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Quantitative Ranking of Ligand Binding Kinetics with a 
Multiscale Milestoning Simulation Approach

Benjamin R. Jagger, Christopher T. Lee, and Rommie E. Amaro
Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman 
Drive, La Jolla, California 92093-0340, United States

Abstract

Efficient prediction and ranking of small molecule binders by their kinetic (kon and koff) and 

thermodynamic (∆tt) properties can be a valuable metric for drug lead optimization, as these 

quantities are often indicators of in vivo efficacy. We have previously described a hybrid molecular 

dynamics, Brownian dynamics, and milestoning model, Simulation Enabled Estimation of Kinetic 

Rates (SEEKR), that can predict kon’s, koff’s, and ∆tt’s. Here we demonstrate the effectiveness of 

this approach for ranking a series of seven small molecule compounds for the model system, β-

cyclodextrin, based on predicted kon’s and koff’s. We compare our results using SEEKR to 

experimentally determined rates as well as rates calculated using long-timescale molecular 

dynamics simulations and show that SEEKR can effectively rank the compounds by koff and ∆tt 
with reduced computational cost. We also provide a discussion of convergence properties and 

sensitivities of calculations with SEEKR to establish “best practices” for its future use.
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Molecular binding processes are ubiquitous in biology and serve as the fundamental basis 

for biological complexity. For the drug discovery community, engineering 

pharmacologically active small molecules is of particular importance. Traditionally, the 

paradigm for lead optimization is to select for leads with the greatest affinity for a protein, or 

other, target of interest. However, recent evidence suggests that the kinetics of binding may 

also be a useful metric for lead selection. It is now thought that both residence times and 

association rates are key determinants of in vivo efficacy for many drugs.1–5 Similar to 

computational predictions of binding thermodynamics, molecular simulations can be used to 

compute binding kinetics.6–8 Methods such as Brownian Dynamics (BD) have been used 

effectively for estimating molecular association rates.9–12 Molecular dynamics (MD) 

simulations which explicitly represent all atoms and forces, can also be used to predict 

binding kinetics. Due to significantly increased model complexity, MD is limited by 

sampling. Nevertheless, owing to software improvements and the development of 

commodity hardware such as GPUs and specialty hardware such as Anton,13,14 “brute 

force” calculation of binding kinetics with MD is now a possibility.15–19 To improve upon 

“brute force” sampling statistics, many sampling strategies employ force biases or other 

statistical mechanical techniques to predict both association and dissociation rates of many 

systems. This includes methods such as: Markov State Models,20–23 metadynamics,24–26 

milestoning,27,28,28–32 and other techniques.33–39

Our previous work uses a multiscale MD, BD, and Milestoning approach for the calculation 

of both association and dissociation rates of receptor-ligand complexes.40,41 Our 

implementation, “Simulation Enabled Estimation of Kinetic Rates” (SEEKR) is a freely 

available software package1 that automates the preparation, simulation, and analysis of these 

multiscale milestoning calculations using existing softwares: NAMD42 for MD simulations 

and BrownDye12 for BD simulations. Milestoning theory provides the glue for the 

multiscale scheme by providing a strategy to subdivide, simulate, and subsequently 

statistically reconnect small regions of simulation space called “milestones”27,40,41,43–52 

This approach reduces the compute time required to simulate transition events, is 

embarrassingly parallel, and is agnostic to the simulation modality used. This allows us to 

use atomically detailed, yet computationally expensive, fully flexible MD simulations in 

milestones near the binding site where these interactions are critical for understanding the 

binding and unbinding, and BD simulations far from the binding site where rigid body 

dynamics provides a sufficient description at significantly reduced computational cost. For a 

more thorough description of milestoning theory and the calculation of kinetic quantities, 

such as kon and koff, we refer the reader to the existing literature.27,40,41,43–52

The effectiveness of the SEEKR scheme for the calculation of kon and koff values has been 

demonstrated for multiple protein-ligand systems.40,41 However, it has not yet been used for 

rank ordering sets of compounds by kinetic (kon and koff) and thermodynamic (∆G) values, 

as would be done in pharmaceutical discovery settings. Here we use SEEKR to estimate kon, 

koff, and ∆G for a model host-guest system, β-cyclodextrin with seven ligands representing 

diverse chemical groups (Fig. 1), using two forcefields for β-cyclodextrin GAFF53,54 and 

1https://amarolab.ucsd.edu/seekr
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Q4MD.55 We compare the SEEKR estimates with previously published “brute force” (long-

timescale) MD predictions19 and experimental results.56–61 Using this model system we 

examine both the accuracy and efficiency of SEEKR compared to long-timescale MD. We 

further explore the reduction in computational effort required for SEEKR estimates as well 

as discuss the convergence properties and sensitivity of SEEKR calculations to establish 

“best practices” for its future use.

