l 
G

a
in

 [
°
C

]

3.9

4

4.1

4.2

4.3

4.4

4.5
fall
spring
winter

Figure 6.2: Estimated Internal Gain qIG from the Data-Driven Model by Season, Lumped
Case

all three seasons, the internal gains exhibit a daily trend with local peaks around the late
afternoon and local minima at night. Moreover, the amplitudes of the internal gains are
considerably smaller during weekends, suggesting a lighter occupancy. It can further be seen
that the magnitude of the internal gains is smallest for the winter season, which is consistent
with intuition as many building occupants are absent.

Lastly, since the Bayesian Constrained Least Squares algorithm (6.6) has identified a set
of parameter estimates â, b̂, ĉ valid for all three seasons to account for the time-invariant
physics of the building, the temperature predictions are of the same nature for all three
seasons. We thus conclude that the inherent differences between the seasonal temperature
data are captured by the internal gains and can be compared between the seasons on a
relative level.
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The identified models for the seasons X ∈ {F ,W ,S} found with (6.6) are

x(k + 1) = 0.80 · x(k)− 0.18 · u(k) + [0.0019, 0.028,0] v(k) + qIG,X (k)
= 0.80 · x(k)− 0.18 · u(k) + 0.0019 · vTa(k) + 0.028 · vTs(k) + qIG,X (k) (6.8)

The estimated effect of solar radiation on the room temperature is orders of magnitude less
than that of other factors and hence can be neglected. This is in agreement with our testbed
having no windows in the South and Northeast zones, and most of the windows are covered
with blinds.

The average RMS prediction errors are 0.22◦C, 0.17◦C and 0.23◦C for fall, winter and
spring, respectively, showing that our model predicts the temperature reasonably well.

6.3.2 Individual Zones
6.3.2.1 Model Setup

Rather than approximating the entire 4th floor of SDH as a single zone, we now identify a
multivariate thermodynamic model for each of the six individual zones:

x(k + 1) = Ax(k) +Bu(k) + Cv(k) + qIG,X (k)
for X ∈ {F ,W ,S},

(6.9)

where x, qIG,X ∈ R6, and the control input u ∈ R6 represent the temperatures, the internal
gains of each zone, and the total air flow to each zone, respectively. In the lumped case, it was
observed that solar radiation only had a negligible effect on the building’s thermodynamics
compared to the input and other disturbances, and thus we omit the solar radiation in the
subsequent analysis: v := [vTa, vTs]> ∈ R2.

Inspired by Newton’s Law of Cooling, only adjacent zones influence each other’s temper-
ature, which defines the sparsity pattern of the coefficient matrices that are to be estimated:

Aij =

 6= 0, if i = j or (i, j) adjacent
0, otherwise.

(6.10)

The diagonal elements of A denote autoregressive terms for zone temperatures, whereas
non-diagonal elements describe the heat exchange between adjacent rooms. The matrix B
is diagonal by definition of u. The sparsity pattern of C is found by physical adjacency of a
respective zone to an exterior wall of a given geographic direction.

6.3.2.2 Model Identification

The procedure for the estimation of the parameter matrices Â, B̂, Ĉ, and the internal gains
follows (6.6), but with a modified choice of the (now matrix-valued) priors µa and µb: µb
and the diagonal entries of µa are obtained by scaling the corresponding priors from the
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lumped zone case in order to account for the thermal masses of the individual zones, which
are smaller than in the lumped case. The off-diagonal elements of µa, which represent the
heat transfer between adjacent zones, were set to a value close to zero, according to our
calculations with the heat transfer equation q̇ = U · A ·∆x and Koehler and Borrelli 2013.

6.3.2.3 Results

Figure 6.3 shows the estimated internal gains for the three seasons fall, winter, and spring
for the six single zones, computed with the smoothed time series (6.7). It can be seen that
the different zones exhibit different magnitudes of internal gains, with average values of the
internal gains ranging between 1.0◦C and 3.6◦C for different zones and seasons. Similar to the
lumped zone case (Figure 6.2), daily peaks of the internal gains profiles can be recognized,
with a slight decrease in magnitude on weekend days. Table 6.2 reports the average prediction
RMS error by zone and season.
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Figure 6.3: Estimated Internal Gain qIG from the Data-Driven Model by Zone and Season,
Individual Case
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Data-Driven Model
Season NW W S E NE C Mean

Fall 0.98 0.61 0.28 0.42 0.28 0.36 0.488
Winter 1.41 0.34 0.29 0.26 0.25 0.21 0.460
Spring 0.56 0.25 0.31 0.71 0.17 0.34 0.390

Physics-Based Model
Season NW W S E NE C Mean

Fall 0.61 0.46 0.39 0.39 0.20 0.32 0.396
Winter 0.55 0.39 0.34 0.32 0.18 0.24 0.338
Spring 0.45 0.28 0.24 0.33 0.09 0.19 0.263

Table 6.2: RMS by Zone and Season for Data-Driven and Physics-Based Models

6.4 Physics-Based Model
We describe the physics-based modeling approach proposed in Hu et al. 2016, which ob-
tains an RC-model using the Building Resistance-Capacitance Modeling (BRCM) MATLAB
toolbox (Sturzenegger et al. 2012). A main advantage of this approach is that the resulting
model has a small number of parameters, even for a complex multi-zone building; further-
more, these parameters have strong physical meaning, which aids in their identification. We
re-identify the building model using the same training dataset as used in Section 6.3, and
estimate distinct internal gains functions for different seasons.

6.4.1 Model Setup
The physics-based model has the following form Hu et al. 2016:

x(k + 1) = Ax(k) +Bvv(k) +BIGfIG(k) (6.11a)
+∑21

i=1

(
Bxuix(k) +Bvuiv(k)

)
ui(k)

y(k) = Cx(k), (6.11b)

where state vector x ∈ R289 and y ∈ R6 represent temperatures of all building elements
(walls, ceilings, floors, etc.) on the 4th floor and the average temperatures of the six zones
shown in Figure 6.1, respectively. u ∈ R21 denotes the airflow rate from the 21 VAV boxes
and v := [vTa, vTs]> the vector of known disturbances. As in the data-driven model, heat
gains due to solar radiation are omitted from the analysis. Finally, fIG(k) : N→ R6 captures
internal gains in each of the six zones on the 4th floor. For week m in the training set T :

fIG(k) = f cIG +


f vIG,F(k), if m ∈ F ,
f vIG,W(k), if m ∈ W ,

f vIG,S(k), if m ∈ S,
(6.12)



CHAPTER 6. HVAC TEMPERATURE CONTROL IN COMMERCIAL BUILDINGS 80

Figure 6.4: Estimated Internal Gain fIG from the Physics-Based Model by Zone and Season

where f cIG is an unknown constant vector representing background heat gains due to idle elec-
tric appliances. Functions f vIG,F(·), f vIG,W(·) and f vIG,S(·) are unknown nonparametric func-
tions that capture the time-varying heat gain due to occupancy and equipments in fall, winter
and spring, respectively. The system matrices A, Bv, BIG, Bxui and Bvui are functions of the
window heat transmission coefficient Uwin and convection coefficients of the interior wall γIW,
exterior wall γEW, floor γfloor, and ceiling γceil. Define γ :=

[
Uwin, γIW, γEW, γfloor, γceil, f

c>
IG

]>
∈

R11, then to identify the physics-based model, we need to estimate the parameter vector γ
as well as the functions f vIG,X (·), X ∈ {F ,W ,S}.

6.4.2 Model Identification
For a fair comparison, the same data used to train and test the data-driven model is used to
train and validate the physics-based model. The model identification process is performed
in two steps: First, the subset of the training data collected during weekends is used to
estimate the parameters, γ. Second, the nonparametric functions f vIG,X (·) are estimated
from the complete training dataset.
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6.4.2.1 Parameter Estimation

We first set f vIG,X (·) = 0 during the weekend days to evaluate them at a later point. With
f vIG,X (·) = 0, (6.11) reduces to a purely parametric model:

x(k + 1) = Ax(k) +Bvv(k) +BIGf
c
IG

+∑21
i=1

(
Bxuix(k) +Bvuiv(k)

)
ui(k),

y(k) = Cx(k).
(6.13)

The optimal model parameters are estimated by solving the following optimization problem:

γ̂ = arg min
γ>0

∑
m∈T

∑
k ‖ym(k, γ)− ȳm(k)‖2

s.t. ym(k, γ) and xm(k, γ) satisfy (6.13) with
xm(0) = xKF,m(0)
um(k) = ūm(k), vm(k) = v̄m(k) ∀ k,

(6.14)

where ū, v̄ and ȳ denote the measured inputs, disturbances, and zone temperatures, respec-
tively. In other words, we choose γ such that, when the model is simulated with this set
of parameter values and the measured inputs and disturbances, the sum of squared errors
between the measured zone temperatures and the simulated temperatures is minimized. The
initial state xm(0) is required to simulate the model, however, not all states are measurable
(e.g. wall temperature). Thus, we estimate the initial states using a Kalman Filter xKF,m(0)
and set xm(0) = xKF,m(0). Furthermore, to compensate for the lack of sufficient excitation
of the building, physically plausible initial guesses for γ are chosen. The optimal parameter
values are similar to those reported in Hu et al. 2016 and hence omitted.

6.4.2.2 Estimation of f vIG(·)

Let f vIG,m(·) be an instance of the internal gains function f vIG(·) estimated for week m in the
training set. The optimal estimate for a given season, is then defined as the the average of
all estimates for that season:

f̂ vIG,F(k) = ∑
m∈F f

v
IG,m(k)/‖F‖ ∀ k, (6.15)

where ‖F‖ represents the cardinality of set F . To estimate f vIG,m(·) for a given week m, let
x̃(k) and ỹ(k) denote the predicted states and zone temperatures at time k, with f vIG,w(k −
1) = 0. That is,

x̃(k) = Ax(k − 1) +Bvv(k − 1) +BIGf
c
IG

+∑21
i=1

(
Bxuix(k − 1) +Bvuiv(k − 1)

)
· ui(k − 1),

ỹ = Cx̃(k).

(6.16)
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Figure 6.5: Simulated Temperatures from the Data-Driven Model (blue), Physics-Based
Model (orange) and Actual Temperatures (green)

By noting x(k) = x̃(k) +BIGf
v
IG,m(k− 1), f vIG,m(k− 1) can be estimated by solving (CBIG) ·

f vIG,m(k − 1) = ȳ(k) − ỹ(k), a set of linear equations, using Ordinary Least Squares. ȳ(k)
denotes the measured zone temperatures at time k.

6.4.3 Results
The average daily prediction RMS errors by zone and season are reported in Table 6.2.
Figure 6.4 shows the estimated temperature contribution of the internal gains for fall, winter
and spring. The zones that correspond to open workspaces and conference rooms (“West”,
“South”, “East”, “Center”) show discernible daily peaks in their internal gains profiles with
a slight decrease during weekends. Lastly, there is little variation in the internal gains across
different seasons.
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6.5 Quantitative Comparison of Both Models

6.5.1 Prediction Accuracy
The physics-based model (Model B) is found to have a higher prediction accuracy compared
to the data-driven model for the individual zones (Model A) presented in Section 6.3.2: Ac-
cording to Table 6.2, the mean RMS error for Model B across zones is 0.11◦C lower than for
Model A. This is also illustrated in Figure 6.5, which shows 7-day open-loop predictions of
the temperature of a randomly selected holdout test week in the spring period, simulated
with both models initialized with the measured temperature. To the best of our knowledge,
a quantitative comparison at this level is non-existent, as previous building models were
developed for different testbeds, fictitious buildings or from simulated data. This chapter at-
tempts to close this gap by providing a quantitative comparison between the low-dimensional
data-driven model and the high-dimensional physics-based model’s prediction accuracy for
the same multi-zone commercial building under regular operation.

6.5.2 Energy Efficient Control
Next, we explore the extent to which Model A’s slightly lower prediction accuracy affects
its resulting controller’s closed-loop performance in energy efficient control. We formulate
an MPC problem to find the optimal control strategy that minimizes the cost of HVAC
operation over the same week used in Figure 6.5, while guaranteeing the temperature to stay
within a comfort zone [Tmin, Tmax], which we chose as [20◦C, 22◦C] (Hansen and Burroughs
2013), and confining the control input to the minimum and maximum airflow settings of the
HVAC system [umin, umax]:

min
u,ε

N∑
k=1

u(k)2 + ρ‖ε‖2

s.t. x(0) = x̄(0)

x(k + 1) =

(6.9), Model A
(6.11a), Model B

(6.17)

umin − ε ≤ u(k) ≤ umax + ε ∀k ∈ [0, N − 1]Tmin ≤ x(k) ≤ Tmax, Model A
Tmin ≤ Cx(k) ≤ Tmax, Model B (6.11b)

∀k ∈ [1, N ]

The temperature is initialized with the measured temperature x̄(0) at the beginning of the
week-long simulation. Soft constraints on the control input with a penalty parameter ρ ensure
feasibility of the problem. The penalty represents the cost of decreasing airflow below the set
minimum value. This is physically feasible as the set minimum airflow rate for our testbed is
significantly higher than the standard minimum required by building standards. To find the
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Figure 6.6: Optimal Temperature for MPC with Data-Driven Model (blue), MPC with
Physics-Based Model (orange) and Actual Temperature (green)

optimal control strategy, we make use of receding horizon control with a prediction horizon
of three 15-minute time steps.

Figure 6.6 shows the temperature trajectory computed by the energy efficient controller
(6.17) computed with both models A and B, together with the measured temperature as a
reference. It can be seen that both control schemes are capable of maintaining the tempera-
ture within [20◦C, 22◦C], with a control strategy that is of comparable cost (1,006 and 1,731
for Model A and Model B, respectively, where ρ = 100), shown in Figure 6.7. Furthermore,
it is interesting to observe that variations in the control input do not impact the periodicity
of the temperature qualitatively, which can be explained by the regularity of the identified
internal gains.

These findings suggest that both models perform equally well in designing an energy
efficient control strategy. However, computing this strategy for Model A was cheap (< 5
minutes) compared to Model B (≈ 20 hours) on a 2 GHz Intel Core i7, 16 GB 1600 MHz
DDR3 machine. Further, we note that in real-world applications, the MPC would use state
feedback to initialize the temperature with sensor measurements at every time step, whereas
in our simulation, it operates in an “open loop” fashion and hence propagates the estimation
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Figure 6.7: Optimal Control Strategy for MPC with Data-Driven Model (blue), MPC with
Physics-Based Model (orange) and Actual Input (green)

error with time. This will reduce the difference in the prediction quality by both controllers
even further, since the RMS error is now to be evaluated on a much shorter prediction
horizon, thereby further corroborating the finding of almost identical control schemes.

Observing that Model A only suffers a negligible loss of accuracy compared to Model
B for an open loop optimal control scheme, our findings suggest the suitability of Model
A to applications with temperature-critical zones in which even more precise temperature
estimates are needed, e.g. long-term planning of reserve provision for frequency regulation.

6.6 Discussion and Conclusion
We identified a low-dimensional data-driven model, using semiparametric regression, and a
high-dimensional physics-based resistance-capacitance model for the thermal behavior of the
same multi-zone commercial building. Both state-space models were fitted on experimental
data collected during regular building operation and capture the effect of disturbances such
as occupancy and electrical appliances that commercial buildings are subjected to, without
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installation of any additional hardware such as occupancy sensors.
The identification of both models on the same building enabled us to quantitatively

compare the performance of these types of models when applied to a real building, which
has not been investigated before. Our results showed that the RMS error of the open-
loop temperature prediction of the physics-based model across different thermal zones and
temporal seasons is 0.11◦C lower than in the data-driven model, a 25% reduction. However,
simulating energy efficient MPC schemes under both models suggested both models perform
equally well in terms of cost function minimization and constraint satisfaction despite the
significantly higher complexity of the physics-based model.

It is widely known in this field that low-dimensional data-driven models have lower predic-
tion accuracy than high-dimensional physics-based models, and thus have been only proposed
for control of less temperature-critical buildings or zones. However, our work investigated an
identification method for data-driven models for multi-zone commercial buildings in regular
operation and demonstrated that the lower open-loop prediction accuracy of such data-
driven models is insignificant in closed-loop control schemes compared to a high-dimensional
physics-based model. Based on these findings, we suggest that such data-driven models may
be suitable for applications that were previously considered inappropriate, e.g. frequency
regulation.

To verify our hypotheses, one would have to design and implement a control scheme
suitable for frequency regulation, using the data-driven model, into the building operation
system of SDH. This is a challenge left for future work.
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Chapter 7

Short-Term Load Forecasting on
Smart Meter Data

7.1 Introduction
While Chapter 6 analyzed the electric load associated with temperature control of a commer-
cial building, we now pivot to residential users and their loads. The central purpose of the
remainder of this thesis is to quantify the extent to which residential households are willing
to reduce their electricity consumption temporarily in exchange for a monetary incentive. In
contrast to Chapter 6, in which we were capable of deriving explicit equations for tempera-
ture models that were amenable to HVAC control, we have to avail ourselves of more complex
machinery to be able to build suitable models for the behavior of residential customers. This
chapter is a precursor to the actual analysis of a residential Demand Response (cf. Chap-
ter 8), as it provides a few fundamental tools for predicting electricity consumption on an
individual user level. Specifically, this chapter discusses how to forecast smart meter data
with advanced models, namely Hidden-Markov Models (HMMs) and Conditional Mixtures
of Gaussians (CGMMs).

In the extant literature, short-term load forecasting (STLF) has been extensively studied
with different approaches and on different levels of aggregations of users, ranging from the
individual level to city-wide predictions (Sevlian and Rajagopal 2014; Mirowski et al. 2014).
Statistical time series models (Arora and Taylor 2014; Taylor and McSharry 2007), standard
parametric regression models such as Ordinary Least Squares, Lasso- and Ridge-Regression
(Mirowski et al. 2014), and non-parametric methods including k-Nearest Neighbors, Support
Vector Regression (Elattar, Goulermas, and Wu 2010), and Neural Networks (Edwards, New,
and Parker 2012) have been evaluated with respect to different metrics for accuracy. Widely
explored Bayesian Methods for STLF are Gaussian Processes (Lauret, David, and Caloigne
2012), Bayesian Neural Network approaches, e.g. for input selection problems (Hippert and
Taylor 2010), and Kalman-Filtering methods (Al-Hamadi and Soliman 2004) with Hybrid
Neural Network extensions (Guan et al. 2013). HMMs for STLF have been applied primarily
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for the purpose of occupancy detection (Kleiminger et al. 2014) and Nonintrusive Load
Monitoring (Parson et al. 2011). (Han, Gao, and Fan 2012) and (Ai, Fan, and Gao 2014)
utilize occupancy information to increase the energy efficiency of building operation. To the
best of our knowledge, CGMMs have not been investigated for STLF.

This chapter is structured as follows: In Section 7.2, we briefly outline classical Machine
Learning (ML) methods used for STLF. Sections 7.3 and 7.4 describe technical details of
CGMMs and HMMs tailored to the specific needs of STLF, followed by Section 7.5, which
outlines the procedure of incorporating the estimated latent variables into STLF. Section
7.8 concludes this chapter.

7.2 Forecasting Methods
The following well-established forecasting methods, which regress the outcomes Y on the
covariates X, are discussed in the remainder of this chapter:

• Ordinary Least Squares Regression (OLS)

• k Nearest Neighbors Regression (KNN)

• Support Vector Regression (SVR)

• Decision Tree Regression (DT)

Notation: Let Y ∈ RN denote a column vector of N scalar outcomes {y1, . . . , yN}, e.g. in
our case electricity consumption, and X ∈ RN×d the design matrix whose k-th row represents
the covariates xk ∈ Rd associated with outcome yk. Let y and x denote a generic outcome
and its associated covariate vector, respectively.

7.2.1 Ordinary Least Squares Regression
Assuming a linear relationship between covariate-outcome pairs (X, Y ),

Y = Xw, (7.1)

the regression coefficients w ∈ Rd are estimated using Ordinary Least Squares Regression
(OLS).

7.2.2 K-Nearest Neighbors-Regression (KNN)
Given a point in feature space x, the goal is to find the k training points x1, . . . , xk that
are closest in distance to x. We choose the commonly used Euclidian norm (though other
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choices can be justified) as a measure for distance in feature space. The prediction of the
outcome ŷ is the average of the outcomes of the k nearest neighbors

ŷ = 1
k

(y1 + . . .+ yk). (7.2)

The number of neighbors k for an optimal fit is found using common cross-validation tech-
niques.

7.2.3 Support Vector Regression
Support Vector Regression (SVR) solves the following optimization problem:

min
w,b,ξ,ξ∗

1
2‖w‖

2 + C
N∑
i=1

(ξi + ξ∗i )

s.t. yi − w>φ(xi)− b ≤ ε+ ξi,

w>φ(xi) + b− yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0, i ∈ [1, . . . , N ] .

(7.3)

In (7.3), ε defines an error tube within which no penalty is associated, ξ and ξ∗ denote slack
variables that guarantee the existence of a solution for all ε, b is a real constant, C is the
regularization constant, w are the regression coefficients to be estimated, and φ(·) a map
between the input space and a higher dimensional feature space. (7.3) is typically solved
by transforming it into dual form, thereby avoiding the explicit calculation of φ(·) with the
so-called Kernel trick. We choose the commonly used Gaussian Kernel function.

7.2.4 Decision Tree Regression (DT)
This non-parametric learning method finds decision rules that partition the feature space
into up to 2n pieces, where n denotes the maximal depth of the tree. For a given iteration
step, enumeration of all nodes and possible splitting scenarios (exhaustive search) yields a
tuple θ∗ = (j, tm) that minimizes the sum of the ensuing child node impurities G(θ∗,m),
where j denotes the j-th feature and m the m-th node of the tree. This is written as

θ∗ = arg min
θ
G(θ,m), (7.4a)

G(θ,m) = nmleft
Nm

H(Qleft(θ)) +
nmright

Nm

H(Qright(θ)). (7.4b)

where Qleft and Qright denote the set of covariate-outcome pairs belonging to the left and
right child node of parent node m, respectively; and nmleft and nmright denote their respective
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count. The impurity measure H(·) at a node minimizes the mean squared error

c(·) = 1
N(·)

∑
i∈N(·)

yi, (7.5a)

H(·) = 1
N(·)

∑
i∈N(·)

[yi − c(·)]2 , (7.5b)

with N(·) representing the number of covariate-outcome pairs at the node of interest.
DTs are readily fitted using exhaustive search for each split. Cross-validation, usually on

the maximal depth of the tree or the minimal number of samples per node, avoids overfitting
of the tree. The optimized tree is then used for forecasting the outcome by taking the
average of all outcomes belonging to a given node m. This yields a decision tree with
piecewise constant predictions.

7.3 Mixture Models
In this section, we describe the fitting procedure of CGMMs on data that combine multiple
linear regression models to act as an ensemble learner. Given a set of covariate-outcome
pairs (in our case yi denotes energy consumption),

D = {(xi, yi) : i = 1, . . . , N}, (7.6)

the idea is to model the probability distribution of any observation y with corresponding
covariates x as the output of an ensemble of linear regressions

P(y|x,w, σ2, π︸ ︷︷ ︸
=:θ

) =
K∑
k=1

πkN (y|wk · x, σ2), (7.7)

where π = {π1, . . . , πK} and w = {w1, . . . , wK} denote K mixing proportions with ∑K
i=1 πk =

1 and the regression coefficients for each learner, respectively. σ2 signifies the noise variance,
where, according to Bishop 2006, we make the following

Assumption 12. σ2 is equal across all mixture components k = 1, . . . , K.

Assumption 12 can be relaxed by using mixture-specific noise covariances {σ2
1, . . . , σ

2
K},

in which case we would have to modify (7.10a)−(7.10d).
The rationale behind fitting a CGMM on a residential load forecasting setting is to de-

scribe electricity consumption as a result of different user behaviors {πk}Kk=1, i.e. to interpret
the mixing proportions as archetypes of human consumption behavior, each of which has
an observable output distribution governed by an OLS model. The convex combination of
these archetypes allows for an interpolation between these archetypes.
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7.3.1 Parameter Estimation
Given the training data D, the Expectation-Maximization Algorithm (EM-Algorithm) (Ra-
biner 1989; Bishop 2006) allows us to derive an iterative procedure to learn the parameters
θ = {{πk}Kk=1, {wk}Kk=1, σ

2}. We first define the expected complete log likelihood `(θ|Dc),
where

Dc = {(xi, yi, zi) : i = 1, . . . , N} (7.8)

denotes the fully observed dataset whose latent variables {z1, . . . , zN} are assumed to be
known. The latent variable belonging to xi is a vector zi = [zi1, . . . , ziK ]>, where zik denotes
the probability that xi was generated by mixture component k. The complete log-likelihood
is

`(θ|Dc) =
N∑
i=1

K∑
k=1

zik log
(
πkN (yi|wk · xi, σ2)

)
(7.9)

under the assumption of known zik. The EM-Algorithm alternates between the E-Step, whose
task is to determine the expected value of the latent variables zik, 1 ≤ i ≤ N, 1 ≤ k ≤ K with
respect to the conditional probability distribution (7.7), and the M-Step, which updates the
parameters θ with the results from the E-Step by taking the derivative of the expected value
of (7.9) with respect to the desired parameters θ. This is carried out iteratively until some
convergence criterion is reached, i.e. the incremental increase of the expected complete log
likelihood (7.9) falls below a threshold. The update steps for one iteration are as follows:

ẑik = π̂kN (yi|ŵk · xi, σ̂2)∑K
j=1 π̂jN (yi|ŵj · xi, σ̂2)

, (7.10a)

π̂k = 1
N

N∑
i=1

ẑik, (7.10b)

ŵk =
[
X>DX

]−1
X>DY, D = diag(ẑ1k, . . . , ẑNk), (7.10c)

σ̂2 = 1
N

N∑
i=1

K∑
k=1

ẑik(yi − ŵk · xi)2, (7.10d)

where we have to incorporate the constraint ∑K
k=1 π̂k = 1 as a Lagrange Multiplier in the

derivation.

7.3.2 Predicting New Data
To predict the outcome ŷ of an out-of-sample data point x, we suggest a different approach
than is employed by Bishop 2006: Instead of using the estimated mixing proportions {π̂k}Kk=1
as the weights for a convex combination of the estimated regression coefficients {ŵk}Kk=1, we
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choose the weights as the estimated latent variables {ẑjk}Kk=1 of x’s nearest neighbor xj:

j = arg min
1≤i≤N

‖xi − x‖2 (7.11a)

ŷ =
K∑
k=1

ẑjkŵk · x (7.11b)

The rationale behind this approach is to exploit potential spatial separation in the set of
training data, i.e. the fact that different regions of the covariate space are best fit by a
specific learner. By locating the nearest neighbor of x, the same set of weights that proved
to be most accurate for the training of the data points in the region around x are to be used
for the prediction of ŷ.

