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Domain-General Learning of Neural Network Models to Solve Analogy Tasks
– A Large-Scale Simulation

Arianna Yuan (xfyuan@stanford.edu)
Department of Psychology, Stanford University, Stanford, CA 94305 USA

Abstract

Several computational models have been proposed to
explain the mental processes underlying analogical reasoning.
However, previous models either lack a learning component
or use limited, artificial data for simulations. To address these
issues, we build a domain-general neural network model that
learns to solve analogy tasks in different modalities, e.g., texts
and images. Importantly, it uses word representations and
image representations computed from large-scale naturalistic
corpus. The model reproduces several key findings in the
analogical reasoning literature, including relational shift and
familiarity effect, and demonstrates domain-general learning
capacity. Our model also makes interesting predictions on
cross-modality transfer of analogical reasoning that could be
empirically tested. Our model makes the first step towards a
computational framework that is able to learn analogy tasks
using naturalistic data and transfer to other modalities.

Keywords: analogical reasoning; learning; cross-modality
transfer; neural network models.

Introduction
Analogy is arguably one of the most important mechanisms
through which people acquire new knowledge (Gentner,
Holyoak, & Kokinov, 2001). Verbal analogy task such
as “PIG:BOAR::DOG:? a. WOLF b. CAT” and visual
analogy task such as Raven’s Progressive Matrices has
been widely used in standardized test to assess students’
intellectual ability (Buck et al., 1998). For a long time,
there has been a heated debate over whether analogy-mapping
is a domain-specific or domain-general process (Forbus,
Gentner, Markman, & Ferguson, 1998). Nowadays, it has
been increasingly clear that there are both a domain-general
component and a domain-specific component in learning
analogical reasoning.

One phenomenon related to the domain-general
component is the relational shift in child development,
i.e., early in development children tend to choose the item
that is more associated to the third item in the analogy
question A:B::C:[D1|D2] (Sternberg & Nigro, 1980), and
only older kids are able to use relational matching rather
than associations to perform the task. Some researchers have
argued that the lack of inhibitory control, which requires a
full-blown pre-frontal cortex is partially responsible for the
associative response (Richland & Burchinal, 2013). The
ability to inhibit associative responding and maintain the
relational constraints imposed by A:B is domain-general, i.e.,
it is a universal prerequisite for analogy-making no matter
which sensory modality or semantic domain the analogy task
is built on. Hence, if one person is trained to perform analogy
task in a particularly domain or modality, it is likely that the
training will help them do better in other domain or modality,

due to enhanced ability to suppress associative responses and
to maintain contexts.

The evidence for a domain-specific component comes
from the finding that children’s ability to perform analogy
task depends on their familiarity with the test material.
Goswami and Brown (1990a, 1990b) found that when
familiar concepts were used in analogy tasks, performances
were much better. These findings underscore the contribution
of domain-specific knowledge in analogy-making, yet change
in this aspect is unlikely to boost task performance in other
domain or modality.

Several computational models have been proposed to
account for how people solve analogy tasks. A useful
classification scheme is to group them into three types
of models (French, 2002; Gentner & Forbus, 2010):
symbolic models (Kuehne, Forbus, Gentner, & Quinn,
2000; Falkenhainer, Forbus, & Gentner, 1989), connectionist
models (Holyoak & Thagard, 1989; Hummel & Holyoak,
1997; Kollias & McClelland, 2013) and hybrid models
(Mitchell, 1993; Kokinov & Petrov, 2000). Most of symbolic
models represent analogy questions using predicates and
logical forms. When asked to solve an analogy task such
as A:B::C:?, they use symbolic manipulations and search
algorithms to find the correct answer. One of the most
influential symbolic approach to analogy-mapping is the
Structure Mapping Engine (SME) (Falkenhainer et al., 1989;
Gentner, 1983). It represents the base and source using
predicate-calculus and compares the two representations to
see if there is any structural similarities between them. Once
optimal matching structures are identified, the system then
transfer structure in the source to the target. Later version of
SME have relaxed matching criteria to allow similar, but not
identical predicate to match (Brian, 1990), but whether two
predicates are similar need to be explicitly computed.