SEEKR calculations and the long timescale MD simulations struggle to reproduce both the 

values and rank ordering of the experimentally determined kon’s (Fig. 2). However, similar 

qualitative results are seen with the SEEKR calculations and long timescale MD calculations 

using the same forcefield. On rates calculated using Q4MD are approximately one order of 

magnitude faster than experimental rates, while the GAFF forcefield produces rates closer to 

the experimental values, differing by approximately a factor of 3 or less.

Both methods fail to effectively order the ligands by increasing kon, as demonstrated by low 

or negative Kendall and Spearman rank correlation coefficients. As the values of all the 

experimental rates have limited variability (all within half an order of magnitude), the 

sensitivity of the methods as well as the errors associated with the calculations and 

experiments makes differentiation and ordering challenging.

Unlike the experimental kon’s, koff’s for the seven guest molecules span multiple orders of 

magnitude, making them a better target for ranking the compounds with SEEKR. Again, off 

rates calculated with SEEKR are in good agreement with the long timescale MD simulations 

using the same forcefield (Fig. 3). Rates calculated using the GAFF forcefield are 

consistently faster than experiment by approximately one order of magnitude. This trend is 

seen in both the long timescale MD and SEEKR, but is more pronounced in the SEEKR 

calculations. The Q4MD forcefield, however, more accurately reproduces the magnitude of 

the experimental values with both SEEKR and long timescale MD. SEEKR calculations 

with both Q4MD and GAFF forcefields were effective for ranking the compounds by 

increasing off rates, as evidenced by high rank correlation values. The smaller magnitudes of 

the Q4MD values potentially contribute to this forcefield’s difficulty to differentiate between 

compounds with similar rates, where the larger values associated with the GAFF forcefield 

allow for more variability in the rate value without changing the overall ordering. Both the 

GAFF and Q4MD forcefields successfully differentiate the three tighter binding compounds 

from the four weaker binding, with the tighter binding compounds all having slower off rates 

and a difference of one order of magnitude between the fastest tightly binding compound 

and the slowest weakly binding compound. This suggests that SEEKR could be useful for 

identifying and separating long residence time ligands from shorter residence time ligands 

and then further discriminating the compounds through ranking by koff.

An additional benefit of kinetics calculations with SEEKR is that binding free energies can 

also be obtained from the same simulations (Fig. 4). Binding free energies calculated using 

the rate constants are most heavily influenced by the koff for these ligands, as this value is 

more variable, where the kon’s for all ligands are more similar. Therefore, similar trends are 

observed for the calculated binding free energies as were observed for the off rates. Binding 

free energies can also be calculated using the stationary probabilities for each milestone, 
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rather than the rate constants, and produce similar results. The GAFF forcefield consistently 

underestimates the binding free energies in both SEEKR and the long timescale MD, 

resulting from the consistent underestimation of the magnitudes of the koff’s. The 

magnitudes of the binding free energies calculated using Q4MD are in much better 

agreement with the experimental values, differing by 1 kcal or less. SEEKR with both 

Q4MD and GAFF successfully differentiates the three known tighter binding compounds 

from the four weaker binding compounds. SEEKR can also further discriminate ligands by 

its effective ranking by binding free energies, demonstrated by high rank correlation values.

A key aspect of future development of the SEEKR software is the systematic development 

of methodological best-practices as well as the elucidation of the sensitivity of calculated 

kinetic parameters to various SEEKR input conditions.

While it is possible to determine the kinetics for small systems like β-cyclodextrin using 

conventional long timescale MD simulations, increasing system size soon makes this 

inefficient or even impossible. The convergence of kon and koff were assessed by calculating 

the rate constants as a function of the reversal trajectory number at increasing intervals of 50 

reversal numbers (with 10 trajectories initiated for each reversal number). The reversal 

number is a direct measure of the equilibrium simulation length, as reversals are initiated 

from evenly spaced configurations of the equilibrium distribution. In general, both the on 

and off rates appear converged in less than the maximum number of reversals available. 

