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ABSTRACT
We present cosmological constraints from the analysis of angular power spectra of cosmic
shear maps based on data from the first three years of observations by the Dark Energy Survey
(DES Y3). The shape catalog contains ellipticity measurements for over 100 million galaxies
within a footprint of 4143 square degrees. Our measurements are based on the pseudo-𝐶ℓ

method and offer a view complementary to that of the two-point correlation functions in
real space, as the two estimators are known to compress and select Gaussian information in
different ways, due to scale cuts. They may also be differently affected by systematic effects
and theoretical uncertainties, such as baryons and intrinsic alignments (IA), making this
analysis an important cross-check. In the context ofΛCDM, and using the same fiducial model
as in the DES Y3 real space analysis, we find 𝑆8 ≡ 𝜎8

√︁
Ωm/0.3 = 0.793+0.038−0.025, which further

improves to 𝑆8 = 0.784 ± 0.026when including shear ratios. This constraint is within expected
statistical fluctuations from the real space analysis, and in agreement with DES Y3 analyses of
non-Gaussian statistics, but favors a slightly higher value of 𝑆8, which reduces the tension with
the Planck cosmic microwave background 2018 results from 2.3𝜎 in the real space analysis to
1.5𝜎 in this work. We explore less conservative IAmodels than the one adopted in our fiducial
analysis, finding no clear preference for a more complex model. We also include small scales,
using an increased Fourier mode cut-off up to 𝑘max = 5 hMpc−1, which allows to constrain
baryonic feedback while leaving cosmological constraints essentially unchanged. Finally, we
present an approximate reconstruction of the linear matter power spectrum at present time,
which is found to be about 20% lower than predicted by Planck 2018, as reflected by the 1.5𝜎
lower 𝑆8 value.
Key words: gravitational lensing: weak – cosmological parameters – large-scale structure of
Universe.
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2 Doux, C. et al.

1 INTRODUCTION

Gravitational lensing by the large-scale structure coherently distorts
the apparent shapes of distant galaxies. The measured effect, cos-
mic shear, is sensitive to both the geometry of the Universe and
the growth of structure, making it, in principle, a powerful tool for
probing the origin of the accelerated expansion of the Universe and,
consequently, the nature of dark energy. After the first detections
two decades ago (Wittman et al. 2000; Kaiser et al. 2000; VanWaer-
beke et al. 2000; Bacon et al. 2000), methodological advances in
measurement algorithms were permitted by newly collected data,
e.g. from the Deep Lens Survey (DLS, Wittman et al. 2002; Jee
et al. 2013, 2016), the COSMOS survey (Scoville et al. 2007), the
Canada-France-Hawaii Telescope Legacy Survey (CFHTLS, Sem-
boloni et al. 2006) and Canada-France-Hawaii Telescope Lensing
Survey (CFHTLenS, Joudaki et al. 2017) and the Sloan Digital Sky
Survey (SDSS, Huff et al. 2014). These were fostered by commu-
nity challenges (see, e.g., Heymans et al. 2006; Massey et al. 2007;
Bridle et al. 2009; Kitching et al. 2012; Mandelbaum et al. 2014).
Ongoing surveys, such as the Dark Energy Survey1 (DES, Flaugher
2005), the ESO Kilo-Degree Survey2 (KiDS, de Jong et al. 2013;
Kuĳken et al. 2015), and the Hyper Suprime-Cam Subaru Strategic
Program3 (HSC, Aihara et al. 2018a,b), have produced data sets
capable of achieving cosmological constraints that are competitive
with cosmic microwave background observations on the amplitude
of structure, 𝜎8, and the density of matter,Ωm, through the parame-
ter combination 𝑆8 ≡ 𝜎8

√︁
Ωm/0.3 (Troxel et al. 2018; Hikage et al.

2019; DES Collaboration 2022; Hamana et al. 2020; Planck Col-
laboration et al. 2020; Asgari et al. 2021). These surveys are paving
the way for the next generation of surveys, namely the Vera Rubin
Observatory Legacy Survey of Space and Time4 (LSST, Ivezić et al.
2019), the ESA satellite Euclid5 (Laureĳs et al. 2012), and NASA’s
Nancy Grace Roman Space Telescope6 (Akeson et al. 2019), which
will improve upon current observations in quality, area, depth and
spectral coverage, in the hope of better determining the nature of
dark energy. However, the level of precision needed to fully exploit
the cosmological information contained in these future observations
pushes the community to dissect every component of the analysis
framework, from data collection to inference of cosmological pa-
rameters.

The two-point statistics of the cosmic shear field are most
commonly used to extract cosmological information. While it is
well known that the shear or convergence fields are, to some extent,
non-Gaussian (Springel et al. 2006; Yang et al. 2011), i.e. that there
is information in higher-order statistics (e.g. in peaks, Dietrich &
Hartlap 2010; Martinet et al. 2018; Harnois-Déraps et al. 2021;
Zürcher et al. 2021; Jeffrey et al. 2021a, or three-point functions,
Takada & Jain 2003; Fu et al. 2014), the two-point functions remain
the primary source of information, as they can be predicted by nu-
merical integration of analytical models (Zuntz et al. 2015; Joudaki
et al. 2017; Krause et al. 2021; Chisari et al. 2019) and efficiently
measured (Jarvis 2015). The shear two-point function can be char-
acterized by its two components, b+ (\) and b− (\), as a function of
angular separation \, or by its Fourier (or harmonic) counterpart,
the shear angular power spectrum, 𝐶ℓ , as a function of multipole ℓ

1 https://www.darkenergysurvey.org/
2 http://kids.strw.leidenuniv.nl/
3 https://hsc.mtk.nao.ac.jp/ssp/
4 https://www.lsst.org/
5 https://sci.esa.int/web/euclid
6 https://roman.gsfc.nasa.gov/

(with an approximate mapping ℓ ∼ 𝜋/\). Both have been measured
on recent data from the DES (DESYear 1, Troxel et al. 2018; Nicola
et al. 2021; Camacho et al. 2021, and DESYear 3, Amon et al. 2022;
Secco, Samuroff et al. 2022), KiDS (KiDS-450, Hildebrandt et al.
2017; Köhlinger et al. 2017, and KiDS-1000, Asgari et al. 2021;
Loureiro et al. 2021) and HSC (Hikage et al. 2019; Hamana et al.
2020).

While, in principle, the two statistics summarize the same in-
formation, practical considerations require discarding some of the
measurements for cosmological analyses via scale cuts. As a con-
sequence, the information retained by the two statistics differs in
practice, which introduces some statistical variance in cosmolog-
ical constraints, on top of potential differences due to differential
systematic effects. Indeed, constraints reported for the analyses of
cosmic shear with KiDS-450 data showed a difference between the
real- and harmonic-space analyses of Δ𝑆8 = 0.094 (Hildebrandt
et al. 2017; Köhlinger et al. 2017), and that of HSC Year 1 data
a difference of Δ𝜎8 = 0.28 (Hikage et al. 2019; Hamana et al.
2020, 2022), both corresponding to about 2𝜎 discrepancies (see
also fig. 11, discussed below). More recently, the comparison be-
tween three different estimators presented for KiDS-1000 data, on
the other hand, showed excellent agreement (Asgari et al. 2021),
including a newly developed pseudo-𝐶ℓ estimator in Loureiro et al.
(2021). In a preparatory study (Doux et al. 2021), we quantified
this effect for DES Y3 by means of simulations and showed (i) that
the difference on the 𝑆8 parameter is expected to fluctuate by about
𝜎(Δ𝑆8) ∼ 0.02 for typical scale cuts, and (ii) that the observed
difference is the result of the interplay between scale cuts and sys-
tematic effects, and how these impact each statistic.

In this work, we present measurements of (tomographic) cos-
mic shear power spectra measured from data based on the first three
years of observations by the Dark Energy Survey (DES Y3), which
we use to infer cosmological constraints on the ΛCDM model. We
then extend our analysis and vary scale cuts to derive constraints
on intrinsic alignments and baryonic feedback at small scales, the
two largest astrophysical sources of uncertainty on cosmic shear
studies (Chisari et al. 2018; Mandelbaum 2018; Secco et al. 2022).
Finally, we study the consistency of these constraints with those
inferred from other DES Y3 weak lensing analyses, using two-point
functions (Amon et al. 2022; Secco, Samuroff et al. 2022) and
non-Gaussian statistics (Zürcher et al. 2022; Gatti et al. 2021b).

The paper is organized as follows: section 2 presents DES Y3
data; section 3 introduces the formalism relevant to the estimation
of cosmic shear power spectra and the cosmological model, includ-
ing systematic effects, intrinsic alignments and baryonic feedback;
section 4 highlights the different tests we performed to validate
both the measurement and modeling pipelines, some of which rely
on simulations (Gaussian, 𝑁-body and hydrodynamical); section 5
details the three-step blinding procedure we adopted in this work;
section 6 presents our main results, i.e. cosmological constraints in-
ferred from the analysis of DESY3 cosmic shear power spectra, and
compares them to other weak lensing studies; and finally section 7
summarizes our results.

2 DARK ENERGY SURVEY YEAR 3 DATA

The Dark Energy Survey The Dark Energy Survey Collaboration
(DES, 2005) is a photometric imaging survey that covers around
5000 square degrees of the southern hemisphere in five optical
and near-infrared bands (𝑔𝑟𝑖𝑧𝑌 ). Its observations were carried out
at the Cerro Tololo Inter-American Observatory (CTIO) in Chile,

MNRAS 000, 1–31 (2022)
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Figure 1.Maps of the two shear components, 𝛾1 and 𝛾2, and density, 𝑛𝑔 , of the full DES Y3 weak lensing catalog.

using the 570-megapixel DECam camera mounted on the Blanco
telescope (Flaugher et al. 2015), during a six-year campaign (2013-
2019). This work is based on data collected during the first three
years (Y3) of observations, in particular the DES Y3 weak lensing
shape catalog presented in Gatti, Sheldon et al. (2021c), which is a
subsample of the Y3 Gold catalogue (Sevilla-Noarbe et al. 2021),
and the inferred redshift distributions presented in Myles, Alarcon
et al. (2021).

2.1 Shape catalog

Galaxy shape calibration biases are usually parameterized in terms
of multiplicative and additive components. The DESY3 shapemea-
surements are based on the Metacalibration algorithm, which
allows to self-calibrate most shear multiplicative biases, including
selection effects, by measuring the response of the shape measure-
ment pipeline to an artificial shear (Sheldon & Huff 2017; Huff &
Mandelbaum 2017). The residual multiplicative biases, at the 2 to
3% level, are dominated by shear-dependent detection and blending
effects, and the correctionwasmeasured on a suite of realistic, DES-
Y3-like image simulations presented in MacCrann et al., (2022).

The shape catalog was validated by a series of (null) tests pre-
sented in Gatti, Sheldon et al. (2021c) and found to be robust to
both multiplicative and additive biases. The fiducial DES Y3 cata-
log used here comprises ellipticity measurements for 100 204 026
galaxies, with inverse-variance weights based on signal-to-noise
ratio and size. The effective area of the sample is 4143 deg2 (see
Sevilla-Noarbe et al. 2021, for details), corresponding to an effective
density of �̄� = 5.59 gal/arcmin2. Figure 1 shows the two ellipticity
components and the density of the entire sample. We will construct
similar maps for each of the four tomographic bin (see next section)
and use them to measure cosmic shear power spectra.

2.2 Redshift distributions

The DES Y3 shape catalogue was further divided into four to-
mographic bins, based on photometric redshifts inferred with the
Sompz algorithm (phenotypic redshifts with self-organizing maps,
Buchs et al. 2019). The DES Y3 implementation is detailed in
Myles, Alarcon et al. (2021) and connects DES wide-field photom-
etry to (i) deep-field observations (Hartley, Choi et al. 2022), using
image injectionwith the Balrog software (Everett et al. 2022), and to
(ii) external spectroscopic and high-quality photometric samples, to
calibrate redshifts. This Bayesian framework allows to consistently

0 500 1000 1500 2000 2500 3000 3500
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0.00
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Figure 2. Redshift distributions (top) and corresponding lensing efficiency
functions (bottom) for the four tomographic bins. The upper panel shows the
mean (solid lines), ±1𝜎 and ±2𝜎 (light bands) percentiles of the ensemble
of redshift distributions (Myles, Alarcon et al. 2021; Gatti, Giannini et al.
2022).

sample the posterior distribution of the four redshift distributions,
while propagating calibration and sample uncertainties. Given an
ensemble of realizations, uncertainties can be marginalized-over
during sampling by means of the HyperRank method (Cordero,
Harrison et al. 2022). The initial ensemble that was generated for
DES Y3 was subsequently filtered using constraints on redshifts
from cross-correlations with spectroscopic samples, as detailed in
Gatti, Giannini et al. (2022). The residual uncertainty on the mean
redshift of each tomographic bin is of order 𝜎〈𝑧 〉 ∼ 0.01. Redshift
distributions are shown in the upper panel of fig. 2, where, for each
bin, the ensemble mean is represented by a solid line, and the en-
semble dispersion is represented by the light bands. The lensing
efficiency functions corresponding to the mean distributions at the
fiducial cosmology are shown in the lower panel.

3 METHODS

In this work, we aim at extracting cosmological constraints from the
measurements of the angular auto- and cross-power spectra of the
tomographic cosmic shear fields inferred from DES Y3 data. This
section describes the estimation of angular spectra from data and

MNRAS 000, 1–31 (2022)
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the multivariate Gaussian likelihood model, including theoretical
predictions for power spectra and their covariance matrix.

3.1 Angular power spectrum measurements

Cosmic shear is represented by a spin-2 field 𝜸 ≡ (𝛾1, 𝛾2) on the
sphere that describes, to linear order, the distortions of the elliptic-
ities of background galaxies. A pixelized representation of the cos-
mic shear field can therefore be obtained by computing the weighted
average of the observed ellipticities e ≡ (𝑒1, 𝑒2) of galaxies within
pixels on the sphere. For each pixel 𝑝 at angular position 𝜽 𝑝 , we
thus compute

�̂�
(
𝜽 𝑝

)
=

∑
𝑖∈𝑝 𝑤𝑖e𝑖∑
𝑖∈𝑝 𝑤𝑖

, (1)

where the sums run over galaxies, indexed by 𝑖 and with inverse-
variance weight𝑤𝑖 , that fall into pixel 𝑝. The two components of the
shear field estimated from the full DES Y3 weak lensing sample are
represented in the left and middle panel of fig. 1. For the cosmolog-
ical analysis, we compute maps of the two components of the shear
field for each tomographic bin using the healpy software (Górski
et al. 2005; Zonca et al. 2019) with a resolution of 𝑁side = 1024,
following the same procedure. Note that, prior to eq. (1), observed
ellipticities were corrected for additive and multiplicative biases by
subtracting the (weighted) mean ellipticity (as done in Gatti, Shel-
don et al. 2021c) and dividing by the Metacalibration response,
both of which were computed for each bin.

