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ABSTRACT OF THE DISSERTATION
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Professor Catherine Crespi-Chun, Chair

Missing outcome data are common in cluster randomized trials (CRTs) which can com-

plicate inference. Further, the missingness can occur due to dropout of individuals, termed

“sporadically” missing data, or dropout of clusters, termed “systematically” missing data, and

these two types of missingness could have potentially different missing data mechanisms. We

aimed to develop a well-performing and practical approach to handle inference in CRTs when

outcome data may be both sporadically and systematically missing. To this end, we first

examined the performance of four multilevel multiple imputation (MI) methods to handle

sporadically and systematically missing CRT outcome data via a simulation study. Our find-

ings showed that one multilevel MI method which uses the maximum likelihood estimates

obtained from a linear mixed model to draw missing values outperformed the others under

various scenarios. Using the best performing MI method, we developed methods for conduct-

ing sensitivity analysis to test the robustness of inferences under different missing at random

(MAR) and missing not at random (MNAR) assumptions. The methods allow for different
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MNAR assumptions for cluster dropout and individual dropout to reflect that they may

arise from different missing data mechanisms. We developed graphical displays to visualize

sensitivity analysis results. Our methods are illustrated using a real data application.
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CHAPTER 1

Introduction

Cluster randomized trials (CRTs) are trials in which clusters of individuals are random-

ized to different treatment arms. The clusters are naturally occurring or self-selected groups

such as schools, hospitals, or geographical areas, and outcomes are observed on the students,

patients, or residents within the clusters. CRTs can be used to compare interventions deliv-

ered at the cluster level or when individual-level randomization carries a risk of contamination

between the intervention and control conditions. The CRT design is a practical choice for

many interventions, such as new education programs in schools or workflow changes in hos-

pitals. The use of CRT designs has increased rapidly since the 1980’s (Moberg and Kramer,

2015). The NIH (2022) has reported that every 5 years from 1995 to 2015, the number of

PubMed abstracts identifying the use of CRTs has doubled.

Missing outcome data in CRTs are common. Missing outcome data in CRTs can occur

due to individual dropout, when some individuals within a cluster provide outcome data but

others do not. Alternatively, missing outcome data can occur due to cluster dropout, when

an entire cluster is lost to follow-up, resulting in missing outcomes for all of the individuals in

the cluster. Following other authors’ terminology, we refer to the former type of missingness

as sporadically missing data and the latter as systematically missing data (Audigier et al.,

2018; Jolani, 2018; Resche-Rigon and White, 2018). While systematically missing data are

less common, both types of missingness can be observed in the same study (Isensee et al.,

2012; Acosta et al., 2019). A systematic review of the presence and handling of missing data

in 86 CRTs from 2013-2014 found that 93% reported sporadically missing outcome data
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with a median of 19% of individuals missing an outcome (Fiero et al., 2016). Systematically

missing data was reported in 27 trials (31%) with a median of 7% of clusters missing all

follow-up data.

1.1 Missing Data Methods in CRTs

Although missing outcome data are common in CRTs, it is seldom handled in an optimal

manner. A systematic review by Fiero et al. (2016) found that among the 80 CRTs with

missing outcome data, complete case analysis, also known as listwise or casewise deletion,

was the most common method for handling the missing data (n = 44, 55%). While easy to

implement, complete case analysis has well-known disadvantages including reduced sample

size and power and the possibility of biased estimates (Little and Rubin, 2002; van Buuren,

2018; Enders, 2022). Small percentages of the trials used single or multiple imputation (8%

and 2%, respectively). None of the studies used a multiple imputation method designed

for multilevel data. A sensitivity analysis of the assumed missing data mechanism was only

performed for 14 trials (16%).

Multiple imputation (MI) is an alternative to complete case analysis that avoids reduced

sample size and power while providing inferences that reflect variability and uncertainty

due to the missing data, and allows for standard complete-data analysis methods to be

used (Little and Rubin, 2002; Harel and Zhou, 2007; Li et al., 2015). Inverse probability

weighting which is another popular method for handling missing data; however, multiple

imputation is often more flexible and efficient (Rubin, 1996; Carpenter and Smuk, 2021;

Little et al., 2022). Two of the most common MI approaches are joint modeling (JM) and

fully conditional specification (FCS). The standard JM and FCS approaches were created

for single-level data and are generally not appropriate for multilevel data. Multilevel MI

methods have been developed to handle sporadically missing data (Schafer and Yucel, 2002;

van Buuren and Groothuis-Oudshoorn, 2011; van Buuren, 2011) and data with both spo-
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radically and systematically missing values (Jolani, 2018; Resche-Rigon and White, 2018).

However, these methods are not commonly used in practice and applications to CRTs are

lacking. Huque et al. (2020) compared the performance of multilevel MI methods within

the context of CRTs with only sporadically missing outcome data. Audigier et al. (2018)

compared the performance of multilevel MI methods on covariates with sporadically and

systematically missing values in the context of meta-analysis. To our knowledge, the perfor-

mance of multilevel MI methods has not been evaluated for CRTs where outcome data are

sporadically and systematically missing due to individual and cluster dropout.

MI methods enable inference under a missing at random (MAR) assumption that the

missing values may depend on observed data but not on missing values (Little and Rubin,

2002). It is often prudent to conduct sensitivity analyses to evaluate the robustness of infer-

ences under various missing not at random (MNAR) assumptions that allow missing values

to depend on unobserved data. When a CRT has both individual and cluster dropout, the

mechanisms leading to the two types of dropout may be different. Hence it would be useful

to have sensitivity analysis approaches that allow for different missing data mechanisms for

individual and cluster dropout.

1.2 Motivating Examples

In this section we introduce two motivating examples. In Section 1.2.1 we discuss the ABC

Healthy Me study which first motivated the work presented in this dissertation. The outcome

data in this CRT were both systematically and sporadically missing, and the underlying

missing data mechanism was potentially different for the two types of dropout. We then

introduce the Korean Healthy Life Project study in Section 1.2.2. This CRT had a similar

study design and patterns of missingness as the ABC Healthy Me study, and we use it as

the real data application in Chapter 4.
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1.2.1 ABC Healthy Me

The University of California, Los Angeles (UCLA) partnered with the Child Care Re-

source Center (CCRC) to conduct the ABC Healthy Me study. This study is an NIH-funded

study (NIH/National Institute of Child Health and Human Development R01HD091136)

(Bastani, 2018). CCRC is a large, non-profit organization that works to ensure comprehen-

sive preschool experiences, particularly in low resource and diverse communities. The ABC

Healthy Me study is a CRT to test an intervention to decrease the prevalence of obesity

among preschool-aged children, implemented with a sample of largely Hispanic, preschool

students in Los Angeles County. The trial has a two-group design with cluster randomization

at the level of the preschool. The study includes preschools recruited in 4 cohorts over 4

instructional years between 2019 and 2023. Preschool students ages 24-60 months (baseline

collection falling on or before the child’s 5th birthday) were eligible for participation. Data

analysis for this study is ongoing.

Parents in recruited preschools were invited to participate in the ABC Healthy Me study.

For those who opted in to have data collected for their child and/or for themselves, baseline

data collection occurred at the beginning of the school year and included surveys (parents)

and height and weight measurements (children). Following baseline collection, intervention

sites participated in the intervention which included implementation of new school-wide poli-

cies, classroom curricula, and parent education programs related to nutrition and physical

activity. Follow-up data collection was planned to occur at the end of the 10-month instruc-

tional year and mirror baseline data collection. The primary outcome is child BMI z-score.

BMI z-scores are calculated from children’s age, sex, height, and weight. A BMI z-score is

the number of standard deviations a child’s BMI score is away from the mean (for their age

and sex) based on a reference population. BMI z-score was selected as an adiposity index

due to its extensive use in childhood obesity research (Braun et al., 2018; Mendoza et al.,

2014; Sadeghi et al., 2019).
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There were 48 preschools sites (25 intervention and 23 control) included in the study

across the 4 cohorts. The first and last cohorts occurred over the 2019-2020 and 2022-2023

school years, respectively. Parent consent was given and data were collected for 1136 eligible

students. The number of student participants per preschool ranged from 5-76 with an average

of 24 per site. We observed 1019 children at baseline and 837 children at follow-up. There

were 117 children who entered the study at follow-up and did not have baseline data.

Looking specifically at children who had baseline data collected but were missing follow-

up measurements, such dropout occurred at both the preschool and student level. At the

beginning of the COVID-19 pandemic, 3 control sites in cohort 1 dropped out of the study.

Baseline data were collected for these sites, but no follow-up data were collected. One cohort

2 control site also dropped out of the study after baseline data collection. Sixty of the 1019

children (6%) who had baseline height and weight data had systematically missing outcomes

due to these 4 sites dropping out. The remaining dropout (239 children, 23%) was sporadic,

occurring at the individual level with children leaving schools due to the pandemic (in cohorts

1 and 2) or for other reasons or being absent when measurements were collected. Individual

dropout and cluster dropout may be due to different mechanisms. While systematic dropout

was solely due to the COVID-19 pandemic, some cases of sporadic dropout occurred for other

reasons. Ultimately, 29% of the children for which we collected baseline data were missing

follow-up data. Table 1.1 gives the frequency of each type of missingness (systematic or

sporadic) among the sample of patients who had baseline data collected. Students missing

baseline data are not included in this table.

In addition to the children with missing follow-up measurements, we also observed 117

children (69 intervention and 48 control) with sporadically missing baseline data. This

occurred when children were absent at the time of baseline data collection or enrolled in

the school after baseline data collection. These children may have had less exposure to the

intervention. Age and sex values were also missing from the baseline data for 18 children.
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Table 1.1
Outcome missingness by treatment arm and overall for students with baseline data

Total
n

Missing
n (%)

Arm Clusters Individuals Clusters Individuals
Systematic Sporadic

Intervention 25 549 0 (0.0) 0 (0.0) 127 (23.1)
Control 23 470 4 (17.4) 60 (12.8) 112 (23.8)
Overall 48 1019 4 (8.3) 60 (5.9) 239 (23.5)

These variables are needed to calculate BMI z-score.

The planned analysis model for the ABC Healthy Me data is a linear mixed-effects model

(LMM) with a random intercept for school, but data analysis is still ongoing. Therefore, we

identified a different CRT conducted by UCLA, the Korean Healthy Life Project, that has

a similar study design and patterns of missingness as the ABC Healthy Me study data and

has already been published.

1.2.2 Korean Healthy Life Project

The motivating example that we use as the focus of our real data application is from

the Korean Healthy Life Project (KHLP) which was supported by NIH grant P01 CA109091

(Bastani et al., 2015). The KHLP was a two-arm CRT to evaluate a church-based interven-

tion to improve hepatitis B virus (HBV) knowledge and testing among Korean-Americans

in the Los Angeles area. The study was conducted between 2006 and 2012. In this study,

52 churches with Korean-American congregations were randomized to an intervention or a

control condition. The number of participants from each church ranged from 7-71 with an

average of 22 per church. Participants at churches assigned to the intervention attended a

group session on liver cancer and HBV testing, and participants at control churches attended

a session on physical activity and nutrition. Participants completed self-report surveys at

baseline and 6-month follow-up. The study had several outcomes of interest. For the pur-
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poses of this dissertation, we focus on HBV knowledge score, which was measured via a

9-item module and yielded a possible score of 0 to 9.

Although none of the churches dropped out of the study entirely, three churches, two in

the intervention arm and one in the control arm, hosted HBV-related events led by outside

organizations after baseline data collection. The outcomes of individuals from these churches

were thus considered to be contaminated and the investigators considered it advisable to

conduct analyses regarding these outcomes as missing. For our data application, we consider

these churches to have systematically missing outcomes. These three sites had a total of 130

participants, which was about 12% of the total of 1,123 participants. An additional 148

participants (13% of the total) had sporadically missing outcomes. Overall, 25% of the

participants had missing follow-up knowledge scores when outcomes at the three sites are

dropped. Table 1.2 summarizes missingness by treatment arm.

Table 1.2
Outcome missingness by treatment arm and overall

Total
n

Missing
n (%)

Arm Clusters Individuals Clusters Individuals
Systematic Sporadic

Intervention 26 543 2 (7.7) 103 (19.0) 75 (13.8)
Control 26 580 1 (3.8) 27 (4.7) 73 (12.6)
Overall 52 1123 3 (5.8) 130 (11.6) 148 (13.2)

In this study, individual dropout and cluster “dropout” due to contamination are clearly

due to different mechanisms. Hence in a sensitivity analysis evaluating the robustness of

inferences to assumptions about the missing values, it would be helpful to explicitly allow

for different assumptions about these two types of missing values.

This study also featured missing baseline knowledge scores as part of the study design.

Churches were randomized to receive either a short or long form of the survey at baseline.

The short form was given to 24 (46%) of the churches, 12 in each treatment arm, and
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did not include the 9-item knowledge score module. This resulted in systematically missing

baseline knowledge scores for 568 (51%) participants that were missing completely at random

(MCAR). While the main focus of this dissertation is handling missing outcome data, we also

consider how a missing baseline covariate affects the performance of the multiple imputation

methods.

To understand factors associated with missing outcomes, we compared the baseline de-

mographic characteristics among completers and those who only had baseline data. Al-

though cluster-level non-response is due to contamination, we refer to both cluster-level and

individual-level non-responders as “dropouts”. Dropouts with systematically missing out-

comes were more likely to be in the intervention arm, attend large churches, attend a church

in Koreatown, and be unmarried compared to completers. Dropouts with sporadic missing-

ness were more likely to attend small churches, have never been married, have been born

outside Korea, and were younger compared to completers (Table 1.3).

