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True random number generation using the
spin crossover in LaCoO3

Kyung Seok Woo 1,2,3, Alan Zhang1, Allison Arabelo4, Timothy D. Brown 1,
Minseong Park 1,2, A. Alec Talin 1, Elliot J. Fuller 1, Ravindra Singh Bisht5,
Xiaofeng Qian 4, Raymundo Arroyave4, Shriram Ramanathan5, Luke Thomas6,
R. Stanley Williams 1,2 & Suhas Kumar 1

While digital computers rely on software-generated pseudo-random number
generators, hardware-based true random number generators (TRNGs), which
employ the natural physics of the underlying hardware, provide true sto-
chasticity, and power and area efficiency. Research into TRNGs has extensively
relied on the unpredictability in phase transitions, but such phase transitions
are difficult to control given their often abrupt and narrow parameter ranges
(e.g., occurring in a small temperature window). Here we demonstrate a TRNG
based on self-oscillations in LaCoO3 that is electrically biased within its spin
crossover regime. The LaCoO3 TRNG passes all standard tests of true sto-
chasticity and uses only half the number of components compared to prior
TRNGs. Assisted by phase field modeling, we show how spin crossovers are
fundamentally better in producing true stochasticity compared to traditional
phase transitions. As a validation, by probabilistically solving theNP-hardmax-
cut problem in a memristor crossbar array using our TRNG as a source of the
required stochasticity, we demonstrate solution quality exceeding that using
software-generated randomness.

The increased prevalence of the Internet of Things (IoT) has led to
large amounts of data being processed and exchanged1,2. This para-
digm has necessitated both high-quality security and high-volume
probabilistic computing. Both necessities require random number
generation, which presently relies on pseudo-random number gen-
erators (PRNG) based on deterministic software algorithms being run
on digital processors. This approach, due to its determinism, is vul-
nerable and is expensive in termsof the digital hardware needed to run
the algorithms (such as the number of transistors). Put differently,
highly precise digital hardware is combined with deterministic
instructions to produce pseudo-stochastic information, which is less
effective use of resources.

True random number generators (TRNGs), on the other hand,
leverage unpredictable physical processes to generate truly random

numbers. TRNGs enable both the trustworthiness of IoT ecosystems
and high-speed probabilistic computing on large volumes of data.
Research into TRNGs has attracted increased attention, with several
switching mechanisms being employed for this purpose, such as Mott
transitions3, magnetic switching4, etc. Memristors or memory resis-
tors, constructed using such phase transition materials, due to their
multipledegrees of freedomduring thephase transitions (for instance,
via coexisting phases), produce stochastic behavior and have been
investigated as candidates for security applications3,5–7. Such physics-
drivenTRNGs are also inspired by the humanbrain’s ability to generate
stochasticity and chaos to accelerate probabilistic solutions to large
data classification problems8–11.

Here we demonstrate a TRNG using an electrical compo-
nent (device) composed of LaCoO3 (LCO) that undergoes a crossover
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in the electron spin state, which results in a gradual insulator-to-metal
transition (IMT). When electrically biased within the nonlinear current
transport during the spin crossover, the component exhibits self-
oscillations with a finite degree of stochasticity. This stochasticity is
employed as an entropy source to generate random number sequen-
ces. We investigated the underlying causes of stochasticity through
electrical measurements, analytical modeling, and phase field model-
ing. Our comprehensive approach revealed that the stochastic beha-
vior, unlike in other phase transitions materials12,13, is directly
influenced by thermal fluctuations, which in turn introduce variations
in material properties such as electrical conductivity. Our TRNG
requires only a single circuit component, besides the LCO memristor,
for binary bit generation and achieves the highest bit generation rate
of 50 kb s−1 among reported volatile-memristor-based TRNGs3,5,6,14.
Furthermore, we demonstrate a nonvolatile-memristor-based Hop-
field network using the LCO-based TRNG as a source of random fluc-
tuations with a decaying noise profile to achieve simulated annealing.
We show that such perturbations effectively escape local minima and
find a global minimum for solving non-deterministic polynomial-time
(NP)-hard problems in Hopfield networks. Our approach of using
TRNGs as a true random number source outperforms software-
equivalents that use a PRNG.

