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Modeling personal particle-bound polycyclic
aromatic hydrocarbon (pb-pah) exposure in
human subjects in Southern California
Jun Wu1,2*, Thomas Tjoa2, Lianfa Li1, Guillermo Jaimes3 and Ralph J Delfino2
Abstract

Background: Exposure to polycyclic aromatic hydrocarbon (PAH) has been linked to various adverse health
outcomes. Personal PAH exposures are usually measured by personal monitoring or biomarkers, which are costly
and impractical for a large population. Modeling is a cost-effective alternative to characterize personal PAH
exposure although challenges exist because the PAH exposure can be highly variable between locations and
individuals in non-occupational settings. In this study we developed models to estimate personal inhalation
exposures to particle-bound PAH (PB-PAH) using data from global positioning system (GPS) time-activity tracking
data, traffic activity, and questionnaire information.

Methods: We conducted real-time (1-min interval) personal PB-PAH exposure sampling coupled with GPS tracking
in 28 non-smoking women for one to three sessions and one to nine days each session from August 2009 to
November 2010 in Los Angeles and Orange Counties, California. Each subject filled out a baseline questionnaire
and environmental and behavior questionnaires on their typical activities in the previous three months. A validated
model was used to classify major time-activity patterns (indoor, in-vehicle, and other) based on the raw GPS data.
Multiple-linear regression and mixed effect models were developed to estimate averaged daily and subject-level
PB-PAH exposures. The covariates we examined included day of week and time of day, GPS-based time-activity and
GPS speed, traffic- and roadway-related parameters, meteorological variables (i.e. temperature, wind speed, relative
humidity), and socio-demographic variables and occupational exposures from the questionnaire.

Results: We measured personal PB-PAH exposures for 180 days with more than 6 h of valid data on each day. The
adjusted R2 of the model was 0.58 for personal daily exposures, 0.61 for subject-level personal exposures, and 0.75
for subject-level micro-environmental exposures. The amount of time in vehicle (averaging 4.5% of total sampling
time) explained 48% of the variance in daily personal PB-PAH exposure and 39% of the variance in subject-level
exposure. The other major predictors of PB-PAH exposures included length-weighted traffic count, work-related
exposures, and percent of weekday time.

Conclusion: We successfully developed regression models to estimate PB-PAH exposures based on GPS-tracking
data, traffic data, and simple questionnaire information. Time in vehicle was the most important determinant of
personal PB-PAH exposure in this population. We demonstrated the importance of coupling real-time exposure
measures with GPS time-activity tracking in personal air pollution exposure assessment.

Keywords: Particle-bound polycyclic aromatic hydrocarbon, Personal exposure, GPS, Time activity,
In-vehicle travel, Traffic
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Introduction
Airborne polycyclic aromatic hydrocarbons (PAH) are
produced from incomplete combustion of fossil fuels
and other organic materials [1]. Major ambient sources
include heavy traffic and industry that use coal burning
and smelting, while major indoor sources include indoor
smoking, use of unvented heating appliances such as
wood burning fireplaces and coal burning stoves, and
some types of cooking [2,3]. PAH exposures have been
associated with increased risks of systemic inflammation
[4], cardiopulmonary mortality [1,5], lung cancer mortal-
ity [6,7], and adverse pregnancy outcomes (e.g. low birth
weight, intrauterine growth retardation, and in-utero
fetal death) [8-12].
PAHs are semi-volatile organic compounds and present

in both gaseous and particulate phases in the atmosphere,
depending on the vapor pressure of each PAH compound.
Gas-phase PAHs (mostly low-molecular-weight PAH) may
account for the majority of the total PAH mass in the
urban atmosphere [13-15], but are considered less muta-
genic and/or carcinogenic than high-molecular-weight
PAHs that are concentrated in the fine and ultrafine parti-
cles [16]. However, a recent Europe study showed that
both gas-phase and particle-phase PAHs (PB-PAH) may
contribute significantly to lifetime lung cancer risk [17].
Inhalation exposure to PAH can be highly variable be-

tween locations and individuals [2]. In epidemiological
studies, personal PAH exposures are usually measured
through personal monitoring or biomarkers [1] although
personal monitoring or biospecimen collection and ana-
lysis is costly and impractical for a large number of sub-
jects. Centrally located monitors have also been used to
estimate personal PAH exposure although this approach
may underestimate exposure and between-person vari-
ability [18]. Another approach is to model PAH expos-
ure based on limited personal or microenvironmental
measurements coupled with personal time activity data
[19], which offers a cost-effective means of estimating
personal exposures without the logistical difficulties of
personal or biomarker sampling.
The modeling of personal exposure to PAH has primarily

focused on occupational exposures that tend to come from
a single dominant PAH source and at work places only
[20]. Challenges exist in modeling personal exposure in
non-occupational settings because the PAH exposures may
occur at different microenvironments (e.g. outdoor, indoor,
and in-vehicle) and from multiple sources (e.g. traffic, in-
dustry, smoking, and cooking). Aquilina et al. (2010) devel-
oped and compared different models to estimate non-
occupational personal exposure to PB-PAH. However, their
study relied heavily on detailed questionnaire data on activ-
ities such as solvent use, particle generation, smoking (e.g.
the number of smokers, number of cigarettes smoked, in-
doors or outdoors, and at which distance from the sampler
these were smoked), ventilation modes at home, possible
PAH sources in the garage, as well as indoor/outdoor loca-
tions and distance to the road. Although such detailed in-
formation is helpful in exposure estimates, it creates
tremendous subject burden in epidemiological studies. Fur-
thermore, similar to most of the previous studies on per-
sonal exposure modeling, the subjects’ time-location
patterns were recorded on diaries [19], which may be lim-
ited by accuracy of recall, reliability, and compliance [21].
Recently, new techniques have been used to collect time-
location data, such as the use of portable global positioning
system (GPS) devices to track people’s time-location
[21,22]. However, GPS tracking has seldom been used in
personal exposure modeling, likely due to the difficulty of
analyzing the large amount of GPS data [23].
For personal PB-PAH measurements, most of the previ-

