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Abstract of The Dissertation 
Chromosomal scale length variations as a genetic risk score for predicting complex human 

diseases in large scale genomic datasets 

By 

Christopher En-Li Toh 

Doctor of Philosophy in Biomedical Engineering 

University of California, Irvine, 2021 

Professor James P. Brody, Chair 

Next generation sequencing has created large databases of human genomic 

information. Utilizing this information to understand disease and genetic risks is a large 

engineering task. Previous studies have focused primarily on single nucleotide polymorphisms 

(SNPs) in assessing patient risk for diseases such as cancers and other diseases such as 

Schizophrenia. These SNP panels do not consider epistatic interactions in the human genome. 

Chromosomal scale-length variation (CSLV) is a promising approach for assessing genetic 

risk scores. CSLV evaluates copy number variations (CNVs), condensing genomic information 

into a smaller number of parameters. Reducing parameters allows the use of machine learning 

without the need for millions of patients’ data. Machine learning can consider epistatic 

interactions that might be missed by conventional genome wide association studies (GWAS).  

Utilizing machine learning classification algorithms, we assessed prediction of diseases 

such as ovarian cancer and schizophrenia using CSLV as the sole features for prediction. We 

have demonstrated the viability of this method in assessing germline inheritance of complex 

human diseases in The Cancer Genome Atlas (TCGA) and UK Biobank. 
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We tested 33 different types of cancer from TCGA’s 11,000 patients. Glioblastoma 

multiforme (AUC = 0.87), ovarian cancer (AUC = 0.89), colon adenocarcinoma (AUC = 0.82), and 

breast invasive carcinoma (AUC = 0.75) could be distinguished greater than chance from 

cancers. 

These results were replicated the UK Biobank using 88 numbers computed from the 22 

autosomes for 1,534 women with breast cancer and a control population of 4,391 women 

without breast cancer and found a classifier with an AUC of 0.83.  

1,129 people from the UK Biobank have a diagnosis of schizophrenia. Using a 

randomized set of 1,129 individuals without schizophrenia we created 150 models using 92 

number CSLVs as our feature set. The results provided an average AUC of 0.545 (95% CI 0.539-

0.550). Our results indicate that CSLV data can provide an effective genetic risk score for 

schizophrenia.  

In conclusion, CSLV is a promising and novel way to utilize large scale human genetic 

information in the prediction off complex. Continued improvement of this technique can 

dramatically improve individualized patient care and can aid physicians in earlier diagnosis. 
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Chapter 1: Introduction 

 With the advent of next generation sequencing and rapid acceleration of computer 

technologies, biological and medical fields can directly benefit from the convergence of 

multiple disciplines. Utilizing genetic information in order to understand disease and genetic 

risks is a large engineering task1. Previous studies have focused primarily on single nucleotide 

polymorphisms (SNPs) as the primary feature of interest in assessing patient risk for diseases 

such as cancers and other possibly heritable diseases such as Schizophrenia2. However, these 

SNP panels do not consider epistatic interactions between various portions of the human 

genome3,4. 

 Next generation sequencing (NGS) technologies have exponentially increased the 

available data, while also drastically decreasing the cost1. However, finding methods to handle 

massive amounts of data is the next hurdle in engineering solutions which can aid in better 

clinical outcomes5. The objective is to find relevant clinical information which can be used in an 

actionable manner by physicians and patients alike6. 

In the past, Genome-wide Association Studies (GWAS) have largely focused on single 

nucleotide polymorphisms (SNPs) and were generally performed on somatic samples derived 

from patients7–10. However, it is difficult to achieve accurate predictive results for diseases such 

as cancers or schizophrenia. At most, a panel of associated gene mutations or genetic variations 

are the most common results of these studies2,8,10,11. As such risk scores derived from such 

studies typically do not perform well especially on an individualized basis for most patients. 
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GWAS derived risk scores for many diseases still struggle to achieve good results. For 

example, one test for breast cancer achieved an area under the curve (AUC) of 0.6812. Other 

studies that do not report an AUC typically report an odds ratio of 3.36 in the top 1% of 

women13. Current risk scores for schizophrenia perform similarly with an AUC of 0.6214. For 

ovarian cancer one risk score has an odds ratio of 1.77 for the upper quintile15. As such we aim 

to see if a risk score that does not rely on SNP panels can perform just as well or better. 

Interestingly there is also a recent study which found some genetic correlation between 

schizophrenia and breast cancer16. 

Chromosomal scale-length variation (CSLV) is a promising new approach for assessing 

genetic risk scores17. This method includes epistatic effects which might be missed by 

conventional genome wide association studies (GWAS). GWAS typically uses a linear 

combination of SNP scores to assess genetic risk. CSLV evaluates copy number variations (CNVs) 

across large sections of the human genome to obtain a comprehensive account of variations 

which may contribute to inheritance of disease risk.  

Utilizing modern machine learning classification algorithms, we assessed prediction of 

diseases such as ovarian cancer and schizophrenia using CSLV as the sole features for 

prediction. CSLV measures of a person’s genetic variation using copy number variation (CNV) as 

the basis for the measurement and examines this variation across the large sections of the 

Chromosomes. This means the test can be done through simple blood samples. Utilizing large 

databases such as The Cancer Genome Atlas (TCGA) and the UK Biobank, we have 

demonstrated the viability of this method in assessing germline inheritance of complex human 
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diseases. We utilized h2o, a machine learning framework and assessed the performance of 

several models, including general linear models (glm), gradient boosted machines (gbm), 

XGBoost, and stacked ensembles. 
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Chapter 2: Objectives and Specific Aims 

 Human genomes contain structural variations composed of repeats and deletions which 

are often defined as Copy Number Variation (CNV) 18. In terms of utilizing CNVs, we hypothesize 

that hereditary cancer disease risk is a result of many different CNVs interacting together in a 

highly nonlinear fashion. We also hypothesize that other complex diseases may also be affected 

by this network effect of hereditary CNVs. The hypothesis posits that CNVs create a network 

effect between each other, contributing to risk, and which we can accurately use to predict risk 

through machine learning models. This network effect may also include other genomic 

variations such as SNPs or methylation. However, we aim to demonstrate a significant 

contribution from CNVs alone. 

Objective 1 

 The primary objective of this study is to develop a method for using germline CNV 

information from large, public databases to predict diseases. We transform CNVs into 

Chromosomal Scale Length Variation (CSLV) values as a method of reducing dimensional 

complexity while attempting to retain the global CNV interactions across the entire genome. 

Objective 2 

 The next objective of this study involves studying complex diseases which may have an 

inherited or genetic risk component. We aim to determine if such diseases have genetic 

heritability due to CNVs across an individual person’s genomic landscape. 



5 
 

Objective 3 

 Objective 3 of this study is to develop machine learning techniques for the prediction of 

different types of diseases using CLSVs. These models would predict whether an individual has a 

higher risk for specific diseases due to inherited factors. Our models will aim to utilize high 

dimensional and non-linear relationships between hundreds of structural differences instead of 

the traditional panels of established, disease associated SNPs. A variety of machine learning 

algorithms exist, many of which originate in statistical and probabilistic theory 19. We will 

explore many different options to achieve the best predictive results and compare between 

models and techniques. 

Objective 4 

The next objective of this study aims to use the created models to explain how our 

models come to make their predictions. This objective will focus primarily on explaining how 

predictions are made, in order to gain biological insight into what CNV regions are most 

pertinent to a particular disease. 

Objective 5 

After creation of our machine learning models, we aim to compare our AUCs with 

existing genetic risk scores which exist for those specific disease cases. 

Objective 6 

The final objective of our study is to explore options for improving our risk score. To 

date, such platforms are in their infancy and are often for specific use cases 20–24. However, in 
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order to have clinical application, consistent performance is needed to ensure a reliable 

predictive outcome. 
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Chapter 3: Background of Artificial Intelligence in Genetic Predictions  

Copy Number Variations 

 One of the more interesting findings resulting from NGS technologies was the discovery 

of extensive genomic structural variations which include deletions, duplications, triplications, 

insertions, and translocations of sets of base pairs ranging in size between kilobase pairs (Kbp) 

to megabase pairs (Mbp) 25. Significant variations in human genomes occur which can overlap 

potentially thousands of genes—the full scope of which we do not fully understand due to the 

difficulty of identifying CNVs 1-50 Kbp in size 26. Oftentimes CNVs, many of which are hereditary 

in nature, affect genes implicated in complex human diseases [Appendix 1]. 

 Though regional hotspots of CNV deletions and duplications can arise in chromosomes, 

studies have shown that occurrence of CNV variations across multiple ethnic backgrounds still 

confounds studies, as CNVs could indicate evolutionarily ancient mutations and also complicate 

identification of common disease variations 18. Considering that CNVs are found in all 

individuals, experiments concerned with CNV in cancerous diseases have still largely focused on 

rare single region CNVs 27,28. Studies looking at germline CNVs also tend to focus on rare single 

region CNVs and most results are identifying single genes with CNVs associated to a particular 

cancer 29–34. 

 CNVs in germline blood samples may differ from somatic tumor CNVs. Though germline 

CNVs and somatic CNVs both may contain inherited information regarding common pathogenic 

diseases, drawing conclusions and correlations between such CNVs requires caution 35,36. 

Evidence suggests acquisition of CNVs later in life, possibly due to environmental factors 34. We 

will distinguish somatic CNVs (sCNV) from immediately inherited CNVs which we will call 
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germline CNVs (gCNV). Determination of such differences is still an active area of research and 

this study will aim to elucidate further evidence with the hope of confirming the findings in 

previous literature. 

Segment Mean, Log2R Values, and Genomic Addresses 

Segment means essentially contain the normalized CNV value across a segment of DNA. 

TCGA uses and defines segment mean as the value of log2 (
𝐶𝑁

2
), where CN=copy number of a 

specific segment of the genome. TCGA masks patient information and anonymizes the data by 

calculating segment means for very large portions of a genome, often for almost an entire 

chromosome. The data is provided as “Masked CNVs” after being processed with BirdSuite37,38. 

The dataset gives a genomic address to each segment mean, which indicates the chromosome 

number, the start base pair position, and end base pair position. Chromosome Y is not included 

for anonymization purposes in TCGA. 

These log2r values are also what exists in the UK Biobank flat text files. The UK Biobank 

has roughly 488,000 individuals while the total number of CNV values is 764,257 across the 22 

autosomes, an additional 18,857 CNV values for the X chromosome, and 691 CNV values for the 

Y Chromosome39,40. UK Biobank organizes files as space separated text files for each autosome 

and chromosome X. We did not utilize chromosome Y in our TCGA studies as TCGA does not 

provide Y chromosome data for anonymization purposes. 

Next Generation Sequencing 

 Next Generation Sequencing (NGS) platforms have rapidly been improving over the past 

decade 41. NGS methods and platforms have become an integral tool in genetic research, 

providing a wealth of information for researchers regarding the structural landscape of 
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genomes. The biggest improvements to these technologies are the speed and efficiency at 

which they can now sequence human genomes and as a result the decreasing cost many short-

read sequencing techniques have. Some sequencing platforms now fall well below $1,000 USD 

per gigabase pairs (Gbp) and have runtimes of less than a day 5. 

 Limitations still exist when sequencing cancer genomes. Cancer genomes are very 

diverse and complex between cancer types as well as between individuals 42. Studies have 

demonstrated that whole genome sequencing tends to have a higher error rate as the depth of 

coverage increases and unique or rare variants have an even higher rate of error (up to 6 %) 43. 

High sequence coverage still has an accuracy of over 95 %, but this accuracy is lower than most 

of the stated values for the platforms indicating possible systematic errors 44. In Illumina HiSeq® 

Platforms, which are the current standard for most sequencing techniques, studies indicate that 

additional data processing can reduce the errors through quality filtering 45. Therefore, 

population wide studies are still the gold standard for genetic studies regarding gene variants 

and identification of risk associated mutations for hereditary diseases. With large sets of data, 

researchers can utilize statistical methods to further reduce the error of incorrectly concluding 

that a mutation is an indicator of a complex human disease. 

Affymetrix Arrays 

 TCGA relies on Affymetrix SNP 6.0 array data to identify genomic regions of copy 

number variations46. TCGA relies on these platforms designed by the company Affymetrix which 

is owned in part by Thermo Fisher Scientific to harmonize and detect copy number variations 

based off of GRCh3847.  
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UK Biobank Axiom Arrays 

 The UK Biobank relies on the Axiom Array to probe locations of CNV interest. The 

resulting files are about 2,300 GBs in size or about 2 TB48,49. This information includes, normal 

SNP genotyping data, calls, confidences, intensities, etc. Downloads are done through UK 

Biobank’s Data Showcase which also works closely with the European Genome Archive (EGA). 

The exact number of genotypes is 488,377 participants50. 

Machine Learning 

 Machine learning has its roots and beginnings firmly planted in history. Alan Turing’s 

work in cracking the German Enigma machine became the basis for much of modern computer 

science. The Turing Test, which aims to see if artificial intelligence (AI) has become 

indistinguishable from human intelligence, is also named after him 51,52. Machine learning itself, 

is a subset of AI and was coined in the late 1950s by Arthur Samuel who published a paper on 

training computers to play checkers when he worked with IBM 53. 

By the late 1960s, researchers were already trying to teach computers to play basic 

games such as tic-tac-toe54. Eventually, the idea of neural networks, which were based on a 

theoretical model of human neuron connection and communication, was expanded into 

artificial neural networks (ANNs)55,56. These foundational works laid dormant for many years 

due to the impracticality and poor performance of the systems created. Computing technology 

had not yet advanced enough to reduce the computational time to a practical level. 

The modern computer era led to exponential increases in both computational power 

and data storage capacity. With the introduction of IBM’s Deep Blue and Google’s AlphaGo in 
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recent decades, several leaps in AI have shown the capacity of AI to solve real world, complex 

problems36,57. As such, the promise of machine learning has taken hold in almost every sector 

imaginable. 

The widespread adoption of machine learning can be mostly attributed to the 

availability of extremely large datasets and the improvement of computational techniques, 

which reduce overfitting and improve the generalization of trained models. These two factors 

have been the driving force to the rapid popularization and adoption of machine learning in 

almost every field today. This coupled with the increasing prevalence of interconnected devices 

or the Internet of Things (IoT) has created a rich infrastructure upon which to build predictive 

and automated systems. 