Results
Static behavior of LaCoO3 memristor
Thin films of LCO were grown using pulsed laser deposition, with a
thickness of 70 nm. Following film growth, we deposited two litho-
graphically defined electrodes composed of 5 nm of Cr and 50nm of
Pt, with a component length of 5 µm (Fig. 1a). The quasistatic current-
voltage (I-V) behavior of this component measured using a current

sweep exhibits a region of current-controlled negative differential
resistance (NDR), where the voltage reduces as current is increased
(Fig. 1b).NDR is a signatureof potential instability in an electro-thermal
memristor, which can lead to dynamics such as oscillations12,15,16. In-situ
x-ray absorption spectra obtained at different temperatures in the
oxygen K-edge (Fig. 1c) confirm the known signatures of the spin
crossover in our LCO film17. The O K-edge spectra around 530 eV are
related to Co 3d bands, and the peak at 529.5 eV shifted to a lower
energy of 528.6 eV with higher temperature due to the spin-state
transition from low (t62g) to high (t42ge

2
g) spin state in Co3+ ions. The

gradual change in resistivity with temperature is also a signature of the
spin-state transition (Fig. 1d)18,19. The spin crossover process has amore
gradual change in the resistance compared to an abrupt change in a
first-order phase transition (e.g., in Mott insulators13). NDR requires
two conditions – first, increase in temperature upon increasing current
(for thermally driven NDR); second, a minimum magnitude of non-
linearity in the resistance decreasing as a function of temperature. Via
in-situ thermal mapping at different current levels, we observed a
relatively gradual temperature increasewithin the NDR region (Fig. 1e)
in the order of ~20K, satisfying the first criterion for NDR. Further, the
three orders of magnitude decrease in resistance with increasing
temperature (Fig. 1d), though gradual, provided sufficient nonlinearity
to satisfy the second criterion required for NDR. Thus, the spin
crossover is fundamentally responsible for the nature of the NDR and
the dynamics associated with the NDR.

Stochastic oscillations in LCO
When electrically biased in a region of NDR (using a current source),
the LCO components exhibited self-sustained electrical oscillations in
the form of repeated spikes (Fig. 2a and Supplementary Fig. 1). The
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sponds to 100 µm.
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load resistance was set to 2 kΩ. Such oscillations are attributed to the
instabilities within a region of NDR and an additional degree of free-
dom in the form of an intrinsic capacitance (Fig. 1a)16. Since the oscil-
lating time period (~0.5 µs) is roughly equal to the product of the load
resistance (2 kΩ) and the internal capacitor, we estimate the internal
capacitor to be a maximum of 0.3 nF. By comparing 20 different time
series of oscillations (by aligning them to the first spike), we observed
stochastic oscillating behavior, characterized by the absence of an
overlapping oscillatory pattern (Fig. 2a, b). To statistically quantify the
variations, we measured the time period of 800 oscillations from a
single LCOcomponent, revealing a substantial variationof roughly 25%
(from the central time period) within a given component (Fig. 2c). We
repeated this measurement on four different component, and all
measured component exhibited similar stochastic variations, ensuring
that the observed phenomena are not limited to a single component.