We now turn to the estimation of shear power spectra. For
full-sky observations, the true shear field for redshift bin 𝑎,
𝜸𝑎 ≡ (𝛾𝑎1 , 𝛾

𝑎
2 ), can be decomposed on the basis of spherical har-

monics as(
𝛾𝑎1 ± 𝑖𝛾𝑎2

)
(𝜽) = −

∑︁
ℓ𝑚

[
𝐸𝑎
ℓ𝑚

± 𝑖𝐵𝑎
ℓ𝑚

]
±2𝑌ℓ𝑚 (𝜽), (2)

where 𝑠𝑌ℓ𝑚 are the spin-weighted spherical harmonics (Hikage
et al. 2011). Here, we have used the decomposition of the field into
𝐸- and 𝐵-modes, i.e. its curl-free and divergence-free components.
The shear power spectra are then defined by the covariance matrix
of the spherical harmonic coefficients,〈
𝐸𝑎
ℓ𝑚

𝐸𝑏∗
ℓ′𝑚′

〉
= 𝐶𝐸𝐸

ℓ

(
𝜸𝑎 , 𝜸𝑏

)
𝛿ℓℓ′𝛿𝑚𝑚′ , (3)〈

𝐸𝑎
ℓ𝑚

𝐵𝑏∗
ℓ′𝑚′

〉
= 𝐶𝐸𝐵

ℓ

(
𝜸𝑎 , 𝜸𝑏

)
𝛿ℓℓ′𝛿𝑚𝑚′ , (4)〈

𝐵𝑎
ℓ𝑚

𝐵𝑏∗
ℓ′𝑚′

〉
= 𝐶𝐵𝐵

ℓ

(
𝜸𝑎 , 𝜸𝑏

)
𝛿ℓℓ′𝛿𝑚𝑚′ , (5)

which can be estimated by

�̂�𝐸𝐸
ℓ

(
𝜸𝑎 , 𝜸𝑏

)
=

1
2ℓ + 1

∑︁
𝑚

𝐸𝑎
ℓ𝑚

𝐸𝑏∗
ℓ𝑚

, (6)

�̂�𝐸𝐵
ℓ

(
𝜸𝑎 , 𝜸𝑏

)
=

1
2ℓ + 1

∑︁
𝑚

𝐸𝑎
ℓ𝑚

𝐵𝑏∗
ℓ𝑚

, (7)

�̂�𝐵𝐵
ℓ

(
𝜸𝑎 , 𝜸𝑏

)
=

1
2ℓ + 1

∑︁
𝑚

𝐵𝑎
ℓ𝑚

𝐵𝑏∗
ℓ𝑚

. (8)

Gravitational lensing, to first order, does not create 𝐵-modes,
therefore the cosmological signal is containedwithin 𝐸-mode power
spectra, and 𝐵-modes can be used to detect potential systematic ef-
fects in the data, such as contamination by the point spread function
(PSF, see section 4.2 and appendix A). However, a number of ef-
fects may generate small 𝐵-modes power spectra (small in compar-
ison to to 𝐸-mode spectra), including second-order lensing effects

(e.g. Krause & Hirata 2010), clustering of source galaxies (Schnei-
der et al. 2002), and intrinsic alignments, as is the case with the
model used in our fiducial analysis (TATT, including tidal align-
ment and tidal torquing mechanisms, from Blazek et al. 2019, see
section 3.2.3). Therefore, we preserve both components of the field
and introduce the vector notation

C𝑎𝑏
ℓ

≡


𝐶𝐸𝐸
ℓ

(
𝜸𝑎 , 𝜸𝑏

)
𝐶𝐸𝐵
ℓ

(
𝜸𝑎 , 𝜸𝑏

)
𝐶𝐵𝐵
ℓ

(
𝜸𝑎 , 𝜸𝑏

)


(9)

to denote the vectors made of the two components of the shear
power spectra.

The formalism introduced so far is valid for a full-sky obser-
vations. In practice, however, the cosmic shear field is only sampled
within the survey footprint, at the positions of galaxies. This in-
duces a complicated sky window function, or mask, that correlates
different multipoles and biases the estimators defined in eqs. (6)
and (8). We therefore estimate angular power spectra with the so-
called pseudo-𝐶ℓ or MASTER formalism (Hivon et al. 2002) using
theNaMaster software (Alonso et al. 2019) to correct for the effect
of the mask.We provide a summary of the method here and refer the
reader to Hikage et al. (2011) for the development of the pseudo-𝐶ℓ

formalism for cosmic shear, to Alonso et al. (2019) for the Na-
Master implementation and to Nicola et al. (2021) and Camacho
et al. (2021) for recent applications of the pseudo-𝐶ℓ formalism
with NaMaster to DES Y1 and HSC cosmic shear data.

Let 𝑊𝑎 (𝜽) be the mask for the shear field in bin 𝑎, which
is zero outside the survey footprint, and let us define the masked
shear field �̃�𝑎 (𝜽) ≡ 𝑊𝑎 (𝜽)𝜸𝑎 (𝜽). Then the cross-power spectrum
of the masked fields, i.e. the pseudo-spectrum of the fields, has an
expectation value given by〈
C̃𝑎𝑏
ℓ

〉
=
∑︁
ℓ′

M𝑎𝑏
ℓℓ′C

𝑎𝑏
ℓ

, (10)

whereM𝑎𝑏
ℓℓ′ is the mode-coupling (or mixing) matrix of the masks,

computed analytically from their spherical harmonic coefficients
(see, e.g., Alonso et al. 2019 for formulæ). This matrix describes
how themask correlates differentmultipoles, otherwise independent
for full-sky observations, as well as leakages between 𝐸- and 𝐵-
modes. While this equation may not be directly inverted due to
the loss of information pertaining to masking, one can define an
estimator for the binned power spectrum, defined as

C𝑎𝑏
𝐿 ≡

∑︁
ℓ∈𝐿

𝜔ℓ
𝐿C𝑎𝑏

ℓ
, (11)

where 𝜔ℓ
𝐿
is a set of weights defined for multipoles ℓ in band-

power 𝐿 and normalized such that
∑
ℓ∈𝐿 𝜔ℓ

𝐿
= 1. We also define the

mean multipole of each bin as �̄� ≡ ∑
ℓ∈𝐿 𝜔ℓ

𝐿
ℓ. The binned pseudo-

spectrum C̃𝑎𝑏
𝐿
is similarly defined from the unbinned pseudo-power

spectrum C̃𝑎𝑏
ℓ
. The estimator for the binned power spectrum is then

given by

Ĉ𝑎𝑏
𝐿 =

∑︁
𝐿′

(
M𝑎𝑏

)−1
𝐿𝐿′

C̃𝑎𝑏
𝐿′ , (12)

where the binned coupling matrix is

M𝑎𝑏
𝐿𝐿′ ≡

∑︁
ℓ∈𝐿

∑︁
ℓ′∈𝐿′

𝜔ℓ
𝐿M

𝑎𝑏
ℓℓ′ . (13)

The successive operations of masking, binning and decoupling de-
scribed by eqs. (10) to (12) are generally not permutable, such that
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the expectation value of the estimator in eq. (12) can differ from a
naive binning of the theoretical prediction for C𝑎𝑏

ℓ
, as in eq. (11).

Instead, the estimated shear power spectra must be compared to〈
Ĉ𝑎𝑏
𝐿

〉
=
∑︁
ℓ

F 𝑎𝑏
𝐿ℓ

C𝑎𝑏
𝐿 (14)

where the bandpower windows F 𝑎𝑏
𝐿ℓ
are given by

F 𝑎𝑏
𝐿ℓ

=
∑︁
𝐿′

(
M𝑎𝑏

)−1
𝐿𝐿′

∑︁
ℓ′∈𝐿′

𝜔ℓ′
𝐿′M

𝑎𝑏
ℓ′ℓ . (15)

Throughout this work, we adopt an equal-weight binning scheme
(i.e. 𝜔ℓ = 1 if ℓ ∈ 𝐿, 0 otherwise) with 32 square-root-spaced bins
defined between multipoles ℓmin = 8 and ℓmax = 2048 (shown by
the colored bars in fig. 3). This choice ensures a good balance of
signal-to-noise ratio across bandpowers 𝐿 while remaining flexi-
ble for scale cuts at both low and high multipoles, i.e. large and
small scales (in comparison to linear and logarithmic bins that
are too coarse for low and high multipoles respectively). We use
weighted galaxy count maps as masks, using the weights computed
by the Metacalibration algorithm. This is a close approxima-
tion to inverse-variance masks since theMetacalibrationweights
are themselves inverse-variance weights of ellipticity measurements
(see Nicola et al. 2021). The exact bandpower windows F 𝑎𝑏

𝐿ℓ
for

these binning and masking schemes are compared to the naive bin-
ning (i.e. top-hat)windows in fig. 3. In particular, we observe that the
exact windows extend beyond the top-hat ones, with some negative
terms, especially for small multipoles below ℓ . 200.

We compute tomographic cosmic shear power spectra with
NaMaster, given our binning and masking schemes, from the
shear maps computed from eq. (2). These include a shape-noise
component due to the intrinsic ellipticities of galaxies, which con-
tributes an additive noise bias to the estimated auto-power spectra
(whereas cross-spectra do not receive such contributions). For each
tomographic bin, the noise power spectrum 𝑁𝑎

ℓ
is flat for full-sky

observations, and can be approximated by 𝑁𝑎
ℓ

≈ 𝜎2𝑒,𝑎/�̄�𝑎 , where
𝜎2𝑒,𝑎 is the standard deviation of single-component (measured) el-
lipticity and �̄�𝑎 is the galaxy density in redshift bin 𝑎. We follow
Nicola et al. (2021) and estimate the binned noise pseudo-power

spectrum, which is constant, by

Ñ𝐿 = Ωpix

〈∑︁
𝑖∈𝑝

𝑤2𝑖
𝑒21,𝑖 + 𝑒22,𝑖
2

〉
𝑝

, (16)

where Ωpix is the pixel area in steradians (about 11.8 arcmin2 for
𝑁side = 1024), and the expectation value is computed for all pix-
els, including those outside the survey footprint (where the value
is zero). The binned noise power spectrum can then be computed
with eq. (12) and subtracted from the estimated spectra. We note
that this analytical estimation coincides with the expectation value
of the auto-power spectra measured after applying random rotations
to galaxies. Random rotations preserve the density of galaxies and
the ellipticity distribution of the catalog and therefore properties of
shape-noise (including its potential spatial variations), while can-
celing any spatial correlation (that is, both in the 𝐸- and 𝐵-modes).
We also applied this procedure and verified that the result agrees
with the analytical estimation, which has the advantage of being
noiseless and is therefore preferred for our measurements.

We do not apply any purification of 𝐸- and 𝐵-modes (Lewis
et al. 2001; Smith 2006; Grain et al. 2009; Alonso et al. 2019) since
the 𝐵-mode signal is largely subdominant and does not contain cos-
mological information, to first order. Moreover, this would require
an apodization of the mask, that is speckled with empty pixels due
to fluctuations in the density of source galaxies and small vetoed
areas, and thus significantly decrease the effective survey area.

Finally, we correct for the effect of the pixelization of the shear
fields into HealPix maps. As noted in Nicola et al. (2021), it de-
pends on the density of galaxies, at fixed resolution: at low density,
each pixel contains at most one galaxy and the map is sampling the
shear field itself (but has many empty pixels), whereas at higher
density, we are estimating the average of the shear field within each
pixel. Here, for a resolution of 𝑁side = 1024, we find that pixels with
at least one galaxy contain on average 17.2 to 17.5 galaxies for all
four tomographic bins, meaning that we are indeed sampling the av-
eraged shear field (although a small fraction of pixels, especially on
the footprint edges, have only one galaxy). This is then corrected for
by dividing the pseudo-spectra C̃𝑎𝑏

ℓ
by the (squared)HealPix pixel

window function 𝐹2
ℓ
, or equivalently, assigning weights 𝑤ℓ

𝐿
= 1/𝐹2

ℓ
for ℓ ∈ 𝐿 for measurements (except for theoretical predictions). We
test the effect of the resolution parameter in appendix C1, and verify
that it has negligible impact on cosmological constraints. In sec-
tion 4, we validate these hypotheses and the measurement pipeline
with Gaussian and 𝑁-body simulations.

The estimated shear power spectra for DES Y3 data are shown
in fig. 4, alongwith the best-fitmodel for our fiducialΛCDM results.

3.2 Modeling

In this section, we describe the theoretical model for the observed
shear power spectra, including systematic uncertainties.

3.2.1 Theoretical background

Gravitational lensing deflects photons from straight trajectories and
the deflection angle can be written as the gradient (on the sphere) of
the lensing potential 𝜓(𝜽). In the Born approximation, the lensing
potential up to comoving distance 𝜒 is given by the projection of
the three-dimensional Newtonian gravitational potential Ψ along
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and are compared to theoretical predictions of ℓ𝐶ℓ .

the line of sight, such that

𝜓(𝜽 , 𝜒) = 2
∫ 𝜒

0
d𝜒′

𝜒 − 𝜒′

𝜒𝜒′
Ψ
(
𝜒′𝜽 , 𝜒′

)
, (17)

where we assumed a flat Universe (Bartelmann 2010). The Jacobian
of the deflection angle can further be decomposed into its trace and
trace-less parts, defining the spin-0 convergence field, ^, and the
spin-2 shear field, 𝜸. Both fields can therefore be expressed in terms
of second-order derivatives of the lensing potential. In the spherical
harmonics representation, we have

^ =
1
4
(
ðð̄ + ð̄ð

)
𝜓 =

1
2
∇2𝜽𝜓, (18)

𝜸 = 𝛾1 + 𝑖𝛾2 =
1
2
ðð𝜓, (19)

where ð and ð̄ are the raising and lowering operators of the spin-
weighted spherical harmonics, 𝑠𝑌ℓ𝑚 (see Castro et al. 2005 for
details and, e.g., Chang et al. 2018 for an application to curved-sky
lensingmassmaps). TheNewtonian potential is related to thematter
overdensity field 𝛿 via the Poisson equation,

∇2Ψ =
3Ωm𝐻20
2𝑎𝑐2

𝛿, (20)

whereΩm is thematter density parameter,𝐻0 is theHubble constant
today and 𝑎 = 1/(1 + 𝑧) is the scale factor. Combining eqs. (17)
and (18), we obtain

^(𝜽 , 𝜒) =
3Ωm𝐻20
2𝑐2

∫ 𝜒

0

d𝜒′

𝑎(𝜒′)
𝜒 − 𝜒′

𝜒𝜒′
𝛿
(
𝜒′𝜽 , 𝜒′

)
, (21)

where we have added the radial component of the Laplacian of the
potential, ∇2𝜒Ψ, that vanishes in the integration.

For a sample of galaxies, the observable convergence and shear
fields are integrated over comoving distance and weighted by their
redshift distribution 𝑛𝑎 (𝜒), where 𝑎 denotes the bin index. In the
Limber approximation (Limber 1953; Kaiser 1992, 1998; LoVerde
& Afshordi 2008), the convergence cross-power spectrum for bins
𝑎 and 𝑏 is

𝐶
^𝑎^𝑏
ℓ

=

∫
d𝜒

𝑞𝑎 (𝜒)𝑞𝑏 (𝜒)
𝜒2

𝑃NL

(
𝑘 =

ℓ + 1/2
𝜒

, 𝑧(𝜒)
)
, (22)

where the lensing efficiency is given by

𝑞𝑎 (𝜒) =
3Ωm𝐻20
2𝑐2

𝜒

𝑎(𝜒)

∫ 𝜒𝐻

𝜒
d𝜒′ 𝑛𝑎 (𝜒′)

𝜒 − 𝜒′

𝜒′
, (23)
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where 𝜒𝐻 is the distance to the horizon (effectively, the comoving
distance where the redshift distributions vanish). The lensing effi-
ciency functions for DES Y3 galaxies are shown in the lower panel
of fig. 2. Given eqs. (18) and (19), the cosmic shear 𝐸-mode power
spectrum is given by

𝐶𝑎𝑏
ℓ

= 𝑇ℓ𝐶
^𝑎^𝑏
ℓ

, (24)

where the prefactor, 𝑇ℓ = (ℓ + 2) (ℓ + 1)ℓ(ℓ − 1)/(ℓ + 1/2)4, is often
replaced by 1, an excellent approximation for ℓ & 10 Kitching et al.
(see 2017); Kilbinger et al. (see 2017, for a complete discussion).
We verified that these two approximations are correct, given our
binning scheme, with an error of at most 0.2% on the largest scales
considered.

3.2.2 Non-linear power spectrum

Following the generalmethodology of theDESY3 large-scale struc-
ture analysis set in Krause et al. (2021), for our fiducial model we
compute the non-linear matter power spectrum 𝑃NL (𝑘, 𝑧) using the
Boltzmann code CAMB (Lewis et al. 2000; Howlett et al. 2012)
with theHaloFit extension to non-linear scales (Smith et al. 2003),
with updates to dark energy and massive neutrinos from Takahashi
et al. (2012). HaloFit is reported to be accurate at the 5% level
for 𝑘 ≤ 1 hMpc−1, when compared to 𝑁-nody simulations, and
degrading for smaller scales. However, Krause et al. (2021) showed
that DES Y3 cosmic shear is insensitive to varying the prescription
to model the small-scale power spectrum by substituting HaloFit
forHMCode (with dark matter only), the Euclid Emulator, or the
Mira-Titan Emulator (Mead et al. 2015; Euclid Collaboration
et al. 2019; Lawrence et al. 2017). We show a comparison of some
of these prescriptions in fig. 5 and we verify the robustness of our
fiducial choice in in section 4.4.1.

