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A B S T R A C T

Learning is important for honey bee fitness and the pollination services that they provide. Neonicotinoid pes-
ticides impair learning, fitness, colony health, and pollination, but most studies on how they affect bee learning
have focused on olfactory learning. We tested the effects of field realistic doses of 0.8 ng/bee and 1.34 ng/bee of
the neonicotinoid pesticide, thiamethoxam (TMX), on bee visual learning. We adapted a T-maze bioassay and
classically conditioned bees to associate sugar reward with a simulated flower color (blue or yellow light) in a
choice assay. At 1.34 ng/bee, TMX significantly reduced correct choices in the final learning trial as compared to
the control treatment. There was no TMX effect in our 1-h memory test. We found stronger effects on decision
time and abnormal behaviors. TMX decreased bee decision times, a potential byproduct of induced hyperactivity
since bees walked to make choices. Behaviors (falling, trembling, and rapid abnormal movements) were sig-
nificantly increased by both TMX doses as compared to the control treatment. These results suggest that the
effects of neonicotinoids on bee visual learning should be further studied and incorporated into Risk Assessment
protocols.

1. Introduction

Given the widespread use of neonicotinoids, a class of insecticides
that block nicotinic acetylcholine receptors (Tosi and Nieh, 2017) and
stimulate cholinergic neurons (Johnson et al., 2010), concern is
growing about their effects on pollinators such as the western hon-
eybee, Apis mellifera (Sanchez-Bayo and Goka, 2014). Honey bees can
provide important pollination services for natural and agricultural
ecosystems (Hung et al., 2018; Winfree et al., 2011) and their polli-
nation efficacy is enhanced by visual and olfactory learning. Bees learn
the appearance and odors of rewarding food to improve their searches
for the same floral species throughout the landscape (Dukas and
Visscher, 1994). Honey bees therefore have excellent visual and olfac-
tory memories (Avargues-Weber and Mota, 2016; Matsumoto et al.,
2012). However, multiple studies have now demonstrated that neoni-
cotinoid pesticides can harm honey bee (A. mellifera) learning and
foraging (Decourtye et al., 2013; Han et al., 2010), impairing colony
fitness and likely reducing their ability to pollinate (Lundin et al.,
2015).

Exposure to even small, field-realistic doses of imidacloprid can
harm olfactory A. mellifera learning (Yang et al., 2012). Some studies
show that neonicotinoids can decrease olfactory short-term memory
formation in foragers but leave long-term memory unaffected (Wright

et al., 2015). Other research demonstrates that both olfactory short-
term and long-term memory can be harmed (Williamson and Wright,
2013).

However, relatively few studies have examined the effects of neo-
nicotinoids on honey bee visual learning. A homing study of free-flying
bees showed that neonicotinoids impaired their abilities to use land-
marks and return to their nest, suggesting visual learning impairment
(Fischer et al., 2014). Han et al. (2010) tested pesticide effects on visual
learning and reported that honey bees fed pollen with imidacloprid had
impaired color learning in a T-maze. This relative lack of studies testing
if pesticides affect visual learning may arise because honey bee visual
learning is more robust when conducted with unrestrained, freely flying
bees (Avargues-Weber and Mota, 2016). Such tests are typically more
challenging to conduct than the laboratory assays used to study olfac-
tory learning. Reliable laboratory assays of visual learning are therefore
desirable because they enable easier testing of larger numbers of bees
under controlled conditions that do not depend upon favorable weather
(Avargues-Weber and Mota, 2016). The development and im-
plementation of risk assessment protocols by pesticide regulatory
agencies would thus be facilitated with such assays (Tosi and Nieh,
2019).

We focused on thiamethoxam (TMX), a neonicotinoid, that is used
on a wide range of crops, is one of the top three neonicotinoids used in
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the United States since 2012 (Bass et al., 2015), and is one of five
neonicotinoid pesticides increasingly detected in domestic and im-
ported food since 2014 (Craddock et al., 2019). The major breakdown
product of TMX, clothianidin, impairs honey bee memory (Tison et al.,
2019) and is highly toxic to insects (Nauen et al., 2003), which con-
tributes to the long-term environmental hazards of TMX (Kah et al.,
2018). Our goals were to test the effects of thiamethoxam on honey bee
visual learning and refine the lab-based T-maze assay of Han et al.
(2010) to improve its utility as a Risk Assessment tool. Finally, we
wished to further explore the effects of TMX on bee behavior because
thiamethoxam can impair honey bee locomotion (Tosi and Nieh, 2017),
and other nicotinic acetylcholine receptor agonists can increase the
number of abnormal bee behaviors (Tosi and Nieh, 2019). We therefore
hypothesized that thiamethoxam would increase abnormal honey bee
behaviors in the T-maze and reduce color learning and color memory.