Bastani et al. (2015) found no statistically significant baseline demographic differences

between intervention and control participants. The distribution of knowledge score among

completers at baseline and follow-up by treatment arm is reported in Table 1.4. Mean knowl-

edge score at baseline was similar between groups. At follow-up, intervention participants

had a higher mean knowledge score by 0.5 units compared to control participants.

The KHLP study highlights the challenges created by missing data in a CRT. The target

analysis model is a LMM with a random intercept. Significant dropout at both the individual

level and cluster level make analyzing the data and obtaining reliable results challenging.

In this dissertation, we develop a well-performing and practical approach to handle infer-

ence in CRTs when outcome data may be both sporadically and systematically missing. To

do so, we first compare the performance of available multilevel MI methods in the context

of CRTs with both sporadically and systematically missing outcome data. We then develop

methods for conducting sensitivity analyses based on the best-performing method. The
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Table 1.3
Baseline demographics overall and by completion status

Characteristics Completer Dropout Total p-value
n (%) n (%) n (%)

Systematic Sporadic Systematic Sporadic
Treatment arm

Control 480 (56.8) 27 (20.8) 73 (49.3) 580 (51.6) <0.001 0.09Intervention 365 (43.2) 103 (79.2) 75 (50.7) 543 (48.4)
Size

51-200 351 (41.5) 0 (0.0) 73 (49.3) 424 (37.8)
<0.001 0.02201-900 297 (35.1) 0 (0.0) 55 (37.2) 352 (31.3)

900+ 197 (23.3) 130 (100.0) 20 (13.5) 347 (30.9)
Location

Koreatown 273 (32.3) 130 (100.0) 57 (38.5) 460 (41.0) <0.001 0.14Non-Koreatown 572 (67.7) 0 (0.0) 91 (61.5) 663 (59.0)
Age

Mean (sd) 46.3 (11.9) 45.4 (12.8) 42.1 (14.0) 45.6 (12.4) 0.58 0.001
Sex

Female 556 (65.8) 88 (67.7) 89 (60.1) 733 (65.3) 0.67 0.18Male 289 (34.2) 42 (32.3) 59 (39.9) 390 (34.7)
Marital Status

Married 661 (78.3) 86 (66.2) 93 (63.3) 840 (74.9)
0.01 <0.001Single 79 (9.4) 19 (14.6) 10 (6.8) 108 (9.6)

Never married 104 (12.3) 25 (19.2) 44 (29.9) 173 (15.4)
Missing 1 0 1 2

College graduate
No 387 (46.0) 60 (46.2) 73 (49.7) 520 (46.5) 0.97 0.41Yes 455 (54.0) 70 (53.8) 74 (50.3) 599 (53.5)
Missing 3 0 1 4

English fluency
Fluent 178 (21.1) 23 (17.7) 33 (22.4) 234 (20.9) 0.38 0.71Not fluent 667 (78.9) 107 (82.3) 114 (77.6) 888 (79.1)
Missing 0 0 1 1

Country of birth
Korea 821 (97.2) 128 (98.5) 138 (93.2) 1087 (96.8) 0.56 0.02US/Other 24 (2.8) 2 (1.5) 10 (6.8) 36 (3.2)

Income
<$30k 162 (23.3) 30 (29.1) 30 (28.8) 222 (24.6)

0.54 0.46$30k - $50k 196 (28.2) 28 (27.2) 25 (24.0) 249 (27.6)
$50k - $-80k 169 (24.3) 25 (24.3) 28 (26.9) 222 (24.6)
>$80k 168 (24.2) 20 (19.4) 21 (20.2) 209 (23.2)
Missing 150 27 44 221

Baseline knowledge
Mean (sd) 6.1 (1.5) 5.9 (1.8) 5.9 (1.8) 6.0 (1.6) 0.80 0.70
Missing 408 85 76 569

p-values based on Wilcoxon rank sum and chi-square tests comparing indicated dropouts to completers
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Table 1.4
Knowledge score distribution at baseline and follow-up by treatment arm

Control Intervention Total
Knowledge score mean (sd) mean (sd) mean (sd)
Baseline 6.1 (1.5) 6.0 (1.6) 6.0 (1.6)
Missing 310 259 569
Follow-up 6.3 (1.5) 6.8 (1.3) 6.5 (1.5)
Missing 100 178 278

sensitivity analysis approach is user-friendly and tests the robustness of inferences under dif-

ferent missing not at random (MNAR) assumptions regarding the missing data, allowing for

potentially different MNAR assumptions for sporadically and systematically missing data.

We restrict attention to continuous outcomes.

The rest of this dissertation is organized as follows. In Chapter 2 we introduce notation

and describe the multilevel MI methods that we evaluate, and we compare the performance

of those MI methods via a simulation study. Chapter 4 discusses the MNAR sensitivity

analysis methods we developed for evaluating the robustness of our MAR analysis, and we

apply the methods to our motivating example. Finally, in Chapter 5 we conclude with a

discussion.
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CHAPTER 2

Multiple Imputation Methods

The analysis of our motivating example described in Section 1.2.2 requires identifying

a MI method that is appropriate for use when the target analysis is a LMM and that

accommodates incomplete outcome data at both the cluster and individual level. In Section

2.1, we define various methods for MI of multilevel data.

Let Ynxp = (y1, . . . , yp) be a matrix containing data for a total of n units on p potentially

incomplete variables. Let k (k in 1, . . . , p) denote one of the p variables, i (i in 1, . . . , m)

denote the cluster index, and j (j in 1, . . . , ni) denote the index for individuals in cluster i.

Then yk denotes the kth variable and yki denotes the vector of variable values yk restricted

to individuals within cluster i. Let (yobs
k , ymis

k ) be the observed and missing parts of yk and

let Yobs = (yobs
1 , . . . , yobs

p ) and Ymis = (ymis
1 , . . . , ymis

p ). The response indicator matrix R

is a nxp matrix with elements rkij. If ykij is observed, then rkij = 1, and if ykij is missing,

then rkij = 0. If we define ψ as the parameters of the missing data model, then the missing

data model can be expressed as P(R |Yobs,Ymis,ψ).

Using this notation, the three missing data mechanism classes, missing completely at ran-

dom (MCAR), missing at random (MAR), and missing not at random (MNAR), can be de-

fined as follows (Rubin, 1976). The data are said to be MCAR if P(R = 0 |Yobs,Ymis,ψ) =

P(R = 0 |ψ). If P(R = 0 |Yobs,Ymis,ψ) = P(R = 0 |Yobs,ψ), the data are MAR. Lastly,

the data are said to be MNAR if P(R = 0 |Yobs,Ymis,ψ) does not simplify, meaning the

probability to be missing depends on the missing data itself.
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2.1 MI Methods for Linear Mixed Models

Our analysis model of interest is a linear mixed-effects model (LMM), a common model

for clustered data (Laird and Ware, 1982). Given our target analysis model, multilevel

MI methods using a LMM as the imputation model are of specific interest. Let yki be an

incomplete ni x 1 vector of continuous outcomes for the ni individuals in cluster i. The

imputation model with parameter θ = (β, G, Di) is

yki = Xiβ + Ziγi + ϵi,

γi ∼ N(0,G),

ϵi ∼ N(0,Di)

(2.1)

where Xi (ni × q) and Zi (ni × q′) are the design matrices for fixed effects and random

effects, respectively, β is the q-vector of regression coefficients of fixed effects, γi is the q′-

vector of random effects for cluster i, G (q′ × q′) is the between cluster covariance matrix,

and Di = σ2
i I(ni) (ni × ni) is the covariance matrix for observations within cluster i. It is

often assumed that the residual variance is equal for all clusters: σ2
i = σ2 (homoscedasticity).

Several extensions of the standard JM and FCS approaches to deal with multilevel data

have been proposed (Huque et al., 2020). Shafer and Yucel proposed a joint multivari-

ate linear mixed-effects model approach (JM-MLMM) (Schafer and Yucel, 2002). This ap-

proach uses a multivariate LMM to impute all incomplete variables. A FCS adaption of

the JM-MLMM approach (FCS-LMM) has also been developed (van Buuren and Groothuis-

Oudshoorn, 2011). The FCS-LMM method uses a LMM for imputing missing values in each

incomplete variable given all the others. When there is more than one incomplete variable,

rather than using a multivariate LMM, the method cycles iteratively through the univariate

LMM imputation models (one for each incomplete variable). Both of these methods assume

there is a constant residual variance across all clusters. van Buuren extended the FCS-LMM
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approach to allow for heteroscedastic (cluster-specific) residual variances (van Buuren, 2011).

We denote this approach as FCS-LMM-het.

The performance of the JM-MLMM, FCS-LMM, and FCS-LMM-het methods were com-

pared by Huque et al. (2020). The methods were used in the context of clustered data where

the outcome and a covariate are incomplete. When the analysis was a LMM with a random

intercept and a random slope associated with the incomplete covariate, the authors found

that FCS-LMM and FCS-LMM-het performed best in the estimation of regression param-

eters and variance components. The JM-MLMM method was incompatible with a LMM

with random intercepts and slopes if both the outcome and random-slope covariate were

incomplete.

For our purposes, the analysis model of interest is a LMM with a random intercept for

cluster. Because we are interested in data with a similar structure, pattern of missingness,

and analysis model as the data setting considered by Huque et al. (2020), the JM-MLMM,

FCS-LMM, and FCS-LMM-het models are good candidate methods to evaluate for our pur-

poses. However, since Huque et al. found that the JM-MLMM method performed similarly

or worse than the FCS methods, we chose to focus on FCS methods for this dissertation.

The FCS methods also allow for more flexibility when choosing imputation models for vari-

ables (Carpenter and Smuk, 2021; Little et al., 2022). Additionally, there are FCS method

extensions developed to deal with both sporadically and systematically missing data.

In the following sections, we describe each MI method that we considered in our simula-

tion study. A single-level imputation method was also included for the sake of comparison.

2.1.1 Single-Level MI Methods

Standard JM and standard FCS are designed for single-level data. The single-level meth-

ods have been applied to impute multilevel data by either ignoring the clusters or treating

them as fixed effects. It is known that the estimation of the intraclass correlation (ICC) is
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affected by both approaches (van Buuren, 2018). When ignoring clusters, the ICC is un-

derestimated. When treating clusters as fixed effects by using dummy variables, the ICC is

overestimated. The use of m− 1 dummy variables for m clusters can also reduce degrees of

freedom. In both cases, parameter estimates are often biased.

Although single-level MI methods are not expected to perform well in the context of

multilevel data, given that they are more familiar and widely utilized than multilevel MI

methods, there is interest in seeing how a single-level method performs compared to methods

that account for clustering. Therefore, we decided to include a standard FCS (FCS-stnd)

method that ignores clustering in our simulation study. This method was implemented

using the mice.impute.norm function of the mice R package (van Buuren and Groothuis-

Oudshoorn, 2011).

2.1.2 FCS-LMM

The FCS-LMM method, developed by van Buuren and Groothuis-Oudshoorn (2011), cy-

cles iteratively through the univariate LMM imputation models for each incomplete variable.

First, distributions of the parameters are simulated by Markov chain Monte Carlo (MCMC)

methods. Then, the imputed value is drawn from the conditional distribution of the missing

observations given the already drawn parameter values.

Let yk be a continuous incomplete variable vector. Under the MAR assumption, impu-

tations can be generated as follows:

1. Sample β∗ from P (β | yobs
k , γ, σ2)

2. Sample γ∗
i from P (γ | yobs

k , β∗, G, σ2)

3. Sample G∗ from P (G | yobs
k , γ∗)

4. Sample σ∗2 from P (σ2 | yobs
k , β∗, γ∗)
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5. Repeat step 1-4 until convergence

6. Sample ymis∗
k from p(ymis

k | yobs
k , β∗, γ∗, G∗, σ∗2).

Under the model in Equation 2.1, the imputation for yki, y∗
ki, is calculated by drawing

e∗i ∼ N(0, σ∗2I(ni)),

y∗
ki = Xiβ

∗ + Ziγ
∗
i + e∗i

(2.2)

where all parameters on the right-hand side of the equations are the values drawn from the

Gibbs sampler. This method was implemented using the mice.impute.2lpan function of the

mice package in R (van Buuren and Groothuis-Oudshoorn, 2011).

2.1.3 FCS-LMM-het

The FCS-LMM method above produces imputations under an LMM model that assumes

all clusters have the same within-cluster variance σ2. The FCS-LMM-het method, introduced

by van Buuren (2011), produces imputations under a more general LMM model in which

the within cluster variance σ2
i is allowed to vary over clusters. The Gibbs sampler for this

heterogeneous model replaces step 4 above with

4. Sample σ∗2
i from P (σ2

i |σ2
0, ϕ) ∼

σ2
0χ

2
1

ϕ

where σ2
0 and ϕ are hyperparameters specifying the location of prior belief about residual

variance σ2
i and a measure of variability of the variances σ2

i , respectively (Kasim and Rau-

denbush, 1998). The FCS-LMM-het method was developed as a more general version of the

FCS-LMM method which did not always produce good imputations for incomplete predictors

(van Buuren, 2018). This method was implemented using the mice.impute.2l.norm function

of the mice package in R (van Buuren and Groothuis-Oudshoorn, 2011).
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2.2 FCS Methods for Systematically Missing Data

The MI methods discussed above were developed to deal with data that are sporadically

missing values only. Methods that handle both sporadically and systematically missing data

have been developed by several authors. Snijders and Bosker (2011) proposed using the

maximum likelihood estimates (MLE) obtained from the univariate LMM to draw missing

values and Robitzsch and Grund (2021) extended the method to handle systematically miss-

ing values. We refer to this method as FCS-LMM-MLE. The method developed by Jolani

(2018) uses a Bayesian formulation of the univariate LMM to draw missing values. We use

the acronym FCS-GLM (GLM for “generalized linear model”) to reference this method. The

method developed by Resche-Rigon and White (2018) fits a two-stage estimator using only

clusters with sporadically missing data and then approximates the posterior distribution.