3.2.3 Intrinsic alignments

Galaxies are extended objects and therefore subject to tidal forces.
Their intrinsic shapes, or ellipticities, are consequently not fully
random but rather tend to align with the tidal field of the gravi-
tational potential and therefore each other (Hirata & Seljak 2004;
Bridle & King 2007). As a consequence, the shear power spec-
trum estimated from galaxies receives additional contributions from
the correlation of intrinsic shapes, 𝐶𝑎𝑏

ℓ,II, and the cross-correlations
of intrinsic shapes with the cosmological shear field, 𝐶𝑎𝑏

ℓ,GI and
𝐶𝑎𝑏
ℓ,IG, such that the theoretical spectrum of the observed signal
reads 𝐶𝑎𝑏

ℓ
+ 𝐶𝑎𝑏

ℓ,GI + 𝐶𝑎𝑏
ℓ,IG + 𝐶𝑎𝑏

ℓ,II.
In this work, we follow the DES Y3 analysis of cosmic shear in

real space (Krause et al. 2021; Amon et al. 2022; Secco, Samuroff
et al. 2022) and use the so-called TATT framework (Blazek et al.
2019) as our fiducial choice to model these extra terms stemming
from intrinsic alignments (IA). This model unified tidal alignment
(TA) with tidal torquing (TT) mechanisms, proposed by Catelan
et al. (2001); Crittenden et al. (2001); Mackey et al. (2002), thanks
to a perturbative expansion of the intrinsic galaxy shape field in
the density and tidal fields, up to second order in the tidal field. We
refer the reader to Secco, Samuroff et al. (2022) for full details of the
implementation and a justification of this choice. The TA and TT
contributions are eachmodulated by an amplitude (respectively 𝐴TA
and 𝐴TT) and a redshift-dependence parameter (respectively 𝛼TA
and 𝛼TT), with an additional linear bias 𝑏TA of sources contributing
to the TA signal. The non-linear alignment model (NLA, Hirata &

Seljak 2004; Bridle & King 2007), commonly used in cosmic shear
analyses (Troxel et al. 2018; Asgari et al. 2021; Hamana et al.
2020; Hikage et al. 2019) is contained in the TATT framework and
corresponds to the case 𝐴TT = 𝑏TA = 0.

The TATT model also predicts a small, but non-zero 𝐵-mode
power spectrum, when 𝑏TA ≠ 0 or 𝐴TT ≠ 0. In the main parts of the
analysis, the 𝐵-mode spectrum is not used for cosmological anal-
ysis. Instead, it is demonstrated in section 4.2.1 that DES Y3 data
is consistent with no 𝐵-modes, rejecting the hypothesis of a strong
contamination of the signal by systematic effects that would source
𝐵-modes, such as leakage from the PSF, measured in section 4.2.2
and appendix A. This test thereby also excludes a detectable con-
tribution of the IA 𝐵-mode signal, with the unlikely caveat that
systematic effects and IA may cancel each other. In addition, the
PSF test allows us to predict the contamination of 𝐵-mode spectra,
which is found to be subdominant, by an order of magnitude, to the
TATT-predicted 𝐵-mode signal for 𝐴TT = 1, which is well within
current 𝐸-mode constraints. Therefore, we will extend the cosmo-
logical analysis in section 6.2 and include 𝐵-mode measurements to
improve constraints on the TATT parameters. To do so, we employ
the same pseudo-𝐶ℓ formalism and extend the mode-coupling ma-
trices in eqs. (10) and (14) to account for the 𝐵-mode component.
Note that NaMaster computes both 𝐸 and 𝐵 components of the
mixing matrices as well as the cross-terms accounting for leakages
between the two components. The fiducial analysis simply discards
those terms, as 𝐵-to-𝐸 mode leakage is found to be negligible. How-
ever, 𝐸-to-𝐵mode leakage is found to significantly contribute to the
𝐵-mode signal, in comparison to the TATT-predicted 𝐵-mode signal
(they are of comparable magnitude for 𝐴TT of order unity). There-
fore, the extended analysis including 𝐵-mode measurements uses
consistent modeling of multipole coupling and 𝐸 /𝐵-mode leakage.
The covariance matrix for the 𝐵-mode measurement as well as the
cross-covariance between 𝐸- and 𝐵-mode measurements are com-
puted from a set of 10 000 Gaussian simulations based on DES Y3
data, as detailed in section 4.1.1.

3.2.4 Effects of baryons

Astrophysical, baryonic processes redistribute matter within dark-
matter halos and modify the matter power spectrum at small scales
(Chisari et al. 2018; Schneider et al. 2019, 2020; Huang et al.
2021). Feedback mechanisms from active galactic nuclei and su-
pernovæ heat up their environment and suppress clustering in the
range 𝑘 ∼1 hMpc−1 to 10 hMpc−1, while cooling mechanisms en-
hance clustering on smaller scales. The complex physics involved
in these mechanisms has been modeled in multiple hydrodynamical
simulations (van Daalen et al. 2011; Dubois et al. 2014; Vogels-
berger et al. 2014; Khandai et al. 2015). However the absolute and
relative amplitudes of the various effects remain poorly understood
and constitute a major source of uncertainty, at the level of tens of
percent, on the matter power spectrum at scales 𝑘 & 5 hMpc−1, and
on the shear power spectrum at multipoles as low as ℓ & 100, as
shown on fig. 5 (see also Huang et al. 2019).

Our fiducial analysis follows the DES Y3 analysis and discards
scales that are strongly affected by baryonic effects, as detailed in
section 3.5.1. In general, the impact of baryons on the shear power
spectrum can be computed by rescaling the matter power spectrum,

𝑃NL (𝑘, 𝑧) → 𝑃NL (𝑘, 𝑧)
𝑃hydro (𝑘, 𝑧)
𝑃DM (𝑘, 𝑧) , (25)

where 𝑃hydro (𝑘, 𝑧) and 𝑃DM (𝑘, 𝑧) are the matter power spectra
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Figure 5. Residual shear power spectra with respect to the fiducial power spectra, 𝐶fid
ℓ
. The orange (HMCode) and brown (Euclid Emulator) curves show

residuals for alternative prescription of the non-linear power spectrum (see section 3.2.2). The blue and red curves show the effect of baryons as predicted by

four hydrodynamical simulations (Illustris, OWLS AGN, Horizon AGN and MassiveBlack II). Higher-order lensing effects computed with CosmoLike are
also shown, in green, to be small. The error bars are shown by the gray step-wise lines which represent ±𝜎 (𝐶ℓ )/𝐶ℓ on the same scale (only −𝜎 (𝐶ℓ )/𝐶ℓ is
visible). The gray shaded regions show scales that are not used in the fiducial analysis where the effect of baryons is neglected. The gray dashed lines show the

scale cuts corresponding to 𝑘max =1, 3 and 5 hMpc−1 (see section 3.5.2).

measured from hydrodynamical simulations, respectively with and
without the effects of baryons. In particular, we will use four sim-
ulations, selected to provide a diverse range of scenarios: Illustris
(Vogelsberger et al. 2014), OWLS AGN (van Daalen et al. 2011),
Horizon AGN (Dubois et al. 2014) and MassiveBlack II (Khandai
et al. 2015). We will use this approach to evaluate the impact of
baryons, shown in fig. 5, and determine our fiducial set of scale
cuts, in section 3.5.1.

We will later extend our analysis to smaller scales, which re-
quires to model and marginalize over baryonic effects. To do so,
we will use HMCode7 (Mead et al. 2015), instead of HaloFit,
to simultaneously model the effects of non-linearities and baryonic
feedback on the matter power spectrum. This adds one or two extra
parameters, namely the minimum halo concentration 𝐴HM and the
halo bloating parameter [HM, which were shown to approximately
follow the linear relation [HM = 1.03− 0.11𝐴HM for various simu-
lations (see Mead et al. 2015). AlthoughMead et al. (2021) recently
presented an updated version of HMCode with improved treatment
of baryon-acoustic oscillation damping and massive neutrinos, we
will only consider the 2015 version of the code, which was available
at the onset of this work. We note that Tröster et al. (2021) found

7 https://github.com/alexander-mead/HMcode

only a small impact of HMCode versions on cosmological con-
straints derived from cosmic shear and Sunyaev-Zeldovich effect
cross-correlations.

3.2.5 Shear and redshift uncertainties

We include uncertainties on the shear calibration and redshift dis-
tributions following the DES Y3 real-space analysis (Krause et al.
2021; Amon et al. 2022; Secco, Samuroff et al. 2022).

In our fiducial model, uncertainties in redshift distributions
are captured by allowing overall translations of the fiducial redshift
distributions, shown in fig. 2, such that

𝑛𝑎 (𝑧) → 𝑛𝑎 (𝑧 + Δ𝑧𝑎). (26)

We parametrize the residual uncertainty in the shear calibration fol-
lowing a standard procedure which amounts to an overall rescaling
of the shear signal in each redshift bin, such that

𝐶𝑎𝑏
ℓ

→ (1 + 𝑚𝑎) (1 + 𝑚𝑏)𝐶𝑎𝑏
ℓ

. (27)

The four shear biases, 𝑚𝑎 , are assumed to be redshift-independent
within each bin. Both of these choices are approximations to the
more sophisticated approaches developed over the course of the
DES Y3 analysis.

MNRAS 000, 1–31 (2022)

https://github.com/alexander-mead/HMcode


DES Y3: cosmology from cosmic shear in harmonic space 9

For redshift uncertainties, the Sompz method provides a en-
semble of redshift distributions encapsulating the full uncertainty
(Myles, Alarcon et al. 2021), and not just that of the mean redshift.
However, it was shown in Cordero, Harrison et al. (2022) and Amon
et al. (2022) that the simpler parametrization of eq. (26) is sufficient
for DES Y3, which we test in appendix C1. For shear calibration, a
new approach was developed alongside the image simulations pre-
sented in MacCrann et al., (2022). In short, it was shown that the
redshift distribution of a sample, 𝑛(𝑧), corresponds to the response
of the shear estimated from this sample to a cosmological shear
signal, as a function of the redshift of the signal. In the presence of
galaxy blending, the response is modified, which may be captured
by an effective redshift distribution, 𝑛𝛾 (𝑧), normalized to 1+𝑚. Re-
alistic simulations, that used the same pipelines as DES Y3 data for
co-addition, detection and shear measurements, allowed to jointly
estimate residual uncertainties in shear and redshift biases. These
resultswere subsequentlymapped onto the standard parametrization
of eqs. (26) and (27), thus defining the priors over these parame-
ters, as detailed in table 1. Extensive testing demonstrated that our
fiducial approach is sufficiently accurate given the statistical uncer-
tainties in DES Y3 (see MacCrann et al., 2022; Cordero, Harrison
et al. 2022; Amon et al. 2022, for details).

3.2.6 Higher-order shear

Our modeling ignores higher-order contributions to the shear signal
due to the magnification and clustering of the galaxy sample as well
as the fact we can only access the reduced shear, given by 𝛾/(1− ^).
These contributions are computed in Krause et al. (2021); Secco,
Samuroff et al. (2022) and found to be below 5% for the scales used
in this analysis, as shown by the orange curves in fig. 5. We verified
that they have a negligible impact on cosmological constraints for
DES Y3.

3.3 Likelihood and covariance

We assume cosmic shear spectrum measurements follow a multi-
variate Gaussian distribution with fixed covariance. The theoretical
predictions detailed in the previous section are convolved with the
bandpower windows, following eqs. (14) and (15).

The covariance of 𝐸-mode shear power spectra is computed
analytically as follows. It is decomposed as a sum of Gaussian and
non-Gaussian contributions from the shear field. The Gaussian con-
tribution is computed with NaMaster using the improved narrow-
kernel approximation (iNKA) estimator developed in García-García
et al. (2019) and optimized by Nicola et al. (2021). This estimator
correctly accounts for mode-mixing pertaining to masking and bin-
ning, consistently with the pseudo-𝐶ℓ framework presented in sec-
tion 3.1. It requires the mode-coupled pseudo-𝐶ℓ spectra, computed
from the theoretical full-sky spectra convolved by themixingmatrix
from eq. (10), and including noise bias for auto-spectra, computed
from the data with eq. (16). These are then rescaled by the product
of masks over all pixels Nicola et al. (for details, see 2021).

The non-Gaussian contribution is the sum of two terms: the
connected four-point covariance (cNG) arising from the shear field
trispectrum, and the so-called super-sample covariance (SSC), ac-
counting for correlations of multipoles used in the analysis with
super-survey modes. Both non-Gaussian terms are computed using
the CosmoLike software (Eifler et al. 2014; Krause & Eifler 2017),
with formulae derived in Takada& Jain (2009); Schaan et al. (2014).
These analytic expressions do not account for the exact survey ge-
ometry and only apply a scaling by the fraction of observed sky,

𝑓sky. Therefore, we interpolate these computations at all pairs of
integer-valued multipoles and use the bandpower windows from
eq. (15) to obtain an approximation of the non-Gaussian covari-
ance terms for the binned power spectrum estimator described in
the previous section. The non-Gaussian terms (cNG+SSC) are sub-
dominant with respect to the Gaussian contribution (see the upper
left panel of fig. 6) and this represents a good approximation to the
extra covariance of different multipoles (i.e. off-diagonal terms),
which becomes non-negligible only on the smallest scales.

Figure 6 illustrates properties of the fiducial covariancematrix,
computed as explained above. First, as can be seen on the left panel,
the non-Gaussian terms are largely subdominant in the computation
of the error bars. Then, the right panel, showing the correlation
matrix, reveals that multipole bins are largely uncorrelated in the
Gaussian covariance, and only correlated at the 10% level at most
due to the non-Gaussian contributions. Adjacent multipole bins are
actually slightly anti-correlated due to mode coupling and decou-
pling, at the 6% level for the lowest bins to below 1% for the highest
bins.

The covariance matrix of 𝐵-mode shear power spectra and
the cross-covariance between 𝐸- and 𝐵-mode power spectra are
computed from Gaussian simulations, presented in section 4.1.1,
as the original NKA estimator was found to be unreliable for these
spectra in García-García et al. (2019).

3.4 Parameters and priors

For our fiducial analysis, we vary six parameters of the ΛCDM
model, namely the total matter density parameter Ωm, the
baryon density parameter Ωb, the Hubble parameter ℎ (where
𝐻0 = 100 h km s−1Mpc−1), the amplitude of primordial curvature
power spectrum 𝐴s and the spectral index 𝑛s, and the neutrino phys-
ical density parameter Ωaℎ

2.
We also vary the five parameters of the intrinsic align-

ments model, TATT. When restricting to the NLA model, we
fix 𝐴TT = 𝛼TT = 𝑏TA = 0. Our validation tests are carried out as-
suming the TATT model, but using the NLA best-fit values from
Samuroff et al. (2019) based on DES Year 1 data, since this work
found no strong preference for the more complex model.

In addition to the cosmological and astrophysical parameters
described above, our analysis includes two nuisance parameters per
redshift bin to account for uncertainties in shape calibration (𝑚𝑎)
and redshift distributions (Δ𝑧𝑎), as described in section 3.2.5.

The full list of parameters for the baseline ΛCDM model with
their priors is shown in table 1. Throughout this paper we assume the
Planck 2018 (Planck Collaboration et al. 2020) best-fit cosmology
derived from TT,TE,EE+lowE+lensing+BAO data as our fiducial
parameter values.

In addition, we will consider alternative models that require
extra varied parameters:

• When usingHMCode to model small scales, we vary either 𝐴HM
only (using the relationship between 𝐴HM and [HM suggested in
Mead et al. 2015), or both 𝐴HM and [HM parameters, applying
uniform priors 𝐴HM ∼ U(0, 10) and [HM ∼ U(0, 2).
• When constraining the 𝑤CDM model, we vary the dark energy
equation-of-state 𝑤, with a uniform prior in the range [−2,−1/3].

Finally, we will, in some cases, include independent (geo-
metric) information from measurements of ratios of galaxy-galaxy
lensing two-point functions at small scales, as presented in Sánchez,
Prat et al. (2021). Given an independent lens sample Porredon et al.
(here, MagLim, presented in 2021), the ratios of tangential shear
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Figure 6. Features and validation of the analytical covariance matrix used in this work, computed withNaMaster and CosmoLike.Upper left: error bars given
by the square-root of the diagonal of the Gaussian (dark blue) and non-Gaussian (light blue) contributions to the covariance matrix. Middle left: comparison
of the error bars computed from Gaussian simulations (dark red) and DarkGridV1 simulations (light red) with the fiducial error bars. Lower left: residuals of
the pseudo-𝐶ℓ measurements from the Gaussian simulations with respect to the input (binned) spectra. In all left panels, the horizontal axis corresponds to
indices of the components stacked data vector. The corresponding redshift bin pairs are indicated at the top of the upper panel, with each block corresponding
to multipoles in the range 8 to 2048. Right: correlation matrix, with only the Gaussian contribution in the lower triangle, and both Gaussian and non-Gaussian
contributions in the upper triangle (note the normalization in the range −0.1 to 0.1).