ous studies have collected PB-PAHs on pre-baked filters
[19,24,25]. This sampling approach has the advantage of
measuring the integrated mass of different PB-PAH spe-
cies, but it does not quantify exposures at a high spatial
and temporal resolution. Some studies have measured
real-time PB-PAH with a diameter below 1 μm in specific
micro-environments (e.g. ambient outdoor, indoor, and in-
vehicle) using the photoelectric aerosol sensor (PAS, Eco-
Chem Analytics, League City, TX) [26-29]. The PAS
employs photo-ionization by mean of ultraviolet light;
positively charged particles are collected on a filter, gener-
ating a current that is measured by an electrometer [30].
Field studies have shown that there is a nearly linear
relationship between the PAS signal and PAH levels mea-
sured in samples of particles filtered from ambient air
[26, 31-33]. The PAS has the advantages of ease of data
collection, real-time sampling, and relatively low costs
compared to the methods that rely on the chemical ana-
lysis of airborne particulate matter. However, the PAS
sampler only measures total PB-PAH and not individual
PB-PAH species (e.g. benzo[a]pyrene and other carcino-
genic compounds). Particles containing the same total
mass of PAH may produce different photoemissions sig-
nals since the contribution of individual PAH to the total
photoemission signal may not be directly proportional to
their concentration on the particles [34]. For example, par-
ticles coated with benzo[a]pyrene produce strong photoe-
missions signals, while particles coated with chrysene are
not easily photoionized [34]. Furthermore, although the
PAS has been developed for PB-PAH measurements, the
PAS signals can also be correlated to other traffic-related
compounds like soot and elemental carbon [35] since the
PAS works on the principle of photoionization rather than
the chromatography-mass spectrometry procedures. Be-
cause of the potential limitation above, the PAS was
described as a semi-quantitative tool for PB-PAH estima-
tion [36]. However, no better instruments were available
that can measure real-time personal PB-PAH exposures in
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human subjects. Finally, most of the previous studies with
real-time PB-PAH measurements focused on micro-
environmental exposure rather than personal exposure.
This is likely due to the limited battery life (4–6 h) of the
portable PAS device [37]. The short battery life can be cir-
cumvented by replacing the original battery with a longer
lasting battery.
The main aim of this study was to advance our under-

standing of the causes and magnitude of exposures to
PB-PAH by major time-activity patterns of human sub-
jects and develop models to estimate personal PB-PAH
exposures through information that can be easily col-
lected using GPS tracking. While there are several other
sources of PB-PAH in southern California, we focused
on personal PB-PAH exposures due to traffic-related
sources among human subjects. No gas-phase PAH was
examined in this study. The target of the present study,
Los Angeles Metropolitan area in Southern California,
has been one of the most polluted places in the country
[38]. The urban core of the area (Los Angeles-Long
Beach-Santa Ana) had a population density of 2,702
inhabitants per km2 [39], encompasses the nation’s lar-
gest marine port complex [40], and has six major com-
muter and truck transport freeways. The 15 million
registered on-road vehicles in the greater Los Angeles
Basin are among the largest contributors to fresh emis-
sions of PB-PAHs [13].

Methods
Subjects recruitment
This study was embedded in an air pollution and preg-
nancy outcome study funded by the National Institute of
Environmental Health Sciences. We recruited 92 preg-
nant women in Los Angeles or Orange Counties of
southern California in 2009–2010. The subjects were en-
rolled before 20 weeks of gestation at two hospitals
(Long Beach Memorial Medical Center and the Univer-
sity of California, Irvine Medical Center). Eligible sub-
jects were 18 years of age or older, nonsmokers and
experiencing low-risk pregnancies (e.g. excluding those
with illegal drug use, alcohol abuse, hypertension or dia-
betes before pregnancy). The study protocol and mater-
ial were approved by the University of California, Irvine
Institutional Review Board for biomedical research.

Sampling methods
Among the 92 subjects, 28 women participated in the
personal PB-PAH exposure sampling coupled with GPS
time-activity tracking for one to three times and one to
nine days each time from August 2009 to November
2010. The sampling was performed either during the
pregnancy or after the women delivered the baby. The
subjects carried a compact (3-lbs) PAS 2000CE sampler
(EcoChem Analytics, League City, TX) in a backpack
with a GlobalSat DG-100 GPS device (approximately
227 g) during waking hours. The PAS samplers were set
to sample every 20 s and output the average concentra-
tion of three readings in one minute. The battery life of
the PAS was extended from the original 4–6 h to
approximately 16 h by re-engineering the battery of the
device by the EME Systems (Berkeley, CA). The partici-
pants were instructed to leave the device plugged in
while at home to charge the PAS and the GPS device.
The charging cord was set up by our research staff in a
central location in the home away from obvious sources
of smoke (e.g. away from the stove or areas where
candles were lit). The PAS samplers were factory cali-
brated before use. The PAS had a detection limit of
approximately 1 ng/m3 and a measurement range of 0–
4000 ng/m3. The sensitivity of the PAS was around
1 ng/m3 for 1 femtoamp – the raw signal the PAS mea-
sures. The DG-100 has been demonstrated as a reliable
GPS device in tracking time-locations of human subjects
[41]. The PAS sampler was synchronized with the time
of the GPS device. The PAS was set to sample every one
minute, while the GPS device recorded every 15-s.
In addition to the personal exposure monitoring, each

subject filled out a baseline questionnaire on demo-
graphic and socioeconomic information, including age,
race/ethnicity, reproductive history, height and weight
before pregnancy, education, annual household income,
marital status, and primary language spoken at home.
Furthermore, the subjects were administered a question-
naire right before each personal-exposure sampling ses-
sion on the major environmental and behavior patterns
that may influence their exposure to PB-PAH in the past
three months of the interview day. This environmental
and behavior questions collected information on home
location, housing characteristics (e.g. house age, gas
stove used in cooking, use of air conditioning, gas hea-
ters), work locations, and transportation means from
home to work and back. To reduce the burden to the
subjects, we did not ask subjects to keep a log of the
time spent in each microenvironment, opting instead for
more accurate GPS methods.