We refer to this method as FCS-2stage.

Generally, the imputation step in MI uses the predictive distribution P (Ymis|Yobs) to

obtain missing values. If we specify an imputation model with parameter θ = (β, G, σ2),

then missing values are obtained by:

1. Fitting the imputation model (2.1) to the observed data to obtain an estimate (MLE)

θ̂ = (β̂, Ĝ, σ̂2) and γ̂i.

2. Drawing θ∗ from P (θ|Yobs), its posterior distribution.

3. Drawing missing data according to P (Ymis|Yobs,θ∗).

The FCS-LMM-MLE, FCS-GLM, and FCS-2stage methods use different approaches for each

of these steps. All methods modify step 3 of this process to accommodate systematically

missing values. The value γ∗
i is drawn from a different distribution for clusters where yki is

systematically missing versus sporadically missing.
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2.2.1 FCS-LMM-MLE

The FCS-LMM-MLE method uses the maximum likelihood estimates (MLEs) obtained

from fitting a LMM to observed data in order to multiply impute missing values. The impu-

tation process can be broken into three steps with the third step designed to accommodate

systematically missing values. If we assume the error terms are homoscedastic, then the

imputation is performed as follows:

1. Fit the imputation model (2.1) to the observed data to obtain an estimate (MLE)

θ̂ = (β̂, Ĝ, σ̂2) and γ̂i.

2. Estimate θ∗ by:

• Drawing β∗ from N(β̂, var(β̂))

• Setting G∗ equal to the posterior variance of γi

• Setting σ∗2 = σ̂2.

3. Simulate P (ymis
k |Yobs,θ∗) by drawing:

• γ∗
i from N(0, Ĝ) for all clusters where yki is systematically missing

• γ∗
i from N(γ̂i,G

∗) for all clusters where yki is sporadically missing

• ymis
ki from N(Xiβ

∗ + Ziγ
∗
i , σ

∗2I(ni)).

The FCS-LMM-MLE method has been extended to binary variables but not to include the

heteroscedasticity assumption (Robitzsch and Grund, 2021). This method was implemented

using the mice.impute.2l.continuous function of the miceadds package in R (Robitzsch and

Grund, 2021).
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2.2.2 FCS-GLM

The FCS-GLM method uses an approximate Bayesian approach to multiply impute data.

Similar to the FCS-LMM-MLE method, a three step imputation process with the third step

designed to accommodate systematically missing values is used. Assuming the error terms

are homoscedastic, the imputation is performed as follows:

1. Fit the imputation model (2.1) to the observed data to obtain an estimate (MLE)

θ̂ = (β̂, Ĝ, σ̂2) and γ̂i.

2. Draw θ∗ from P (θ|Yobs), where the posterior distributions of the parameters are de-

rived using an approximate Bayesian formulation of the LMM based on non-informative

priors.

3. Simulate P (ymis
k |Yobs,θ∗) by drawing:

• γ∗
i from N(0,G∗) for all clusters where yki is systematically missing

• γ∗
i from P (γi|yobs

ki ,θ
∗) for all clusters where yki is sporadically missing

• ymis
ki from N(Xiβ

∗ + Ziγ
∗
i , σ

∗2I(ni)).

Exact specification of the posterior distributions and distributions from which γ∗
i is drawn

can be found in the Jolani (2018) paper. The method has been extended to binary variables

but not to include the heteroscedasticity assumption (Audigier et al., 2018). The authors

present the FCS-GLM method as a way to impute incomplete predictors. We examine how

this method performs for an outcome variable with both sporadically and systematically miss-

ing data. The FCS-GLM method can be implemented using the mice.impute.2l.glm.norm

function of the micemd package in R (Audigier and Resche-Rigon, 2021).
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2.2.3 FCS-2stage

The FCS-2stage method uses a FCS approach based on a two-stage estimator. Under

the case Xi = Zi, the imputation model (2.1) is rewritten as

yki = Xi(β + γi) + ϵi,

γi ∼ N(0,G),

ϵi ∼ N(0, σ2
i I(ni)).

(2.3)

Let βi = β + γi. At stage one, the two-stage estimator β̂i is fit by computing the

maximum likelihood estimator of a linear model separately within each cluster without sys-

tematically missing data:

β̂i = (XT
i Xi)

−1XT
i yki. (2.4)

At stage two, the results are combined using a multivariate random-effects meta-analysis

model:

β̂i = β + γi + ϵ
′
i (2.5)

where γi ∼ N(0,G) and ϵ′i ∼ N(0, σ2
i (X

T
i Xi)

−1). The parameters β and G can be estimated

by restricted maximum likelihood or by method of moments, which can be faster (Resche-

Rigon and White, 2018; Audigier et al., 2018). The imputation of yk is then performed as

follows:

2. Draw θ∗ according to the asymptotic posterior.

3. Generate P (ymis
k |Yobs,θ∗) by drawing:

• γ∗
i from N(0,G∗) for all clusters where yki is systematically missing

• γ∗
i conditionally on β̂i for all clusters where yki is sporadically missing
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• ymis
kij from N(xij(β

∗+γ∗
i ), σ

∗2
i ) for all j such that ykij, the observation j in cluster

i, is missing.

Details on the asymptotic posterior distributions for each parameter and the distributions

from which γ∗
i is drawn can be found in Resche-Rigon and White (2018) and Audigier

et al. (2018). The FCS-2stage method allows for heteroscedastic error terms and can be

extended to binary variables (Audigier et al., 2018). Unlike the FCS-GLM method, the FCS-

2stage method is presented as a way to impute incomplete predictor or outcome variables.

The method was implemented using the mice.impute.2l.2stage.norm function of the micemd

package in R (Audigier and Resche-Rigon, 2021).
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CHAPTER 3

Simulation Study
A simulation study was conducted with the goal of the identification of multiple imputa-

tion (MI) methods that work well for cluster randomized trials with both systematically and

sporadically missing outcome data. Performance of the MI methods described in Section

2.1 were compared for the various scenarios. In Section 3.1 we explain the simulation study

design, and in Section 3.2 the performance metrics for each MI method are reported.

3.1 Design of Simulation Study

We conducted a simulation study to evaluate the performance of the MI methods de-

scribed in Section 2.1 on data from a CRT with systematically and sporadically missing

outcome data, i.e., cluster and individual dropout. The simulated data were based on the

KHLP study. Each simulated data set consisted of 60 clusters (30 control and 30 interven-

tion) with 20 individuals per cluster. Each data set had 6 variables: subject identification

(ID) number, cluster ID number, treatment assignment (control or intervention), age, base-

line knowledge score, and follow-up knowledge score. Individuals indexed by j are nested

within clusters indexed by i. Values of age, treatment assignment (Ti), and baseline knowl-

edge score (knw0ij) were simulated based on their observed distributions in the KHLP data.

Follow-up knowledge scores (knw6ij) were generated using the model

knw6ij = (0.45 + γi) + 0.5Ti + 0.3knw0ij + ϵij (3.1)

where γi ∼ N(0, 0.04) is the cluster-specific intercept and ϵij ∼ N(0, 0.96).
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Missingness was introduced into the outcome under 4 scenarios: (i) sporadically and

systematically missing outcome values were both MCAR, (ii) sporadically and systemati-

cally missing outcome values were both MAR, (iii) sporadically missing were MCAR and

systematically missing were MAR, and (iv) sporadically missing were MAR and systemat-

ically missing were MCAR. When values were systematically MAR (i.e., cluster dropout),

missingness was dependent on treatment assignment. When values were sporadically MAR

(i.e., individual dropout), missingness was dependent on age. In all scenarios, 10% of the

outcome data were systematically missing and an additional 20% were sporadically miss-

ing. As described in Section 1.2.2, the KHLP study also had systematically missing baseline

knowledge scores that were MCAR by design. Therefore, we considered 4 additional scenar-

ios that featured baseline knowledge score systematically MCAR (from 23% of churches in

each arm) to the above scenarios.

In the imputation and analysis models, follow-up knowledge scores were regressed on

treatment assignment and baseline knowledge score. The models also included a random

intercept for church. Under the sporadically MAR scenarios, age was also included as a

covariate in the imputation model.

We evaluated the 6 MI methods described in Section 2.1. Three of the multilevel MI meth-

ods we considered allow for imputation of sporadically and systematically missing data: FCS-

LMM-MLE [mice.impute.2l.continuous ], FCS-GLM [mice.impute.2l.glm.norm], and FCS-

2stage [mice.impute.2l.2stage.norm]. We also examined FCS-LMM [mice.impute.2l.pan] and

FCS-LMM-het [mice.impute.2l.norm], which were designed for sporadically missing data;

however they can be used to produce imputations for entire clusters. For comparison, we

also performed full data analysis (analysis of the original data set before missing values were

introduced), complete case (CC) analysis (analysis after listwise deletion of the individuals

with incomplete data) and MI with FCS-stnd [mice.impute.norm], a common single-level MI

method that does not account for multilevel structure.
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We generated 200 complete data sets. We then introduced missing values to the outcome

variable under scenarios (i) - (iv) and applied the MI methods. For each MI method, we

created M = 5 imputed data sets for a given incomplete data set. We analyzed these imputed

data sets using the same analysis model. The 5 estimates of the model’s parameters and

standard errors were then pooled according to Rubin’s rules (Rubin, 1987).

The primary parameters of interest were the coefficient for treatment assignment βT , the

variance components σ2
site and σ2

error, and the ICC. We computed the ICC as σ2
site/(σ

2
site +

σ2
error). The ICC quantifies the degree to which outcomes within a cluster are correlated

and affects the standard error of the treatment effect estimator (Donner and Klar, 2000;

Moerbeek and Teerenstra, 2015). The ICC is also an important parameter in CRT sample

size calculations. Researchers planning new trials often look to existing literature for ICC

estimates. Therefore imputation methods should ideally preserve the true ICC.

The performance of the methods in estimating these parameters was assessed by the

average estimate, bias, percent bias, root mean squared error (RMSE), root mean square

of the estimated standard error (model SE), and the coverage of the associated confidence

interval. Let Q be the true value of a parameter. Then bias is the difference between the

expected value of the estimate and the true value, E(Q) − Q. Percent bias is defined as

100× |(E(Q)−Q)/Q|, and 5% is considered to be the reasonable upper limit (van Buuren,

2018). RMSE is defined as
√

(E(Q)−Q)2. Coverage is the proportion of confidence intervals

that contain the true value.

To assess the level of uncertainty in these results and to ensure that the use of 200

complete data sets provided a suitable level of precision, we calculated the Monte Carlo

standard error (MCSE) of the parameters of interest for each simulated scenario (Koehler

et al., 2009; White, 2010). The calculations were performed using the rsimsum package in

R (Gasparini, 2018).
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3.2 Simulation Study Results

In this section we report the simulation study results for the model with an incomplete

outcome and the model with both an incomplete outcome and covariate. The MCSEs for the

simulations are reported in Appendix A. The MCSEs of all parameters across all scenarios

were less than 0.04 suggesting that 200 was a sufficient number of replications to achieve

minimal uncertainty.

3.2.1 Incomplete Outcome

Tables 3.1 - 3.4 summarize results under missing data mechanism scenarios (i) - (iv). The

performance of each MI method was fairly consistent across the 4 scenarios. Every method

except FCS-2stage performed well for estimating βT ; the absolute percent bias was over 15%

for the FCS-2stage method and under 5% for all other methods. The FCS-GLM method

preformed best with regard to coverage with estimates between 93.5% - 94.5%. Coverage

was around 95% for the FCS-LMM-MLE method except under scenario (iv), for which the

coverage was 98%. Coverage ranged from 97% to 98% for the FCS-LMM and FCS-LMM-het

methods under all scenarios.

When estimating σsite, the absolute percent bias was over 5% for all methods except

FCS-LMM-MLE under all scenarios. The single-level FCS-stnd method and the FCS-GLM

method underestimated σsite while the other multilevel methods overestimated this param-

eter. The absolute percent bias was lowest for the FCS-LMM-MLE method, with values

under 5% for all scenarios. The FCS-2stage and standard FCS method had particularly high

absolute percent bias. This was expected for the standard FCS method because clustering

is not accounted for, and suggests the FCS-2stage method may not account for clustering

properly in the scenarios we considered. The absolute percent bias for CC analysis was over

5% for all scenarios. All methods performed similarly for estimating σerror, with absolute
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percent bias under 5%. Across all scenarios, the FCS-LMM-MLE method returned an ICC

estimate closest to the true value. The FCS-LMM-het and FCS-2stage methods were the

most computationally intensive, taking 1.9-2.2 seconds per data set.

3.2.2 Incomplete Outcome and Covariate

We considered 4 additional simulation scenarios in which both the outcome and a covari-

ate were incomplete. For each scenario, systematic missingness was introduced to baseline

knowledge score completely at random, as it was in our motivating example. The results can

be found in Tables 3.5 - 3.8. The FCS-LMM-het method did not run when the systematically

missing covariate was introduced. The results for the other methods were similar to those

observed when only the outcome was missing with one exception. Similar to when only the

outcome was missing, the FCS-2stage performed poorly at estimating βT and σsite across all

scenarios. However, the absolute percent bias when estimating σerror also exceeded 5% for

scenarios (ii) and (iv).