Using the stochastic oscillatory behavior of the LCO component,
we constructed a prototype TRNG circuit by adding a negative-edge-
triggered toggle (T) flip-flop (SN74LS73AN, Texas Instruments) (Fig. 2d
and Supplementary Fig. 2). The working principle of our LCO-based
TRNG is illustrated in Fig. 2e. The oscillator’s output is directly applied
as the clock signal to the flip-flop, while a periodic square-wave clock
signal is applied to its toggle input.When T = 1 (high signal), the output
flips (between 0 and 1) upon the negative edge of the clock signal. Due
to the period stochasticity in the LCO oscillations, the output flipping
and thus bit generation is random at every clock cycle. The experi-
mental output ofour TRNGpassed theNIST randomness test20 without
any post-processing (Fig. 2f, Supplementary Table 1 and Supplemen-
tary Note 1). Notably, this TRNG outperforms previously reported
volatile-memristor-based TRNGs with regard to bit generation rate,
circuit simplicity, endurance, and energy consumption, as summarized
in Table 1. Our work demonstrates the highest reported bit generation
rate of 50 kb s−1, which can potentially be enhanced to over 100 kb s−1

(Supplementary Fig. 3), while only one flip-flop is required to build the
TRNG. The LCO component was employed as the clock signal, which is
energy efficient compared to other TRNGs that required an external
clock generator. Kim et al. similarly leveraged the self-clocking ability

of a NbO2 memristor3. Their approach, however, required an amplifier
to increase the inherently low-current oscillating signal. Furthermore,
our TRNG exhibits good endurance in that the LCO component
oscillated over 12,000 seconds without any degradation, proving its
capability to generate at least 600M bits (Supplementary Fig. 4). The
overall energy consumption of a TRNG primarily depends on the
number of active components, with each component consuming mil-
liwatts of power. The self-oscillation-based TRNGs offer energy
advantages by eliminating the need for a clock generator (i.e., by
reducing the number of peripheral components). A low-power clock
generator (CDCI6214, Texas Instruments) consumes ~150mW. More-
over, since the generated bit is based on the number of oscillations (bit
flipping), the randomness of our TRNG can be tuned by adjusting the
oscillating bias or T input pulse time (Supplementary Figs. 1 and 3).
This tunable TRNG may present an efficient alternative to the time-
consuming and energy-intensive process of rejection sampling used
with PRNGs.

Memristors are increasingly employed as key components in
TRNGs due to their inherent variabilities. In the early stages of
memristor-based TRNG development, stochastic characteristics of
nonvolatile memristors, such as current fluctuation, switching voltage
variation, random telegraph noise, and delay/relaxation times were
exploited14,21–23. However, these TRNG approaches face practical chal-
lenges, including circuit complexity, requirement of the RESET pro-
cess, and reliance on post-processing steps, creating challenges for on-
chip integration. To address these issues, therehasbeen a shift in focus
towards volatile-memristor-based TRNGs with self-OFF switching
behavior, which can reduce energy consumption. Therefore, we
compare the performance of volatile-memristor-based TRNGs that
passed the NIST randomness test without post-processing (Table 1).
The first volatile-memristor-based TRNG, which employed the sto-
chastic delay time of an Ag:SiO2-based diffusive memristor5, success-
fully passed the NIST randomness tests without any post-processing,
though it required a complex circuit with many components and
produced a low bit generation rate. The present work, which expands
the capabilities of volatile memristors by using a spin crossover
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material, expands the potential for highly reliable TRNGs that are
compatible with post-digital hardware.

Why is LCO better suited?
Our measurements suggest that crossover transitions could be inher-
ently more effective than first-order phase transitions for building
stochastic systems. Figure 1d revealed that the electrically-driven spin-
state crossover in LCO leads to a more gradual transition relative to
other materials, resulting in high endurance. Conversely, volatile
switches driven by Mott transitions (e.g., in VO2 and NbO2) have a
precipitous temperature-driven IMT, which can cause runaway
switching events. Such abrupt variations lead to large local current
densities and temperatures24, which may result in material damage25.