Contrary to these symbolic approaches, connectionist
models often use distributed representation for the items in
an analogy task and encode their semantic and structural
similarity in a more implicit and continuous way, e.g., Kollias
and McClelland (2013). The connectionist models learn to
make a correct response by adjusting connection weights so
that the spreading activation within the neural networks could
reveal the distributed representation of the target, thus leading
to the correct answer.

Previous computational models of analogy-making have
significantly deepened our understanding of the mental
processes underling analogical reasoning. Many of such
models claim that they provide a domain-general explanation
of how people perform analogy tasks. For example, the

3621



Structure Mapping Engine, which was originally introduced
to solve analogy task in discrete semantic space, was later
used to answer analogy questions in continuous visual
domain (Lovett, Forbus, & Usher, 2007). Most of the
connectionist models are theoretically domain-general as
well, since we can easily feed the distributed representation
of stimuli from different domain/modality to the input
placeholders of those models. It is important for these
models to be domain-general, since humans are able to
make within-modality generalization, such as recognizing
examples that they have never encountered before (Lake,
Salakhutdinov, & Tenenbaum, 2015), or make cross-modality
transfer (Hupp & Sloutsky, 2011). Specifically, it has been
shown that relational knowledge is critical to the development
of analogical reasoning (Goswami, 1991). If one person has
received sufficient training to solve verbal analogy tasks, they
would gain some experience in relational knowledge. When
later asked to solve a visual analogy-making task, they do not
need to learn it from scratch (Figure 1).

Figure 1: Stimuli used in the current study. Left: Verbal
analogy task. Right: Visual analogy task.

Despite the generalization ability that previous
computational models may have claimed, they are often
missing some critical components. Symbolic approaches,
for example, rarely address how people learn to make an
analogy. Since the knowledge representations and the search
algorithms in those models are preprogrammed, it is not clear
how experience of analogy-making in one domain could
facilitate analogy-making in another unfamiliar domain.

As for the connectionist models, despite their theoretically
domain-general nature, none of the previous studies has
directly tested cross-modality transfer. Particularly, they
only demonstrate within-modality generalization, i.e., the
models are trained on some examples and tested on a
different set of examples in the same modality. Also,
the distributed representation of stimuli are either manually
defined according to the semantic features of the items, or
randomly assigned to some localist codes, which are not very
naturalistic.

Finally, all the previous modeling works have used small
datasets, containing hundreds of examples at most. We are
wondering if we could build a model that scales up to handle
a very large and naturalistic dataset. Particularly, we want
to understand if we use a dataset that reflects the statistical
distribution of stimuli in real life, can the model still learn
analogical reasoning and even make cross-modality transfer?
This idea is motivated by the statistical learning account
of language acquisition (Frost, Armstrong, Siegelman,

& Christiansen, 2015), which proposes that language
acquisition relies partially on a domain-general mechanism,
which is learning and processing sensory stimuli unfolding
across time and space (Saffran, Aslin, & Newport, 1996).
Early since 1990s, researchers have found that if you train
a recurrent neural network to predict the next word in
a sentence, the word representation it learns reveals the
syntactic and semantic role of the word (Elman, 1990).
Inspired by these previous studies, we use distributed
representations of words that reflect the statistics of word
co-occurrence in everyday life, which are more naturalistic.

As for the representations of visual stimuli, we process the
images (geometric figures) using a deep convolutional neural
network that has been trained to perform object recognition
task (Krizhevsky, Sutskever, & Hinton, 2012), and use the
activation of the 7th hidden layer as the representations of
the visual stimuli. Previous studies have shown that deep
convolutional networks share a lot of similarities with human
visual system (Yamins, Hong, Cadieu, & DiCarlo, 2013).
After we obtain the representations (embeddings) of the
words and the images, we build a simple, light-weighted
neural network to learn the analogy tasks.

Experiment
Data. We first describe the representation we use for the
word. The distributed representation of words are computed
using the continuous Skip-Gram model (Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013). It takes the current word to
predict the surrounding window of context words. Hence,
the estimated word embeddings capture the semantic and
syntactic role of the words (Mikolov, Yih, & Zweig, 2013).
We download the pre-trained word vectors from Google
Word2Vec1, which have 300 dimensions. For computational
simplicity and efficiency, we reduce the dimensionality to 30
using principle component analysis (PCA) so that each word
has a 30-d vector representation.