7.4 Hidden Markov Models
In this section, we briefly outline the training procedure of HMMs. Figure 7.1 shows the
graphical model of a standard HMM with a hidden layer (transparent nodes), representing
latent variables, and observations (shaded nodes).

q0 q1 q2 ... qT−1 qT

y0 y1 y2 ... yT−1 yT

Figure 7.1: Hidden Markov Model. Hidden States q, Observations y

7.4.1 Hidden Layer
We model the latent variables in the hidden layer (see Figure 7.1) as a first order, time-
invariant, Discrete Time Markov Chain (DTMC) with a set of transition probabilities

aij = P(qt = j|qt−1 = i), 1 ≤ i, j ≤M, (7.12)

where t = 0, 1, 2, . . . , T denote time instants associated with state changes and qt the hidden
state at time t. Due to the Markov Property, we have that, conditional on qt, qt+1 is
independent of qt−1. The state transition coefficients aij have the properties

0 ≤ aij ≤ 1,
M∑
j=1

aij = 1, i, j ∈ {1, . . . ,M}, (7.13)

where M denotes the number of states (=latent variables).
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We postulate the existence of two different latent states for each hour of the day (HoD)
between 6 a.m. - 8 p.m., and a single state for the remaining hours, hence M = 38. For
the former hours, binary states describing each hour shall encode information about “high”
(“H”) or “low” (“L”) consumption, which might be an indicator for occupancy (“H” = at
home, “L” = not at home). For the remaining HoDs, we note that first, no DR events in
our data set were recorded outside this window, and second, little variation in the smart
meter recordings was observed, which is consistent with Zhou, Balandat, and Tomlin 2016b,
where the authors find little variation in clustered load shapes during the night. Due to the
Markov Property, state transitions are restricted to states belonging to the next hour only,
which renders the Markov transition matrix A ∈ R38×38 sparse. Figure 7.2 shows the state
transition diagram (without probabilities on the edges, which are to be estimated from data,
see Section 7.4.3).

0
... 5

6H

6L

...

...

19H

19L

20 ...
23

Figure 7.2: Markov State Transition Diagram, 24 Hour Periodicity. For Example, “5” Sig-
nifies Time Between 5 a.m. - 6 a.m.

A logical extension is to allow for multi-step dependencies, which can be achieved by
enlarging the state space of the DTMC such that the previous n > 1 states jointly determine
the next transition. A more granular description of the state transitions, however, would
come at the cost of a higher computational complexity, a tradeoff whose analysis is outside
the scope of this chapter.

A consequence of this modeling approach is that, if the consumption is high at time t−1,
it is likely that the hidden state qt−1 = H and qt = H, and so we expect a high consumption
at time t, as well. Conversely, if the consumption at time t− 1 is low (i.e. due to an absent
user), the most likely hidden state qt−1 = L and qt = L, and thus we would expect a low
consumption at time t. It turns out that the parameter estimation on actual smart meter
data set automatically assigns higher probabilities to transitions to the next hour of the same
type than to the opposite type, indicating that switches between “H” and “L” do not occur
frequently. This is consistent with our intuition: If the latent variable represents periods of
expected presence or absence at home, users are more likely to remain either at home or
absent, rather than switching every hour.

7.4.2 Observations
Assumption 13. Conditional on the current hidden state qt, the observable energy con-
sumption yt (=observation/emission) is assumed to be normally distributed with parameters
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(µqt , σ2
qt):

P(yt|qt) = 1√
2πσ2

qt

exp
(
−(yt − µqt)2

2σ2
qt

)
. (7.14)

An obvious extension is to choose alternative distributions, an idea we do not investigate
further in this thesis.

7.4.3 Parameter Estimation and Inference
Given an observed sequence of emissions Y := {y0, y1, . . . , yT} with known initial state
distribution πq0 , the parameters of the HMM θ := {{aij}, {µqt}, {σ2

qt}}, i.e. the transition
probabilities and emission parameters, can be estimated with the EM-Algorithm. Starting
from the complete log-likelihood

`(θ|Dc) = log
(
πq0

T−1∏
t=0

aqt,qt+1

T∏
t=0
N (yt|µqt , σ2

qt)
)
, (7.15)

with the fully observed data set

Dc = {(yn, qn, aqn,qn+1) : n ∈ [0, T − 1]} ∪ {πq0 , yT , qT}, (7.16)

minimizing the expected value of (7.15) with respect to the desired variables θ to be estimated
yields the update equations for the M-Step of the EM-algorithm (also called Baum-Welch
Updates):

π̂i = P(q0 = i|Y ) (7.17a)

âij =
∑T−1
t=0 P(qt = i, qt+1 = j|Y )∑T−1

t=0
∑M
j=1 P(qt = i, qt+1 = j|Y )

(7.17b)

µ̂i =
∑T
t=0 yt · P(qt = i|Y )∑T
t=0 P(qt = i|Y )

(7.17c)

σ̂2
i =

∑T
t=0 P(qt = i|Y )(yt − µ̂i)2∑T

t=0 P(qt = i|Y )
(7.17d)

To arrive at Equations (7.17a) and (7.17b), the stochastic constraints described in (7.13)
and sparsity patterns of the transition matrix A as well as ∑M

i=1 πi = 1 are used as Lagrange
multipliers during the minimization of (7.15).
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Using Bayes Rule, the E-Step of the EM-algorithm computes the sufficient statistics
P(qt = i, qt+1 = j|Y ) and P(qt = i|Y ) with the well-known Alpha-Beta-Recursion:

P(qt|Y ) = P(Y |qt)P(qt)
P(Y )

= P(y0, . . . , yt−1, qt)P(yt|qt)P(yt+1, . . . , yT |qt)
P(Y )

=: α(qt)P(yt|qt)β(qt)
P(Y ) . (7.18)

We note that α(qt) is defined as P(y0, . . . , yt−1, qt) rather than P(y0, . . . , yt, qt) as is done in
Rabiner 1989 and Jordan 2007. This is done for a simplified treatment of its update step
(7.19) and the prediction problem (7.23).

Using Bayes Rule, α(qt) and β(qt) can be updated recursively:

α(qt+1) = P(y0, . . . , yt, qt+1)
=
∑
qt

P(y0, . . . , yt, qt, qt+1)

=
∑
qt

α(qt)P(yt|qt)aqt,qt+1 . (7.19)

β(qt) = P(yt+1, . . . , yT |qt)
=
∑
qt+1

P(yt+1, . . . , yT , qt+1|qt)

=
∑
qt+1

β(qt+1)P(yt+1|qt+1)aqt,qt+1 . (7.20)

Note that P(yt|qt), 0 ≤ t ≤ T can be computed with (7.14).
α(q1) is initialized as πq0 and β(qT ) as a vector of ones.
With the definition of α(qt) and β(qt), P(qt, qt+1|Y ) is computed as follows:

P(qt, qt+1|Y ) = P(Y |qt, qt+1)P(qt, qt+1)
P(Y )

= α(qt)β(qt+1)aqt,qt+1P(yt|qt)P(yt+1|qt+1)
P(Y ) . (7.21)

In summary, the EM-algorithm iterates between the E-Step to compute the sufficient
statistics P(qt = i, qt+1 = j|Y ) and P(qt = i|Y ) with Equations (7.18), (7.19), (7.20), and
(7.21) while fixing the parameters in (7.17a)−(7.17d), and the M-Step to update the param-
eters in (7.17a)−(7.17d) while fixing the sufficient statistics until some convergence criterion
on the expected value of (7.15) is reached.
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7.4.4 Filtering, Smoothing, and Predicting the Latent Variable
After the parameters of the HMM have been estimated, we turn to the problem of estimating
the probabilities of the most likely hidden state. Given the observation sequence Y :=
{y0, y1, . . . , yT}, the filtering problem calculates P(qT |Y ):

P(qT |y0, . . . , yT ) = P(y0, . . . , yT |qT )P(qT )
P(y0, . . . , yT )

= α(qT )P(yT |qT )
P(y0, . . . , yT ) . (7.22)

Alternatively, the prediction problem can be used to predict the probability of the next
hidden state at time T + 1, i.e.

P(qT+1|y0, . . . , yT ) = P(y0, . . . , yT |qT+1)P(qT+1)
P(y0, . . . , yT )

= α(qT+1)
P(y0, . . . , yT ) . (7.23)

Lastly, the smoothing problem can be solved to ex-post predict the probability of the
latent variable at a past time 1 ≤ p < T :

P(qp|y0, . . . , yT ) = P(y0, . . . , yT |qp)P(qp)
P(y0, . . . , yT )

= α(qp)P(yp|qp)β(qp)
P(y0, . . . , yT ) . (7.24)

7.5 Short-Term Load Forecasting
In the following, we describe online forecasting algorithms that allow for including knowledge
about the estimated latent variables obtained from HMMs and CGMMs into the ML methods
introduced in Section 7.2. We make the following

Assumption 14. The consumption time series Y is stationary, i.e. there are no structural
changes in consumption behavior over time.

7.5.1 Covariates for Prediction
The following observable covariates are used for all forecasting methods:

• Five previous hourly consumptions

• Five previous hourly ambient air temperatures
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• A categorical variable for the hour of day for ML methods without latent variable and
the CGMM

• A categorical variable interacting the hour of day with the estimated latent variable
obtained from HMM for ML methods with HMM

7.5.2 Prediction with Hidden Markov Model

Algorithm 4 Algorithm for Online Prediction with HMM
Input: Training Data Dtr := {(xt, yt) : t = 0, . . . , T}, Test Data Dte := {(xt, yt) : t =

T + 1, . . . , τ}, ML Method
1: Initialize all µ1, . . . , µ38, σ

2
1, . . . , σ

2
38 suitably

2: Initialize all aij, observing (7.13) and Figure 7.2
3: while ∆E [`(θ|Dc)] < ε do
4: Do E-Step: Calculate (7.14) and (7.21) for t = [0, . . . , T − 1] , qt, qt+1 = [1, . . . , 38]

with (7.18)−(7.20)
5: Do M-Step: Update HMM parameters with (7.17a)−(7.17d)
6: end while
7: Solve smoothing problem (7.24) for t = 0, . . . , T − 1
8: Solve filtering problem (7.22) for t = T
9: Round P(q̂0|Dtr), . . . ,P(q̂T |Dtr) to 0 / 1

10: Fit ML Method on {((xt,P(q̂t)), yt) : t ∈ 0, . . . , T}
11: for s in [T + 1, τ ] do
12: Solve prediction problem (7.23) at time s
13: Round P(q̂s) to 0 / 1
14: Predict ŷs with ML method on covariates (xs,P(q̂s))
15: end for
16: return ŷT+1, . . . , ŷτ

Algorithm 4 describes the procedure of fitting an HMM on training data Dtr, which yields
estimated latent variables to be used as additional covariates for the ML methods presented
in Section 7.2 to perform stepwise prediction on the covariates of the test data Dte. The
prediction accuracy of these outcomes is then compared to those outcomes predicted by ML
methods that are trained on the training data Dtr without estimated latent variables in the
covariates.

7.5.3 Prediction with Conditional Gaussian Mixture Model
Algorithm 5 describes the online prediction method for a CGMM with k = 2 on a given set
of training and test data. ŵ obtained by OLS is perturbed with zero mean Gaussian Noise ε
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to obtain the initializations w1, w2. Note that this step is necessary to break the symmetry
of the update steps (7.10a)−(7.10d), which would keep w1 = w2 = ŵ unchanged.

Algorithm 5 Algorithm for Online Prediction with CGMM
Input: Training Data Dtr := {(xt, yt) : t = 0, . . . , T}, Test Data Dte := {(xt, yt) : t =

T + 1, . . . , τ}
1: Fit OLS model on Dtr to obtain ŵ
2: Initialize w1 ← ŵ + ε
3: Initialize w2 ← ŵ + ε
4: while ∆E [`(θ|Dc)] < ε do
5: Update CGMM parameters (7.10a)−(7.10d)
6: end while
7: for s in [T + 1, τ ] do
8: Predict ŷs with (7.11a) and (7.11b)
9: end for

10: return ŷT+1, . . . , ŷτ

Note that in both Algorithms 4 and 5, the model-specific parameters could be updated
after each prediction as more data from the test sequence is observed and hence enters Dtr.

7.5.4 Metric for Forecasting Accuracy
The Mean Absolute Percentage Error (MAPE) of predictions of a set of discrete values vi ∈ V
is used to evaluate the accuracy of the predictor:

MAPE = 1
|V|

∑
i∈V

∣∣∣∣∣ v̂i − vivi

∣∣∣∣∣ · 100%, (7.25)

where v̂i denotes the estimate of vi.

7.6 Non-Experimental Estimates of DR Reduction
To estimate individual treatment effects, we adopt the potential outcomes framework (Rubin
1974) with binary treatments Tt ∈ {0, 1}, where Tt = 1 corresponds to a DR intervention at
time t, and Tt = 0 denotes its absence, hence “control”. Let y0

t and y1
t denote the response

(i.e. the electricity consumption) that would be observed if an individual received treatment
0 and 1 at time t, respectively. The goal is to estimate the conditional treatment effect, i.e.

∆(x) = E
[
y1|x ∈ X

]
− E

[
y0|x ∈ X

]
, (7.26)

where x denotes a vector of observable covariates in the covariate space X . Assuming an
unconfounded assignment mechanism of treatments to individuals and independency of the
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potential outcomes of time, then, conditional on the covariates (see Rubin 1974 for details),
the true causal effect of DR, namely (y0

t − y1
t ), cannot be found because only one of y0

t and
y1
t can be observed (cf. Fundamental Problem of Causal Inference (Holland 1986)).

Thus, Causal Inference is a “Missing Data Problem”. Given the observed treatment
outcomes y1

t1 , . . . , y
1
tn , to estimate the true causal effect of treatment, one would require a

credible estimate of the counterfactuals ŷ0
t1 , . . . , ŷ

0
tn , i.e. the outcomes in the hypothetical

absence of treatment.
To compute such estimates in a non-experimental way, we split the available consumption

data into a pretreatment training set with time indices t ∈ P consisting of “regular” electric-
ity consumption, i.e. all smart meter readings before the customers’ signup date with the
DR provider, and a test set with corresponding times t ∈ S thereafter which itself consists
of smart meter readings during DR hours T (treatment) and outside DR hours C (control),
hence S = T ∪ C. Let

DP = {
(
x0
i,t, y

0
i,t

)
: t ∈ P} (7.27a)

DC = {
(
x0
i,t, y

0
i,t

)
: t ∈ C} (7.27b)

DT = {
(
x1
i,t, y

1
i,t

)
: t ∈ T } (7.27c)

denote covariate/outcome pairs for the pretreatment period, the control observations, and
the treatment observations of user i, respectively. By fitting any regression model presented
in Section 7.2 on the pretreatment training data DP of a given user i, and under Assumption
14, applying this model on the treatment covariates {x1

i,t : t ∈ T } yields user i’s estimated
counterfactuals {ŷ0

i,t : t ∈ T }. In particular, Assumption 14 states that DR treatments are
interpreted as transitory shocks that do not result in a change in the consumption behavior
for t ∈ C. An elementwise comparison of {ŷ0

i,t : t ∈ T } and {y1
i,t : t ∈ T } yields the pointwise

estimated reduction of user i’s consumption {ŷ∆
i,t : t ∈ T } during each DR event:

{ŷ∆
i,t : t ∈ T } = {(ŷ0

i,t − y1
i,t) : t ∈ T }. (7.28)

ŷ∆
i,t > 0 corresponds to an estimated reduction of ŷ∆

i,t, and conversely, ŷ∆
i,t < 0 implies an

estimated increase by |ŷ∆
i,t|.

7.7 Experiments on Data
We conduct a case study on a data set of a residential DR program including residential
customers in the western United States, collected between 2012 and 2014. Aligned with
those readings are timestamps of notifications sent by the DR provider to the users that
prompt them to reduce their consumption for a short period, typically until the next full
hour. A subset of the users have smart home devices that can be remotely shut off by the
DR provider with the users’ consent. Ambient air temperature measurements were logged
from publicly available data sources to capture the correlation between temperature and
electricity consumption.
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7.7.1 Characteristics of Data and Data Preprocessing
Users with the following characteristics are excluded from the analysis:

• Users with residential solar photovoltaics (PV)

• Users with corrupt smart meter readings, i.e. unrealistically high recordings

The consumption series of the remaining users are then aligned with available temperature
readings and mapped to the range [0, 1] to be able to compare users on a relative level. The
temperature data is standardized to zero mean and unit variance. Lastly, the pretreatment
data is tested for stationarity with the augmented Dickey-Fuller Test (Fuller 1995) to assert,
with a significance level of more than 99%, the absence of a unit root, which motivates
Assumption 14.

7.7.2 Experiments on Semi-Synthetic Data
As only one of {y0

i,t, y
1
i,t} for a given user i at time t can be observed, we construct semisyn-

thetic data for which both values and hence the true causal effect (y0
i,t − y1

i,t) are known.
This allows us to evaluate the accuracy of predicted counterfactual consumptions and the
ensuing non-experimental estimates of DR reduction (7.28). For this purpose, we take actual
pretreatment training data DP (7.27a) for each user i, which is free of any DR messages.
Next, we split this training set into two pieces by introducing an artificial signup date t̃ valid
across all users. We thus obtain a synthetic training set D̃P = {

(
x0
i,t, y

0
i,t

)
: t ∈ P , t < t̃} and

a synthetic test set D̃S = {
(
x0
i,t, y

0
i,t

)
: t ∈ P , t ≥ t̃} for user i. Next, a random subset T̃ of

all available time indices in the synthetic test set D̃S between 6 a.m. - 8 p.m. is assigned a
synthetic treatment, for which the respective consumption is decreased by a random value
∈ [0, c̄]. By doing so, both the treatment and control outcomes for t ∈ T̃ become available,
and so we obtain the semisynthetic data set

D̃T̃ := {
(
x0
i,t, y

0
i,t, y

1
i,t

)
: t ∈ T̃ }. (7.29)

Thus, any non-experimental estimate of the DR treatment effect for t ∈ T̃ can be bench-
marked on the known (synthetic) counterfactual {y0

i,t : t ∈ T̃ }.
This semisynthetic data set is used for two purposes. First, we evaluate the MAPE (7.25)

of the estimators from Section 7.2, with and without latent variables. This is done by training
them on Dtr = D̃P and testing on Dte = D̃S, which yields out-of-sample counterfactual
consumptions {ŷ0

i,t : t ∈ T̃ } across all users i, see Algorithms 4 and 5. Second, we conduct a
comparison of the eventwise errors of estimated DR reductions for all ML methods with the
HMM latent variable (CGMM is not considered further), which, for a given user i at time t,
are obtained as follows:

ŷ∆
i,t − y∆

i,t =
(
ŷ0
i,t − y1

i,t

)
−
(
y0
i,t − y1

i,t

)
= ŷ0

i,t − y0
i,t. (7.30)
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The ground truth counterfactual y0
i,t is available for the semisynthetic data (7.29) by con-

struction, but would be unavailable for real-world data.
Figure 7.3 shows a boxplot of the distribution of average MAPEs across users for the pre-

diction methods introduced in Section 7.2 with and without the latent variable from HMM,
and for the CGMM (Section 7.3). It can be seen that the information about the latent

OLS Mix. OLS+ KNNKNN+ DT DT+ SVR SVR+
20

40

60

80 Green: Mean
Red: Median

MAPEs by Model

Figure 7.3: Prediction Accuracy by Forecasting Method. “+” Signifies Model with HMM
Latent Variable, “Mix.” Denotes CGMM. Blue Boxes Span 25-75th Percentile, Whiskers
10-90th.

variable improves the prediction accuracy in all cases but SVR. Further, the lower MAPE
obtained with DT and SVR is consistent with the findings in Mirowski et al. 2014; Taylor
and McSharry 2007. The higher MAPE for KNN compared to OLS can be explained by the
different magnitudes of the covariates introduced in Section 7.5.1, which gives categorical
variables disproportionate weight. The CGMM performs better than OLS, but worse than
OLS with the latent variable. Note that other more sophisticated predictors (e.g. Neural
Networks) have lower MAPEs at the cost of longer computation times and potential loss
of interpretability, but are likely to show a similar improvement in terms of MAPE by in-
corporating information about the estimated latent variable as the amount of training data
increases. For a comparison between the prediction accuracy of state-of-the-art estimators,
the reader is referred to Mirowski et al. 2014; Taylor and McSharry 2007 for further infor-
mation.

Figure 7.4 shows histograms of eventwise prediction errors (7.30) in the estimated DR
reduction for single events and across all users i. Green bars and red bars signify prediction
errors of forecasting methods that do and do not make use of the estimated latent variable
from HMM, respectively. Aligned with these plots are the sample mean and covariance
of the errors for the models that take the latent variable into account. The bias-variance
decomposition

E
[(
ŷ∆
i,t − y∆

i,t

)2
]

= Bias(ŷ∆
i,t)2 + Var(ŷ∆

i,t) + ε, (7.31)
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where ε denotes the irreducible error, is invoked in the following. Noting that µ̂ and σ̂2

in Figure 7.4 correspond to the bias and variance in (7.31) from the model with latent
variable from HMM, the tradeoff becomes clear when comparing OLS, DT, and SVR. A
lower variance of DT and SVR comes at the cost of a higher bias. For KNN, both bias
and variance are larger than in OLS, which is explained by the poor predictive performance
of KNN (see Figure 7.3). For a subsequent analysis of individual treatment effects (ITEs),
we choose the least biased estimator that uses latent variables, in our case OLS, despite
its higher overall prediction error compared to SVR and DT. This follows the consensus of
econometrics concerned with estimating ITEs (Bound, Jaeger, and Baker 1995; Angrist and
Pischke 2009).
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Figure 7.4: Pointwise Prediction Error of DR Treatment Effect on the User Level; Bias µ̂
and Variance σ̂2 of Model with Latent Variable from HMM.

7.7.3 Experiments on Actual Data
In the following, we analyze ITEs for users with and without smart home devices. The
analysis of reduction is carried out with OLS that utilizes an estimate of the HMM latent
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state because it is found that this method has the lowest bias on semisynthetic data (see
Figure 7.4).

In the real data case, only the treatment outcomes {y1
i,t : t ∈ T } for user i are observed

during DR events, and so the counterfactuals {ŷ0
i,t : t ∈ T } are predicted to calculate a

non-experimental estimate of the DR reduction (7.28). Using Algorithm 4 on the pre-signup
data DP (7.27a) as training data Dtr for each user and Dte = DC ∪ DT (7.27b), (7.27c),
the pointwise reductions across all users and each treatment t ∈ T are calculated. Figure
7.5 shows boxplots of estimated DR reductions conditional on (a) the hour of day, (b) users
with and without smart home devices, and (c) the predicted latent states. The gray bars
represent “placebo” events (i.e. a subset of hours t ∈ C outside DR treatments hours, but
after the signup date) estimated by the same model.
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Figure 7.5: Estimated Reduction Across Users by Hour of Day (Yellow) vs. Estimated
Reduction for Placebo Events (Gray) for Automated and Non-Automated Users Conditional
on Estimated Latent Variable. Red: Median, Green: Mean. Blue Boxes Span 25-75th
Percentile, Whiskers 10-90th.

Figure 7.5 gives rise to two observations: First, the estimated reduction conditional on
the “high” latent state is greater in magnitude for users with smart home devices, following
the intuition that the “high” state describes the operation of smart home devices which can
be conveniently shut off during DR hours. In contrast, the lower estimated reductions of
regular users during “high” latent states might reflect the additional hassle cost that incurs
for users to manually reduce their consumption. Second, the estimated reductions for both
users with and without smart home devices and conditional on the “low” latent state show
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mean reductions around zero, contrary to the expectation of a small positive reduction. This
might indicate the existence of a threshold representing the standby consumption of users,
below which it is hard or impossible to reduce consumption further.

This finding could be particularly meaningful to the DR provider, as it presents a rec-
ommendation as to when to call DR events and for which users, which could improve the
allocative efficiency of DR targeting and be a stepping stone towards calculating optimal
bids.

7.8 Conclusion
We developed non-experimental estimators from Machine Learning for estimating ITEs of
Residential Demand Response and showed that incorporating a latent variable, either with
a Conditional Gaussian Mixture Model or a Hidden Markov Model, allows for an improve-
ment in prediction accuracy. This Bayesian approach is motivated by the need to obtain
interpretable and physically meaningful results capturing the users’ electricity consumption
behavior. We then tested the forecasting algorithms on semi-synthetic data to find that
Ordinary Least Squares in conjunction with a latent variable produces the least biased es-
timator for DR reduction. Lastly, this estimator was applied on a residential DR data set
to determine hourly reductions of electricity consumption for both users with and without
automated electric devices. The highest reductions were found to be among users with home
automation devices during “high” estimated latent states, which in turn provides a recom-
mendation for DR providers for targeting purposes, i.e. to focus on automated users for the
highest yield in reduction.

This chapter provides only a foundation for more profound analyses in the area of Res-
idential Demand Response. In particular, latent variables can be added as an additional
covariate to more computationally demanding estimators, for instance Neural Networks or
Random Forests, in order to assess the gain in forecasting precision with latent variables.
This is an area to be explored by the established area of STLF, which has traditionally been
focusing on maximizing the precision of forecasting algorithms. Further, various extensions
to modeling the HMM are worth exploring, such as enlarging the state space of the Markov
Chain to enforce a dependency on more than just the previous hour, or increasing the number
of hidden states for a given hour (i.e “low”, “medium”, and “high” consumption). Lastly, the
estimated latent variable could be related to a measure of occupancy in residential dwellings,
and so a validation of the estimated latent states on ground truth data on occupancy would
be interesting if privacy concerns could be overcome.
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Chapter 8

Evaluation of a Residential Demand
Response Program

8.1 Introduction
The final chapter of this thesis is concerned with the evaluation of a residential Demand
Response program in California. The topics discussed in Chapter 7 have already foreshad-
owed the central theme of this chapter, namely the estimation of individual loads for causal
inference.