To understand the fundamental origin of the stochasticity in our
components, we performed phase field modeling of LCO, based on
first-principles calculations usingmaterial propertiesmeasured on our
LCO films (Supplementary Note 2). The resulting free energy land-
scape (Fig. 3a) is strikingly different from a first-order phase transition.
Firstly, either of the two spin states is likely to exist in a wide range of
temperatures from 300K to nearly 500K. In most first-order phase
transitions, a change from one phase to another occurs in a narrow
window of temperature (or another control variable). Secondly, the
spin gap between the two spin states at all temperatures up to 500K is
on the order of ambient thermal noise ~30meV26 (Fig. 3b). Such a low
barrier essentially leads to a highly dynamical equilibrium between the
two spin states. Though the system may obey global statistical dis-
tributions, there will be local volumes of LCO fluctuating between spin
states due to ambient thermal fluctuations, which will likely affect
other material properties as well. This possibility is confirmed in our
calculation of the global high spin fraction (Fig. 3c) at various assumed
levels of thermal fluctuations Δ (with Δ= kBT representing ambient
conditions, where kB is the Boltzmann constant). These global frac-
tions were calculated as an average of many simulations of many
instances with varying initial conditions and randomized fluctuations.
For various levels of fluctuations, the high spin fraction is roughly 0.5
at room temperature (300K). The various individual instances for two
different cases are illustrated in Fig. 3d (for Δ= kBT=10 and Δ= kBT).
For the casewith lower assumed thermalfluctuationmagnitude, nearly
all the instances resulted in roughly the same high spin fraction at all
temperatures. However, for ambient conditions, while the average of
the high spin fraction was roughly 0.5 at room temperature (300K),
the individual instances exhibited a large variance. As expected, at low
temperatures (less than 100K), the system converged to either of the
two spin states, trapped by the absence of appreciable thermal fluc-
tuations. At high temperatures (above 600K), the system tended
towards the global average, driven by increased thermal fluctuations.
At 300–500K, there was a large variation, indicating not only coex-
isting spin fractions but also a high degree of sensitivity to thermal
fluctuations. This large variation is the key factor that contributes to
the stochastic oscillations even at room temperature. Furthermore,
there is no sudden change in high spin fraction at any specific tem-
perature, unlike first-order phase transition materials, which have

abrupt transitions causing structural damages during the switching27.
In addition, Mott insulators that are routinely used to build oscillators
undergo a transition at either very high temperatures (above 1000K in
the case of NbO2

12,13) or very low temperatures (about 340K in VO2
12,13).

Such transition temperatures are below the standard operating
ambient temperature for commercial electronics (about 350K) or very
high (potentially damaging nearby materials if switching temperature
is above 1000K). LCO, on the other hand, has a transition in a broad
range from room temperature up to about 700K, which makes it
suitable for chip operating environments. Therefore, LCO is a more
stable on-chipmaterial, as verified by our endurance testing and owing
to its favorable transition temperature.

To experimentally quantify the existence of fluctuations, we
measured the noise spectral densitywithin low-bias currents at various
ambient temperatures (Fig. 3e). The noise spectra exhibit an inverse
frequency (1/f) dependence, which indicates that the current fluctua-
tions likely drove a response that fed back into the system, such as
temperature fluctuations that influenced conductivity. The noise
spectral densities normalized to 10Hz exhibit practically no variations
across the temperature range of 285–355K (Fig. 3f). While the obser-
vation of 1/f behavior in the raw noise spectra is an indication of
thermal fluctuations driving an electrical quantity, such as con-
ductivity, the absenceof a temperature dependence is likely due to the
activation energy for the physical processes responsible lying outside
the temperature range investigated in this study. The stochastic
behavior may be a manifestation of self-organized criticality27. As the
system experiences thermally induced stochastic fluctuations, the
system may self-organize into a critical state, contributing to the 1/f
noise. The 1/f noise indicates that the spin crossover is not merely
random but indicative of the system approaching a state of self-
organized criticality.

We employed circuit-level Monte Carlo simulations to examine
the effect of such fluctuations on the electrical dynamics of the com-
ponent. We combined these simulations with a simplified compact
model capable of exhibiting instability-driven oscillations28–30. We
introduced fluctuations in various forms, including to the ambient
temperature and to the thermal conductivity (Supplementary Note 3).
These fluctuations resulted in oscillatory behavior that embodies sto-
chasticity similar to the experimental observations (Fig. 3g, h and
Supplementary Fig. 7). Thus, there is a clear connection between LCO’s
sensitivity to ambient fluctuations and its stochastic dynamics.

