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Abstract

Human language offers a powerful window into our
thoughts – we tell stories, give explanations, and express
our beliefs and goals through words. Abundant evidence
also suggests that language plays a developmental role
in structuring our learning. Here, we ask: how much of
human-like thinking can be captured by learning statistical
patterns in language alone? We first contribute a new chal-
lenge benchmark for comparing humans and distributional
large language models (LLMs). Our benchmark contains
two problem-solving domains (planning and explanation
generation) and is designed to require generalization to
new, out-of-distribution problems expressed in language.
We find that humans are far more robust than LLMs on this
benchmark. Next, we propose a hybrid Parse-and-Solve
model, which augments distributional LLMs with a struc-
tured symbolic reasoning module. We find that this model
shows more robust adaptation to out-of-distribution plan-
ning problems, demonstrating the promise of hybrid AI
models for more human-like reasoning. Keywords: lan-
guage; problem-solving; programs; language of thought;
neuro-symbolic models

Introduction
Language expresses the rich internal landscape of our
thinking in a form that can be shared externally with
others. We tell stories about real (what did I do today?)
and hypothetical (what would I do if I won the lottery?)
situations; give instructions for achieving goals ranging
from the mundane (how do I put away the dishes?) to
the complex (how do I fix a carburetor?); and propose
explanations for both everyday events (why isn’t the light
bulb turning on?) and novel observations (what’s that
strange beeping sound?). Learning language and learning
from language also play crucial roles in the development
of children’s thinking (Gopnik & Meltzoff, 1997; Carey,
2009; Harris et al., 2018). But what, in computational
terms, is the relationship between language and thought,
and between learning language and learning to think?

Classical theories draw a stark division between think-
ing as the manipulation of structured representations in
an internal symbol system or language of thought (LOT)
(Fodor, 1975), and language as a system of mappings
between those representations and outwardly expressed
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forms (e.g., sounds, text). Under this view, learning lan-
guage plays at best a supporting role in learning to think.
Recently however, a new generation of statistical language
learning systems in AI has put forth a serious challenge
to this view. So-called large language models (LLMs)
(Brown et al., 2020; Rae et al., 2021) have demonstrated
such striking success in realistic language production that
they often appear to be “thinking” – and yet they are
driven solely by neural networks trained to predict the dis-
tribution of next words in long text sequences from very
large corpora of human language. Other work has pro-
posed using LLMs as a universal foundation for emulating
many human reasoning abilities – including capacities as
diverse as physical reasoning (Bisk et al., 2019), task-
level planning (Sharma et al., 2021; Huang et al., 2022),
and even mathematical reasoning (Cobbe et al., 2021) –
simply by re-framing them as linguistic prediction. Under
this view, “all you need is language”: learning to think re-
quires little more than learning (the statistics of) language,
or learning only the latent structure sufficient to produce
the most probable next word in any linguistic context.

In this paper, our goal is to critically assess how close
modern LLMs come to actually learning to think, and
to sketch out an alternative hybrid view of the language-
thought interface that integrates elements of the classical
LOT and recent LLM paradigms. In Part I, we describe a
new, generic approach for constructing linguistic reason-
ing prompts that measure flexible, creative thinking abili-
ties in novel situations, as opposed to the ability to retrieve
familiar patterns of thought for familiar situations. We use
an iterative constraint generation paradigm that extends
initial linguistic prompts using linguistic constraints that
restrict production of the most common human responses,
forcing responses that require novel language production
– and, we argue, a greater degree of thinking. We compare
LLMs to humans using this benchmark on two domains –
plan and explanation generation – and find that humans
both significantly outperform LLMs in general, and are
comparatively more robust to prompts that extend beyond
the standard distribution of human language. In Part II,
we propose an alternative computational approach that
leverages an LLM to map natural language into a space
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of structured programs, such that reasoning problems can
be solved by powerful, scalable symbolic algorithms -
rather than the purely neural form of end-to-end LLMs
alone. We implement and demonstrate this model in a
simplified synthetic language setting designed to emulate
the planning domain in Part I. Our results suggest that
such hybrid approaches are a promising way forwards,
albeit still rich with potential for future improvement.