We use the same verbal analogy dataset from Mikolov, Yih,
and Zweig (2013)2, which contains 19529 examples in total
with 907 unique words. We divide the dataset into three
sets, a training set (percentage: 80%, 15634 examples)3, a
validation set (10%, 1955 examples) and a test set (10%,
1955 examples). We use the accuracy on validation data to
tune the hyper-parameters of the model and report accuracies
on the test data. We run two types of tasks. The first
one is A:B::C:[D1|D2|...|Dn], in which the model is given
some choices and has to select the correct one (Task 1). We
simulate Task 1 with different number of choices ranging
from 2 to 5. The second type of task takes the form of
A:B::C:?, i.e., the model is required to find the correct D from
all words in its vocabulary (Task 2).

To simulate associative responses children usually give

1https://code.google.com/archive/p/word2vec/
2http://download.tensorflow.org/data/questions-words.txt
3Training with fewer data (e.g., 50%) does not lead to

qualitatively different results.
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when first learning analogy tasks, we construct three
datasets from the original analogy dataset. All of them
are binary-choice questions, but the incorrect alternatives
have different levels of associations with the third item C
in the question. In the High Association Dataset, each
questions has an incorrect response alternative (foil) that
is strongly associated with the third word in the analogy
question, whereas examples in the Low Association Dataset
contain alternatives that is weakly associated with the third
item. Finally, in the Random Association Dataset, the
incorrect response alternatives are randomly selected from
the vocabulary so that it does not necessarily has a strong or
weak association with the third item C. We determine word
associations by calculating the cosine distance between the
word vectors of the two words. The smaller the distance, the
stronger the association.

As for the visual stimuli, we use the Shape dataset from
Reed, Zhang, Zhang, and Lee (2015). It is a dataset of 2-D
colored shapes, with 8 colors, 4 shapes, 4 scales, 5 row and
column positions, and 24 rotation angles. We only use one
value for the rotation variable to avoid potential confusion
(e.g., a square rotated 180◦ would be the same figure as the
original figure, but it has a different label in the dataset), and
vary the other 5 variables to create a dataset. An example
question is showed in Figure 1, right. We generate 19080
examples in total and randomly split them into a training set
(80%), a validation set (10%) and a test set (10%). Next, we
use the AlexNet, a deep neural network trained to recognize
objects (Krizhevsky et al., 2012), to process these images. We
use the pre-trained connection weights from Caffe (Jia et al.,
2014) to process each image in our dataset and use the hidden
activation of the 7th layer as its embedding. We also reduce
the dimensionality of the image embeddings to 30 using PCA.

Model. The model architecture is fairly simple (Figure 2).
There are three layers, the input layer, the hidden layer and
the output layer. The input layer contains three pools that
encode the first three items (A, B and C in the analogy
question). Each pool has 30 nodes, which corresponds to
the dimensionality of the word/visual embeddings. The
connection weights from the input pool encoding A to the
hidden layer H and the ones from the pool encoding C to H
are the same, denoted by W1. The connection weights from
the pool encoding B to the hidden layer H are denoted by W2.
The connection weights from the hidden layer H to the output
layer O is the embedding matrix of either the choices in the
current example (Task 1) or the whole vocabulary (Task 2).
Mathematically, the model can be described by the following
equations:

H =W1vA +W2vB +W1vC +b

O = φ(W0H)
(1)

where vA,vB,vC ∈ R30 are the word/image embeddings for
the stimuli, W1,W2 ∈R30×30 are the connection weights from
the input pools to the hidden layer, b ∈ R30 is the bias in
the hidden layer, and W0 = [VD1 ;VD2 ; ...;VDn ]

T ∈ R30×30 is a
matrix composed of embeddings of all the choices. We use

the softmax function φ(xxx)i =
exi

∑
n
j=1 ex j to normalize the input

xxx to the final layer O, which amounts to W0H. The ith value
of the output, φ(xxx)i, indicates the probability of the ith choice
being correct.