3.3 Discussion

The simulation study results suggest that the FCS-2stage and FCS-stnd methods do not

perform well when applied to CRT data with similar characteristics as the KHLP study data.

Both methods consistently yielded an absolute percent bias of over 25% when estimating σsite

with FCS-2stage overestimating and FCS-stnd underestimating the parameter. The FCS-

2-stage method also consistently underestimated βT . The bias obtained by the FCS-2stage

method is consistent with the findings of Audigier et al. and could be attributed to the small

cluster sizes (Audigier et al., 2018). Its performance might improve with larger cluster sizes.

The estimate of σsite was underestimated using CC analysis with an absolute percent bias

of over 5% for all scenarios. This may be due to the exclusion of clusters with systematically
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Table 3.1
Simulation results under the scenario with sporadically and systematically MCAR outcome

data. The true values are βT = 0.50, σsite = 0.2000, σerror = 0.9798, and ICC = 0.04.

Full CC FCS-
LMM

FCS-
LMM-

het

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

est 0.501 0.502 0.499 0.503 0.504 0.504 0.424 0.504
bias 0.001 0.002 -0.001 0.003 0.004 0.004 -0.076 0.004
% bias 0.207 0.448 -0.174 0.652 0.781 0.776 -15.15 0.726
model se 0.076 0.087 0.096 0.095 0.093 0.084 0.103 0.080
95% coverage 96.5 96.0 98.0 97.0 96.0 94.5 95.0 95.0
rmse 0.072 0.078 0.082 0.081 0.081 0.080 0.103 0.081
σsite

est 0.190 0.189 0.227 0.218 0.207 0.166 0.262 0.140
bias -0.010 -0.011 0.027 0.018 0.007 -0.034 0.062 -0.060
% bias -4.831 -5.341 13.27 9.199 3.320 -17.04 31.19 -30.12
σerror

est 0.981 0.982 0.981 0.983 0.993 0.983 0.982 0.991
bias 0.001 0.002 0.001 0.004 0.013 0.003 0.002 0.011
% bias 0.079 0.194 0.130 0.369 1.356 0.347 0.175 1.117
site ICC 0.038 0.038 0.052 0.049 0.044 0.030 0.068 0.021
average time
to MI one
data set (sec)

0.16 2.07 0.15 0.58 1.92 0.02
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Table 3.2
Simulation results under the scenario with sporadically and systematically MAR outcome

data. The true values are βT = 0.50, σsite = 0.2000, σerror = 0.9798, and ICC = 0.04.

Full CC FCS-
LMM

FCS-
LMM-

het

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

est 0.501 0.504 0.507 0.505 0.506 0.503 0.417 0.505
bias 0.001 0.004 0.007 0.005 0.006 0.003 -0.083 0.005
% bias 0.207 0.860 1.447 0.911 1.141 0.629 -16.62 0.935
model se 0.076 0.086 0.097 0.104 0.102 0.085 0.114 0.080
95% coverage 96.5 96.0 97.5 98.0 97.0 93.5 95.5 93.0
rmse 0.072 0.079 0.083 0.085 0.081 0.083 0.116 0.081
σsite

est 0.190 0.183 0.223 0.240 0.204 0.162 0.284 0.136
bias -0.010 -0.017 0.023 0.040 0.004 -0.038 0.084 -0.064
% bias -4.831 -8.255 11.60 19.88 1.940 -19.02 42.15 -31.79
σerror

est 0.981 0.982 0.981 0.994 0.992 0.984 1.012 0.992
bias 0.001 0.002 0.002 0.014 0.012 0.004 0.032 0.012
% bias 0.079 0.212 0.163 1.404 1.238 0.390 3.309 1.198
site ICC 0.038 0.037 0.051 0.057 0.043 0.029 0.074 0.020
average time
to MI one
data set (sec)

0.19 2.11 0.16 0.60 1.96 0.02
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Table 3.3
Simulation results under the scenario with sporadically MCAR and systematically MAR

outcome data. The true values are βT = 0.50, σsite = 0.2000, σerror = 0.9798,
and ICC = 0.04.

Full CC FCS-
LMM

FCS-
LMM-

het

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

est 0.501 0.505 0.499 0.504 0.506 0.504 0.419 0.505
bias 0.001 0.005 -0.001 0.004 0.006 0.004 -0.081 0.005
% bias 0.207 0.912 -0.168 0.776 1.211 0.881 -16.20 0.982
model se 0.076 0.087 0.097 0.097 0.106 0.086 0.105 0.081
95% coverage 96.5 97.5 98.0 98.0 96.5 94.0 94.0 95.0
rmse 0.072 0.083 0.085 0.085 0.087 0.087 0.111 0.086
σsite

est 0.190 0.189 0.226 0.223 0.210 0.167 0.265 0.141
bias -0.010 -0.011 0.026 0.023 0.010 -0.033 0.065 -0.059
% bias -4.831 -5.479 13.02 11.64 4.779 -16.46 32.69 -29.52
σerror

est 0.981 0.980 0.978 0.981 0.993 0.981 0.980 0.989
bias 0.001 0.000 -0.002 0.002 0.013 0.001 0.000 0.010
% bias 0.079 0.005 -0.161 0.169 1.348 0.100 0.016 0.970
site ICC 0.038 0.039 0.052 0.051 0.045 0.031 0.070 0.022
average time
to MI one
data set (sec)

0.17 2.09 0.15 0.60 1.95 0.02
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Table 3.4
Simulation results under the scenario with sporadically MAR and systematically MCAR

outcome data. The true values are βT = 0.50, σsite = 0.2000, σerror = 0.9798,
and ICC = 0.04.

Full CC FCS-
LMM

FCS-
LMM-

het

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

est 0.501 0.503 0.502 0.503 0.505 0.506 0.424 0.503
bias 0.001 0.003 0.002 0.003 0.005 0.006 -0.076 0.003
% bias 0.207 0.653 0.358 0.639 0.938 1.126 -15.26 0.649
model se 0.076 0.085 0.095 0.100 0.095 0.083 0.110 0.080
95% coverage 96.5 95.5 97.0 98.0 98.0 94.5 96.5 93.5
rmse 0.072 0.079 0.081 0.082 0.080 0.080 0.108 0.083
σsite

est 0.190 0.182 0.221 0.232 0.202 0.160 0.281 0.136
bias -0.010 -0.018 0.021 0.032 0.002 -0.040 0.081 -0.064
% bias -4.831 -8.887 10.49 16.00 0.813 -20.11 40.64 -32.16
σerror

est 0.981 0.982 0.981 0.992 0.991 0.983 1.013 0.991
bias 0.001 0.002 0.001 0.013 0.012 0.004 0.033 0.011
% bias 0.079 0.183 0.128 1.292 1.184 0.375 3.370 1.164
site ICC 0.038 0.036 0.050 0.053 0.042 0.028 0.073 0.020
average time
to MI one
data set (sec)

0.19 2.17 0.16 0.62 2.01 0.02
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Table 3.5
Simulation results under the scenario with sporadically and systematically MCAR

outcome data and a systematically MCAR covariate. The true values are βT = 0.50,
σsite = 0.2000, σerror = 0.9798, and ICC = 0.04.

Full CC FCS-
LMM

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

est 0.501 0.500 0.495 0.495 0.495 0.400 0.494
bias 0.001 0.000 -0.005 -0.005 -0.005 -0.100 -0.006
% bias 0.207 0.044 -0.987 -1.091 -1.036 -19.91 -1.299
model se 0.076 0.118 0.104 0.099 0.087 0.107 0.085
95% coverage 96.5 95.5 97.5 96.5 95.5 93.5 94.0
rmse 0.072 0.117 0.081 0.083 0.083 0.123 0.083
σsite

est 0.190 0.179 0.229 0.203 0.155 0.263 0.133
bias -0.010 -0.021 0.029 0.003 -0.045 0.063 -0.067
% bias -4.831 -10.47 14.45 1.618 -22.37 31.33 -33.60
σerror

est 0.981 0.983 1.007 1.021 1.011 1.006 1.017
bias 0.001 0.003 0.027 0.041 0.031 0.026 0.037
% bias 0.079 0.344 2.767 4.196 3.145 2.635 3.780
site ICC 0.038 0.037 0.050 0.040 0.026 0.065 0.018
average time
to MI one
data set (sec)

0.33 0.28 0.83 2.96 0.03
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Table 3.6
Simulation results under the scenario with sporadically and systematically MAR

outcome data and a systematically MCAR covariate. The true values are βT = 0.50,
σsite = 0.2000, σerror = 0.9798, and ICC = 0.04.

Full CC FCS-
LMM

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

est 0.501 0.507 0.497 0.496 0.498 0.399 0.499
bias 0.001 0.007 -0.003 -0.004 -0.002 -0.101 -0.001
% bias 0.207 1.351 -0.661 -0.706 -0.436 -20.21 -0.263
model se 0.076 0.118 0.105 0.108 0.087 0.117 0.084
95% coverage 96.5 95.5 98.0 97.5 94.5 94.0 95.0
rmse 0.072 0.123 0.087 0.086 0.082 0.128 0.084
σsite

est 0.190 0.175 0.227 0.208 0.151 0.287 0.126
bias -0.010 -0.025 0.027 0.008 -0.049 0.087 -0.074
% bias -4.831 -12.60 13.37 3.881 -24.60 43.26 -36.84
σerror

est 0.981 0.984 1.009 1.022 1.011 1.041 1.018
bias 0.001 0.004 0.030 0.042 0.032 0.062 0.038
% bias 0.079 0.401 3.031 4.306 3.227 6.297 3.909
site ICC 0.038 0.037 0.049 0.042 0.025 0.072 0.017
average time
to MI one
data set (sec)

0.37 0.30 0.88 3.20 0.04
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Table 3.7
Simulation results under the scenario with sporadically MCAR and systematically MAR

outcome data and a systematically MCAR covariate. The true values are βT = 0.50,
σsite = 0.2000, σerror = 0.9798, and ICC = 0.04.

Full CC FCS-
LMM

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

est 0.501 0.500 0.497 0.499 0.497 0.398 0.497
bias 0.001 0.000 -0.003 -0.001 -0.003 -0.102 -0.003
% bias 0.207 0.061 -0.543 -0.239 -0.578 -20.32 -0.615
model se 0.076 0.119 0.105 0.111 0.089 0.109 0.086
95% coverage 96.5 94.0 97.5 98.0 96.5 90.0 95.5
rmse 0.072 0.124 0.087 0.092 0.087 0.126 0.088
σsite

est 0.190 0.179 0.230 0.206 0.156 0.268 0.132
bias -0.010 -0.021 0.030 0.006 -0.044 0.068 -0.068
% bias -4.831 -10.64 15.13 2.771 -22.13 33.88 -33.88
σerror

est 0.981 0.982 1.006 1.019 1.010 1.004 1.016
bias 0.001 0.002 0.026 0.040 0.030 0.024 0.036
% bias 0.079 0.213 2.671 4.039 3.109 2.492 3.713
site ICC 0.038 0.038 0.051 0.041 0.026 0.068 0.018
average time
to MI one
data set (sec)

0.33 0.29 0.86 3.07 0.03
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Table 3.8
Simulation results under the scenario with sporadically MAR and systematically MCAR

outcome data and a systematically MCAR covariate. The true values are βT = 0.50,
σsite = 0.2000, σerror = 0.9798, and ICC = 0.04.

Full CC FCS-
LMM

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

est 0.501 0.505 0.499 0.494 0.496 0.403 0.496
bias 0.001 0.005 -0.001 -0.006 -0.004 -0.097 -0.004
% bias 0.207 0.975 -0.125 -1.119 -0.882 -19.47 -0.720
model se 0.076 0.117 0.104 0.099 0.086 0.115 0.083
95% coverage 96.5 94.0 98.0 98.0 93.0 93.0 94.0
rmse 0.072 0.122 0.085 0.086 0.086 0.122 0.083
σsite

est 0.190 0.171 0.222 0.203 0.149 0.280 0.126
bias -0.010 -0.029 0.022 0.003 -0.051 0.080 -0.074
% bias -4.831 -14.27 11.01 1.382 -25.70 40.16 -37.24
σerror

est 0.981 0.983 1.008 1.020 1.012 1.040 1.017
bias 0.001 0.003 0.028 0.040 0.032 0.060 0.037
% bias 0.079 0.279 2.884 4.098 3.256 6.094 3.825
site ICC 0.038 0.036 0.048 0.040 0.023 0.069 0.017
average time
to MI one
data set (sec)

0.37 0.31 0.89 3.24 0.03
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missing data. Smaller numbers of clusters tend to result in an underestimation of σsite (Maas

and Hox, 2004; Moerbeek and Teerenstra, 2015).

The FCS-LMM-MLE method outperformed the FCS-LMM and the FCS-LMM-het meth-

ods across all scenarios. While the FCS-GLM method returned coverage of the βT estimate

closest to 95%, the FCS-LMM-MLE method gave more accurate estimates of σsite. The

absolute percent bias for estimating σsite was lowest and under 5% using FCS-LMM-MLE.

This method also consistently took the shortest time to run among the multilevel MI meth-

ods. When introducing a systematically MCAR covariate, the FCS-LMM-het method did

not run but the performance of the other methods did not appreciably change. Based on

these findings and its other capabilities, we considered the FCS-LMM-MLE method as the

best performing of the methods we evaluated for our purposes.
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CHAPTER 4

Methods for Sensitivity Analysis

The MI methods described in Chapter 2 and evaluated in Chapter 3 assume that the

missing data are MAR. When data are MNAR, these methods may give biased results.