Part I: Linguistic reasoning benchmark for
humans and language models

The first core motivation of this work is to evaluate the
extent to which modeling the predictive distribution of
language actually captures the underlying reasoning la-
tent in human language. Towards this end, we propose
a benchmark task (Fig. 1) based on two core reasoning
abilities – goal-based planning and causal explanation
– using an iterative design to challenge models which
simply learn predictable responses from prior language.

Methods
We benchmark human and language model performance
using a two-stage experimental design. In the first
stage, an iterative human language production experi-
ment (Fig. 1B), we collect human responses on two
domains (planning and explanations) under three pro-
gressively more challenging conditions: a baseline initial
prompt condition using a collecting of linguistic rea-
soning prompts; and two constrained conditions which
restrict the use of common answers to each prompt, in
order to encourage participants to generate novel linguis-
tic solutions. In the second stage, we evaluate a large
language model (LLM) on the same prompts, and collect
responses by sampling from its predictive distribution.
We describe each stage in more detail below.

Human language production experiment

Participants 240 participants recruited from Prolific (2
domains x 3 conditions x 40 participants) completed the
task. Base pay was $15/hr, with a $1 quality bonus.

Condition 1: initial reasoning prompts To measure
baseline performance, our first reasoning condition elicits
human responses to initial prompts (Fig. 1B, Condition
1) on each grounding domain. We construct 28 goal
prompts for the planning domain (Fig. 1A, top), designed
to elicit a concrete linguistic plan and to vary in their
base typicality (eg. ranging from clean the dirty dishes
to get a sofa on the roof ). We also construct 28 causal
event prompts of varying typicality for the explanations
domain (Fig. 1A, bottom), inspired by the “unusual event”
prompts in (Korman & Khemlani, 2020): each event

begins with an inciting cause and its usual consequence,
then poses a counterfactual.

Participants in this condition responded to a random
batch (n=7) of prompts from a single domain, resulting in
10 unique responses per prompt. After responding to all
prompts, we also ask participants to score base typicality
for each prompt of the goal (on planning) or inciting event
(on explanations) using a 7-point Likert scale.

Condition 2 and 3: constrained reasoning prompts In
the subsequent conditions (Fig. 1B, Condition 2, 3), we
evaluate the human ability to flexibly generate more novel
plans and explanations for the same initial prompts, by
restricting their responses to prevent subjects from falling
back on the most common solutions. Specifically, we use
subject responses from Condition 1 to determine common
(and likely highly predictable) components of plans and
explanations for each prompt. We construct linguistic con-
straints by extracting concrete nouns from all responses
to a given prompt (using an expert human tagger, who
also lemmatizes and standarizes the form of each noun).
We then extend each initial prompt in two more challeng-
ing conditions: in the most common noun constrained
condition, we restrict responses which use the single most
common noun; in the all initial nouns constrained, we
restrict all nouns which appear in the initial responses.

A new set of participants responded to a random batch
(n=7) of prompts in a single domain and condition, again
resulting in 10 unique responses per prompt and condition
that reflect these linguistic constraints.

Language model matched production experiment
Our human experiment yields a series of linguistic
prompts, in which individual goal and explanation
prompts are extended across two more challenging condi-
tions through linguistic constraints that restrict the usage
of the most common responses to each.

We use these same prompts to construct a benchmark
language production task for our artificial language model.
We evaluate our prompts on the state-of-the-art model
GPT-3 (Brown et al., 2020), using the few-shot prompting
technique introduced in (Brown et al., 2020) for generat-
ing predictive language for particular tasks. Specifically,
we seed the model with a small number of examples (n=12
goals, and n=15 explanations: the maximum number of
examples the model allowed, based on token limits) pair-
ing heldout prompts and human-generated text, then elicit
generated responses for each prompt across all conditions.

To eliminate purely degenerate text, we also prescreen
the samples by asking human evaluators (N=370; re-
cruited from Prolific) to score responses for surface lan-
guage errors alone, and remove the lowest scoring re-
sponses. After screening, we collect a total of 20 LLM-
generated responses for each prompt in each condition.
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A. Model-based language domains

Planning

Explanations

B. Iteratively constrained human language production task

More 
typical
goal

Less 
typical
goal

Goal: Clean the dirty dishes.
Goal: Keep the plants in your garden alive.

Goal: Make a pair of new shoes.
Goal: Create a safe landing for a falling skydiver.