Cyber-Physical Systems (CPS) utilize intelligent mechanisms to improve the efficiency
and usability of the interacting elements and are often augmented by human capabilities
to achieve a desired goal. However, recent advances in CPS emerging from societal-scale
infrastructure have been limited by the lack of good models for human interaction with
systems. Significant efforts to introduce such models exist in transportation or energy, which
is the case studied here. We study the effect of incentivizing people to participate in Demand
Response to reduce electricity consumption with a Randomized Controlled Trial (RCT).
While our application is specific, our techniques employed in this thesis are generalizable to
any societal-scale CPS which seeks to incentivize users to achieve a desired human behavior.

Following the 1970s energy crisis, programs for demand-side management (DSM) (Palen-
sky and Dietrich 2011) were introduced on a global scale. Such programs seek to temporarily
reduce consumers’ electricity usage through financial incentive schemes during periods of
electricity supply shortage. These programs are enabled by the integration of information
and communications technology in the electric grid, which has inspired a large body of re-
search aiming at better understanding the interaction between the consumption habits of
consumers, load-serving entities and the electric wholesale market while taking into account
constraints of the electric grid operation. Energy supply is highly inelastic due to the slowness
of power plants’ output adjustment, which causes small increases and decreases in demand
to result in a price boom or bust, respectively. This issue is exacerbated by the variable
nature of electricity demand (mainly influenced by ambient temperatures (Pardo, Meneu,



CHAPTER 8. EVALUATION OF A RESIDENTIAL DR PROGRAM 106

and Valor 2002)), prohibitively costly energy storage, and steady growth of renewable, yet
volatile electricity generation.

Despite the fact that electric utilities and generating companies hedge against such price
fluctuations through long-term contracts, a large portion of electricity remains to be procured
through the wholesale electricity market. Since utilities are obligated to provide end-users
with electricity at a quasi-fixed tariff at all times (Federal Energy Regulatory Commission
2016), e.g. Time-of-Use pricing, they have to bear price risks. Therefore, DSM is an attempt
to protect utilities against such price risks by partially relaying them to end-users, which
increases market efficiency according to the economic consensus (Borenstein, Jaske, and
Rosenfeld 2002a; Borenstein 2005; Borenstein and Holland 2005).

DSM describes a set of interventions aiming at affecting customer behavior on different
scales of application and time (Palensky and Dietrich 2011). Examples include programs on
a utility-wide scale, community scale, or individual household scale, for the purpose of long-
term energy efficiency or short-term demand interventions. Previous studies in residential
DSM have mainly focused on critical-peak pricing and real-time pricing, using day-ahead
notifications that were sent often only during selected seasonal periods of the year (Jessoe
and Rapson 2014; Wolak 2010; Allcott 2011). In contrast, this thesis focuses on extremely
short-term, hour-ahead behavioral interventions during hours of peak demand or shortages
of electricity supply when demand reductions can counteract high electricity prices reflected
by Locational Marginal Prices (LMPs) (Hong and Hsiao 2002). Since electric wholesale
markets tend to fluctuate more on an hour-ahead rather than day-ahead level, such hour-
ahead notifications could have more leverage to deliver welfare effects compared to day-ahead
interventions.

The California Public Utilities Commission (CPUC) has launched a Demand Response
Auction Mechanism (DRAM) in July 2015 (Public Utilities Commission of the State of
California: Resolution E-4728. Approval with Modifications to the Joint Utility Proposal for
a Demand Response Auction Mechanism Pilot 2015) which requires utilities to procure a
minimum monthly amount of reduction capacity from Demand Response (DR) aggregators.
The real-time market determines electricity prices by matching demand and utilities’ supply
curves subject to the procured capacity. A utility whose bid is cleared then asks the DR
provider to incentivize its customers to temporarily reduce their consumption relative to their
projected consumption without intervention. This is the counterfactual, referred to in this
context as baseline, based on which compensations for (non-)fulfilled reductions are settled:
If the consumer uses less (more) energy than the baseline, she receives a reward (incurs
a penalty). In a similar fashion, if the aggregator falls short of delivering the promised
load reduction, it incurs a penalty. For a profit-maximizing bid, the DR provider needs to
estimate the counterfactual consumption as precisely as possible, among other aspects such
as the size of its customer base, the LMP, and the elasticity of users’ demand in response to
incentives.

The estimation of the actually delivered reduction both on the household and aggregation
level arguably is the most critical component of the DR bidding process. If the reductions
are estimated with a biased counterfactual, either the DR provider or the utility clearing the
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bids is systematically discriminated against. If the baseline is unbiased but plagued by high
variance, the profit settlement is highly volatile. Existing baselines employed by major power
grid operators in the United States (e.g. California Independent System Operator (CAISO),
New York ISO) are calculated with simple arithmetic averages of previous observations
(California Independent System Operator Corporation (CAISO): Fifth Replacement FERC
Electric Tariff 2014) and therefore are inaccurate. Estimating more accurate baselines with
non-experimental, unbiased estimators on the one hand and an experimental control group
within a RCT on the other hand, is a significant contribution of this thesis.

8.1.1 Contributions
We estimate the average treatment effect (ATE) of hour-ahead notifications on the reduction
of electricity consumption by evaluating a Randomized Controlled Trial (RCT) on ≈ 5000
residential households in California serviced by the three main electric utilities (PG&E,
SDG&E, SCE). This experiment is funded by the California Energy Commission, which −
to the best of our knowledge − is the first one to experiment with hour-ahead notifications
on a residential household level. We estimate an ATE of −0.13 kWh per DR Event and
user and further discover notable geographic and temporal heterogeneity among users, as
the largest estimated reductions occur in summer months as well as in regions with warmer
climate, suggesting that air conditioning units play a decisive role in DR programs.

In addition to this experimental approach, we also develop a non-experimental method
for estimating this causal effect on an individual user level, which is easily aggregated into
an ATE, thereby making sense of the underlying heterogeneity of residential customers, an
approach that crucially does not require an experiment. Importantly, we utilize experimental
observations and the existence of a control group as a benchmark for the non-experimental
ATE estimate and find that the results in both cases are close to each other. Interestingly, the
non-experimental approach even achieves tighter confidence intervals of the estimated causal
effect. Motivated by these results, we claim that our method is applicable to estimating
treatment effects in any setting with high-frequency time-series data whenever an RCT is
hard to conduct, for example due to budget or ethical constraints.

Furthermore, we design an adaptive targeting method, which exploits heterogeneity in
users’ responses to incentive signals to assign differing price levels to different subsets of
the treatment population. Specifically, we separate users based on their previous responses
into two distinct groups, each of which either only receives low or high incentives. Using
this partitioning method, we observe an increase of the per-dollar yield of ≈43%. Taken
together, we bring together ideas at the intersection of Machine Learning (ML), economics,
and energy markets. The observational data is provided by the company OhmConnect, Inc.
(OhmConnect, Inc. 2015 2017), headquartered in the San Francisco Bay Area, and is being
held under a confidentiality agreement.

This chapter unfolds as follows: In Section 8.2, we describe the market setting for Residen-
tial Demand Response. Section 8.3 explains the experimental setup and provides summary
statistics on the RCT data. We then develop the non-experimental estimation framework in
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Section 8.4, where we pay particular attention to estimation bias and empirical de-biasing
methods (Section 8.4.3).

The non-experimental estimation results are provided in Section 8.5, both on an individ-
ual and aggregate level. We discover notable geographic and temporal heterogeneity among
users. That is, the largest estimated reductions occur during early afternoon hours and early
evenings, as well as in regions with warmer climate, suggesting that air conditioning units
play a decisive role in DR programs. Next, in Section 8.6 we estimate the ATE using a
classical Fixed-Effects Estimator from econometrics (Diggle et al. 2013). By using varying
regression specifications, we estimate the demand curve of Demand Response (Section 8.6.1)
and conditional ATEs by hour of the day (Section 8.6.2), month of the year (Section 8.6.3),
or smart home automation status of users (Section 8.6.4). Section 8.7 compares the estimates
obtained by both approaches. The effect of adaptive targeting on cost efficiency is discussed
in Section 8.8. Lastly, the role of moral suasion and non-monetary incentives is explored in
Section 8.9. Section 8.10 concludes. Additional results including summary statistics of the
data set, estimation results, and supporting numeric data are relegated to Appendix B.1.

8.1.2 Related Work
LaLonde 1986 provides the first (unsuccessful) benchmarking comparison between non-
experimental and experimental estimates using data from the National Supported Work
Demonstration. Later studies (Dehejia and Wahba 1999; Smith and Todd 2005) found that
model misspecifications in (LaLonde 1986) were responsible for the mismatch, and that
propensity score estimates were able to correct them. The authors argue that there exists no
general framework to ensure validity of non-experimental estimates, which therefore requires
each non-experimental estimate to be benchmarked against an experiment. This motivates
our thesis.

Given the rapid growth of collected user data, non-experimental estimates become more
and more valuable. Moreover, there are situations where RCTs, the experimental standard,
are infeasible to conduct, e.g. due to budget or ethical constraints. These facts have spurred
research at the intersection of machine learning and economics, whose general idea is to par-
tition observations under treatment and control in order to fit a nominal model on the latter
set, which, when applied on the treatment set, yields counterfactual estimates, from which
the treatment effect is computed by subtracting out actual observed treatment outcomes.

Examples for such nominal models are found in Bollinger and Hartmann 2015, who eval-
uates welfare effects of home automation by calculating the Kolmogorov-Smirnov Statistic
between users, which are then used as weights for kernel-based non-parametric regression.
In Abadie, Diamond, and Hainmueller 2012, a convex combination of US states is computed
as the counterfactual estimate for tobacco consumption to estimate the effect of a tobacco
control program in California on tobacco consumption. In Athey and Imbens 2016; Wager
and Athey 2016, the estimators are random forests trained by recursive partitioning of the
feature space and novel cross-validation criteria. Brodersen et al. 2015 develops Bayesian
structural time series models combined with a Monte-Carlo sampling method for treatment
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effect inference of market interventions. In Zhou, Balandat, and Tomlin 2016b and Zhou,
Balandat, and Tomlin 2016a, the authors estimated reductions of a DR program on a small
dataset of 500 users in California with classical ML regression methods.

Fitting an estimator on smart meter time-series is essentially a short-term load fore-
casting (STLF) problem, whose goal is to fit estimators on observed data to predict future
consumption with the highest possible accuracy. The two main directions are based on time-
series modeling and classical regression analysis. Within STLF, tools employed are ARIMA
models with a seasonal component (Taylor and McSharry 2007; Soares and Medeiros 2008)
and classic regression models where support vector regression (SVR) (Pai and Hong 2005;
Hippert, Pedreira, and Souza 2002) and neural networks yield the highest accuracy (Senjyu
et al. 2002; Elattar, Goulermas, and Wu 2010). A comprehensive comparison between ML
techniques for forecasting and differing levels of load aggregation is provided in Mirowski
et al. 2014. Other methods include Kernel Density Estimation (Arora and Taylor 2016) and
fuzzy methods (Song et al. 2005).

In the context of smart meter data mining, much of the existing work focuses on dis-
aggregation of energy consumption to identify contributions of discrete appliances from the
total observed consumption (Chen et al. 2011; Fei et al. 2013) and to learn consumption
patterns (Molina-Markham et al. 2010; Zhou, Balandat, and Tomlin 2016a). Studies in ap-
plied economics typically emphasize the estimation of ATEs of experimental interventions.
To increase precision of the estimates, the employed regression models often employ unit-
level fixed effects (Allcott 2011; Jessoe, Miller, and Rapson 2015), which is an implicit way
of training models for the consumption of individual consumers. In this work, we make
these user-level models explicit, allowing for more general ML techniques. Importantly, our
approach is original as it permits to perform causal inference on the level of individual treat-
ment effects in a straightforward fashion by employing estimators from STLF. To the best of
our knowledge, this thesis is the first of its kind to analyze the potential of Demand Response
interventions on a residential level, combining ideas at the intersection of causal inference
from econometrics and Machine Learning for estimation.

8.2 Demand Response Mechanism
According to DRAM (Public Utilities Commission of the State of California: Resolution
E-4728. Approval with Modifications to the Joint Utility Proposal for a Demand Response
Auction Mechanism Pilot 2015), electric utilities are obligated to offer “demand flexibility”
through Demand Response Providers (DRPs). Utilities solicit bids from DRPs and accept the
highest ones up to a monthly target capacity. In the real-time wholesale electricity market,
the utility submits supply bids including these acquired capacities, which, when cleared,
have to be delivered by the DRP under contract over a contractually specified period of time.
The DRP does so by eliciting reductions among a suitably chosen subset of its residential
end-use customers by offering them a monetary incentive. Such an aggregation of users is
also known as a Proxy Demand Resource product (PDR) (California Independent System
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Operator Corporation (CAISO): Fifth Replacement FERC Electric Tariff 2014). The DRP
receives a payment from the wholesale market for each unit of reduction up to its original
capacity bid, but incurs a shortfall penalty for each unit of unfulfilled obligation. Figure 8.1
illustrates the interaction between all agents.

Wholesale Market

DR Provider
Scheduling Coordinator

Electric Utility

End-Use Customers

PDR

Figure 8.1: Interactions of Agents in Residential Demand Response

We focus on the DRP-User interaction and in particular answer the question of how
to measure and quantify reductions of end-users’ electricity consumption in response to
monetary incentives. The regulatory standard in California measures reductions with the
CAISO 10-in-10 baseline (California Independent System Operator Corporation (CAISO):
Fifth Replacement FERC Electric Tariff 2014), which computes the estimated reduction for
a particular user at a particular time. During a DR event, the materialized consumption is
compared to the estimated baseline. The user is rewarded (penalized) the difference between
those two multiplied with a reward level. Due to the inherent noisiness of the CAISO baseline,
we present alternative approaches to estimate reductions (namely the individual level non-
experimental estimates and the fixed effects regression, which implicitly uses the control
group as a counterfactual).

Our data set consists of DR events of length one hour. Specifically, users receive notifi-
cations of a DR event up to 20 minutes into an hour, which lasts until the end of the hour.
The notifications sent during the RCT communicate the incentive level to the user, which
was chosen from the set R = {0.05, 0.10, 0.25, 1.00, 3.00}USD

kWh .

8.3 Experimental Setup and Data Characteristics

8.3.1 Setup of the Experiment
The experiment is carried out by OhmConnect, Inc., using funds provided by the California
Energy Commission. Figure 8.2 draws a flowchart of the experimental setup.

Over the course of the experimental time period (Nov. 2016 - Dec. 2017), each consumer
that signs up for the study is randomly assigned to one of the following groups:
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All Participants
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Estimate Responses

Targeted-High Targeted-Low Non-Targeted
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Moral Suasion Price Moral Suasion & Price Control

Phase 1 (90 days)

Phase 2 (90 days)

Phase 3 (90 days)
Figure 8.2: Setup of Experiment

• Treatment−Encouraged: The user receives an average number of 25 DR events in the
90 days following the signup, with incentive levels being randomly chosen from the
set R = {0.05, 0.25, 0.50, 1.00, 3.00}USD

kWh . Additionally, the user is given a rebate for
purchasing a smart home automation device.

• Treatment−Non-Encouraged: Same as in Treatment-Encouraged, but without smart
home automation rebate.

• Control: Users do not receive any notifications for DR events for a period of 90 days
after sigup.

Taken together, these three groups form Phase 1 of the experiment. Users in the control
group that have reached 90 days of age are removed from the study. Users in either the
Treatment−Encouraged or Treatment−Non-Encouraged groups that have reached 90 days
of age are pooled and systematically assigned to one of the following groups for Phase 2
interventions:

• Targeted-High: The user receives an average number of 25 DR events for a period of
90 days after being rolled over into Phase 2. Each reward level is randomly drawn from
the set {1.00, 3.00}USD

kWh .

• Targeted-Low: Same as in Targeted-High, but rewards are randomly drawn from
{0.05, 0.25, 0.50}USD

kWh .

• Non-Targeted: Same as in targeted groups, with rewards drawn from the complete set,
i.e. {0.05, 0.25, 0.50, 1.00, 3.00}USD

kWh .
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Lastly, users with completed Phase 2 as well as Phase 1 control users after 90 days of
age undergo Phase 3 (moral suasion), which occurs on an event-by-event level. Specifically,
users receive one of four treatment types selected uniformly at random:

• Moral Suasion Only: Message with environmental content

• Price Only: Message with monetary incentive of 1 USD/kWh

• Moral Suasion and Price: Combination of above

• Control: User receives no notification

Users with completed Phase 3 (or synonymously all users in Treatment−Encouraged and
Treatment−Non-Encouraged after 180 days of treatment) are removed from the study. In
Sections 8.4-8.6, we evaluate Phase 1 of the experiment whereas Sections 8.8 and 8.9 are
dedicated to adaptive targeting (Phase 2) and moral suasion (Phase 3), respectively. In
the remainder of this chapter, we use the term “treatment users” to refer to users in the
“Treatment-Encouraged” and “Treatment-Non-Encouraged” group.

Recruitment began on 11/14/2016 with the launch of the pilot and concluded on 8/14/17.
The pilot period recruitment ran from 11/14/2016 to 12/31/16 and the study period recruit-
ment from 1/1/2017 to 8/14/2017. Due to a technical implementation problem, the recruit-
ment period was cut short two weeks and ended prior to the originally planned 9/1/2017.
While this represents an unfortunate loss in data, it did not seriously affect the statistical
power of the study.

Figure 8.3 illustrates the number of study participants that were recruited for the RCT
broken out by time of enrollment. This is done separately for users assigned to the three dif-
ferent experimental groups of Phase 1 (Control, Encouraged, Non-Encouraged). Recruitment
began on November 15, 2016 and ended on August 15, 2017. We observe lower enrollment
figures from April 2017 – June 2016 with a noticeable peak towards the end of the recruit-
ment period. As can be seen from the figure, the height of the red and green bars for a
particular vertical slice appear to have approximately the same height, indicating that en-
couraged and non-encouraged users are balanced in size. In contrast, the blue bar is about
half as large as the green or red bar, which is consistent with the 40/40/20 assignment of
users into encouraged, non-encouraged, and control groups.

In a similar fashion, Figure 8.4 plots the number of users that were recruited into the
study and successfully connected their electric utility accounts. About half of all recruited
users connected their utility accounts. We were unable to use the recruited users who did
not connect their utility accounts because we have no energy data for them. We observe
that the shape of the boxplot looks similar to the one in Figure 8.3, suggesting that users
across the three different experimental groups were equally likely to connect their electric
utility accounts. The average number of recruits per day was 58 with a standard deviation
of 48, a minimum of 5, and a maximum of 295.
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Figure 8.3: Distribution of Enrollment over Time
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Figure 8.4: Distribution of Utility Account Connections over Time

8.3.2 Summary Statistics
Figure 8.5 illustrates the distribution of the lengths of available historical smart meter data
among all users that have successfully connected their utility accounts. Users from Southern
California Edison (SCE) have the shortest availability and those serviced by San Diego Gas
& Electric (SDG&E) have the longest. We observe peaks at 365 days and 730 days, which
correspond to 1 or 2 years of data availability. The black dashed lines reflect the median
availability of historical smart meter data, which is 374 days for PG&E, 273 days for SCE,
and 403 days for SDG&E.

Figure 8.6 provides a scatter plot of the geographic distribution of control, encouraged,
and non-encouraged users broken out by electric utility. As expected, most users are con-
centrated in the urban areas of the San Francisco Bay Area, San Diego, and Los Angeles. It
is visually striking that there appear to exist no structural differences in the distribution of
users across either treatment group or electric utility, which is an intuition to be confirmed
in the balance checks provided in Section 8.3.4.
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Figure 8.5: Availability of Smart Meter Data Across Experimental Users
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Figure 8.6: Geographic Distribution of Enrolled Users
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Table 8.1 reports the number of users by experiment group and proportion of users for
which we were able to scrape historical smart meter reading data. The table shows that
the randomized assignment of users to groups roughly follows a 1:2:2 ratio (Control vs.
Treatment−Encouraged vs. Treatment−Non-Encouraged).

Historical Smart Meter Data Availability by Group
Group # Enrolled # With Data # With DR
Control 3266 1311 −

Treatment−Encouraged 6735 2873 2389
Treatment−Non-Enc. 6689 2910 2402

Table 8.1: Number of Total Users Enrolled by Group, Data Availability, and Users with DR
Events as of September 28, 2017.

Users without DR events or for which we were unable to scrape historical data are omitted
from the study. Since the assignment of users into the different experimental groups was
randomized (see Section 8.3.4), dropping such users does not affect the evaluation of the
experiment. Hence, in the remainder of this chapter, we omit the attribute “with historical
data” when referring to users in the experiment for the sake of brevity, unless otherwise
stated.

Figure 8.7 shows the geographic distribution of the remaining users across California.
More than half of all study participants are serviced by Pacific Gas & Electric. The remaining
users are covered by Southern California Edison (Los Angeles area) and San Diego Gas &
Electric.

Figures 8.8 and 8.9 illustrate the number of DR messages received per individual over
time.

Table 8.2 shows the distribution of Phase 1 event incentive levels for DR events among
the 5906 remaining users with historical data and DR events. There is a total of 145, 838
messages, which equates to ≈ 24.7 Phase 1 messages per user.

DR Events for Encouraged and Non-Encouraged Users in Phase 1
Event Incentive Level Encouraged Non-Enc. Control

0.05 USD/kWh 14422 (19.9%) 14666 (20.0%) −
0.25 USD/kWh 14575 (20.1%) 14637 (20.0%) −
0.50 USD/kWh 14426 (19.9%) 14663 (20.0%) −
1.00 USD/kWh 14572 (20.1%) 14611 (19.9%) −
3.00 USD/kWh 14562 (20.0%) 14704 (20.1%) −

Total 72557 (100%) 73281 (100%) −

Table 8.2: Number of Phase 1 DR Events for Encouraged and Non-Encouraged Users by
Incentive Level
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Figure 8.7: Geographic Distribution of Users
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Figure 8.9: Number of Phase 2 DR Events per Individual Over Time

In a similar fashion, Table 8.3 shows the breakdown of Phase 2 events across the three
experimental groups, which confirms the random assignment of rewards to users.

DR Events for Targeted (Low, High) and Non-Targeted Users, Phase 2
Incentive Level High-Targeted Low-Targeted Non-Targeted
0.05 USD/kWh − 8745 (33.0%) 10421 (19.7%)
0.25 USD/kWh − 8608 (32.5%) 10516 (19.8%)
0.50 USD/kWh − 9109 (34.5%) 10675 (20.1%)
1.00 USD/kWh 12874 (49.9%) − 10871 (20.5%)
3.00 USD/kWh 12927 (50.1%) − 10508 (19.9%)

Total 25801 (100%) 26462 (100%) 52991 (100%)
52263 (49.7%) 52991 (50.3%)

Table 8.3: Number of Phase 2 DR Events for Low Targeted, High Targeted, and Non Tar-
geted Users by Incentive Level

Figure 8.10 shows the distribution of DR events in Phase 1 across all users by hour of the
day. As can be seen from the figure, most events occurred in the late afternoon and early
evening.

In a similar fashion, Figure 8.11 shows the distribution of Phase 1 messages by day of
the week.

8.3.3 Weather Data
Hourly measurements of ambient air temperature are scraped from the publicly accessible
California Irrigation Management Information System “California Irrigation Management
Information System” 2017. As there are fewer weather stations than distinct user ZIP codes,
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Figure 8.10: Distribution of Phase 1 DR Events by Hour of the Day
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Figure 8.11: Distribution of Phase 1 DR Events by Day of the Week

we linearly interpolate user-specific temperatures at their ZIP codes from the two closest
weather stations in latitude and longitude by calculating geodesic distances with Vincenty’s
formulae (Vincenty 1975).

8.3.4 Balance Checks
To verify that users were randomly assigned to control and treatment groups, we perform a
balance check on the distribution of observed air temperatures and electricity consumptions
across both groups. Notice that the relatively large sample size renders a classical differences-
in-means t-test inappropriate. Therefore, we utilize Cohen’s d to estimate the effect size
based on the differences between means, which is insensitive to the large sample size. Given
two discrete distributions P and Q with sample sizes n1/n2 and means x̄1/x̄2, Cohen’s d is
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defined as

d = x̄1 − x̄2

s
, s =

(
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

)1/2

, (8.1)

where s1 and s2 are the sample standard deviations for distributions P and Q, respectively.
In addition, we use the Hellinger Distance H as a nonparametric comparison to quantify the
similarity between the distributions Hellinger Distance:

H(P,Q) = 1√
2

(
k∑
i=1

(√pi −
√
qi)2

)1/2

(8.2)

where P = {p1, . . . , pk} and Q = {q1, . . . , qk}. To compute (8.1) and (8.2), we discretize
the temperature and consumption distributions appropriately. Table B.1 in the Appendix
provides these metrics together with the differences in means for a selected subset of hours
of the day, which was chosen to coincide with those hours of the day for which DR events
were observed (see Figure B.2). We omit the metrics for the remaining hours of the day
as they are very similar to the listed ones. As the Hellinger Distance H ∈ [0, 1], with 0
corresponding to a perfect similarity and 1 to total dissimilarity, we can assume that the
assignment of users into treatment and control group is as good as random.

Figures 8.12 and 8.13 plot the mean consumption and temperature for targeted and
non-targeted users, indicating that both groups are balanced in terms of these two metrics.

Figure 8.12: Mean Consumption for Targeted vs. Non-Targeted Users by Hour of the Day
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Figure 8.13: Mean Temperature for Targeted vs. Non-Targeted Users by Hour of the Day

8.4 Nonexperimental Treatment Effect Estimation

8.4.1 Potential Outcomes Framework
To estimate the effect of the DR intervention program, we adopt the potential outcomes
framework introduced by Rubin (1974) (Rubin 1974). Let I = {1, . . . , n} denote the set
of users. The indicator Dit ∈ {0, 1} encodes the fact whether or not user i received DR
treatment at time t. Each user is endowed with a consumption time series yi = {yi1, . . . , yiτ}
and associated covariates Xi = {xi1, . . . ,xiτ} ∈ ×τi=1Xi, Xi ⊂ Rnx , where time is indexed by
t ∈ T = {1, . . . , τ} and nx is the dimension of the covariate space Xi. Let y0

it and y1
it denote

user i’s electricity consumption at time t for Dit = 0 and Dit = 1, respectively. Let Ci and
Ti denote the set of control and treatment times for user i. That is,

Ci = {t ∈ T | Dit = 0}, Ti = {t ∈ T | Dit = 1}. (8.3)

The number of treatment hours is much smaller than the number of non-treatment hours.
Thus 0 < |Ti|/|Ci| � 1.