Therefore when there is uncertainty about the missing data mechanism, sensitivity analy-

ses under MNAR assumptions should be conducted to evaluate the robustness of inferences

(Little and Rubin, 2002; White et al., 2011a). In Section 4.1 we develop methods for con-

ducting sensitivity analysis for CRTs with sporadically and systematically missing outcome

data. The methods are then applied to the KHLP data in Section 4.2.

4.1 Methods for Handling MNAR Assumptions

The two common modeling frameworks for generating data under MNAR assumptions are

selection models and pattern-mixture models (Harel and Zhou, 2007; van Buuren, 2018; Fiero

et al., 2017). These two approaches decompose the joint distribution P (Y,R) in different

ways. Selection models (Heckman, 1976) decompose the joint distribution as the marginal

distribution of Y times the conditional distribution of R given Y, P (Y,R) = P (Y)P (R |Y).

Both P (Y) and P (R |Y) are unknown and must be specified. Selection models are sensitive

to these specifications and require strong assumptions to describe potential dropout patterns.

Pattern-mixture models (Glynn et al., 1986) decompose the joint distribution as the marginal

distribution of R times the conditional distribution of Y given R. The joint distribution
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can be expressed as a mixture of the distributions of Y for completers and dropouts:

P (Y,R) = P (Y |R)P (R)

= P (Y |R = 1)P (R = 1) + P (Y |R = 0)P (R = 0).

The probabilities P (R = 1) and P (R = 0) are the overall proportions of observed and

missing data, respectively. The distribution P (R = 1) of the completers can be modeled

after the observed data, but the distribution P (Y |R = 0) of the dropouts needs to be

specified.

Various selection and pattern-mixture modeling methods for handling MNAR data have

been developed. While existing methods range in complexity, many authors have advocated

for the use of simple and easily reproducible pattern-mixture model techniques to perform

sensitivity analyses under MNAR assumptions (Rubin, 1987; Little, 2009; van Buuren, 2018).

One such technique is introducing a shift parameter δ or a scale parameter k to imputed

values generated under a MAR assumption to derive MNAR imputed values. If we suppose

that the mean outcome among dropouts differs from that of completers by a constant δ, then

δ can be added to the MAR imputed values. Similarly if we suppose that the mean outcome

among dropouts and completers differs by some percentage (k × 100)%, we can multiply

each MAR imputed value by 1 + k. For example, if dropouts are suspected to have worse

outcomes by 20% and higher outcomes are worse, then we would set k = 0.2 and multiply

the imputed values by 1.2. This approach is attractive because it is a straightforward and

accessible way of performing sensitivity analysis under a variety of MNAR assumptions. The

impact of different assumptions on the study results is interpretable to both a statistical and

non-statistical audience.

Within the framework of MI methods, researchers have applied δ- and k-adjustments

to single-level data and longitudinal data (van Buuren, 2018; Leacy et al., 2017; Cro et al.,

2020). Fiero et al. (2017) explored using multilevel MI and a k-adjustment to handle missing
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continuous outcomes in a longitudinal CRT. They used MICE to perform multilevel MI then

multiplied imputed values by 1 + k to get MNAR imputed values:

(MNAR imputed Yi) = (1 + k)× (MAR imputed Yi). (4.1)

When MAR imputed values could be negative, a more general equation was used (Siddique

et al., 2012):

(MNAR imputed Yi) = [k × |MAR imputed Yi | ] + MAR imputed Yi. (4.2)

For missing outcomes in the control arm, they specified k = 0, which assumes that the

unobserved values of dropouts were similar to the observed values of trial completers. For

missing outcomes in the intervention arm, varying values of k were used to represent a range

of assumptions about dropouts. The researchers only explored sporadically missing data in

their simulations and applications.

4.1.1 Handling MNAR Assumptions with Cluster-Level Dropout

Building on Fiero et al. (2017), we develop approaches for applying the k- and δ-

adjustment methods to an outcome variable in a CRT with both sporadically and systemat-

ically missing values. Our approach allows for different MNAR assumptions for sporadically

and systematically missing values and integrates these into a multistep process. We use the

FCS-LMM-MLE multilevel MI method, which was the best performing method among the

evaluated methods in our simulation study. For k-adjustments, the algorithm is:

1. Use the FCS-LMM-MLE method to impute missing values under a MAR assumption.

2. Apply a scale parameter at the cluster level: Multiply the imputed values of individuals

whose missing outcomes are due to systematic missingness by a value of (1 + ksys).
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3. Apply a scale parameter at the individual level: Multiply the imputed values of indi-

viduals whose missing outcomes are due to sporadic missingness by a value of (1+kspr).

4. Analyze each multiply-imputed data set using a LMM and combine the results using

Rubin’s rules.

To implement the δ-adjustment method, the same process can be used, but the second and

third steps are replaced with:

2. Add a shift parameter at the cluster level: Add a value of δsys to the imputed values

of individuals whose missing outcomes are due to systematic missingness.

3. Apply a shift parameter at the individual level: Add a value of δspr to the imputed

values of individuals whose missing outcomes are due to sporadic missingness.

By distinguishing between steps 2 and 3, we are able to test how applying stronger or

weaker MNAR assumptions to systematically missing data compared to the sporadically

missing data affects inference.

Various assumptions about dropouts in each arm can be evaluated using this approach.

For example, we could assume that all systematically missing outcomes values are MAR.

For sporadically missing outcome values due to individual dropout, we could assume missing

outcome values in the control arm are MAR and missing outcome values in the intervention

are MNAR. Researchers applying this method can turn to subject matter experts to inform

the range of values for k or δ. Additionally, one can use tipping point analysis to test a range

of low and high values of k or δ until the statistical inference changes from what is observed

under the MAR assumption (Yan et al., 2009; Liublinska and Rubin, 2014). We illustrate

this using a real data application in Section 4.2.
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4.2 Application to KHLP Study

Our main focus in this dissertation is on missing outcomes in cluster randomized trials.

However, as noted in Section 1.2.2, our motivating example from the KHLP study also has

systematically missing baseline values of the outcome variable. We therefore applied two

analysis models to our motivating example: a model which includes baseline knowledge as

a covariate (and therefore had substantial covariate missingness), and a reduced model that

does not include the incomplete baseline knowledge variable as a covariate (and therefore

had missing outcomes only). This allowed us to evaluate a model with both an imputed

outcome and covariate and a model with only an imputed outcome. In both analysis models,

knowledge score at follow-up was the outcome variable and the model included treatment

assignment and a random intercept for church.

4.2.1 Application of FCS-LMM-MLE Method

The results for models with only an incomplete outcome and with an incomplete baseline

covariate and outcome are in Table 4.1. For the model including baseline knowledge, FCS-

LMM-MLE was used to impute both the incomplete covariate and the incomplete outcome.

For the model not including baseline knowledge as a covariate, FCS-LMM-MLE was used

to impute the incomplete outcome only. MAR was assumed. Two imputation models were

considered. The first imputation model only included treatment assignment as a predictor

(without auxiliary predictors). The second imputation model included treatment assignment

and the following predictors: church size, church location, age, and marital status (with

auxiliary predictors). Two participants with incomplete marital status data were excluded.

These auxiliary predictors were included in the model because they were found to predict

the follow-up knowledge score value or predict whether knowledge score was missing at

follow-up (White et al., 2011b). A random intercept for church was also included in all
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imputation models. We generated 10 imputed data sets. We include results from complete-

case analysis for comparison (excluding data from the contaminated churches which are

considered missing).

The parameters of interest were the mean difference in knowledge score between the con-

trol and intervention arms at follow-up (βT ) and the variance components σsite and σerror.

For the model with only incomplete follow-up knowledge data, complete-case analysis pro-

vided an estimate of βT that was closer to the null of no intervention effect and had a

smaller standard error compared to the FCS-LMM-MLE without auxiliary predictors re-

sults. When compared to the estimate under FCS-LMM-MLE with auxiliary predictors,

complete-case analysis gave an estimate of βT that was further from the null and had a

smaller standard error. The variance component σsite was smallest using FCS-LMM-MLE

without auxiliary predictors as was the ICC. The estimate of σsite and the ICC were largest

using FCS-LMM-MLE with auxiliary predictors. An explanation for this may be that when

site and demographic characteristics vary between sites and are included as predictors in the

imputation model, site heterogeneity is increased. In the simulation study, the estimate of

βT and its standard error were larger using FCS-LMM-MLE. The variance component σsite

and the ICC were also larger using FCS-LMM-MLE.

For the model with incomplete baseline and follow-up knowledge data, complete-case

analysis provided an estimate of βT that was closer to the null of no intervention effect

compared to the FCS-LMM-MLE results. The standard error of β̂T was smallest when

using FCS-LMM-MLE without auxiliary predictors and largest using FCS-LMM-MLE with

auxiliary predictors. The variance component σsite was smallest using complete-case analysis

as was the ICC. Comparing the estimate of σsite using FCS-LMM-MLE by imputation model,

we see that including auxiliary predictors increases the estimate of σsite. In the simulation

study scenarios where both baseline knowledge and the outcome were missing, the estimate

of βT and its standard error were smaller using FCS-LMM-MLE compared to complete-case

40



analysis. The same patterns for the variance components and the ICC were seen in the

simulation study.

The FCS-LMM-MLE method was implemented using the mice.impute.2l.continuous func-

tion of the miceadds package in R. The run-times were about 10 and 20 seconds for the

incomplete outcome model and incomplete outcome and covariate model, respectively.
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4.2.2 Sensitivity Analysis for KHLP Study

We conducted a sensitivity analysis with the KHLP study data to illustrate the process.

The sensitivity analysis applied k-adjustments and δ-adjustments to the MAR imputed val-

ues from the FCS-LMM-MLE method with auxiliary predictors to create MNAR values. We

allowed the value of the adjustment parameter to vary separately depending on whether the

imputed data were sporadically missing (kspr or δspr) or systematically missing (ksys or δsys).

For this illustration, we assumed dropouts in the control arm were MAR and dropouts

in the intervention arm were MNAR. In the KHLP study, the systematically missing values

were due to contamination and are therefore presumably MAR in both arms. We considered

a range of kspr and ksys or of δspr and δsys values that included a MAR value and increasingly

strong MNAR assumptions. We were interested in finding the tipping point, or point at

which inference for βT changed from what was observed under MAR.

k-adjustment

Within the intervention arm, the MNAR assumption was that knowledge score at follow-

up would be worse (lower) among dropouts compared to completers. Among individuals with

sporadically missing outcome data, we decreased the imputed values in the intervention arm

by increments of 10% from 0% to 50% corresponding to k = (0,−0.1,−0.2,−0.3,−0.4,−0.5).

The same range of values was considered for kspr and ksys.

The results of applying the k-adjustment are in Table 4.2 and Figure 4.1. For the model

including only an imputed outcome, when systematically missing data were assumed to

be MAR (ksys = 0), the tipping point occurred when we assumed sporadic intervention

dropouts had between 20% and 30% lower (kspr = −0.2 and kspr = −0.3) knowledge scores

compared to completers. When we assumed that systematically missing data were also

MNAR (ksys ̸= 0), the tipping point occurred at larger values of kspr. Once we assumed the

dropouts with sporadic missingness performed worse by 30% or more (1+kspr ≤ 0.7) or that
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dropouts with systematically missing data performed worse by 30% or more (1+ksys ≤ 0.7),

a significant intervention effect was no longer observed. The same pattern was observed for

the model with both imputed baseline and follow-up knowledge score data.
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δ-adjustment

Dropouts in the intervention arm were assumed to be MNAR with worse knowledge scores

at follow-up compared to completers. We pegged values of δ to the observed standardized

effect size among completers, which was 0.38 (calculated as β̂T divided by the pooled standard

deviation at follow-up of 1.44). Among individuals with sporadically missing outcome data,

we decreased the imputed values in the intervention arm by increments of the standardized

effect size (0.38) from 0 to 1.90 corresponding to δ = (0,−0.38,−0.76,−1.14,−1.52,−1.90).

The same range of values was considered for δspr and δsys.

The results of applying the δ-adjustment are in Table 4.3 and Figure 4.2. For the model

with only an imputed outcome, when systematically missing data were assumed to be MAR

(δsys = 0), the tipping point occurred when we assumed sporadic intervention dropouts

had lower knowledge scores by between 1.52 and 1.90 standard deviation units (δspr =

−1.52 and δspr = −1.90) compared to completers. When we assumed that systematically

missing data were also MNAR (δsys ̸= 0), the tipping point occurred at larger values of δspr.