Goal: Keep a baby platypus entertained.
Goal: Remove plaque from the teeth of a lion.

More 
typical
incident

Less 
typical
incident

If a door is locked with a bolt, then it 
cannot be opened. But suppose a door is 
locked with a bolt, and then it is opened. Why?

If rocks are thrown at a window, the window 
breaks. But suppose rocks are thrown at a window, 
and then the window does not break. Why?

If a piano is dropped from a skyscraper, then
the piano shatters. But suppose a piano is 
dropped from a skyscraper, and then the 
piano does not shatter. Why?

Goal: Clean the dirty dishes.

I would use warm water, soap, 
and a sponge.

Use lots of soap and water. 
Maybe a dishwasher. 

Scrub with soap and a sponge.

Goal: Clean the dirty dishes, 
without using soap.

C. Language models evaluated with matched prompts

Extract 
nouns to 
construct 
constraints

Goal: Clean the dirty dishes, 
without using soap, water, a
sponge, a dishwasher…

Condition 2: + Most common
noun constrained

Condition 1: Initial prompt Condition 3: + All initial
nouns constrained

Turn on really hot water to 
wash the dishes…

You could use baking soda…

Rinse the dishes off…put them 
in the dishwater on high 
heat/long wash…

I can use cleaning wipes and paper 
towels…

I would use a rag and wipe them clean…

Heat up the stove, grab a pair of tongs 
and…use the heat to sterilize the 
dishes…

Clean the dishes by using 
soap and water.

Get a sponge, warm water, and 
soap to clean the dishes.

First gather all of the dirty 
dishes. Then I would put them 
into the dishwasher...

Use bleach to clean the dishes.

Use hot water and a sponge to 
wash the dishes.

Use vinegar to clean the dishes. 
I would first put the dirty 
dishes in the sink and fill it 
with water...

Use a paper towel to wipe off 
the dishes and then use a 
rubber band to hold the paper 
towel in place…

Use a brush to scrub the 
dishes off...find a sink, and 
put the dirty dishes in...

Use a magic eraser.

Goal: Clean the dirty dishes. Goal: Clean the dirty dishes, 
without using soap.

…
…

Goal: Clean the dirty dishes, 
without using soap, water, a
sponge, a dishwasher…

Figure 1: Iterative reasoning task overview. A) Sample goals and scenarios for the planning and explanation domains,
respectively, illustrating the range of base typicality of our stimuli; B) Formation of constraints from human-generated
language, where constraints are selected based on frequency, with sample human generations (blue text) C) LLM-
generations (gray text) in response to the same prompts.

Blind comparative human evaluation Having col-
lected human and LLM responses to the same linguis-
tic prompts across all conditions, we now benchmark
their relative performance using blind human evaluators
(N=393; recruited from Prolific) asked to evaluate re-
sponses in a single domain and condition a 7-point Likert
scale (1: worst; 7: best). Subjects rated responses for a
random batch of prompts, scoring a (randomly shuffled)
set of human (n=10) and LLM (n=10) responses for each.

Results
Representative human responses and language model re-
sponses across both domains and conditions are depicted
in Fig. 2. To investigate comparative performance, we fit
linear mixed effects regression (LMER) models predict-
ing the human-evaluated score and use a corresponding
likelihood ratio test (LRT) between an ablated model to
determine the significance of the fixed effects. Fig. 3
shows results of the blind human evaluation, and depicts
statistical significance within and across conditions.

People outperform the LLM within each reasoning
condition We first fit a LMER predicting the human
evaluated score from the source language generator (hu-
man or LLM), with random effects for the individual
raters and prompts (syntax: score ∼ source + (1 |
rater id) + (1 | prompt)). Our LRT finds that there
is a significant effect (p < 0.001) of the language source

(humans vs. LLM) in both domains and in each condi-
tion (3, black indicators), humans outperform the LLM in
every condition, across both domains.

People are more robust to out-of-distribution prompts
with constraints We next consider our more central
question: how well do language models perform specifi-
cally on our more constrained conditions, designed ex-
plicitly to force both humans and models to generate novel
solutions to our underlying reasoning task? We expect
humans to not only outperform language models in a di-
rect comparison across individual prompts, but also to
be comparatively more robust to prompts which restrict
highly predictable answers, and require responses beyond
the distribution of standard human language.