Time-location classification
The GPS latitude and longitude coordinates were trans-
formed to North American Datum (NAD) 83 and Zone
11 N projection. We then classified the GPS points into
three major time-activity categories: indoor, in-vehicle
travel, and other using the automated method we describe
elsewhere [23]. We examined the model performance
using sensitivity [the ability of the model to identify spe-
cific cases: true positive estimation/(true positive estima-
tion+ false negative estimation)], specificity [the ability of
the model to identify non-cases: true negative estimation/
(true negative estimation+ false positive estimation)], and
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precision [the proportion of predicted cases that are cor-
rectly real cases: true positive estimation/(true positive es-
timation+ false positive estimation)]. With good-quality
training and validation data, we reported that the model
had 94.8% sensitivity, 82.6% specificity, and 98.2% preci-
sion in identifying indoor GPS points, and 87.8% sensitiv-
ity, 99.5% specificity, and 89.1% precision in identifying in-
vehicle travel points, respectively [23]. We grouped the
outdoor static and outdoor walking categories from the
model output into the “other” category since we found
substantial uncertainty in classifying these two activity cat-
egories. Next, we counted the number of each time-
activity categories (based on the 15-s data) in one minute
and assigned the category with the highest count to the 1-
min time-activity classification. Accordingly, the coordi-
nates, speed, and altitude were also averaged at a one mi-
nute interval. Finally we linked the GPS-based time-
activity classification with the PB-PAH exposures by sub-
ject, and date and time of the measurements.

Data quality assurance
First, we overlaid the GPS points with roadway data in
ArcGIS (ESRI, Redlands, CA) and visually checked the
model-estimated in-vehicle travel points. We obtained a
total of 195,232 min of valid PB-PAH exposure data. A
total of 2305 records from three subjects were removed
since they were likely misclassified as in-vehicle travel (i.e.
clustering of GPS points with no apparent pattern of in-
vehicle travel); 99.1% of the removed data came from one
subject who lived in a big gated apartment complex and
our time-activity classification model may have misclassi-
fied outdoor walking to in-vehicle travel. We found five 1-
min indoor concentrations above 1000 ng/m3 in three
subjects, which were likely caused by measurement noise
or exposure to indoor sources such as environmental
tobacco smoking (ETS) or cooking (e.g. grill or barbecue).
The five points were excluded from the analysis since we
focused on PB-PAH exposures from traffic-related sources
and did not administer detailed time-activity logs to iden-
tify indoor activities. Further, we examined the complete-
ness of the data based on the number of 1-min PB-PAH
measurements on each day. The incomplete days of data
were mostly likely caused by the subject non-compliance
(e.g. they forgot to charge the battery) and the battery fail-
ure of the PAS sampler (one subject-session) and the GPS
device (three subject-sessions). Finally, we excluded 3.7%
of the data (N=7260 min) that lasted for less than 6 h on
a particular day (range 1 to 357 min).

Co-variables
We examined seven major groups of variables, including
time-activity patterns (either the modeled value or using
GPS-based speed as a proxy for in-vehicle travel), roadway
and traffic covariates, meteorological parameters, day of
week and time of day, subject’s vehicle information, demo-
graphic and socioeconomic variables, and occupational
exposure. These variables were selected because they dir-
ectly or indirectly reflected the strength of emissions, sub-
ject’s proximity to the sources, potential source reduction
(e.g. newer vehicles likely have lower air exchange rates
and reduced PB-PAH penetrated from outside), and the
impact of meteorology on the air quality.
We obtained roadway data for the study region from

the ESRI StreetMap™ North America 9.3 (http://www.
esri.com). This dataset was bundled with ArcGIS soft-
ware products and included 2003 TeleAtlasW street data
rather than the less-accurate TIGER 2000-based street
data [42]. We obtained the 2002 annual average daily
traffic (AADT) count data from the California Depart-
ment of Transportation (Caltrans) with continuous
coverage of total traffic counts on freeways, highways,
and major arterial roads. AADT was produced by Cal-
trans staff based on a combination of measurements and
modeled values as an alternative to limited traffic counts.
Traffic density was calculated using the Kernel Density
function of Spatial Analyst in ArcInfo GIS 9.1 (ESRI,
Redlands, CA). Previous measurement studies indicated
that ultrafine particles (UFP) and carbon monoxide
dropped to near-background levels at 200 m downwind
from major roadways during daytime hours (10 AM –
6 PM) [43] and up to 2000 m downwind during pre-
sunrise hours (4:00 – 7:30 AM) [44]. There is no perfect
cut point to define the size of a traffic influenced zone
due to changes in roadway pollution dispersion depend-
ing on time of the day and atmospheric stability. In this
study, traffic density was calculated at a 20x20 m reso-
lution using a search radius of 300 m and 500 m. A
smooth curved surface of traffic volume was fitted over
each road segment using adapted quadratic kernel func-
tion; the value was greatest on the road, diminished as it
moved away from the road, and reached zero at the
search radius distance from the road (perpendicular dis-
tance). We also calculated length-weighted AADT
i:e:

P
AADT � roadway lenghtð Þ=Σ roadway lenghtð Þð Þ

within 500 m of each sampling point and assigned the type
of roadway (i.e. freeway and highways vs. other streets)
and the distance to the nearest roadway to each point.
Ambient hourly wind speed, temperature, relative hu-

midity, and precipitation were obtained from the nearest
weather monitoring stations operated by the National
Weather Service. Since little variability was observed in
the precipitation data on the sampling days, the precipi-
tation variable was excluded from further analysis. We
classified day of week by weekday and weekend, time of
day by daytime (6 AM – 7 PM) and night time (7 PM –
6 AM), and by rush hours (6–8 AM and 4–7 PM) and
non-rush hours (all other times). We calculated the per-
centage of PB-PAH data that were collected during the

http://www.esri.com
http://www.esri.com
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weekday, daytime, rush hours, indoors, and while in-
vehicles separately by person-day and by person. We
also examined the impact of the subjects’ socioeconomic
status (i.e. household income and language spoke at
home), which may directly influence the subjects’ behav-
ior patterns and subsequently their proximity to emis-
sion sources. Furthermore, we looked at housing
characteristics, vehicle type and mileage, pregnancy sta-
tus, working status, and occupational exposure to
traffic-related pollutants. Due to the limited number of
subjects who reported occupational exposure, we conso-
lidated positive answers to work-related exposure by in-
cluding working around a parking garage, kiosk, auto
shop, buses, trucks, or heavy traffic, or driving a car/
bus/truck during the work day.