Machine learning is a primary method of understanding the massive influx of health 

data today. An infrastructure of systems to complement the increasing IoT infrastructure will 

undoubtedly rely heavily on these techniques. Many use cases have already shown enormous 

promise. How do these techniques work and how do they give us insight into seemingly 

unconnected information? 

 Experts in the field broadly split machine learning into supervised and unsupervised 

learning. Algorithms falling under both categories implement mathematical models, with each 

algorithm aiming to give computers the ability to learn how to perform certain tasks.  

Supervised Learning 

Supervised learning typically employs data known as training data. Training data has one 

or more inputs and has a “labeled” output. Models use these labeled results to assess 
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themselves during training, with the goal of improving the prediction of new data (i.e., a set of 

test data)58. Typically, supervised learning models focus on classification and regression 

algorithms 59. Classification problems are very common in medicine. For example, diagnosing 

patient involves a doctor classifying the ailment given a certain set of symptoms. The outcome 

can be an affirmative diagnosis that the patient has the diseases, or a negative diagnosis that 

the patient does not have the disease. Regression problems tend to look at predicting 

numerical results like estimated length of stay in a hospital given a certain set of data like vital 

signs, medical history, and weight. Another example is estimation of  

Common algorithms included in this supervised learning group are random forests (RF), 

decision trees (DT), Naïve Bayes models, linear and logistic regression, and support vector 

machines (SVM), though neural networks can also be trained through supervised learning60. 

Unsupervised Learning 

 Unsupervised learning involves presenting a dataset to learning model with no defined 

or expected outcome and allowing the model to cluster the data due to latent characteristics 

found in the data itself61. The data is considered unlabeled. Unsupervised learning does not 

typically have a desired outcome but rather returns groups based on latent differences in the 

dataset. What the grouping is based on is entirely based on how the learning model approaches 

the structure of the data. Some examples are k-means or k-medoids62, hierarchical clustering63, 

anomaly detection64, and certain deep learning algorithms. 

Algorithms 

 In this section, we will focus on the main algorithms in question which we will utilize and 

study for the prediction of complex diseases using our CSLV techniques. 
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Generalized Linear Model 

 Generalized Linear Model (GLM) is a set of models including Gaussian regression, 

Poisson regression, binomial regression for classification, fractional binomial regression, 

quasibinomial regression, multinomial classification, gamma regression, ordinal regression, 

negative binomial regression, and Tweedie distribution. These models can be either 

classification or regression65–67. There are several methods for regularization of GLM models to 

prevent overfitting including ridge regression and least absolute shrinkage and selection 

operator (LASSO)68. 

 The typical method for finding optimal regularization for GLM models is to perform grid 

searches over two parameters known as α and λ. The α parameter controls the distribution 

between LASSO and ridge regression where α of 1.0 represents LASSO and α of 0.0 represents 

ridge regression. The parameter known as λ controls the amount of applied regularization 

where λ of 0.0 means no regularization is applied to the GLM model at all68. Data does not to be 

sorted for these models nor does it need to perform any special handling of imbalanced data. 

Distributed Random Forest 

 Random forests are a form of decision trees but are an ensemble set of independently 

trained decision trees. The resulting predictions of the trees are typically averaged to get a 

better end result and prediction63. Each tree is built by using a random sample of the data with 

replacement and at each candidate split a random subset of features are also selected. This 

prevents each learner or tree from focusing too much on apparently predictive features of the 

training set which may not be predictive on new data. In other words, it increases 

generalization of the model. Random forests can have hundreds or even thousands of trees and 
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work fairly well on noisy data69. The model created from aggregating results from multiple trees 

trained on the data will give a prediction that can be assessed using test data. 

Gradient Boosting Machine and CART Models 

 We decided to explore Classification and Regression Tree (CART) models—more 

commonly known as Decision Trees. Decision Trees provide an easily interpretable model after 

training and have the same predictive power on our disease data, providing some insight into 

distinguishing features between the populations in the dataset 70. In many ways ANNs are 

essentially intertwined decision trees, organized in layers to mimic a biological “neuron” or 

perceptron as the machine learning field calls them. ANNs still benefit disease genomics 

research 7,71. However, we believe interpretability is valuable as the focus of our studies is 

exploring the differences in inherited genomic landscape between diseases. 

 The topic of gradient descent and boosting, or gradient boosting, is foundational to 

modern implementations of CARTs. Gradient Boosting Machines or Gradient Boosted Decision 

Trees (GBDT) utilize a series of weak classification trees and aggregates their results to form a 

strong learner. Such models aim to minimize some error function and gradually steps towards 

best fit, thus descending to the minimum error in mathematical terms and thus tend to handle 

imbalanced classes better than ANNs 72–75. Instead of building trees in parallel, the algorithm 

utilizes the error of prior trees in creating the next tree, correcting the errors of its 

predecessors. Thus, a given model contains residuals which act as negative gradients of the 

squared loss function. The drawback of using GBDT models lies in the danger of overfitting to a 

single dataset. Thus, we will validate models through cross-validation, leave out testing, and 
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other methods such as verifying results on a different dataset. Typically, achieving good results 

requires some parameter tuning. 

XGBoost 

 XGBoost is a supervised learning algorithm which implements boosting to create an 

ensemble of parallel trees based on GBM. It is perhaps one of the most useful and best gradient 

boosting frameworks currently in existence. A significant improvement is that GPU support is 

available for XGBoost using NVIDIA GPUs provided the system is a Linux system with CUDA 976. 

XGBoost utilizes two separate modules. The first of which contains binary libraries for each 

platform and different configurations and tries to load the most powerful library first. This is 

typically one with GPU and OpenMP support. If it fails it will proceed to attempt the next in the 

list, with the final fallback being a minimal configuration of single CPU support. The second 

module contains the XGBoost model and model builder code77. 

Deep Learning 

 Though there are many different implementations of a deep learning artificial neural 

net, the most common is a feedforward ANN. This is trained with stochastic gradient descent 

using back-propagation. The network typically contains many perceptrons organized into many 

hidden layers. Each perceptron has a tanh, rectifier, or some other max-out activation 

function78. 

 It is typically important for deep learning to shuffle training data since each row is fed in 

sequentially during training. The input layer is also scaled to the number of columns and this is 

typically an indication of the model’s complexity. Backpropagation and loss function 
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assessment occurs after each training sample. An epoch is one pass over the entire dataset. 

Typically, the default number of epochs is 10. 

Though many researchers have emphasized ANNs recently, many shortcomings exist 

when using ANNs on disease data. Specifically, the actual ability to predict disease is only 

marginally beneficial. The simple ability for a computer to accurately predict outputs from data 

does not necessarily tell us how the models make these predictions. The real insight lies in how 

models arrive at conclusions using the data. The downside of ANNs lies in the difficulty of 

interpreting model decisions. Additionally, ANNs do not perform much better than other 

machine learning models unless the data used is complete (i.e. no data sparsity), unlabeled, and 

approaches observations in the hundreds of thousands if not more 79–81. The datasets we utilize 

contain prelabeled data where physicians have already diagnosed the patients. 

Stacked Ensemble 

 The principle behind stacked ensembles is to use multiple machine learning algorithms 

to improve the overall predictive performance of the overall model. This technique utilizes 

stacking, otherwise known as super learning or stacked regression82,83. Primarily a “meta-

learner” is trained to find the optimal combination of the base algorithms to create a diverse 

set of learners that work well together. First a list of base algorithms (e.g., GBM, GLM, deep 

learning, XGBoost, etc.) are chosen, followed by a second-tier algorithm for the meta-learning. 

The second-tier algorithm can be the same as one of the base algorithms. Then each base 

algorithm is trained on the training set, followed by a k-fold cross-validation on each of these 

learners. Then the cross-validated prediction values are taken from each of the base algorithms. 

This new dataset is then used to train the meta-learning algorithm which forms the “ensemble 
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mode”. To predict on new data we first generate predictions from the base learners, then feed 

those predictions into the meta-learner which generates the ensemble predictions on the new 

data84. 
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The Cancer Genome Atlas 

 The Cancer Genome Atlas (TCGA) was an NIH funded cancer genomic program that 

focused on the molecular characterization of primary cancer and matched normal samples, 

spanning 33 different cancer types 85. The 

project began in 2006 and was a joint 

effort between the National Cancer 

Institute (NCI) and the National Human 

Genome Research Initiative (NHGRI)85. 

After 12 years, the official project has 

ended but the publicly available data still 

contains a large amount of unexplored 

potential for the field of cancer research. 

 The dataset contains over 11,000 

patients’ somatic tissue samples (Fig. 1 86) 

from 33 tumor types as well as healthy 

samples and includes mRNA expression, 

somatic mutations, DNA methylation, 

and copy number variation information 

85,86. Additionally, the data set can utilize 

modern Cloud Server providers such as 

the Google Cloud Platform™. Cloud 

servers allow for partial processing in the 

Figure 1: Infographic of The Cancer Genome Atlas Project  

The project contains over 11,000 patient samples from 33 
different cancer types. The database is over 2.5 petabytes and 
holds both somatic and normal tissue samples along with 
clinical data associated with the genetic information. 
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Cloud via platforms like Google BigQuery™, making handling of large amounts of data practical 

and more manageable. 

 Recently, the project concluded by releasing the Pan-Cancer Atlas and a collection of 

flagship papers through Cell Press Journals, laying the groundwork for classification of 

molecular differences between the 33 different types of cancers 87. Most studies utilized an 

integrated approach to identify subgroups of cancers and genetic differences while others 

utilized machine learning to identify potential anti-cancer drug targets 88,89. For our study, we 

are looking to improve on past studies which examined pathogenic germline variants in cancer 

as germline copy number variations hold great potential to provide insight regarding the 

complexity of hereditary risk 30. Overall, as one of the first large scale cancer genetic datasets, 

The Cancer Genome Atlas continues to provide a wealth of new insights past its official 

completion. 

The Cancer Genome Atlas Pipeline 

 The Cancer Genome Atlas was a multi-year, multi-institution program funded by the 

National Cancer Institute. The project systematically gathered genetic data through a quality-

controlled pipeline. TCGA pipeline utilized Affymetrix SNP 6.0 array data for CNVs, sequencing 

and identifying inferred CNVs. Somatic tumor tissue and blood samples were both taken from 

patients and processed through the TCGA pipeline via Birdsuite, an open source set of tools 

created by the Broad Institute 37,90. The processed SNP microarrays make up much of the copy 

number information in the TCGA database. Additional information such as clinical information 

and molecular characterization for biospecimen samples are also available through the 

Genomic Data Commons (GDC) which is the main storage location for the data 91. 
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Figure 2: Infographic of TCGA Pipeline 

The TCGA Genome Characterization Pipeline processed all samples, regardless of cancer type, in this manner. The 

raw genome data resides in the public database along with data processed by the Genome Data Analysis Network. 
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 The NCI’s Center for Cancer Genomics (CCG) organized the project, coordinating U.S. 

and Canadian research teams to produce the clinical datasets that would become TCGA. This 

standardized workflow began with clinical trials in oncology groups and involved collection of 

tissue samples, usually from both tumors and blood, taken from patients who chose to 

participate (Figure 2 92). Clinics formalin-fixed samples in paraffin though some tissues were 

frozen. The CCG’s Biospecimen Core Resource (BCR) received the fixed or frozen samples. The 

Biospecimen Processing Center at Nationwide Children’s Hospital is the first component of the 

BCR and processed all tissues to ensure rigorous quality standards. The Clinical Data Center at 

Information Management Services, Inc. (IMS), the second component of BCR, oversaw 

informed consent and anonymized the data to protect patient privacy and clinical data 

provided with the samples 93. 

 Next, Genomic Characterization Centers (GCCs) generate data from the DNA, RNA, and 

proteins they receive from the BCR. There are three GCCs: The Broad Institute, The University 

of North Carolina, and MD Anderson Cancer Center. The Broad Institute specialized in DNA, 

whole genome, and whole exome sequencing. The University of North Carolina performed the 

RNA sequencing. MD Anderson Cancer Center performed reverse phase protein arrays (RPPAs). 

After sequencing and arrays were performed by the GCCs, the raw sequencing and associated 

metadata were sent to the GDC, who shared the data with the Genomic Data Analysis Network 

(GDAN) and research community 93. 

 GDAN, a team of scientists from 13 institutions, used the raw results and genomic 

characterization techniques to gain biological insights before publishing results in scientific 

journals. These Analysis Working Groups (AWGs) produced novel analyses and the GDC 
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harmonized the information and characterization data, making it publicly available for other 

researches to use across the world 93. 

The UK Biobank Project 

 As one of the most ambitious modern genetic projects, the UK Biobank was established 

by the Wellcome Trust medical charity, the UK Medical Research Council, the UK Department of 

Health & Social Care, the Scottish Government, the Northwest Regional Development Agency, 

with funding from the Welsh Government, British Heart Foundation, Cancer Research UK, and 

Diabetes UK 94,95. The UK National Health Service (NHS) is the primary supporter of the project. 

Beginning in 2006, the UK Biobank recruited 500,000 people between the ages of 40-59 years 

with the plan to follow them and record health outcomes over their lifetimes 40,95–97. The 

database went live in 2017 with no preferential access, meaning any researcher from any 

institute can pay the fee for the ~12 Petabytes of data and begin doing analysis on it. It contains 

genetic data and a host of other data such as imaging and exercise data for subsets of the 

individuals. The UK’s National Health Service integrated the project into the healthcare system 

which aided in performing regular follow ups on a portion of the cohort, providing a large range 

of health information over time. Thus far, there have been approximately 40,000 incident 

cancers, ~14,000 deaths, and 1.3 million hospitalizations recorded 98. 

UK Biobank Project Genotyping 

 GlaxoSmithKline and Regeneron are performing exome sequencing on the samples from 

all 500,000 participants with the first set of data becoming available as of early 2019. 

