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Although the Bethe ansatz solution of the spin-1/2 Heisenberg model dates back nearly a cen-
tury, the anomalous nature of its high-temperature transport dynamics has only recently been
uncovered. Indeed, numerical and experimental observations have demonstrated that spin trans-
port in this paradigmatic model falls into the Kardar-Parisi-Zhang (KPZ) universality class. This
has inspired the significantly stronger conjecture that KPZ dynamics, in fact, occur in all integrable
spin chains with non-Abelian symmetry. Here, we provide extensive numerical evidence affirming
this conjecture. Moreover, we observe that KPZ transport is even more generic, arising in both
supersymmetric and periodically-driven models. Motivated by recent advances in the realization of
SU(N)-symmetric spin models in alkaline-earth-based optical lattice experiments, we propose and
analyze a protocol to directly investigate the KPZ scaling function in such systems.

First proposed in the context of surface growth [1], the
Kardar-Parisi-Zhang (KPZ) equation has become central
to our understanding of many stochastic processes [2–4].
While the central limit theorem ensures that the late-
time physics of linear stochastic processes is typically
Gaussian, the KPZ equation evades this fate. Instead,
it represents a distinct universality class which emerges
in myriad dynamical phenomena, ranging from directed
polymers and traffic models to kinetic roughening [5–14].

The characterization of dynamical universality classes
requires one to specify both the scaling exponents and
functions of the theory. This is perhaps most familiar in
the context of Brownian motion, where the diffusive late-
time behavior follows a Gaussian scaling function; the
width of the corresponding distribution grows as ∼ t1/z,
where z = 2 is the dynamical scaling exponent. By con-
trast, the scaling functions for the KPZ universality class
are significantly more complex and their exact functional
form represents a relatively recent mathematical achieve-
ment [8, 15–19]. The associated dynamical scaling expo-
nent is neither diffusive nor ballistic (z = 1), but rather
superdiffusive with z = 3/2.

Typically, KPZ behavior is expected in non-linear,
out-of-equilibrium classical systems subject to external
noise; in this context, its observation is extremely ro-
bust and does not require any fine-tuning or the pres-
ence of a particular symmetry. To this end, the numer-
ical and experimental observation of KPZ universality
in a one-dimensional quantum spin-chain (i.e. the spin-
1/2 Heisenberg model), fine-tuned for both integrability
and SU(2) symmetry, has attracted widespread atten-
tion [20–27]. Interestingly, this observation is at odds
with conventional expectations for spin chain transport,
which predict diffusion [28–31]. This naturally motivates
the following question: Is the Heisenberg chain an iso-
lated exception, or the first example of a broader group
of quantum models in the KPZ universality class?

...... ............
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FIG. 1. (a) Schematic depicting a one dimensional chain
of alkaline-earth atoms (each with N -levels) trapped in an
optical lattice and interacting via nearest-neighbor super-
exchange. The equilibration of an initial domain-wall-like im-
balance encodes the underlying KPZ dynamics. (b) Domain-
wall dynamics as a function of time for an SU(3)-symmetric,
integrable spin chain. (c) The polarization profiles at differ-

ent times collapse upon rescaling with t−1/z. The dynamical
exponent, z = 3/2, indicates superdiffusion and is consistent
with KPZ transport.

Seminal recent work has made elegant progress on this
question by proving that all integrable spin chains with
a non-Abelian symmetry exhibit superdiffusive transport
with z = 3/2 (Fig. 1) [25]. However, a single scaling
exponent does not uniquely specify the universality class
and no analysis has been able to determine the nature of
the corresponding scaling functions.

In this Letter, we present an extensive numerical in-
vestigation that supports the following stronger conjec-
ture — the dynamics of all integrable spin chains with
a non-Abelian symmetry belong to the KPZ universality
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class. Leveraging a novel tensor-network-based technique
dubbed density matrix truncation (DMT) [32, 33], we
demonstrate that the spin dynamics of such models are
precisely captured by the KPZ scaling function (Fig. 3).
Intriguingly, our numerical observations suggest that the
conjecture holds not only for static systems, but also for
periodically driven (Floquet) systems [23, 34], as well as
supersymmetric models.

By applying perturbations to break either the non-
Abelian symmetry or the integrability, we characterize
the approach to superdiffusive transport from regimes
where there is analytical control on the dynamics. We
reproduce these analytical results with unprecedented
accuracy, both verifying and benchmarking our numer-
ics, as well as providing independent evidence for the
purported microscopic mechanism underlying superdiffu-
sion [22, 35]. Finally, we propose an experimental imple-
mentation — based upon alkaline-earth atoms in optical
lattices — capable of investigating KPZ transport in a
variety of SU(N)-symmetric, integrable models.