Using TRNGs to solve optimization problems
After constructing a TRNG and identifying the underlying physics, we
sought to demonstrate its practical utility and compare it to prevailing
software-generated random numbers. For this demonstration, we
chose to solve optimization problems, which are crucial in various
applications. For instance, the maximum-cut (max-cut) graph parti-
tioning problem, where the nodes of a graph are partitioned into two
disjoint subsets to maximize the number of edges between them
(Fig. 4a), is used in genome sequencing and efficient routing of signal
paths in electronic circuits. The max-cut problem represents

Table 1 | Comparison of volatile-memristor-based TRNGs that passed NIST randomness test without post-processing

This work Jiang et al.5 Woo et al.6 Woo et al.14 Kim et al.3

Component switching
mechanism

Non-first-order phase
transition

Diffusive Electronic switching Diffusive First-order phase
transition

Source of randomness Oscillations Delay time Delay & relaxation times Delay & relaxation times Oscillations

Bit generation rate (kb s−1) 50 6 6 32 40

TRNG circuit components (# of
components)

T flip-flop only (1) Comparator, AND gate, 2 T
flip-flops (4)

2 AND gates, T flip-flop (3) XNOR gate, XOR gate, 4
D flip-flops (6)

Op-amp, T flip-
flop (2)

TRNG endurance (# of bits
produced per component)

600M 54M Not reported (Two mem-
ristors scheme)

48M 24M
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generalized optimization and constrained optimization problems
since it has full generality in terms of its representative Hamiltonian
formulation31. Thus, our ability to improve solutions to the max-cut
problem is a demonstration of improving solutions to any optimiza-
tion problem. These problems cannot be efficiently solved using pre-
vailing digital graphics processing units (GPUs) and central processing
units (CPUs), owing to the complexity and the NP-hard nature of most
such problems32. As such, probabilistic solutions to optimization pro-
blems are a practically viable option. Energy-based recurrent neural
networks, such as Boltzmann machines33,34 and Hopfield networks35,36,
have shown the potential to outperform conventional computers in
probabilistic optimization. Most optimization problems are non-tri-
vial, containing many local minima in their energy landscape, corre-
sponding to sub-optimal solutions (Fig. 4b). The global energy

minimum of their energy landscape is the most optimum solution.
Hopfield networks are known to get trapped in localminima during an
energyminimizationprocess,whichpresents a limitation to its efficacy
in problem-solving. Noise is useful to help the network escape local
minima through local energy ascent and potentially find the global
minimum. Here we demonstrate a memristor-based Hopfield network
using an LCO-based TRNG as a source of noise, where the noise was
applied in a decaying fashion to implement simulated annealing.

Thememristor-based Hopfield network was implemented using a
crossbar array of oxide memristors designed for vector-matrix multi-
plication (Fig. 4c–g). Using such memristor crossbars to accelerate
optimization with a Hopfield network has been discussed in detail32,
and the chip and supporting hardware are detailed elsewhere37,38. The
noise was added to the system by using the outputs of the LCO-based

Fig. 4 | Memristor-based noise-aided Hopfield network. a Illustration of a max-
cut NP-hard problem. b Energy landscape of a Hopfield network with and without
noise. c Schematic of the memristor crossbar within the chip. d The chip used for
the Hopfield network demonstration. e Experimental conductance-weight matrix
for a problemof sizeN = 60, and f the corresponding conductancedistribution. The
conductance matrix represents the max-cut problem being solved. The relation-
ship between the problem’s graph and the conductance matrix is provided
elsewhere31. gNormalized experimental error in the conductancematrix relative to
the target (experimentally programmed conductance matrix minus the target