Vacutainers at 4 °C store initial blood and urine samples collected from patients. A central 

processing center collects all the samples storing them in liquid nitrogen. The Cheadle or 
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Wythenshawe centers processed samples and genotyped them. All samples were then archived 

in -80 °C95. Genomic assays of 820,967 SNPs were conducted on these blood samples with 

results and data published by 2018 50,99,100. Genome-wide genotyping and imputation was 

performed by the Big Data Institute of Oxford University 101. About 440,000 were genotyped on 

the UK Biobank Axiom® Array and 50,000 were genotyped on the Affymetrix UK BiLEVE Axiom® 

Array with >95% overlap with the previous group 48,99,102. Additional information can be found 

here: https://www.ukbiobank.ac.uk/ 103,104. 

 

  

https://www.ukbiobank.ac.uk/
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Chapter 4: Research Design and Methods  

Data Acquisition 

TCGA Data 

 The relevant CNV data and associated clinical data are stored on Google BigQuery™, 

which can return query tables using Structured Query Language (SQL). TCGA is hosted in these 

Big Query tables publicly. Cloud servers performed the bulk of the original file manipulation, 

reducing computational time and overhead on the local machines. We used the statistical 

programming language R to perform the bulk of our own specific data analysis. Using the R 

package (i.e. “bigrquery”), we downloaded the data tables and completed the remaining 

manipulation to format the data into an arrangement which can be used in training models 105. 

UK Biobank Data 

 UK Biobank data is provided only to approved researchers through the data showcase: 

https://biobank.ndph.ox.ac.uk/showcase/. You need to apply to UK Biobank for access. There is 

about a $500 application fee. Then once the application was approved another 2000 GBP in 

user fees. The process took several months until we could access data. 

When applying for access, we specified what patient data we needed access to. We 

were looking for cancer data and schizophrenia data, so we specified that. But if we are looking 

for Alzheimer’s or other diseases, we would choose the appropriate categories listed here: 

https://biobank.ndph.ox.ac.uk/showcase/browse.cgi.  

https://biobank.ndph.ox.ac.uk/showcase/
https://biobank.ndph.ox.ac.uk/showcase/browse.cgi
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Once we are granted access, we were sent a key via e-mail. We store the key in our 

working directory in a file called ".ukbkey" make sure its readable ("chmod 755 .ukbkey"). We 

can’t download and decrypt data without the key. 

They also gave us access to an encrypted file custom made for us called something like 

ukbXXXXX, where the X's are integers. This file contains patientIDs and the variables we chose 

in our application.  So, for us the file has about 500k lines. Each line is patientID, sex, and a 

bunch of information on the patient's such as cancer type. 

Now we need to download all the l2r genetic data. Details are here 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/ukbgene_instruct.html.  

First thing we need to get ukbgene. It's the main tool used for downloading.  

Instructions are here: 

https://biobank.ndph.ox.ac.uk/showcase/download.cgi 

or just grab it with wget (on Linux) 

ukbgene is a Linux executable. We can run it in under windows in a wsl terminal as well 

(https://docs.microsoft.com/en-us/windows/wsl/install-win10) 

Run this command: 

$ wget  -nd  biobank.ndph.ox.ac.uk/showcase/util/ukbgene 

$ ./ukbgene l2r -c1 -m 

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/ukbgene_instruct.html
https://biobank.ndph.ox.ac.uk/showcase/download.cgi
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to download a small (16 MB) file. Rename the file you download as "patientIDSall.fam". This is 

for chromosome 1 (that's the -c1 argument), but all the chromosomes are the same since we 

are just pulling patient IDs. So, you only need this one. This patientIDSall.fam file is a list of 

patientIDs, one per row. The order is important because these are the column headings for the 

l2r data we'll get next. 

Now we can download the data. Use a shell script which executes "ukbgene l2r -

cN" where N is 1 to 22, the chromosome number to quickly run the command for each 

chromosome. This will probably take the better part of a month to download. Count on at least 

two weeks. It downloads about 2.3 terabytes while also performing error checking. The 

smallest file, chromosome 21, is 34.8 GB. Largest, chromosome 1, is 195 GB. ukbgene 

occasionally fails and we would have to restart it. We needed to check on it each day. (On a 100 

Mbps connection, it should only take a few days to download 2.3 terabytes). 

The files are all called something like "ukb_l2r_chrN_v2".  Each file is plain text, no 

headers, just numbers separated by spaces. The file is organized as one column per patient, the 

patient's ID is given by the patientIDSall.fam file. Each row represents the log2ratio measured at 

a different SNP location in their array. All data was downloaded in this matter.  

Data Processing 

TCGA Data 

One formatted row in the table holds a data point or observation (i.e., one patient). Each data 

point contains a column for case-barcode, a unique anonymized identifier for the patient. We 

unified genomic addresses or molecular locations into a single column. This column contained 
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information about the chromosome locations, including start and end positions (by base pair 

number) of the gene segment in question. Each column, defined by a molecular address, 

indicates a chromosome segment, and contains a segment mean. For the masked data, there 

would be 30 columns as we took the top 30 masked CNVs, while for the unmasked models 

there would be 100 columns as we took the top 100 unmasked CNVs for those models. The 

entries for each patient in these columns contain the actual CNV data and could be blank if 

there is no information found (likely indicating normal CNV). Lastly, a column indicating the 

TCGA Study the sample is from provides the information for the type of cancer the patient had. 

Additionally, we can include other columns of information such as gender, age, and ethnicity. 

For our models we chose to include gender but found little difference in model performance if 

we excluded gender. 

UK Biobank Data 

 To process the UK Biobank data, you can utilize the script found here: 

https://github.com/cetoh/brodylab/blob/tohc/ukbiobank/data_handling/condenseSplitCNVs.R 

to create the CSLV data files. You will have to use your own file paths. 

Chromosomal Scale Length Variation 

 Chromosomal Scale Length Variation is an average of large segments of CNVs across a 

particular chromosome. As such calculation of these values is based on the desired number of 

even splits between the values. For example, a chromosome may have something like 11,535 

values. In order to calculate “4 splits” an average of 2,884 sequential values would be averaged 

to form one value for the first 3 splits and then the last split would be the remaining 2,883 

sequential values. Since it very difficult to load the entire file of any chromosome into memory, 

https://github.com/cetoh/brodylab/blob/tohc/ukbiobank/data_handling/condenseSplitCNVs.R
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this process is done by reading in each row line by line until reaching a split, averaging, and 

then clearing the memory. As such, any number of splits can be specified. The mathematical 

calculation is as follows: 

∑ log2
𝐶𝑁𝑖

2
𝑛
𝑖=0

𝑛
 

Where CN represents a copy number value normalized by dividing by 2 for each allele and then 

taking the base 2 log of that normalization. The log2
𝐶𝑁𝑖

2
 value represents a single l2r value. 

These values are then averaged over the split size given a certain n number of l2r values. 

Cloud Computing Server Specifications 

 We created a computing server running Linux Ubuntu 20.04 (64-bit) LTS as the operating 

system. The server additionally has 2 Intel Xeon E5-2960 2.90 GHz CPUs and one NVIDIA 

GeForce GT 710 GPU (2GB GDDR3). There is 32GB of RAM available (DDR3 2,133 MHz) with a 

10 TB HDD. We also created a 64 GB swap for additional memory on the hard disk. 

 We also duplicated our findings on our collaborators compute server. We would like to 

thank Dr. Timothy Downing for allowing us to use their server resources. The specification for 

this server is Linux Ubuntu 20.04 (64-bit) LTS. It has an AMD Threadripper 3990X CPU (2,200 

min MHz, 2,900 max MHz) and an NVIDIA GeForce RTX 3090 GPU (24 GB 0f G6X). There is 64 

GB of available RAM (DDR4 3200 MHz). The server also has a 1.6 TB NVME SSD, and two 13 TB 

HDDs. 
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R Statistical Programming Language Specifications 

 The initial work for TCGA was done in R v3.5.1. Subsequent work was performed in R 

v3.6.3. Instructions for installation are found here: https://cran.r-

project.org/bin/linux/ubuntu/README.html.  

H2O Machine Learning Specifications 

We utilize the leading distributed machine learning platform H2O to train, test, and 

validate our models. This open-source software is a distributed in-memory machine learning 

platform (built in Java) which also has a corresponding R package, allowing for seamless model 

building, data analysis and reproducibility in R while maintain our ability to run SQL queries 

through Google BigQuery™. Additionally, since the platform utilizes the leading industry 

algorithms for a variety of machine learning models, it allows us to quickly compare between 

other algorithms. There are extensive hyper-parameter options which allow us to tune models 

and training parameters to prevent issues such as overfitting and overcome data sparsity issues 

106. 

Generalized Linear Model (GLM) with H2O 

 Following the definitive text by P. McCullagh and J.A. Nelder (1989)107 on the 

generalization of linear models to non-linear distributions of the response variable 𝑌, H2O fits 

GLM models based on the maximum likelihood estimation via iteratively reweighed least 

squares108,109. 

Let 𝑦1, … , 𝑦𝑛 be n observations of the independent, random response variable 𝑌𝑖.  

https://cran.r-project.org/bin/linux/ubuntu/README.html
https://cran.r-project.org/bin/linux/ubuntu/README.html
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Assume that the observations are distributed according to a function from the exponential 

family and have a probability density function of the form: 

𝑓(𝑦𝑖) = 𝑒𝑥𝑝[
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝑎𝑖(𝜙)
+ 𝑐(𝑦𝑖; 𝜙)] 

where 𝜃 and 𝜙 are location and scale parameters, and 𝑎𝑖(𝜙), 𝑏𝑖(𝜃𝑖), and 𝑐𝑖(𝑦𝑖; 𝜙) are 

known functions. 

𝑎𝑖 is of the form 𝑎𝑖 =
𝜙

𝑝𝑖

 where 𝑝𝑖 is a known prior weight. 

When 𝑌 has a probability distribution function from the exponential family: 

𝐸(𝑌𝑖) = 𝜇𝑖 = 𝑏′𝑣𝑎𝑟(𝑌𝑖) = 𝜎𝑖
2 = 𝑏′′(𝜃𝑖)𝑎𝑖(𝜙) 

Let 𝑔(𝜇𝑖) = 𝜂𝑖  be a monotonic, differentiable transformation of the expected value of 𝑦𝑖. The 

function 𝜂𝑖 is the link function and follows a linear model. 

𝑔(𝜇𝑖) = 𝜂𝑖 = 𝒙′𝒊𝛽 

When inverted: 𝜇 = 𝑔−1(𝒙𝒊
′ 𝛽) 

Maximum Likelihood Estimation 

For an initial rough estimate of the parameters 𝛽̂, use the estimate to generate fitted values: 

𝜇𝑖 = 𝑔−1(𝜂𝑖̂) 
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Let z be a working dependent variable such that 𝑧𝑖 = 𝜂𝑖̂ + (𝑦𝑖 − 𝜇𝑖  ̂) (
𝑑𝜂𝑖

𝑑𝜇𝑖

), where 
𝑑𝜂

𝑖

𝑑𝜇𝑖

 is the 

derivative of the link function evaluated at the trial estimate. 

Calculate the iterative weights: 𝑤𝑖 =
𝑝𝑖

[𝑏′′(𝜃𝑖) (
𝑑𝜂𝑖
𝑑𝜇𝑖

)
2

]

 

where 𝑏′′ is the second derivative of 𝑏(𝜃𝑖) evaluated at the trial estimate. 

Assume 𝑎𝑖(𝜙) is of the form 
𝜙

𝑝𝑖
. The weight 𝑤𝑖 is inversely proportional to the variance of the 

working dependent variable 𝑧𝑖 for current parameter estimates and proportionality factor 𝜙. 

Regress 𝑧𝑖 on the predictors 𝑥𝑖 using the weights 𝑤𝑖 to obtain new estimates of 𝛽. 

𝛽̂ = (𝑿′𝑾𝑿)−1𝑿′𝑾𝒛 

where 𝑿 is the model matrix, 𝑾 is a diagonal matrix of 𝑤𝑖, and 𝒛 is a vector of the working 

response variable 𝑧𝑖. 

This process is repeated until the estimates 𝛽̂ change by less than the specified amount. 

Distributed Random Forest (DRF) with H2O 

 H2O utilizes distributed random forests as a powerful classification and regression tool. 

This is done by building a set of classifications trees rather than a single classification or 

regression tree. By increasing the number of trees which are trained as weak learners and 

taking the average over all the trees’ predictions, the model reduces variance. Each node on the 
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computation machine builds a subset of the forest in a parallel manner. Tree building and 

growth is stopped randomly by several stopping metrics, either tree depth or number of leaves 

or nodes110. The algorithm is like GBM except that the weak learners and trees are built 

independently without any input from the other trees in the model. 

Gradient Boosted Machine (GBM) with H2O 

 There are extensive hyper-parameter options which allow us to tune GBM models and 

training parameters to prevent issues such as overfitting and overcome data sparsity issues 106. 

GBM is typically one of the best performing algorithms we have utilized in H2O. 

 Gradient boosting uses these trees as weak learners creating them in an iterative 

fashion to achieve a single strong learner. From a general sense, the goal of boosting is to teach 

a model 𝐹 to predict values of 𝑦̂ and minimizing some error function such as the mean squared 

error 
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)

2
𝑖 . The algorithm indexes (𝑖) over some training set which is 𝑛 observations 

large and compares the squared difference between the actual values of 𝑦 and predicted values 

𝑦̂. This then provides an imperfect model 𝐹𝑚 and to improve on this model there must exist 

some estimator ℎ which provides a model 𝐹𝑚+1(𝑥) = 𝐹𝑚(𝑥) + ℎ(𝑥) which is a better solution. 

A good ℎ would imply that the model correctly predicted 𝑦, thus 𝐹𝑚+1(𝑥) = 𝐹𝑚(𝑥) + ℎ(𝑥) = 𝑦 

and in order to find ℎ it follows that ℎ(𝑥) = 𝑦 − 𝐹𝑚(𝑥) 75. This provides a residual function 

which is in fact a negative gradient. From there the algorithm attempts to minimize the loss 

function for the model which is often denoted as 𝛾, applying the steepest descent step to the 

minimization problem 74. 
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H2O builds sequential regression trees following the algorithm specified by Hastie et al. 111. 