Data analysis and model development
We analyzed the data and developed models using SAS
v9.2 (SAS Institute Inc., Cary, NC). We treated the follow-
ing as continuous variables in the models: GPS speed and
altitude, AADT on the nearest road, length-weighted
AADT, traffic density, the percentage of weekday, daytime,
time in rush hour, time indoors, time in-vehicles, and am-
bient meteorological parameters (temperature, wind
speed, and relative humidity). Here the GPS speed was the
speed recorded by the GPS device, which reflected the
moving speed of a subject. The following parameters were
treated as categorical variables in the models: day of week,
age, household income, language spoken at home, rented
vs. owned home, cooking stove (gas vs. electric), vehicle
type (Asian vs. German vs. U.S. manufactures), mileage
(>100,000 miles vs. ≤100,000 miles), roadway type (free-
way and highway vs. others), pregnancy status (yes/no),
working status (yes/no), and occupational exposure to
traffic-related pollutant (yes/no).
Summary statistics were computed for minute-level

data and data at different averaging periods (e.g. person-
day and the subject’s entire sampling set). We decided to
develop predictive models for each subject’s daily expos-
ure and exposure across all of their sampling sessions
(1–3 sessions and 1–9 days per session) since there were
significant temporal and spatial autocorrelation in the
minute-level data. More importantly, daily and longer-
term exposures are expected to be more meaningful
than minute-level data in most epidemiological studies
focusing on health outcomes that are chronic (e.g. can-
cer), sub-chronic (pregnancy outcomes), or even acute
(e.g. daily asthma morbidity). The PB-PAH exposures
were time-averaged or time-weighted by three methods:
1) by subject and day of measurements; 2) by subject
and time activity categories (i.e. indoor, in-vehicle, and
other) across all the sampling sessions; and 3) by subject
across all the entire sampling sessions. For each of the
averaging methods, the continuous covariates were also
averaged accordingly. For the categorical variables, we
matched the session-specific data (e.g. rented vs. owned
home, cooking stove, pregnant and working status, and
occupational exposure) to PB-PAH exposures by subject
and session of measurement. For averaged PB-PAH
exposures across all the sampling sessions, we assigned
the categorical variables collected at baseline of the first
sampling session; sensitivity analysis showed that the in-
clusion of these variables collected at different sessions
(if available) had little influence on the results.
We developed multiple linear regression models to

predict average personal daily PB-PAH exposures and
subject-level average PB-PAH exposure (total and by
time-activity categories). We also fitted a linear mixed
effect model with a random intercept and random slope
for each subject to account for subject-specific variations
in daily PB-PAH exposures. We applied the square root
function to transform the daily and subject-level expo-
sures to a normal distribution. Scatter plots were used to
examine the linear or non-linear relationship between
the square-root transformed PB-PAH exposure and the
covariates. An apparent non-linear relationship was
identified for GPS speed, thus the square root of speed
was used in the model because it was more linearly cor-
related with PB-PAH (Additional file 1: Figure S1). For
model development, we first examined the correlation of
each variable with daily PB-PAH concentrations. A vari-
able was dropped from further analysis if the absolute
correlation coefficient with the measured concentrations
was less than 0.10. Highly correlated variables (r≥ 0.8)
were examined separately in the model. We used the
LASSO method of variable selection [45] in the SAS
GLMSELECT procedure to select the best-fit model.
The covariate combination with the maximum R2 or
minimum Akaike’s information criterion (AIC) was
selected as optimal inputs in the model. The models
selected were further checked by the variance inflation
factor statistics (VIF) to assess potential colinearity.

Results
Pollutant concentrations
We collected 180 person-days (N=185,662 min) of real-
time PB-PAH exposure data with valid GPS time-activity
classification. The geometric mean of PB-PAH exposure
per subject was 9.3 ng/m3 with a standard deviation of
1.9 ng/m3. The raw PB-PAH exposures were highly
skewed to the right for minute-level exposure (skewness =
8.76), and somewhat skewed for daily exposure (skew-
ness= 1.74) and subject-level exposure (skewness = 1.10)
(Additional file 1: Table S1). The square root transform-
ation gave a more normal distribution that the log trans-
formation (Additional file 1: Table S1). Among the 28
subjects, 22 of them had more than one day of measure-
ments (range 2 to 22 days) (Table 1). We observed



Table 1 Subject information and subject-level average exposure of PB-PAH (ng/m3) across all the sampling sessions

N (%) Arithmetic mean(STDa) Geometric mean (STDa) P-valueb Range

Overall 28 (100.0%) 11.0(6.2) 9.3(1.9) 1.7-29.9

Complete days of
measurements (≥6 h/day)