Once we assumed the dropouts with sporadic missingness performed worse by 1.90 standard

deviation units or more (δspr ≤ −1.90) or that dropouts with systematically missing data

performed worse by 1.90 standard deviation units or more (δsys ≤ −1.90), a significant

intervention effect was no longer observed. When the δ-adjustment method was applied to

the model including an imputed baseline knowledge score covariate, a similar pattern was

observed as when applied to the model not including baseline knowledge score. However,

when systematically missing data were assumed to be MAR (δsys = 0), the tipping point

occurred when we assumed sporadic intervention dropouts had lower knowledge scores by

between 1.14 and 1.52 standard deviation units (δspr = −1.14 and δspr = −1.52) compared

to completers.
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Figure 4.1:
Heat map representing p-values obtained by k-adjustment application, with corresponding
treatment effects reported in each cell. Positive and negative treatment effects are denoted
by the green and red gradients, respectively. The green grid highlights combinations that

result in p-values < 0.05, with the staircase region indicating the tipping point.
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4.3 Discussion

Our k- and δ-adjustment sensitivity analysis methods are straightforward, accessible,

and return easily interpretable results. The application to the KHLP study data showed

how the two adjustment methods allow for the MNAR assumption to be conceptualized in

different ways by using a scale or shift parameter. Using the scale parameter k, we saw that

decreasing imputed values by increments of 10% returned a wider range of treatment effects

across MNAR assumptions, with the most extreme assumptions returning negative treat-

ment effects. The heat maps clearly illustrate that once dropouts (sporadic or systematic) in

the intervention arm were assumed to perform worse than completers by 30% or more, the

results are no longer significant. Using the shift parameter δ, even the most extreme MNAR

assumptions returned positive treatment effects when the imputed values were decreased

by increments of the observed standardized effect size of 0.38. The tipping point occurred

when dropouts (sporadic or systematic) in the intervention arm were assumed to perform

worse by 1.90 standard deviation units (5 times the observed standardized effect size) or

more compared to completers. Given that it is extremely unlikely that the dropouts had

such low scores, these findings suggest that under reasonable MNAR assumptions a positive

and significant treatment effect would still be observed. Researchers can choose which ad-

justment method and what range of values to use based on the MNAR assumptions they

want to evaluate and how they conceptualize the assumed difference between dropouts and

completers.

Implementing the k- and δ-adjustment sensitivity analysis was simple and not computa-

tionally expensive. R code to execute the sensitivity analysis process is provided in Appendix

B.
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Figure 4.2:
Heat map representing p-values obtained by δ-adjustment application, with corresponding
treatment effects reported in each cell. Positive and negative treatment effects are denoted
by the green and red gradients, respectively. The green grid highlights combinations that

result in p-values < 0.05, with the staircase region indicating the tipping point.
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CHAPTER 5

Discussion
Missing outcome data are common in cluster randomized trials. While multilevel multi-

ple imputation methods that account for clustering have become available, it has not been

clear which methods might be best to apply when a CRT has data that are both sporadi-

cally and systematically missing (Audigier et al., 2018; Huque et al., 2020). Our simulation

study results revealed that across the missing data mechanism scenarios and MI methods

we considered, the FCS-LMM-MLE method performed best at handling an outcome with

both sporadically and systematically missing data. While the FCS-LMM, FCS-LMM-het,

FCS-GLM, and even the FCS-stnd methods performed similarly when estimating the inter-

vention effect βT , the FCS-LMM-MLE method was better at estimating σsite, which is an

especially important parameter for CRTs. It yielded the lowest absolute percent bias, which

was under 5% across all scenarios.

The FCS-2stage method performed poorly in the scenarios that we considered. Audigier

et al. (2018) showed that the FCS-2stage method returned biased results when there were

small clusters in a data set. In particular, when imputing an incomplete continuous covariate,

cluster sizes of 25 or less resulted in biased estimates of the regression coefficient. Estimates

for the variance of random slope were biased when cluster sizes were less than 100. The

simulation study we conducted had only 20 individuals per cluster. Hence the observed poor

performance of the FCS-2stage method may have been due to small cluster sizes, and it is

possible that the method would perform better under scenarios with larger cluster sizes.

Many authors have reported that the between-cluster variance tends to be underestimated

when the number of clusters is small, with researchers defining “small” as anywhere from less
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than 50 to less than 100 (Busing, 1993; van der Leeden and Busing, 1994; van der Leeden

et al., 1997; Maas and Hox, 2004). In the simulation study we conducted, 10% of the 60

clusters had systematically missing data. Complete case analysis using data from the 54

fully or partially observed clusters resulted in estimates of σsite that were biased downward.

The bias may be attributable to the smaller number of clusters involved in the complete case

analysis.

We observed that for each method, the performance across the 4 missing data mech-

anism scenarios was similar. This suggests that the performance of any one method will

not be substantially different depending on whether missing outcome data are sporadically

and systematically MCAR, sporadically and systematically MAR, or MCAR for one type

of missingness and MAR for the other. Audigier et al. (2018) previously found that the

performance of FCS-GLM and FCS-2stage were similar whether sporadically missing covari-

ate data were MCAR or MAR, but they did not consider scenarios where systematically

missing data were MAR. Further, additionally imputing a missing covariate did not change

the performance of the methods. An exception was the FCS-LMM-het method, which did

not run in the presence of a systematically missing covariate.

Based on our findings, we recommend the use of the FCS-LMM-MLE method for a

continuous outcome variable in a CRT with both sporadically and systematically missing

values. Various authors have compared the performance of multilevel MI methods under

different scenarios (Audigier et al., 2018; Grund et al., 2018; Huque et al., 2020), but to our

knowledge the FCS-LMM-MLE method has not been evaluated in a similar way. FCS-LMM-

MLE can be implemented using the mice.impute.2l.continuous function in the miceadds R

package.

Application of the FCS-LMM-MLE method to the KHLP data showed that including

auxiliary predictors in the imputation model increased the estimate of σ2
site, the variance of

the site-level random effect. The demographic characteristics of cluster members and site
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characteristics varied between sites in the KHLP data. It is well known that including co-

variates in a multilevel model often changes the variance components (Snijders and Bosker,

2011). Here, including covariates in the multilevel imputation model appears to have in-

creased the estimate of σsite in the multilevel analysis model. The association between

auxiliary predictors and σsite should be considered when selecting variables for imputation

models and is an area that warrants further study.

We also developed approaches for conducting sensitivity analyses to evaluate the impact

of missing data mechanism assumptions on inference. The multistep k-adjustment process

that we describe facilitates sensitivity analysis under MNAR assumptions. A variety of

MNAR assumptions can be tested by using a range of values for k. While k- and δ-adjustment

methods have been applied to single level and longitudinal data (Liublinska and Rubin, 2014;

Leacy et al., 2017; Cro et al., 2020), we applied the methods to CRT data. Our approach

builds on Fiero et al. (2017) and allows the value of k to differ for systematically versus

sporadically missing outcomes, allowing for different MNAR assumptions for these two types

of missing data, which may have different mechanisms. We also describe a δ-adjustment

process with the same flexibility. Although methods beyond k- and δ-adjustments have been

developed to handle MNAR data (Carpenter et al., 2013; Galimard et al., 2016; Staudt et al.,

2022), these adjustment methods are straightforward, do not require complex coding, and

the impact of different MNAR assumptions on the results are easy to interpret. Liublinska

and Rubin (2014) proposed graphical displays to visualize the results of sensitivity analyses.

The heat maps we developed offer a visualization of the k- and δ-adjustment results. We

restricted the MNAR assumptions to the intervention arm in our real data application.

Other options include extending MNAR assumptions to the control arm and evaluating how

allowing assumptions to vary by arms and by type of missingness affects results.

The imputation methods we considered can be applied generally to multilevel missing

data, but more customized methods may be needed for some data structures. A two-stage
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MI approach, distinct from the FCS-2stage method that we have discussed, was developed

for situations where missing values fall into two qualitatively different types (Harel, 2007;

Reiter and Raghunathan, 2007). The two-stage MI approach puts missing values into two

groups and performs imputations by (1) imputing M1 imputations of the first group’s values

and (2) imputing M2 imputations of the second group’s values given the imputed values from

the first imputations. Harel (2007) suggested using two-stage MI to handle such situations

as longitudinal studies with dropout and intermittent missingness and surveys where some

questionnaires are fully unanswered whereas others are partially answered. Liu et al. (2016)

adopted an MI approach based on additive regression, bootstrapping and predictive mean

matching methods to handle sporadically and systematically missing accelerometer data.

Standard MI methods were a poor option due to the repeated measures hierarchical data

structure, complex patterns of missingness, and skewness of the data. More customized

methods such as these approaches could be considered for missing CRT data when standard

multilevel MI methods are not appropriate.

Further evaluation of how the MI methods presented here perform when applied to CRT

data should be conducted. Only incomplete continuous outcomes and covariates were con-

sidered. The FCS-LMM-MLE, FCS-GLM, and FCS-2stage methods can be used for binary

data. Future work could evaluate the performance of the methods in the presence of miss-

ing binary CRT data or a mix of missing continuous and binary CRT data. Other areas

of future work could include comparing the performance of multilevel MI methods under

different imputation and analytical models. The study design we simulated was balanced

with 60 clusters and 20 individuals per cluster and true ICC of 0.04. Future work might

evaluate the performance of the multilevel MI methods for unbalanced designs, smaller or

larger sample sizes, or higher ICCs.

This dissertation serves to fill a gap in the literature on missing data in CRTs. While

there is further research to be done, we identified FCS-LMM-MLE as an appropriate and
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well-performing MI method. We also developed a sensitivity analysis method that allows for

different MNAR assumptions based on the whether data are sporadically or systematically

missing.
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APPENDIX A - MONTE CARLO STANDARD ERROR

MCSE results for the simulation study

Table A.1
MCSE results under the scenario with sporadically and systematically MCAR outcome

data.

Full CC FCS-
LMM

FCS-
LMM-

het

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

bias 0.005 0.006 0.006 0.006 0.006 0.006 0.005 0.006
% bias 1.017 1.109 1.158 1.146 1.148 1.136 0.992 1.143
model se 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001
95% coverage 1.300 1.386 0.990 1.206 1.386 1.612 1.541 1.541
rmse 0.023 0.026 0.026 0.026 0.026 0.027 0.028 0.027
σsite

bias 0.003 0.004 0.003 0.003 0.004 0.004 0.003 0.003
% bias 1.533 1.859 1.379 1.562 1.927 1.877 1.358 1.427
σerror

bias 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002
% bias 0.151 0.173 0.173 0.182 0.173 0.175 0.179 0.173
MCSEs of the % bias and 95% coverage parameters are reported as percentages
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Table A.2
MCSE results under the scenario with sporadically and systematically MAR outcome data.

Full CC FCS-
LMM

FCS-
LMM-

het

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

bias 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006
% bias 1.017 1.124 1.175 1.202 1.142 1.169 1.138 1.148
model se 0.000 0.001 0.001 0.001 0.002 0.001 0.001 0.001
95% coverage 1.300 1.386 1.104 0.990 1.206 1.743 1.466 1.804
rmse 0.023 0.025 0.026 0.026 0.025 0.026 0.032 0.025
σsite

bias 0.003 0.004 0.003 0.003 0.004 0.004 0.003 0.003
% bias 1.533 2.141 1.501 1.668 2.001 2.040 1.540 1.529
σerror

bias 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002
% bias 0.151 0.180 0.186 0.193 0.187 0.184 0.204 0.188
MCSEs of the % bias and 95% coverage parameters are reported as percentages

Table A.3
MCSE results under the scenario with sporadically MCAR and systematically MAR

outcome data.

Full CC FCS-
LMM

FCS-
LMM-

het

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

bias 0.005 0.006 0.006 0.006 0.006 0.006 0.005 0.006
% bias 1.017 1.169 1.199 1.210 1.235 1.236 1.066 1.220
model se 0.000 0.001 0.001 0.001 0.002 0.001 0.001 0.001
95% coverage 1.300 1.104 0.990 0.990 1.300 1.679 1.679 1.541
rmse 0.023 0.025 0.025 0.026 0.026 0.026 0.031 0.026
σsite

bias 0.003 0.004 0.003 0.003 0.004 0.004 0.003 0.003
% bias 1.533 2.179 1.563 1.742 2.066 2.085 1.538 1.526
σerror

bias 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002
% bias 0.151 0.183 0.186 0.189 0.196 0.194 0.192 0.177
MCSEs of the % bias and 95% coverage parameters are reported as percentages
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Table A.4
MCSE results under the scenario with sporadically MAR and systematically MCAR

outcome data.

Full CC FCS-
LMM

FCS-
LMM-

het

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

bias 0.005 0.006 0.006 0.006 0.006 0.006 0.005 0.006
% bias 1.017 1.125 1.149 1.168 1.127 1.137 1.080 1.179
model se 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001
95% coverage 1.300 1.466 1.206 0.990 0.990 1.612 1.300 1.743
rmse 0.023 0.023 0.024 0.025 0.024 0.024 0.031 0.024
σsite

bias 0.003 0.004 0.003 0.003 0.004 0.004 0.003 0.003
% bias 1.533 1.978 1.493 1.612 1.857 1.833 1.496 1.484
σerror

bias 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002
% bias 0.151 0.183 0.186 0.195 0.194 0.188 0.203 0.180
MCSEs of the % bias and 95% coverage parameters are reported as percentages

Table A.5
MCSE results under the scenario with sporadically and systematically MCAR outcome

data and a systematically MCAR covariate.

Full CC FCS-
LMM

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

bias 0.005 0.008 0.006 0.006 0.006 0.005 0.006
% bias 1.017 1.656 1.153 1.174 1.179 1.019 1.172
model se 0.000 0.001 0.001 0.001 0.001 0.001 0.001
95% coverage 1.300 1.466 1.104 1.300 1.466 1.743 1.679
rmse 0.023 0.037 0.027 0.027 0.027 0.032 0.026
σsite

bias 0.003 0.005 0.003 0.004 0.004 0.003 0.003
% bias 1.533 2.659 1.357 1.939 1.922 1.447 1.501
σerror

bias 0.001 0.002 0.002 0.002 0.002 0.002 0.002
% bias 0.151 0.240 0.183 0.194 0.190 0.193 0.188
MCSEs of the % bias and 95% coverage parameters are reported as percentages
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Table A.6
MCSE results under the scenario with sporadically and systematically MAR outcome data

and a systematically MCAR covariate.