In the H2O algorithm ℎ is the residuals denoted as 𝑟𝑖𝑘𝑚 which are in fact gradient values for 

each of the N bins in the CART model. H2O defines the algorithm as follows:  

 

 A conceptual way to view this is that each tree built feeds its result and errors into the 

building of the next tree so that the newly created tree can benefit from the failings of the 

previous trees in an iterative fashion 72,73. This is different than the Distributed Random Forest 

(DRF) algorithm which also uses decision trees but which instead builds all of them in parallel at 

the same time, typically much deeper, and keeping the trees in isolation 70. 

XGBoost with H2O 

 The H2O implementation of XGBoost is a supervised learning algorithm which employs 

boosting as an ensemble technique for improving decision tree models77. Each new model 
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attempts to correct deficiencies in the previous model. XGBoost allows for parallel tree 

boosting that solves many problems in a fast and accurate way. 

 H2O uses two separated modules, h2o-genmodel-ext-xboost which extends 

h2ogenmodel and registers an XGBoost-specific Maven plain old Java Object (MOJO)112. The 

module contains multiple libraires for each platform to support a variety of different 

configurations, including with or without GPU and with or without OMP. H2O will always try to 

load the most powerful library first, before continuing down the list to the final single CPU 

minimal configuration. 

 The second module, h2o-ext-xgboost, contains the XGBoost model and model builder. 

XGBoost supports multicore implementations and GPU acceleration76. Making it much quicker 

in training the models. In order to use GPU acceleration, you must have an NVIDIA GPU which 

supports CUDA 9+. XGBoost is also not supported on Windows and OMP and GPU boost is not 

supported on Windows or Mac OS X. 

Deep Learning Neural Networks with H2O 

 H2O implements a feedforward ANN that is trained stochastic gradient descent using 

back propagation. It allows for customization of the number and size of hidden layers with a 

minimum of one hidden layer. Activation of hidden layer perceptrons can be one of several 

activation functions including tanh, rectifier, and max-out functions. Additionally, H2O trains 

multiple copies of the same model in parallel through multi-threading in an asynchronous 

manner78. Performance is then periodically averaged across a global network across the entire 

network copies.  
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 Default settings for deep learning in H2O which typically perform the best have two 

hidden layers of size 200 each and a stopping metric of log loss for classification. Because 

training id done in order, it is recommended by H2O to shuffle the training data before training. 

The input layer will automatically scale to the number of input features or columns for the 

given dataset as well. As such, if we wish to reduce complexity, we must do so prior to feeding 

the training data into the neural network. 

Stacked Ensembles with H2O 

The steps below describe the individual tasks involved in training and testing a Super Learner 

ensemble. H2O automates most of the steps below so that you can quickly and easily build 

ensembles of H2O models113. 

1. Set up the ensemble. 

1. Specify a list of L base algorithms (with a specific set of model parameters). 

2. Specify a metalearning algorithm. 

2. Train the ensemble. 

1. Train each of the L base algorithms on the training set. 

2. Perform k-fold cross-validation on each of these learners and collect the cross-

validated predicted values from each of the L algorithms. 

3. The N cross-validated predicted values from each of the L algorithms can be 

combined to form a new N x L matrix. This matrix, along with the original 

response vector, is called the “level-one” data. (N = number of rows in the 

training set.) 
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4. Train the metalearning algorithm on the level-one data. The “ensemble model” 

consists of the L base learning models and the metalearning model, which can 

then be used to generate predictions on a test set. 

3. Predict on new data. 

1. To generate ensemble predictions, first generate predictions from the base 

learners. 

2. Feed those predictions into the metalearner to generate the ensemble 

prediction. 

All base models must have the same number of folds if cross-validated. In our case we 

did 5-fold cross validation for all models. All predictions from the cross-validated predictions 

must be saved as this data is used train the metalearner. AutoML trains these models via a grid 

search. Base models must be trained on the same training data. A minimum of two base 

learners is required. 

Additional R Libraries 

All R packages are available on CRAN and can be found here https://cran.r-

project.org/web/packages/available_packages_by_name.html 114. 

ukbtools 

This is a set of R tools to visualize primary dataset from UKB file sets (.tab, .r, .html) and query 

ICD diagnoses, retrieve genetic metadata, read and write standard formats for genetic 

analyses115. 

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html
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tidyverse 

The 'tidyverse' is a set of packages that work in harmony because they share common data 

representations and 'API' design. This package is designed to make it easy to install and load 

multiple 'tidyverse' packages in a single step. Learn more about the 'tidyverse' at 

https://tidyverse.org116. 

dplyr 

A fast, consistent tool for working with data frame like objects, both in memory and out of 

memory, this package is built primarily for data manipulation in data frame or table objects117. 

ggplot2 

A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You 

provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to 

use, and it takes care of the details. Maintained by the same authors as tidyverse at 

https://ggplot2.tidyverse.org118. 

ggthemes 

Some extra themes, geoms, and scales for 'ggplot2'. Provides 'ggplot2' themes and scales that 

replicate the look of plots by Edward Tufte, Stephen Few, 'Fivethirtyeight', 'The Economist', 

'Stata', 'Excel', and 'The Wall Street Journal', among others. Provides 'geoms' for Tufte's box 

plot and range frame. Found at https://github.com/jrnold/ggthemes 119. 

ggsci 

A collection of 'ggplot2' color palettes inspired by plots in scientific journals, data visualization 

libraries, science fiction movies, and TV shows. Found at https://github.com/road2stat/ggsci. 

https://tidyverse.org/
https://ggplot2.tidyverse.org/
https://github.com/jrnold/ggthemes
https://github.com/road2stat/ggsci
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GitHub Repository and Version Control 

 All code related work is available at the public GitHub Repository: 

https://github.com/cetoh/brodylab. This code and work will also track all commits and versions 

of code. Work for this specific dissertation is on the “tohc” branch of the repository. The 

repository is integrated with the cloud computing server and our R Studio Server setup. 

Training Gradient Boosting Decision Trees on TCGA Germline Data 

To perform model training we utilized data from all TCGA studies and checked for 

overfitting through ten-fold cross validation for each model. We used genetic data (gCNV) from 

blood samples only to train our models. We also excluded Acute Myeloid Leukemia (LAML) and 

Chronic Myelogenous Leukemia (LCML) as these are cancers derived from hematopoietic stem 

cells and thus blood samples from these groups would skew models for other cancers. For each 

cancer, we kept them labeled with their cancer short code and set the samples from all other 

samples as “Normal.” Then we used the data to train a GBDT model with 50 trees, did not 

specify a max depth, and used balanced classes. We performed ten-fold cross validation to 

achieve a given AUC for the cross-validated results. We created five models in this manner for 

each cancer type. Finally, we averaged the 5 sets of trials for the 32 types of cancers to get the 

general performance of a GBDT model created for that cancer type. 

Testing TCGA Germline Models on Somatic Samples 

We utilized a similar process as before to train a set of GBDT models that would predict 

on sCNV samples. The main difference in this experiment lies in only using 80% of the patients 

https://github.com/cetoh/brodylab
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to train the initial models with gCNV data. We also performed ten-fold cross-validation on these 

models to verify that that with 80% of the patients the performance was comparable to using 

100%. Using the sCNV information of the remaining 20%, we attempted to predict cancer 

diagnoses using a model trained on the blood samples only. For each of the 5 models per 

cancer, we acquired an AUC and averaged to get the general performance of GBDT models 

predicting on somatic samples but trained with blood samples.  

Validating TCGA Results on UK Biobank  

 To check that our results are not due to artifacts within the TCGA data itself, we plan to 

test our methods and models on a separate database known as the UK Biobank. The 

methodology will be as follows: 

1. Acquire l2r data from UK Biobank for cancers of the same type as ones tested in TCGA 

2. Calculate CSLV values for cancer patients and normal non-cancer patients in UK Biobank 

3. Train a model to predict between cancer patients and non-cancer patients 

4. Assess if resulting model predictions and performance is comparable with the results 

achieved on TCGA data. 
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Chapter 5: Results  

Chapter 5.1: Prediction and Classification of Cancer Diagnosis between Cancers 

 Initial results indicate that significant inherited differences exist between cancer types 

and that predicting cancer from germline copy number variations alone is possible120. Using the 

TCGA public database of 32 different cancer types, we constructed GBDT Models in an iterative 

fashion. In total, we created 10 models (n=10) for each cancer. We omitted Acute Myeloid 

Leukemia (LAML) and Chronic Myelogenous Leukemia (LCML) as the germline information 

utilizes data taken from peripheral blood samples and both cancers are blood related cancers. 

Somatic samples are samples taken directly from the tumor itself  

We utilized masked CNV data and organized the data to indicate a segment mean value 

for the top 30 CNV segments. This masked data is the segment mean of a segment of DNA. 

These segment means are normalized averages of very large segments of chromosomes and in 

some case is the mean for almost the entire chromosome. Certain cancer types, such as 

Ovarian Cancer (OV) and Glioblastoma Multiforme (GBM), performed very well with an area-

under the curve (AUC) of over 0.80. Likewise, most cancers performed better than chance 

(Table 1). Kidney Chromophobe (KICH), most likely performed poorly due to insufficient sample 

size (n = 9). 
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Table 1: Average Performance of GBM Cancer Model in TCGA 

Resulting average AUCs of Gradient Boosting Machine models trained on germline CNVs indicates that 
man cancers can be distinguished between other cancers. for most cancers. Prediction through this 
method performs better than chance. This table is ordered by AUC. Ovarian Serous Cystadenocarcinoma 
was the most distinguishable cancer form the rest of the TCGA database. Kidney Chromophobe 
performed the worst most likely because there are only a few patient samples in TCGA. 
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Additionally, each model was cross-validated 10 times using the original training 

dataset. We then averaged the AUCs of the receiver-operator curve (ROC) to obtain the 

resulting performance of the technique for each specific cancer type. We plotted the ROC for 

individual models, where an AUC of 1 is a perfect model. Models will have a different ROC for 

the training results and the cross-validated results. We are interested in the cross-validated 

results as it provides a more accurate depiction of how the model would perform on new data 

(i.e., indication of model generalization). The resulting performance of our models indicates our 

technique can differentiate one cancer from other cancers better than chance, using the CSLV 

data taken as masked CNVs in TCGA (Fig. 3-8). Masked data omits genetic information from the 

Y chromosome as part of the anonymization process, which is most likely why some cancers 

such as Prostate Adenocarcinoma (PRAD) do not perform as well. 
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Figure 3: Receiver Operator Curve for Glioblastoma Multiforme 

This graph represents the performance of a model trained on TCGA data from masked CNVs from blood samples. 
The model attempted to classify glioblastoma multiforme from all other cancers in the TCGA dataset. The AUC of 
this model was ~0.82. 
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Figure 4: Receiver Operator Curve for Ovarian Serous Cystadenocarcinoma 

This graph represents the performance of a model trained on TCGA data from masked CNVs from blood samples. 
The model attempted to classify ovarian serous cystadenocarcinoma from all other cancers in the TCGA dataset. 
The AUC of this model was ~0.88. 
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Figure 5: Receiver Operator Curve for Pheochromocytoma and Paraganglioma 

This graph represents the performance of a model trained on TCGA data from masked CNVs from blood samples. 
The model attempted to classify pheochromocytoma and paraganglioma from all other cancers in the TCGA 
dataset. The AUC of this model was ~0.78. 
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Figure 6: Receiver Operator Curve for Prostate Adenocarcinoma 

This graph represents the performance of a model trained on TCGA data from masked CNVs from blood samples. 
The model attempted to classify prostate adenocarcinoma from all other cancers in the TCGA dataset. The AUC of 
this model was ~0.64. 

 



47 
 

 

Figure 7: Receiver Operator Curve for Uterine Corpus Endometrial Carcinoma 

This graph represents the performance of a model trained on TCGA data from masked CNVs from blood samples. 
The model attempted to classify uterine corpus endometrial carcinoma from all other cancers in the TCGA dataset. 
The AUC of this model was ~0.68. 
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Figure 8: Receiver Operator Curve for Uveal Melanoma 

This graph represents the performance of a model trained on TCGA data from masked CNVs from blood samples. 
The model attempted to classify uveal melanoma from all other cancers in the TCGA dataset. The AUC of this model 
was ~0.76. 
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Chapter 5.2: Prediction of Somatic Tissue Samples with Models Trained on Germline 

Samples 

 We then sought to examine if models trained on germline peripheral blood samples 

could perform equally as well when given a set of unknown somatic or tumor samples. To test 

this, we performed the same process as before but this time only trained our GBDT Models 

with 80 % of the patients, leaving 20 % aside for later testing. For the training set (containing 80 

% of the patient samples) we again utilized germline blood samples and the masked CNV data 

to iteratively train our models. Each model was cross-validated 10 times. We then took the test 

group (containing the remaining 20% of samples) and used the masked CNV data from the 

somatic tumor samples as the set to predict on. The models for certain cancers performed 

equally well on this new set of somatic tumor data compared to the cross-validation results 

(Figure 9, 10).  
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Figure 9 : Prediction on Somatic Samples with models trained on Germline Samples (BLCA, LIHC, LUSC, OV, SARC, 
THCA) 

Performance of models trained with germline CNVs on somatic CNVs. Ovarian Cancer (OV = 0.79) is one of the best 
performing models even when predicting on somatic CNVs. 
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Figure 10: Prediction on Somatic Samples with models trained on Germline Samples (ACC, CESC, CHOL, ESCA, 
MESO, UCS) 

Performance of models trained with germline CNVs on somatic CNVs. Certain cancers still perform better than 
chance. Of note Esophageal Cancer (ESCA = 0.76) performs rather well indicating possible hereditary factors which 
could increase risk. 