Figure 2: Model Architecture with an exemplar question
“Boy:Girl::Brother:[Sister|Mom]”

Training. The model is trained by back-propagation
using the TensorFlow framework (Abadi et al., 2015). We
only update the weights W1,W2 and b. We train the neural
networks with a batch size of 50 for each task. We find that
the model cannot learn well in the Task 2 setting, where it
needs to pick up the correct D from all the possible words.
Therefore, in the following section we only report our results
for Task 1. We run 2 simulations. In the first simulation,
we examine whether we could reproduce the relational shift
phenomenon. To this end, we train the model on a verbal
analogy dataset with random association. As the training
proceeds, we test it periodically on verbal High Association
test set and verbal Low Association test set (within-modality),
as well as the visual High Association test set and visual
Low Association test set (cross-modality). In the second
simulation, we look at the influences of number of choices on
within-modality generalization and cross-modality transfer.
Particularly, we first train the model to perform verbal
analogy tasks with different numbers of choices, then test it
on visual analogy tasks. We also conduct another version
of the experiment in which the visual analogy tasks are
learned first. We run each of the simulations 10 times with
different random initialization of parameters, and in each run
the model is trained for 41 epochs.

Results
Simulation 1. We first test if our model reproduces
the relational shift observed during child development.
Figure 3 shows the accuracy curves of four test sets: verbal
High Association Dataset, verbal Low Association Dataset,
visual High Association Dataset and visual Low Association
Dataset.

First of all, we notice that our model clearly demonstrates
the tendency of associative responding in the early stage of
learning, since the accuracy on the High Association Dataset
grows slowly (solid curves), compared with the accuracies
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on the Low Association Dataset. As the training proceeds,
the model gradually learns to inhibit associative responses for
High Association Dataset (black solid curve).

Second, the test accuracies on verbal sets are consistently
higher than those on the visual test sets, which is not
surprising given that the model is only trained on verbal
stimuli. However, we still find a decent amount of
cross-modality transfer. For one thing, the tendency to
give associative responses earlier in the training is carried
over to the visual modality, even though no visual stimuli
has been used to train the network. In addition, as the
accuracy on verbal Datasets gradually increases, the model
also becomes better at answering questions in visual Low
Association Dataset (gray dash-dot curve). However, this
improvement is not reliably transferred to the visual High
Association Dataset, as the accuracy of this dataset remains
near chance-level after prolonged training (gray solid curve).

Third, we find that when the accuracy on verbal Low
Association test stops to grow after roughly 3 epochs,
the accuracy on the corresponding visual dataset continues
to improve until after 11 epochs, which then slowly
decreases (gray dash-dot curve). This can be explained
by the domain-general and the domain-specific component
of analogical reasoning. The model first learns the
domain-general component of analogical reasoning from the
training in the verbal domain, but later the training becomes
detrimental to cross-modality transfer since it continuously
shapes the model to be specific to the verbal domain, thus
reducing the accuracy in the corresponding visual domain.
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Figure 3: The effect of association on accuracy and
cross-modality transfer. The dotted line indicates the
chance-level.

Simulation 2. To understand the effect of number of
choices on accuracy for different data type (train/test) and
modality (verbal/visual), we run two linear models. In
the first linear model, we look at two sets of data, which
are obtained from the experiment “learning verbal analogy
first” and the one “learning visual analogy first”. In the
“learning verbal analogy first” experiment (Figure 4, left),
we find that both training and same-modality test accuracy
are almost perfect, whereas the cross-modality accuracy is
not. The linear model shows that for all of these three
conditions, the accuracy decreases as the number of choices
increases (train: β = −0.005, t(114) = −2.57, p = 0.011,

same-modality test: β =−0.004, t(114) =−2.12, p = 0.036,
different-modality test: β = −0.1, t(114) = −54.63, p <
.001). However, we also find an interaction between test
conditions and choice numbers. Particularly, the influence of
choice numbers on different-modality test is much larger than
the one on same-modality test, β = 0.096, t(114) = 37.13,
p < .001. In the “learning visual analogy first” experiment
(Figure 4, right), we find a similar effect of choice numbers
on the different-modality test condition, as well as a similar
interaction between test conditions and choice numbers, β =
0.071, t(114) = 14.07, p < .001.

Although both modalities demonstrate near perfect
performance of within-modality generalization after
sufficient training (∼40 epochs), the performance of
“learning verbal analogy first” is consistently better than
the one of “learning visual analogy first” throughout the
training. For instance, half way through the training, the
same-modality test accuracy of “learning verbal analogy
first” is higher than the one of “learning visual analogy first”
(mean difference is 4.77 %, t(234) = 3.279, p = 0.001). This
implies that the semantic space of word embeddings may
have a stronger structural regularity, which makes it easier to
discover relations between words than images.
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Figure 4: The influence of number of choices on accuracy.
Solid dots indicate chance-levels.