Full CC FCS-
LMM

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

bias 0.005 0.009 0.006 0.006 0.006 0.006 0.006
% bias 1.017 1.735 1.233 1.216 1.163 1.106 1.184
model se 0.000 0.001 0.001 0.002 0.001 0.001 0.001
95% coverage 1.300 1.466 0.990 1.104 1.612 1.679 1.541
rmse 0.023 0.036 0.027 0.026 0.025 0.034 0.026
σsite

bias 0.003 0.006 0.003 0.004 0.004 0.003 0.003
% bias 1.533 2.868 1.500 2.044 2.064 1.585 1.591
σerror

bias 0.001 0.002 0.002 0.002 0.002 0.002 0.002
% bias 0.151 0.250 0.187 0.193 0.188 0.209 0.192
MCSEs of the % bias and 95% coverage parameters are reported as percentages

Table A.7
MCSE results under the scenario with sporadically MCAR and systematically MAR

outcome data and a systematically MCAR covariate.

Full CC FCS-
LMM

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

bias 0.005 0.009 0.006 0.007 0.006 0.005 0.006
% bias 1.017 1.758 1.234 1.304 1.230 1.063 1.247
model se 0.000 0.001 0.001 0.002 0.001 0.001 0.001
95% coverage 1.300 1.679 1.104 0.990 1.300 2.121 1.466
rmse 0.023 0.038 0.026 0.027 0.026 0.034 0.026
σsite

bias 0.003 0.006 0.003 0.004 0.004 0.003 0.003
% bias 1.533 2.773 1.527 2.032 1.999 1.554 1.604
σerror

bias 0.001 0.003 0.002 0.002 0.002 0.002 0.002
% bias 0.151 0.257 0.193 0.214 0.203 0.205 0.200
MCSEs of the % bias and 95% coverage parameters are reported as percentages
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Table A.8
MCSE results under the scenario with sporadically MAR and systematically MCAR

outcome data and a systematically MCAR covariate.

Full CC FCS-
LMM

FCS-
LMM-
MLE

FCS-
GLM

FCS-
2stage

FCS-
stnd

βT

bias 0.005 0.009 0.006 0.006 0.006 0.005 0.006
% bias 1.017 1.734 1.200 1.215 1.224 1.032 1.170
model se 0.000 0.001 0.001 0.001 0.001 0.001 0.001
95% coverage 1.300 1.679 0.990 0.990 1.804 1.804 1.679
rmse 0.023 0.036 0.026 0.025 0.026 0.033 0.025
σsite

bias 0.003 0.006 0.003 0.004 0.004 0.003 0.003
% bias 1.533 2.838 1.432 1.773 1.847 1.457 1.470
σerror

bias 0.001 0.002 0.002 0.002 0.002 0.002 0.002
% bias 0.151 0.248 0.193 0.192 0.195 0.215 0.188
MCSEs of the % bias and 95% coverage parameters are reported as percentages
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APPENDIX B - R CODE

R code to execute the sensitivity analysis process

## MI libraries

suppressMessages(library(dplyr ))

suppressMessages(library(lme4))

suppressMessages(library(mice))

suppressMessages(library(miceadds ))

suppressMessages(library(mitml ))

## heatmap libraries

suppressMessages(library(ggplot2 ))

suppressMessages(library(tidyverse ))

suppressMessages(library(latex2exp ))

suppressMessages(library(RColorBrewer ))

### Simulate KHLP Study data ###

set.seed (1130)

# site -level variables

site.vars <- data.frame(site = seq (1:60) ,

group = sample(rep(c("Intervention", "Control"),

30)),

n_subs = rep(20, 60))

# subject -level data

# site ID

site <- 0

for (i in 1:60) {
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n_rows <- site.vars$n_subs[i]

site_id.i <- rep(i, n_rows)

site <- c(site , site_id.i)

}

site <- site[-1]

# subject ID

UniqueID <- "initiate"

for (i in 1:60) {

n_rows <- site.vars$n_subs[i]

kid_id.i <- c(1:n_rows)

kid_id.i <- sprintf("%02d", kid_id.i)

site.i <- sprintf("%03d", i)

kid_id.i <- paste("C", site.i, kid_id.i, sep = "-")

UniqueID <- c(UniqueID , kid_id.i)

}

UniqueID <- UniqueID [-1]

# sex , age , and baseline knowledge - based on KHLP Study distributions

sex <- sample(c("F", "M"), 1200, replace = TRUE , prob = c(.65, .35))

baseline_age <- rnorm (1200 , 46.63844 , 6.51258)

knowledge0 <- rnorm (1200 , 6.05492 , 1.49209)

dat.subj <- cbind.data.frame(site , UniqueID , sex ,

baseline_age , knowledge0)

dat.subj <- merge(dat.subj , site.vars , by = "site", all.x = TRUE)

dat.subj <- dat.subj %>%

arrange(site , UniqueID) %>%

mutate(male = ifelse(sex == "M", 1, 0),

intervention = ifelse(group == "Intervention", 1, 0)) %>%

dplyr:: select(UniqueID , site , baseline_age , knowledge0 ,
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sex , intervention)

# Generate BMI z-score data

# site effect

siteeff <- 999

for (i in 1:60) {

n_rows <- site.vars$n_subs[i]

site.ef.i <- rep(rnorm(1, mean = 0, sd = 0.04), n_rows)

siteeff <- c(siteeff , site.ef.i)

}

siteeff <- siteeff [-1]

reseff = rnorm (1200, 0, 0.96)

knowledge6_complete <- 0.45 + 0.5*dat.subj[, "intervention"] +

0.3*dat.subj[, "knowledge0"] + siteeff + reseff

dat.subj$knowledge6_complete <- knowledge6_complete

dat.subj.upd <- dat.subj %>%

dplyr:: select(UniqueID , site , knowledge0 , knowledge6_complete ,

intervention , baseline_age , sex)

##############################################################

## Randomly delete follow -up measurements: MAR cluster/MCAR individual

# MAR: Drop follow -up for random ~10% of sites dependent on group

dat.site <- site.vars %>%

mutate(control = ifelse(group == "Control", 1, 0))

x <- dat.site$control

logistic <- function(x) exp(x)/(1+ exp(x))

p2.marright <- 1 - logistic ( -2.75 + x)

r2.marright <- rbinom(dim(dat.site )[1], 1, p2.marright)
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site.drop <- dat.site[r2.marright ==0,]

sim.khlp <- dat.subj.upd %>%

mutate(knowledge6 = ifelse(site %in% site.drop$site , NA ,

knowledge6_complete ))

dropped <- c(1)

n.drop <- length(site.drop$site)

for (i in 1:n.drop) {

d <- site.drop$site[i]

v <- c((d*20 - 19):(d*20))

dropped <- c(dropped , v)

}

dropped <- dropped [-1]

# MCAR: Drop follow -up for random 20% of subjects

all.rows <- c(1:1200)

rm.rows <- all.rows[!all.rows %in% dropped]

subj.drop <- dat.subj.upd[sample(rm.rows , 240), ]

sim.khlp <- sim.khlp %>%

mutate(knowledge6 = ifelse(UniqueID %in% subj.drop$UniqueID , NA,

knowledge6 ))

##############################################################

### Multiple Imputation ###

# Create data set for imputation

khlp.imp <- sim.khlp %>%

mutate(missing = ifelse(is.na(knowledge6), 1, 0)) %>%

group_by(site) %>%

mutate(clst_missing = ifelse(sum(is.na(knowledge6 )) == 20, 1, 0)) %>%
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dplyr:: select(UniqueID , site , intervention , knowledge6 ,

missing , clst_missing)

# FCS -GLM: group as predictor

predMatrix <- make.predictorMatrix(data = khlp.imp)

impMethod <- make.method(data = khlp.imp)

# method for outcome variable

impMethod[c("knowledge6")] <- "2l.continuous"

# remove indicator variables from predictor matrix

predMatrix[, c("UniqueID", "missing", "clst_missing")] <- 0

# specify cluster indicator

predMatrix[, "site"] <- -2

# specify cluster indicators

cluster <- list()

cluster [["knowledge6"]] <- c("site")

# Imputation

# run mice

imp.grp <- mice(khlp.imp , method = impMethod ,

predictorMatrix = predMatrix , maxit = 20, m = 10,

levels_id = cluster , printFlag = FALSE)

# Analysis

# Fit model

implist.grp <- mids2mitml.list(imp.grp)

imp.fit <- lapply(implist.grp , FUN=function(x){

lmer(knowledge6 ~ intervention + (1| site),

data = x, REML = TRUE , control = lmerControl(optimizer ="bobyqa"))

})

65



# pool results

testEstimates(imp.fit , var.comp = TRUE)

##############################################################

### Sensitivity Analysis: k-adjustment and delta -adjustment ###

## k-adjustment: vary by level of missingness

range.k <- rev(seq(-.5, 0, by = .1))

m <- 10

n.k <- length(range.k)

# list of imputed data sets as one data frame

for (i in 1:m){

implist.grp[[i]]$imp_set = i

imp.i <- implist.grp[[i]]

if(i == 1){

imp.all <- imp.i

} else {

imp.all <- rbind(imp.all , imp.i)

}

}

# data set of imputed data sets

imp.mnar <- imp.all %>%

rename(knowledge = knowledge6) %>%

mutate(indv_missing = ifelse(missing == 1 & clst_missing == 0, 1, 0))

# function to set various values of k

k_value_assign <- function(data , k_sys , k_spr){
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imp.dat <- data

k_val <- ifelse(imp.dat$intervention == 1 &

imp.dat$clst_missing == 1, k_sys ,

ifelse(imp.dat$intervention == 1 &

imp.dat$indv_missing == 1, k_spr , 0))

}

# loop through all values of k_sys and k_spr to create all offset values

for (i in 1:n.k){

for (j in 1:n.k) {

k_adj <- paste0("k", j-1, ".", i-1)

imp.mnar[[k_adj]] <- k_value_assign(imp.mnar , range.k[i], range.k[j])

}

}

# loop through offset values to create all MNAR imputed values

for (i in 1:n.k){

for (j in 1:n.k) {

k_adj <- paste0("k", j-1, ".", i-1)

knw.mnar <- paste0("knowledge", j-1, ".", i-1)

imp.mnar[[knw.mnar]] <- abs(imp.mnar$knowledge)*imp.mnar[[k_adj]] +

imp.mnar$knowledge

}

}

imp.mnar <- imp.mnar %>%

dplyr:: select(-c(k0.0:k5.5))

implist.grp.mnar <- list()

for (i in 1:m){

implist.grp.mnar[[i]] <- imp.mnar %>% filter(imp_set == i)

}
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# Function: fit model

FUN.mnar <- function(dep.vars){

N <- length(dep.vars)

for(i in 1:N){

imp.fit.mnar <- lapply(implist.grp.mnar , FUN=function(x){

lmer(x[[dep.vars[i]]] ~ intervention + (1| site),

data = x, REML = TRUE ,

control = lmerControl(optimizer ="bobyqa"))

})

est <- as.data.frame(testEstimates(imp.fit.mnar)$est[c(2), c(1,2,5)])

est.1 <- sprintf("%.2f", round(est[1,1], 3))

ci <- sprintf("%.2f", round(c(est [1 ,1] -(1.96*est[2,1]),

est [1 ,1]+(1.96*est[2,1])), 3))

diff.1 <- paste(est.1, " (", ci[1], ", ", ci[2], ")", sep = "")

diff <- data.frame(grp_diff = est.1,

ci = paste("(", ci[1], ", ", ci[2], ")", sep = ""),

diff_ci = diff.1,

p_val = est [3 ,1])

if(i == 1){

diff.tab <- diff

}

else{

diff.tab <- rbind(diff.tab , diff)

}

i <- i + 1

}

diff.tab

}

# vector of all variable names

var.names <- colnames(imp.mnar)
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# cluster -level MAR: k = 0

knowledge.k0 <- var.names[grepl("knowledge \\d{1}.0", var.names)]

tab.grp.mnar.0 <- FUN.mnar(knowledge.k0)

# cluster -level MNAR: k = k1

knowledge.k1 <- var.names[grepl("knowledge \\d{1}.1", var.names)]

tab.grp.mnar.1 <- FUN.mnar(knowledge.k1)

# cluster -level MNAR: k = k2

knowledge.k2 <- var.names[grepl("knowledge \\d{1}.2", var.names)]

tab.grp.mnar.2 <- FUN.mnar(knowledge.k2)

# cluster -level MNAR: k = k3

knowledge.k3 <- var.names[grepl("knowledge \\d{1}.3", var.names)]

tab.grp.mnar.3 <- FUN.mnar(knowledge.k3)

# cluster -level MNAR: k = k4

knowledge.k4 <- var.names[grepl("knowledge \\d{1}.4", var.names)]

tab.grp.mnar.4 <- FUN.mnar(knowledge.k4)

# cluster -level MNAR: k = k5

knowledge.k5 <- var.names[grepl("knowledge \\d{1}.5", var.names)]

tab.grp.mnar.5 <- FUN.mnar(knowledge.k5)

# table of group differences and p-values under each MNAR assumption

tabk.grp.mnar <- cbind(tab.grp.mnar .0[,1], tab.grp.mnar .1[,1],

tab.grp.mnar.2[,1], tab.grp.mnar.3[,1],

tab.grp.mnar.4[,1], tab.grp.mnar .5[ ,1])

tabk.grp.mnar.p <- cbind(tab.grp.mnar .0[,4], tab.grp.mnar .1[,4],

tab.grp.mnar.2[,4], tab.grp.mnar.3[,4],

tab.grp.mnar.4[,4], tab.grp.mnar .5[ ,4])
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## delta -adjustment: vary by level of missingness

range.d <- rev(seq(-1.90, 0, by = .38))

m <- 10

n.d <- length(range.d)