Further, let Di,t and Di,c denote user i’s covariate-outcome pairs of treatment and control
times, respectively. That is,

Di,t = {(xit, yit) | t ∈ Ti}, Di,c = {(xit, yit) | t ∈ Ci}. (8.4)

The one-sample estimate of the treatment effect on user i at time t, given the covariates
xit ∈ Rnx , is

βit(xit) := y1
it(xit)− y0

it(xit) ∀ i ∈ I, t ∈ T, (8.5)

which varies across time, the covariate space, and the user population. Marginalizing this
one-sample estimate over the set of treatment times Ti and the covariate space Xi yields the
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user-specific Individual Treatment Effect (ITE) βi

βi := EXiEt∈Ti
[
y1
it − y0

it

∣∣∣∣ xit
]

= 1
|Ti|

∑
t∈Ti

y1
it − y0

it. (8.6)

The average treatment effect on the treated (ATT) follows from (8.6):

ATT := Ei∈I [βi] = 1
|I|

∑
i∈I

1
|Ti|

∑
t∈Ti

(y1
it − y0

it). (8.7)

Since users were put into different experimental groups in a randomized fashion, the ATT
and the average treatment effect (ATE) are identical (Pischke and Angrist 2009). Lastly,
the conditional average treatment effect (CATE) on x̃ is obtained by marginalizing the
conditional distribution of one-sample estimates (8.5) on x̃ over all users and treatment
times, where x̃ ∈ Rñx is a subvector of x ∈ Rnx , 0 < ñx < nx:

CATE(x̃) := Ei∈IEt∈Ti
[
(y1
it − y0

it)
∣∣∣∣ x̃it = x̃

]
. (8.8)

The CATE captures heterogeneity among users, e.g. with respect to specific hours of the
day, the geographic distribution of users, the extent to which a user possesses “smart home”
appliances, group or peer effects, etc. with the important requirement that the set of all
treatment times Ti is drawn from a fixed, prior distribution G over the hours of the day.
This differentiation is crucial since the one-sample estimate of the ITE, namely ŷ0

it − y1
it for

any t ∈ Ti, depends on its consumption level and willingness to reduce, both of which can
vary considerably for different hours of the day. In our case, Ti is drawn from the empirical
distribution of DR events as depicted in Figure 8.10. To rule out the existence of unobserved
factors that could influence the assignment mechanism generating the complete observed
data set {(xit, yit, Dit) | i ∈ I, t ∈ T}, we make the following standard assumptions:

Assumption 15 (Unconfoundedness of Treatment Assignment). Given the covariates {xit}t∈T,
the potential outcomes are independent of treatment assignment:

(y0
it, y

1
it) ⊥ Dit | xit ∀i ∈ I, t ∈ T. (8.9)

Assumption 16 (Stationarity of Potential Outcomes). Given the covariates {xit}t∈T, the
potential outcomes are independent of time, that is,

(y0
it, y

1
it) ⊥ t | xit ∀i ∈ I, t ∈ T. (8.10)

Assumption 15 is the “ignorable treatment assignment” assumption introduced by Rosen-
baum and Rubin (Rosenbaum and Rubin 1983). Under this assumption, the assignment of
DR treatment to users is implemented in a randomized fashion, which allows the calculation
of unbiased ATEs (8.7) and CATEs (8.8). Assumption 16, motivated by the time-series
nature of the observational data, ensures that the set of observable covariates {xit | t ∈ T}
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can capture seasonality effects in the estimation of the potential outcomes. That is, the
conditional distribution of the potential outcomes, given covariates, remains constant.

Normalizing (8.6) with the estimated counterfactuals yields the elasticity of user i, which,
with a slight abuse of notation, we also denote with βi:

βi := E
[
1− y0

it/y
1
it

]
= 1
|Ti|

∑
j∈Ti

(
1− y0

ij/y
1
ij

)
(8.11)

where the same distinction between a conditional and general elasticity as ITE / CITE can
be made.

The fundamental problem of causal inference (Holland 1986) refers to the fact that either
the treatment or the control outcome can be observed, but never both (granted there are no
missing observations). That is,

yit = y0
it +Dit · (y1

it − y0
it) ∀ t ∈ T. (8.12)

Thus, the ITE (8.6) is not identified, because one and only one of both potential outcomes
is observed, namely {y1

it | t ∈ Ti} for the treatment times and {y0
it | t ∈ Ci} for the control

times. It therefore becomes necessary to estimate counterfactuals.

8.4.2 Non-Experimental Estimation of Counterfactuals
Consider the following model for the estimation of such counterfactuals:

yit = fi(xit) +Dit · βit(xit) + εit, (8.13)

where εit denotes noise uncorrelated with covariates and treatment assignment. fi(·) : Rnx 7→
R is the conditional mean function and pertains to Dit = 0. To obtain an estimate for fi(·),
denoted with f̂i(·), control outcomes {y0

it | t ∈ Ci} are first regressed on {xit | t ∈ Ci}, namely
their observable covariates. In a second step, the counterfactual ŷ0

it for any t ∈ Ti can be
estimated by evaluating f̂i(·) on its associated covariate vector xit. Finally, subtracting ŷ0

it

from y1
it isolates the one-sample estimate βit(xit), from which the user-specific ITE (8.6)

can be estimated. Figure 8.14 illustrates this process of estimating the reduction during
a DR event by subtracting the actual consumption y1

it from the predicted counterfactual
ŷ0
it = f̂i(xit). Despite the fact that consumption can be predicted for horizons longer than a

single hour, we restrict our estimators fi(·) to a single hour prediction horizon as DR events
are at most one hour long.

To estimate fi(·), we use the following classical regression methods (Hastie, Tibshirani,
and Friedman 2009), referred to as estimators:

E1: Ordinary Least Squares Regression (OLS)

E2: L1 Regularized (LASSO) Linear Regression (L1)
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it − y1

it

E3: L2 Regularized (Ridge) Linear Regression (L2)

E4: k-Nearest Neighbors Regression (KNN)

E5: Decision Tree Regression (DT)

E6: Random Forest Regression (RF)

DT (E5) and RF (E6) follow the procedure of Classification and Regression Trees (Breiman
et al. 1984). We compare estimators (E1)-(E6) to the CAISO 10-in-10 Baseline (BL) (Califor-
nia Independent System Operator Corporation (CAISO): Fifth Replacement FERC Electric
Tariff 2014) (the regulatory standard for DR settlements in California), which, for any given
hour on a weekday, is calculated as the mean of the hourly consumptions on the 10 most
recent business days during the selected hour. For weekend days and holidays, the mean of
the 4 most recent observations is calculated. This BL is further adjusted with a Load Point
Adjustment, which corrects the BL by a factor proportional to the consumption three hours
prior to a DR event (California Independent System Operator Corporation (CAISO): Fifth
Replacement FERC Electric Tariff 2014) excluding the hour immediately prior to the event.

Since users tend to exhibit a temporary increase in consumption in the hours following
the DR intervention (Palensky and Dietrich 2011), we remove nr = 8 hourly observations
following each DR event in order to prevent estimators (E1)-(E6) from learning from such
spillover effects. This process is illustrated in Figure 8.15.
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Hence the training data Di,tr ⊂ Di,t used to estimate the conditional mean function f̂i(·)
(8.13) consists of all observations leading up to a DR event, excluding those that are within
8 hours of any DR event. To estimate user i’s counterfactual outcome ŷ0

it during a DR event
t ∈ Ti, we use the following covariates:

• 5 hourly consumption values preceding time t

• Air temperature at time t and 4 preceding measurements

• Hour of the day, an indicator variable for (non-)business days, and month of the year
as categorical variables

Thus, the covariate vector writes

xit = [y0
it−1 · · · y0

it−5 Tit · · · Tit−4

C(HoDit) : C(is Bdayit) C(MoYit)].
(8.14)

In (8.14), Tit denotes temperature, HoDit hour of day, is Bdayit an indicator variable for
business days, and MoYit the month of year (all for user i at time t). “C” denotes dummy
variables and “:” their interaction.

8.4.3 Placebo Treatments and De-biasing of Estimators
As previously mentioned, a crucial element of an estimator is unbiasedness. If an estimator
systematically predicts counterfactuals that are too large (small), users receive an excess
reward (are paid less) proportional to the amount of prediction bias. For a fair economic
settlement, it is thus desirable to minimize the amount of bias. In our application, such
prediction bias is caused by the following two factors:

• Inherent bias of estimators: With the exception of OLS (E1), (E2)-(E6) are inherently
biased, which is justified due to the well-known bias-variance tradeoff.
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• Seasonal and temporal bias: Due to the experimental design, DR events for a particular
user are concentrated within a period of 180 days after signing up. Further, DR events
are called only in the afternoon and early evening (see Figure B.2). Thus, fitting an
estimator on all available historical data is likely to introduce bias during these time
periods of interest, namely in the 90 days after signing up and in particular during DR
events.

To deal with these challenges, we use the de-biasing procedure presented in Algorithm
6, which was first introduced in Balandat 2016. We first separate a subset of non-DR

Algorithm 6 Unbiased Estimation of Counterfactuals
Input: Treatment data Di,t, control data Di,c, Estimator, η Output: Counterfactuals
{ŷit | t ∈ Ti}

1: Split Di,c into training data Di,tr and placebo data Di,pl according to empirical distribu-
tion of Ti. Split control times Ci into training times Ci,tr and placebo times Ci,pl

2: Compute weights for Di,tr = {(xit, yit) | t ∈ Ci,tr} according to (8.16a)-(8.16c), using η
3: Fit conditional mean function f̂i on Di,tr with weights
4: Estimate placebo counterfactuals {ŷ0

it | t ∈ Ci,pl}
5: Compute bias on placebo treatment set
6: Estimate treatment counterfactuals {ŷ0

it | t ∈ Ti}
7: Subtract placebo treatment bias from estimated treatment counterfactuals:

ŷ0
it ← ŷ0

it −
1
|Ci,pl|

∑
τ∈Ci,pl

(ŷ0
iτ − y0

iτ ) ∀ t ∈ Ti (8.15)

events from user i’s control data Di,c, which we call the placebo set Di,pl with associated
placebo treatment times Ci,pl (we chose Di,pl to be of size 25). This placebo set is drawn
according to user i’s empirical distribution of Phase 1 DR events by hour of day and month
of year. Next, the non-experimental estimator of choice is fitted (using cross-validation to
find hyperparameters to minimize the mean squared prediction error) on the training set
Di,tr. Importantly, to account for temporal bias, we assign weights to the training samples,
ensuring that samples in “similar” hours or seasons as actual DR events are assigned larger
weights. Specifically, the weights wit are determined as follows:

wit ∝ wHoD
it wMoY

it , (8.16a)
wHoD
it = η +

∑
τ∈Ci,tr

1(HoDit = HoDiτ ), (8.16b)

wMoY
it = η +

∑
τ∈Ci,tr

1(MoYit = MoYiτ ), (8.16c)

where η > 0 is a constant to be chosen a-priori.
Then, the fitted model is used to predict counterfactuals associated with placebo events.

This yields a set of |Ci,pl| paired samples from which we can obtain a proxy of the estimation
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bias that remains even after assigning sample weights according to the previous step. Finally,
to obtain an empirically de-biased estimate of actual Phase 1 DR events, we simply subtract
this proxy of the estimation bias from predicted Phase 1 DR event outcomes.

The attentive reader might wonder why the computation of weights is part of the algo-
rithm, given that the subtraction of placebo treatment bias from the estimated treatment
counterfactuals is already performed. This question is answered by the desire to reduce both
the estimation bias and the variance pertinent to the set {ŷ0

it | t ∈ Ci,pl}. This is illustrated
in Figure 8.16, which plots both the mean prediction bias on the placebo sets across users
and their sample standard deviation for a selected subset of non-experimental estimators.

It can be seen that for finite weight parameters, the prediction bias is closer to zero than
for an infinite value of η (which corresponds to no sample weighting, see (8.16b), (8.16c)).
Further, the sample standard deviation of user-level biases decreases as η decreases. It
appears that η = 0.2 is a good choice that minimizes the variance of estimated biases, which
is the parameter of η we use throughout this chapter.
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Figure 8.16: Mean Prediction Bias on Di,p and Sample Standard Deviation Across Users for
Selected Estimators

For the remaining estimators, Figure 8.17 plots the distribution of user-level biases on
the placebo test without sample weighting. This figure confirms the need for dealing with
seasonal and temporal bias.

8.4.4 Estimation of Individual Treatment Effects
To obtain point estimates for user i’s ITE βi, we can either average all one-sample estimates
(8.5) according to (8.6), or use the Hodges-Lehmann Estimator (8.17), which appears to
be advantageous in our application as it is robust against estimation inaccuracies. In both
cases, we would like to compute confidence intervals (CIs) around the ITEs, which we can do
with either the Wilcoxon Signed Rank Test (Section 8.4.4.1) or with a simple permutation
test (Section 8.4.4.2).
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8.4.4.1 Nonparametric Signed Rank Test

A nonparametric comparison of the treatment observations {y1
it | t ∈ Ti} and their estimated

counterfactuals {ŷ0
it | t ∈ Ti} admits p-values and coverage probabilities for confidence inter-

vals without requiring assumptions on the underlying data generating process, while being
robust against outliers. The paired replicate nature of these sets as well as their relatively
small size (which precludes the use of the Central Limit Theorem) calls for an analysis using
signed ranks (Hollander, Wolfe, and Chicken 2013). We estimate ITEs with the Hodges-
Lehmann Estimator (HLM) that is associated with the Wilcoxon Signed Rank Statistic. Let
zit := ŷ0

it − y1
it ∀ t ∈ Ti denote the pairwise sample difference at treatment time t. The

following assumption has to be made (Hollander, Wolfe, and Chicken 2013):

Assumption 17. The elements of {zit | t ∈ Ti} are mutually independent.

Assumption 18. The elements of {zit | t ∈ Ti} are mutually independent. Each zit comes
from an absolutely continuous distribution Fi symmetric about median treatment effect θi.

From Assumption 18, it follows immediately that θi ≡ βi. To estimate θ̂i, first the set of
pairwise averages

Zi := {(ziT [t] + ziT [u])/2 | 1 ≤ t ≤ u ≤ |Ti|} (8.17)

of cardinality |Ti|(|Ti|+ 1)/2 is constructed. Then θ̂i is calculated as the median of Zi. The
Hodges-Lehmann Estimator is intrinsically related to the Wilcoxon Signed Rank Test with
null hypothesis and its corresponding alternative

H0 : θi = 0, (8.18a)
H1 : θi 6= 0, (8.18b)

which constitutes a two-sided test at significance level α. The test statistic Wi is calculated
by sorting {|zit| | t ∈ Ti} in ascending order, assigning ordinal ranks {Rit | t ∈ Ti} to the
ordered items, and finally adding up the ranks as follows:

Wi =
|Ti|∑
t=1

RiTi[t] · 1(ziTi[t] > 0), (8.19)

where Ti[t] denotes the element at the t-th position of Ti[t]. It can be shown that Wi ∼
GWi

is distributed symmetrically about the mean |Ti|(|Ti| + 1)/4 with discrete support on
[0, |Ti|(|Ti|+1)/2]. The more {zit | t ∈ Ti} alternate in signs, the closer Wi to the mean. The
estimated treatment effect θ̂i is identified to be the scalar that has to be subtracted from
each element of Zi such that the new set

Z̃i := {(ziT [t] + ziT [u])/2− θ̂i | 1 ≤ t ≤ u ≤ |Ti|} (8.20)

puts statistic Wi closest to its mean. Equivalently, the distance ||Ti|(|Ti| + 1)/4 − Wi| is
minimized for {(zit− θ̂i) | t ∈ Ti}, which maximizes the resulting p-value associated with H0
(8.18a).
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Remark 3. Because {y1
it | t ∈ Ti} and {ŷ0

it | t ∈ Ti} are generated by an absolutely continuous
distribution (Assumption 18), the pairwise differences {zit | t ∈ Ti} consist of unique values
with probability 1. Therefore no ties need to be broken.

The test statistic Wi admits a p-value and (1− α) confidence interval
[
θi, θi

]
(Lehmann

and D’Abrera 2006) as follows:

p =
∣∣∣∣∣Φi(Wi) + 1− Φi

(
Ti(|Ti|+ 1)

2 −Wi

)∣∣∣∣∣ , (8.21a)[
θi, θi

]
=
[
Z[Φ−1

i (α/2)], Z[Φ−1
i (1− α/2)]

]
, (8.21b)

where Φi(·) and Φ−1
i (·) are the CDF and percent point function of distribution GWi

, respec-
tively. The coverage probability of θi is therefore given by

P(θi ≤ θi ≤ θi) = 1− α. (8.22)

The confidence interval corresponds to the range of θ̃i for which the Wilcoxon Signed Rank
Test does not reject the modified null hypothesis H0 : θ = θ̃i with corresponding alternative
H1 : θ 6= θ̃i at significance level α. Thus, (8.18a) is rejected at confidence level 1− α if and
only if either

• θi ≤ θi < 0: (8.18a) is rejected at the lower tail (that is, user i reduces consumption
significantly), or

• 0 < θi ≤ θi: (8.18a) is rejected at the upper tail (that is, user i increases consumption
significantly).

8.4.4.2 Nonparametric Permutation Test

To obtain an estimate of whether or not a given user i has actually reduced consumption,
we utilize a nonparametric permutation test with the null hypothesis of a zero ITE:

H0 : βi = 0, H1 : βi 6= 0. (8.23)

Given user i’s paired samples {zit = ŷ0
it − y1

it | t ∈ Ti} during DR periods, the p-value
associated with H0 (8.23) is

p =
∑
D∈Pi 1(D̄ ≤ β̂i)

2|Ti| . (8.24)

In (8.24), D̄ denotes the mean of D. Pi denotes the set of all possible assignments of signs
to the pairwise differences in the set {zit = y1

it − ŷ0
it | t ∈ Ti}. That is,

Pi = {s1zi1, . . . , s|Ti|zi|Ti| | sj ∈ {±1}, 1 ≤ j ≤ |Ti|} (8.25)
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Figure 8.18: Distribution of Event-wise Residuals for Selected Estimators

which is of size 2|Ti|. Finally, the p-value from (8.23) is calculated as the fraction of all
possible assignments whose means are less than or equal the estimated ITE β̂i. In practice,
as the number of DR events per user in Phase 1 is about 25 (see Figure 8.2), the number of
total possible assignments becomes computationally infeasible. Thus, we randomly generate
a subset of 105 assignments from Pi to compute the p-value in (8.24).

Moreover, we use the percentile bootstrap method (Efron and Tibshirani 1994) to com-
pute a confidence interval of the estimated ITE for user i around the point estimate β̂i.

8.5 Nonexperimental Estimation Results

8.5.1 Validation of Individual Treatment Effects
In this section we analyze the prediction accuracy of individual treatment effect estimators
by analyzing raw residuals. Figure 8.18 plots a histogram of the distribution of such residuals
for four selected estimators. Table 8.4 provides the standard deviation of this distribution for
all estimators, and we observe that RF is the “best” estimator in terms of tightness around
zero. As expected, the CAISO 10-in-10 baseline performs worst.

Moreover, we carry out a ranking exercise of non-targeted users across Phases 1 and 2 of
the experiment. The intuition is that non-targeted users do not experience a change in their
average reward level across both phases (unlike targeted users) and hence are expected to
have the same reduction behavior in both phases of the experiment. Under the assumption
of no user attrition and adversarial behavior, a perfect estimator should estimate the same
ITE in Phase 1 as well as in Phase 2 for a particular user. Equivalently, if we rank users
according to their Phase 1 ITEs predicted by a perfect estimator, we would expect the same
ordering as in Phase 2. Thus, if we scatter plot the ranks of user ITEs estimated in Phase
1 and Phase 2, the accuracy of a particular estimator correlates with how tightly the dots
are put around the diagonal. Figure 8.19 shows such a plot with deciles instead of ranks,
i.e. a point (x, y) represents a user whose rank is in the x-th (y-th) decile in Phase 1 (Phase
2) rolled over on September 21, 2017. For illustrative purposes, the dots are transparent
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Distribution of Residuals for Estimators
Estimator Standard Deviation

RF 0.5710
OLS 0.5936
L2 0.5997
L1 0.6009

KNN 0.6050
DT 0.6866
BL 1.6741

Table 8.4: Standard Deviation of Event-wise Residuals (yit − ŷit)
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Figure 8.19: Deciles of Non-Targeted Users Ranked by ITE estimated in both Phase 1 and
Phase 2 of the Experiment

such that darker dots indicate multiple counts. It can be seen that OLS and RF achieve the
tightest fit around the diagonal, whereas BL performs worst.

Table 8.5 provides the R2 scores for selected rollover dates, namely dates for which there
exists at least one non-targeted user with both at least 20 events in each of Phase 1 and
2. Averaging all R2 scores across all such rollover dates is evidence for RF being the most
accurate estimator on an individual user level.

8.5.2 Validation of Average Treatment Effects
In a similar fashion as Section 8.5.1, we now aggregate the simulated user-level responses
into a population-wide ATE. Figure 8.20 plots the means and 95% confidence intervals for
varying estimators and group sizes, where the means and upper/lower confidence bounds
themselves have distributions, as we repeat the simulations many times. Consistent with
previous findings, larger group sizes result in tighter confidence intervals.
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R2 for Non-Targeted Users for Phase 1 and Phase 2 Ranks
Rollover Date RF OLS L2 BL
2017/07/27 0.7820 0.3856 0.7126 0.3554
2017/08/03 0.3415 0.1789 0.2195 0.8117
2017/08/10 0.7348 0.6464 0.9042 0.6390
2017/08/31 0.3131 0.0772 0.2888 0.1015
2017/09/07 0.4275 0.4857 0.3936 0.2213
2017/09/14 0.3234 0.2276 0.2931 0.4665
2017/09/21 0.3477 0.3007 0.3138 0.1937
2017/09/28 0.2780 0.2406 0.1937 0.2889
2017/10/03 0.0274 0.0138 −0.0674 0.0446

Mean 0.3973 0.2841 0.3613 0.3470

Table 8.5: Pearson Correlation Coefficient for Non-Targeted User Ranks Across Phase 1 and
Phase 2, Minimum 20 Events per User
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8.5.3 Average Treatment Effects
Figure 8.21 shows ATE point estimates and their 99% bootstrapped confidence intervals
conditional on differing reward levels for all estimators as well as the CAISO BL. Due to
empirical de-biasing with Algorithm 6, the point estimates for estimators E1-E6 are close
to each other. BL appears to be biased in favor of the DRP, as it systematically predicts
smaller reductions than E1-E6.
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Figure 8.21: CATEs by Incentive Level with Bootstrapped Confidence Intervals

Table 8.6 reports the estimated ATE (in kWh and percent reduction) and the estimated
intercept and slope of the demand curve, aggregated across all incentive levels. Due to
the idiosyncratic nature of the CATE for r = 0.5USD

kWh , the slope and intercept have to be
interpreted with caution. However, the results give rise to a notable correlation between
larger incentives levels and larger reductions.

ATEs, Intercepts (kWh), and Slopes (kWh) for all Methods
Estimator ATE (kWh) ATE (%) Intercept Slope · 3USD

BL −0.116 −12.9 −0.110 −0.018
KNN −0.126 −13.9 −0.120 −0.020
OLS −0.125 −13.8 −0.119 −0.019
L1 −0.123 −13.6 −0.116 −0.021
L2 −0.122 −13.5 −0.115 −0.021
DT −0.129 −14.2 −0.122 −0.022
RF −0.129 −14.2 −0.123 −0.019

Table 8.6: ATE Estimates and Demand Curve by Estimator, all 4791 Users

To compare the prediction accuracy of the estimators, Table 8.10 reports the width of
the confidence intervals for each method and incentive level. The inferiority of the CAISO
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baseline compared to the non-experimental estimators, among which RF achieves the tightest
confidence intervals, becomes apparent. Therefore, in the remainder of this chapter, we
restrict all results achieved with non-experimental estimators to those obtained with RF.

Width of CATE Confidence Intervals (kWh) by Incentive Level
0.05 USD

kWh 0.25 USD
kWh 0.50 USD

kWh 1.00 USD
kWh 3.00 USD

kWh

BL 0.0317 0.0321 0.0325 0.0331 0.0317
KNN 0.0274 0.0282 0.0277 0.0273 0.0278
OLS 0.0277 0.0269 0.0272 0.0266 0.0270
L1 0.0272 0.0263 0.0277 0.0250 0.0261
L2 0.0265 0.0270 0.0257 0.0263 0.0269
DT 0.0310 0.0306 0.0317 0.0301 0.0313
RF 0.0260 0.0258 0.0256 0.0273 0.0260

Table 8.7: Width of 95 % Confidence Intervals around ATE Point Estimate Conditional on
Incentive Level, All Estimators

8.5.4 Individual Treatment Effects
Figure 8.22 plots ITEs for a randomly selected subset of 800 users who received at least 10
DR events in Phase 1, estimated with RF. Users are sorted by their point estimates (blue),
whose 95% bootstrapped confidence intervals are drawn in black. Yellow lines represent users
with at least one active smart home automation device. By marginalizing the point estimates
over all users with at least 10 events, we obtain an ATE of −0.139 kWh (−14.2%), which is
close to −0.129 kWh as reported in Table 8.6. The difference ensues from only considering
users with at least 10 DR events. The 99% ATE confidence interval is [−0.154,−0.125] kWh.

Table 8.8 reports estimated ATEs for users with or without active smart home automation
devices, which are obtained by aggregating the relevant estimated ITEs from Figure 8.22. We
notice larger responses as well as a larger percentage of estimated reducers among automated
users.

ATEs Conditional on Automation Status for Users with ≥ 10 DR Events
# Users % Reducers ATE (kWh) ATE (%)

Automated 372 80.4 −0.332 −38.2
Non-Automated 3853 66.7 −0.121 −12.0

All 4225 67.9 −0.139 −14.2

Table 8.8: Estimated CATEs by Automation Status, RF Estimator (E6)

Table 8.9 reports the percentage of significant reducers for different confidence levels,
obtained with the permutation test under the null (8.23). From Tables 8.8 and 8.9, it
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Figure 8.22: Distribution of ITEs with Bootstrapped Confidence Intervals

becomes clear that automated users show larger reductions than non-automated ones, which
agrees with expectations. Lastly, Figure B.6 in the Appendix gives rise to a noticeable
positive correlation between ambient air temperature and the ITE.