Visualization of connection weights
To get a deeper understanding of what the model has learned,
we visualize the weight matrix W1 and W2. We find that W1 is
very much like a identity matrix (Figure 5, left), whereas W2
does not have a easily describable pattern (Figure 5, right).

We compare our model with the vector offset method,
which was used by Mikolov, Yih, and Zweig (2013) to solve
analogy tasks. Given the problem A:B::C:?, they found the
word D such that its embedding vector had the greatest cosine
similarity to xB−xA+xC. Their method amounts to assigning
an identity matrix I to W1, −I to W2, and a zero vector to
the bias b in our model. The weights of our neural network
show that our model is not doing exactly the same thing as
the vector offset method does, since B does not approximate
the negative identity matrix. Hence, its weights are tuned to
solve the current analogy task, and the same weights are also
capable of solving analogy task in another modality.
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(a) (b)

Figure 5: (a): Connections from A to the hidden layer.
(b): Connections from B to the hidden layer. Lighter areas
represent larger weights.

Discussion
In this article, we build the first neural network model that can
learn to solve analogy tasks and make cross-modality transfer.
It uses word representations and image representations
estimated from large-scale naturalistic corpora. The
model demonstrates both the domain-general and the
domain-specific component of analogical reasoning.

Specifically, we see that the accuracy on the same-modality
test set is consistently higher than the accuracy on the
cross-modality test set. This is aligned with the empirical
finding that domain-specific knowledge boosts performance
in analogical reasoning (Goswami & Brown, 1990b). On
the other hand, the model demonstrates the domain-general
property of analogy-making by showing cross-modality
transfer. This is relevant to a broader topic in cognitive
science, the zero-shot learning. Zero-shot learning refers
to the ability to solve a task despite not having received
any training examples of that task. As human beings,
we do zero-shot learning all the time. Only recently did
researchers begin to simulate zero-shot learning using neural
network models. For instance, in Socher, Ganjoo, Manning,
and Ng (2013), they showed that learning the distributions
of words in texts as a semantic space helps the model
understand the visual appearances of objects, and enables
the model to recognize objects even if no training data is
available for that category. Our model contribute to the
zero-shot learning literature by showing that zero-learning
is possible for analogy-making task as well. It also makes
some interesting predictions that can be empirically tested.
The success of our model suggests the possibility that there
might be some similar structural regularities in the word
embeddings extracted from naturalistic corpus and in the
image embeddings extracted from object recognition models.
This similarity explains why our model makes cross-modal
transfer.

Our results are also relevant to another line of research,
the one-shot learning. One-shot learning refers to the
problem of learning from one or very few examples. Classic
deep learning neural networks could not perform one-shot
learning, which is a common criticism of neural networks
being plausible cognitive models of human learning (Lake,
Ullman, Tenenbaum, & Gershman, 2016). However, recently
Vinyals, Blundell, Lillicrap, Wierstra, et al. (2016) showed

that if you match the training task with the test task, neural
networks are able to learn from few examples. In their paper,
they trained a network to map a query example to one of the
four candidates example so that both of them belong to the
same category. The model learned the task very well. Our
results lend further support to their approach. We find that
our model only learns efficiently under the Task 1 setting,
where it chooses among a few choices rather than the whole
vocabulary. Our work extends Vinyals and colleagues’ results
by showing that our network model can make an inference
not only on unseen stimuli, but also on unseen stimuli from a
completely different modality.

There are some limitations of the current work. First,
the model is a simplification of the actual mental processes
underlying analogy-making. A lot of previous computational
model have given very insightful explanations of those mental
processes (Gentner, 1983; Morrison et al., 2004; Kollias &
McClelland, 2013; Gergel’ & Farkaš, 2015), and our goal
is not to argue against those models or to provide a better
model. Instead, our goal is to demonstrate the possibility
that domain-general neural network models can learn from
large-scale, realistic datasets to solve analogy tasks. Second,
we have not directly compared our model performance with
human performance. It would be interesting to see how
human would respond to the analogy questions in the current
study and whether our model predictions align with human
data in the future.
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