An initial LMER with a fixed effect for the condition
(unconstrained, most common constraint, or many con-
straints) suggests that both humans and LLMs are sensi-
tive to the added constraints, though we find a strongly
significant effect of condition on performance for LLMs
(p< 0.001); and a weakly significant effect (p= 0.03) for
humans in the planning domain but strongly significant
for explanations (p < 0.001).

However, a subsequent LMER with an interaction term
for the language source (humans or LLMs) and condition
(fit pairwise across each successive set of conditions) indi-
cates that humans and LLMs are not equally sensitive to
constraints: we find strongly signficant interaction terms
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A. Domain 1: Planning – Representative responses from humans and LLMs

B. Domain 2: Explanations – Representative responses from humans and LLMs

Goal: Get your sofa onto the roof of your house. Goal: Get your sofa onto the roof of your house, 
without using a pulley.

Goal: Get your sofa onto the roof of your house, 
without using a pulley, a ladder, a crane…

Condition 1: Initial prompt Condition 3: + All initial nouns constrained

[4.8] You may need to rent 
a Genie lift large enough to 
carry the sofa. You will 
need at least one other 
person…

[5.3] Need a pulley 
system…take off the 
windows and pass the sofa 
through the opening…

[4.3] My plan is to push the 
sofa up through the attic 
window, with friends on the 
roof who can pull it up 
from there.

[5.1] I would get a giant 
crane…and use the crane 
to lift it to the roof of my 
house.

[4.3] This would need quite 
a few people because a 
sofa is heavy. Wrap the 
sofa in fabric tarps and tie 
it all up with a rope…

[5.0] I will build a large 
wooden ramp…on the side 
of my house with platforms 
every 5 feet…

[3.6] I would start 
by getting a very 
strong ladder and 
a very strong 
friend...

[4.3] Get a strong 
rope and tie it to 
the sofa and the 
roof. Then I would 
pull the sofa up.

[3.0]  Use a rope to tie 
around the sofa and 
connect it to a car.

[3.0] Have a friend help 
me lift it up and over 
the edge of the roof. 
Then I would have him 
stand on the roof and 
have him boost me up 
onto the roof..

[2.7]  Cut the bottom 
of the sofa so 
that it would fit 
through the 
window...break the 
windows to make 
room for the sofa.

[2.8] Get a car with 
a hydraulic 
lift…then put the 
sofa into the car.

If plants are not watered, then they die. But 
suppose plants are not watered, and then they do 
not die. Why?

If plants are not watered, then they die…However, the 
reason this happened was not that the plants were cacti.

[5.0] This could have 
happened because the 
plants are cacti.

[5.8] This could have 
happened because the 
plant is a succulent or 
cactus.

[4.5] This could have 
happened because it rained 
so that plants got natural 
watering.

[5.2] This could have 
happened because the 
plants were in a dormant 
stage…where they don't 
need water to stay alive.

[4.2] This could have 
happened because the 
plants live in a rainforest.

[4.3] This could have 
happened because these 
are aquatic plants that live 
under water and thus do 
not need to be watered.

[5.0] This could 
have happened 
because they were 
watered yesterday.

[5.3] This could 
have happened 
because the plants 
were genetically 
modified…

[4.0] This could have 
happened because the 
plants were potted…so 
the plants were able 
to survive until the 
owners remembered to 
water them again.

[4.3] This could have 
happened because the 
plants were in a room 
with a humidifier.

[2.7] This could have 
happened because the 
plants were watered by 
a drip system that was 
not turned off.

[3.0]  This could have 
happened because the 
plants were painted to 
look like they were 
dying because it was a 
prank.

Condition 1: Initial prompt

If plants are not watered, then they die…However, 
the reason this happened was not that the plants were 
cacti, they are fake plants, or…

Condition 2: + Most common noun constrained

Condition 3: + All initial nouns constrainedCondition 2: + Most common noun constrained

Figure 2: Representative plans (A) and explanations (B), per constraint condition, generated by humans and an end-to-
end LLM. Average goodness rating, over the human evaluators for each generation, is shown in orange.
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Domain 1: Planning
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Domain 2: Explanations

Figure 3: Mean overall goodness rating over plans (left) and explanations (right), show across all three constraint
conditions. Humans (blue boxes) significantly outperform the LLM (gray boxes) in every condition (black, lower bars)
and in successive pairwise conditions (red, upper bars).