1 day 6 (21.4%) 8.1(6.5) 5.7(2.7) 0.17 1.7-15.4

2-5 days 8 (28.6%) 13.5(7.3) 12.2(1.6) 6.6-29.9

6-9 days 8 (28.6%) 11.3(6.7) 9.9(1.7) 4.6-24.3

≥10 days 6 (21.4%) 10.2(3.2) 9.8(1.5) 4.4-13.2

Age 18-29 15 (53.6%) 10.5(6.9) 8.4(2.1) 0.40 1.7-29.9

30-38 13 (46.4%) 11.5(5.6) 10.4(1.7) 4.4-24.3

Race/Ethnicity Asian 6 (21.4%) 11.7(4.7) 10.8(1.7) 0.42 4.4-15.8

Hispanic 13 (46.4%) 10.6(7.3) 8.4(2.2) 1.7-29.9

Non-Hispanic White 6 (21.4%) 13.4(6.2) 12.4(1.6) 6.6-24.3

Other 3 (10.7%) 6.2(1.6) 6.2(1.3) 4.6-7.7

Income Low (<$50 k/year) 15 (53.6%) 10.7(5.6) 9.3 (1.9) 1.00 1.7-24.3

High (≥$50 k/year) 13 (46.4%) 11.3(7.2) 9.3 (2.0) 2.4-29.9

Speaking English at home No 11 (39.3%) 12.5(4.9) 11.9(1.4) 0.11 6.6-24.3

Yes 17 (60.7%) 10.0(7.0) 8.0(2.1) 1.7-29.9

Worker No 11 (39.3%) 9.2(5.0) 7.6(2.1) 0.19 1.7-15.8

Yes 17 (60.7%) 12.2(6.8) 10.6(1.8) 2.8-29.9

Had work-related exposure
to traffic pollutantsc

No 23(82.1%) 10.1(6.0) 8.5(1.9) 0.10 1.7-29.9

Yes 5(17.9%) 15.2(6.1) 14.3(1.5) 7.7-24.3

Indoor time <90.7% 14 (50%) 11.9(7.9) 9.5(2.2) 0.91 1.7-29.9

≥90.7% 14 (50%) 10.1(4.1) 9.2(1.7) 2.4-16.3

In-vehicle time <3.8% 14 (50%) 9.3(5.2) 7.6(2.1) 0.11 1.7-16.3

≥3.8% 14 (50%) 12.6(6.9) 11.3(1.6) 4.6-29.9

Weekday <72.9% 14 (50%) 9.9(7.5) 7.6(2.2) 0.09 1.7-29.9

≥72.9% 14 (50%) 12.1(4.7) 11.4(1.4) 6.6-24.3

Daytime <54.1% 14 (50%) 10.7(6.8) 9.1(1.9) 0.85 2.4-29.9

≥54.1% 14 (50%) 11.3(5.9) 9.6(2.0) 1.7-24.3

Time in rush hour <21.6% 14 (50%) 10.8(4.1) 10.1(1.5) 0.54 4.4-16.3

≥21.6% 14 (50%) 11.2(8.0) 8.6(1.3) 1.7-29.9

GPS speed <1.9 km/h 14 (50%) 9.1(4.9) 7.6(2.1) 0.10 1.7-16.3

≥1.9 km/h 14 (50%) 12.8(7.1) 11.4(1.7) 4.6-29.9

Elevation <26.6 m 14 (50%) 12.0(5.3) 10.6(1.9) 0.30 1.7-24.3

≥26.6 m 14 (50%) 10.0(7.1) 8.2(2.0) 2.4-29.9

Length-weighted AADT
within 500 m

<23172 vehicles/day 14 (50%) 10.2(7.1) 8.1(2.1) 0.28 1.7-29.9

≥23172 vehicles/day 14 (50%) 11.8(5.4) 10.6(1.7) 2.8-24.3

Traffic density within 300 m <79891 vehicles per day*km/km2 14 (50%) 8.4(4.6) 7.0(2.0) 0.02 1.7-15.4

≥79891 vehicles per day*km/km2 14 (50%) 13.5(6.7) 12.3(1.6) 6.3-29.9

Ambient temperature <20.6 °C 14 (50%) 9.9(5.9) 8.3(1.9) 0.37 2.4-24.3

≥20.6 °C 14 (50%) 12.1(6.6) 10.4(1.9) 1.7-29.9

Ambient relative humidity <63.7% 14 (50%) 13.9(7.0) 12.2(1.8) 0.02 2.8-29.9

≥63.7% 14 (50%) 8.1(3.9) 7.1(1.9) 1.7-13.2

Wind speed <4.3 m/s 14 (50%) 11.2(6.6) 9.7(1.8) 0.75 2.4-29.9

≥4.3 m/s 14 (50%) 10.8(6.2) 8.9(2.1) 1.7-24.3
a Standard deviation.
b p-value for the difference in geometric means stratified by different sub-groups.
cWork-related exposure includes working around parking garage, kiosk, auto shop, buses, trucks, or heavy traffic, or driving a car/bus/truck during the work.
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significantly higher (p-value< 0.05) PB-PAH exposures
under conditions of higher traffic density measurements
and lower relative humidity when PB-PAH was compared
between the upper and lower half of the distributions of
the two variables (Table 1). Higher PB-PAH exposures of
borderline statistical significance (p-value� 0.1) were
found with higher GPS speed, higher percentage of in-
vehicle time, more weekday than weekend measurements,
in women who reported work-related exposures, and in
women who did not speak English at home.
From the minute-level data we found that the subjects

spent 91.3% of their time indoors, 4.5% of their time
traveling in vehicles, and 4.2% of their time in doing
other activities (Additional file 1: Table S2). Due to the
large number of observations, the difference in geomet-
ric means stratified by different sub-groups were all sig-
nificant (p-value< 0.001) at the minute level. The largest
differences among sub-groups were observed by time-
activity category (geometric mean 46.8 ng/m3 in-vehicle
travel vs. 1.9 ng/m3 indoor, and 3.2 ng/m3 other) and by
GPS speed [56.4 ng/m3 for speed> 8 km/h (likely in-
vehicle travel) vs. 3.0 ng/m3 for speed 2–8 km/h (likely
outdoor walking and slower in-vehicle travel) vs. 2.0 ng/
m3 for speed< 2 km/h (likely static indoor or outdoor)]
(Additional file 1: Table S1).

Correlation analysis
Table 2 shows the mean, standard deviation, correlation
coefficients of square-root transformed daily PB-PAH
concentrations and key predictor variables. The PB-PAH
exposure was significantly and positively correlated with
weekday, the percentage of data collected during the
daytime and while in-vehicle, GPS speed, and traffic-
related variables. PB-PAH was significantly but nega-
tively associated with the percentage of data collected
during times indoor. The percent of indoor time was
strongly and negatively correlated with in-vehicle time,
GPS speed, and ambient wind speed, and weakly and
negatively correlated with ambient wind speed. The per-
cent of in-vehicle time was strongly and positively corre-
lated with GPS speed and weakly and positively
correlated with the percent of daytime. The meteoro-
logical variables were not significantly correlated with
daily personal PB-PAH exposures.