2. Materials & methods

2.1. Study site and colonies

Experiments were conducted with ten honey bee colonies housed in
standard Langstroth hive boxes in Biology Field Station apiary
(32°53′07.9″N 117°13′55.1″W) at the University of California San
Diego, La Jolla, California, USA. Colonies were healthy as determined
by standard inspection techniques (Dietemann et al., 2013). Bees were
tested in a dark, temperature-controlled room (30 °C and 40% relative
humidity). We used this higher room temperature because preliminary
experiments showed that these conditions increased the motivation of
bees to consume the sucrose reward.

2.2. Ethics statement

All bees were treated accordingly to standard ethical guidelines
(Dietemann et al., 2013) in an apiary that is registered with the County
of San Diego and meets the requirements of the County and California
Food and Agricultural Code Sections 29101, 29040, and 29070. Control
bees were released back to their colonies, but pesticide-treated bees
were euthanized at 0 °C to avoid contaminating colonies.

2.3. Visual learning apparatus

We modified the T-maze bioassay developed by Han et al. (2010) to
test the effects of pesticides and GM products on A. mellifera visual
learning and behavior. We used LED lights as the visual stimulus in-
stead of filtered white light (Han et al., 2010) because LED light in-
tensity can more easily be adjusted and equalized. The intensity of these
lights (CO-RODE Amazon; yellow: 589–591 nm; blue: 460–465 nm) was
adjusted to 120 lux, as measured with a digital illuminance meter
(DrMeter, LX1220B) for blue and yellow light shining through the maze
tube (Fig. 1A). The maze consisted of clear plastic tubes (FORMUFIT
P001FGP-UV-5 schedule 40 clear PVC pipe, furniture grade, 2.54 cm
outer diameter, 2.5cm inner diameter, and matching clear F001TEE-UV
T fittings). Lights were mounted on a breadboard with 12 blue and 12
yellow lights alternating along each side. Each side had a switch that
controlled the color turned on. Bees were randomly selected for reward
conditioning to either blue or yellow light. The sides for these colors
were randomly determined at the start of the trials and the side asso-
ciated with the rewarded color was pseudo-randomly alternated
throughout the trials (see below).

Foragers were collected (captured in a clear plastic cage,
11 × 9 × 11 cm length × width × height, approximately 25 bees per
cage) from a 2.0 M sucrose feeder (prepared with analytical grade su-
crose with Milli-Q water) placed at the colony entrance. They were
group-fed 2.0 M sucrose to satiation (two 5.0 ml syringes provided per
cage), and then incubated overnight (32.5 °C and 60% relative hu-
midity) to equilibrate their hunger states (Avargues-Weber and Mota,

2016). Bees were then selected at random, each placed inside a separate
scintillation vial with a perforated cap and individually fed the treat-
ments by the experimenter with a Gilson micropipette: 2 μl of 50% pure
sucrose solution (w/w) or 2 μl of 50% sucrose solution containing either
0.8 ng or 1.34 ng TMX. The researcher visually verified that all bees
consumed the full dose. These bees were then incubated in the dark
(32.5 °C and 60% humidity) for 1 h (Tosi and Nieh, 2017).

2.4. Pesticide doses

We exposed bees to an acute dose of 0.8 ng TMX/bee (low dose) or
1.34 ng TMX/bee (higher dose). The low and higher dose experiments
were run sequentially. Both doses are sublethal and field realistic
(Henry et al., 2012; Tosi et al., 2017; Tosi and Nieh, 2017). The Eur-
opean Food Safety Authority (EFSA) estimated that foragers can con-
sume up to 1.80 ng TMX/bee in 1 h of foraging for nectar (10% sugar
w/w, oilseed rape contaminated with 15 ppb of TMX (EFSA, 2012; Tosi
and Nieh, 2017). In addition, foragers can imbibe up to 6.66 ng TMX/
bee/day while collecting nectar (with 5 ppb of TMX) from TMX seed-
treated plants such as oilseed rape (EFSA, 2012). Our higher dose of
1.34 ng TMX/bee is therefore closer to a worst-case scenario, whereas
the lower dose of 0.8 ng TMX/bee represents a more common field-
realistic exposure.