8.6 ATE Estimation with Fixed Effects Models
To estimate the ATE of DR interventions on electricity consumption, we consider the fol-
lowing fixed-effects model with raw consumption (kWh) as the dependent variable:

kWhit = Xit · β + αit + uit. (8.26)

In (8.26), subscripts i and t refer to user i at time t, respectively. Xit is a row vector of
observable covariates, αit are unobserved fixed effects, and uit is the noise term which is
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Fraction of Significant Reducers (among sample of size 4225)
1− α = 0.9 1− α = 0.95 1− α = 0.99

# Automated 182 158 131
% of Total 48.9 42.5 35.2

# Non-Automated 1240 1041 695
% of Total 32.2 27.0 18.0

# All 1422 1199 826
% of Total 33.7 28.4 19.6

Table 8.9: Estimated Percentage of Significant Reducers according to Permutation Test, RF
Estimator (E6)

assumed to be uncorrelated with the regressors and Gaussian distributed with zero mean
and finite variance. The fixed effects term αit removes persistent differences across users in
their hourly and monthly consumption interacted with a business day indicator variable:

αit ∼ C(HoDit) : C(is Bdayit) + C(MoYit). (8.27)

Recall Assumption 15, which states that for an unbiased estimate of the ATE, we require
a randomized assignment of reward levels to users. However, we observe a notable correlation
between the reward level and the CAISO BL, suggesting that the DRP might systematically
assign larger reward levels to users with a higher projected baseline. To test this conjecture
with a nonparametric hypothesis test, we again make use of a permutation test with the
following null and alternative hypothesis:

H0 : max
i,j∈R

KSij = 0, H1 : max
i,j∈R

KSij > 0, (8.28)

where KSij denotes the KS distance between the empirical CAISO BL distributions for all
DR events observed for reward levels i and j. The idea of this formulation is to exploit
the idea that a randomized assignment of reward levels to users is reflected in a small KS
distance and vice versa. To perform a permutation test, we pool all CAISO BL observations
during DR events and randomly assign them to differing reward levels, where each group
has the same sample size as the original group. Repeating this process many times yields
a permutation distribution of the metric maxi,j∈RKSij, from which the p-value associated
with (8.28) follows. After 10,000 such iterations, we obtain a p-value of 0.0975, such that we
can reject the null at the 1 − α = 0.9 confidence level. This is indicative of a non-random
assignment of reward levels to users. To account for this fact, we include the CAISO BL in
the regression specifications described more closely in the following subsections.

Due to space constraints, the regression tables, which include point estimates and their
95% confidence intervals, t-values of the regression, and clustered standard errors, are rele-
gated to the appendix.
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8.6.1 Estimation by Incentive Level
To estimate the CATE by incentive level, the covariate matrix Xit in (8.26) is specified as
follows:

Xit = [is treatit BLit Tit Rit] , (8.29a)
Rit = [1(rit = 0.05) · · · 1(rit = 3.00)] . (8.29b)

In (8.29a), is treatit is an indicator set to one for all treatment users (and zero for all control
users). BLit is the CAISO baseline for user i at time t, which is necessary to control for the
non-random assignment of reward levels to users, Tit is the ambient air temperature, and
Rit is the reward level.

8.6.2 Estimation by Hour of the Day
To estimate the CATE by hour of the day, we pool all reward levels into the indicator variable
is DRit, which is one if user i received treatment at time t and zero otherwise:

Xit = [is treatit BLit Tit C(HoD) : is DRit] . (8.30)

8.6.3 Estimation by Month of the Year
The CATE by month of the year is found in a similar fashion to the CATE by hour of the
day:

Xit = [is treatit BLit Tit C(MoY) : is DRit] . (8.31)

8.6.4 Role of Smart Home Automation
The CATE by automation status is determined by introducing the indicator is autoit:

Xit = [is treatit BLit Tit C(is autoit) : is DRit] . (8.32)

8.6.5 Effect of Automation Uptake Encouragement
Lastly, the effect of incentivizing users to purchase a smart home automation device on
energy consumption during DR events is determined as follows:

Xit = [is encit is nonencit BLit Tit

is encit · is DRit is nonencit · is DRit].
(8.33)

In (8.33), the indicators is enc and is nonenc are 1 for all users in the “Treatment-Encouraged”
and in “Treatment-Non-Encouraged”, respectively, and zero otherwise.
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8.7 Comparison of Estimation Methods
In this section, we benchmark the results obtained from the best non-experimental estimator
(RF) to those from the fixed effects model with specification (8.29a).

Figure 8.23 compares the point CATEs by reward levels and their 95% confidence inter-
vals. It can be seen that the point estimates are close to each other (−0.123 kWh aggregated
for fixed effects vs. −0.129 for non-experimental approach with RF, a less than 5% differ-
ence), a finding that suggests that our non-experimental estimation technique produces reli-
able estimates comparable to the experimental gold standard. The fact that the confidence
intervals are notably tighter for RF corroborates this notion. The remaining comparisons by
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Figure 8.23: CATEs by Incentive Level with Confidence Intervals, Comparison Fixed Effects
Estimators and Non-Experimental Estimators

month of the year, automation status, and automation takeup encouragement, accompanied
by the Fixed Effects regression results, are relegated to the appendix.

8.8 Effect of Adaptive Targeting
The goal of adaptive targeting is to maximize the reduction per dollar paid to the users,
which is achieved by either minimizing the payout and/or maximizing users’ reductions.
Since we have no a-priori understanding about the distribution of individual users’ elasticities
in response to incentives, we focus on minimizing the payouts to users. Assuming that users
are relatively price inelastic (indeed Figure 8.23 only shows a weak negative slope of the
demand curve), we explore the potential of assigning large incentives to low reducers (and
small incentives to high reducers) to minimize the total payout from DRP to users.
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Width of CATE Confidence Intervals (kWh) by Incentive Level
0.05 USD

kWh 0.25 USD
kWh 0.50 USD

kWh 1.00 USD
kWh 3.00 USD

kWh

BL 0.0508 0.0459 0.0503 0.0474 0.0481
KNN 0.0422 0.0409 0.0437 0.0396 0.0420
OLS 0.0407 0.0387 0.0428 0.0401 0.0419
L1 0.0395 0.0402 0.0430 0.0391 0.0414
L2 0.0391 0.0400 0.0429 0.0419 0.0419
DT 0.0452 0.0437 0.0452 0.0449 0.0468
RF 0.0389 0.0383 0.0419 0.0392 0.0402

Table 8.10: Width of 95 % Confidence Intervals around ATE Point Estimate by Incentive
Level, All Estimators

8.8.1 Simulations for Adaptive Targeting
First and foremost, we carry out a simple targeting exercise to determine which criterion is
most suitable for maximizing the desired metric in Phase 2 of the experiment. The idea is to
assign users into one of two targeted groups, based on one of the following criteria estimated
from Phase 1 responses:

• ITE (kWh or % reduction)

• ITE normalized by average reward level received (kWh or % reduction)

• Intercept of estimated individual demand curve (kWh or % reduction)

• Slope of estimated individual demand curve (kWh or % reduction)

• Random assignment (benchmark)

Each of these four criteria are computed in kWh and % values. Algorithm 7 describes the
steps of the simulation in detail.

We repeat Algorithm 7 2,000 times to obtain a distribution of the metrics, which we
report in Figures 8.24 - 8.26.

Figure 8.24 plots the distribution of payouts from the DRP to targeted and non-targeted
simulated users. The top panel verifies that random assignment of targeted users to H and
L achieves an average payout that matches the payout of the non-targeted group, thereby
verifying the validity of random assignment. Panels 2-5 include this random benchmark,
which serves as a comparison for the payout to the targeted users under varying targeting
criteria {θi}i∈I . We observe that the criteria ITE, ITE normalized, as well as intercept all
reduce the payout significantly, however, ITE performs best. According to the bottom panel,
the slope criterion underperforms.
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Algorithm 7 Simulation of Adaptive Targeting of Users
Input: Set of non-targeted Phase 2 users N
1: Randomly split N = T ∪ T of equal size, i.e. simulated-targeted T and simulated non-targeted T
2: Sort users in T on targeting criteria θi using actual variation from Phase 1 and assign to simulated high/low groups H, L,

i.e. T = H∪ L. Use targeting strategy g:

• For the first three criteria: g(θ̂i) =
{
H if θ̂i > median({θi}i∈I)
L if θ̂i ≤ median({θi}i∈I)

,

• For the slope criterion: g(θ̂i) =
{
H if θ̂i ≤ median({θi}i∈I)
L if θ̂i > median({θi}i∈I)

,

• For random assignment: T = H∪L randomly. Serves as benchmark to gauge other four targeting methods against.

3: Generate synthetic reward levels:

• Users in L receive low incentives uniformly drawn from {0.05 USD
kWh , 0.25 USD

kWh , 0.50 USD
kWh }

• Users in H receive high incentives uniformly drawn from {1 USD
kWh , 3

USD
kWh }

4: Using actual DR events {Ti}i∈I and experimental variation from Phase 2, calculate the following metrics:

• The difference in average consumption between low targeted (L) and high targeted (H) groups (ATE of targeting):

∆y =
∑
i∈H

∑
t∈Ti

yit −
∑
i∈L

∑
t∈Ti

yit (8.34)

• Estimated ITEs (reductions) for high and low-targeted groups:

θ̂H :=
∑
i∈H

∑
t∈Ti

(ŷit − yit), (8.35a)

θ̂L :=
∑
i∈L

∑
t∈Ti

(ŷit − yit) (8.35b)

• Difference of estimated reductions for high and low-targeted groups:

∆θ̂ := θ̂H − θ̂L =
∑
i∈H

∑
t∈Ti

(ŷit − yit)−
∑
i∈L

∑
t∈Ti

(ŷit − yit) (8.36)

• Total payouts for T = H∪L and non-targeted T based on actual responses during Phase 2 DR events. Use actual
incentive levels from the actual experiment for T , but synthetic levels based on targeting assignment for L and H:

πT =
∑
i∈T

∑
t∈Ti

rit(ŷit − yit), (8.37a)

πT =
∑
i∈T

∑
t∈Ti

rit(ŷit − yit), (8.37b)

where we compute counterfactuals ŷit with either the CAISO 10-in-10 BL or an ML estimator of choice.
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Figure 8.24: Distribution of Payouts to Users
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Figure 8.25: Differences in Estimated Reduction between Non-Targeted and Targeted Users,
computed with RF

Figure 8.25 plots the distribution of differences in means between estimated Phase 2
reductions of simulated low and high targeted users ∆y. Random assignment (top panel)
shows a distribution centered around zero. Panels 2-4 graph distributions centered around a
positive value, which is consistent with the objective of assigning high (low) rewards to low
(large) Phase 1 reducers. ITE (kWh) achieves the largest mean difference whereas the slope
criterion appears to be ineffective.
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Figure 8.26: Estimated Reductions of Non-Targeted and Targeted Users, computed with RF

Figure 8.26 supports the results in Figure 8.25, as it breaks down the reductions of
simulated low and high targeted users. The differences in means between the reductions
estimated for low and high targeted users (for a particular targeting criterion) is exactly the
mean given in Figure 8.25.

Algorithm 8 describes the targeting assignment algorithm on a given set of users, which
we denote with S. Users are transitioned into Phase 2 on a weekly basis. That is, for a
particular week, all users who have reached 90 days of age in Phase 1 form the current weekly
cohort, which is randomly split into a non-targeted group Sn and targeted group St of equal
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Algorithm 8 Adaptive Targeting of Users
Input: Set of users S with completed Phase 1
Output: Groups Sn, Sl, and Sh of proportion 2 : 1 : 1

1: Randomly split S = Sn ∪ St, −1 ≤ |Sn| − |St| ≤ 1
2: Estimate ITE β̂i with E6 for each user i ∈ St.
3: Sort {βi}i∈S in ascending order
4: Split St = Sl ∪ Sh, such that −1 ≤ |Sl| − |Sh| ≤ 1 and β̂i < β̂j ∀ i ∈ Sl, j ∈ Sh
5: Assign users in Sl and Sh to low- and high-targeted, respectively

size (ties are broken randomly). For each user in St, we calculate the ITE based on Phase 1
events. These ITEs are then sorted in ascending order. The 50% of the largest reducers (with
the most negative ITEs) are defined to be the low-targeted group Sl, whereas the other half
is assigned to high-targeted group Sh. This targeting scheme appears to be a double-edged
sword: On the one hand, the DRP pays less money to large reducers and also achieves larger
reductions for previously small reducers, increasing the desired ratio. On the other hand,
previously large reducers now reduce less (in response to smaller rewards) and previously
small reducers are paid more money for increased reductions, thereby counteracting the
desired goal. However, the latter factors are dominated by the gains from the former ones,
as we show in Section 8.8.5.

8.8.2 Targeting Assignment Algorithm
Recall the model for the estimation of user-level counterfactuals (8.13), here repeated for
convenience:

yit = fi(xit) +Dit · βit(xit) + εit. (8.38)

Also, recall that an estimate of user i’s ITE β̂i is obtained by marginalizing {β̂it}t∈Ti . We
now want to define a targeting strategy g(βi,β−i) = g(β) that maps ITE estimates β to
treatment assignments (we abuse notation and write β in lieu of β̂).

Defining βi := {βit}t∈Ti ∈ R|Ti| and ri := {rit}t∈Ti ∈ R|Ti|, i.e. the collection of all
one-sample treatment effects and incentive levels, we define targeting to be efficient if

Ei∈I [h(βi, ri) | g(βi)] > Ei∈I [h(βi, ri) | Di], (8.39)

where h(·, ·) = R|Ti| × R|Ti| → R maps the estimated one-sample treatment effects βi and
incentive levels ri to a desired (scalar) targeting metric. Di is random assignment to reward
levels. In other words, the marginalization of user-level metrics shall outperform random
assignment in terms of a scalar metric. The idea for Phase 2 targeting is simple:

• Right after Phase 1, estimate a set of ITEs {β̂i}i∈I .
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• Right before Phase 2 begins, analyze the distribution of estimated ITEs, define a
targeting metric h, and then design the targeting strategy (or assignment strategy) g
for subsequent Phase 2 interventions.

8.8.3 Targeting Assignment Strategy and Metrics
We use a simple partitioning methodology that assigns users from Phase 1 to two different
targeted groups in Phase 2. More specifically, let g(βi,β−i) be defined as follows:

g(βi,β−i) =

H if βi > median({βi}i∈I)
L if βi ≤ median({βi}i∈I)

, (8.40)

where H = unif{1, 3} and L = unif{0.05, 0.10, 0.25}, that is, users in H (L) receive high
(low) incentive levels during Phase 2. More concretely, the 50% of the largest (smallest)
reducers from Phase 1 receive low (high) incentives in Phase 2. This targeting scheme
appears to be a double-edged sword: On the one hand, the DRP pays less money to large
reducers and also achieves larger reductions for previously small reducers, increasing the
desired ratio. On the other hand, previously large reducers now reduce less (in response to
smaller rewards) and previously small reducers are paid more money for increased reductions,
thereby counteracting the desired goal. However, the latter factors are dominated by the
gains from the former ones, as we show in Section 8.8.5.

From the perspective of the DR Provider, the goal is to maximize the reduction per dollar
paid to the users, which is achieved by either minimizing the payout and/or maximizing users’
reductions. Accordingly, we define the targeting metric h1(βi, ri) to be

h1(βi, ri) = β>i 1/(β>i ri), (8.41)

that is, the sum of event-wise reductions β>i 1 divided by the payments made to user i, β>i ri.
Alternatively, to take varying incentive levels offered to the user into account, we can also
extend (8.41) as follows:

h2(βi, ri) = β>i 1
β>i ri

/
r>i 1
|ri|

= h2|ri|
r>i 1

. (8.42)

That is, we normalize h1 defined in (8.41) by the average incentive level offered to user i, as
higher incentive levels offered to users are likely to elicit larger treatment effects.

8.8.4 Practical Considerations
Users are transitioned into Phase 2 on a weekly basis. That is, for a particular week, all
users who have reached 90 days of age in Phase 1 form the current weekly cohort, which
is randomly split into a non-targeted group T , whose users continue to receive all incentive
levels, and a targeted group T of equal size (ties are broken randomly). T acts as a control
group against which we benchmark the metrics (8.41) and (8.42). Users in T are then
assigned to H and L according to (8.40).
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8.8.5 Results of Adaptive Targeting
To obtain targeting metrics averaged across users in the targeted and non-targeted groups,
we marginalize (8.41) and (8.42) across targeted and non-targeted users to obtain

• HT1 and HT1 , i.e. (8.41) for all targeted/non-targeted users

• HT2 and HT2 , i.e. (8.42) for all targeted/non-targeted users

Table 8.11 shows the results. RF predicts a difference of HT1 − HT1 ≈ 1.464 kWh
USD , or an

Targeting Metrics for Phase 2
Estimator HT1 HT1 HT2 HT2 CATET CATET

BL 1.411 1.044 1.273 1.070 −0.0743 −0.0861
L2 2.934 1.070 2.655 1.096 −0.0441 −0.0580

OLS 2.684 1.069 2.429 1.096 −0.0484 −0.0628
RF 2.549 1.085 2.306 1.112 −0.0464 −0.0609

Table 8.11: Targeting Results for 2,733 users between June 29, 2017 - December 31, 2017.
[H1] = kWh

USD , [H2] = kWh2

USD2 , [CATE] = kWh.

increase of ≈ 135%. That is, the targeting mechanism is capable of achieving the same
reduction for the targeted as for the non-targeted group with just ≈ 43% of the payout. If
we normalize H1 with the average reward offered, RF predicts a difference of HT2 − HT2 ≈
1.194 kWh

USD , which is an increase of ≈ 107%.
Additionally, observe that the absolute value of the CATE among targeted (|CATET |)

users is smaller than for non-targeted users (|CATET |), which indicates that the extent
to which low-targeted users (large reducers in Phase 1) reduce their reductions dominates
the increase in reduction among high-targeted users (small reducers in Phase 2). However,
this net reduction of willingness to temporarily reduce electricity consumption is greatly
dominated by the assignment of high (low) rewards to low (large) reducers in Phase 1, which
explains the 135% and 107% increase of the H1 and H2 metrics, respectively.

8.9 Effect of Moral Suasion
Phase 3 of the experiment explores the opportunity of eliciting reductions in electricity con-
sumption by offering non-monetary incentives to users. Specifically, text messages attempt
to appeal to the environmental consciousness of participants. Example text messages for the
experimental groups are found below:

• Moral Suasion Only: “Saving energy now could keep a dirty power plant off!”
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• Price Only: “You will receive 100 points for every kWh you reduce below your fore-
cast”

• Moral Suasion and Price: “You will receive 100 points for every kWh you reduce
below your forecast. Saving energy now could keep a dirty power plant off!”

Figure 8.27 provides point estimates and 95% bootstrapped confidence intervals of es-
timated reductions in Phase 3 broken out by month of the year. Table 8.12 reports the
reductions aggregated over all months. The results show that environmental language is
able to achieve more than half of the reduction (≈ 55%) that is achievable with a pure
monetary incentive at 1 USD/kWh. Interestingly, combining both price and moral suasion
only achieves an increase of ≈ 7% compared to the price only case, suggesting that people
are a lot more price conscious than environmentally conscious.
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Figure 8.27: Estimated Reductions in Phase 3

Estimated Reductions [kWh] by Message Type for Phase 3
Moral Suasion Only Price Only Both

# Messages 44290 (33.8%) 43578 (33.3%) 43166 (32.9%)
Reduction −0.040 kWh −0.073 kWh −0.078 kWh

Table 8.12: Aggregated Phase 3 Reductions

8.10 Conclusion
We analyzed Residential Demand Response as a human-in-the-loop cyber-physical system
that incentivizes users to curtail electricity consumption during designated hours. Utilizing
data collected from a Randomized Controlled Trial funded by the CEC and conducted by a
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Demand Response provider in the San Francisco Bay Area, we estimated the causal effect of
hour-ahead price interventions on electricity reduction. To the best of our knowledge, this
is the first major study to investigate DR on such short time scales.

We developed a non-experimental estimation framework and benchmarked its estimates
against those obtained from an experimental Fixed-Effects Linear Regression Model. Im-
portantly, the former does not depend on the existence of an experimental control group to
construct counterfactuals that are necessary to estimate the treatment effect. Instead, we
employ off-the-shelf regression models to learn a consumption model on non-DR periods,
which can then be used to predict counterfactuals during DR hours of interest. We find
that the estimated treatment effects from both approaches are close to each other. The es-
timated ATE is −0.13 kWh (14%) per Demand Response event and household. Further, we
observe a weak positive correlation between the incentive level and the estimated reductions,
suggesting that users are only weakly elastic in response to incentives.

The fact that the estimates obtained from both approaches are close to each other is
encouraging, as our non-experimental framework permits to go a step further compared to
the experimental method in that it allows for an estimation of individual treatment effects.
From an economic perspective, being able to differentiate low from high responders allows
for an adaptive targeting scheme, whose goal is to minimize the total payout to users while
maximizing total reductions. We utilize this fact to achieve an increase of the reduction-per-
reward ratio of 43%.

Moreover, we discovered notable heterogeneity of users in time and by automation status,
since the largest reductions were observed in summer months as well as among users with
at least one connected smart home automation device. Further, the ambient air temper-
ature was found to positively correlate with the amount of reductions, suggesting that air
conditioning units are a major contributor to reductions.

Lastly, we emphasize that our non-experimental estimation framework presented in this
chapter is generalizable to any human-in-the-loop cyber-physical system that requires the
incentivization of users to achieve a desired objective. This is because our non-experimental
framework admits results on an individual user level, which could be of particular interest
in the incentivization of users in transportation systems.

Future work includes the analysis of adversarial user behavior (baseline gaming) and
advanced effects including peer and network effects influencing Demand Response.
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Chapter 9

Conclusion and Further Work

We investigated interactions of market participants in electricity markets by deriving results
from the domains of game theory, mechanism design, and online learning. In addition to
these theoretical findings, we reported results from a Residential Demand Response study
on 10, 000 users in California and conducted experiments on a commercial building on the
University of California, Berkeley campus to explore energy efficient control mechanisms.

While this thesis provides a solid representation of a few of the topics surrounding elec-
tricity markets in California, much more work remains to be done. Indeed, the theoretical
section of this thesis makes a series of simplifying assumptions for the ease of exposition;
dropping those would lead to a more involved analysis and further technicalities. Examples
for such assumptions are

• The risk-neutrality of the Demand Response Provider, the structure of the Demand
Response penalty and reward, and the distribution of private user types that determine
the shape of the demand curve of individual users in Chapter 2,

• Marginal costs of generating companies that increase linearly as well as an assumption
on the user parameters that is necessary to find a subgame perfect equilibrium in
Chapter 3,

• The fact that the utility is assumed to be risk-neutral and price-taking in Chapter 4.

Lastly, the case studies presented in the second part of this thesis, while interesting in their
own right, lead us to believe that further analyses could shed more light on the transferability
of our findings. Sutardja Dai Hall is a large commercial building on the campus and is not
structurally different from other office buildings across the nation; time-series in the form of
hourly smart meter data for the Demand Response study can be similarly found in numerous
other applications. Thus, utilizing the machinery presented in this thesis on different, yet
structurally similar applications would be a direction worth exploring for future students.
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Part III

Appendices
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Appendix A

Proofs

A.1 Proofs for Chapter 2

A.1.1 Proof of Theorem 1
A.1.1.1 Individual Rationality

Notice first that each user i ∈ T is given the reward r̃j(i), where j(i) ≥ jmax ≥ i. The first
inequality is a consequence of (2.8b), which for each i ∈ T re-runs (2.8a) on the subset of
users I \ i. Thus, to achieve the aggregate reduction M on users I \ i, where each user
would be given the highest threshold reward of the targeted group, requires more users to be
targeted than running the same mechanism on I. Hence j(i) ≥ jmax. The second inequality
is due to the fact that R̃ is sorted in ascending order, which also implies

E[ui(r̃j(i)|θi)] ≥ E[ui(r̃i|θi)] = 0.

due to the monotonically increasing property of the expected utility in the reward. Thus,
participation in the mechanism and being assigned to T results in a non-negative expected
utility, compared to a zero utility for non-participation. On the other hand, users i 6∈ T
receive a zero payment and so the expected utility is zero.

A.1.1.2 Incentive Compatibility

To show that the DR mechanism is incentive compatible, first note that the reward level r(i)
for each i ∈ T is determined independently of user i’s bid zi. For each i 6∈ T , user i is not
given a reward. To show IC, we must therefore iterate through the following two cases:

1. i ∈ T for zi = θi, i.e. user i is assigned treatment with truthful reporting. This implies
user i is given reward r̃j(i), which results in a positive expected utility. Now suppose
user i had reported zi 6= θi. Then either the user is still assigned treatment, in which
case her reward remains the same, or the user is not assigned treatment, in which case
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her reward reduces to zero. Thus, misreporting could lead to a zero utility when the
user could have had a positive expected utility.

2. i 6∈ T for zi = θi, i.e. user i is outside the treatment group with truthful reporting. If
user i had reported zi 6= θi, then either the user is still outside the treatment group,
which results in a zero utility, or the user is now in the treatment group. In the
latter case, note that user i is assigned reward r̃jmax , as jmax is exactly the solution to
(2.8b). Finally, because r̃jmax < r̃i (due to i 6∈ T ), the expected utility turns negative.
Thus, misreporting does not improve the expected utility, but could lead to a negative
expected utility when the user could have had a zero utility.

Combining the two cases above, it follows that misreporting the true type either yields a
utility that is identical to or less than the utility in case of truthful reporting. Therefore
the maximum expected utility is attained with truthful reporting, zi = θi, and so the DR
mechanism is incentive compatible.

Lastly, to show that the mechanism terminates if 0 ≤ M ≤ ∑n−1
i=2 δi(r̃n−1|θi), simply

notice that j(i) ≤ n ∀ i ∈ T (2.8b) because δ1(r̃k|θ1) ≥ δi(r̃k|θi), i ≤ k ≤ j(i) due to the
monotonically increasing property of (2.1) and (2.7). Hence running the mechanism on T \ i
always satisfies M .

A.2 Proofs for Chapter 3

A.2.1 Proof of Theorem 2
With Assumption 5, (3.4) follows by evaluating the first order optimality condition of (3.1)
and acknowledging that its second derivative is strictly negative. Uniqueness of the Nash
Equilibrium follows from Topkis’ Theorem on supermodular games (Topkis 1998), which
holds due to the continuity of the payoff functions (3.1) on the compact set R+ and increasing
differences in (xi,x−i) as ∂2ui

∂xi∂xj
≥ 0 ∀ i, j ∈ I.