Certain cancer types however performed rather poorly on the somatic samples and were little 

better than chance (Figure 11, 12, 13). We believe cancers which did not perform better than 

chance may possibly contain risk factors on the Y chromosome. TCGA removes data from the Y 

chromsome during the anonymization process. Alternatively, models which did not perform as 

well on somatic samples may indicate significant environmental factors, which may overshadow 

the genetic effects in smaller populations. We note also that we trained models using blood 

samples and predict here on tumor samples, meaning that tumor samples may possess a 

significantly altered CNV landscape when compared to blood samples. 
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Figure 11: Models indicating possible importance of Y chromosome or environmental factors (BRCA, GBM, PRAD, 
SKCM, UCEC) 

Cancer types where models trained with germline CNVs did not perform much better than chance when predicting 
on somatic CNVs, indicating that these cancers need more information than the anonymized data in the first 22 
chromosomes. Additionally, environmental factors may play a bigger role with smaller population sets. AUCs, 
BRCA= 0.52, GBM=0.55, PRAD=0.52, SKCM=0.51, UCEC=0.54. 
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Figure 12: Models indicating possible importance of Y chromosome or environmental factors (COAD, LGG, LUAD, 
STAD, TGCT) 

Cancer types where models trained with germline CNVs did not perform much better than chance when predicting 
on somatic CNVs, indicating that these cancers need more information than the anonymized data in the first 22 
chromosomes. Additionally, environmental factors may play a bigger role with smaller population sets. AUCs, 
COAD=0.55, LGG=0.48, LUAD=0.52, STAD=0.49, TGCT=0.53. 
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Figure 13: Models indicating possible importance of Y chromosome or environmental factors (DLBC, HNSC, KICH) 

Cancer types where models trained with germline CNVs did not perform much better than chance when predicting 
on somatic CNVs, indicating that these cancers need more information than the anonymized data in the first 22 
chromosomes. Additionally, environmental factors may play a bigger role with smaller population sets. AUCs, 
DLBC=0.53, HNSC=0.52, KICH=0.44. 

 

Chapter 5.3: Comparison of Masked CNV and Unmasked CNV Gradient Boosting Models 

 Our initial experiments utilized masked CNV data to train our GBDT Models. As such, we 

wanted to test if our technique performed equally well, or better, using an equal number of the 

raw copy numbers (i.e., unmasked CNVs). Since the unmasked CNVs are significantly smaller 

segments than the masked CNVs, we utilized the top 100 raw CNVs. The results indicate that 

GBDT Models using masked CNVs tend to perform better than unmasked CNVs (Figure 14). This 

seems to hold true across all cancer types (Figures 15-21). 
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 The unmasked models only use the top 100 CNVs when training the model. Using all the 

CNVs in the unmasked CNV models may improve the predictive power to a comparable level 

with the masked CNV models. However, doing so becomes computationally intensive and could 

also decrease performance due to increasing column variables, creating a dimensionality 

problem. We also were aiming to demonstrate that because Masked CNVs encompassed larger 

sections of the chromosome, we could still get good predictive power in a single averaged 

value. 

 

Figure 14: Comparison of Masked and Unmasked Ovarian Serous Cystadenocarcinoma Models 

Models trained using TCGA Masked CNVs performed better than models trained using Unmasked CNVs. We believe 
this is mostly because if we take the same number of values from the masked CNV and from the unmasked CNV 
dataset, the masked dataset encompasses a larger amount of the genome. For Ovarian Serous 
Cystadenocarcinoma, the difference between Masked and Unmasked is 0.87 and 0.70 respectively. 
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Figure 15: Comparison of Masked and Unmasked Esophageal Carcinoma Models 

Models trained using TCGA Masked CNVs performed better than models trained using Unmasked CNVs. We believe 
this is mostly because if we take the same number of values from the masked CNV and from the unmasked CNV 
dataset, the masked dataset encompasses a larger amount of the genome. For Esophageal Carcinoma, the 
difference between Masked and Unmasked is 0.76 and 0.67 respectively. 
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Figure 16: Comparison of Masked and Unmasked Glioblastoma Multiforme Models 

Models trained using TCGA Masked CNVs performed better than models trained using Unmasked CNVs. We believe 
this is mostly because if we take the same number of values from the masked CNV and from the unmasked CNV 
dataset, the masked dataset encompasses a larger amount of the genome. For Glioblastoma Multiforme, the 
difference between Masked and Unmasked is 0.81 and 0.70 respectively. 
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Figure 17: Comparison of Masked and Unmasked Pheochromocytoma and Paraganglioma Models 

Models trained using TCGA Masked CNVs performed better than models trained using Unmasked CNVs. We believe 
this is mostly because if we take the same number of values from the masked CNV and from the unmasked CNV 
dataset, the masked dataset encompasses a larger amount of the genome. For Pheochromocytoma and 
Paraganglioma, the difference between Masked and Unmasked is 0.79 and 0.71 respectively. 
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Figure 18: Comparison of Masked and Unmasked Lower Grade Glioma Models 

Models trained using TCGA Masked CNVs performed better than models trained using Unmasked CNVs. We believe 
this is mostly because if we take the same number of values from the masked CNV and from the unmasked CNV 
dataset, the masked dataset encompasses a larger amount of the genome. For Lower Grade Glioma, the difference 
between Masked and Unmasked is 0.81 and 0.70 respectively. 
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Figure 19: Comparison of Masked and Unmasked Prostate Adenocarcinoma Models 

Models trained using TCGA Masked CNVs performed better than models trained using Unmasked CNVs. We believe 
this is mostly because if we take the same number of values from the masked CNV and from the unmasked CNV 
dataset, the masked dataset encompasses a larger amount of the genome. For Prostate Adenocarcinoma, the 
difference between Masked and Unmasked is 0.66 and 0.59 respectively. 
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Figure 20: Comparison of Masked and Unmasked Uterine Corpus Endometrial Carcinoma Models 

Models trained using TCGA Masked CNVs performed better than models trained using Unmasked CNVs. We believe 
this is mostly because if we take the same number of values from the masked CNV and from the unmasked CNV 
dataset, the masked dataset encompasses a larger amount of the genome. For Uterine Corpus Endometrial 
Carcinoma, the difference between Masked and Unmasked is 0.68 and 0.52 respectively. 
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Figure 21: Comparison of Masked and Unmasked Uveal Melanoma Models 

Models trained using TCGA Masked CNVs performed better than models trained using Unmasked CNVs. We believe 
this is mostly because if we take the same number of values from the masked CNV and from the unmasked CNV 
dataset, the masked dataset encompasses a larger amount of the genome. Uveal Melanoma, the difference 
between Masked and Unmasked is 0.68 and 0.63 respectively. 

 

Chapter 5.4: Visualization of Decision Trees 

 After training our GBDT models, we visualized the individual decision trees through 

various application program interfaces (API) and through H2O’s model optimized Java objects 

(MOJO). We can thus see how the model is mathematically coming to its decisions by looking at 

the resulting trees (Figure 22 and 23). Each model we built contains 50 trees. During prediction, 

the model runs each observation through all trees and sums the resulting values to obtain the 

most likely prediction. 
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Figure 22: Example Decision Trees for Glioblastoma Multiforme Masked Germline CNV Models 

The first and last decision trees are shown above as examples of how Gradient Boosted Decision Trees predict through fitting to the best estimate of the model. Each tree is 
predicting the residual r and thus when summed will provide a model f(x) = f0 (x) + f1 (x) + … + fn (x), where each f is the result of a single tree. 
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Figure 23: Example Decision Trees for Ovarian Cancer Masked Germline CNV Models 

The first and last decision tree in a Gradient Boosted Decision Tree model for Ovarian Cancer. The last decision tree is significantly smaller and has less nodes 
than the first tree. Since we did not specify max depth or max number of leaves, the algorithm will attempt to account for residuals in the least amount of steps. 
This ensures adherance to weak classifiers and additive nature of gradient boosting. 
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Chapter 5.5: Chromosomal Scale Length Variations Indicate Genetic Factors for COVID-19 

Severity 

The course of COVID-19 varies from asymptomatic to severe (acute respiratory distress, 

cytokine storms, and death) in patients. The basis for this range in symptoms is unknown. One 

possibility is that genetic variation is responsible for the highly variable response to infection. 

Human genetic variation can affect susceptibility and resistance to viral infections121. For 

instance, variants in the gene IFITM3 affect the severity of seasonal influenza122. Patients 

hospitalized from seasonal influenza had a particular allele of the gene IFITM3 at a higher rate 

than expected from the general population. Laboratory work determined that this allele can 

alter the course of the influenza virus infection. 

We have previously shown that chromosome-scale length variation is a powerful tool to 

analyze genome wide associations123. This method is particularly appealing for genetic risk 

scores because it includes epistatic effects that might be missed with conventional genome 

wide association studies. 

We sought to evaluate how well a genetic risk score based on chromosome-scale length 

variation and machine learning classification algorithms can predict severity of response to 

SARS-CoV-2 infection. We evaluated this approach on a dataset of 931 patients who had a 

severe reaction to Covid-19 in 2010. These patients had been previously genotyped as part of 

the UK Biobank. We also segmented these datasets into three overlapping datasets, shown in 

Table 2. 
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Table 2: Segmentation of COVID-19 Datasets 

We segmented the dataset into three overlapping subsets. The first, which we called “1930” contained all UK Biobank 
participants born after 1930 who had a severe reaction to SARS-CoV-2 infection before 27 April 2020. The two subsets contained 
people born after 1940 and after 1950. 

Dataset Number 

1930 (< 90 years of age) 981 

1940 (< 80 years of age) 880 

1950 (< 70 years of age) 468 

 The results are presented in Figure 24 and Table 317. We found a significant difference 

between all three age groupings and their corresponding random controls (Figure 24). This 

finding indicates germ line genetics of the infected patient, as represented by the set of CSLVs, 

is correlated with the clinical severity of COVID-19. Additionally, Figure 24 and Table 4 shows 

that the AUC for the XGBoost classification model was about 0.51, but still significantly greater 

than 0.5017. 

Table 3: Comparison of AUCs for Overlapping COVID-19 Datasets  

We compared the difference in mean AUC values between the various datasets using a t test. The datasets consisting of people 
born after 1930, 1940, and 1950 all showed significant differences with the corresponding random control. Those three datasets 
also showed significant differences between the mean AUC and 0.5. The three random controls did not show a significant 
difference between the mean AUC and 0.5, as expected. An AUC value of 0.5 represents a random classification test, one in 
which the algorithm is no better than guessing. 

Value 1 Value 2 p value of t test 

1930 data 1930 random 2 x 10-11 

1940 data 1940 random 1 x 10-9 

1950 data 1950 random 1 x 10-4 
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0.5 1930 data 3 x 10-14 

0.5 1940 data 4 x 10-13 

0.5 1950 data 3 x 10-4 

0.5 1930 random 0.1 

0.5 1940 random 0.4 

0.5 1950 random 0.08 

 

Table 4:Reported AUCs and Standard Deviation of COVID-19 Predictions 

 The mean and standard deviation of the area under the curve of the receiver operating characteristic curve was recorded after 
each of the 100 different XGBoost classification models. Each run used a different set of people who did not have a severe 
reaction to COVID-19. The mean AUC for all three datasets was well described by a normal distribution, as confirmed by a 
Shapiro normality test. 

Dataset Mean AUC SD AUC 

1930 data 0.515 0.017 

1940 data 0.516 0.019 

1950 data 0.511 0.030 
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We arrive at two conclusions from these results. First, a genetic difference exists 

between those who have the most severe diagnoses of COVID-19 and the general population. 

Second, we were not able to utilize this difference to develop a clinically useful test to 

distinguish between individuals who experience a severe course of the disease and those who 

will not. 

Figure 24: Boxplot of COVID-19 Model AUCs Compared to Random Model AUCs 

This boxplot figure presents the results of the machine learning predictions. We created three different datasets, 
one which includes all patients less than 90 years old, the second includes every patient less than 80 years old, and 
the third with every patient less than 70 years old. These are indicated as the oldest birthyear “data.” Each dataset 
included an equal number of patients with a “severe reaction” to COVID-19 and an equal number of age-matched 
people drawn from the general UK Biobank population, “normal.” For comparison, we took those three datasets 
and randomly permuted the status (“severe reaction” or “normal) and repeated the process. This randomly 
permuted dataset is labeled oldest birthyear “random.” For each dataset, we repeated the whole process 100 
times, each time with a different set of age-matched people from the general UK Biobank population. 
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 Though the AUC is low for this test, there are several reasons for this, and which, if 

addressed, can improve the existing AUC. Primarily the data we had available was a constrained 

by those listed in the UK Biobank as having as severe course of COVID-19. There are likely a 

substantial number of people who would also have a sever reaction to COVID-19, who at the 

time had not been diagnosed or had not contracted the virus. A better approach would be to 

compare patients with severe reaction, to those with mild or asymptomatic reactions. Since this 

study was done, it is likely that there is significantly more data and this would improve the 

overarching model AUC. 

Changes in our feature selection and classification algorithm might also improve the 

AUC. Our feature selection algorithm that transformed “l2r” data into our final chromosomal-

scale length variation data took averages over each quarter of a chromosome. We could instead 

include smaller chromosome segments. Generally, we need the number of features to be much 

less than the number of observations (patients). So, an increase in the number of observations 

would allow an increase in the number of features. Also, an alternative machine learning 

algorithm might improve the AUC. Different algorithms perform differently on different classes 

of problems and XGBoost generally performs well on tabular data124. We did a brief test of 

different algorithms before choosing XGBoost as the best solution for this problem. But, for 

instance, a deep learning algorithm might have better performance with proper tuning. 

Our results add to the recent work done by others on the link between genetics and 

severity of COVID-19. For instance, one study from the Netherlands identified four young men 

from two different families who had severe symptoms of COVID-19 and no preexisting medical 
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conditions. Detailed genetic studies revealed that these four men all had a rare loss of function 

variant of TLR7, which lies on the X-chromosome125. 

A detailed study of this UK Biobank COVID-19 dataset found that Black and Asian 

patients were at a significantly higher risk of testing positive compared to white patients126. This 

study also attempted to derive a polygenic risk score. However, when they applied the 

polygenic risk score to a hold-out group, they found that the mean score was indistinguishable 

between the group of people who had tested positive and the group that had no positive test. 

In comparison, our work found that these two groups are distinguishable with a genetic risk 

score, but only very slightly. We measured the AUC at 0.51. They126 do not report an AUC, but 

an indistinguishable test is the equivalent of an AUC of 0.50. 