Parameter Symbol Prior
Total matter density Ωm U(0.1, 0.9)
Baryon density Ωb U(0.03, 0.07)
Hubble parameter ℎ U(0.55, 0.91)
Primordial spectrum amplitude 𝐴s × 109 U(0.5, 5)
Spectral index 𝑛s U(0.87, 1.07)
Physical neutrino density Ωaℎ

2 U(0.0006, 0.00644)
IA amplitude (TA) 𝐴TA U(−5, 5)
IA redshift dependence (TA) 𝛼TA U(−5, 5)
IA amplitude (TT) 𝐴TT U(−5, 5)
IA redshift dependence (TT) 𝛼TT U(−5, 5)
IA linear bias (TA) 𝑏TA U(0, 2)
Photo-𝑧 shift in bin 1 Δ𝑧1 N(0, 0.018)
Photo-𝑧 shift in bin 2 Δ𝑧2 N(0, 0.015)
Photo-𝑧 shift in bin 3 Δ𝑧3 N(0, 0.011)
Photo-𝑧 shift in bin 4 Δ𝑧4 N(0, 0.017)
Shear bias in bin 1 𝑚1 N(−0.0063, 0.0091)
Shear bias in bin 2 𝑚2 N(−0.0198, 0.0078)
Shear bias in bin 3 𝑚3 N(−0.0241, 0.0076)
Shear bias in bin 4 𝑚4 N(−0.0369, 0.0076)

Table 1. Cosmological and nuisance parameters in the baseline ΛCDM
model. Uniform distributions in the range [𝑎, 𝑏] are denoted U(𝑎, 𝑏) and
Gaussian distributions with mean ` and standard deviation 𝜎 are denoted
N(`, 𝜎) .

signals for two redshift bins of the source sample around the same
galaxies from a common redshift bin of the lens sample depend
largely on distances to these samples. Shear ratios (SR) can there-
fore be used to constrain uncertainties in the redshift distributions.
We only exploit small-scale measurements, corresponding to scales
of approximately 2 h−1Mpc to 6 h−1Mpc, or ℓmin ∼360 to 1200 for
redshift bins 1 to 4, that are largely independent from the scales we
use in this analysis (see fig. 4 and section 3.5). In these cases, we
incorporate shear ratios at the likelihood level, using aGaussian like-
lihood. The modeling of shear ratios necessitates extra parameters,
namely the clustering biases and redshift distribution uncertainties
for each of the three lens bins used here. Details about the shear-ratio
likelihood and priors can be found in Sánchez, Prat et al. (2021).

3.5 Scale cuts

3.5.1 Fiducial scale cuts (Δ𝜒2)

As stated in section 3.2.4, baryonic feedback is a major source of
uncertainty on thematter power spectrum at small scales. Therefore,
we follow the DES Y3 methodology presented in Krause et al.
(2021); Secco, Samuroff et al. (2022) and remove multipole bins
that are significantly affected by baryonic effects.

To do so, we compare two synthetic, noiseless data vectors
computed at the fiducial cosmology: one computed with the power
spectrum from HaloFit, and one where the power spectrum has
been rescaled by the ratio of the power spectra measured in OWLS
simulations (van Daalen et al. 2011) with dark matter only and with
AGN feedback, as in eq. (25). We then compute, using the fiducial
covariance matrix, the 𝜒2 distances between the two data vectors for
each redshift bin pair and determine small-scale cuts by requiring
that all 𝜒2 distances be smaller than a threshold value Δ𝜒2/𝑁pair,
where 𝑁pair = 10 is the number of redshift bin pairs. We then follow
the iterative procedure laid out in Secco, Samuroff et al. (2022) and
choose the threshold value Δ𝜒2 such that the bias due to baryons
in the (𝑆8,Ωm) plane is less than 0.3𝜎. Specifically, we require
that the maximum posterior point for the fiducial data vector lies
within the two-dimensional 0.3𝜎 confidence region of the marginal
posterior for the contaminated data vector, as shown in fig. 7, using
the same scale cuts being tested for both runs. We find Δ𝜒2 = 1
allows to reach that goal8 and adopt the corresponding maximum
multipoles as our fiducial scale cuts, as shown by the grayed area in
figs. 4 and 5. This leaves 119 data points out of the 320 in total.

In comparison, the real-space analysis presented in Amon et al.
(2022); Secco, Samuroff et al. (2022) uses scale cuts that account
for the full analysis of DES Y3 lensing and clustering data (the so-
called 3× 2pt analysis), including shear ratios. In order to make our
analysis comparable, when using shear ratios, we will use slightly

8 Note that since power spectra for different redshift bin pairs are correlated,
the requirement that each pair 𝑎𝑏 verifies Δ𝜒2

𝑎𝑏
< 0.1 yields a global

Δ𝜒2 ≈ 0.34.
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Figure 7. Validation of the Δ𝜒2 < 1 scale cuts. We compare constraints
from a noiseless data vector produced at the fiducial cosmology (dark blue)
to those obtained from a contaminated data vector obtained by rescaling
the matter power spectrum using eq. (25) with the OWLS AGN simulation,
both using the fiducial model. The nested, filled regions show the 0.3 𝜎, 1𝜎
and 2𝜎 contours, corresponding to roughly 24%, 68% and 95% confidence
regions. The mean of the fiducial posterior, which is represented by the blue
plus sign, lies within the 0.3 𝜎 contour of the contaminated posterior.

more conservative cuts, with Δ𝜒2 = 0.5, similar to the real-space
analysis, which results in similar biases in the (𝑆8,Ωm) plane of
about 0.15𝜎. This removes between one and two additional data
points for each bin pair, leaving a total of 102 data points. Finally,
we keep bandpowers 𝐿 for which the mean multipole, �̄�, is below
ℓmax.

We note that these multipoles ℓmax are in the range 200 to 400
(except for bin 1, 1, which has larger error bars), corresponding to
significantly larger angular scales than the cuts used in the HSC Y1
(Hikage et al. 2019) and KiDS-450 (Köhlinger et al. 2017) analy-
ses, who used redshift-independent multipole cuts at ℓmax = 1900
and ℓmax = 1300, respectively. Both analyses tested these choices
and extensively demonstrated the robustness of their final cosmo-
logical constraints. These varying approaches on scale cut choices,
discussed in Doux et al. (2021), motivate us to consider alternative
scale cuts in the next section.

3.5.2 Alternative scale cuts (𝑘max)

We consider a second kind of multipole cuts derived from approx-
imate, small-scale cuts of three-dimensional Fourier modes, which
is motivated by theoretical considerations. Namely, assuming that
the model for the matter power spectrum is valid up to a certain
wavenumber 𝑘max, we aim at discarding multipoles ℓ receiving sig-
nificant contributions from smaller scales (i.e. for 𝑘 > 𝑘max). To do
so, we follow Doux et al. (2021) and rewrite eq. (22) as an integral
over 𝑘-modes, using the change of variables 𝑘 = (ℓ + 1/2)/𝜒(𝑧) .
We then define the scale 𝑘>𝛼 (ℓ) at which the integral for𝐶ℓ reaches

a fraction 𝛼 < 1 of its total value, such that∫ ln 𝑘>𝛼 (ℓ)

−∞
d ln 𝑘

d𝐶ℓ

d ln 𝑘
= 𝛼𝐶ℓ . (28)

For a given choice of 𝛼 and 𝑘max, we then obtain the small-
scale multipoles cut by numerically solving for ℓmax such that
𝑘>𝛼 (ℓmax) = 𝑘max. Here, we set 𝛼 = 0.95, such that scales at
wavenumbers 𝑘 larger than 𝑘>𝛼 (ℓ) contribute 5% of the total sig-
nal.Wewill consider different values of 𝑘max in the range 1 hMpc−1
to 5 hMpc−1.

Note that, in general, the validity of the model depends on
redshift, as non-linearities increase at lower redshift. However, we
will use the same 𝑘max value for all ten redshift bin pairs, which in
practice is limited by the low redshift bin. We show the cuts corre-
sponding to 𝑘max = 1, 3 and 5 hMpc−1 with dashed lines in figs. 4
and 5. These cuts leave 71, 156 and 228 data points, respectively.
The highest multipole used in this work is ℓmax ≈ 1600 for redshift
bin 4, for 𝑘max = 5 hMpc−1.

3.6 Sampling, parameter inference and tensions

Throughout this work, we assume a multivariate Gaussian likeli-
hood, as detailed in section 3.3, to carry out a Bayesian analysis
of our data. The theoretical calculations are performed with the
CosmoSIS framework (Zuntz et al. 2015). We sample the posterior
distributions using PolyChord (Handley et al. 2015), a sophisti-
cated implementation of nested sampling, with 500 live points and
a tolerance of 0.01 on the estimated evidence. We report parameter
constraints through one-dimensional marginal summary statistics
computed and plotted with GetDist (Lewis 2019), as

Parameter = 1D mean+upper 34% bound−lower 34% bound (MAP value),

where the maximum a posterior (MAP) is reported in parenthesis.
We will compute a number of metrics to characterize and

interpret the inferred posterior distributions. For a number 𝑁param of
varied parameters, the number of parameters effectively constrained
by the data is given by

𝑁eff = 𝑁param − Tr
(
C−1
Π C𝑝

)
, (29)

where CΠ and C𝑝 are the covariance matrices of the prior and pos-
terior, approximated as Gaussian distributions, and Tr is the trace
operator (Raveri & Hu 2019). For a given posterior and its corre-
sponding prior, we will also compute the Karhunen–Loève (KL)
decomposition that measures the improvement of the posterior with
respect to the prior (Raveri & Hu 2019; Raveri et al. 2020). We can
then project the observed improvement onto a set of modes, that
we restrict to power laws in the cosmological parameters. Finally,
we will characterize the level of disagreement between posterior
distributions using the posterior shift probability, as described in
Raveri & Doux (2021). This metric is based on the parameter dif-
ference distribution obtained by differenciating samples from two
independent posteriors, and computing the volume with the isocon-
tour of a null difference. To do so, we will use the tensiometer9
package (see previous references and Dacunha et al. 2021), which
fully handles the non-Gaussian nature of the derived posteriors.

9 https://tensiometer.readthedocs.io
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4 VALIDATION

In this section, we present a number of tests of our analysis frame-
work. In section 4.1, we introduce simulations that we use to verify
that measured spectra are not significantly impacted by known sys-
tematic effects (𝐵-modes and PSF leakage) in section 4.2, to validate
the measurement pipeline and the covariance in section 4.3, and to
test the accuracy of our theoretical model and its impact on cosmo-
logical parameter inferences in section 4.4.

4.1 Simulations

4.1.1 Gaussian simulations with DES Y3 data

In the following sections, we use a large number of Gaussian sim-
ulations to validate the cosmic shear power spectra measurements,
obtain a covariance matrix for 𝐵-modes spectra and cross-spectra
with the PSF ellipticities. To make them as close as possible to
DES Y3 data, we use the actual positions and randomly rotated
shapes of the galaxies in the DES Y3 catalog. This ensures that the
masks and the noise power spectra are identical to those of the real
data measurements.

The generation of a single simulation proceeds as follows.
Given predictions for the shear 𝐸-mode spectra at the fiducial
model, 𝐶𝑎𝑏

ℓ
, we generate a full-sky realization of the four corre-

lated shear fields at a resolution of 𝑁side = 1024. To do so, we use
the definition of the spectra, eq. (3), as the covariance of the spher-
ical harmonic coefficients of the fields to sample four-dimensional
vectors, (𝐸1

ℓ𝑚
, 𝐸2

ℓ𝑚
, 𝐸3

ℓ𝑚
, 𝐸4

ℓ𝑚
), for 0 ≤ ℓ < 3𝑁side, −ℓ ≤ 𝑚 ≤ +ℓ,

which are independent for different (ℓ, 𝑚).We then use the alm2map
function of healpy (Zonca et al. 2019) in polarization mode, with
𝑇 𝑖
ℓ𝑚

= 𝐵𝑖
ℓ𝑚

= 0, to generate the four correlated, true (but pixelated)
shear maps. The next step consists in sampling these fields. As ex-
plained above, we use the DES Y3 catalog of (mean- and response-
corrected) ellipticities, to which we apply random rotations, and the
positions of the galaxies as input. The random rotations are obtained
bymultiplying the complex ellipticities, e = 𝑒1+𝑖𝑒2, by 𝑒2𝑖 \ , where
\ is the random rotation angle. For a galaxy 𝑖 in redshift bin 𝑎, the
ellipticity in the mock catalog is given by

e′𝑖 =
𝜸𝑎
𝑖
+ 𝑒2𝑖 \e𝑖

1 + 𝑒2𝑖 \𝜸𝑎∗
𝑖

e𝑖
, (30)

where 𝜸𝑎
𝑖
is the value of the (complex) shear field corresponding

to the 𝑎-th redshift bin at the position of galaxy 𝑖. This procedure is
justified by the fact that the variance of the shear fields is about 103
times smaller than the variance due to intrinsic shapes, 𝜎2𝑒 ∼ 0.32,
such that the variance of the new ellipticities remains extremely
close to that of the true ellipticities.

We then perform power spectra measurements on these mock
catalogs with the same pipeline that is used on data, except that
these spectra need not be corrected for the pixel window function.
The mean residuals with respect to the expected (𝐸-mode) power
spectra computed with eq. (14) using mixing matrices are shown
in the lower left panel of fig. 6 for 10 000 simulations, showing
agreement within 5% of the error bars. We also find that the (small
but non-zero) 𝐵-mode power spectra measured in these simulations
are consistent, at the same level, with expectations from 𝐸-mode
leakage computed using eq. (14).

Note that the real space analysis of DESY3 lensing and cluster-
ing data (DESCollaboration 2022) relied on log-normal simulations
using Flask (Xavier et al. 2016) to partially validate the covariance,
as detailed in Friedrich et al. (2021). However, those were mainly

used to evaluate the effect of the survey geometry, which is already
accounted for by NaMaster (Alonso et al. 2019), and need not be
validated here. Therefore, we use simpler, Gaussian simulations to
validate the measurement pipeline and obtain empirical covariance
matrices (for 𝐵-mode and PSF tests). In order to validate the full co-
variance matrix, including the non-Gaussian contributions, we will
rely on the DarkGridV1 suite of simulations (see section 4.1.2),
which rely on full 𝑁-body simulations and are tailored for lensing
studies.

4.1.2 DarkGridV1 suite of simulations

The DES Y3 analysis of the convergence peaks and power spec-
trum presented in Zürcher et al. (2022) relied on the DarkGridV1
suite of weak lensing simulations. They were obtained from fifty 𝑁-
body, dark matter-only simulations produced using the PKDGrav3
code (Potter et al. 2017). Each of these consists of 7683 particles
in a 900 h−1Mpc box, which is replicated 143 times to reach a red-
shift of 3. Snapshots are assembled to produce density shells and
the corresponding (true) convergence maps for the four DES Y3
redshift bins. These simulations are then populated with DES Y3
galaxies, in a way similar to what is done for Gaussian simulations
(see section 4.1.1). This operation is repeated with a hundred noise
realizations per simulation, thus producing 5000 power spectramea-
surements.

We will use these measurements to compute an empirical co-
variance matrix that includes non-Gaussian contributions, and that
can be compared to our analytic covariance matrix, thus providing
a useful cross-check.

4.1.3 Buzzard v2.0 simulations

The Buzzard v2.0 simulations are a suite of simulated galaxy cata-
logs built on 𝑁-body simulations and designed to match important
properties of DES Y3 data. These simulations were used to vali-
date the configuration space analysis of galaxy lensing and galaxy
clustering within the DES Y3 analysis and we refer the reader to
DeRose et al. (2021) for greater details.

In brief, the lightcones were obtained by evolving particles ini-
tialized at redshift 𝑧 = 50 with an optimized version of the Gadget
𝑁-body code (Springel 2005). The lensing fields (convergence, lens-
ing, magnification) were computed by ray-tracing the simulations
with the CalcLens code (Becker 2013), over 160 lens planes in the
redshift range 0 ≤ 𝑧 ≤ 2.35, and with a resolution of 𝑁side = 8192.
The simulations were then populated with source galaxies so as to
mimic the density, the ellipticity dispersion and photometric proper-
ties of the DES Y3 sample. The Sompzmethod was applied to these
mock catalogs so as to divide them into four tomographic bins of
approximately equal density, thus producing ensemble of redshift
distributions that were validated against the known true redshift
distributions (see Myles, Alarcon et al. 2021, for details).

We will use sixteen Buzzard simulations to perform an end-
to-end validation of our measurement and inference pipelines in
section 4.4.2. It is worth noting that these simulations do not incor-
porate the effects of massive neutrinos on the matter power spec-
trum, nor those imparted to intrinsic alignments. When analyzing
these simulations, we will therefore fix the total mass of neutrinos to
zero, and assume null fiducial values of the IA parameters (though
they will be varied with the same flat priors).
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4.2 Validation of power spectrum measurements

In this section, we study the potential contamination of the signal
with twomeasurements. First, we verify that the 𝐵-mode component
of the power spectra is consistent with the null hypothesis of no 𝐵-
mode, as any cosmological or astrophysical source of 𝐵-mode is
expected to be very small. Second, we estimate the contamination
of the signal by the PSF, which, if incorrectly modeled, would leak
into the estimated cosmic shear 𝐸-mode spectra, and therefore bias
cosmology.