Regression models
Table 3 shows the final selected linear and mixed effect
models for estimating daily PB-PAH exposures (square-
root transformed). The four-variable linear model
explained 59% of the variance in the average daily per-
sonal exposures (N = 180 person-days). In particular, per-
cent of in-vehicle time, length-weighted AADT, work-
related exposure, and weekday accounted for 48%, 8%,
2%, and 1% of the variances, respectively. The parameter
estimates from the linear model and the mixed effect
model were almost the same (Table 3). A key advantage
of linear model is the ability to estimate an R2.
For subject-level PB-PAH exposure (square-root trans-

formed), the best fitting model was a four-variable linear
regression model that had an R2 of 0.71 and an adjusted
R2 of 0.66 (Additional file 1: Table S3). Due to the small
sample size (N=28 subjects), we removed the least signifi-
cant variable (length-weighted AADT with a partial R2 of
0.06) from the model and reported a three-variable model
in Table 4. The final three-variable model explained 65%
of the between-subject variance in PB-PAH exposures.
Percentage of in-vehicle travel time, percent of weekday
time, and work-related exposure explained 39%, 16%, and
10% of the variance, respectively. When we excluded the
subjects with only one day of measurements (N=6 sub-
jects), the model with the same three variables (somewhat
different coefficients) produced a lower R2 of 0.50 and an
adjusted R2 of 0.42 (Additional file 1: Table S4), likely due
to a considerable decrease in sample size.
Table 5 shows the linear regression model for estimating

subject-level PB-PAH exposures (square-root transformed)
in major time-activity categories (N=74 person-activity
categories; adjusted R2: 0.75). This was to enhance the po-
tential contrasts in the predictors of PB-PAH rather than
to predict PB-PAH in each specific microenvironment
since the sample sizes were too small for that. In order to
ensure the accurate representativeness of each time-
activity category, six records were excluded a priori be-
cause they lasted for less than 60 min in total across all the
sampling sessions for a particular time-activity category.
Square-root of GPS speed, indoor (yes/no), and percent of
daytime accounted for 67%, 7%, and 2% of the variance in
the PB-PAH exposure, respectively. When we included all
the records (N=80 person-activity categories), the model
with the same three variables (slightly different coefficients)
had a slightly smaller adjusted R2 of 0.73 (Additional file 1:
Table S5).

Discussions
We examined personal PB-PAH exposures by major influ-
ential factors and developed regression models to estimate
PB-PAH exposures based on GPS-tracking data, traffic ac-
tivity data, and simple questionnaire information (adjusted
R2 ranged from 0.58 to 0.75). The strongest predictors of
personal PB-PAH exposures were found to be time in-
vehicle and the related GPS speed variable, as well as vari-
ables describing other exposures to traffic such as traffic
density at nearby streets (length-weighted AADT) and
work-related exposures to traffic pollutants. The GPS-
acquired data made it possible to determine the value of
these variables with considerable temporal and spatial ac-
curacy as we reported previously [23]. Our study adds im-
portant new findings to the literature on PB-PAH



Table 2 Pearson’s correlation coefficients for square root of daily PB-PAH exposures and key predictor variables

PB-PAH
SQRTa

Indoor
time (%)

In-vehicle
time (%)

Weekday
(1/0)

Daytime
(%)

Time in
rush hour
(%)

GPS speed
(km/h)

Elevation
(m)

Length-weighted
AADT within 500 m
(vehicles/day)

Traffic density
within 300 m
(vehicles
per day*km/km2)

Ambient
temperature
(°C)

Ambient
wind speed
(m/s)

Ambient
humidity
(%)

N 180 180 180 180 180 180 180 180 180 180 180 180 180

Mean 3.0 90.7 4.6 0.73 55.2 22.2 2.3 38.1 35796.5 163362.7 21.1 4.2 63.0

Standard deviation 1.3 7.9 5.1 0.44 18.2 7.0 2.7 80.6 30026.1 211034.8 3.2 1.7 12.4

PB-PAH SQRTa 1.00

Indoor time (%) −0.55*** 1.00

In-vehicle time (%) 0.69*** −0.81*** 1.00

Weekday (1/0) 0.16* −0.07 0.04 1.0

Daytime (%) 0.28*** −0.22** 0.21** −0.13 1.00

Time in rush hour (%) 0.07 −0.04 0.03 0.04 0.13 1.00

GPS speed (km/h) 0.60*** −0.74*** 0.93*** −0.06 0.25*** 0.01 1.00

Elevation (m) −0.08 −0.09 0.07 −0.12 −0.03 −0.06 0.16* 1.00

Length-weighted
AADT within 500 m
(vehicles/day)

0.27*** 0.06 −0.02 0.08 0.32*** 0.03 −0.06 −0.10 1.00

Traffic density within
300 m (vehicles
per day*km/km2)

0.19* 0.11 −0.07 0.06 0.31*** 0.04 −0.08 −0.09 0.94*** 1.00

Ambient temperature
(°C)

0.09 0.06 0.09 −0.02 0.26*** −0.14 0.13 −0.04 0.09 0.07 1.00

Ambient wind
speed (m/s)

0.14 −0.32*** 0.17 −0.06 0.53*** 0.15* 0.20** 0.07 0.06 0.05 0.07 1.00

Ambient
humidity (%)

−0.11 0.02 −0.09 0.06 −0.37*** 0.06 −0.13 0.02 −0.05 −0.01 −0.72*** −0.12 1.00

a Square-root transformed PB-PAH concentration.
*p-value <0.05; **p-value< 0.01; ***p-value< 0.001.
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Table 3 Regression model for square root of daily average PB-PAH exposures by subject (N=180)

General linear regression Mixed effect
model (fixed effects)