A.2.2 Proof of Theorem 3
(3.7) is obtained by solving

maximize
p

p>x− x>Cx

subject to x = (B + 2Γ− ΓW )−1 (a − p)
(A.1)

and applying the Matrix Inversion Lemma for general matrices A,U,C, V of appropriate
dimensions:

(A+ UCV )−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1.

The optimal profit Π∗ is obtained by plugging p∗ and x∗ into the utility function of the
monopolist.
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A.2.3 Proof of Theorem 4
(3.10) is obtained in the same fashion as (3.7):

maximize
p

p1>x− x>Cx

subject to x = (B + 2Γ− ΓW )−1 (a − p1)

Eliminating x from both equations and evaluating the first order optimality condition with
respect to p yields (3.10).

A.2.4 Proof of Theorem 5
To derive (3.13a), we first note that since W = W> and C = cI, the profit maximizing
solution under complete information (3.7) simplifies to

p∗u = 1>a
2n + 1> [2Γ +B + cI − ΓW ]−1 ac

2n.

After taking the expectation with respect to the random variables {ai}ni=1 and {bi}ni=1 to
obtain

p̃∗u = E[a]
2 + E[a]c

2n Eb
[
1> [2Γ +B + cI − ΓW ]−1 1>

]
,

we first show convexity of the last term in diag(2b1, . . . , 2bn). Define the matrices

D = Γ + c

2I −
ΓW

2 + α diag (2b1, . . . , 2bn) ,

E = Γ + c

2I −
ΓW

2 + (1− α) diag
(
2b̄1, . . . , 2b̄n

)
,

where α ∈ (0, 1). D and E are clearly positive definite due to the Levy-Desplanques Theorem
(Horn and Johnson 2012). It is then to be shown that

g(X) := 1>X−11, X := (αD + (1− α)E)−1 ,

X := 2Γ +B + cI − ΓW

is a convex function on the domain of all positive definite matrices. Using the Schur Decom-
position, which states [

S T>

T U

]
� 0⇔ S � T>U−1T,

and since positive definite matrices are convex,

α

[
1>D−11 1>

1 D

]
+ (1− α)

[
1>E−11 1>

1 E

]
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=
[
α1>D−11 + (1− α)1>E−11 1>

1 αD + (1− α)E

]
� 0,

This immediately shows convexity of g(X):

αg(D) + (1− α)g(E) = α1>D−11 + (1− α)1>E−11
≥ 1>(αD + (1− α)E)−11
= g(αD + (1− α)E).

Finally, applying Jensen’s inequality in the multivariate case on the multivariate random
variable Y := diag(2b1, . . . , 2bn), we obtain

EY [g(X)] ≥ g (EY [X]) ,

from which (3.13a) follows directly.

A.2.5 Proof of Theorem 6
Under the given conditions, it follows immediately that E[x∗1] = . . . = E[x∗n]. With this
constraint, taking the expectation of (3.4) yields E[x∗(p)] as a function of p. Plugging
E[x∗(p)] into the utility’s profit function (3.2) and taking the expectation with respect to
a and b allows to compute the optimal uniform price p∗ (3.14b). Next, setting p = p∗ in
E[x∗(p)] yields (3.14b).

A.2.6 Proof of Theorem 7
Taking the derivative of (3.5) with respect to γ yields:

dx
dγ

= − 1
4γ(b+ γ)K

−1F−1(a − p), γ > 0

where we used the abbreviations

K :=
(
I − γ

(2b+ 2γ)W
)
, F :=

(
I + b

γ
(2I −W )−1

)
.

K is a strictly diagonally dominant M-Matrix because it can be expressed in the form
sI − B with s = 1 and has negative off-diagonal elements (Berman and Plemmons 1994).
This special property guarantees that its inverse exists and is strictly diagonally dominant
and entrywise positive. F is strictly diagonally dominant with positive off-diagonal entries,
because (2I −W )−1 is an M-Matrix. The Levy-Desplanques Theorem (Horn and Johnson
2012) then implies that F−1 exists, is diagonally dominant, and possesses nonnegative diag-
onal elements. Despite the possible negativity of its off-diagonal elements, we show that the
row sums of K−1F−1 are positive. Take, for example the i-th row sum:

n∑
j=1

(K−1F−1)ij =
n∑
j=1

n∑
s=1

K−1
is F

−1
sj
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=
n∑
s=1

K−1
is F

−1
ss +

n∑
s=1

K−1
is

n∑
j=1,j 6=s

F−1
sj

>
n∑
s=1

K−1
is F

−1
ss −

n∑
s=1

K−1
is F−1

ss

= 0.

Together with ai > pi ∀ i ∈ I (see Assumption 5), this shows that dx
dγ
< 0 for γ > 0.

A.2.7 Proof of Theorem 8
Define L := (2I−W ), which is a diagonally dominant matrix. Evaluating dx

dγ
at γ = 0 yields

dx
dγ

∣∣∣∣
γ=0

= −1
4(2I −W )(a − p) = −1

4Lα, (A.2)

where α is the column vector of all {αi | i ∈ I}. Evaluating this derivative for user i 6=
j, i ∈ Cj yields

−4dxi
dγ

∣∣∣∣
γ=0

= Liiα + Lijᾱ +
∑

k∈I\{i,j}
Likα

= 2α− ᾱ

n− 1 −
(n− 2)α
n− 1

< 2α− nα

n− 1 −
(n− 2)α
n− 1 = 0.

Hence we have dxi
dγ

∣∣∣∣
γ=0

> 0. On the other hand, for the “high” consumer j, the derivative
reads

−4dxj
dγ

∣∣∣∣
γ=0

= Ljjα +
∑
k∈I\j

Ljkα = 2α− n− 2
n− 1α > 0,

which completes the proof.

A.2.8 Proof of Lemma 2
The proof is similar to the one used for Theorem 8. For each user i, i ∈ I \ j, the derivative
reads

−4dxi
dγ

∣∣∣∣
γ=0

= 2α− kα

mi

− mi − 2
mi − 1α = α(mi − k)

mi − 1

≤ (k − 1)− k
mi − 1 α < 0.
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For user j, we have

−4dxj
dγ

∣∣∣∣
γ=0

= 2α− α

mj − 1 = 2mj − 1
mj − 1 α > 0.

A.2.9 Proof of Theorem 9
From Theorem 6, any user j with index 3, . . . , n, given the price p, consumes (aj − p)/(2bj).
To find x∗1 and x∗2, we solve (3.4) for users 1 and 2:[

2(b1 + γ) −γw12
−γw21 2(b2 + γ)

] [
x∗1
x∗2

]
=
[
a1 − p+ γ

∑n
j=3 w1jxj

a2 − p+ γ
∑n
j=3w2jxj

]

Comparing x∗1 + x∗2 to the consumptions without peer effect, that is, (a1 − p)/(2b1) + (a2 −
p)/(2b2) yields the desired inequalities. For the special case n = 2, note that w12 = w21 = 1
and w2j, j ≥ 3 as well as w1j, j ≥ 3, are zero.

A.2.10 Proof of Theorem 10
The optimal pricing vector p̃∗ under network uncertainty and its corresponding consumption
vector x̃∗ can be determined by solving (A.1) (with W = W̃ ) with respect to p. x̃∗ is then
determined by plugging p̃∗ back into (3.4). Let F := B + 2Γ − ΓW , F̃ := λ + 2Γ − ΓW̃ .
Then p̃ and x̃ are

p̃∗ = a − F̃ (C + F̃ )−1a/2,
x̃∗ = F−1F̃ (C + F̃ )−1a/2.

The optimal profit Π̃∗ = p̃∗>x̃∗ − x̃∗>Cx̃∗ can then be expressed as follows:

Π̃∗ = 1
4a>(C + F̃ )−1a +O(γ2) ≥ 1

4a>(C + F̃ )−1a.

Using the definition of Rayleigh quotients (Horn and Johnson 2012), we thus obtain the
following ratio on the profit under uncertainty:

Π̃∗
Π∗ ≥

a>(C + F̃ )−1a
a>(C + F )−1a

≥ λmin((C + F̃ )−1)
λmax((C + F )−1) .

(C + F̃ ) as well as (C + F ) are symmetric positive definite matrices due to their diagonal
dominance with nonpositive off-diagonal elements. Hence the eigenvalues of their inverses are
strictly positive. Utilizing the identity λmin(A)−1 = 1/λmax(A) for any nonsingular matrix A,
and ‖A+B‖ ≤ ‖A‖+‖B‖ (a fundamental property of matrix norms), further simplifications
yield

Π̃∗
Π∗ ≥

λmin(C + F )
λmax(C + F̃ )

= λmin(C + F )
‖C + F + γ(W − W̃ )‖2
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≥ λmin(C + F )
λmax(C + F ) + γ‖(W − W̃ )‖2

,

where we used the fact that for a symmetric positive definite matrix A, we have ‖A‖2 ≡√
λmax(A>A) =

√
λmax(A2) = λmax(A).

A.2.11 Proof of Theorem 11
The social welfare S is the sum of all users’ and the monopolist’s utility:

S =
∑
i∈I

aixi − bix2
i − cix2

i + γixi

∑
j∈I

wijxj − xi

 .
For each i ∈ I, minimizing S with respect to xi yields

dS
dxi

= ai − 2(bi + ci + γi)xi + γi
∑
j∈I

wijxj + γi
∑
j∈I

wjixi,

where the last term on the right hand side signifies the externalities user i imposes on
its neighbors, but which are unaccounted for in the individual users’ utility maximization.
Solving for xi and vectorizing the equation yields (3.17).

To show that xoi > x∗i for γ > 0, it suffices to show that A = (C + B/2 + Γ−W>Γ/2−
ΓW/2)−1 is entrywise greater that B = (C + B + 2Γ−W>Γ/2− ΓW/2)−1. By performing
Gauss-Jordan Elimination on A and B and exploiting the fact that A and B are diagonally
dominant matrices with positive values on the diagonal and negative off-diagonal entries,
this claim follows.

To show that a Pigouvian Subsidy of si = 1
2(bi + γi)x2

i restores social welfare, note that
the user’s utility function uoi now reads

uoi = aixi −
1
2bix

2
i − pixi + γixi

∑
j∈I

gijxj −
1
2xi

 .
The solution to the subgame-perfect equilibrium under the new user utility uoi yields xoi .

A.3 Proofs for Chapter 4
Throughout this section, we utilize Leibniz’ Integral Rule, see Lemma 12.

Lemma 12 (Leibniz Integral Rule). For a function f(x, t) with both f(x, t) and ∂f
∂x

contin-
uous in t ∈ [a(x), b(x)] and x ∈ [x0, x1], where a(x) and b(x) are continuous in x ∈ [x0, x1],
for x ∈ [x0, x1]:

d

dt

(∫ b(t)

a(t)
f(x, t) dx

)
=

∫ b(t)

a(t)

∂f

∂t
dx+ f(b(t), t) · b′(t)− f(a(t), t) · a′(t)
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A.3.1 Proof of Theorem 12
Taking the expectation of (4.2) with respect to the random variables λs and d yields:

E[ΠF ] = − q̄ · λ̄F + λf

∫ q̄

0
xf(x) dx+ λf q̄(1− F (q̄))

+ (λf − E[λs])
∫ ∞
q̄

(x− q̄)f(x) dx (A.3)

Using Lemma 12, its derivatives with respect to q̄ are

dE[ΠF ]
dq̄

= −λ̄F + λf (1− F (q̄)) + (λf − E[λs])(F (q̄)− 1),

d2E[ΠF ]
dq̄2 = −λff(q̄) + f(q̄)(λf − E[λs]) < 0,

from which the optimal contract volume q̄∗ (4.3a) follows. Plugging q̄∗ back into (A.3) yields

E[ΠF ] = −λ̄FF−1
(

1− λ̄F
E[λs]

)
+ λf

∫ q̄

0
xf(x) dx+ λf λ̄F

E[λs]
F−1

(
1− λ̄F

E[λs]

)
,

from which the optimal profit (4.3b) follows.

A.3.2 Proof of Theorem 13
Similar to the previous proof, we take the expectation of (4.4) with respect to λs and d:

E[ΠC ] =λfE[d]−
∫ q̄

0
xf(x)dx

∫ λ̄C

0
yg(y)dy − P q̄ − r

− λ̄C(1−G(λ̄C))
∫ q̄

0
xf(x)dx− q̄(1− F (q̄))

∫ λ̄C

0
yg(y)dy

− q̄(1− F (q̄))(1−G(λ̄C))λ̄C − E[λS]
∫ ∞
q̄

(x− q̄)f(x)dx.

The first order optimality condition reads

dEΠC

dq̄
= − P + E[λs](1− F (q̄))

− (1− F (q̄))
[∫ λ̄C

0
yg(y)dy + λ̄C(1−G(λ̄C))

]
,

which yields (4.5a) at the optimum. To show that this is a maximum, we compute the second
derivative:

d2EΠC

dq̄2 = f(q̄)
[∫ λ̄C

0
yg(y)dy + λ̄C(1−G(λ̄C))− E[λs]

]
,
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which is negative as we show below:
∫ λ̄C

0
yg(y)dy + λ̄C(1−G(λ̄C)) ?

< E[λs]

λ̄CG(λ̄C)−
∫ λ̄C

0
G(y)dy + λ̄C − λ̄CG(λ̄C) ?

< E[λs]

0 ≤ λ̄C −
∫ λ̄C

0
G(y)dy < λ̄C < E[λs]

Finally, the optimal expected profit E[Π∗C ] (4.5b) follows from plugging (4.5a) back into the
expectation of (4.4).

A.3.3 Proof of Theorem 14
Taking the expectation of (4.8) with respect to λs and r by performing Lebesgue-Stieltjes
Integration gives

E[ΠDR] = (λf − E[λs])
∫ dmax−h(r)

dmin
xf(x+ h(r))dx− r

+ (λf − E[λs]) dmin

∫ dmax

dmax−h(r)
f(x)dx (A.4)

= (λf − E[λs])
∫ dmax

dmin+h(r)
(x− h(r))f(x)dx− r

where we used the change of variables x + h(r)→ x and the fact that F (dmax) = F (dmax −
h(r)) = 1. With the Leibniz Integral Rule, its derivatives with respect to r read

dE[ΠDR]
dr

= (λf − E[λs])[1− F (h(r))](−h′(r))− 1

d2E[ΠDR]
dr2 = (λf − E[λs]︸ ︷︷ ︸

≤0

)[f(h)h′ + (F (h)− 1)h′′︸ ︷︷ ︸
≥0

]
∣∣∣∣
h=h(r)

For the linear shift, i.e. h(r) = αr, first order optimality yields (4.9a), which is valid only
under the condition that α > (E[λs] − λf )−1. The second derivative is negative due to the
concavity of h(r), which results in h′′(r) ≤ 0. The optimal profit Π∗DR follows from plugging
r∗ back into (A.4):

E[Π∗DR] = (λf − E[λs])
∫ αr∗+dmax

αr∗
(x− αr∗)f(x)dx− r∗

+ (λf − E[λs]) dmin [F (dmax)− F (dmax − h(r))]

= (λf − E[λs])
∫ ∞
F−1(1− 1

α(E[λs]−λf ) )
xf(x)dx
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A.3.4 Proof of Theorem 15
This theorem can be proved by showing that the determinant of the Hessian of the two-
dimensional optimization problem is negative, and hence yields a saddle at each joint min-
imum of portfolios ((r∗, q̄∗C for DR + call, (r∗, q̄∗F ) for DR + forward contract, (q̄∗F , q̄∗C) for
call + forward contract). The objectives for each of these pairwise portfolios are

ΠFC = λfd− λ̄F q̄F − P q̄C − (d− q̄F − q̄C)λs1d>q̄F+q̄C − (d− q̄F ) min(λs, λ̄C)1q̄F≤d≤q̄F+q̄C ,

ΠFD = (λf − λs)[d(r)− q̄F ]+ − λ̄F q̄F − r + λFd(r)1d(r)≤q̄F + λf q̄F1d(r)>q̄F ,

ΠCD = λfd− λs[d(r)− q̄C ]+ − P q̄C − r + min(λ̄C , λs)
[
−d(r)1d(r)≤q̄C − q̄C1d(r)>q̄C

]
,

where ΠFC,ΠFD, and ΠCD denote the profit under the pairwise portfolios (forward contract,
call), (forward contract, DR), (call, DR), respectively. Taking the expectation w.r.t to the
random variables d and λs and the derivatives w.r.t. the decision variables yields the Hessian
matrix, from which further analysis proves the claim.

A.3.5 Proof of Proposition 1
Using the definition of the conditional expectation for continuous random variables X, Y

E[X|Y ] =
∫
x∈R

pX|Y (x|y)dx,

it follows that

E[d | d ≥ τ ] =
∫ dmax
τ xf(x)dx∫ dmax
τ f(x)dx

, dmin < τ < dmax. (A.5)

Applying (A.5) on (4.3b), (4.5b), and (4.9b) with τ = αF (4.12a), τ = αC (4.12b), and
τ = αDR (4.12c), respectively, yields the desired expressions.

A.3.6 Proof of Proposition 2
For a uniform distribution with support [dmin, dmax], the PDF is f(x) = 1/(dmax−dmin)1(dmin ≤
x ≤ dmax), and the inverse CDF is F−1(z) = dmin +(dmax−dmin)z, z ∈ [0, 1]. Straightforward
manipulation of the optimal expected profits (4.3b), (4.5b), and (4.9b) and using the formula
for the standard deviation

σ = dmax − dmin

2
√

3
yields (4.14a), (4.14b), and (4.14c).

A.3.7 Proof of Theorem 16
Straightforward by pairwise comparison of equations (4.11a)-(4.11c).
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A.4 Proofs for Chapter 5

A.4.1 Proofs for Stochastic Setting
A.4.1.1 Proof of Lemma 3

Recall the definition of counters Ci,t. Each time a non-optimal vector of arms is played, that
is, at 6= a∗, we increment the smallest counter in the set at:

Cj,t ← Cj,t + 1, j = arg min
i∈at

Ci,t (A.6)

Proof. Let Ii(t) denote the indicator that Ci,t is incremented at time t. Then for any time
τ , we have:

Ci,τ =
τ∑
t=2

1 [Ii(t) = 1] = m+
τ∑
t=2

1 [Ii(t) = 1, Ci,t ≥ m]

= m+
τ∑
t=2

1

∑
j∈at

µ̄jt−1 + ej,t−1 ≥
∑
j∈a∗

µ̄jt−1 + ej,t−1 , Ci,t ≥ m


≤ m+

τ∑
t=1

1

 ∑
j∈at+1

Uj,t ≥
∑
j∈a∗

Uj,t , Ci,t ≥ m


≤ m+

τ∑
t=1

1

 max
m≤ns(1),...,ns(K)≤t

K∑
j=1

Uns(j),t ≥ min
1≤ns∗(1),...,ns∗(K)≤t

K∑
j=1

Uns∗(j),t


≤ m+

∞∑
t=1

t∑
ns(1)=m

· · ·
t∑

ns(K)=m

t∑
ns∗(1)=1

· · ·
t∑

ns∗(K)=1
1

 K∑
j=1

Uns(j),t ≥
K∑
j=1

Uns∗(j),t

 .
s(j) and s∗(j) denote the j-th nonzero element in at+1 and a∗, respectively. Uns(j),t =
µ̄
s(j)
t + es(j),t is the upper confidence bound of arm s(j) at time t after it has been played
ns(j),t times.

Using the choice of m in Lemma A13, we obtain the lower bound on the expectation of
Ci,τ(B) as stated in Lemma 3:

E[Ci,τ(B)]

≤ m+
∞∑
t=1

t∑
ns(1)=m

· · ·
t∑

ns(K)=m

t∑
ns∗(1)=1

· · ·
t∑

ns∗(K)=1
2Kt−2(K+1)

≤

(K + 1) log τ(B)
(

∆min + 2K(1 + 1/cmin)
cmin∆min

)2
+

∞∑
t=1

(t−m+ 1)KtK2Kt−2(K+1)

≤ (K + 1)
(

∆min + 2K(1 + 1/cmin)
cmin∆min

)2

log τ(B) + 1 + 2K
∞∑
t=1

t−2
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≤ (K + 1)
(

∆min + 2K(1 + 1/cmin)
cmin∆min

)2

︸ ︷︷ ︸
=:γ

log τ(B) + 1 +K
π2

3︸ ︷︷ ︸
=:δ

. (A.7)

Lemma 13. For the choice

m ≥ (K + 1) log τ(B)
[

∆min + 2K(1 + 1/cmin)
cmin∆min

]2

we obtain the following bound:

P

 K∑
j=1

µ̄
s(j)
t + es(j),t ≥

K∑
j=1

µ̄
s∗(j)
t + es∗(j),t

 ≤ 2Kt−2(K+1).

Proof. The proof follows ideas employed in Auer, Cesa-Bianchi, and Fischer 2002. Assuming
that the event

K∑
j=1

µ̄
s(j)
t + es(j),t ≥

K∑
j=1

µ̄
s∗(j)
t + es∗(j),t (A.8)

is true, at least one of the following events must also be true:
K∑
j=1

µ̄
s∗(j)
t ≤

K∑
j=1

µs∗(j) − es∗(j),t (A.9a)

K∑
j=1

µ̄
s(j)
t ≥

K∑
j=1

µs(j) + es(j),t (A.9b)

K∑
j=1

µs∗(j) <
K∑
j=1

µs(j) + 2es(j),t (A.9c)

To show this claim, assume the probabilities of events (A.9a) or (A.9b) occurring is zero.
Then it follows that

K∑
j=1

µ̄
s(j)
t + es(j),t ≥

K∑
j=1

µ̄
s∗(j)
t + es∗(j),t

(A.9a)
> µs∗(j) − es∗(j),t + es∗(j),t =

K∑
j=1

µs∗(j)

and
K∑
j=1

µs(j) + 2es(j),t
(A.9b)
>

K∑
j=1

µ̄
s(j)
t + es(j),t ≥

K∑
j=1

µ̄
s∗(j)
t + es∗(j),t.
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Hence, it follows that
K∑
j=1

µs∗(j) <
K∑
j=1

µ̄
s∗(j)
t + es∗(j),t <

K∑
j=1

µs(j) + 2es(j),t,

which is exactly event (A.9c). Thus, it suffices to upper-bound the probability of events
(A.9a) and (A.9b), while choosing m such that the third event (A.9c) occurs with probability
zero. Using Lemma A14, we have

P (A.9a true) + P (A.9b true) ≤ 2Kt−2(K+1). (A.10)

Now we pick m such that event (A.9c) becomes impossible:
K∑
j=1

µs∗(j) −
K∑
j=1

µs(j) −
K∑
j=1

2es(j),t

=
K∑
j=1

[
µs∗(j) − µs(j)

]
− 2

K∑
j=1

(1 + 1/cmin)εs(j),t
cmin − εs(j),t

=: ∆at+1 − 2
K∑
j=1

(1 + 1/cmin)εs(j),t
cmin − εs(j),t

= ∆at+1 − 2
K∑
j=1

(1 + 1/cmin)
√

(K+1) log t
ns(j)

cmin −
√

(K+1) log t
ns(j)

≥ ∆at+1 − 2K
(1 + 1/cmin)

√
(K+1) log τ(B)

m

cmin −
√

(K+1) log τ(B)
m

≥ 0,

where the last inequality is obtained by selecting m as follows:

m ≥ (K + 1) log τ(B)
(

∆at+1 + 2K(1 + 1/cmin)
cmin∆at+1

)2

.

This choice of m is suitable for the particular choice of at+1. To falsify (A.9c) for all possible
choices of at+1, we let m be defined as follows:

m ≥ (K + 1) log τ(B)
(

∆min + 2K(1 + 1/cmin)
cmin∆min

)2

.

Lemma 14. The probabilities of the events (A.9a) and (A.9b) are upper-bounded as follows:

P

 K∑
j=1

µ̄
s∗(j)
t ≤

K∑
j=1

µs∗(j) − es∗(j),t

 ≤ Kt−2(K+1) (A.11a)
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P

 K∑
j=1

µ̄
s(j)
t ≥

K∑
j=1

µs(j) + es(j),t

 ≤ Kt−2(K+1) (A.11b)

Proof. Using the union bound on (A.11a), we obtain

P

 K∑
j=1

µ̄
s∗(j)
t ≤

K∑
j=1

µs∗(j) − es∗(j),t

 ≤ K∑
j=1

P
(
µ̄
s∗(j)
t ≤ µs∗(j) − es∗(j),t

)

Analyzing

µ̄
s∗(j)
t ≤ µs∗(j) − es∗(j),t ⇔

µ̄
s∗(j)
r,t

µ̄
s∗(j)
c,t

≤ µs
∗(j)
r

µ
s∗(j)
c

− es∗(j),t, (A.12)

we claim that at least one of the following two events must be true:

µ̄
s∗(j)
r,t ≤ µs

∗(j)
r − εs∗(j),t, (A.13a)

µ̄
s∗(j)
c,t ≥ µs

∗(j)
c + εs∗(j),t, (A.13b)

where εs∗(j),t is the low-level exploration term for the mean reward and cost defined in (A.14).
The claim is true, because if both (A.13a) and (A.13b) were false, then we would have

µs
∗(j)
r

µ
s∗(j)
c

−
µ̄
s∗(j)
r,t

µ̄
s∗(j)
c,t

=

(
µs
∗(j)
r − µ̄s

∗(j)
r,t

)
µs
∗(j)
c −

(
µs
∗(j)
c − µ̄s

∗(j)
c,t

)
µs
∗(j)
r

µ̄
s∗(j)
c,t µ

s∗(j)
c

<
εs∗(j),t

µ̄
s∗(j)
c,t

+ εs∗(j),tµ
s∗(j)
r

µ̄
s∗(j)
c,t µ

s∗(j)
c

≤
εs∗(j),t
cmin

+ εs∗(j),t · 1
c2

min
= εs∗(j),t(cmin + 1)

c2
min

≤
εs∗(j),t(1 + 1/cmin)
cmin − εs∗(j),t

!= es∗(j),t,

which contradicts the claim (A.12). Now, choosing εs∗(j),t as

εs∗(j),t =

√√√√(K + 1) log t
ns∗(j)

(A.14)

allows us to bound the probability of (A.13a) and (A.13b) using Hoeffding’s Inequality:

P
(
µ̄
s∗(j)
r,t ≤ µs

∗(j)
r − εs∗(j),t

)
≤ exp

(
−2ns∗(j)ε2

s∗(j),t

)
= t−2(K+1),

P
(
µ̄
s∗(j)
c,t ≥ µs

∗(j)
c + εs∗(j),t

)
≤ exp

(
−2ns∗(j)ε2

s∗(j),t

)
= t−2(K+1).
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From here (A.11a) follows. In a similar fashion, we can bound the probability of event
(A.11b) by showing that at least one of

µ̄
s(j)
r,t ≥ µs(j)r + εs(j),t (A.15a)
µ̄
s(j)
c,t ≤ µs(j)c − εs(j),t (A.15b)

is true (similar to (A.13a) and (A.13b)), where εs(j),t is now defined as

εs(j),t =

√√√√(K + 1) log t
ns(j)

. (A.16)

More specifically, if both (A.15a) and (A.15b) were false, then (A.9b) would be false, too.
Thus, (A.11b) follows.