We prepared a 200 ppm TMX stock solution with Milli-Q water and
analytical grade 99.3% purity TMX (CAS#153719-23-43, Sigma
Aldrich 37924-100 MG-R) with an analytical lab balance. No acetone
was used, and the TMX completely dissolved. This solution was kept in
darkness (Eppendorf tubes covered with aluminum foil), frozen, and
defrosted at 4 °C when used. Serial dilutions were made with Milli-Q
water and reagent grade 50% sucrose solution (also made with Milli-Q
water). All researchers were blind to the identity of the solutions being
used. Solution identity was only revealed after all data had been col-
lected.

2.5. Maze learning procedure

To help improve learning, we used a learning pre-trial (method of
Dobrin and Fahrbach, 2012) in which bees learned to associate the
rewarded color with a food reward. Bees were introduced to the en-
trance of the apparatus under dim red light (which they have difficulty
seeing). Per bee, we randomly selected which color would be the con-
ditioned stimulus (CS). When the bee reached the maze arm with the CS
(no other color was turned on), it was rewarded with a 2.0 M sucrose
solution for 3 s of feeding, recaptured in the same vial it was released
in, and returned to the dark.

We then trained bees with six learning trials in which they had to
discriminate between two different light colors (10 min intertrial in-
tervals). When the bee entered the T-maze apparatus, both blue and
yellow lights were simultaneously turned on, at opposite ends of the
maze (Fig. 1A). One color was the CS that would be associated with
sucrose reward. The other was the non-rewarded stimulus. The side for
the CS was randomly chosen for the first trial and then alternated in a
pseudorandom sequence (different randomly chosen sequences for
which each color was always shown for three times on each side be-
cause we had six learning discrimination trials). A bee was only re-
warded if it reached the CS color (score = 1), defined as passing a
decision boundary that was 5 cm from the midpoint of the maze
junction (dashed lines in Fig. 1A). A bee that made the incorrect deci-
sion and chose the unrewarded light color (score = 0) had the incorrect
color light turned off after 5 s and therefore went to the correct light
(basic phototaxis) where it was rewarded. Decision time was measured
starting when a bee entered the apparatus and ended once it passed a
decision line (Fig. 1A). Bees generally did not make a choice after
5 min, and thus a bee that took longer than 5 min was recording as
having failed. This bee was gently captured in a vial and then released
and rewarded at the correct side and color.
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Fig. 1. Effects of TMX on visual learning of color. (A) The design of the apparatus is shown to scale for the learning trials (1–6) and the 1 h memory test in which bees
had to negotiate two arms of the maze (choice 1 and then choice 2). Dashed lines indicate decision boundaries. The photo shows a bee inside the maze. (B) The
proportion of correct choices made by bees in all learning trials and the 1 h memory test per reward color. The horizontal bar (*) shows significant learning in trial 6
vs. trial 1 for control bees (Tukey HSD test, P < 0.05). (C) In the last learning trial (trial 6), there was no effect of rewarded color, and thus the data were pooled.
Different letters indicate significant differences (Tukey HSD test, P < 0.05). Means and standard errors are shown in all plots.
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Bees that did not feed for two trials or failed to complete the maze
within 5 min per trial over two trials were excluded from our analyses
because they demonstrated little motivation to accept the reward or to
complete the learning experiment (Bitterman et al., 1983). Because
pesticide could have contributed to these failures, we also analyzed the
failure data.

One hour after these learning trials, we performed a memory re-
tention test in which bees had to sequentially navigate two T-mazes,
with the second attached to the first (Fig. 1A). Each bee also had only
5 min to complete this trial. The memory test was unrewarded and a
bee was only considered to have made a correct choice (score = 1) if it
correctly navigated both mazes. Incorrectly navigating either of the two
mazes was scored as incorrect (score = 0).

2.6. Abnormal behaviors

Three abnormal behaviors were scored during the experiment:
falling, trembling, and hyperactivity. These are defined and described
in detail in Table 1 and were chosen because they were common and
similar to those reported by Tosi and Nieh (2017) whose also studied
the effects of TMX on A. mellifera.

2.7. Statistics

To determine if pesticide affected the proportion of bees that suc-
cessfully completed their trials or died during trials, we ran two-tailed
Fisher's Exact 2 × 3 tests (http://vassarstats.net/fisher2x3.html) to
compare between the three treatment levels (0, 0.8, and 1.34 ng TMX/
bee).