Other more comprehensive metastudies have identified one specific genetic component 

behind the severity of COVID-19. For instance, one study of COVID-19 patients who 

experienced respiratory failure at seven hospitals in Italy and Spain found a fairly strong 

association in a cluster of genes lying on part of chromosome 3 and a borderline association in 

chromosome 9 encompassing the ABO blood group locus127. The “ANA_B2” June 2020 results 

posted by the COVID-19 Host Genetics Initiative128,129 also indicate a strong association in 

chromosome 3 but fail to reproduce the association in chromosome 9. The COVID-19 Host 

Genetics Initiative “ANA_B2” study compares hospitalized COVID-19 patients to the general 

population and are mostly derived from patients in Europe and Brazil. Neither study attempted 

to derive a genetic risk score. 
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This study has several weaknesses. First, we cannot attribute the severity of COVID-19 

to particular genetic variants. This study only finds correlations and does not establish a cause 

and effect. Second, while it is possible that these correlations relate to underlying biology, it is 

also possible that the correlations are related to ancestral differences that translate to socio-

economic differences. COVID-19 severity is known to be correlated with racial/ethnic 

background130,131. The small effect that we measured might be simply due to the larger complex 

effect of racial/ethnic disparities in COVID-19 severity. 

In conclusion, we found a significant difference exists between the structural genomics 

of those patients in the UK Biobank who had a severe reaction to the SARS-CoV-2 virus and the 

general UK Biobank population. However, a test based upon this difference would not be 

clinically useful in its present state since it had an AUC of 0.51. 
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Chapter 5.6: Genetic Risk Score for Ovarian Cancer Based on Chromosomal-Scale Length 

Variation 

Ovarian cancer kills about 150,000 women per year worldwide132. The most common 

form of ovarian cancer, ovarian serous carcinoma is often diagnosed late (stage III (51%) or IV 

(29%)) and has a relatively bleak 5-year survival rate133. If women with an elevated risk of 

developing ovarian cancers could be identified, interventions could be taken that would reduce 

the number of women who die from ovarian cancer. These interventions include prophylactic 

oophorectomies, which would completely avoid ovarian cancer, and more targeted screening, 

which could identify ovarian cancers in earlier stages, where surgery is an effective cure134–137. 

These interventions could both increase 5-year survival times and reduce the overall number of 

deaths due to ovarian cancer. 

A substantial fraction of ovarian cancers should be predictable by genetic testing. The 

heritability of ovarian cancer has been measured at about 40% (95% confidence interval 23–

55%) by the Nordic Twin Study138. The maximum discriminative accuracy of a genetic risk test is 

a function of both the heritability and the prevalence of the disease139,140. Based on the 

measured heritability (about 40%) and prevalence (about 0.1%) of ovarian cancer, the 

maximum accuracy, measured by the area under the receiver operating characteristic curve 

(AUC), should be greater than 0.95, where 1.0 indicates a perfect test. Current genetic risk 

scores do not approach that level of accuracy. 

Most current genetic risk scores are derived from single nucleotide polymorphisms 

(SNPs) identified by genome wide association studies12,141–145. These tests, called polygenic risk 
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scores, construct a score based on a linear combination of the value of a collection of SNPs. This 

strategy has been moderately successful with ovarian cancer. One study followed this strategy 

to construct a polygenic risk score where women who scored in the top 20% had a 3.4-fold 

increased risk compared to women who scored in the bottom 20%146. 

We developed an alternative strategy to compute genetic risk scores. Our strategy is 

based on structural variation rather than SNPs and uses machine learning algorithms, which 

include non-linear effects, rather than linear combinations. 

We tested this strategy with data from the Cancer Genome Atlas (TCGA) project. TCGA 

was a project sponsored by the National Cancer Institute to characterize the molecular 

differences in 33 different human cancers38,147,148. The project collected samples from about 

11,000 different patients, all of whom were being treated for one of 33 different types of 

tumors. The samples collected usually included tissue samples of the tumor, tissue samples of 

normal tissue adjacent to the tumor and normal blood samples. (Normal blood samples were 

not available from patients diagnosed with leukemias.) 

Most of the patient normal blood samples were processed to extract and characterize 

germline DNA. All germline DNA samples were processed by a single laboratory, the 

Biospecimen Core Resource at Nationwide Children’s Hospital. Single nucleotide 

polymorphisms (SNPs) were measured from the patient samples with an Affymetrix SNP 6.0 

array. This SNP data was then processed (by the TCGA project) through a bioinformatics 

pipeline46, which included the packages Birdsuite37 and DNAcopy149. The result of this pipeline 

is, for each sample, a listing of a chromosomal region (characterized by the chromosome 
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number, a starting location, and an ending location) and the associated value given as the 

“segmented mean value.” The segmented mean value is defined as the logarithm, base 2 of 

one-half the copy number. A normal diploid region with two copies will have a segmented 

mean value of zero. 

The Affymetrix SNP 6.0 array provides intensity measurements indicating whether or 

not specific probes on the array bind to specific sequences in the sample. These intensity 

measurements are usually interpreted in a binary fashion, indicating whether a specific 

sequence is absent or present in the sample. This process provides the genotype for a sample, 

quantified by the presence or absence of single nucleotide polymorphisms (SNPs). If these 

intensity measurements are instead interpreted in an analog fashion, one can discern whether 

specific sequences are absent, present with a single copy, two copies, three copies, etc. Thus, 

providing a relative copy number value at each SNP location. By collecting these values across 

the chromosome scale, we compute a number that we call the chromosome-scale length. 

NCI has provided most of the TCGA data on the Genomic Data Commons150. The copy 

number variation data available is called the masked copy number variation on the Genomic 

Data Commons. The masking process removes “Y chromosome and probe sets that were 

previously indicated to have frequent germline copy-number variation46.” 

This research uses de-identified coded datasets produced by TCGA. Therefore, it is not 

considered human subjects research. 
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We accessed the TCGA data through Google’s BigQuery, a cloud-based database. This 

resource is hosted and maintained by the Institute of Systems Biology151. We used the copy 

number segment (masked) table extracted from the Genomic Data Commons in February 2017. 

We also used information from the Biospecimen (extracted April 2017) and Clinical (extracted 

June 2018) tables. The copy number table contained all the information for the chromosome 

scale length variation data. The Biospecimen table was used to identify which samples were 

from normal blood (representing germ line DNA). The Clinical table provided information on the 

individual patient’s gender, race, and ovarian cancer status. Information in the different tables 

was tied together by the sample barcode parameter. 

All patients in the TCGA ovarian cancer sample had a well characterized form of ovarian 

cancer. TCGA only included those who were newly diagnosed with ovarian serous 

adenocarcinoma. The tumor had was confirmed to be serous by a board-certified pathologist 

after examining histological samples of the tumor. Mucinous, endometrioid and other types of 

ovarian tumors were excluded. 

The final dataset consisted of a dataset with 4639 rows, each representing a different 

patient. Each row started with a label, “ovarian cancer” or “normal”, and then 22 numbers. The 

mean age at diagnosis of the patients with ovarian cancer was 59.7 years, while the mean age 

for the “normal” sample was 58.6 years. Each number represented a measure of the length for 

one of the chromosomes. These length measurements were reported by the TCGA 

bioinformatics pipeline as extremely long copy number variations, usually greater than 90% of 

the length of the chromosome. We obtained these numbers from the TCGA dataset stored on 
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Google’s BigQuery. The TCGA bioinformatics pipeline did not report any copy number values for 

many specific genomic regions, presumably that indicates the copy number value is normal, 

with two copies. However, we coded these as not available, or “N/A” in our dataset. This 

dataset was used for the machine learning analysis. 

We used the statistical computer language R to query the BigQuery database, collect the 

data and manipulate it into different forms. We took extensive care to avoid typical problems 

that lead to falsely high AUCs in machine learning. For instance, we ensured that no data 

leakage occurred, which can lead to deceivingly high AUCs when copies of a sample appear in 

both the training and test sets. 

We used the H2O machine learning package in R to create machine learning models. 

H2O takes care of setting many of the proper default values, depending on whether the goal of 

the model is classification or regression. For the gradient boosting machine (GBM) models, H2O 

performs preprocessing, randomization, encoding categorical variables, and other data 

processing steps appropriate for the chosen model. 

H2O has an automated machine learning algorithm, named AutoML152. Given a 

spreadsheet like- dataset, AutoML will run through four different machine learning algorithms 

and evaluate which provides the best models for the given problem. For each of the machine 

learning algorithms, it will evaluate several different hyperparameters. The process is limited by 

the amount of time devoted to it. After the allotted time, AutoML reports a scoreboard ranking 

the best algorithms. For the gradient boosting machine algorithm, we started with the default 

H2O settings. These default settings build trees to a maximum depth of five trees with a sample 
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rate of 173. For the results reported in Table 5, we used an allotted time of one hour. In tests, 

we found that the results do not change substantially with times up to 10 h. 

We used 5-fold cross validation with the GBM algorithm to produce Table 3 and Figure 

2. Cross validation uses repeated model runs with non-overlapping data. This approach allows 

one to use of all samples in the limited dataset. For Table 7 and Figure 26, we estimated 95% 

confidence intervals for the odds ratios following the method described in153. 

Figure 3 was produced with a single model run by splitting the dataset into a training set 

holding 80% of the data and a test set containing 20% of the data. 

Code is available to reproduce this work at: https://github.com/jpbrody/cancer-

prediction-cnv/blob/master/ovarian-TCGA.R 

Using the TCGA dataset, we identified a measure that we call chromosome-scale length 

variation. Taken together, structural variations like insertions, deletions, translocations and 

copy number variations slightly alter the overall length of an individual’s chromosome. Thus, 

the lengths of the set of chromosomes can be used to characterize a person. A histogram 

showing the distribution of relative chromosome lengths taken from germ line DNA samples in 

the TCGA dataset is shown in Fig. 25. By convention, these lengths are reported in units of log 

base 2. A value of “0” represents the consensus, average, chromosome length. 

https://github.com/jpbrody/cancer-prediction-cnv/blob/master/ovarian-TCGA.R
https://github.com/jpbrody/cancer-prediction-cnv/blob/master/ovarian-TCGA.R
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Figure 25: Histogram of CSLV length for Chromosomes 1,6, 7, and 13  

This figure shows a histogram of chromosome scale length variation for most of chromosomes 1,6,13, and 17. For 
most patients in the TCGA dataset, a normal blood sample was taken, genomic DNA was extracted from that 
sample and analyzed with an Affymetrix SNP 6.0 array. The data from this array was processed by the TCGA project 
through a bioinformatic pipeline that resulted in a segment mean value, which is a number equal to the log base 
two of one half the copy number value. This histogram indicates that most people have a nominal value of 0, 
indicating exactly two copies of the diploid chromosome. A value of 0.02 would indicate the person has on average 
2.028 copies of the chromosome, or about 1.4% longer than the average length of the chromosome. 

 

From the TCGA dataset, we synthesized a case-control study to test whether 

chromosome-scale length variation data can construct a genetic risk score. We identified 4225 

women who had not been diagnosed with any form of ovarian cancer and 414 women who had 

been diagnosed with ovarian serous carcinoma. Statistical descriptions of the two populations 

are shown in Table 5. 
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Table 5: Table TCGA dataset group statistics 

From the TCGA dataset, we constructed two groups, both solely composed of women. The first group, containing 414 women, all 
had been diagnosed with ovarian serous carcinoma. None of the second group, with 4225 women, had been diagnosed with any 
form of ovarian cancer. This table compares the two populations. 

 Diagnosed with Ovarian Serous Carcinoma Not diagnosed with 

Ovarian Serous 

Carcinoma 

Total 414 4225 

Mean age 58.3 59.7 

% Black 2/414 = 6% 492/4225 = 12% 

% White 352/414 = 85% 3064/4225 = 73% 

% Asian 14/414 = 3% 259/4225 = 6% 

Next, we evaluated the effectiveness of several different machine learning algorithms. 

We measured how well these algorithms could classify a woman, based solely on the set of 23 

chromosome-scale length variation measurements, into either the class with ovarian cancer or 

without. The measurement of success we used was the area under the curve (AUC) of the 

receiver operating characteristic curve. The results of these measurements are shown in Table 

6. 
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Table 6: Comparison of Machine Learning Algorithms for Ovarian Serous Carcinoma Prediction 

This table lists five different machine learning algorithms we evaluated for predicting ovarian cancer from chromosome-scale 
length variation data using the H2O package in R. The algorithms are ranked by the best AUC it achieved using 5-fold cross 
validation. 

Algorithm AUC 

Gradient Boosting Machine 0.88 

Distributed Random Forest 0.87 

Extremely Randomized Trees 0.86 

Deep Learning 0.82 

Generalized Linear Model 0.68 

Based on the results in Table 6, we used the Gradient Boosting Machine algorithm 

throughout the rest of this manuscript. In the next step, we sought to classify the 4669 women 

in the dataset. We used a k-fold cross validation procedure, with k = 5. The dataset was 

randomly partitioned into five equal groups. The first group was held out (to be the test set), 

while the other four groups were used to train a model to distinguish the two classes (women 

with ovarian cancer and women without ovarian cancer). The trained model assigned a 

numerical score to each of the women in the first group (test set) quantifying how likely that 

woman was a member of the ovarian cancer class. The process was repeated 5 times, with a 

different group held out each time. The result is a numerical score for each of the 4669 women. 

The predictions were compared to the known ovarian cancer status of each of the 4669 

women. First, all 4669 women were ranked by their score, representing the likelihood that they 



81 
 

were from the ovarian cancer class. By comparing this ranking with their known ovarian cancer 

status, we can evaluate how well the model classified the women. 

Table 7: Odds Ratio Quintiles of Ovarian Serous Carcinoma Predictions 

Using 5-fold cross validation, each woman in the dataset received a score from the model built to predict ovarian cancer. The 
women were ranked by score from lowest to highest and then partitioned into five quintiles. This table presents the number of 
women with and without ovarian cancer in each quintile along with the odds ratio (relative to the entire group) and the 95% 
confidence interval for the odds ratio. 

Quintile Number of women 

without ovarian 

cancer 

Number of 

women with 

ovarian 

cancer 

Total 

Number 

of 

Women 

Odds Ratio 95% 

confidence 

interval 

1 925 3 928 0.03 0.01-0.09 

2 925 3 928 0.03 0.01-0.09 

3 901 27 928 0.30 0.21-0.45 

4 842 86 928 1.04 0.82-1.33 

5 632 295 927 4.76 4.01-5.65 

The comparison is presented in two different forms. Table 7 provides a tabular form of 

relative risk for the population segmented into five different groups. Figure 26 shows similar 

information in graphical form, where the population is segmented into 50 groups. 
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Figure 26: Odds Ratio Plot of 50 equal partitions of Ovarian Serous Carcinoma Model 

This figure shows that women ranked higher by the predictive model are significantly more likely to have ovarian 
cancer. The predictive model ranked all 4669 women in the dataset based on their likelihood of having ovarian 
cancer, based solely on germ line DNA data. This ranking was then split into 50 equal partitions, each with about 93 
women. This plot shows the odds ratio (relative to 414 ovarian cases out of 4669 total) of each of the 50 equal 
partitions along with the 95% confidence intervals. 