Approximately half the total reversals (4000 of 8000) were sufficient for obtaining 

reasonably converged rate constants. This suggests that the total simulation cost to obtain a 

similar result could be as little as 2 µs per ligand, rather than 3.8 µs.

Convergence of the rate constant is a highly complicated quantity dependent on the 

transition probabilities as well as the incubation times obtained from each milestone. 

Therefore, a more detailed analysis of the convergence of these quantities on a per milestone 

level can provide further insight into the overall convergence of a rate calculation within 

SEEKR. Fig. 5a,b shows the convergence of kon and koff, respectively, as a function of the 

number of reversals launched for the representative system of Q4MD β-cyclodextrin with 

aspirin. Reversal number is directly related to the length of equilibrium sampling, the current 

bottleneck of a SEEKR calculation. While both values appear to converge in fewer than the 

maximum number of reversals, the dramatic change in koff after reversal number 400 is of 

note. Further analysis of the per-milestone transition counts (Fig. 5c) and incubation times 

(Fig. 5d) revealed that this change in koff was due to poor initial sampling of the −1.5 Å 

milestone, which once sampled decreased the overall koff.

This was only observed for the aspirin ligand, one of the bulkiest ligands, where it was 

extremely unlikely to observe transitions outward from the primary face due to steric effects. 

Evaluation of these convergence properties on a per milestone basis is a valuable diagnostic 

tool; identifying which milestones contribute most to the mean first passage time (and 

therefore kon and koff) and milestones where the ligand spends only a short time, providing 

detailed molecular insight into the binding and unbinding processes. Furthermore, this 

analysis is also useful during the simulation process, as the convergence of each milestone 
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can be assessed “on the fly” and individual simulations can be terminated or extended 

accordingly for each milestone.

We also explore the sensitivity of the calculated rate constants to the milestoning model 

construction. In particular, the appropriate spacing of milestones is critical for the 

calculation. Milestones must not be spaced so close such that the velocity of the system 

cannot decorrelate between transitions.45,46 This assumption is typically valid for molecular 

dynamics simulations, as velocities typically decorrelate on the subpicosecond timescale.46 

However, if milestones are spaced far apart, transitions will require much longer simulations 

and milestioning sampling efficiency is lost.

For our systems, the incubation times of all milestones are on the order of multiple 

picoseconds or greater, which is longer than the sub-picosecond timescale typically 

necessary for decorrelation.46 When the milestone spacing was doubled to 3 Å, simulation 

efficiency was dramatically reduced, such that few to no transitions between milestones 

were observed, precluding the calculation of rate constants. These observations suggest that 

the 1.5 Å spacing used in our simulations was appropriate for the calculation of the desired 

kinetic parameters.

Our milestoning model differentiates the two faces of the cyclodextrin ring and therefore 

defines two bound states, corresponding to each face. Investigation into the effect of this on 

the resulting rate constants revealed that it had only minimal effects. When the two bound 

states were combined into a single milestone, only small changes to the rate were observed, 

within the error of both calculations. Furthermore, when the the two faces were not 

differentiated with unique milestones, minimal change in the calculated rate constants was 

observed.

It is also important to note that our milestoning model did not explicitly resolve the ligand 

orientation in any way, and therefore any ligand orientational sampling was achieved entirely 

through simulation. This resulted in some ligand orientations being unsampled in the deepest 

milestones where the orientation was sterically restricted to the starting conformation on that 

milestone. While this is a limitation that will be addressed in future developments of 

SEEKR, it also highlights that a relatively simplistic model was able effectively calculate 

kinetic parameters with good agreement to experimental values.

The simplicity of this model has many advantages. The bound state is defined naturally as 

the innermost milestone and all other milestones can be defined at the same time, including 

what defines the unbound state. The long timescale MD employed a more empirical 

definition of the bound state where the ligand was only considered bound when the COM of 

the ligand was within 7.5 Å of the COM of the β-cyclodextrin for at least 1.0 ns. Similarly 

the ligand was considered unbound when it left this 7.5 Å bound state for at least 1.0 ns. 

With the SEEKR approach, minimal prior knowledge of the system is required, as binding 

and unbinding are determined only from the milestone surfaces. No time cutoff is required, 

as short excursions that do not result in full binding and unbinding events are captured 

naturally in the milestoning model. The simplicity of SEEKR milestoning calculation setup, 

in conjunction with the ability to monitor convergence for each milestone and terminate 
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simulations accordingly, makes this approach well-suited for calculations with multiple 

ligands as would be necessary in a drug discovery setting.