In this work, we study the universality classes describ-
ing the infinite-temperature dynamics for a variety of
one-dimensional quantum spin-chains. We will focus on
the dynamics of a locally conserved charge Q̂ =

∑
r q̂r,

typically spin. If the system is characterized by a dy-
namical universality class, at late times the correlation
function must collapse under an appropriate rescaling of
space and time:

〈q̂r(t)q̂0(0)〉T=∞ ∝ t−1/zf
( r

t1/z

)
. (1)

This collapse defines the dynamical scaling exponent z
and the scaling function f(ξ), which together determine
the universality class.

Probing transport dynamics.—Let us begin by explor-
ing the dynamical exponent. While z can in principle
be extracted from the behavior of 〈q̂r(t)q̂0(0)〉T=∞, a
simpler and more robust numerical setup is to consider
the dynamics of a domain wall. More specifically, we
perturb an infinite-temperature density matrix with a
weak domain-wall-like imbalance in the charge density
(Fig. 1a):

ρ(t = 0) ∝ (1+ µq̂)⊗L/2 ⊗ (1− µq̂)⊗L/2, (2)

where µ determines the strength of the perturbation and
L is the length of the chain.

As the system equilibrates, charge crosses the domain
wall—the precise details of how this occurs reveals prop-
erties of the dynamical universality class [Fig. 1(b)]. In
particular, we focus on the spatial profile of the charge
density q(r, t) = 〈q̂r(t)〉 (hereafter, denoted as polariza-
tion), as a function of time t and displacement r from
the domain wall. A natural measure of transport is
the total polarization transferred across the domain-wall,

P(t) =
∑L/2
r=1 (µ− q(r, t)), which provides a robust way

to determine z: P(t) ∝ t1/z.

To implement the domain-wall dynamics, we represent
ρ using a matrix product density operator and compute
its evolution via DMT [32, 33]. The truncation procedure
in DMT is specifically designed to preserve local opera-
tors, such as the energy density, polarization, and their
currents; this choice makes DMT particularly amenable
for probing the universality class of many-body transport
dynamics [36].

Although we will explore a wide variety of integrable
models (Fig. 3), let us begin by focusing our discussions
on the SU(3)-symmetric, spin-1 chain [37–39]:

HSU(3) =
∑

i

~Si · ~Si+1 + (~Si · ~Si+1)2, (3)

where ~Si is the vector of spin-1 operators acting on site i.
Figure 1(b) depicts the melting of the domain wall as a
function of time, starting from the initial state, ρ(t = 0)
with q̂ = Ŝz [Eqn. 2]. The corresponding polarization
transfer, P(t), exhibits a power-law ∼ t2/3 (blue line,
Fig. 2b), consistent with the expected z = 3/2 expo-
nent [40]. This exponent can be independently confirmed
via a scaling collapse of the polarization profile (Fig. 1c).

In order to tune the system away from superdiffusion,
one can perturb the spin-chain by either breaking the
symmetry of the initial state or the symmetry of the
Hamiltonian. To study the former, we initialize the sys-
tem in ρ(t = 0) and add a uniform magnetization, δ
(along the ẑ-axis) on each site. The polarization trans-
fer exhibits markedly distinct dynamics with a ballistic
exponent, z = 1 (orange line, Fig. 2b). Analytically, for
weak magnetizations, the velocity of this ballistic trans-
port is expected to scale linearly with δ; this is indeed
borne out by the data (Fig. 2c) [22, 42]. For the spin-
1/2 Heisenberg model, an even stronger statement can be
made—the velocity extracted from DMT quantitatively
agrees with analytic calculations [via generalized hydro-
dynamics (GHD)] even in the non-linear regime (inset,
Fig. 2c) [22, 35].

Next, we break the symmetry of HSU(3) down to U(1)
by considering the so-called Izergin-Korepin family of
integrable spin-1 models [43–46]. We parametrize the
symmetry-breaking strength by ∆, such that when ∆ =
0, we recover HSU(3). For finite values of ∆, we observe
diffusive transport with the polarization transfer scaling
as P(t) ∼ t1/2 (purple line, Fig. 2b). In addition, the ex-
tracted diffusion coefficient, D, diverges as ∆ → 0, con-
sistent with the approach to superdiffusion (Fig. 2d). The
analogous numerical experiment in the Heisenberg model
(where ∆ controls the XXZ anisotropy) again quantita-
tively agrees with analytic calculations.