4.2.1 𝐵-modes

As mentioned in section 3.1, gravitational lensing does not pro-
duce 𝐵-modes, to first order in the shear field and under the Born
approximation, i.e. when the signal is integrated along the line of
sight instead of following distorted photon trajectories. Second- and
higher-order effects as well as source clustering and intrinsic align-
ments are expected to produce non-zero, but very small 𝐵-modes.
However, the contamination of the ellipticities by various systematic
effects, first and foremost by errors in the PSF model, are expected
to produce much larger 𝐵-modes in practice. Indeed, the PSF does
not possess the same symmetries as cosmological lensing, and its
𝐸- and 𝐵-mode spectra are almost identical. Therefore, any leak-
age due to a mis-estimation of the PSF could induce 𝐵-modes in
galaxy ellipticities. As a consequence, measuring 𝐵-modes in the
estimated shear maps and verifying that they are consistent with a
non-detection (or pure shape-noise) constitutes a non-sufficient but
nevertheless useful test of systematic effects (Becker & Rozo 2016;
Asgari et al. 2017; Asgari & Heymans 2019; Asgari et al. 2019).

Figure 8 shows measurements of the tomographic 𝐵-mode
power spectra in blue for DES Y3 data. We use 10 000 Gaussian
simulations presented in section 4.1.1 to compute the covariance
matrix (we have verified convergence) and obtain a total 𝜒2, for the
stacked data vector of 𝐵-mode spectra, of 344.0 for 320 degrees of
freedom, corresponding to a probability-to-exceed of 0.17. This is
consistent with the null hypothesis of no 𝐵-modes. In addition, we
show 𝐸𝐵 cross-spectra in fig. 8 for completeness, finding a 𝜒2 of
535.4 for 512 degrees of freedom, and a probability-to-exceed of
0.23. We also show, for completeness, measurements of the non-
tomographic 𝐵-mode power spectrum, already presented in Gatti,
Sheldon et al. (2021c). In this case, we find a 𝜒2 of 40.0 for 32
degrees of freedom and a probability-to-exceed of 0.16. Note that
Gatti, Sheldon et al. (2021c) also included a test where the galaxy
sample was split in three bins, as a function of the PSF size at the
positions of the galaxies, and found agreement with the hypothesis
of no 𝐵-mode.

4.2.2 Point spread function

Jarvis et al. (2021) introduced the new software Piff to model the
point spread function (PSF) of DES Y3 data, using interpolation
in sky coordinates with improved astrometric solutions. Although
the impact of the PSF on DES Y3 shapes and real-space shear
two-point functions was already investigated in Gatti, Sheldon et al.
(2021c) and Amon et al. (2022), we investigate PSF contamination
in harmonic space as the leakage of PSF residuals might differ from
those in real space. We do so by measuring 𝜌-statistics (Rowe 2010)
in harmonic space and estimate the potential level of contamination
of the data vector.

Our detailed results are presented in appendix A. We con-

clude that we find no significant contamination and that the residual
contamination has negligible impact on cosmological constraints.

4.3 Validation of the covariance matrix

We compare the fiducial covariance matrix to the covariances esti-
mated from Gaussian simulations described in section 4.1.1 as well
as the DarkGridV1 simulations described in section 4.1.2.

The middle left panel of fig. 6 shows the ratios of the square-
root of the diagonals of those covariance matrices. When compared
to the covariance estimated from Gaussian simulations, we find ex-
cellent agreement, at the 5% level across all scales and redshift
bin pairs. Our fiducial, semi-analytical covariance predicts only
slightly larger error bars, at the 2 to 3% level. We also find very
good agreement with the covariance matrix computed from Dark-
GridV1 simulations, with the fiducial covariance matrix showing
smaller error bars, at the 15% level, for the largest scales only. For
both sets of simulations, we also compared diagonals of the off-
diagonal blocks (i.e. the terms cov(𝐶𝑎𝑏

ℓ
, 𝐶𝑐𝑑

ℓ′ ) with 𝑎𝑏 ≠ 𝑐𝑑 but
ℓ = ℓ′) and found good agreement, up to the uncertainty due to the
finite number of simulations. Finally, we verified that replacing the
analytic covariance matrix by the DarkGridV1 covariance matrix
has negligible impact on cosmological constraints inferred from the
fiducial data vector (shifts below 0.1𝜎), as shown in appendix C1.

4.4 Validation of the robustness of the models

In this section, we demonstrate the robustness of our modeling
using synthetic data in section 4.4.1, and using Buzzard simulations
in section 4.4.2.

4.4.1 Validation with synthetic data

Our fiducial scale cuts, as explained in section 3.5.1, are constructed
in such a way as to minimize the impact on cosmology from uncer-
tainties in the small-scale matter power spectrum due to baryonic
feedback, as shown in fig. 7.

We further test the robustness of our fiducial model, based on
HaloFit, by testing other prescriptions for the non-linear matter
power spectrum. To do so, we compare constraints, inferred with
the same model, but for different synthetic data vectors computed
(i) with HaloFit, (ii) with HMCode with dark matter only (i.e.
using 𝐴HM = 3.13), and (iii) with the Euclid Emulator (Euclid
Collaboration et al. 2019). These data vectors are compared in fig. 5
and the constraints are shown in fig. B1, which shows that contours
are shifted by less than 0.3𝜎 in the (𝑆8,Ωm) plane.

We also aim at constraining the effect of baryonic feedback us-
ing alternative scale cuts based on a 𝑘max cut-off in Fourier space,
as explained in section 3.5.2. In order to validate the robustness of
this alternative model, we follow a similar approach and consider
predictions for the shear power spectra from four hydrodynamical
simulations (Illustris, OWLS AGN, Horizon AGN and Massive-
Black II), as shown in fig. 5. We then build corresponding data
vectors using HaloFit and a rescaling of the matter power spec-
trum, as in eq. (25). Next, we analyze those data vectors using (i) the
true model considered here (i.e. HaloFit and rescaling), and then
(ii) HMCode with one free parameter. We finally test whether the
(𝑆8,Ωm) best-fit parameters for the true model are within the 0.3𝜎
contours of the posterior assuming HMCode.

When varying only 𝐴HM, we do find that this test passes for
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Figure 8. 𝐸𝐵 and 𝐵𝐵 cosmic shear power spectra measured with DES Y3 data for each pair of tomographic bins in the lower triangle, and the entire sample in
the upper right panel (note that the 𝐸𝐵 and 𝐵𝐸 power spectra are different only for cross-redshift bin spectra). Error bars are computed from 10 000 Gaussian
simulations using the DES Y3 catalog ellipticities and positions, as explained in section 4.1.1. We find a 𝜒2 of 344.0 for 320 degrees of freedom for tomographic
𝐵-mode power spectra, corresponding to a probability-to-exceed of 0.17. We find a 𝜒2 of 535.4 for 512 degrees of freedom for 𝐸𝐵 tomographic cross-power
spectra (counting all 16 independent bin pairs), corresponding to a probability-to-exceed of 0.23. Individual 𝜒2 are reported for each redshift bin pairs in the
corresponding panels. In the non-tomographic case, we find, for the 𝐵-mode power spectrum, a 𝜒2 of 40.0 for 32 degrees of freedom, corresponding to a
probability-to-exceed of 0.16.

𝑘max = 1, 3 and 5 hMpc−1 with biases of 0.22𝜎 at most (and typi-
cally 0.1𝜎), even though the inferred 𝐴HM parameter largely varies
across simulations (we find posterior means of 2.2, 2.7, 3.4 and 3.6
for Illustris, OWLS AGN, Horizon AGN and MassiveBlack II, re-
spectively). This means that biases introduced by HMCode, if any,
are not worse than potential projection effects found when using the
true model, all of which are found to be below the level of 0.3𝜎.

4.4.2 Validation with Buzzard simulations

In this section, we use Buzzard simulations (see section 4.1.3) to
validate our measurement and analysis pipelines together. Precisely,
we verify that (i) we are able to recover the true cosmology used
when generating Buzzard simulations and (ii) the model yields a
reasonable fit to the measured shear spectra.

We start by measuring cosmic shear power spectra and ver-
ify that the mean measurement (not shown) is consistent with the
theoretical prediction from our fiducial model at the Buzzard cos-
mology, using the true Buzzard redshift distributions, and with a
covariance recomputed with these inputs.

We then run our inference pipeline on the mean data vector,
first with the covariance corresponding to a single realization, and
then with a covariance rescaled by a factor of 1/16, to reflect the

uncertainty on the average of the measurements. The first case is
testingwhether we can recover the true cosmology on average, while
the second is a stringent test of the accuracy of the model, given that
error bars are divided by

√
16 = 4 with respect to observations with

the DES Y3 statistical power. For these tests, the priors on shear
and redshift biases are centered at zero, with a standard deviation
of 0.005.

The 68% and 95% confidence contours are shown in fig. 9 for
both covariances, using the fiducial 𝜒2 < 1 scale cuts. We only
show the contours for the best constrained parameters (Ωm, 𝜎8 and
𝑆8) but we verified that the true cosmology is recovered in the
full parameter space. We find that it is perfectly recovered in the
first case and within 1𝜎 contours in the second case, consistent
with fluctuations on the mean Buzzard data vector. We find that the
effective number of constrained parameters is 𝑁eff ≈ 7.8 in the first
case, whereas, in the second case, we find 𝑁eff ≈ 9.6 (recall we
fix the neutrino mass to zero for tests on Buzzard, so 𝑁param = 18
here). In the second test, we find that 𝜒2 = 139.4 at the best-fit
parameters (maximum a posteriori) for 𝑁 = 119 data points, and
𝑁 − 𝑁eff degrees of freedom, such that the best-fit 𝜒2 corresponds
to a probability-to-exceed of 2.7%. For 𝑘max cuts, we also recover
the input cosmology within error bars and find 𝜒2/(𝑁 − 𝑁eff) of
98.4/61.7, 191.6/146.1 and 254.5/217.8 respectively for 𝑘max of
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Figure 9. Validation of the analysis framework with Buzzard simulations.
We show the one- and two-dimensional marginal posterior distributions cor-
responding to the mean Buzzard data vector with the data covariance (black)
and the same covariance rescaled by a factor 1/16 (blue). The posteriors ob-
tained for each realization are shown in yellow to red.

1, 3 and 5 hMpc−1 (although note we will not use this combination
of model and scale cuts on data). Together, these tests suggest that
the accuracy of our fiducial model exceeds that required by the
statistical power of DES Y3 data.

We then run our inference pipeline on each realization to visu-
alize the scatter in the posteriors due to statistical fluctuations. This
exercise allows us to verify that the model does not feature catas-
trophic degeneracies that have the potential to bias the marginal
posterior distributions over cosmological parameters, in particular
in the (𝑆8,Ωm) plane. The contours are shown in fig. 9, along with
the contours obtained from the mean Buzzard data vector. We also
compute the 𝜒2 at best fit for each realization and find that the dis-
tribution is perfectly consistent with a 𝜒2 distribution with 𝑁 −𝑁eff
degrees of freedom, where we find 𝑁eff ≈ 7.8 ± 0.2 in these cases.

5 BLINDING

We follow a blinding procedure, decided beforehand, that is meant
to prevent confirmation and observer biases, as well as fine tuning
of analysis choices based on cosmological information from the
data itself. After performing sanity checks of our measurement and
modeling pipelines that only drew from the data basic properties
such as its footprint and noise properties, we proceeded to unblind
our results in three successive stages as described below. It is worth
noting, though, that as this work follows the real space analysis of
Amon et al. (2022); Secco, Samuroff et al. (2022), the blinding pro-
cedure is meant to validate the components of the analysis that are
different, such as the cosmic shear power spectrum measurements,
the scale cuts, and the covariance matrix.

Stage 1. The shape catalog was blinded by a random rescaling

of the measured conformal shears of galaxies, as detailed in Gatti,
Sheldon et al. (2021c). This step preserves the statistical properties
of systematic tests while shifting the inferred cosmology. A number
of null tests were presented in Gatti, Sheldon et al. (2021c) to test
for potential additive and multiplicative biases before deeming the
catalog as science-ready and unblinding it. In the previous section
section 4.2,we repeated two of these tests in harmonic space, namely
the test of the presence of 𝐵-modes and the test of the contamination
by the PSF.

Once all these tests had passed, we used the unblinded cata-
log to measure the shape noise power spectrum and compute the
Gaussian contribution to the covariance matrix. We then repeated
the systematic and validation tests, in particular those based on
Gaussian simulations where shape noise is inferred from the data.

Stage 2. Using the updated covariance matrix, we proceeded
to validate analysis choices with synthetic data. We first determined
fiducial scale cuts based on the requirement that baryonic feedback
effects do not bias cosmology at a level greater than 0.3𝜎, as de-
tailed in section 3.5.1. We then verified that baryonic effects as
predicted from a range of hydrodynamical simulations do not bias
cosmology for alternative scale cuts, provided that HMCode (with
a free baryonic amplitude parameter) is used instead of HaloFit, as
detailed in section 4.4.1. Finally, we verified that effects that are not
accounted for in the model do not bias cosmology, e.g. PSF resid-
ual contamination in appendix A, and higher-order lensing effects
and uncertainties in the matter power spectrum using the 𝑁-body
Buzzard simulations section 4.4.2.

Stage 3. Before unblinding the data vector and cosmological
constraints, we performed a last series of sanity checks. In particular,
we verified that themodel is a good fit to the data by asserting that the
𝜒2 statistic at the best-fit parameters corresponds to a probability-
to-exceed above 1%. We found that the best-fit 𝜒2 is 129.3 for 119
data points and 𝑁eff ≈ 5.6 constrained parameters, corresponding to
a probability-to-exceed of 14.6%.We also verified that the marginal
posteriors of nuisance parameters were consistent with their priors.
Finally, we performed two sets of internal consistency tests, in pa-
rameter space and in data space. For the tests in parameter space,
we compared, with blinded axes, constraints for (𝑆8,Ωm) from the
fiducial data vector with constraints from subsets of the data vector,
first removing one redshift bin at a time, and then removing large or
small angular scales, as detailed in items a and b of appendix C1.
The tests in data space, presented in appendix C2, are based on the
posterior predictive distribution (PPD), and follow the methodol-
ogy presented in Doux et al. (2020). The PPD goodness-of-fit test
yields a calibrated probability-to-exceed of 11.6%. These tests are
detailed in appendix C, along with other post-unblinding internal
consistency tests.

After this series of tests all passed, we plotted the data and
compared it to the best-fit model, as shown in fig. 4, and finally un-
blinded the cosmological constraints, presented in the next section.

6 COSMOLOGICAL CONSTRAINTS

This section presents our main results. We use measurements of
cosmic shear power spectra from DES Y3 data to constrain the
ΛCDM model in section 6.1. We then explore alternative analysis
choices to constrain intrinsic alignments in section 6.2 and baryonic
feedback in section 6.3. We compare our results to other weak lens-
ing analyses of DES Y3 data in section 6.4, namely the comic shear
two-point functions (Amon et al. 2022; Secco, Samuroff et al. 2022),
convergence peaks and power spectra (Zürcher et al. 2022) and con-
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Figure 10. Cosmological constraints on the amplitude of structure 𝜎8, the
total matter densityΩm and their combination 𝑆8 ≡ 𝜎8

√︁
Ωm/0.3. The inner

(outer) contours show 68% (95%) confidence regions. Constraints from
DES Y3 cosmic shear power spectra with the two sets of fiducial scale cuts
are shown in blue, with (solid) and without (dashed) shear ratios (Sánchez,
Prat et al. 2021). Constraints obtained from Planck 2018 measurements of
cosmic microwave background temperature and polarization anisotropies
are shown in yellow (Planck Collaboration et al. 2020).

vergence second- and third-order moments (Gatti et al. 2021b), and
to weak lensing analyses from the KiDS and HSC collaborations in
section 6.5. Finally, as an illustrative exercise, we reconstruct the
matter power spectrum from DES Y3 cosmic shear power spectra
using the method of Tegmark & Zaldarriaga (2002) in section 6.6.
A number of internal consistency tests are also presented in ap-
pendix C and the full posterior distribution is shown in appendix D.

Note that, for all the constraints that are presented in the fol-
lowing sections, we have recomputed the effective number of con-
strained parameters and verified that the 𝜒2 statistic at best fit cor-
responds to a probability-to-exceed above 1%.