Finally, we took the dataset of 4669 women and split it into a training set (80%) and a 

test set (20%). Using H2O, we trained a Gradient Boosting Machine model to predict whether a 

woman was in the group with ovarian cancer, or not. The results are presented in Figure 27, 

which shows a classic receiver operating characteristic curve of the model’s predictions. Figure 

28 presents the SHAP contribution plot, which helps explain how the Gradient Boosting 

Machine model arrives at its result. 
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Figure 27: ROC of Algorithms in Predicting Ovarian Serous Carcinoma 

The receiver operating characteristic curves for different model predictions. The area under the curve for the 
Gradient Boosting Machine model was 0.89. An actual predictive test for ovarian cancer would require choosing a 
threshold. Depending on the threshold, the true positive rate and false positive rate (or equivalently the sensitivity 
and specificity) will vary. This graph demonstrates how these two factors will vary. 
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Figure 28: SHAP Contribution Plot of Predictive Model for Ovarian Serous Carcinoma 

This SHAP contribution plot ranks the importance to the predictive model for each chromosome154. Each person is 
represented by a dot. The color of the dot represents the normalized chromosome length. The position of the dot on 
the x-axis represents the impact of that chromosome on the model’s prediction for that person. The figure indicates 
that Chromosome 17’s length is more important than Chromosome 4’s length in predicting ovarian cancer. 

The results presented here compare favorably to other genetic risk scores for ovarian 

cancer. For instance, a previous study found that a polygenic risk score in the top 20% 

conferred a 3.4-fold risk increase compared to women in the bottom 20%146. As seen in Table 7, 

the top 20% in our results had an increase of over 100-fold risk over women who scored in the 

bottom 20%. 

Table 6 quantifies different algorithms applied to this problem. These results are 

illustrative, but not conclusive. Tuning machine learning models is an art, and it might be 

possible, for instance, to tune a deep learning network to obtain superior results. In similar 

work on TCGA colon cancer data, we found that a pairwise neuron network algorithm performs 

equal to a gradient boosting machine155. The gradient boosting machine generally runs faster 
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and is easier to tune. Others have evaluated different machine learning algorithms for different 

bioinformatic problems and found that no one algorithm is superior124. They also found that a 

gradient boosting machine algorithm does perform well on many different types of datasets, 

consistent with these findings. 

Germline mutations in the genes BRCA1 and BRCA2 are known to predispose women to 

ovarian and breast cancers. We considered whether these mutations had a significant effect on 

our results. First, 22 women in the TCGA ovarian cancer category had BRCA1 or BRCA2 germline 

mutations, while another 27 in the control group had BRCA1 or BRCA2 mutations (these were 

breast cancer patients, included here as controls because they were non-ovarian cancer women 

patients)156. Second, most common germline BRCA mutations change the overall length by just 

a few bases out of the 81 million bases on chromosome 17157. This change would be 

imperceptible in our data, which focuses on large scale variations. Based on these two factors, 

we do not believe that BRCA1/2 mutations are responsible for the predictive ability presented 

here. 

A disadvantage of this approach, compared to more conventional SNP-based genetic 

risk scores, is that the results are difficult to understand and extract biological meaning. A 

fundamental difference exists between statistical methods for prediction and those for 

attribution158. The method presented here is optimized for prediction, SNP-based genetic risk 

scores grew out of genome wide association studies, which were designed for attribution, 

identifying specific genes responsible for cancer. 
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The Gradient Boosting Machine computational model is complex, consisting of dozens 

of decision trees. Furthermore, the data that is used to traverse the decision tree is also 

complex. The data consists of chromosome scale length variation, which is the result of many 

different insertions, deletions, translocations, and other structural changes. Polygenic risk 

scores based on SNPs are easy to interpret. One can identify how much each SNP contributes to 

the score and one can locate this SNP in the genome and understand the function of nearby 

genes that might change. Although this approach is lacking in explanatory power, its goal is 

predictive power. 

We considered whether the results were due to two common problems faced by 

genome wide association studies: batch effects or population stratification. We found it unlikely 

that our model is identifying batch effects rather than real effects. First, all samples were 

collected from the same tissue, blood. This eliminates one common source of batch effects, 

since the DNA extraction process is the same for each sample. Second, all samples were 

processed by the same laboratory, the Nationwide Children’s Hospital Biospecimen Core 

Resource, with the same type of instrument. This laboratory followed the same protocol 

throughout their processing phase. Finally, we looked up the batch history of each sample. The 

424 ovarian cancer samples were processed in 15 separate batches. The non-ovarian samples 

were processed in several hundred different batches. For these reasons, we do not believe the 

results are due to batch effects. 

Population stratification occurs in case/control studies when the cases and controls 

contain substantially different proportions of genetically discernable subclasses. Most TCGA 
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samples were collected in the United States from a racially diverse group. For instance, over 

half the ovarian cancer samples were collected at five locations in the United States: Memorial 

Sloan Kettering, Washington University, University of Pittsburgh, Duke, and Mayo Clinic- 

Rochester. Table 1 lists demographic information about the two populations. Although the 

table does indicate slightly different proportions by race in the case and control groups, it does 

not seem to be different enough to account for the AUC observed. We cannot rule out 

population effects, but do not believe they would be responsible for such a large effect. 

We could not use the typical process to correct for population stratification, because it 

is specific to logistic regression. The typical process uses the algorithm EIGENSTRAT to identify a 

number of (typically ten) principal components of the population159. Then, these principal 

components are fed into the logistic regression analysis to “correct for” or “adjust for” 

population stratification. This process of “adjusting for” a factor is unique to linear/logistic 

regression, it cannot be done in the same way with the non-linear machine learning algorithms. 

Again, the statistical algorithms for prediction are fundamentally different than those used for 

attribution158. 

This study has several weaknesses. First, the control population in this analysis is not 

randomly drawn from the general population, but instead consists of women who were part of 

the study because they were diagnosed with another form of cancer. This may lead to 

confound effects of the conclusions. Second, the results rely on a single dataset. The general 

applicability of this method would be better established if we were able to show that a model 



88 
 

trained on one dataset would perform well on a second dataset that was collected 

independently. Demonstrating that a model is transferrable is a longer-term goal of ours. 

Future work could refine this method to improve the predictive ability of this method. 

The AUC might be improved through several strategies, including feature engineering, for 

instance using sub-chromosomes rather than complete chromosomes, data augmentation 

strategies, and the inclusion of SNP data. Further work can also establish how robust the model 

is: can a model trained with the TCGA data be successfully applied to a person not in the TCGA 

dataset. 

A genetic risk score based on chromosomal-scale length variation of germ line DNA 

could provide an effective means of predicting whether a woman will develop ovarian cancer. 

Several avenues are open to further improve the AUC of this genetic risk score test. 
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Chapter 5.7: Prediction of Schizophrenia in Individuals from the UK Biobank Indicates 

Significant X Chromosome Contributions 

Schizophrenia is a highly heritable, complex psychiatric disorder160,161. Genome wide 

association studies have identified over one hundred genetic loci that contribute to its 

heritability10,11,161–163. However, these loci still account for less than half of the genetic risk for 

schizophrenia11. Environmental exposure to chemicals appears to play almost no role in the 

development of schizophrenia, but different forms of trauma experienced during development 

does appear to be a risk factor164 . Twin studies have consistently shown a significant genetic 

contribution to schizophrenia, and many twin studies find that the environmental contribution 

to schizophrenia exists but that genetic effects provide significant liability to schizophrenia165.  

Genetic risk scores 141,166,167 have been developed for many different forms of disease, 

including breast cancer168, coronary artery disease169, and stroke170. Polygenic risk scores based 

on SNPs clearly can predict schizophrenia. One study measured an odds ratio of about  8 (95% 

CI 4-14) for the highest decile compared to the lowest decile171. A second study found that 

polygenic risk scores for schizophrenia (and bipolar disorder) are also associated with 

creativity172. A review of polygenic risk scores for schizophrenia highlighted the difficulty these 

studies had finding a consistent diagnosis of schizophrenia173. 

Copy number variations (CNVs) and copy-neutral loss of heterozygosity (CN-LOH) have 

been implicated in significant clonal selection174. We have previously shown that chromosome-

scale length variation is a powerful tool to predict phenotypes from a person’s genome 123. This 

method is particularly appealing for genetic risk scores because it includes epistatic effects that 
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might be missed with conventional genome wide association studies, which use logistic 

regression—a linear combination of SNP scores. 

We aimed to evaluate how well a genetic risk score based on chromosome-scale length 

variation and machine learning classification algorithms can predict schizophrenia in individuals. 

We evaluated this approach on a dataset of 1129 patients who had schizophrenia in the UK 

Biobank dataset. These patients were previously genotyped as part of the UK Biobank project. 

Figure 29 presents results showing the performance of different machine learning 

algorithms.  We found that the stacked ensemble models consistently performed best.  As 

Figure 30 shows, we found a slight difference between algorithms and their performance. But 

all algorithms could predict schizophrenia significantly better than chance (AUC=0.50). This 

finding indicates that germ line genetics of the patient, as represented by the set of 

chromosome-scale length variation numbers, demonstrates predictability of schizophrenia.  
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Figure 29: Comparison of Schizophrenia Prediction AUCs by Model Algorithms 

This boxplot figure presents the results of the machine learning predictions. We created 100 different datasets. For each dataset, 
we used the same set of schizophrenia patients with a distinct set of age matched people from the general UK Biobank 
population as controls. Then H2O was used to perform a grid-search of possible best algorithms. The best performing algorithm 
was then reported with an AUC. The differences between algorithms are reported here. The machine learning algorithms tested 
were distributed random forests (drf), gradient boosting machine (gbm), general linear model (GLM), stacked ensemble (a 
combination of the other four algorithms) and XGBoost (XGBoost). 

The AUC (area under the curve of the receiver operating characteristic curve) for the 

machine learning classification models was 0.583 (standard deviation 0.014, 95% confidence 

interval of 0.581-0.586). A classification model with an AUC of 0.50 is equivalent to random 

guessing. The measured AUC differs from 0.50 with p<0.00001. 

We also tested how well each model could predict schizophrenia on a holdout set of 

validation data. The holdout set was 30% of the original test data and was not included in the 
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training of the models. The AUC of the holdout set was 0.5734 with a 95% confidence interval 

of 0.569-0.578. 

We also tested whether increasing the number of splits improves model performance. 

We constructed three overlapping datasets with 1 split, 4 splits, and 8 splits. The phrase “1 

split” represents the average l2r value measured across an entire chromosome for all 23 

chromosomes giving a total of 23 numbers, “4 splits” represents the average of each quarter of 

the 23 chromosomes l2r values for a total of 92 numbers, and “8 splits” represent the average 

of each eighth of the 23 chromosomes’ l2r values for a total of 184 numbers.  

Figure 30 shows how models compare on the 3 different split datasets. Overall, a 

stacked ensemble had the best performance, however a general linear model (glm) was most 

often the best candidate model. 
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Figure 30: Comparison of Schizophrenia Prediction AUCs by Model Type Performance by Splits 

We tested whether finer splits of each chromosome lead to better predictability.  We split each chromosome into either one, 
four, or eight subsections.  We computed the chromosome scale length variation for each of these subsections for each person. 
This set of numbers was used to predict whether patients had schizophrenia.  The quality of this prediction was characterized by 
the AUC.  This plot demonstrates how the quality of these predictions increase with finer information on chromosome length 
variation. The Stacked Ensemble algorithm performs the best across all split variations. 

In all models, increasing splits improves model performance for the same runtime. 

Figure 3 demonstrates the difference of all models for 1 split, 4 splits, and 8 splits datasets. We 

tested whether finer splits of the dataset provided significantly improved AUCs. As shown in 

Table 8, the p-value of the 4 splits model compared to the 1 split model is 𝑝 = 1 × 10−24. 

Comparing the mean AUC for the 8 splits model to the 1 split model gave a p-value of  𝑝 =

3 × 10−30 indicating that finer splits significantly improved the predictive ability of the models. 
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The 4 splits and 8 splits models performed better than the 1 split models by a significant 

amount. 

Table 8: Table of Comparing AUC by CSLV Splits.  

The mean and standard deviation of the cross-validated AUCs of 1split, 4 splits, and 8 splits datasets of 150 models for each. 

Dataset Mean AUC Standard Deviation P-value vs 1 split 

1 split 0.5614 0.0148  

4 splits 0.5807 0.0146 1 × 10−24 

8 splits 0.5838 0.0141 3 × 10−30 

 

Figure 31: Comparison of Schizophrenia Prediction AUCs of All Models by CSLV Splits 

This plot represents the average performance of 150 models for each type of CSLV split for a total of 450 models. 

We then calculated the odds ratio (OR) of our predictions drawn from the cross-

validated model. Table 9 shows that a patient in the upper quintile is approximately twice as 
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likely to have schizophrenia when compared to the lower quintile. The odds ratio of the upper 

is 1.3 compared to the lower which is 0.67 thus giving us 
1.3

0.67
= 1.94. 

Table 9: Odds Ratio of Schizophrenia by Quintiles  

This table represents the odds ratio between the quintiles of predicted results from our cross-validated results. The result 
indicates that the top quintile is twice as likely to have an accurate prediction for Schizophrenia as the bottom quintile. 