# list of imputed data sets as one data frame

for (i in 1:m){

implist.grp[[i]]$imp_set = i

imp.i <- implist.grp[[i]]

if(i == 1){

imp.all <- imp.i

} else {

imp.all <- rbind(imp.all , imp.i)

}

}

# data set of imputed data sets

imp.mnar <- imp.all %>%

rename(knowledge = knowledge6) %>%

mutate(indv_missing = ifelse(missing == 1 & clst_missing == 0, 1, 0))

# function to set various values of delta

d_value_assign <- function(data , d_sys , d_spr){

imp.dat <- data

d_val <- ifelse(imp.dat$intervention == 1 &

imp.dat$clst_missing == 1, d_sys ,

ifelse(imp.dat$intervention == 1 &

imp.dat$indv_missing == 1, d_spr , 0))

}
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# loop through all values of d_sys and d_spr to create all offset values

for (i in 1:n.d){

for (j in 1:n.d) {

d_adj <- paste0("d", j-1, ".", i-1)

imp.mnar[[d_adj]] <- d_value_assign(imp.mnar , range.d[i], range.d[j])

}

}

# loop through offset values to create all MNAR imputed values

for (i in 1:n.d){

for (j in 1:n.d) {

d_adj <- paste0("d", j-1, ".", i-1)

knw.mnar <- paste0("knowledge", j-1, ".", i-1)

imp.mnar[[knw.mnar]] <- imp.mnar$knowledge + imp.mnar[[d_adj]]

}

}

imp.mnar <- imp.mnar %>%

dplyr:: select(-c(d0.0:d5.5))

implist.grp.mnar <- list()

for (i in 1:m){

implist.grp.mnar[[i]] <- imp.mnar %>% filter(imp_set == i)

}

# vector of all variable names

var.names <- colnames(imp.mnar)

# cluster -level MAR: d = 0

knowledge.d0 <- var.names[grepl("knowledge \\d{1}.0", var.names)]

tab.grp.mnar.0 <- FUN.mnar(knowledge.d0)
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# cluster -level MNAR: d = d1

knowledge.d1 <- var.names[grepl("knowledge \\d{1}.1", var.names)]

tab.grp.mnar.1 <- FUN.mnar(knowledge.d1)

# cluster -level MNAR: d = d2

knowledge.d2 <- var.names[grepl("knowledge \\d{1}.2", var.names)]

tab.grp.mnar.2 <- FUN.mnar(knowledge.d2)

# cluster -level MNAR: d = d3

knowledge.d3 <- var.names[grepl("knowledge \\d{1}.3", var.names)]

tab.grp.mnar.3 <- FUN.mnar(knowledge.d3)

# cluster -level MNAR: d = d4

knowledge.d4 <- var.names[grepl("knowledge \\d{1}.4", var.names)]

tab.grp.mnar.4 <- FUN.mnar(knowledge.d4)

# cluster -level MNAR: d = d5

knowledge.d5 <- var.names[grepl("knowledge \\d{1}.5", var.names)]

tab.grp.mnar.5 <- FUN.mnar(knowledge.d5)

# table of group differences and p-values under each MNAR assumption

tabd.grp.mnar <- cbind(tab.grp.mnar .0[,1], tab.grp.mnar .1[,1],

tab.grp.mnar.2[,1], tab.grp.mnar.3[,1],

tab.grp.mnar.4[,1], tab.grp.mnar .5[ ,1])

tabd.grp.mnar.p <- cbind(tab.grp.mnar .0[,4], tab.grp.mnar .1[,4],

tab.grp.mnar.2[,4], tab.grp.mnar.3[,4],

tab.grp.mnar.4[,4], tab.grp.mnar .5[ ,4])

## Heat map: k-adjustment

# Function: convert to tibble , add row identifier , and shape "long"
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FUN.df.plot_kadj <- function(data , parameter ){

df.plot <-

data %>%

as_tibble () %>%

rownames_to_column("k_spr") %>%

pivot_longer(-k_spr , names_to = "k_sys", values_to = parameter) %>%

mutate(k_spr = factor(k_spr , levels = 1:10) ,

k_sys = factor(gsub("V", "", k_sys), levels = 1:10)) %>%

mutate(k_spr_num = 1 - (as.double(k_spr) - 1)/10,

k_sys_num = 1 - (as.double(k_sys) - 1)/10) %>%

mutate(k_spr = factor(sprintf("%.1f", round(k_spr_num , 1))),

k_sys = fct_rev(factor(sprintf("%.1f", round(k_sys_num , 1)))))

df.plot

}

df.tx <- FUN.df.plot_kadj(tabk.grp.mnar , "tx_ef")

df.p <- FUN.df.plot_kadj(tabk.grp.mnar.p, "p_val")

df.plot <- merge(df.tx, df.p,

by = c("k_spr", "k_sys", "k_spr_num", "k_sys_num"))

df.plot <- df.plot %>%

arrange(desc(k_spr_num), desc(k_sys_num)) %>%

group_by(k_sys) %>%

mutate(tip_pnt = ifelse(p_val > 0.05 & lag(p_val) < 0.05, 1, 0)) %>%

mutate(tip_pnt = ifelse(is.na(tip_pnt), 0, tip_pnt))

# Function: heat map for k-adjustment results

FUN.plot.border_kadj <- function(data.plot , pos.color , neg.color ,

border.pos , border.neg ,

level_sys , level_spr){

heatmap.plot <-

ggplot () +
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# fill for positive difference

# when p-value >= .05

geom_tile(data = {data.plot %>% filter(tx_ef >= 0 & p_val >= 0.05)} ,

aes(x = k_sys , y = k_spr ,

# scale p-values for better legend readability

fill = p_val ^0.2676)) +

# when p-value < .05 add tile border

geom_tile(data = {data.plot %>% filter(tx_ef >= 0 & p_val < 0.05)} ,

aes(x = k_sys , y = k_spr ,

# scale p-values for better legend readability

fill = p_val ^0.2676) ,

color = border.pos , size = 1.2) +

geom_text(data = {data.plot %>% filter(tx_ef >= 0)},

aes(x = k_sys , y = k_spr ,

label = sprintf("%.2f", as.double(tx_ef) + 0)),

size = 4.5) +

# fill for negative difference

# when p-value >= .05

geom_tile(data = {data.plot %>% filter(tx_ef < 0 & p_val >= 0.05)} ,

aes(x = k_sys , y = k_spr ,

# scale p-values for better legend readability

fill = -(p_val ^0.2676))) +

# when p-value < .05 add tile border

geom_tile(data = {data.plot %>% filter(tx_ef < 0 & p_val < 0.05)} ,

aes(x = k_sys , y = k_spr ,

# scale p-values for better legend readability

fill = p_val ^0.2676) ,

color = border.neg , size = 1.2) +

geom_text(data = {data.plot %>% filter(tx_ef < 0)},

aes(x = k_sys , y = k_spr ,

label = sprintf("%.2f", as.double(tx_ef) + 0)),
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size = 4.5) +

# scale from 1 to 1

scale_fill_gradientn(name = "p-value",

breaks = c(-c(1, .5, .1, 0.05,

0.01, 0.001)^0.2676 ,

c(0, 0.001, 0.01,

0.05, 0.1, 0.5, 1)^0.2676) ,

labels = c("1.00", "0.50", "0.10", "0.05",

"0.01", "0.001", "0.00",

"0.001", "0.01", "0.05",

"0.10", "0.50", "1.00"),

limits = c(-1, 1),

colors = c(neg.color , pos.color),

guide = guide_colorbar(barwidth = 0.8,

barheight = 18)) +

scale_x_discrete(position = "top",

limits = level_sys) +

scale_y_discrete(limits = level_spr) +

ylab(TeX("(1 + $k_{spr}$)")) +

xlab(TeX("(1 + $k_{sys}$)"))

heatmap.plot

}

# set colors

pos.color <- c(rev(brewer.pal(6, "Greens")), "#FFFFFF")

neg.color <- c("#FFFFFF", brewer.pal(5, "Reds"))

# set levels for k values (order in which they appear in graph)

level_spr <- levels(df.plot$k_spr)

level_sys <- levels(df.plot$k_sys)
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FUN.plot.border_kadj(df.plot , pos.color , neg.color ,

"darkgreen", "darkred", level_sys , level_spr)

## Heat map: delta -adjustment

# Function: convert to tibble , add row identifier , and shape "long"

FUN.df.plot_dadj <- function(data , parameter , d_int){

df.plot <-

data %>%

as_tibble () %>%

rownames_to_column("d_spr") %>%

pivot_longer(-d_spr , names_to = "d_sys", values_to = parameter) %>%

mutate(d_spr = factor(d_spr , levels = 1:10) ,

d_sys = factor(gsub("V", "", d_sys), levels = 1:10)) %>%

mutate(d_spr_num = (as.double(d_spr) - 1)*-d_int ,

d_sys_num = (as.double(d_sys) - 1)*-d_int) %>%

mutate(d_spr = fct_rev(factor(sprintf("%.2f",

round(d_spr_num , 2) + 0))),

d_sys = factor(sprintf("%.2f", round(d_sys_num , 2) + 0)))

df.plot

}

df.tx <- FUN.df.plot_dadj(tabd.grp.mnar , "tx_ef", 0.38)

df.p <- FUN.df.plot_dadj(tabd.grp.mnar.p, "p_val", 0.38)

df.plot <- merge(df.tx, df.p,

by = c("d_spr", "d_sys", "d_spr_num", "d_sys_num"))

df.plot$d_sys <- factor(df.plot$d_sys ,

levels = c("0.00", levels(df.plot$d_sys )[ -10]))

df.plot$d_spr <- factor(df.plot$d_spr ,

levels = c(levels(df.plot$d_spr)[-1], "0.00"))
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df.plot <- df.plot %>%

arrange(desc(d_spr_num), desc(d_sys_num)) %>%

group_by(d_sys) %>%

mutate(tip_pnt = ifelse(p_val > 0.05 & lag(p_val) < 0.05, 1, 0)) %>%

mutate(tip_pnt = ifelse(is.na(tip_pnt), 0, tip_pnt))

# Function: heat map for delta -adjustment results

FUN.plot.border_dadj <- function(data.plot , pos.color , neg.color ,

border.pos , border.neg ,

level_sys , level_spr){

heatmap.plot <-

ggplot () +

# fill for positive difference

# when p-value < .05 add tile border

geom_tile(data = {data.plot %>% filter(tx_ef >= 0 & p_val < 0.05)} ,

aes(x = d_sys , y = d_spr ,

# scale p-values for better legend readability

fill = p_val ^0.2676) ,

color = border.pos , size = 1.2) +

# when p-value >= .05

geom_tile(data = {data.plot %>% filter(tx_ef >= 0 & p_val >= 0.05)} ,

aes(x = d_sys , y = d_spr ,

# scale p-values for better legend readability

fill = p_val ^0.2676)) +

geom_text(data = {data.plot %>% filter(tx_ef >= 0)},

aes(x = d_sys , y = d_spr ,

label = sprintf("%.2f", as.double(tx_ef) + 0)),

size = 4.5) +

# fill for negative difference

# when p-value >= .05
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geom_tile(data = {data.plot %>% filter(tx_ef < 0 & p_val >= 0.05)} ,

aes(x = d_sys ,

y = d_spr ,

# scale p-values for better legend readability

fill = -(p_val ^0.2676))) +

# when p-value < .05 add tile border

geom_tile(data = {data.plot %>% filter(tx_ef < 0 & p_val < 0.05)} ,

aes(x = d_sys ,

y = d_spr ,

# scale p-values for better legend readability

fill = p_val ^0.2676) ,

color = border.neg , size = 1.2) +

geom_text(data = {data.plot %>% filter(tx_ef < 0)},

aes(x = d_sys ,

y = d_spr ,

label = sprintf("%.2f", as.double(tx_ef) + 0)),

size = 4.5) +

# scale from 1 to 1

scale_fill_gradientn(name = "p-value",

breaks = c(-c(1, .5, .1,

0.05, 0.01, 0.001)^0.2676 ,

c(0, 0.001, 0.01,

0.05, 0.1, 0.5, 1)^0.2676) ,

labels = c("1.00", "0.50", "0.10", "0.05",

"0.01", "0.001", "0.00",

"0.001", "0.01", "0.05",

"0.10", "0.50", "1.00"),

limits = c(-1, 1),

colors = c(neg.color , pos.color),

guide = guide_colorbar(barwidth = 0.8,

barheight = 18)) +

scale_x_discrete(position = "top",
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limits = level_sys) +

scale_y_discrete(limits = level_spr) +

ylab(TeX(r’(${\ delta}_{spr}$)’)) +

xlab(TeX(r’(${\ delta}_{sys}$)’))

heatmap.plot

}

# set colors

pos.color <- c(rev(brewer.pal(6, "Greens")), "#FFFFFF")

neg.color <- c("#FFFFFF", brewer.pal(5, "Reds"))

# set levels for delta values (order in which they appear in graph)

level_spr <- levels(df.plot$d_spr)

level_sys <- levels(df.plot$d_sys)[c(6, 1:5)]

FUN.plot.border_dadj(df.plot , pos.color , neg.color ,

"darkgreen", "darkred", level_sys , level_spr)
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