Variable Beta Standard error p-value Partial R2 VIF Beta Standard error p-value

Intercept 1.54 0.15 <.0001 0 1.55 0.18 <.0001

Percent of in-vehicle
travel time

16.90 1.20 <.0001 0.48 1.01 17.40 1.10 <.0001

Length-weighted AADT
within 500 m

1.02*10-5 2.10*10-6 <.0001 0.08 1.05 0.94*10-5 3.07*10-6 0.0027

Had work-related exposure
to traffic pollutants (yes/no)a

0.41 0.15 0.0080 0.02 1.05 0.57 0.27 0.0378

Weekday (1/0) 0.33 0.14 0.0192 0.01 1.01 0.31 0.13 0.0173
aWork-related exposure includes working around parking garage, kiosk, auto shop, buses, trucks, or heavy traffic, or driving a car/bus/truck during the work.
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exposure assessment in several ways: (1) it is one of the
first studies to model personal PB-PAH exposures at a
high-temporal resolution; (2) it demonstrated the useful-
ness of coupling real-time exposure measures with GPS
tracking in personal air pollution exposure assessment;
and 3) it confirmed the importance of GPS-based time-
activity and GPS speed as a surrogate of on-road expo-
sures in PB-PAH exposure modeling.
Our personal PB-PAH measurements revealed an un-

deniable contribution from the transport microenviron-
ment. The amount of time in vehicle (on average 4.5% of
the total sampling time) explained 48% of the variance in
daily personal PB-PAH exposure and 39% of the variance
in subject-level exposure. Time in vehicle was the most
important determinant of personal PB-PAH exposure,
which confirms earlier studies on the relationship between
activities and traffic-related air pollution exposure that
have suggested an important role for the traffic micro-
environment, despite the limited time spent in or near
traffic environments [29,46,47]. Significant exposure mis-
classification may occur if only residential exposures are
considered since time spent in or near transport may pro-
voke dissimilarity in personal exposure between indivi-
duals with similar residential exposures. In addition to in-
vehicle time, length-weighted AADT within 500 m
explained 8% of the variance in daily PB-PAH exposure.
Table 4 Regression model for square root of average PB-
PAH exposures of each subject across all the sampling
sessions (N=28; R2 = 0.65; adjusted R2 =0.61)

Variable Beta Standard
error

p-
value

Partial
R2

VIF

Intercept 1.68 0.31 <.0001 0

Percent of in-vehicle
travel time

12.19 2.35 <.0001 0.39 1.01

Percent of weekday time 1.14 0.39 0.0078 0.16 1.03

Had work-related exposure
to traffic pollutants (yes/no)a

0.77 0.30 0.0163 0.10 1.03

aWork-related exposure includes working around parking garage, kiosk, auto
shop, buses, trucks, or heavy traffic, or driving a car/bus/truck during the work.
This variable explained approximately 28% of the variance
in subject-level indoor PB-PAH exposures (data not
shown), which confirms the importance of local traffic
emissions to the exposures not only in the commuting en-
vironment but also indoors. Finally, the in-vehicle time
and GPS speed variables were highly correlated (r> 0.90
for daily and subject-level data). In-vehicle time tended to
correlate slightly better with daily and subject-level total
exposures, although the square root of GPS speed was a
better predictor in the subject-level microenvironmental
model (Table 5) and explained 67% of the variance.
The work-related exposure to traffic-related pollutants

explained 10% of the variance in PB-PAH exposure at
the subject level and 2% of the variance in daily expos-
ure. The work-related exposures were obtained from the
questionnaire based on the typical activity patterns in
the past three months of the personal sampling, thus
this variable was not able to capture substantial day-to-
day variation in subjects’ time activity patterns and PB-
PAH exposures. Furthermore, approximately 40% of
women did not work, thus their activity patterns may
vary considerably on a daily basis compared to full-time
workers. We also found that subjects tended to have
higher PB-PAH exposures during weekdays than week-
ends and thus the percent of weekday time explained
16% of the variance in PB-PAH exposures at the subject
Table 5 Regression model for square root of average PB-
PAH exposures of each subject in major time-activity
categories (indoor, in-vehicle, and other) across all the
sampling sessions (N= 74a; R2 = 0.76; adjusted R2 = 0.75)

Beta Standard
error

p-
value

Partial
R2

VIF

Intercept 1.29 1.18 0.2776 0

GPS speed (sqrt) 0.82 0.11 <.0001 0.67 1.62

Indoor (yes/no) −1.75 0.58 0.0039 0.07 1.72

Percent of
daytime

3.87 1.48 0.0108 0.02 1.65

aWe excluded 6 records that lasted for less than 60 min in total for a particular
time-activity category (i.e. indoor, in-vehicle travel, and other).
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level. Previous studies have reported higher ambient
concentrations of traffic-related pollutants on weekdays
[48,49], but little is known about the day of week impact
on personal exposures. In addition, we found women
who did not speak English at home had marginally
higher PB-PAH exposures although this variable was not
selected in the final prediction models. Further investiga-
tion of our data showed that women who did not speak
English at home had a higher percent of in-vehicle time
than the others (5.9% vs. 4.1%) although the difference
was not significant (p-value = 0.35).
We found that the percent of indoor time was nega-

tively associated with PB-PAH exposure, which is
expected due to few PB-PAH sources indoors in this
study. Although we did observe and remove high PB-
PAH concentrations indoors (e.g. five 1-min exposures
exceeding 1000 ng/m3), such events had little influence
on the overall average exposures since they occurred oc-
casionally and lasted for a very short period (e.g. one mi-
nute). In fact, the models changed little when we
included the five outliers with extremely high indoor
concentrations (data not shown). This lack of impact on
PB-PAH by the indoor environment is likely because we
only recruited non-smokers and the prevalence of other
indoor sources (e.g. ETS, wood-burning, grilling, and
barbecue) was relatively low. California had the 2nd low-
est smoking rate (14% in adult population) among all
the states in the U.S. [50] and smoking was prohibited in
almost all indoor and outdoor public places in California
[51]. Indoor wood-burning or indoor grill/barbecue was
not common because of the warm climate of southern
California and that our samples were mostly collected in
the warm season. However, in other regions or other
populations, these non-traffic related indoor sources
may contribute more to personal PB-PAH exposures
than what was shown in our study.
The geometric mean of PB-PAH exposures tended to