Quintile Normal Schizophrenia Odds 

Ratio 

Count 95% CI 

1  185 123 0.67 308 0.51-0.85 

2 156 152 0.97 308 0.76-1.24 

3 153 155 1.0 308 0.79-1.3 

4 142 165 1.2 307 0.91-1.5 

5 133 174 1.3 307 1.0-1.7 

In order to understand, how our models came to their conclusions we created several 

plots to explain them from H2O’s “explainability” framework. The first is a variable importance 

heatmap across the generated models which is shown in Figure 32. Our analysis here indicated 

that chromosome X was one of the highest contributing variables in predicting Schizophrenia, 

especially in tree models such as GBM and XGBoost. We then confirmed this with a Shapley 

Additive exPlanation or SHAP plot in Figure 33. This plot also indicates that chromosome X was 

the leading factor in our leading model for predicting schizophrenia. 
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Figure 32: Variable Importance Heatmap of 4 Split Schizophrenia CSLV Models 

This variable importance heatmap shows the variables which most affected the performance and outcome of decisions made by 
the specified model. A value closer to 1.0 indicates higher importance of that variable. In most tree-based models the CSLV 
values for chromosome X have the highest importance. 
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Figure 33: SHAP Plot of Leading 4 Split Schizophrenia CSLV Model 

This SHAP plot indicates that the leading model for our 4-splits model relied heavily on the first quarter and last quarter value of 
chromosome X with some contribution from other regions and the second quarter of chromosome X. 

Utilizing our findings above, we then proceeded to train models using only CSLV values 

from chromosome X but with 64 CSLV splits. This model did not contain any information from 

the 22 autosomes but instead relied solely on CNVs in the X chromosome and our aim was to 

see if the model would be comparable to our previous 4-split and 8-split models. We found that 

on average these models had a comparable performance of about 0.58 with the highest being 

around 0.627 as shown in Figure 34. 
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Figure 34: ROC Curve for 64-Split X Chromosome Schizophrenia Model 

This ROC Curve for a schizophrenia prediction model utilizing 64-splits or 64 CSLVs of chromosome X only. The reported AUC is 
0.627. 
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We then again performed a variable importance heatmap analysis to get greater 

granularity of our understanding of the contributing CSLVs in chromosome X. We found that this 

was again consistent with the previous findings from the 4-split model. Figure 35 indicates that 

the top features of variable importance are again being found in the first and last regions of 

chromosome X. As such it appears that much of the predictive power of any model trained with 

CSLV and when predicting schizophrenia in an individual is a result of CNVs on chromosome X. 

We also report corresponding estimates of hg38 coordinates in Table 10. 

 

Figure 35: Variable Importance Heatmap of 64 Split X Chromosome Schizophrenia Models 

This variable importance heatmap shows the variables which most affected the performance and outcome of decisions made by 
the specified model. A value closer to 1.0 indicates higher importance of that variable. In most of the models we find that the 
CSLV values were mostly centered around split 50, 1, 9, 42, 13, 58, and 6. This is consistent with Figure 12. 
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Table 10: Estimated hg38 Coordinates for High Variable Importance CSLVs in Schizophrenia Prediction 

This table shows the estimated hg38 coordinates for the corresponding CSLV splits with high variable importance as shown in 
Figure 35. 

CSLV Split Estimated hg38 Coordinates 

  

1 chrX:60425-634774 

6 chrX:5651118-7792613 

9 chrX:11426091-13234434 

13 chrX:20912585-22990332 

42 chrX:107331058-110669244 

50 chrX:128031497-130523635 

58 chrX:145709120-147908169 

We wanted to ensure these results were not due to inherent sex differences. We trained 50 

models using the 64 split chromosome X dataset which were not only age-matched with the 

controls but also sex-matched. 25 of the AutoML models were trained with the actual data with 

correctly labeled disease states. The other 25 AutoML models were trained with the schizophrenia 

diagnosis randomly shuffled. The results are shown in Table 11. Here we can see that a portion of 

the previous performance is most likely due to CSLV differences inherent between males and 

females (Figure 36). However, a portion of the prediction is statistically still better than random 

guessing. 
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Figure 36:Comparison of X Chromosome CSLV Levels Between Sex 

This plot compares the X Chromosome CSLV values of schizophrenia patients by sex. It contains all patients from the UK Biobank 
with a diagnosis of schizophrenia. In general females have higher average CSLV values than males. This is consistent with the fact 
that females have two X chromosomes while males only have one X chromosome. 

Table 11: Comparison of Age & Sex Matched 64 Split Chromosome X Schizophrenia Models with Randomized Models 

This table shows a comparison of the age and sex matched models using 64 Split chromosome X data. The reported mean AUCs 
demonstrates that a portion of the previous performance is attributed to differences between male and females in X 
Chromosome CSLV le 

Dataset Mean AUC Standard Deviation 

64 Split X Normal 0.545 0.01373103 

64 Split X Random 0.525 0.01363745 

   

Welch Two Sample t-test 
Between Normal and Random 

T = -5.0111 

df = 47.998 

p-value = 7.763e-06 

These results indicate that germline genetic variation contributes at least to some 

degree to the onset of schizophrenia in individuals. Our results indicate that genetic structural 

variation across the global chromosomal scope is sufficient to predict, better than guessing, 
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whether an individual will have schizophrenia. The patients were an equal number of patients 

by gender between the control and disease group and the ages of patients in the control group 

also were matched to the ages of patients in the disease group. Further analysis revealed that 

length variation in a handful of regions of the X chromosome was sufficient to reproduce the 

predictive model.  Recently, there has been revived discussion of copy number variations as a 

large contributing factor to several neurological ailments including schizophrenia 175. 

Additionally, hypotheses about sex chromosome links to schizophrenia inheritance have been 

discussed for several decades and our findings lend support to this idea 176. 

On average, a stacked ensemble is the best approach to creating a predictive model for 

the prediction of schizophrenia. However, all models that were tested still created models with 

predictive power better than chance (Appendix 3-5). Since H2O’s AutoML performs a grid-

search of all the possible datasets and each trial we ran included the same disease group but 

with different control groups, we can see in Figure 9 that a general linear model (GLM) 

oftentimes provided the best immediate performance. Gradient Boosted Machines (GBM) and 

XGBoost also typically performed the same as GLM. When a Stacked Ensemble did work well, it 

was significantly better than all other algorithms. 

Utilizing a more granularized dataset by splitting the autosomes into quarters and 

eighths performs significantly better than using a CSLV averaged across an entire chromosome. 

This observation suggests we can increase performance by increasing splits. In the future, we 

plan on exploring the tradeoff in run time and computational resources required by increasing 

splits. 
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The CSLV values are averages of copy number variation (CNV) measured at each SNP 

location. Simply using every single CNV value introduces a dimensionality problem as our 

dataset only has roughly 488,000 individuals while the total number of CNV values is 764,257 

across the 22 autosomes and an additional 18,857 CNV values for the X Chromosome. This 

means there is likely diminishing returns for using more splits unless it can be offset with 

increased data. 

This approach has several limitations. First, CSLV is an averaged measure of copy-number 

variations across a large section of the entire chromosome. We used SHAP values to highlight the 

regions that seem to be more important, but this does not provide a mechanistic explanation. 

Second, the dataset lacks diversity. The UK Biobank population is primarily Caucasian individuals 

in the United Kingdom (although not exclusively).  Finally, the diagnosis of schizophrenia in an 

individual is difficult to quantify and the disease might consist of a heterogeneous group of 

underlying biological processes. 

We were able to create machine learning models for prediction of schizophrenia in 

patients. These models perform better than chance with an average AUC of 0.545. Prediction was 

performed with only chromosomal scale length variation measurements as the input variables. 

Further analysis of the SHAP values suggests that the length variation of several regions of the X 

chromosome are sufficient to reproduce this predictive value.  
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Chapter 6: Significance of Work 

 The totality of how hereditary factors contribute to complex diseases like cancers and 

schizophrenia remains unclear. Our understanding of these diseases has grown tremendously in 

the past decade; however, we do not understand a large portion of the specific mechanisms for 

disease onset and risk. Challenges exist in separating the genetic information that contains 

mutations occurring due to environmental factors from the genetic information that contains 

mutations passed from generation to generation. 

Current GWAS methods often focus on somatic SNPs without considering epistatic 

interactions greater than two SNPs. Whether these SNPs are the main cause of the genetic 

process causing cancers, or are simply the largest contributors from a greater group of SNPs, 

remains undetermined. Germline CNVs hold a wealth of information that we have utilized to 

understand how genes interact in conjunction with a broader network of variants to affect 

disease ontology. This study of germline CNVs provides insight into both the epistatic 

interactions between genes and highlights the degree hereditary factors contribute to specific 

cancers. We have also demonstrated that schizophrenia has risk factors in latent CNVs which 

could be determined and exploited to predict a person’s risk for the disease. 

Global CNVs implicate higher risk for certain complex diseases 

 This study has demonstrated that CNVs likely act within an individual person’s genome 

in a networked fashion. Globally, CNV levels can be used to determine risk of diseases. Since 

CNVs are an inherited feature of the structural genomics, the possibility of utilizing this 

knowledge to better assess and diagnose diseases such as cancer and schizophrenia is 

promising. In terms of cancer, we have demonstrated that CSLVs can be used to distinguish 
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between different types of cancer. This is beneficial for tests that rely on blood or serum-based 

diagnostics. This could make diagnosing specific types of cancer from blood tests alone a reality 

soon. Additionally, support for the idea of the epigenome playing a large role in cancer onset is 

further bolstered by our findings here. 

Schizophrenia is most likely inherited to some degree by global X Chromosome CNVs. As 

a neurological and psychiatric disease, studying the exact cause of this disease is always 

difficult. Clinical and ethical issues with understanding brain related diseases have always been 

a concern and rightly so. There have been hypotheses of inherited risk for schizophrenia for 

some time. Our findings show that there is indeed a sex chromosome link to schizophrenia 

when it comes to CSLVs on the X chromosome. This will aid in more targeted studies which 

could help us understand the underlying genetic mechanisms for schizophrenia. 

Chromosomal Scale Length Variation is an effective method to utilize CNVs for study of 

complex diseases 

CSLV demonstrates that a global variation of CNVs is potentially an important factor for 

inheritance of disease. CSLV utilizes many CNVs in an efficient way, while still maintaining the 

relevant information. Using machine learning methods, we can perform this analysis with CSLVs 

to gain useful biological insight in a reasonable amount of time and computational resources. 

CSLV demonstrates risk factors of CNVs across the global genetic landscape. This means 

that isolated CNVs are unlikely to be the single contributor to a disease. CNVs are likely working 

in concert with each other in a highly connected and dependent network of interactions. 

Unraveling and understanding this network will most likely demonstrate a multifactorial 
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problem. This problem has a complexity of an order much higher than our previous SNP 

approaches to disease understanding. 

A comparison of the AUC for risk scores vs. current published risk scores. 

 In order to understand the relevance of our findings it is best to compare with other 

reported genetic risk scores. Risk scores are typically reported as one of two metrics: 1. The 

AUC of the receiver operator curve, or 2. Odds Ratio between upper and lower groups. As 

shown in Table 12, our studies have demonstrated that using CSLV as a genetic risk score for 

complex disease performs comparably to previously reported risk scores. As such, we believe 

that CSLV is a promising feature in studying complex diseases which may have inherited risk 

from germ line genetics. 

Table 12: Comparison of Genetic Risk Scores  

A comparison of risk scores based off CSLVs and other reported risk scores from literature for the same disease. The odds-ratio 
(OR) is for the upper quintile unless otherwise indicated. The AUCs are for also given for the predictive effectiveness of the 
models. Values are for 95% confidence interval unless otherwise indicated. 

*This reported Odds Ratio only applied to patients with bloody type B and did not work with other blood types. 

Disease CLSV AUC CLSV OR Other AUC Other OR 

Breast Cancer (BRCA) 0.73177 1.98 0.63168 1.61168 

Ovarian Cancer (OV) 0.88178 4.76 0.64179 3.4146 

Glioblastoma 

Multiforme (GBM) 

0.81180 3.78 0.719181 6.91*182, 2.12 

Schizophrenia 0.62183 1.94 0.56184 1.93185 
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Machine Learning applications can help provide insight into future targeted CNV research 

There are many variations of machine learning techniques that can still be explored 

when utilizing CSLVs. We have studied a large variety of the most common and best performing 

machine learning algorithms. However, this is by no means an exhaustive study. There are still 

many variations and iterations which can still be examined. Some may improve our results, 

especially in the area of more specific hyperparameter tuning. 

In terms of CSLVs, there are several areas which may be of interest. These include better 

feature selection in terms of the length and size of the CSLVs. Specifying CSLV areas may also 

improve our results. Another possibility is the calculation of the CSLV value itself. Currently, we 

are calculating a simple value average, however this average could be calculated as an average 

based on genomic location rather than number of CNV values. Or standard deviation or some 

other metric could be used to calculate the CSLVs. 

Finally, increasing data is the most likely to improve our results. Even with TCGA and UK 

Biobanks, the disease set is still well below 5,000 individuals. This means we have a large 

control set, but the actual number of patients with the diseases in question is still quite low 

when compared to the data in a particular genetic database. These databases will likely only 

increase in size and scope and as other countries begin their own sample collection, 

augmenting results from one database with another will greatly improve results. 
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Chapter 7: Summary 

 Genetic medical research is currently in an exciting era. It is our opinion that the 

collision of informatics, biology, engineering, chemistry, and computer science will rapidly 

accelerate our knowledge of both hereditary and environmental factors contributing to the 

onset of later life and age dependent diseases. This study shows the potential of utilizing copy 

number variations in the form of chromosomal scale length variations in the prediction of 

complex diseases along with the promise of utilizing machine learning techniques to create an 

interpretable method of understanding how the genomic landscape interlinks across genes to 

contribute to inherited disease risk. 

 The Cancer Genome Atlas and UK Biobank are invaluable resources, providing high 

statistical power to our analysis. As other large-scale population data projects near completion 

in the coming decade, the methods laid on the foundation of The Cancer Genome Atlas and UK 

Biobank will continue to benefit and improve as sample sizes easily begin to move into the 

regime of millions of patients. Examining populations around the world will truly aid in the goal 

of precision medicine. 

We believe we can apply our methods to other complex diseases such as Alzheimer’s 

disease and dementia, asthma, and autoimmune diseases. Information about how human 

genetic variation can contribute to individual susceptibility allows patients and doctors to make 

early lifestyle changes in a preventative manner. Likewise, it can inform physicians which types 

of prognostics and diagnostics would be the most relevant for a specific patient, saving both 

time and money, while improving patient outcomes in the long term.   
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