6.1 Constraints on ΛCDM

We present here our constraints on ΛCDM assuming the fiducial
model presented in section 3.2, that is, usingHaloFit for the matter
power spectrum and TATT for intrinsic alignments. Constraints are
shown in blue in fig. 10 and compared to constraints from Planck
2018 measurements of cosmic microwave background tempera-
ture and polarization anisotropies (Planck 2018 TT+TE+EE+lowE,
Planck Collaboration et al. 2020), in yellow. The one-dimensional
marginal constraints are also shown in fig. 11 along with constraints
for all variations of the analysis, and the full posterior is shown in
fig. D1. Using only shear power spectra (i.e. no shear ratio informa-
tion), we find

Ωm = 0.260+0.035−0.057 (0.242), [𝐶ℓ TATT]

𝜎8 = 0.863 ± 0.096 (0.902), [𝐶ℓ TATT]

𝑆8 = 0.793+0.038−0.025 (0.810), [𝐶ℓ TATT]

where we report the mean, the 68% confidence intervals of the
posterior, and the best-fit parameter values, i.e. the mode of the
posterior, in parenthesis. The corresponding theoretical shear power
spectra are shown in fig. 4, showing good agreement with data,
consistent with the 𝜒2 at best-fit of 129.3. The best constrained
combination of parameters𝜎8 (Ωm/0.3)𝛼, inferred from a principal
component analysis, is given by

𝜎8 (Ωm/0.3)0.595 = 0.781 ± 0.032 (0.794). [𝐶ℓ TATT]

We also compute theKarhunen–Loève (KL) decomposition to quan-
tify the improvement of the posterior with respect to the prior using
tensiometer (see section 3.6). We find that the KL mode that is
best constrained by the data corresponds to 𝛼 = 0.521, which is re-
markably close to the 𝑆8 (𝛼 = 0.5) parameter theoretically inferred
in Jain & Seljak (1997). A visualization of the KL decomposition
is also given in appendix D.

We then include shear ratio information (Sánchez, Prat et al.
2021) to further reduce the uncertainty on 𝑆8, as shown by the filled
contours in fig. 10. We find this addition improves constraints on
𝑆8 by about 18% and yields a more symmetric marginal posterior,
with

𝑆8 = 0.784 ± 0.026 (0.798), [𝐶ℓ+SR TATT]

𝜎8 (Ωm/0.3)0.598 = 0.783 ± 0.021 (0.788). [𝐶ℓ+SR TATT]

This additional data noticeably removes part of the lower tail in 𝑆8,
which is due to a degeneracy with IA parameters, as will be seen
in section 6.2, and also improves constraints on redshift distribu-
tions uncertainties by 10-30%. The volume of the two-dimensional
marginal (𝑆8,Ωm) posterior, as approximated from the sample co-
variance, is reduced by about 20% when including shear ratios.

In comparison to constraints from Planck 2018, we find a
lower amplitude of structure 𝑆8. We estimate the tension with the
parameter shift probability metric using the tensiometer package,
which accounts for the non-Gaussianity of the posterior distributions
(Raveri & Doux 2021), and find tensions of about 1.4𝜎 and 1.5𝜎
with and without shear ratios, respectively.

Finally, we note that DES Y3 shear data alone is not able
to constrain the dark energy equation-of-state 𝑤. We find that the
evidence ratio between 𝑤CDM andΛCDM is 𝑅𝑤/Λ = 0.68 ± 0.18,
which is inconclusive, based on the Jeffreys scale. We thus find no
evidence of a departure from ΛCDM, consistent with Amon et al.
(2022) and Secco, Samuroff et al. (2022).

6.2 Constraints on intrinsic alignments

In this section, we focus on constraints on intrinsic alignments (IA)
and explore the robustness of cosmological constraints with respect
to the IA model.

The fiducial model, TATT, accounts for the possibility of tidal
torquing and has five free parameters in the DES Y3 implemen-
tation (see table 1). Figure 12 shows constraints on the amplitude
parameters for the tidal alignment and tidal torquing components.
As stated in Blazek et al. (2019), the II component of the TATT
model, which is found to dominate over the GI and IG components
(see fig. 16 of Secco, Samuroff et al. 2022), receives contributions
that are proportional to 𝐴2TA, 𝐴

2
TT and 𝐴TA𝐴TT. There is therefore

a partial sign degeneracy between those parameters, which can be
observed in the corresponding panel of fig. 12. We then find that in-
cluding shear ratios significantly reduces the marginal (𝐴TA, 𝐴TT)
posterior volume by a factor of about 3, which in turn improves cos-
mological constraints, as reported in the previous section. In this
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Figure 11. Comparison of one-dimensional marginal posterior distributions over the parameters 𝑆8 ≡ 𝜎8 (Ωm/0.3)0.5, 𝜎8 and Ωm, from DES Y3 data as
well as other experiments, and consistency tests for this work (in blue). (a) Constraints obtained from the harmonic (this work) and real (Amon et al. 2022;
Secco, Samuroff et al. 2022) space analyses of DES Y3 data are shown in blue and green (see also fig. 14), both with and without shear ratio information (SR,
Sánchez, Prat et al. 2021). (b) Constraints from other weak lensing surveys, namely HSC Y1 (Hikage et al. 2019; Hamana et al. 2020), KiDS-1000 (Asgari
et al. 2021) and KiDS-450 (Hildebrandt et al. 2017; Köhlinger et al. 2017) are shown in gray, and constraints from cosmic microwave background observations
from Planck 2018 are shown in yellow (Planck Collaboration et al. 2020). (c) Constraints from four weak lensing analyses of DES Y3 data are compared,
including the analysis of mass map moments (Gatti et al. 2021b) and peaks (Zürcher et al. 2022), and illustrating a high level of consistency (see also fig. 15).
(d) Consistency tests where redshift bins are removed one at a time (first four) and where the data vector is split into its large- and small-scale data points
(last two) (see also appendix C). (e) Various other consistency tests: removing auto power spectra, swapping the covariance matrix, and marginalizing over
redshift distribution uncertainties withHyperRank andMultiRank (see also appendix C). (f) Modeling robustness test for intrinsic alignment (IA), including
𝐵-mode power spectra, or replacing TATT by NLA, or removing IA contributions altogether (see also section 6.2 fig. 12). (g) Other robustness test, freeing
the dark energy equation-of-state 𝑤 or fixing the neutrino mass to 0.06 eV. (h) Baryonic feedback tests where the matter power spectrum is computed with
HMCode instead of HaloFit, and fiducial scale cuts are replaced with 𝑘max = 1, 3 and 5 hMpc−1 scale cuts (see also section 6.3 and fig. 13).

case, we obtain

𝐴TA = −0.14 ± 0.43 (−0.398), [𝐶ℓ+SR TATT]
𝐴TT = 0.4 ± 1.1 (1.714). [𝐶ℓ+SR TATT]

These constraints alone do not exclude zero, potentially due to the
aforementioned sign degeneracy. If we restrict the prior to 𝐴TA > 0,
we find 𝐴TA = 0.30+0.12−0.30 and 𝐴TT = −0.69+0.83−0.43, with essentially
unchanged cosmological constraints.We do not show constraints on
the redshift tilt parameters 𝛼TA and 𝛼TT, which are unconstrained
by the data (which might be due to amplitude parameters being
consistent with zero).

We also report constraints on the NLA model in fig. 12, a
subset of TATT where 𝐴TT = 𝑏TA = 0, which is not excluded by

the data. We exclude shear ratio information here, so as to com-
pare constraints obtained with shear power spectra alone (TATT
constraints are shown by dashed lines in fig. 12). Because of the
complex degeneracy between 𝑆8 and 𝐴TT, visible in fig. 12, fixing
the tidal torquing component to zero results in cosmological con-
straints that are improved by about 27% on 𝑆8, and which are found
to be consistent with the TATT case. Assuming the NLAmodel, we
find

𝑆8 = 0.810 ± 0.023 (0.834), [𝐶ℓ NLA]
𝐴TA = 0.40 ± 0.51 (0.701), [𝐶ℓ NLA],

i.e. a slightly larger value of 𝑆8, albeit within uncertainties of the
fiducial model. Finally, we note that removing IA contributions
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Figure 12.Constraints on cosmological and intrinsic alignment (IA) param-
eters from DES Y3 cosmic shear power spectra. The three colors refer to
the assumed IA model: TATT in blue, NLA in orange and no IA in red. The
filled blue contours include information from shear ratios while the dashed
ones do not. Shear ratios are not included for the NLA and no IA models.

altogether further improves the constraint on 𝑆8 by about 16%,
yielding

𝑆8 = 0.801+0.021−0.018 (0.836), [𝐶ℓ no IA],

also consistent with the NLA and TATT cases.
In terms of model selection, we find that going from

no IA to NLA, and then from NLA to TATT improves fits
by Δ𝜒2 = −0.3 and Δ𝜒2 = −1.1 respectively, while introduc-
ing two and three more parameters. The evidence ratios are
given by 𝑅NLA/TATT = 3.59 ± 0.93, 𝑅noIA/TATT = 17.5 ± 4.3 and
𝑅noIA/NLA = 4.88 ± 0.11, marking a weak preference for NLA over
TATT, but a substantial preference for no IA over TATT, according
to the Jeffreys scale.

Cosmic shear analyses in harmonic space usually only exploit
the 𝐸-mode part of the power spectrum. However, as detailed in sec-
tion 3.2.3, tidal torquing generates a small 𝐵-mode signal, which
may at least be constrained by our 𝐵-mode data. We validated our
analysis pipeline by checking that (i) the 𝐸-to-𝐵-mode leakagemea-
sured in our Gaussian simulations (see section 4.1.1) is consistent
with expectations from mixing matrices, (ii) we do recover correct
IA parameters, with tighter constraints, for synthetic data vectors for
different values of the IA parameters (including non-zero 𝐴TT). We
obtain constraints that are consistent for cosmological parameters
inferred without 𝐵-mode data. However, they seem to strongly pre-
fer non-zero 𝐴TT, and are not consistent across redshift bins. This
preference is indeed entirely supported by bin pairs 3, 3 an 3, 4, that
have the highest 𝜒2 with respect to no 𝐵-mode, as shown in fig. 8.
Including 𝐵-mode data and freeing TATT parameters, the 𝜒2 for
those bins are reduced by 13.5 and 17.4 respectively, while all other
bin pairs are unaffected (𝜒2 changed by less than 1). Indeed, we
find that removing bin 3 entirely makes the preference for non-zero
𝐴TT disappear, with very small impact on the cosmology. We ob-
tain very similar results when including shear ratios. We conclude
from this experiment that DES Y3 data is not able to constrain the
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Figure 13. Constraints on cosmological and baryonic feedback parameters
from DES Y3 cosmic shear power spectra. In blue, we show constraints for
the fiducial model, i.e. usingHaloFit. In orange to red, we show constraints
usingHMCodewith one free parameter, while varying the 𝑘max cut-off from
1 to 5 hMpc−1 (see fig. 4). We also show, with dashed lines, the constraints
for the fiducialHaloFitmodel and the 𝑘max = 1 hMpc−1 cut, which is even
more conservative than our fiducial Δ𝜒2 = 1 cut. Note that all constraints
shown here use TATT to model intrinsic alignments and none include shear
ratio information.

contribution of tidal torquing to the TATTmodel efficiently, leading
to the model picking up potential flukes in the 𝐵-mode data, which
has been verified to be globally consistent with no 𝐵-modes. Future
data will place stronger constraints on 𝐵-modes and its potential
cosmological sources.

6.3 Constraints on baryons

We now turn our attention towards baryonic feedback. Our fidu-
cial analysis discards scales where baryonic feedback is expected
to impact the shear power spectrum. However, we have shown in
section 4.4.1 that HMCode provides a model that is both accurate
and flexible enough for our analysis, for scale cuts with 𝑘max in the
range 1 hMpc−1 to 5 hMpc−1.

Figure 13 shows constraints obtained assumingHMCodewith
one free parameter, for varying scale cuts, as well as a comparison
to the fiducial HaloFit model. We find cosmological constraints
to be robust to the choice of 𝑘max, with deviations below 0.5𝜎.
In particular, in fig. 13 we show contours for both models for
𝑘max = 1 hMpc−1, which is more conservative than our fiducial
Δ𝜒2 = 1 scale cut, and find very good agreement. We then find that
extra data points included when raising 𝑘max from 1 hMpc−1 to
5 hMpc−1 (71 to 228) do constrain theHMCode baryonic feedback
parameter 𝐴HM, but have a relatively little impact on cosmologi-
cal constraints, both in position and width. In other words, given
our current error bars, cosmological information at small scales is
partially lost by marginalizing over uncertainties in the baryonic
feedback model. For the 𝑘max = 5 hMpc−1 cut, we find 𝜒2 = 235.2
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(𝑝 = 0.25) at best-fit, and constraints given by

Ωm = 0.297+0.043−0.071 (0.246), [𝐶ℓ HMCode TATT]

𝑆8 = 0.769+0.037−0.026 (0.762), [𝐶ℓ HMCode TATT]

𝐴HM = 3.52+0.94−1.2 (1.620). [𝐶ℓ HMCode TATT]

This is in good agreement with cosmological constraints reported
for the HaloFit model in section 6.1, although this model does
favor slightly lower 𝑆8 and 𝜎8 values, and a higherΩm value, which
happens to be closer to the Planck value, as seen in fig. 11. As a
consequence, the tension with Planck rises to 1.7𝜎 in this case. The
corresponding best-fit model is represented by dashed lines in fig. 4,
where we observe that, on large scales, i.e. for multipoles below the
fiducial scale cuts, bothmodels agree verywell. However, on smaller
scales, HMCode yields shear power spectra 10-20% lower, which,
visually, seems to provide a better fit to data (again, those scales are
excluded in the fiducial model).

When using HMCode with two free parameters, we find that
the constraining power is entirely transferred to the second param-
eter, [HM, with very little impact on cosmological constraints. For
𝑘max = 5 hMpc−1, we find [HM = 0.86+0.29−0.35 while 𝐴HM is uncon-
strained.

The previous constraints are based on our fiducial IA model,
TATT. However, we showed in the previous section that the NLA
model seems favored by the data (using evidence ratios). If we use
this model instead, as done in the KiDS-1000 analysis (Asgari et al.
2021), we find 𝑆8 = 0.790 ± 0.024 and 𝐴HM = 3.67+0.71−0.92, although
we note immediately thatwe have not validated our scale cuts against
this specific model and that these results should be interpreted with
caution.

Our results do not allow exclusion of the darkmatter only value
of 𝐴HM = 3.13 in either direction. In comparison to the hydrody-
namical simulations we used in section 3.2.4 to validate the model,
constraints from data are closer to Massive Black II, although the
uncertainty from shear power spectra alone is too large to discrim-
inate between baryonic feedback prescriptions. Figure 13 suggests
that a better understanding of the effect of baryons on the distribu-
tion of matter will be an important task in order to be able to capture
cosmological information at small scales. For the foreseeable future,
this will likely require cross-correlating shear data with other probes
that are sensitive to baryons, e.g. Compton-𝑦 maps of the thermal
Sunyaev-Zeldovich (SZ) effect with CMB maps (see, e.g., Pandey
et al. 2021; Gatti et al. 2021a with DES Y3 data and Tröster et al.
2021 with KiDS-1000 data) or the kinetic SZ effect (Schaan et al.
2021; Amodeo et al. 2021). Another avenue is to exploit information
from even smaller scales, e.g. using a principal component analy-
sis to span a variety of scenarios from hydrodynamical simulations
(see Huang et al. 2019 for the methodology and Huang et al. 2021
for an application to DES Y1 data) or a baryonification model (see
Schneider & Teyssier 2015; Schneider et al. 2019, and Chen et al.
in preparation for an application to DES Y3 data).

6.4 Consistency with other DES Y3 weak lensing analyses

In this section, we compare our results obtained from cosmic shear
power spectra to other studies using DES Y3 lensing data, as de-
tailed below. We first focus on the comparison with the real-space
analysis of shear two-point functions presented in Amon et al.
(2022); Secco, Samuroff et al. (2022). The study presented here
is its harmonic space counterpart, in the sense that we follow a
very similar methodology and use the same fiducial model. We then

0.2 0.3 0.4 0.5

Ωm

0.62

0.70

0.78

0.86

S
8

0.6

0.8

1.0

σ
8

0.6 0.8 1.0

σ8

0.7 0.8

S8

DES Y3 C`

DES Y3 C` + SR

DES Y3 ξ±(θ)

DES Y3 ξ±(θ) + SR

Figure 14. Comparison of cosmological constraints obtained from the anal-
ysis of cosmic shear two-point functions of DES Y3 data in real (in green,
Amon et al. 2022; Secco, Samuroff et al. 2022) and harmonic space (in blue,
this work). Solid contours indicate constraints that include shear ratio infor-
mation Sánchez, Prat et al. (2021). We find Δ𝑆8 = 0.025, with shear ratios,
consistent with the expected statistical scatter 𝜎 (Δ𝑆8) ∼ 0.02 predicted in
Doux et al. (2021).

extend the comparison to studies that incorporate non-Gaussian in-
formation from the DES Y3 convergence (mass) map (Jeffrey, Gatti
et al. 2021b), namely the analysis of peaks and power spectra from
Zürcher et al. (2022), and the analysis of second and third order
moments from Gatti et al. (2021b). Figures 14 and 15 show cosmo-
logical constraints obtained from those studies, which are found to
be in very good agreement, illustrating the internal consistency of
DES Y3 shear analyses. See also fig. 11 for a comparisom of all
one-dimensional marginal constraints.