be higher in rush hours than non-rush hours at the mi-
nute level (Additional file 1: Table S1), but the pattern
was opposite at the subject level (not statistically signifi-
cant) (Table 1). We found that the geometric mean of
one-minute PB-PAH concentrations started to increase
remarkably at 6 AM, peaked at 7 AM (geometric
mean = 5.1 ng/m3), dropped gradually from 9 AM to
2 PM, peaked again at 4 PM (geometric mean= 3.4 ng/
m3), and started to drop gradually from 5 PM till 1 AM
in the morning (Additional file 1: Table S6). We
observed a late afternoon peak (3–5 PM) in PB-PAH ex-
posure, but not the evening rush hour peak that occurs
at 4–7 PM. Since about 40% of the study participants
did not work, they may have picked up their children or
done errands in the late afternoon or other times of the
day. We found that on average the subjects spent ap-
proximately 9.8% and 7.1% of the time traveling in
vehicles during 3–5 PM and 4–7 PM, respectively. Thus,
the rush hour variable may not appropriately capture
their time in traffic.
No meteorological variables were entered into the pre-

dictive models. This is likely because we modeled personal
exposure rather than ambient outdoor pollutant concen-
trations. Personal exposures are strongly influenced by
near-source activities of human subjects. Although
subject-level PB-PAH exposure was significantly higher
(r = 0.02) in the group with lower relative humidity
(Table 1), the continuous measure of relative humidity
was only marginally correlated with subject-level exposure
(r = 0.10) and was not selected in the final models. In
addition to wind, temperature, and relative humidity, we
also examined the usefulness of the atmospheric stability
class data modeled every three hours at 40 km by 40 km
resolution from the nearest EDAS modeling grid of the
National Oceanic and Atmospheric Administration
(http://www.arl.noaa.gov/ready.html). However, the stabil-
ity variables were not significantly associated with PB-
PAH exposures, likely due to substantial uncertainties
associated with the modeled stability estimate.
A major limitation of the study is the semi-

quantitative feature of the PAS sampler. The PAS may
respond differently to individual PAH species thus the
PAS signal may not be directly proportional to the con-
centration of individual species [34]. In addition, the
components of the PAH mixtures may differ by emission
sources (e.g. traffic, tobacco smoke, wood combustion,
food grill), thus the PAS measurements reflect not only
the total concentration but also the nature of the PAH
mixtures in different microenvironments. This creates
uncertainty in the exposure measures among different
microenvironments. Despite the limitations, the PAS
sampler is the only available instrument that is capable
of continuous personal PB-PAH monitoring. The highly
informative nature of the predictive models (adjusted R2:
0.58-0.75) is a testament to the approach, which could
be adapted to methods using more accurate instruments
in the future if they become available.
Other time-activity patterns such as biking and travel

by bus and subways may also be associated with high
levels of exposure to traffic-related air pollutants includ-
ing PB-PAH [52-54]. However, no subjects reported
traveling in an underground train, by bus, or biking
based on our questionnaire on the means of transporta-
tion. Therefore, we did not examine the other travel
modes in this study although they may be important in
other studies and regions where subjects may engage in
these activities frequently.
We did not use diaries to track subjects’ activities that

may significantly influence their exposure levels (e.g.
near a smoker, cooking) but are not easily obtained from
the GPS data alone, mainly because the collection of

http://www.arl.noaa.gov/ready.html


Wu et al. Environmental Health 2012, 11:47 Page 11 of 13
http://www.ehjournal.net/content/11/1/47
such detailed information may significantly increase the
burden to the subjects. Combining the GPS data with
simple questionnaire or diary data may further improve
the model performance. Additionally, our subjects were
only pregnant women or women who had delivered ba-
bies within one year of the sampling dates. Other popu-
lation groups (e.g. children, men, other women) and
subjects in other regions may have different time-activity
patterns than our study participants. However, we be-
lieve that the method of coupling real-time exposure
sampling with GPS time-activity tracking and the appli-
cation of GPS data in exposure modeling can be easily
adapted to other populations in different studies.
We found higher PB-PAH exposures in the winter

with a geometric mean (based on one-minute data) of
4.8 ng/m3 and 2.3 ng/m3 in the cool and warm season,
respectively (Additional file 1: Table S2). Unfortunately,
less than 5% of our data were collected during the cool
season. Thus we could not examine the seasonal differ-
ence. Future research may improve model prediction by
sampling in different seasons and measuring a more di-
verse and larger number of subjects.

Conclusions
We developed regression models to estimate PB-PAH
exposures based on GPS-tracking data, traffic activity and
roadway data, and simple questionnaire information
(adjusted R2 ranging from 0.58 to 0.75). Time in vehicle
was the most important determinant of personal PB-PAH
and explained 48% of the variance in daily personal PB-
PAH exposure and 39% of the variance in subject-level ex-
posure. The other major predictors included length-
weighted traffic count, work-related exposure to traffic-
related pollutants, and percent of weekday time. We
demonstrated the importance of coupling real-time expos-
ure measures with GPS time-activity tracking in personal
air pollution exposure assessment. The methods presented
here can be applied to large epidemiologic cohort studies
interested in the effects of PB-PAH exposure where there
is also a desire to limit participant burden.

Additional file
Additional file 1: Table S1. Distribution of PAH exposure. Table S2.
Summary of one-minute PAH exposure levels (ng/m3) by key variables.
Table S3. Regression model for square root of average PAH exposures of
each subject across all the sampling sessions – four-variable model
(N = 28; R2 = 0.71; adjusted R2 = 0.66). Table S4. Regression model for
square root of average PAH exposures of each subject across all the
sampling sessions (six subjects with only one-day of measurement data
excluded. N = 22; R2 = 0.50; adjusted R2 = 0.42). Table S5. Regression
model for square root of average PAH exposures of each subject in
major time-activity categories (indoor, in-vehicle, and other) across all the
sampling sessions (N = 80; R2 = 0.74; adjusted R2 = 0.73). Table S6. Diurnal
distribution of geometric means of one-minute PAH exposures (ng/m3).
Figure S1. The non-linear relationship between square root of daily PAH
exposure and average GPS speed.
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