We used JMP v. 13.0 statistical software and ran Repeated Measures
Mixed Models (REML algorithm) to test the effects of pesticide
(Matsumoto et al., 2012). We only included bees that completed all
trials. This excluded 53 bees (33%) from the analyses, but allowed us to
compare learning between all trials with a balanced sample size. We did
not exclude bees based upon their learning performance. For each of
these models, we used the following fixed effects (trial and dose) and
random effects (colony and bee identity). For all models, we first tested
all fixed effect interactions and then eliminated non-significant inter-
actions.

For visual learning, we first ran a separate model for each color and
then made comparisons with Tukey Honestly Significant Difference
(HSD) tests because Han et al. (2010) demonstrated that A. mellifera
foragers have an innate preference for yellow in their T-maze assay.
Based upon visual inspection of the data graphs, we then examined only
learning in the sixth and final learning trial (Mixed Model with colony
as a random effect and dose as a fixed effect). We first tested the effect
of color but pooled the data from both colors because color was not
significant. For our memory models, we only examined a single time
point per bee and therefore ran a Mixed Model separately for each
color, with colony as a random effect. For decision times and abnormal
behaviors, we used Repeated Measures Mixed Models (see above) with
both colors pooled because the first model showed no significant effect
of color. To test the potential effect of decision time (speed) on correct
choices (accuracy), we also used a Repeated Measures Mixed Models
with decision time, TMX treatment, trial, rewarded color, and all

interactions as fixed effects (colony as random effect). We used Tukey
HSD tests (all pairwise comparisons) and LS Means Contrast post-hoc
tests (limited comparisons) to make corrected pairwise comparisons,
with the choice of test determined by visual inspection of the data.

2.8. Data accessibility statement

All data are available on Zenodo.org at DOI 10.5281/ze-
nodo.3672157.

3. Results

In total, we used ten colonies and analyzed the data from 108 bees:
29 bees in the 0.8 ng/bee trials (low dose), 24 bees in the 1.34 ng/bee
trials (higher dose), and 55 bees in control experiments. Temperature
and humidity respectively averaged 29.6 °C ± 1.8 °C and
43.2% ± 8.3% (Mean ± SD).

Pesticide did not affect (Fisher's Exact 3 × 2 test, P = 0.458) the
percentage of bees that completed their learning trials: control (63%),
0.8 ng/bee (88%), and 1.34 ng/bee (55%). Our pesticide treatments
were sublethal and did not affect survival during the experiment:
control (99% survived), 0.8 ng/bee (97%), and 1.34 ng/bee (100%).

3.1. Bee visual learning

As expected, bees learned blue but not yellow (Fig. 1B). For blue as
the CS, they exhibited significant learning because correct responses
were higher in trial 6 than in trial 1 (Tukey HSD test, P < 0.05). They
did not significantly learn when yellow was the CS color (trial 1 vs. 6,
Tukey HSD test, P < 0.05).

Given the high variation in bee choices, we decided to take a sim-
pler approach and just compare choice in the sixth and final learning
trial. In this final learning trial, there were no significant effects of color
(F1,96 = 2.84, P = 0.095) or the interaction color x dose (F2,5 = 0.78,
P=0.51). However, there was a significant effect of dose (F2,58 = 4.33,
P = 0.018; Fig. 1C) such that higher dose bees had a significantly lower
proportion of correct choices as compared with control and low dose
bees (Tukey HSD test, P < 0.05). Colony accounted for< 1% of model
variance. Pesticide dose did not affect bee choices in the 1 h memory
test for either blue (F2,42 = 1.80, P = 0.18) or yellow (F2,42 = 0.59,
P = 0.56) as the CS color (colony accounted for< 4% of model var-
iances, Fig. 1B).

3.2. Decision time

Bees learned the navigate the maze more rapidly over multiple
trials. There was no significant effect of CS color on decision time
(F1,100 = 0.20, P = 0.659), and thus we pooled data from both colors.
Decision times significantly decreased with trial (trial effect:
F5,525 = 7.15, P < 0.0001; Fig. 2). In addition, control bees took
significantly longer to make decisions than higher dose bees
(F2,83 = 5.23, P = 0.0073; Fig. 2). The interaction dose x trial was not
significant (F10,515 = 0.80, P = 0.632). In trials 1, 2, 4, and 5, control
bees took significantly longer than pesticide-treated bees (LS Means
Contrast tests, F1,358≥4.40, P ≤ 0.037). Colony accounted for 3% of

Table 1
Abnormal behaviors of honey bees in the maze.