(Fig. 3, red) indicating that humans are more robust to
added constraints across each condition. This supports
our central hypothesis: language models are increasingly
poor at solving the underlying task once the prompts are
constrained to restrict predictable responses.

People are more robust to goal typicality We also
investigate whether another measure of linguistic pre-

dictability – the atypicality of our base prompts – also
impacts LLM performance relative to humans. We fit a
final LMER model with an interaction term for source
and human typicality scores elicited in our initial experi-
ment. Interestingly, we find a significant interaction effect
of typicality (p < 0.001) for the planning domain, but
not for explanations. As assessing typicality for these
prompts is more complex, further work (such as linguistic
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measures of prompt typicality) are necessary to better
assess the explanations domains. This finding further sup-
ports our broader hypothesis: that LLMs are less robust
to responding to out-of-distribution scenarios which pose
novel, but solvable, planning problems.

Qualitative analysis of commonsense failures in LLM
reasoning Do large language models suffer from dis-
tinctively different patterns of errors? An initial, qualita-
tive examination suggests that large language models are
particularly prone to errors indicating a more fundamental
lack of “common sense” understanding: of the underly-
ing task, or the world knowledge required to solve it. A
preliminary examination suggests that language models
struggle particularly in generating coherent, realistic solu-
tions for problems that require novel but concrete physical
reasoning: as in the sofa on a roof goals in Fig. 2; or
failures to understand color (The carpet was white, so the
blue dye did not show up); water (the grass is not made
of water and so it does not absorb the water); or gravity
and material (eg. someone failing to scrape their knees
after falling in pants that were made of paper). Taken to-
gether, our reasoning experiment suggests that despite the
surface plausibilty of their generated text, large language
models generally struggle to emulate the latent reasoning
that backs human responses – once problems expressed in
language require solutions beyond the standard, and most
predictable, distribution of prior language, the apparent
“reasoning” abilities of these models deteriorate sharply.

Part II: Integrating language with
structured reasoning models

Our results in Part I suggest that even very large language
models may not capture the characteristic flexibility of
human reasoning: they struggle to produce language re-
flecting novel computation over an underlying task.

Here, we propose an alternate computational approach
for reasoning about problems posed in language. Rather
than hoping to simulate latent computations (like plan-
ning) by directly predicting output language, we propose
a simple (but demonstrative) parse-and-symbolic plan-
ner (P+S) model which grounds language in an explicit
“language-of-thought” (Fodor, 1975): a formal program
expressing the meaning of the linguistic prompt, which in-
terfaces with a symbolic computational solver (Fig. 4B).

Simulated planning experiment
We introduce a simulated planning domain to benchmark
our parse-and-symbolic planner model against a stan-
dard LLM (here, GPT-Neo (Black, Gao, Wang, Leahy,
& Biderman, 2021)), using a restricted set of prompts
designed to emulate the core properties of the broader
planning domain in Part I. We focus on planning here
for a straightforward metric of comparative performance:

accuracy of our restricted plans can be evaluated directly
on an explicit world model.

Initial and constrained synthetic planning prompts
As with Part I, our simulated experiment benchmarks
model performance under three progressively more chal-
lenging conditions: responses to an initial set of linguis-
tic goal prompts (Fig. 4A, Condition 1); and two con-
strained conditions which introduce new linguistic con-
straints over the initial goal (Fig. 4B, Condition 2, 3). As
is obvious from Fig. 4B, our conditions differ from Part I
in one important respect: we extend our initial goals with
positive constraints, rather than the negative constraints in
Part I. This format permits a more direct, albeit simplified,
evaluation of the core task – fully simulating restrictions
on initial resources would require modeling (and commu-
nicating) all possible alternative ways to achieve a goal in
a simulated environment – while still requiring models to
reason about complex, out-of-distribution language.

We generate initial and constrained goal prompts –
along with a linguistic initial condition completely speci-
fying the starting planning state for each prompt – from a
synthetic grammar over a simple object-stacking domain
(Gupta & Nau, 1992), in which each goal is a target stack
of objects on a table (Fig. 4). Initial prompts involve
goals with a single common household object; these are
extended with both a single constraint and many con-
straints (n=4) that introduce additional, unusual objects
into the initial goal. In total, we sample n=100 initial goals
and then sample constraints for both extended conditions.