conductance matrix). h Energy descent of 100 cycles for TRNG-based Hopfield
network in calculations with no noise, hardware-realistic simulations (with
hardware-matched noise), and experimental hardware results. Clearly, the case
with no noise settles into a high-energy incorrect solution quickly and stays there,
whereas the cases with realistic noise settle into a lower energy (optimal) solution.
i Success probabilities of TRNG-based Hopfield network for 100 and 300 cycles at
different node sizes. j Success probability of TRNG-based network minus that of
PRNG-based network at different node sizes. Data points above zero on the vertical
axis indicate superior performance compared to PRNGs.
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TRNG (stored in a separate memory unit and software-weighed). We
adopted a decaying noise profile for better solution quality, which
implemented simulated annealing39–41. The results agree with simula-
tions of a circuit-accurate model of the system (with the experimental
results slightly exceeding the simulations in quality), meaning optimal
performance (Fig. 4h, i). The slightly differing performance exhibited
by the experiments are likely due to the additional noise originating
from the various components of the circuit (memristor conductance
fluctuations, read circuit noise, etc.). Without any noise, the Hopfield
network converged to a local minimum after a few cycles and could
not escape from this state. Therefore, noise is indispensable in solving
NP-hard problems that have complex energy landscapes. Such a
memristor-based solution, when operating optimally, has previously
been shown to outperform prevailing GPUs by over 5 orders of mag-
nitude when scaled to sub-15 nm CMOS nodes via standard foundry
rules32,42.

Beyond showing that the TRNG can produce optimal perfor-
mance in an experimental memristor-based Hopfield network, we
sought to compare the TRNG’s performance to that of a software-
generated pseudo-random number generator (PRNG). A comparison
(obtained using our circuit-accurate simulator) reveals a modest but
measurable improvement in solution quality when a TRNG is used
(Fig. 4j, Supplementary Figs. 8 and 9). This result may be ascribed to
the fact that PRNGs are based on deterministic, though difficult to
crack, algorithms. Such deterministic processes may be correlated to
the dynamics of theHopfield network, whichdiminishes their ability to
detrap the system from local minima. In other words, the process used
to disturb and dislodge the system must be as uncorrelated from the
system’s natural dynamics as possible, else, the dynamics and the
dislodging process together will get stuck in newly resulting local
minima. The TRNG outperforming PRNGs by 0.2–5% is an indirect but
clear indication of this phenomenon that can bemeasured viaHopfield
dynamics. The fundamental distinction between deterministic PRNGs
and stochastic TRNGs (in the quality of the random bit streams)
highlights that TRNGs have superior performance in probabilistic
computing. The speed of our TRNG (sub-MHz range) is far lower
compared to prevailing CMOS technologies (up to GHz range). This
difference is attributed mainly to the micrometer-scale sizes of our
laboratory-scale components compared to the CMOS technologies
often manufactured at sub-10-nm sizes. As such, we expect the speed
to increase notably upon scaling down the sizes of our prototype
components and not pose a fundamental bottleneck. Combining a
feedback shift register or utilizing a nanoscale heater could further
increase the bit generation rate28,43.

Discussion
There are several more reported random number generators, which
have been shown to pass one (or some) of the NIST tests, but not all of
them. In Table 1, we included only those reports that demonstrated
passing of all the NIST tests, because, as shown in prior works, failing
one of the tests (e.g., the frequency monobit test) may lead to failures
in several other tests3,20. Similarly, a full NIST test of processing at least
55 sequences is required to obtain statistically significant data. Further
complicating a fair and quantitative comparison, different reported
components were fabricated at different sizes and operated under
different conditions, while many of them use discrete peripheral
components assembled on breadboards (such as amplifiers)3. The
performance metrics for some of them are reported as projections to
cutting-edge technology nodes, such as a 7 nm node44. A fair com-
parison would require experimental demonstrations at identical
technology nodes for both the component and its peripheral circuits.
At the least, a comparison would need standardized design kits that
enable simulated projections at a common technology node. As such,
the state of the literature on TRNGs (and post-CMOS computing in

general) is too nascent to engage in rigorous and quantitative com-
parisons, which will require more work on various types of TRNGs.