Monitored Activity Description

Falling A bee falling and turning onto its dorsum. Bees could often right themselves and resume walking normally after a fall. Each bee could therefore fall multiple
times per trial, and all falls were counted.

Trembling A bee continuously stumbling and rapidly vibrating its body while walking. Because this behavior generally lasted the entire trial, it was scored only once
per trial.

Hyperactivity Rapid abnormal movements (bee moved anomalously in multiple directions, not in a straight line) and rolling (bee rapidly and continuously turning and
spinning, usually because of loss of limb coordination).
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model variance.
The likelihood of correct choices was not significantly predicted by

decision time (F1,550 = 0.02, P = 0.90), trial (F5,527 = 2.12, P = 0.06),
or TMX treatment (F2,87 = 0.75, P = 0.47). However, there was a
significant effect of rewarded color (F1,101 = 18.00, P < 0.0001) be-
cause bees have an innate preference for yellow. No interactions were
significant (F10,535≤1.42, P ≥ 0.17) and colony accounted for less than
4% of model variance.

3.3. Abnormal behaviors

Pesticide increased the number of abnormal behaviors (Fig. 3).
Specifically, in trial 1, both low and higher dose bees had significantly
more abnormal behaviors than control bees (Tukey HSD test,
P < 0.05). There was a significant effect of trial because abnormal
behaviors decreased over time (trial effect, F6,629 = 11.82,
P < 0.0001). There were also significant effects of dose (F2,102 = 4.17,
P = 0.018), and the interaction trial x dose (F12,629 = 2.44,
P = 0.0042) on abnormal behaviors. There were no significant effects
of dose in any other trial (Tukey HSD test, P > 0.05). Colony ac-
counted for 13% of total model variance.

4. Discussion

In general, we found weak effects of TMX on bee visual learning.
However, bees learned to associate blue light with a sucrose reward:
control bees demonstrated improvement in the final learning trial (trial
6 vs. trial 1, Fig. 1B). Bees did not exhibit any significant learning with
yellow light as the reward, as expected (Han et al., 2010). The higher
pesticide dose (1.34 ng/bee) decreased correct choices in the final
learning trial as compared to the control or lower pesticide dose (0.8
ng/bee) treatments (Fig. 1C). Memory was not affected by pesticide
treatment. Stronger effects of TMX were revealed by examining bee
decision times and abnormal behaviors. Bees fed TMX had faster de-
cision times, perhaps reflecting a hyperactive state that can be induced
by TMX (Tosi and Nieh, 2017). Abnormal behaviors, particularly
falling, occurred at a significantly higher rate in TMX treated bees (both
doses) than in control bees, and there were more abnormal behaviors in
earlier trials, likely reflecting changing pesticide effects and behavioral
recovery over time.

4.1. Visual learning

The failure of our bees to learn the yellow light is not surprising
because the strong preference of bees for yellow (Han et al., 2010;
Zhang, 1996) appears in their first trial, in which 64% of our control
bees chose the yellow arm. Han et al. (2010) only trained bees to as-
sociate blue light with reward to demonstrate that bees could associate
a non-preferred color with a reward. In our study, we explored potential
learning for yellow as the CS, but, perhaps predictably, we found no
significant learning of yellow because the highest proportion of choice
for yellow light (68%) was only marginally higher than the 64% choice
for yellow shown in the first trial. In contrast, bees with blue as the CS
showed an increase from 32% entering the blue arm of the maze (ap-
proximately chance level) in the first trial to 75% blue choice in the
final learning trial (a significant 43% increase).

In our final learning trial, we were able to find a significant (but
albeit weak) effect of TMX: higher dosed bees (1.34 ng TMX/bee) de-
monstrated significantly fewer correct choices than control or low
dosed bees. This result agrees with prior research that TMX can reduce
honey bee olfactory short-term memory (Wright et al., 2015) and that
neonicotinoids can harm visual learning (Han et al., 2010). Because
bees generally learn better in free-flying visual assays than in restrained
or even lab-based walking assays of visual learning (Avargues-Weber
and Mota, 2016), this lack of a strong TMX effect on visual learning
could have arisen from the limitations of our assay. However, neoni-
cotinoids can impair olfactory learning without significantly harming
visual learning. Imidacloprid, thiamethoxam, and clothianidin (a me-
tabolite of thiamethoxam) did not impair the ability of free flying
bumblebees to form visual associations (Muth et al., 2019).