We present the first successful ranking of a set of seven guest molecules with the β-

cyclodextrin host using the SEEKR hybrid MD/BD/Milestoning approach. SEEKR 

effectively reproduces both the magnitudes and rankings of the experimental off rates56–61 

and binding free energies, two quantities of interest in typical drug discovery campaigns.1–4 

SEEKR also successfully differentiates the known longer residence time and tighter binding 

compounds from the weaker binding compounds. Our results are also in good agreement 

with previously conducted long timescale MD simulations for the same set of ligands.19 In 

particular SEEKR and long timescale MD simulations using the same forcefield (GAFF or 

Q4MD) exhibited similar deviations from the experimental values, with GAFF producing 

consistently faster off rates than experiment and Q4MD producing consistently faster on 

rates. In general both methods and both forcefields struggled to reproduce the experimental 

on rate ranking, as all ligands had very similar kon’s. The SEEKR method requires less 

simulation time (3.8 µs per ligand) than the long timescale MD approach (4.5 – 11 µs per 

ligand). Furthermore, convergence analysis of the SEEKR calculations suggests that 

comparable results could be achieved with as little as 2 µs per ligand. In addition, SEEKR’s 

milestoning approach makes these calculations highly parallel, as the simulations on each 

milestone are completely independent from all other milestones. We also provide an analysis 

of the sensitivity of the SEEKR calculations to various factors such as sampling, milestone 

spacing, and the construction of the milestoning model with the intention of putting forth 

“best practices” for the use of SEEKR. SEEKR’s effectiveness at ranking compounds for 

this small model system suggest that it is well suited for ranking compounds of more 

complex protein-ligand and protein-drug systems, where the efficiency and enhanced 

sampling advantages of our multiscale MD/BD/milestoning approach will be more apparent.

Computational Methods

GAFF53,54 forcefield parameters for the seven guest molecule along with both GAFF and 

Q4MD-CD55 parameterizations of β-cyclodextrin were obtained from Tang and Chang.19 

For comparison we use identical structures and parameterizations as those used in their 

study. These initial structures were used by the SEEKR software for preparation of the 

milestoning simulations. The preparation procedure was the same for each of the seven guest 

molecules and followed standard SEEKR protocols.41 All systems were solvated with TIP3P 

waters.62 All BD simulations were performed using the BrownDye software package.12 

Electrostatic potentials of the host and guest molecules used as inputs for the BD simulation 

were calculated with APBS version 1.4.63 A modified version of NAMD 2.12 was used for 

all MD simulations.42 For all 13 milestones in the MD region, the standard SEEKR 

procedure for minimization, equilibration and simulation was followed. In total, 2.6 µs of 

equilibrium sampling (160 ns for 16 milestones) were used and approximately 570 ns of 

FHPD sampling for a total of 3.2 µs of simulation used in the milestoning model. The total 

cost per ligand (including simulation discarded for equilibration) was therefore ∼3.8 µs.
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Figure 1: 
a) β-cyclodextrin with milestones spaced at 1.5 Å increments and b) the seven ligands used 

in this study. The top four ligands are known to bind more weakly while the bottom three are 

known to bind more tightly.
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Figure 2: 
a) Experimental and calculated on rates for SEEKR GAFF and Q4MD forcefields as well as 

long timescale MD with both forcefields. b) Calculated rank correlation coefficients. Errors 

are determined with a bootstrapping analysis.
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Figure 3: 
a) Experimental and calculated off rates for SEEKR GAFF and Q4MD forcefields as well as 

long timescale MD with both forcefields. b) Calculated rank correlation coefficients. Errors 

are determined with a bootstrapping analysis.
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Figure 4: 
a) Experimental and calculated binding free energies for SEEKR GAFF and Q4MD 

forcefields as well as long timescale MD with both forcefields. b) Calculated rank 

correlation coefficients. Errors are determined with a bootstrapping analysis.
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Figure 5. 
: Convergence analysis for a representative ligand, aspirin, and β-cyclodextrin with the 

Q4MD forcefield. Convergence of a) kon, b) koff, c) transition counts, and d) incubation 

times for each milestone are plotted as a function of the number of reversals launched. 

Reversal number is directly related to the length of equilibrium sampling, as reversals were 

launched at 2 ns intervals from the equilibrium trajectory.
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