Despite the challenges in fairly and quantitatively comparing
emerging TRNGs, herewe provide a qualitative but useful comparison,
which will aid the selection of the appropriate TRNG for a given
application. We base our analysis on the fundamental limits of the
underlying physical process used to generate random numbers and
assume that the reported physical processes can lead to true ran-
domness (by passing all the NIST tests). We broadly see electronic
phase transitions and magnetic switching emerging as two promising
processes for TRNGs. Pure electronic phase transitions that do not
involve the movement of ions or significant changes in the crystal
structure (similar to the spin transition in LCO or a Mott transition in
VO2) are likely the fastest in terms of fundamental speed limits (well
below 1 ns)45. Magnetic tunnel junctions (MTJs) based on magnetic
actuation likely follow with a timescale in the order of 1 ns46. Diffusive
memristors, or those that rely on ionic motions, typically exhibit
slower speeds of microseconds or more5,14. With regard to switching
energy, superparamagnetic switching likely offers the lowest operat-
ing energies (in the order of 1 fJ per bit), but suffers from slower
speeds47. We expect MTJs based on magnetic actuation and diffusive
memristors to exhibit operating energies below 1 pJ per bit5,46. Elec-
tronic trapping/de-trapping switching mechanism also offers low
energy consumption with high reliability6,48. Electronic phase transi-
tions typically require thermal actuation in addition to the electric field
driving Joule heating, resulting in higher energy consumption3.
Therefore, there is no clear winner in terms of all the metrics of
interest, but studies like ours enable the choice of an appropriate
TRNG for a given application.

In summary, we experimentally demonstrated a memristor-based
TRNG that exploits the inherent stochastic behavior of the spin
crossover in LaCoO3, while requiring only a single additional circuit
component. Our compact and first principles models showed that the
spin crossover is highly susceptible to thermal fluctuations, which
results in stochastic oscillations. This compact TRNG not only sets a
new standard with its superior bit generation rate but also demon-
strates versatile applicability. Specifically, weused the output fromthis
TRNG in a Hopfield network, harnessing its noise to assist the network
in escaping localminima and thereby improving its accuracy. Electrical
conductivity modulation resulting from spin fluctuations therefore
opens a new direction for the discovery and design of semiconductors
for probabilistic computing and cryptography.

Methods
Device fabrication: An epitaxial thin film of LCO was grown in a Neo-
cera pulsed laser deposition system (PLD) on a LaAlO3 substrate.
LaCoO3 target was purchased from Toshima Manufacturing Co., Ltd.
The substratewas etched in diluteHCl and annealed in air at 950 °C for
2 h. During the growth, the substrate temperature was 650 °C with an
O2 partial pressure of 100mTorr. The PLD chamber pressure was
increased to 2.5 Torr during cooldown. For Electrical measurements:
The DC current-voltage (I-V) characteristics of the devices were mea-
sured using a Keysight B2911A SourceMeasureUnit. Self-oscillations in
the NDR region were recorded using an Agilent Technologies
MSO7054A oscilloscope.

NIST randomness test: NIST Statistical Test Suite (Special Pub-
lication 800-22) was run in Python, and 80 sequences of 1M bits were
collected for the test. Each test was considered passed if the P-value
was higher than 0.001.

Data availability
Due to the large size of data presented in the manuscript, instead of
uploading the data alongwith themanuscript, the relevant data will be
supplied by the corresponding authors upon request.
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Code availability
The codes used for phase field modeling are available at this URL:
https://github.com/aiarabelo/LaCoO3_Thermodynamics/blob/main/
Thermodynamic_Model_for_LaCoO3_(LCO).ipynb. The code canbe run
on Python, an open access tool. If needed, additional background
information on the codes and support in running it can be obtained
from the corresponding authors.
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