A.4.1.2 Proof of Lemma 4

First, notice that the optimal algorithm A∗ knows all bang-per-buck ratios and can simply
pull those K arms associated with the K largest ratios, denoted with a∗.

Lemma 15. The optimal expected payout of A∗, E[UA∗ ], is bounded from above as follows:

E[UA∗ ] ≤
∑
i∈a∗ µ

i
r∑

i∈a∗ µic
(B + 1) (A.17)

Proof. This can be shown easily by induction. For the base case, consider −1 ≤ B ≤ 0 and
so (A.17) holds trivially. Now consider the budget B′ > 0. Then we have

UA∗(B′) =
∑
i∈a∗

µir + UA∗

(
B′ −

∑
i∈a∗

µir

)
(A.17)
≤

∑
i∈a∗

µir +
∑
i∈a∗ µ

i
r∑

i∈a∗ µic

(
B′ −

∑
i∈a∗

µic + 1
)

=
∑
i∈a∗

µir −
∑
i∈a∗ µ

i
r∑

i∈a∗ µic

∑
i∈a∗

µic +
∑
i∈a∗ µ

i
r∑

i∈a∗ µic
(B′ + 1) =

∑
i∈a∗ µ

i
r∑

i∈a∗ µic
(B′ + 1).

Now, let us denote the stopping time of the optimal algorithm as τA∗(B). Since we know
that A∗ always selects the set of actions a∗ in each round, the stopping time is

τA∗(B) =
⌊

B∑
i∈a∗ µic

⌋
.

Hence, we obtain the following inequality on τA∗(B):
B∑
i∈a∗ µic

− 1 ≤ τA∗(B) ≤ B∑
i∈a∗ µic

. (A.18)

Lemma A16 bounds stopping time τA(B) of algorithm A:
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Lemma 16. The stopping time of algorithm A is bounded as follows:

B −NK (γ log τA(B) + δ)∑
i∈a∗ µic

− 1 ≤ τA(B) ≤ τA∗(B) + N

Kcmin
(γ log τA(B) + δ) .

Proof. Let 0 ≤ B∗ ≤ B denote the budget spent on pulling optimal arms from the set
a∗ across all rounds 1, . . . , τA(B). Similarly, let B− denote the budget spent on pulling
non-optimal arms across those rounds. To obtain the upper bound on τA(B), observe the
following manipulations:

τA(B) ≤ τA∗(B) + τA

∑
i 6∈a∗

ni,τ(B)cmax


≤ τA∗(B) + τA

(
N∑
i=1

Ci,τA(B)

)

≤ τA∗(B) +
∑N
i=1Ci,τ(B)

Kcmin
(A.19)

(A.7)
≤ τA∗(B) + N

Kcmin
(γ log τA(B) + δ) .

In (A.19), we used the definition of the counters Ci,t and the fact that the minimum payment
per round is Kcmin, from which τA(B) ≤ B/(Kcmin) follows for any B. To obtain the lower
bound on τA(B), observe the following:

τA(B) = τA(B∗ +B−)
≥ τA∗(B∗)

≥ τA∗

B −∑
i 6∈a∗

ni,τ(B)cmax


≥ τA∗

(
B −

N∑
i=1

Ci,τA(B)

)
(A.20)

(A.7)
≥ τA∗ (B −NK (γ log τ(B) + δ))

(A.18)
≥ B −NK (γ log τA(B) + δ)∑

i∈a∗ µic
− 1.

(A.20) again uses the definition of the counters Ci,t.

Finally, to prove Lemma 4, we need to remove the implicit relation of the bounds on
τA(B) presented in Lemma A16. For this purpose, we employ the inequality log(φ) ≤ φ− 1,
which is valid for all φ > 0. Letting φ = Kcmin

2Nγ τA(B), we obtain:

log τA(B) ≤ Kcmin

2Nγ τA(B) + log
( 2Nγ
Kcmin

)
− 1. (A.21)
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Substituting (A.21) into the upper bound on τA(B) in Lemma A16 yields

τA(B) ≤ τA∗(B) + N

Kcmin

[
γ

(
Kcmin

2Nγ τA(B) + log
( 2Nγ
Kcmin

)
− 1

)
+ δ

]
(A.18)
≤ B∑

i∈a∗ µic
+ τA(B)

2 + N

Kcmin

[
γ
(

log
( 2Nγ
Kcmin

)
− 1

)
+ δ

]
≤ 2B∑

i∈a∗ µic
+ 2N
Kcmin

[
γ
(

log
( 2Nγ
Kcmin

)
− 1

)
+ δ

]
︸ ︷︷ ︸

=:c1

. (A.22)

Next, taking the logarithm of (A.22) and substituting into the lower bound on τA(B) in
Lemma A16 results in the second part of the inequality in Lemma 4, because

τA(B) ≥ B∑
i∈a∗ µic

−
(

NKδ∑
i∈a∗ µic

+ 1
)

︸ ︷︷ ︸
=:c2

− NKγ∑
i∈a∗ µic︸ ︷︷ ︸
=:c3

log
(

2B∑
i∈a∗ µic

+ c1

)
,

where we again used (A.18). This completes the proof.

A.4.1.3 Proof of Theorem 17

Proof. The constants c1, c2, and c3 were defined in the previous subsection and are repeated
here for convenience:

c1 = 2N
Kcmin

[
γ
(

log
( 2Nγ
Kcmin

)
− 1

)
+ δ

]
c2 =

(
NKδ∑
i∈a∗ µic

+ 1
)

c3 = NKγ∑
i∈a∗ µic

Utilizing the definition of weak regret RA of a strategy A as the difference between the
expected payout of the best strategy A∗, which has knowledge of all bang-per-buck ratios,
and the expected payout of A, we obtain:

RA = E[GA∗ ]− E[GA]
(A.18)
≤

∑
j∈a∗ µ

j
r∑

j∈a∗ µ
j
c

(B + 1)− E

τA(B)∑
t=1

∑
j∈at

µjr


=
∑j∈a∗ µ

j
r∑

j∈a∗ µ
j
c

(B + 1)− τA(B)
∑
j∈a∗

µjr

+
τA(B)

∑
j∈a∗

µjr − E

τA(B)∑
t=1

∑
j∈at

µjr


(5.17)
≤

∑j∈a∗ µ
j
r∑

j∈a∗ µ
j
c

(B + 1)− τA(B)
∑
j∈a∗

µjr

+
N∑
i=1

Ci,τA(B)∆max
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≤

∑j∈a∗ µ
j
r∑

j∈a∗ µ
j
c

(B + 1)−
∑
j∈a∗

µjr

(
B∑

j∈a∗ µ
j
c

− c2 − c3 log
(

2∑
j∈a∗ µ

j
c

B + c1

)) (A.23)

+N∆max(γ log τA(B) + δ)

≤
∑
j∈a∗ µ

j
r∑

j∈a∗ µ
j
c

+
∑
j∈a∗

µjr

(
c2 + c3 log

(
2∑

j∈a∗ µ
j
c

B + c1

))
(A.24)

+N∆max

(
γ log

(
2∑

j∈a∗ µ
j
c

B + c1

)
+ δ

)
= O(c3 +Nγ logB) = O(NK4 logB) (A.25)

In (A.23) and (A.24), we used the explicit bounds on τA(B) on B derived in Lemma 4.
Lastly, in (A.25), we used the definitions of the constants c3 = O(NKγ) and γ = O(K3).
This completes the proof of Theorem 17.

A.4.2 Proofs for Adversarial Setting
A.4.2.1 Proof of Theorem 18

Proof. Define Wt = ∑N
i=1wi(t) and W̃t = ∑N

i=1 w̃i(t). Then observe the following manipula-
tions:

Wt+1

Wt

=
∑

i∈[N ]\S̃(t)

wi(t)
Wt

exp
(
Kγ

N
(r̂i(t)− ĉi(t))

)
+

∑
i∈S̃(t)

wi(t)
Wt

≤
∑

i∈[N ]\S̃(t)

wi(t)
Wt

[
1 + Kγ

N
(r̂i(t)− ĉi(t)) + (e− 2)

(
Kγ

N
(r̂i(t)− ĉi(t))

)2]
+

∑
i∈S̃(t)

wi(t)
Wt

= 1 + W̃t

Wt

∑
i∈[N ]\S̃(t)

wi(t)
W̃t

[
Kγ

N
(r̂i(t)− ĉi(t)) + (e− 2)

(
Kγ

N
(r̂i(t)− ĉi(t))

)2]

≤ 1 +
∑

i∈[N ]\S̃(t)

pi(t)/K − γ/N
1− γ

[
Kγ

N
(r̂i(t)− ĉi(t)) + (e− 2)

(
Kγ

N
(r̂i(t)− ĉi(t))

)2]

≤ 1 + γ

(1− γ)N
∑

i∈[N ]\S̃(t)

pi(t)(r̂i(t)− ĉi(t)) + (e− 2)Kγ2

(1− γ)N2

∑
i∈[N ]\S̃(t)

pi(t)(r̂i(t)− ĉi(t))2

≤ 1 + γ

(1− γ)N
∑

i∈[N ]\S̃(t)

(ri(t)− ci(t)) + (e− 2)Kγ2

(1− γ)N2 (1− cmin)
∑
i∈[N ]

(r̂i(t)− ĉi(t)).

In the above manipulations, we used the update rules of the weights and probabilities pi(t)
defined in Algorithm Exp3.M.B. Further, we utilized the property ex ≤ 1 + x + (e − 2)x2

for x = Kγ(r̂i(t)− ĉi(t))/N < 1. In the last line, we exploit the definition of the estimated
rewards r̂i(t) and costs ĉi(t). Next, since ex ≥ 1 + x for x ≥ 0, summing over t = 1, . . . , T ,
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where T = max(τA(B), τA∗(B)) yields

log
(
WT+1

W1

)
≤ γ

(1− γ)N

T∑
t=1

∑
i∈at\S̃(t)

(ri(t)− ci(t))

+ (e− 2)Kγ2

(1− γ)N2 (1− cmin)
T∑
t=1

∑
i∈[N ]

(r̂i(t)− ĉi(t)). (A.26)

Let a∗ denote the optimal action set for algorithm A∗. Bounding log(WT+1/W1) from above
yields

log
(
WT+1

W1

)
≥ log

(∑
i∈a∗ wi(T + 1)

W1

)

≥ log
K (∏i∈a∗ wi(T + 1))1/k

N


= log

(
K

N

)
+ 1
K

log
∏
i∈a∗

∏
t∈[T ]:i 6∈S̃(t)

exp
(
Kγ

N
(r̂i(t)− ĉi(t))

)
= log

(
K

N

)
+ 1
K

∑
i∈a∗

∑
t∈[T ]:i 6∈S̃(t)

Kγ

N
(r̂i(t)− ĉi(t)) . (A.27)

Combining (A.26) and (A.27) yields

N

γ
log

(
K

N

)
+
∑
i∈a∗

∑
t:i 6∈S̃

(r̂i(t)− ĉi(t))

≤ 1
1− γ

T∑
t=1

∑
i∈at\S̃(t)

(ri(t)− ci(t)) + (e− 2)γK(1− cmin)
N(1− γ)

T∑
t=1

∑
i∈[N ]

(r̂i(t)− ĉi(t)) . (A.28)

Taking the expectations of r̂i(t) and ĉi(t) and adding the term 1
1−γ

∑T
t=1

∑
i∈S̃(t)(ri(t)− ci(t)),

which is bounded from below by ∑i∈a∗
∑
t:i∈S̃(t)(ri(t)− ci(t)), to both sides of (A.28) gives us

N

γ
log

(
K

N

)
+
∑
i∈a∗

T∑
t=1

(ri(t)− ci(t))

≤ 1
1− γ

T∑
t=1

∑
i∈at

(ri(t)− ci(t)) + (e− 2)γK(1− cmin)
N(1− γ)

T∑
t=1

∑
i∈[N ]

(ri(t)− ci(t)) . (A.29)

Since T = max(τA(B), τA∗(B)) and due to the fact that algorithm A terminates after τA(B)
rounds, (A.29) becomes

N

γ
log

(
K

N

)
+
∑
i∈a∗

τA∗ (B)∑
t=1

(ri(t)− ci(t))



APPENDIX A. PROOFS 170

≤ 1
1− γ

τA(B)∑
t=1

∑
i∈at

(ri(t)− ci(t)) + (e− 2)γK(1− cmin)
N(1− γ)

T∑
t=1

∑
i∈[N ]

(ri(t)− ci(t)) (A.30)

We now bound the time-dependent terms in (A.30) separately:

∑
i∈a∗

τA∗ (B)∑
t=1

(ri(t)− ci(t)) ≥ Gmax −B,

τA(B)∑
t=1

∑
i∈at

(ri(t)− ci(t)) ≤ (GExp3.M.B − (B −Kcmax)) ,

and
T∑
t=1

∑
i∈[N ]

ci(t) ≥
τA(B)∑
t=1

∑
i∈[N ]

ci(t) ≥ B −Kcmax

T∑
t=1

∑
i∈[N ]

ri(t) =
∑
i∈[N ]

τA∗ (B)∑
t=1

ri(t) + 1 (τA(B) > τA∗(B))×
∑
i∈[N ]

τA(B)∑
t=τA∗ (B)+1

ri(t)

≤ N

K
Gmax + NB(1− cmin)

Kcmin
. (A.31)

In (A.31), we used the upper bound

1 (τA(B) > τA∗(B)) ·
∑
i∈[N ]

τA(B)∑
t=τA∗ (B)+1

ri(t) ≤ |τA(B)− τA∗(B)|Nrmax

≤
B − B

Kcmax
Kcmin

Kcmin
Ncmax = NB(1− cmin)

Kcmin
.

With these bounds, (A.30) becomes

Gmax −GExp3.M.B

≤ N

γ
log

(
N

K

)
+ γGmax (1 + (e− 2)γ(1− cmin)) + γB

(
(e− 2)(1− cmin)2

cmin
− 1

)
+K

≤ N

γ
log

(
N

K

)
+ γGmax(e− 1) + γB(e− 1)

cmin
+K.

If an upper bound g on Gmax exists, i.e. g ≥ Gmax, then γ can be tuned by choosing

γ = min
(

1,
√

N log(N/K)
g(e−1)(1+ B

gcmin
)

)
, which gives us

R = Gmax −GExp3.M.B

≤ K + 2
√
e− 1

√
1 + B

gcmin

√
gN log(N/K)
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< K + 2.63
√

1 + B

gcmin

√
gN log(N/K),

as stated in Theorem 18.

A.4.2.2 Proof of Proposition 3

A.4.2.2.1 Proof of Lemma 5

Proof. Using the update rule for weights (A.26) in place of the original update rule in
Algorithm Exp3.M.B, we obtain the following inequality from (A.28) in the proof of Theorem
18:

Sr∑
t=Tr

∑
i∈at

(ri(t)− ci(t)) ≥ (1− γr)
∑
i∈a

Sr∑
t=Tr

(r̂i(t)− ĉi(t)) + N

γr
log K

N


− (1− γr)

(e− 2)γrK
N(1− γr)

Sr∑
t=Tr

∑
i∈[N ]

(r̂i(t)− ĉi(t)),
(A.32)

where a denotes any subset of [N ] of size K. According to the termination criterion of
Algorithm Exp3.1.M.B, for each epoch r we have ∑i∈a(Ĝi(Tr)− L̂i(Tr)) ≤ gr − N(1−cmin)

Kγr
for

all a ∈ S and therefore
∑
i∈a

Ĝi(Tr + 1) ≤ gr −
N(1− cmin)

Kγr
+ N(1− cmin)

Kγr
= gr.

Combining this equation with (A.32) yields (5.18), as stated in Lemma 5.

A.4.2.2.2 Proof of Lemma 6

Proof. Observe that

Ĝmax(T + 1)− L̂max(T + 1) ≥ Ĝmax(TR−1 + 1)− L̂max(TR−1 + 1)

≥ gR−1 + N(1− cmin)
KγR−1

(A.33)

= 4R−1c− 2R−1N(1− cmin)
K

=: cz2 − N(1− cmin)
K

z,

where z = 2R−1. Clearly, (A.33) is increasing for z > N(1 − cmin)/(2Kc). Now, if (5.19)
were false, then z > N(1−cmin)

Kc
+
√

(Ĝmax − L̂max)/c > N(1− cmin)/(2Kc) would be true, and
as a consequence,

cz2 − N(1− cmin)
K

z > c

N(1− cmin)
Kc

+

√
Ĝmax − L̂max

c

2
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− N(1− cmin)
K

(
N(1− cmin)

Kc
+
√
Ĝmax/c

)

= N(1− cmin)
K

√
Ĝmax − L̂max

c
+ Ĝmax − L̂max,

which contradicts (A.33).
To prove Proposition 3, we put together the results from Lemmas 5 and 6. Then we

obtain
τA(B)∑
t=1

∑
i∈at

(ri(t)− ci(t)) ≥

max
a∈S

τA∗ (B)∑
t=1

∑
i∈a

(r̂i(t)− ĉi(t))− 2
√

(e− 1)− (e− 2)cmin

R∑
r=0

√
grN log(N/K)

 ,
as we showed in Lemma 5 that this bounds holds for any subset of arms. Continuing the
above equations, we observe

τA(B)∑
t=1

∑
i∈at

(ri(t)− ci(t))

≥ Ĝmax − L̂max − 2N log(N/K)
R∑
r=0

2r

≥ Ĝmax − L̂max + 2N log(N/K)− 8N log(N/K)
(
N(1− cmin)

Kc
+ Ĝmax − L̂max

c
+ 1

2

)

≥ Ĝmax − L̂max − 2N log N
K
− 8((e− 1)− (e− 2)cmin)N

K

− 8
√

((e− 1)− (e− 2)cmin)N log N
K

(Ĝmax − L̂max). (A.34)

On the other hand, we have

τA(B)∑
t=1

∑
i∈at

(ri(t)− ci(t)) ≤ GExp3.1.M.B − (B −K). (A.35)

Simply combining (A.34) and (A.35) yields

GExp3.1.M.B

≥ B −K + Ĝmax − L̂max − 2N log N
K
− 8((e− 1)− (e− 2)cmin)N

K

− 8
√

((e− 1)− (e− 2)cmin)N log N
K

(Ĝmax − L̂max)
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=: f(Ĝmax − L̂max). (A.36)

and it can be shown that f(Ĝmax − L̂max) is convex. Thus, taking the expectation of (A.36)
and utilizing Jensen’s inequality gives

E[GExp3.1.M.B] ≥ E[f(Ĝmax − L̂max)] ≥ f(E[Ĝmax − L̂max]).

Further, we notice

E[Ĝmax − L̂max] = E
[
max
a∈S

∑
i∈a

Ĝi − L̂i
]

≥ max
a∈S

E
[∑
i∈a

Ĝi − L̂i
]

= max
a∈S

∑
i∈a

τA(B)∑
t=1

(ri(t)− ci(t))

≥ Gmax − (B −K).

These results, together with the elementary fact E[L̂max] ≤ B, yield the claim in Proposition
3.

A.4.2.3 Proof of Theorem 19

As mentioned in the main text, we use auxiliary Lemma 7.

A.4.2.3.1 Proof of Lemma 7

Proof. Let rt and ct denote the vector of rewards and costs observed at time t, respectively.
Similarly, let rt and ct denote all such reward and cost vectors observed up to time t. Pu(·) or
Pa∗(·) are probability measures of a random variable with respect to the uniform assignment
of costs {cmin, 1} and rewards {0, 1} to arms or conditional on a∗ being the best subset of
arms, respectively. With this notation, we have

Ea∗ [f(r, c)]− Eu[f(r, c)] =
∑
r,c
f(r, c)(Pa∗(r, c)− Pu(r, c))

≤ B

cmin

∑
(r,c):Pa∗ (r,c)≥Pu(r,c)

(Pa∗(r, c)− Pu(r, c))

≤ B

2cmin
‖Pa∗ − Pu‖1, (A.37)

where ‖Pa∗ − Pu‖1 = ∑
(r,c) |Pa∗(r, c) − Pu(r, c)|. Letting Bern(p) denote a Bernoulli distri-

bution with parameter p, we obtain, using Pinsker’s Inequality

‖Pa∗ − Pu‖2
1 ≤ 2 log 2 ·KL(Pu ‖ Pa∗), (A.38)
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the following result:

KL(Pu ‖ Pa∗) =

⌊
B

Kcmin

⌋
∑
t=1

1

(
t−1∑
τ=1

1 · cτ ≤ B − cmin

)
1

(
t∑

τ=1
1 · cτ ≤ B

)
×KL

(
Pu
(
ct, rt | ct−1, rt−1

)
‖ Pa∗

(
ct, rt | ct−1, rt−1

))

≤

⌊
B

Kcmin

⌋
∑
t=1

Pu(at 6= a∗)KL (Bern(1/2) ‖ Bern(1/2))

+ Pu(at = a∗)KL (Bern(1/2) ‖ Bern(ε+ 1/2))

=

⌊
B

Kcmin

⌋
∑
t=1

Pu(at = a∗)
(
−1

2 log2(1− 4ε2)
)

= 1 + cmin

2cmin
Eu[Na∗ ]

(
−1

2 log2(1− 4ε2)
)

(A.39)

≤ 1
cmin

Eu[Na∗ ]
(
−1

2 log2(1− 4ε2)
)
, (A.40)

where in (A.40) we used cmin ≤ 1. (A.39) uses the expected stopping time under uniform
assignment Eu [τ(B)] = b2BK−1/(cmin + 1)c to obtain⌊

B
Kcmin

⌋
∑
t=1

Pu(at = a∗) =

⌊
2B

K(1+cmin)

⌋
∑
t=1

Pu(at = a∗) +

⌊
B

Kcmin

⌋
∑

t=
⌈

2B
K(1+cmin)

⌉Pu(at = a∗)

= B/(Kcmin)
2BK−1/(1 + cmin)Eu(Na∗) ≤

1
cmin

Eu(Na∗).

Substituting (A.38) and (A.40) into (A.37) and utilizing log2(x) = log x/ log 2 for x > 0
yields the statement in the lemma.

To finalize the proof of Theorem 19, notice that there exist
(
N
K

)
possible combinations of

arms of size K. Borrowing notation from Uchiya, Nakamura, and Kudo 2010, let C([N ], K)
denote the set of all such subsets. Now, let E∗[·] denote the expected value with respect to
the uniform assignment of “good” arms. With this notation, observe

E∗[Gmax] =
(1

2 + ε
)
KE∗[τA(B)]

Ea∗ [GA] = 1
2KEa∗ [τA(B)] + εEa∗ [Na∗ ]

E∗[GA] = 1(
N
K

) ∑
a∗∈C([N ],K)

Ea∗ [GA] = 1
2KE∗[τA(B)] + ε(

N
K

) ∑
a∗∈C([N ],K)

Ea∗ [Na∗ ].
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Therefore, we have

E∗[Gmax −GA]

≥ εKE∗[τA(B)]− ε(
N
K

) ∑
a∗∈C([N ],K)

(
Eu[Na∗ ] + B

2c3/2
min

√
−Eu[Na∗ ] log(1− 4ε2)

)

≥ εKEu[τA(B)]− ε(
N
K

)(N
K

)
Eu[τA(B)]K

N
K − ε(

N
K

) ∑
a∗∈C([N ],K)

B

2c3/2
min

√
−Eu[Na∗ ] log(1− 4ε2)

= εK
(

1− K

N

)
Eu[τA(B)]− εBc

−3/2
min

2
(
N
K

)
√√√√−(N

K

)(
N − 1
K − 1

)
Eu[Na∗ ] log(1− 4ε2) (A.41)

≥ εB
(

1− K

N

)
− 2εB
c

3/2
min

√
BK

N
log(4/3). (A.42)

In (A.41), we used Jensen’s inequality and the fact that
∑

a∗∈C([N ],K)
Eu[Na∗ ] =

(
N

K

)
Eu[τA(B)]K

N
K.

In (A.42), we utilized B/K ≤ Eu[τA(B)] ≤ B/(2K) and − log(1 − 4ε2) ≤ 16 log(4/3)ε2.
Finally, to prove (5.12), we tune ε as follows:

ε = min
1

4 ,
c

3/2
min

4 log(4/3)(1−K/N)
√

N

BK

 . (A.43)

Plugging (A.43) back into (A.42) completes the proof.

A.4.2.4 Proof of Theorem 20

A.4.2.4.1 Proof of Lemma 8

Proof. Since

P
(⋂
a∈S

∑
i∈a

Ĝi + ασ̂i >
∑
i∈a

Gi

)
≥ P

 ⋂
i∈[N ]

Ĝi + ασ̂i > Gi

 = 1− P

 ⋃
i∈[N ]

Ĝi + ασ̂i ≤ Gi

 ,
it suffices to show that (using the union bound)

P

 ⋃
i∈[N ]

Ĝi + ασ̂i ≤ Gi

 <
N∑
i=1

P
(
Ĝi + ασ̂i ≤ Gi

)
< δ. (A.44)

To show this, choose an arbitrary i ∈ [N ] and define

σ̂(t+ 1) = K
√
NT +

t∑
τ=1

1
pi(τ)

√
NT

, (A.45)
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st = αK

2σ̂(t+ 1) ≤ 1. (A.46)

Using the shorthand notation σ̂i := σ̂i(T + 1), observe

P
(
Ĝi + ασ̂i ≤ Gi

)
= P

(
T∑
t=1

(ri(t)− r̂i(t)− ασ̂i/2) ≥ ασ̂i/2
)

≤ P
(
sT

T∑
t=1

(
ri(t)− r̂i(t)−

α

2pi(t)
√
NT

)
≥ α2K

4

)

= P
(

exp
[
sT

T∑
t=1

(
ri(t)− r̂i(t)−

α

2pi(t)
√
NT

)]
≥ exp

(
α2K

4

))

= exp
(
−α

2K

4

)
E
[
sT

T∑
t=1

(
ri(t)− r̂i(t)−

α

2pi(t)
√
NT

)]
.