Real space two-point functions b±. Figure 14 shows cosmo-
logical constraints obtained from two-point functions in real space
(Amon et al. 2022; Secco, Samuroff et al. 2022) and in harmonic
space (this work), both with and without including shear ratio in-
formation. We find that both studies yield very consistent cosmo-
logical constraints, with a preference for slightly higher 𝑆8 from
shear power spectra. However, the difference between the means of
the posteriors is Δ𝑆8 = 0.031 when excluding shear ratios, which is
fairly consistent with the expected statistical scatter 𝜎(Δ𝑆8) ∼ 0.02
predicted10 in Doux et al. (2021). The degeneracy directions are
found to be slightly different, with 𝛼𝐶ℓ

= 0.595 and 𝛼b± = 0.552
for harmonic and real space analyses, respectively. When including
shear ratios, the difference narrows down to Δ𝑆8 = 0.025 and the
best constrained direction is almost identical, with 𝛼𝐶ℓ

= 0.598 and
𝛼b± = 0.586. As a consequence of the higher value of 𝑆8 found
here, the tension with Planck is reduced from 2.3𝜎 in (Amon et al.
2022; Secco, Samuroff et al. 2022) to 1.5𝜎 in this work.

For IA parameters, we find an overall excellent agreement (not
shown). Although the real-space analysis shows a weak preference

10 Note that this prediction depends strongly on the two sets of scale cuts
and the survey configuration.
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Figure 15.Comparison of cosmological constraints obtained from the analy-
sis of DESY3 lensing data using four different statistics: shear power spectra
(this work, in blue), shear two-point functions (Amon et al. 2022; Secco,
Samuroff et al. 2022, in green), convergence second and third ordermoments
(Gatti et al. 2021b, in orange), and convergence peaks and power spectra
(Zürcher et al. 2022, in red). For the first two, we have matched the model-
ing to that adopted for the analysis of non-Gaussian convergence statistics,
namely restricting the intrinsic alignment model to NLA and fixing the total
mass of neutrinos (see main text for a discussion of possible caveats). These
constraints are shown by solid contours, whereas constraints obtained with
the fiducial model are shown by the dashed contours, for reference. None
of the constraints shown here include shear ratio information. Although the
comparison requires some care, this figure highlights the overall consistency
of DES Y3 lensing data and existing analyses.

for negative 𝐴TA and positive 𝐴TT, we observe the same degeneracy
between those parameters, with almost perfect overlap. The two
parameters that describe redshift evolution are unconstrained in
both cases, but the posteriors are also nearly identical. We also find
that fixing the IA model to NLA results in a slightly higher value
for 𝑆8.

Non-Gaussian statistics from mass maps. Figure 15 presents
cosmological constraints from all four lensing analyses. Due to
difficulties in modeling non-Gaussian statistics, both analyses of
moments and peaks (Gatti et al. 2021b; Zürcher et al. 2022) in-
clude IA contributions using a model based on NLA, and both fix
the total mass of neutrinos to the minimum value of 0.06 eV. In
order to make the comparison more meaningful, we therefore re-
analyze shear two-point functions and power spectra with these two
changes, which tends to favor slightly higher values of 𝑆8 (either
change individually also goes in this direction). We warn the reader
that (i) despite matching important modeling choices, there remain
differences in the analysis in terms of priors, modeling pipeline
technology (e.g. Zürcher et al. 2022 uses an emulator) and method-
ology, and (ii) the scale cuts used for two-point functions were not
validated for this specific model, and should be interpreted with
caution. Nevertheless, this figure illustrates the high level of con-
sistency of these analyses – all of which followed a similar blinding
procedure – and of DES Y3 lensing data.
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Figure 16. Comparison of cosmological constraints from the analysis of
cosmic shear in harmonic (filled contours) and real space (contour lines) for
DES Y3 (this work in blue, Amon et al. 2022; Secco, Samuroff et al. 2022
in green), HSC Y1 (Hikage et al. 2019; Hamana et al. 2020, in yellow) and
KiDS-1000 (Asgari et al. 2021, in red). We note that these results rely on
different analysis and modeling choices.

6.5 Comparison with other lensing surveys

In the past two years, both the HSC and KiDS collaborations have
presented cosmic shear analyses of their data in harmonic and real
space. Figure 16 compares constraints obtained from DES Y3 data
to those obtained fromKiDS-1000 (Asgari et al. 2021) and HSCY1
(Hikage et al. 2019; Hamana et al. 2020). Uni-dimensional marginal
distributions are also shown in fig. 11. As shown in Doux et al.
(2021) on simulations, statistical fluctuations are not expected to
bias one estimator over the other and shift constraints in any specific
direction, while unmodeled systematic effects might.We do not find
any clear trend here.

Both KiDS-1000 and HSC analyses use NLA to model in-
trinsic alignments with fixed neutrino masses. However we decide
to present constraints that were obtained from the fiducial models
assumed by each collaboration for simplicity. We also note that
the KiDS-1000 analysis uses a “bandpowers” estimator of shear
power spectra that stems from an original measurement of two-
point functions in real space with a thin spacing. A recent analysis
(Loureiro et al. 2021) applying a pseudo-𝐶ℓ estimator found very
similar constraints on 𝑆8 = 0.754+0.027−0.029 between the bandpowers
and pseudo-𝐶ℓ estimators, despite appreciable differences in the
intrinsic alignment parameter, likely due to how the two estimator
cut large-scale information. Ignoring potential correlations due to
overlapping survey areas, we find our results to be in agreement at
the 0.7 and 0.4𝜎 levels with KiDS-1000 bandpowers and HSC Y1
𝐶ℓ analyses. Finally, we find good agreement on the IA parameter
𝐴TA (not shown), although constraints remain broad for all three
surveys.

6.6 Reconstruction of the matter power spectrum

In this section, we apply the method of Tegmark & Zaldarriaga
(2002) to approximately reconstruct the linear matter power spec-
trum at present time, 𝑃(𝑘), from DES Y3 shear power spectra. We
immediately note that this exercise is strongly model-dependent,
in that it requires to assume a full cosmological model to relate
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shear power spectra to the matter power spectrum. Moreover, it
presents subtleties in relating physical scales between the linear and
non-linear power spectra, as discussed in Tegmark & Zaldarriaga
(2002), and we will employ a simplified approach presented in the
next paragraph. Nevertheless, assuming the Planck 2018 cosmol-
ogy (Planck Collaboration et al. 2020), we may compare the power
spectrum reconstructed from DES Y3 data to the expectation from
Planck, which is relevant in the context of the 𝜎8 tension found in
previous weak lensing surveys (Amon et al. 2022; Secco et al. 2022;
Hikage et al. 2019; Hamana et al. 2020; Asgari et al. 2021), and that
we also observe in fig. 10.

To do so, we recast eq. (22) as an integral over three-
dimensional Fourier 𝑘-modes, using the change of variable
𝑘 = (ℓ + 1/2)/𝜒(𝑧). We then define a window matrix, W, such
that the expected value of our data vector,

〈
Ĉ𝐿

〉
, may be expressed

as a function of the linear matter power spectrum at 𝑧 = 0, 𝑃(𝑘),
computed in log-spaced 𝑘-bins of width Δln 𝑘 , P, such that〈
Ĉ𝐿

〉
≈ WP. (31)

This window matrix is given, for the element corresponding to 𝑘

and 𝐶𝑎𝑏
𝐿
, and ignoring intrinsic alignments, by

W𝑘,𝐿,𝑎,𝑏 ≈ 𝑘Δln 𝑘 (𝐿 + 1/2)𝑞𝑎 (𝜒)𝑞𝑏 (𝜒)
𝑃NL (𝑘, 𝑧(𝜒))

𝑃fid (𝑘)
(32)

with 𝜒 = (𝐿 + 1/2)/𝑘 . Given the data covariance C, the recon-
structed power spectrum has estimated value and covariance given
by

P̂ = SWᵀC−1Ĉ𝐿 , (33)

S =

[
WᵀC−1W + 𝜎−2I

]−1
, (34)

where we have included a regularization term, 𝜎, which enables
inverting eq. (31) at the price of accepting that certain 𝑘-modes
may not be recovered from the data (the results have very low de-
pendence on 𝜎, if chosen large enough, in the range where the data
is constraining). To ensure numerical stability, we use 20 bins in the
range 𝑘 ∼ 1 × 10−3 hMpc−1𝑡𝑜1 × 102 hMpc−1, and subsequently
rebin the estimated power spectrum within 10 bins for better visu-
alization as well as to suppress the anticorrelation of adjacent bins.
The simplification here comes from eq. (32), where the dependence
on the linear matter power spectrum is made explicit by simply
multiplying the numerator and denominator by 𝑃fid (𝑘), the power
spectrum at redshift zero for the fiducial Planck 2018 cosmology.
Our exercise therefore amounts to a reconstruction of the integrand
over ln 𝑘 with respect to what is expected from Planck, rather than
a reconstruction of the linear matter power spectrum itself.

The result is shown in fig. 17. The lower panel shows the
reconstructed, binned ratio of the power spectrum with respect
to the prediction from Planck 2018 (in blue), compared to the
results obtained from simulated DES Y3 data vectors generated
by sampling the likelihood at the Planck 2018 cosmology (in
gray). In the upper panel, we multiply these ratios by the fidu-
cial linear power spectrum, shown in black. We find that the re-
constructed spectrum is roughly 20% lower than the prediction
in the range 𝑘 ∼ 0.03 hMpc−1𝑡𝑜1 hMpc−1 that is constrained by
DES Y3 data. In particular, the reconstruction is about 2𝜎 low
around 𝑘 ∼ 0.3 hMpc−1, which remains close to the linear regime.

7 CONCLUSIONS

In this work, we have used data from the first three years of ob-
servations by the Dark Energy Survey (DES Y3), including a cat-
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Figure 17. Matter power spectrum at redshift 𝑧 = 0 reconstructed from
DES Y3 shear power spectra, using a simplified version of the method of
Tegmark & Zaldarriaga (2002). The fiducial linear matter power spectrum,
computed at Planck 2018 cosmology (Planck Collaboration et al. 2020), is
shown by the solid, black line (the corresponding non-linear power spec-
trum is shown by the dashed, black line). The blue boxes, centered on (𝑘, P̂)
(see eq. (33)) and of height given by the square-root of the diagonal of the
covariance matrix S (see eq. (34)), show the reconstructed power spectrum
within log-spaced 𝑘 bins. In the background, we show in gray the result of
the reconstruction for 1000 simulated data vectors drawn from the likeli-
hood at Planck cosmology; however, in this case, the height of the boxes
represents the standard deviation of the results, offering a simple check for
the covariance matrix. The reconstructed power spectrum is about 20% (or
roughly 2 𝜎) lower than the fiducial one around 𝑘 ∼ 0.3 hMpc−1.

alog of over a hundred million galaxy shape measurements (Gatti,
Sheldon et al. 2021c) split into four redshift bins (Myles, Alarcon
et al. 2021), to measure tomographic cosmic shear power spectra.
Our measurements over the DES Y3 footprint of 4143 deg2 are
based on the pseudo-𝐶ℓ method, with a consistent spherical sky
approach using the NaMaster software (Alonso et al. 2019). We
generally followed the DES Y3methodology laid out in Amon et al.
(2022); Secco, Samuroff et al. (2022) and the modeling choices pre-
sented in Krause et al. (2021) to infer cosmological constraints, and
found 𝑆8 ≡ 𝜎8

√︁
Ωm/0.3 = 0.793+0.038−0.025 (0.810) using cosmic shear

alone. We also included geometric information from small-scale
galaxy-galaxy lensing ratios (Sánchez, Prat et al. 2021) to tighten
the constraint to 𝑆8 = 0.784 ± 0.026 (0.798).

Following Amon et al. (2022); Secco, Samuroff et al. (2022),
we modeled intrinsic alignments with TATT (Blazek et al. 2019)
that coherently includes tidal alignment (TA) and tidal torquing
(TT) mechanisms. We found, as in Secco, Samuroff et al. (2022),
that the data does not strongly favor this model over the simpler
non-linear alignment (NLA) model, as the data does not seem to
constrain the TT contribution efficiently (even when including 𝐵-
modes in the analysis, which may be sourced by TT). In all cases,
we find consistent cosmological constraints, although using NLA
tightens constraints on 𝑆8 by about 25%.

We include smaller scales that had been discarded in the fidu-
cial analysis, switching from HaloFit to HMCode to model the
non-linear matter power spectrum, thus including the effect of bary-
onic feedback, known to be a major source of uncertainty for cosmic
shear at small scales (Chisari et al. 2018; Huang et al. 2019). We de-
rived a set of scale cuts that approximately map to a cut-off 𝑘max in
Fouriermodes.When raising 𝑘max from1 hMpc−1 to 5 hMpc−1, we
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found consistent cosmological constraints, while the extra statistical
power appears to mainly constrain the baryonic feedback parame-
ter, 𝐴HM = 3.52+0.94−1.2 (1.620). This result does not rule out the dark
matter-only case (𝐴HM = 3.13) nor the predictions from the hydro-
dynamical simulations we considered in this work. Given current
error bars and theoretical uncertainties, it therefore remains diffi-
cult to extract small-scale cosmological information that is present
in our cosmic shear data, thus highlighting the need to better under-
stand the effect of baryonic processes on the clustering of matter,
especially for future surveys (see, e.g. Martinelli et al. 2021).

This analysis complements other weak lensing analyses of
DES Y3 data, namely the analysis of cosmic shear two-point corre-
lation functions presented in Amon et al. (2022); Secco, Samuroff
et al. (2022), convergence second- and third-order moments (Gatti
et al. 2021b), and convergence peaks and power spectra (Zürcher
et al. 2022), the latter two being based on maps from Jeffrey, Gatti
et al. (2021b). With respect to the real-space two-point functions,
we find very similar constraints, with a value of 𝑆8 slightly higher by
Δ𝑆8 = 0.025 when including shear ratios, perfectly consistent with
statistical fluctuations of order 𝜎(Δ𝑆8) ∼ 0.02 predicted in Doux
et al. (2021). The comparison of constraints fromGaussian and non-
Gaussian statistics delivers an overall coherent picture, highlight-
ing the cosmological information beyond two-point measurements
and pointing towards the modeling improvements required for fu-
ture analyses. This analysis thus provides an important consistency
check of DES Y3 lensing data. It also demonstrates the feasibility
of conducting a harmonic space analysis over a wide survey foot-
print, which could be combined with other estimators, such as the
real-space correlation functions, into a joint analysis in the future.
To do so, one would need to compute an accurate estimate of the
cross-covariance of the different statistics considered, or to perform
a simulation-based, likelihood-free analysis (see, e.g. Jeffrey et al.
2021a).

At last, we compared our results to those obtained by other
weak lensing studies from the Hyper Suprime-Cam and Kilo-
Degree Survey collaborations and found consistent constraints on
cosmology. We also compared our results to constraints from ob-
servations of the cosmic microwave background. We found that
the tension with Planck 2018 in 𝑆8, computed with the param-
eter shift probability (Raveri et al. 2020; Raveri & Doux 2021),
is 1.5𝜎 in this work, whereas it is 2.3𝜎 in Amon et al. (2022);
Secco, Samuroff et al. (2022). This shift is reflected in the in-
ferred linear matter power spectrum, in excess by about 20% in the
range 𝑘 ∼ 3 × 10−2 hMpc−1𝑡𝑜1 hMpc−1 for Planck with respect to
DES Y3. Future observations, such as the complete data from the
six-year program of the DES and data from the next generation of
surveys including LSST, Euclid and Roman, as well as method-
ological improvements will be necessary to determine whether this
apparent tension is the sign of an incorrect treatment of systematic
effects, or of new physics.
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APPENDIX A: POINT SPREAD FUNCTION

This section presents the results of our tests for potential contamina-
tion of shear power spectra from the point spread function (PSF) and
complements those presented in Jarvis et al. (2021); Gatti, Sheldon
et al. (2021c).

We specifically focus on the additive biases due to PSFmisesti-
mation using 𝜌-statistics (Rowe 2010) following the same diagnos-
tics as Gatti, Sheldon et al. (2021c). We expect other contributions
like the brighter-fatter effect, dependencies of the PSF model resid-
uals on star and galaxy colors, and tangential shear around stars
to be negligible, as discussed in Section 5 of Gatti, Sheldon et al.
(2021c).