4.2. Decision time

Bees significantly decreased their decision times as the trials pro-
gressed (Fig. 2), likely because they became more familiar and learned

Fig. 2. Effect of TMX on the average time that each bee took to make a decision
per learning trial and in the 1 h memory test. Bars and asterisks show the results
of significant LS Means Contrast test (P≤ 0.037) between the control treatment
(0 ng/bee) and both pesticide treatments. Data from both reward colors are
pooled because there was no significant effect of color. Means and standard
errors are shown.

Fig. 3. Effect of TMX on the total number of abnormal behaviors (Table 1) per
trial. Different letters show significant differences (Tukey HSD test, P < 0.05).
In addition, the horizontal bars respectively show that abnormal behaviors
significantly declined for the 0.8 ng/bee dose (gray bar *) and the 1.34 ng/bee
dose (black bar *) in trial 6 as compared to trial 1 (Tukey HSD test, P < 0.05).
Means and standard errors are shown.
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how to better navigate the apparatus over time. Higher dose bees also
completed their trials significantly more rapidly than control bees. Si-
milarly, Tosi et al. (2017) found that TMX dosed bees took less time to
reach the top of a vertical phototaxis arena, perhaps because of pesti-
cide-induced hyperactivity (Tosi and Nieh, 2017). Our pairwise com-
parisons likewise show that dosed bees were faster than control bees
(Fig. 2).

It is relevant to consider potential speed-accuracy tradeoffs. In
Bombus terrestris, foraging bees sacrifice the accuracy of their destina-
tion for speed and vice versa (Chittka et al., 2003). In A. mellifera,
foragers made more accurate choices when they spent more time
making a foraging choice (Burns and Dyer, 2008). Our higher dose
TMX-treated bees were faster, but potentially less accurate since they
showed no learning (Fig. 1). However, the speed of decision-making did
not significantly predict choice accuracy. Only color predicted accu-
racy, with bees showing significantly more correct choices when yellow
was the rewarding color, reflecting innate bee preferences for yellow
(Han et al., 2010). It is possible that neonicotinoids can influence speed-
accuracy tradeoffs, but determining this requires experiments explicitly
designed to test this hypothesis.

4.3. Behavior

Bees fed TMX at low (0.8 ng/bee) or higher (1.34 ng/bee) doses had
significantly more abnormal behaviors than control bees. TMX ap-
peared to harm the ability of bees to walk. We observed multiple TMX-
fed bees that spent more time on their backs while trying to right
themselves. Similarly, Williamson et al. (2014) reported this “upside
down” behavior in bees fed TMX in sugar solution. In our study, bees
also exhibited higher levels of abnormal behaviors in earlier than later
trials. Tosi and Nieh (2017) similarly showed that TMX treated bees had
increased falling behavior, greater inability to climb towards the light,
and hyperactivity as compared to control bees 1 h after acute exposure
and that the effects of TMX on bee behavior changed over time. Within
1 h of an acute dose, bees showed excitation and increased flight
duration, distance, and velocity. However, chronic exposure (1 or 2
days) to TMX decreased flight duration, distance, and velocity (Tosi
et al., 2017). Many of the abnormal behaviors reported by Tosi et al.
(2017) are similar to the ones we observed (Table 1).

5. Summary

We provide the first confirmation, in a visual learning assay, that
field-realistic doses of TMX increase the number of abnormal behaviors
and the speed of locomotion, inducing apparent hyperactivity. These
results raise concerns about the impact of TMX and suggest the need for
additional studies on multiple bee species because visual learning plays
an important role in all pollinating bees. One of our goals was to im-
prove the visual learning assay developed by Han et al. (2010) for la-
boratory use. In general, visual learning with restrained bees or bees
maintained within the lab is difficult. With restrained bees, Dobrin and
Fahrbach (2012) were able to achieve maximum learning at around
40% after five trials. However, if only bees that showed good learning
are included, about 70% of bees learned after five trials. We did not
filter our data by learning ability, but instead simply eliminated bees
that did not complete all of their learning trials. For blue light as the
reward, we achieved 75% correct choices with control bees in the final
learning trial (trial 6), whereas Han et al. (2010) reported 60% correct
choices with control bees in their final learning trial (trial 3). Given our
assay modifications, particularly the introduction of a pre-trial, we
hoped for even stronger learning. However, our method does advance
the techniques for testing visual lab-based learning (Avargues-Weber
and Mota, 2016). Further improvements are necessary to reduce
learning variation and improve learning before this assay can become
sufficiently reliable for standard Risk Assessments.
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