As in Lemma 6.1 from Auer et al. 2002, define

Zt = exp
(
st

t∑
τ=1

(
ri(τ)− r̂i(τ)− α

2pi(τ)
√
NT

))
,

from which it follows for t = 2, . . . , T that

Zt = exp
(
st

(
ri(t)− r̂i(t)−

α

2pi(t)
√
NT

))
Z

st
st−1
t−1 .

Since
α

2pi(t)
√
NT
≥ αK

2pi(t)σ̂i(t+ 1) = st
pi(t)

,

we obtain for t = 2, . . . , T :

Er̂i(t)[Zt] ≤ Er̂i(t)
[
exp

[
st

(
ri(t)− r̂i(t)−

st
pi(t)

)]]
Z

st
st−1
t−1

≤ Er̂i(t)
[
1 + st (ri(t)− r̂i(t)) + s2

t (ri(t)− r̂i(t))2
]

exp
(
− s2

t

pi(t)

)
Z

st
st−1
t−1

≤
(

1 + s2
t

pi(t)

)
exp

(
− s2

t

pi(t)

)
Z

st
st−1
t−1

≤ Z
st
st−1
t−1 ≤ 1 + Zt−1.

Since Er̂i(1)[Z1] ≤ 1, it follows that Er̂i(T )[ZT ] < T . Hence, (A.44) writes

N∑
i=1

P
(
Ĝi + ασ̂i ≤ Gi

)
≤

N∑
i=1

exp
(
−KN −K

N − 1 log
(
NT

δ

))
T
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= NT

(
δ

NT

)K(N−K)
N−1

≤ NT
δ

NT
= δ. (A.47)

In (A.47), we used the fact that the minima of K(N−K)/(N−1) for 1 ≤ K < N are attained
at K = 1 and K = N − 1 and have value 1. Since δ/(NT ) < 1, the claim follows.

A.4.2.4.2 Proof of Lemma 9

Proof. From the definition of the weights in Algorithm Exp3.P.M, observe:

Wt+1

Wt

=
∑

i∈[N ]\S̃(t)

wi(t)
Wt

exp
(
ηr̂i(t) + αη

pi(t)
√
NT

)
+

∑
i∈S̃(t)

wi(t)
Wt

≤
∑

i∈[N ]\S̃(t)

wi(t)
Wt

[
1 + ηr̂i(t) + αη

pi(t)
√
NT

+ 2η2r̂i(t)2 + 2α2η2

pi(t)2NT

]
+

∑
i∈S̃(t)

wi(t)
Wt

(A.48)

= 1 + W ′
t

Wt

∑
i∈[N ]\S̃(t)

pi(t)
K
− γ

k

1− γ

[
ηr̂i(t) + αη

pi(t)
√
NT

+ 2η2r̂i(t)2 + 2α2η2

pi(t)2NT

]
(A.49)

≤ 1 + η

K(1− γ)
∑

i∈[N ]\S̃(t)

pi(t)r̂i(t) + αη

K(1− γ)

√
N

T

+ 2η2

K(1− γ)
∑
i∈[N ]

pi(t)r̂i(t)2 + 2α2η2

NTK(1− γ)
∑
i∈[N ]

1
pi(t)

= 1 + η

K(1− γ)
∑
i∈at

ri(t) + αη

K(1− γ)

√
N

T
+ 2η2

K(1− γ)
∑
i∈[N ]

r̂i(t) + 2α2η

K(1− γ)
1
T
,

(A.50)

where we used the properties

r̂i(t) ≤
1

pi(t)
≤ N

γK
,∑

i∈[N ]
pi(t)r̂i(t) =

∑
i∈[N ]

ri(t),
∑
i∈[N ]

pi(t)r̂i(t)2 ≤
∑
i∈[N ]

r̂i(t)

in (A.50) and the inequality ex ≤ 1 + x + x2 valid for x ≤ 1 in (A.48). Summing over
t = 1, . . . , T and utilizing the telescoping property of the logarithm yields

log
(
WT+1

W1

)
≤ η

K(1− γ)GExp3.P.M + 2η2

K(1− γ)

T∑
t=1

∑
i∈[N ]

x̂i(t) + αη
√
NT

K(1− γ) + 2α2η

K(1− γ)
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≤ η

K(1− γ)GExp3.P.M + 2η2

K(1− γ)
N

K
Û∗ + αη

√
NT

K(1− γ) + 2α2η

K(1− γ) . (A.51)

On the other hand, we have

log(W1) = log
N exp

αγK2

3

√
T

N

 = log(N) + αKη
√
NT, (A.52)

log(WT+1) ≥ log
(∑
i∈a∗

wj(T + 1)
)

≥ log
K (∏

i∈a∗
wj(T + 1)

)1/K


= log(K) + 1
K

∑
i∈a∗

log(wi(T + 1))

= log(K) + 1
K

∑
i∈a∗

αγK2

3

√
T

N
+

T∑
t=1

(
ηx̂i(t) + αη

pi(t)
√
NT

)
= log(K) + 1

K

∑
i∈a∗

(
ηĜi + αησ̂i

)
, (A.53)

where (A.52) and (A.53) follow from the definitions of weights in Algorithm Exp3.P.M and
(A.45), respectively.

Finally, to show the claim in Theorem 20, simply combine the results from Lemma 8 and
Lemma 9. Combining (A.51), (A.52), and (A.53) yields

GExp3.P.M ≥
(

1− 5γ
3

)
Û∗ − 2α2 − α(1 +K2)

√
NT − 3N

γ
log(N/K).

From Lemma (8), it follows that Û∗ > Gmax with probability at least 1− δ. Together with
the simple fact Gmax ≤ KT , we have that

R = Gmax −GExp3.P.M ≤
5
3γKT + 2α2 + α(1 +K2)

√
NT + 3N

γ
log

(
N

K

)
.

Choosing

γ = min
3

5 ,
3√
5

√
N log(N/K)

KT

 , (A.54)

α = 2
√
N −K
N − 1 log

(
NT

δ

)
(A.55)

yields (5.14), which is the bound in Theorem 20. If either T ≥ N log(N/K)
5K (to make γ ≤ 3/5

in (A.54)) or δ ≥ NT exp
(
−NT (N−1)

N−K

)
(to make α < 2

√
NT in (A.55)) is not fulfilled, then

the bound holds trivially.
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A.4.2.5 Proof of Theorem 21

A.4.2.5.1 Proof of Lemma 10

Proof. As in the proof for Lemma 8, it suffices to show that

P

 ⋃
i∈[N ]

Ĝi − L̂i + ασ̂i ≤ Gi − Li

 <
N∑
i=1

P
(
Ĝi − L̂i + ασ̂i ≤ Gi − Li

)
< δ. (A.56)

Let σ̂(t+ 1) and st be defined as

σ̂(t+ 1) = K

√
NB

Kcmin
+

t∑
τ=1

√
Kcmin

pi(τ)
√
NB

, (A.57)

st = αK

12σ̂(t+ 1) ≤ 1. (A.58)

Now observe

P
(
Ĝi − L̂i + ασ̂i ≤ Gi − Li

)
= P

τa(B)∑
t=1

(ri(t)− ci(t)− r̂i(t) + ĉi(t)− ασ̂i/2) ≥ ασ̂i/2


≤ P

sτa(B)

τa(B)∑
t=1

(
ri(t)− ci(t)− r̂i(t) + ĉi(t)−

α
√
Kcmin

2pi(t)
√
NB

)
≥ α2K

24


= exp

(
−α

2K

24

)
E

sτa(B)

τa(B)∑
t=1

(
ri(t)− ci(t)− r̂i(t) + ĉi(t)−

α
√
Kcmin

2pi(t)
√
NB

) .
Now define Zt as follows:

Zt = exp
(
st

t∑
τ=1

(
ri(τ)− ci(τ)− r̂i(τ) + ĉi(τ)− α

√
Kcmin

2pi(τ)
√
NB

))

from which it follows that

Zt = exp
(
st

(
ri(t)− ci(t)− r̂i(t) + ĉi(t)−

α
√
Kcmin

2pi(t)
√
NB

))
Z

st
st−1
t−1 , t = 2, . . . , τS(B).

Since
α
√
Kcmin

2pi(t)
√
NB

≥ 4αK
8pi(t)σ̂i(t+ 1) = 4st

pi(t)
,

we obtain for t = 2, . . . , τS(B):

Et[Zt] ≤ Et
[
exp

[
st

(
ri(t)− r̂i(t)−

4st
pi(t)

)]]
Z

st
st−1
t−1
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≤ Et
[
1 + st (ri(t)− ci(t)− r̂i(t) + ĉi(t)) + s2

t (ri(t)− ci(t)− r̂i(t) + ĉi(t))2
]

× exp
(
− 4s2

t

pi(t)

)
Z

st
st−1
t−1 (A.59)

≤
(

1 + 4s2
t

pi(t)

)
exp

(
− 4s2

t

pi(t)

)
Z

st
st−1
t−1

≤ Z
st
st−1
t−1 ≤ 1 + Zt−1 (A.60)

In (A.59), we used the following operation:

Et
[
((ri(t)− r̂i(t))− (ci(t)− ĉi(t))2

]
= Et

[
(ri(t)− r̂i(t))2

]
+ Et

[
(ci(t)− ĉi(t))2

]
− 2Et [(ri(t)− r̂i(t))(ci(t)− ĉi(t))]

≤ Et[r̂i(t)2] + Et[ĉi(t)2]− 2Et[ri(t)ci(t)− ri(t)ĉi(t)− ci(t)r̂i(t) + r̂i(t)ĉi(t)]

≤ 2
pi(t)

− 2
[
ri(t)ci(t)− 2ri(t)ci(t) + ri(t)ci(t)

pi(t)

]

≤ 2
pi(t)

+ 2 1
pi(t)

= 4
pi(t)

.

Since Et[Z1] ≤ 1, it follows that Eτa(B)[Zτa(B)] < τS(B). Hence, (A.56) writes

N∑
i=1

P
(
Ĝi − L̂i + ασ̂i ≤ Gi − Li

)

≤
N∑
i=1

exp
(
−KN −K

N − 1 log
(

NB

Kcminδ

))
τa(B)

= Nτa(B)
(
Kcminδ

NB

)K(N−K)
N−1

≤ Nτa(B)Kcminδ

NB
≤ δ (A.61)

because τa(B)
B/(Kcmin) ≤ 1. This completes the proof.

A.4.2.5.2 Proof of Lemma 11

Proof. Using the weight update rule for Algorithm Exp3.P.M.B, we obtain (using the same
manipulations as in the proof for Lemma 9)

Wt+1

Wt

= 1 + η

K(1− γ)

T∑
t=1

∑
i∈at

(ri(t)− ci(t))

+ αηT

K(1− γ)

√
NKcmin

B
+ 2α2ηKcminT

BK(1− γ)
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+ 2η2(1− cmin)
K(1− γ)

∑
i∈[N ]

T∑
t=1

(r̂i(t)− ĉi(t)), (A.62)

where T = max (τa∗(B), τa(B)). On the other hand, observe that

logW1 = logN + αKη

√
BN

Kcmin
(A.63)

and

logWT+1 ≥ logK + 1
K

∑
i∈a∗

logwj(T + 1) (A.64)

≥ logK + 1
K

∑
i∈a∗

(
αηK

√
BN

Kcmin
+

T∑
t=1

(
η(r̂i(t)− ĉi(t)) + αη

√
Kcmin

pi(t)
√
NB

))

= logK + 1
K

∑
i∈a∗

(
αησ̂i(T + 1) + η(Ĝi(T + 1)− L̂i(T + 1))

)
≥ logK + 1

K

∑
i∈a∗

(
αησ̂i(τa∗(B) + 1) + η(Ĝi(τa∗(B) + 1)− L̂i(τa∗(B) + 1))

)
= logK + η

K
Û∗. (A.65)

Using the identity ex > 1 +x, the telescoping property of the logarithm in equations (A.62),
and (A.63) and (A.65) yield

log K
N

+ η

K
Û∗ − αKη

√
BN

Kcmin

≤ η

K(1− γ)

T∑
t=1

∑
i∈at

(ri(t)− ci(t))

+ αηT

K(1− γ)

√
NKcmin

B
+ 2α2ηKcminT

BK(1− γ) + 2η2(1− cmin)
K(1− γ)

∑
i∈[N ]

T∑
t=1

(r̂i(t)− ĉi(t)). (A.66)

From Lemma 10, we have that Û∗ > Gmax − B with probability at least 1 − δ. Now, ma-
nipulating the right hand side of (A.66) and noticing that algorithm Exp3.P.M.B terminates
after τA(B) rounds yields

RHS ≤ η

K(1− γ) (GExp3.P.M.B − (B −Kcmax))

+ αη

K(1− γ)

√
NB

Kcmin
+ 2α2η

K(1− γ) + 2η2(1− cmin)
K(1− γ)

B/(Kcmin)∑
t=1

(r̂i(t)− ĉi(t)), (A.67)
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where we used the fact that T = max (τa∗(B), τa(B)) ≤ B/(Kcmin). Finally, putting LHS
and RHS together and utilizing ∑B/(Kcmin)

t=1 (r̂i(t)− ĉi(t)) ≤ (N/K)Û∗ gives

K(1− γ)
η

log K
N

+ (1− γ)Û∗ − αK2(1− γ)
√

BN

Kcmin

≤ GExp3.P.M.B −B +K + α

√
BN

Kcmin
+ 2η(1− cmin)N

K
Û∗ + 2α2,

from which (5.20) follows.
Finally, putting both Lemmas together, we get from Lemma 10 that Û∗ > Gmax with

probability at least 1− δ. Also, note that Gmax = B/cmin. Combining with Lemma 11 and
choosing

γ = min
((

1 + 2
3

1− cmin

cmin

)−1
, (A.68)

(
3N log(N/K)

(Gmax −B) (1 + 2(1− cmin)/(3cmin)) ,
)1/2

 ,
α = 2

√
6
√
N −K
N − 1 log

(
NB

Kcminδ

)
(A.69)

yields the desired bound (5.16). If either B ≥ 3N log(N/K) (1 + 2/3 + cmin/(1− cmin))
(to make γ ≤ 3/5 in (A.68)) or δ ≥ NB/(Kcmin) exp

(
− 6(N−1)NB

(N−K)Kcmin

)
(in order to make

α < 12
√
NT/(Kcmin) in (A.69)) is not fulfilled, then the bound holds trivially.
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Appendix B

Supplementary Material

B.1 Supplementary Material for Chapter 8

B.1.1 Summary Statistics
Figures B.1-B.4 illustrate the distribution of the number of DR events received among users
with completed Phase 1, as well as the total number of DR events broken out by hour of the
day, day of the week, and month of the year.
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Figure B.1: Distribution of Number of Phase 1 DR Events Across Users with Completed
Phase 1

B.1.2 Balance Checks
Table B.1 provides the balance metrics introduced in Section 8.3.4.
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Figure B.2: Distribution of DR Events by Hour of the Day Across Users with Completed
Phase 1

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Day of the Week

0

5000

10000

15000

20000

N
um

b
er

of
U

se
rs

Total Number of DR Dispatches in Phase 1 by Day of the Week

Figure B.3: Distribution of DR Events by Day of the Week Across Users with Completed
Phase 1
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Figure B.4: Distribution of DR Events by Month of the Year Across Users with Completed
Phase 1
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Balance Metrics for Control and Treatment Group
Cohen’s D Hellinger Dist. Diff. Mean

kWh, HoD = 13 0.023 0.002 0.022
kWh, HoD = 14 0.026 0.002 0.026
kWh, HoD = 15 0.017 0.002 0.017
kWh, HoD = 16 0.006 0.002 0.006
kWh, HoD = 17 0.002 0.002 0.002
kWh, HoD = 18 0.002 0.002 −0.007
kWh, HoD = 19 0.002 0.002 −0.010
kWh, HoD = 20 0.002 0.002 −0.008

air temp, HoD = 13 0.013 0.005 0.032
air temp, HoD = 14 0.013 0.005 0.032
air temp, HoD = 15 0.015 0.005 0.038
air temp, HoD = 16 0.015 0.005 0.039
air temp, HoD = 17 0.016 0.004 0.041
air temp, HoD = 18 0.016 0.003 0.041
air temp, HoD = 19 0.018 0.003 0.043
air temp, HoD = 20 0.018 0.002 0.042

# historical obs. (hours) 4.632 0.037 303.7

Table B.1: Balance Checks for Users in Control and Treatment Group

B.1.3 Fixed Effects Regression Tables
Tables B.2-B.4 provide the results of the Fixed Effects Regressions presented in Section 8.6.
The point estimates of interest are printed in boldface and are accompanied by the standard
errors as well as their 95% confidence intervals. The t-value of the regression gives rise to the
p-value, where we use (∗), (∗∗), (∗∗∗) to denote statistical significance at the 90%, 95%, 99%
confidence level, respectively.

B.1.4 Comparison of Estimation Methods
Figure 8.23 visually compares the ATEs broken out by incentive level, and it can be seen that
both methods produce similar estimates. Figure B.5 does the same for month of the year.
Agreeing with intuition, the reductions are notably larger in summer months compared to
winter periods. Conditional on the automation status, Table B.4 states that the reductions
are −0.331 and −0.103 kWh for automated and non-automated users, respectively, compared
to −0.332 and −0.121 kWh calculated by the non-experimental case. These values are close
to each other. Lastly, no significant difference in the magnitude of reductions can be found
between encouraged and non-encouraged users.
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Effect of DR by Incentive Level on Electricity Consumption

Parameter Estimate
(Std. Err.) t-Value 95% Conf. Int. p-value

is treatit
-0.006
(0.003) -2.100 [-0.013, 0] 0.047∗∗

BLit
0.879

(0.010) 88.89 [0.859, 0.900] <0.001∗∗∗

Tit
0.0205
(0.002) 10.79 [0.017, 0.024] <0.001∗∗∗

1(is DRit,
rit = 0.05)

-0.120
(0.014) -8.532 [-0.148, -0.091] <0.001∗∗∗

1(is DRit,
rit = 0.25)

-0.121
(0.018) -6.910 [-0.157, -0.085] <0.001∗∗∗

1(is DRit,
rit = 0.50)

-0.115
(0.016) -7.369 [-0.147, -0.083] <0.001∗∗∗

1(is DRit,
rit = 1.00)

-0.124
(0.020) -6.219 [-0.166, -0.083] <0.001∗∗∗

1(is DRit,
rit = 3.00)

-0.136
(0.010) -12.95 [-0.157, -0.114] <0.001∗∗∗

Table B.2: Fixed Effect Regression Results by Incentive Level
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Figure B.5: CATEs by Month of Year with Confidence Intervals, Comparison Fixed Effects
Estimators and Non-Experimental Estimators
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Effect of DR by Month of Year on Electricity Consumption

Parameter Estimate
(Std. Err.) t-Value 95% Conf. Int. p-value

is treatit
-0.007
(0.003) -1.962 [-0.014, 0.001] 0.078∗

BLit
0.879

(0.016) 55.52 [0.844, 0.915] <0.001∗∗∗

Tit
0.021

(0.006) 3.326 [0.007, 0.034] 0.008∗∗∗

1(is DRit,
MoYit = 1)

-0.041
(0.010) -4.298 [-0.063, -0.020] 0.002∗∗∗

1(is DRit,
MoYit = 2)

-0.022
(0.009) -2.571 [-0.041, -0.003] 0.028∗∗

1(is DRit,
MoYit = 3)

-0.076
(0.004) -18.62 [-0.085, -0.067] 0.002∗∗∗

1(is DRit,
MoYit = 4)

-0.062
(0.004) -15.14 [-0.071, -0.053] <0.001∗∗∗

1(is DRit,
MoYit = 5)

-0.094
(0.005) -20.07 [-0.104, -0.083] <0.001∗∗∗

1(is DRit,
MoYit = 6)

-0.155
(0.008) -20.25 [-0.172, -0.138] <0.001∗∗∗

1(is DRit,
MoYit = 7)

-0.227
(0.007) -32.68 [-0.242, -0.211] <0.001∗∗∗

1(is DRit,
MoYit = 8)

-0.159
(0.008) -19.39 [-0.177, -0.141] <0.001∗∗∗

1(is DRit,
MoYit = 9)

-0.179
(0.014) -9.071 [-0.218, -0.142] <0.001∗∗∗

1(is DRit,
MoYit = 11)

-0.029
(0.009) -3.055 [-0.050, -0.008] 0.012∗∗

1(is DRit,
MoYit = 12)

-0.022
(0.010) -2.172 [-0.045, 0.001] 0.055∗

Table B.3: Fixed Effect Regression Results by Month of Year
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Effect of Home Automation on Electricity Consumption

Parameter Estimate
(Std. Err.) t-Value 95% Conf. Int. p-value

is treatit
-0.006
(0.003) -2.101 [-0.013, 0] 0.047∗∗

BLit
0.879

(0.010) 88.94 [0.859, 0.900] <0.001∗∗∗

Tit
0.021

(0.002) 10.79 [0.017, 0.024] <0.001∗∗∗

1(is DRit,
is autoit)

-0.331
(0.042) -7.800 [-0.418, -0.243] <0.001∗∗∗

1(is DRit,
¬is autoit)

-0.103
(0.014) -7.310 [-0.132, -0.074] <0.001∗∗∗

Table B.4: Fixed Effect Regression Results by Automation Status

Effect of Automation Uptake Incentive on Electricity Consumption

Parameter Estimate
(Std. Err.) t-Value 95% Conf. Int. p-value

is encit
-0.005
(0.003) -1.422 [-0.012, 0.002] 0.168

is nonencit
-0.008
(0.003) -2.485 [-0.015, -0.001] 0.021∗∗

BLit
0.9366
(0.024) 38.38 [0.886, 0.987] <0.001∗∗∗

Tit
0.0206
(0.002) 10.794 [0.017, 0.024] <0.001∗∗∗

1(is DRit,
is encit)

-0.121
(0.016) -7.703 [-0.153, -0.088] <0.001∗∗∗

1(is DRit,
is nonencit)

-0.125
(0.015) -8.304 [-0.156, -0.094] <0.001∗∗∗

Table B.5: Fixed Effect Regression Results by Automation Uptake Encouragement
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B.1.5 Correlation of Temperature and ITE
As mentioned in the previous subsection, larger reductions are estimated in warm summer
months. To test the hypothesis whether or not there exists such a correlation, Figure B.6
scatter plots estimated ITEs as a function of the average ambient air temperature observed
during the relevant DR events. We can notice a notable positive correlation of ambient air
temperature and the magnitude of reductions. Indeed, a subsequent hypothesis test with
the null being a zero slope is rejected with a p-value of less than 1e− 9.
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Figure B.6: Correlation between Average Ambient Air Temperature and ITEs.

To support this notion, we marginalize ITEs for each ZIP code to obtain the geographic
distribution of CATEs by location, see Figure B.7, and it is visually striking that users in
coastal areas in California show smaller reductions than users in the Central Valley, where
the climate is hotter.
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CATT [kWh] by Location, RF
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Figure B.7: Correlation between Average Ambient Air Temperature and CATEs.
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Pérez-Lombard, Luis, José Ortiz, and Christine Pout (2008). “A Review on Buildings Energy
Consumption Information”. In: Energy and Buildings 40, pp. 394–398.

Pischke, J.-S. and J. D. Angrist (2009). Mostly Harmless Econometrics. 1st. Princeton Uni-
versity Press.

Public Utilities Commission of the State of California: Resolution E-4728. Approval with
Modifications to the Joint Utility Proposal for a Demand Response Auction Mechanism
Pilot (2015).

Public Utilities Commission of the State of California. Resolution E-4728. Joint Utility Pro-
posal for a DRAM Pilot.

Rabiner, Lawrence R. (1989). “A Tutorial on Hidden Markov Models and Selected Applica-
tions in Speech Recognition”. In: Proceedings of the IEEE 77.2.

Radecki, Peter and Brandon Hencey (2012). “Online Building Thermal Parameter Estima-
tion via Unscented Kalman Filtering”. In: American Control Conference.

— (2013). “Online Thermal Estimation, Control, and Self-Excitation of Buildings”. In: 52nd
Conference on Decision and Control.

https://www.pjm.com/~/media/markets-ops/dsr/pjm-analysis-of-dr-baseline-methods-full-report.ashx
https://www.pjm.com/~/media/markets-ops/dsr/pjm-analysis-of-dr-baseline-methods-full-report.ashx
https://www.pjm.com/~/media/markets-ops/dsr/pjm-analysis-of-dr-baseline-methods-full-report.ashx
https://pvpmc.sandia.gov/


BIBLIOGRAPHY 201

Radlinski, F., R. Kleinberg, and T. Joachims (2008). “Learning Diverse Rankings with Multi-
Armed Bandits”. In: Proceedings of the 25th International Conference on Machine Learn-
ing, pp. 784–791.

Rockafellar, R. Tyrrell and Stanislav Uryasev (2002). “Conditional Value-at-Risk for General
Loss Distributions”. In: Journal of Banking and Finance 26.7, pp. 1443–1471.

Rosenbaum, P. R. and D. B. Rubin (1983). “The Central Role of the Propensity Score in
Observational Studies for Causal Effects”. In: Biometrika 70.1, pp. 41–55.

Rubin, D. B. (1974). “Estimating Causal Effects of Treatments in Randomized and Non-
Randomized Studies”. In: Journal of Educational Psychology 66.5, pp. 688–701.

Ruppert, David, M.P. Wand, and R.J. Carroll (2003). Semiparametric Regression. Cambridge
University Press.

Rusmevichientong, P. and D. P. Williamson (2005). “An Adaptive Algorithm for Selecting
Profitable Keywords for Search-Based Advertising Services”. In: Proceedings of the 7th
ACM Conference on Electronic Commerce, pp. 260–269.

Samadi, P. et al. (2012). “Advanced Demand Side Management for the Future Smart Grid
Using Mechanism Design”. In: IEEE Transactions on Smart Grid 3.3, pp. 1170–1180.

Seldin, Y. et al. (2014). “Prediction with Limited Advice and Multiarmed Bandits with Paid
Observations”. In: International Conference on Machine Learning, pp. 280–287.

Senjyu, T. et al. (2002). “One-Hour-Ahead Load Forecasting Using Neural Network”. In:
IEEE Transactions on Power Systems 17.1, pp. 113–118.

Sevlian, Raffi Avo and Ram Rajagopal (2014). “A Model For The Effect of Aggregation on
Short Term Load Forecasting”. In: IEEE Transactions on Power Systems.

Sezgen, Osman, C. A. Goldman, and P. Krishnarao (2007). “Option Value of Electricity
Demand Response”. In: Energy 32.2.
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