The estimated shear 𝜸est is decomposed as

𝜸est = 𝜸 + 𝛿𝒆PSF + 𝛿𝒆noise (A1)

where 𝜸 represents the true shear, 𝛿𝒆noise denotes noise, and 𝛿𝒆PSF
characterizes additive biases from PSF modeling errors. DES Y3
uses a sample of reserved stars that were not used to obtain the PSF
model, and for which we can compare the modeled PSF ellipticity
𝒆model to the measured ellipticity 𝒆∗ (and similarly for PSF sizes,
with 𝑇model and 𝑇∗). The PSF bias term can be further modeled as

𝛿𝒆PSF = 𝛼 𝒑 + 𝛽𝒒 + [𝒘, (A2)

where 𝒑 ≡ 𝒆model, 𝒒 ≡ 𝒆* − 𝒆model, and 𝒘 ≡ 𝒆* (𝑇∗ − 𝑇model)/𝑇∗.
Under the assumption that the true shear signal 𝜸 does not correlate
with modeling errors, the cross power spectra of galaxy shear and
the PSF parameters 𝒑, 𝒒, and 𝒘 read

Cℓ

(
𝜸est, 𝒑

)
= 𝛼Cℓ ( 𝒑, 𝒑) + 𝛽Cℓ (𝒒, 𝒑) + [Cℓ (𝒘, 𝒑), (A3)

Cℓ

(
𝜸est, 𝒒

)
= 𝛼Cℓ ( 𝒑, 𝒒) + 𝛽Cℓ (𝒒, 𝒒) + [Cℓ (𝒘, 𝒒), (A4)

Cℓ

(
𝜸est, 𝒘

)
= 𝛼Cℓ ( 𝒑, 𝒘) + 𝛽Cℓ (𝒒, 𝒘) + [Cℓ (𝒘, 𝒘). (A5)

We first measured the cross power spectra of the shear and the
PSF parameters 𝒑, 𝒒, and 𝒘. We then repeated these measurements
using 18,000 Gaussian simulations, as described in section 4.1.1, to
obtain their covariance matrix. To calculate the cross power spectra
between the PSF parameters (right-hand side of eqs. (A3) to (A5)),
we split the catalog into two halves that we cross-correlate, which
effectively cancels out the shot noise. We then find the best-fit scalar
parameters 𝛼, 𝛽, [ over all scales and three cross-spectra types for
each tomographic redshift bin using Markov chain Monte-Carlo
(MCMC) samples generated with the public software package em-
cee (Foreman-Mackey et al. 2013). This approach is adapted from
the measurements performed in the real space analysis (Amon et al.
2022) using the same tomographic split, and the non-tomographic
measurement from Jarvis et al. (2021).

We present the best-fit 𝛼, 𝛽, [ values in Table A1. While
𝛼 is consistent with the expected value of 0 and with real space
results from Amon et al. (2022), 𝛽 and [ values are different. We
associate the difference to the fact that the real space analysis uses
much smaller scales, down to the sub-arcminute range, while our
harmonic space analysis only captures features larger than a few
arcminutes. The total goodness-of-fit on the stacked data vector of
the shear and PSF cross spectra 𝜒2 for 93 degrees of freedom varies
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Figure A1. Cross-power spectra between galaxy shapes in the four redshift bins (from left to right) with PSF parameters 𝒑, 𝒒 and 𝒘 (from top to bottom).
The measurements are shown in blue, with error bars computed from 18 000 Gaussian simulations using the DES Y3 catalog ellipticities and positions, as
explained in section 4.1.1. The model from eqs. (A3) to (A5) at best-fit is shown by the red line, while the band shows the uncertainty. We find 𝜒2 statistics
with respect to the best fit between 29.3 and 45.8 (29.3 to 47.3 for the null hypothesis) for 32 degrees of freedom, shown in the lower left corner for each panel,
corresponding to a minimum probability-to-exceed of 0.04.

Bin 1 Bin 2 Bin 3 Bin 4

𝛼 0.003+0.007−0.007 0.014+0.008−0.008 0.008+0.010−0.010 0.012+0.011−0.011
𝛽 0.02+0.36−0.36 −0.07+0.38−0.38 0.16+0.39−0.38 −0.74+0.46−0.47

[ −5.4+4.3−4.4 0.4+4.8−4.8 1.6+5.1−5.0 −5.4+5.9−5.8
𝜒2 99.5 116.3 113.4 117.3

Table A1. Values of the parameters 𝛼, 𝛽 and [ for each redshift bin,
estimated from fits to the cross-power spectra of galaxy and PSF shapes,
according to equations A3, A4, A5 as well as the goodness-of-fit, 𝜒2, for
96 − 3 degrees of freedom.

between 99.5 and 117.3 across redshift bins. As in the real space
analysis, the 𝜒2 values are rather large for all but the lowest redshift
bin, with the probability-to-exceed being 0.045. Subsequently in
fig. A1, we show the best-fit model to the cross power spectra for
each redshift bin and report the 𝜒2 values for each shear and PSF
parameter cross spectrum separately.

Finally, we propagate the PSF bias in eq. (A1) to compute the
expected contamination of the shear power spectra using the model
of eq. (A2), in order to test its impact on cosmology. We do so using
the best-fit values for the 𝛼, 𝛽 and [ parameters from our analysis in
harmonic space, the best-fit from the real space analysis in Amon
et al. (2022) and the expected values 𝛼 = [ = 0 and 𝛽 = 1, consistent
with non-tomographic results from Jarvis et al. (2021). Figure A2
shows that the impact on cosmological constraints is negligible.

APPENDIX B: VALIDATION ON SYNTHETIC DATA

This section illustrates the validation of the modeling pipeline on
synthetic data, as described in section 4.4.1. FigureB1 shows the im-
pact of the choice for the non-linearmatter power spectrum,whereas
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Figure A2. Impact of PSF contamination of the measured shear spectra on
cosmological constraints. Fixing the values of the PSF model parameters
(𝛼, 𝛽 and [) at the best-fit values inferred from power spectra (blue con-
tours) or two-point functions (red), and at the expected values (orange), we
contaminate a noiseless data vector using the model in eq. (A2) and compare
cosmological constraints to those obtained from the noiseless data vector
(black).

fig.B2 validates the use ofHMCode to probe the small-scale portion
of our measurements, based on its robustness to various baryonic
feedback prescriptions from four different hydrodynamical simula-
tions.
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Figure B1. Test of the impact of the non-linear matter power spectrum on
cosmological constraints. We analyze three synthetic data vectors with the
fiducial model using HaloFit and fiducial scale cuts. Constraints obtained
from the fiducial data vector are shown in blue, with themean of the posterior
shown by the blue cross. These constraints are compared to those obtained
from data vectors computed with HMCode (red, 𝐴HM = 3.13) and the
Euclid Emulator (orange). The innermost 0.3 𝜎 contours (underlined in
dashed lines) encompass the mean of the fiducial posterior.
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Figure B2. Validation of the baryonic feedback modeling with HMCode.
The four colored posteriors are obtained from shear power spectra that
include the effect of baryons as predicted by four hydrodynamical simula-
tions (see fig. 5). Solid (dashed) lines were obtained using the scale cuts
at 𝑘max = 3 hMpc−1 (𝑘max = 5 hMpc−1). Despite preferring very different
values of 𝐴HM (the dark matter-only case corresponds to 𝐴HM = 3.13),
the cosmology is recovered in all cases. For comparison, the black contours
show the posterior obtained from the fiducial data vector analyzed with
HaloFit with the scale cuts at 𝑘max = 3 hMpc−1.

APPENDIX C: INTERNAL CONSISTENCY

This section presents a number of tests in parameter (appendix C1)
and data space (appendix C2) for the fiducial run, i.e. using our
fiducial ΛCDM model and scale cuts, and excluding shear ratio
information.

C1 Robustness of cosmological constraints

We first perform a series of tests, listed below, to assert the robust-
ness of cosmological constraints presented in section 6.1. Figure 11
presents uni-dimensional marginal distributions for these tests in
sections (d) and (e). We also show the two-dimensional marginal
distributions in the (𝑆8,Ωm) plane in fig. C1, in the following order:

(a) Redshift test. Many parts of the cosmological model (including
intrinsic alignments) are redshift-dependent by construction,
whereas systematic effects may differentially impact the four
redshift bins. To test the robustness of the cosmological con-
straints to such effects, we therefore perform the analysis of
cosmic shear power spectra removing one bin at a time (e.g.,
when removing bin 2, we remove the bin pairs 2,1, 2,2, 3,2 and
4,2 from the data vector), and show contours in fig. C1, panel
(a). While contours widen, as expected, and some degeneracies
with 𝐴TA appear to create some tails in the posteriors, we find
an overall excellent agreement, with no visible trend.

(b) Large vs small scales. As discussed throughout the paper, the
non-linear scales play a crucial role in this analysis, as they
contain a significant amount of cosmological information, but
are also the most difficult to model. Using our fiducial set of
scale cuts, we split the data vector between large and small
scales as follows: for each redshift bin pair, we find the multi-
pole ℓthr, within the scale cuts ℓmin ≤ ℓ ≤ ℓmax, that results in
approximately equal signal-to-noise ratio 𝑆/𝑁 on both sides,
i.e. 𝑆/𝑁ℓmin≤ℓ≤ℓthr ≈ 𝑆/𝑁ℓthr≤ℓ≤ℓmax . This procedure leaves us
with 58 and 61 data points for large and small scales, respec-
tively. We find that constraints using either only large scales or
only small scales are very similar in width and in very good
agreement with each other. The broadening of the posteriors
seems related to partial degeneracies with intrinsic alignment
parameters, in particular 𝐴TT. Nevertheless, they are in very
good agreement with the constraints from the full analysis.

(c) Auto-power spectra. The pseudo-𝐶ℓ estimator we use here re-
quires the subtraction of the noise power spectrum, which is
estimated analytically from the shape catalog here, following
Nicola et al. (2021). In order to evaluate the potential impact
of a misestimation, we analyze our data without auto-power
spectra, i.e. removing bin pairs 1,1, 2,2, 3,3 and 4,4 from the
data vector (No auto), and then using only those pairs (Auto
only). We find constraints that are wider but consistent with the
full analysis, with no clear indication for an issue with noise
spectrum subtraction.

(d) Covariance. As described in section 3.3, our covariance matrix
is a hybrid matrix that usesNaMaster to evaluate the Gaussian
contribution with the effects of the mask and binning properly
accounted for, and CosmoLike to evaluate the non-Gaussian
contribution, at the fiducial Planck 2018 cosmology. We have
also used DarkGridV1 simulations (Zürcher et al. 2022) to
obtain an empirical estimate of the covariance matrix, for com-
parison and validation of our analytic (and therefore noiseless)
estimate. We test the impact of this choice by using the empir-
ical covariance in our cosmological analysis, and find that our
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Figure C1. Robustness tests of cosmological constraints, comparing variations in analysis choices to the fiducial constraints in blue. We first repeat the
analysis removing part of the data vector, according to (a) redshift bins, (b) scales, and (c) auto-power spectra. We then modify certain parts of the analysis,
namely (d) the covariance matrix, (e) the methodology to marginalize over uncertainties in the redshift distributions, and (f) the measurement resolution. See
appendix C1 for details.

constraints are almost insensitive to this choice, showing the
excellent agreement of the two covariance matrices.

(e) HyperRank. Throughout this work, we have employed the fidu-
cial approach over marginalizing over redshift distribution bi-
ases, Δ𝑧𝑎’s, in order to account for uncertainty in the red-
shift distributions. However, the DES Y3 redshift pipeline pro-
duced samples of the redshift distributions that can be properly
marginalized over using either theMultiRank or HyperRank
methods, by sampling, respectively, realizations themselves, or
a set of hyperparameters used to rank and select realizations
(for details, see Cordero, Harrison et al. 2022). We do so here
and find cosmological constraints in excellent agreement with
the fiducial analysis, with roughly 15% smaller uncertainty on
𝑆8 for both techniques.

(f) Resolution. As detailed in section 3.1, the pseudo-𝐶ℓ estima-
tor is based on pixelized HealPix maps of the shear catalog.
However, as discussed in Nicola et al. (2021), the effects of the
pixelization of the shear field depend both on the density of
galaxies and the chosen resolution. We used a resolution pa-
rameter of 𝑁side = 1024, which allows us to probe multipoles
up to ℓ ∼ 2000, while yielding a relatively complete mask,
without too many empty pixels in the survey area, and with a
mean number of galaxies per pixel of around 17.2 to 17.5 for
all four bins. This means that we are in the regime where the
shear maps are that of the averaged shear field (as opposed to
the sampled shear field) and that we may use standardHealPix
window functions to correct for the smoothing that has taken
place. In order to verify the impact on cosmological constraints,
we repeat the measurements, including noise power spectrum
and Gaussian covariance estimation, at 𝑁side = 512. We do ob-
serve expected differences in the shear power spectra – almost
negligible at large scales and growing up to about the size of the
error bars at ℓ ∼ 1024, with no clear trend – but find negligible
impact on cosmology.

C2 Internal consistency of data with posterior predictive
distributions

We apply the methodology developed of Doux et al. (2020) based
on the posterior predictive distribution (PPD) to test the internal
consistency of our data. In a nutshell, the method uses a param-
eter posterior sample and compares simulated realizations of the
data vector drawn from the likelihood at these parameter values to
the observed data vector. The test is subsequently calibrated using

Test Calibrated 𝑝-value
Goodness-of-fit 0.116
Bin 1 vs no bin 1 0.998
Bin 2 vs no bin 2 0.020
Bin 3 vs no bin 3 0.080
Bin 4 vs no bin 4 0.876
Small vs large scales 0.395
Large vs small scales 0.212

Table C1. Internal consistency tests using the posterior predictive distribu-
tion method from Doux et al. (2020). See appendix C2 for details.

simulated data vectors, to correct for posterior volume effects, as
detailed in Doux et al. (2020).

We first perform a goodness-of-fit test, where the posterior
sample comes from the fiducial run, and simulated realizations are
independent of the observed data, and find a calibrated 𝑝-value of
11.6%. The PPD samples are shown in gray in fig. C2 along with
the observed data in blue.

We then perform consistency tests of the type A vs B, i.e. where
we divide the data in two disjoint parts 𝐴 and 𝐵, use 𝐵 to obtain
a posterior sample, and generate from those samples realizations
of 𝐴 to be compared to the real data, in a way that accounts for
the correlation between 𝐴 and 𝐵. Specifically, we split the data
according to redshift bins and scales, using the same splits as in
item a and item b of the previous section. We illustrate the redshift
consistency test in fig. C3 and summarize the results in table C1,
finding no indication of inconsistency.

APPENDIX D: FULL POSTERIOR DISTRIBUTION

Figure D1 shows the prior and posterior distributions for the
fiducial constraints presented in section 6.1 (without shear ra-
tios). We also perform a Karhunen–Loève (KL) decomposition
(Raveri & Hu 2019; Raveri et al. 2020; Raveri & Doux 2021;
Dacunha et al. 2021) in order to determine the directions, in pa-
rameter space, that are best constrained by the data, as quan-
tified by the improvement between the prior and the posterior.
We use the tensiometer11 package and work in the space of{
logΩm, log𝜎8, log ℎ, logΩb, log 𝑛s, logΩaℎ

2} in order to express
the KL modes as power laws in the original parameters. We find

11 https://tensiometer.readthedocs.io
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Figure C2. Goodness-of-fit test for the fiducial run using the posterior predictive distribution (PPD) methodology of Doux et al. (2020). The data is shown by
the blue circles, which are filled for data points within fiducial scale cuts. The gray line shows the mean of the PPD realizations, whereas the gray bands show
the 1 𝜎 and 2 𝜎 percentiles of the PPD. The calibrated 𝑝-value for each panel is shown in the upper right corner.

that the three first KL modes are the following (the improvements
are in parentheses):(

Ωm
0.255

)0.521 ( 𝜎8
0.857

)
= 1.000 ± 0.116, (978.7%)

(D1)(
Ωm
0.255

) ( 𝜎8
0.857

)−1.219 ( 𝑛s
1.003

)2.651
= 1.000 ± 0.868, (202.5%)

(D2)(
Ωm
0.255

)−0.149 (
ℎ

0.774

) ( 𝑛s
1.003

)1.681
= 1.000 ± 0.426. (77.3%)

(D3)

The first mode nearly matches the 𝑆8 parameter, while subsequent
modes, with much weaker improvements, include the Hubble con-
stant ℎ and the tilt of the primordial power spectrum 𝑛s.
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