Parse-and-solve model Fig. 4B depicts a schematic
of our parse-and-solve model, designed to disentangle
language from the underlying computation required to
solve planning tasks expressed in language. Our model
integrates two distinct components. First, it parses lan-
guage into a formal program representing the initial prob-
lem state and goal (using the PDDL planning language
(McDermott et al., 1998)). For more direct comparison
with a benchmark LLM, we also use a large language
model as our surface parser: we use the Codex (Chen et
al., 2021) model (a GPT-3 model fine-tuned on a joint dis-
tribution of language and symbolic programs), which can
“parse” language into programs using an analogous few-
shot prompting technique (seeded with coupled examples
of text and code). Unlike our comparison model, how-
ever, we employ distributional prediction only for a more
constrained task: emulating the joint variation between
a natural and formal language. The parsed programs are
passed to our model’s second core component: a symbolic
solver, modeled with a search-based planner (Alkhazraji
et al., 2020) which attempts to generate a symbolic plan
over a restricted set of actions (moving objects from one
location to the next) to solve the parsed goal.
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Figure 4: Simulated iterative planning task overview. A) Example progressively-constrained goal stimuli; B) Evaluation
compares plans generated directly from an LLM (left) with plans generated from P+S (right); C) Success rate of P+S
model (purple) vs. LLM (gray); P+S statistically significantly outperforms the LLM under each condition (black bars).

Plan simulation environment Unlike in Part I, plans
using the restricted space of actions in this domain can
be simulated directly to assess accuracy. The P+S model
outputs executable PDDL actions; the LLM-as-planner
baseline outputs language which we reparse by inverting
the synthetic grammar into PDDL actions. For both mod-
els, we mark unparseable or invalid plans as unsuccessful.

Results
Analogous analyses to those in Part I (Fig. 4C) – measur-
ing the comparative performance of our model with an
LLM, as well as its robustness to constraints – suggest
that our hybrid model, which uses predictive modeling
only to transform language into a structured interface
to an underlying symbolic planner, vastly improves its
ability to adapt to complexly constrained goals.

Parse-and-solve model outperforms LLM An LMER
comparing our two models (P+S and LLM) finds a
strongly significant difference in overall performance
(p < 0.001; Fig. 4C): indeed, the LLM solves none of the
problems in our most constrained condition.

Comparative robustness to constraints Interestingly,
a pairwise LMER testing for an interaction between
source and condition does not find a significant interac-
tion effect, suggesting that both models decline similarly
in relative performance between conditions. One likely
possibility is that this is an artifact of our restricted ex-
periment size: the LLM simply can perform no worse
in the final condition. However, these results could also
suggest that the parsing approach we use here – which
employs distributional models to map language into pro-
grams – may itself struggle to generalize; a hybrid parser,
which itself draws on more structured representations

(like classical linguistic grammars), might be better suited
to parsing our most challenging compositional goals.

Discussion
Human language provides a richly structured window
into how we think about the world. Our results, however,
suggest that modeling the distribution of language alone
may not be sufficient to capture the computations underly-
ing planning, explanations, and other forms of reasoning
which ground the language we produce. Instead, we pro-
pose an alternative approach: hybrid models which use
distributional prediction to map language into structured
formal representations of meaning that interface directly
with structured symbolic algorithms (Ellis et al., 2020;
Wong et al., 2021; Nye et al., 2021). Our contributions
here leave much open for future work: to more systemat-
ically characterize regimes under which simply produc-
ing probable language closely approximates, and devi-
ates, from human reasoning, and go beyond the simple
demonstration model we have provided towards broader-
coverage models for more realistic reasoning domains.

An important next step will be building on the quali-
tative analyses in Part I to disentangle the many factors
(e.g., accuracy, semantic coherence, and concision) that
may separate human performance from purely predictive
responses. In tandem, the hybrid model we propose here
offers a promising, albeit highly restricted, step towards
emulating human-like reasoning over language. How do
we learn the structured world models, or even sophisti-
cated planning algorithms, that our simple model builds
upon? Our core modeling approach suggests a path to-
wards these more fundamental learning problems: using
language to construct, or guide discovery, of programs
which represent novel environments, actions, and even
algorithms for operating over such worlds.
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