A few remarks are in order. First, the agreement be-
tween DMT numerics and GHD analytics (which have
different underlying assumptions) serves a dual bench-
marking role; in particular, it highlights DMT’s abil-
ity to faithfully characterize late-time transport dynam-
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FIG. 2. (a) Conjectured landscape of KPZ transport in
integrable, non-Abelian-symmetric models (blue dot). The
non-Abelian symmetry can be broken in two distinct ways,
either by adding a finite charge density to the initial state
(orange line) or by perturbing the underlying Hamiltonian
(purple line). (b) The total polarization transferred across
the domain wall, P(t), directly determines the dynamical ex-
ponent. For the integrable SU(3) model, z = 3/2; when either
the integrability or the symmetry is broken in the Hamilto-
nian, z = 2; when the initial state has non-zero charge den-
sity, z = 1. Note that the curve for the integrability break-
ing case (green) is shifted down for clarity. (c) Depicts the
charge transport velocity v as a function of charge density δ
for both the SU(3) model and the SU(2) model (inset). (d)
The diffusion coefficient, D, diverges as the integrable model
approaches the SU(3) and SU(2) (inset) symmetric points.
The DMT bond dimension, χ, is chosen to be {64, 128, 256}
and {64, 128, 256, 512} for the SU(3) and SU(2) cases, respec-
tively. Green crosses in the inset mark previous numerical
results obtained from tDMRG simulations with bond dimen-
sion χ ∼ 2000 [41].

ics and GHD’s ability to quantitatively compute trans-
port coefficients in integrable models [35, 41]. Second,
in addition to breaking the non-Abelian symmetry of the
Hamiltonian, one can also probe the effect of integrability
breaking. To this end, we perturb HSU(3) using SU(3)-
symmetry-respecting, but integrability-breaking next-
nearest-neighbor interactions. As expected for generic
non-integrable models, P(t) ∼ t1/2, consistent with dif-
fusive transport (green line, Fig. 2b) [47–49].

Probing KPZ dynamics.—While our numerical obser-
vation of a z = 3/2 exponent in HSU(3) clearly estab-
lishes the presence of superdiffusion, it does not deter-
mine the system’s dynamical universality class. Indeed,
such an exponent can also arise in long-range interact-
ing systems exhibiting Lévy flights, as well as rescaled

diffusion [20, 23, 24, 50–52].
To this end, we now investigate the universal scaling

function. In particular, using our domain-wall dynamics,
we can compute the charge correlation function from the
spatial gradient of the polarization profile [23]:

〈q̂r(t)q̂0(0)〉T=∞ = lim
µ→0

∂rq(r, t)

2µ
=

b

t2/3
f

(
br

t2/3

)
, (4)

where b is a system-dependent parameter [53].
As depicted in Figure 3a, ∂rq(r, t) indeed collapses

under the rescaling, f(ξ = brt−2/3). For Lévy flights,
one expects power-law tails (gray dashed line), which are
manifestly inconsistent with the data. However, the dif-
ference between rescaled diffusion and KPZ is more sub-
tle: for the former, f(ξ) is Gaussian, while for KPZ, f(ξ)
exhibits faster decaying tails ∼ exp

(
−0.295|ξ|3

)
[16–18].

The data quantitatively agree with the KPZ prediction:
The longer the evolution time, the closer ∂rq(r, t) is to
the KPZ scaling function (highlighted by the relative er-
ror, Fig. 3a inset). This agreement allows us to directly
extract b = 0.460±0.001, which reflects the ratio between
the diffusive smoothing, and the non-linear growth and
noise in the KPZ equation. We emphasize that these ob-
servations apply to any conserved charges generated by
the non-Abelian symmetry [36].

A complementary way to distinguish between rescaled
diffusion and KPZ dynamics is to study the ratio between
the spin current, j(r, t) = −

∫ r
−∞ ∂tq(r

′, t)dr′, and the po-
larization gradient. In rescaled diffusion, Fick’s law en-
sures that the two are proportional, j(r, t) ∝ t1/3∂rq(r, t),
while the non-linearity of KPZ transport leads to the
breakdown of this proportionality [16, 23]. Crucially, as
illustrated in Fig. 3e, we find that the ratio is not con-
stant (as would be predicted for rescaled diffusion) and
rather, is in good agreement with the KPZ prediction.
Universality of KPZ dynamics.—We now turn our at-

tention to the conjecture that KPZ dynamics emerge
in several broad classes of integrable models. We will
focus on three distinct settings: (i) static models with
generic non-Abelian symmetries, (ii) periodically-driven
(Floquet) models with non-Abelian symmetries, and (iii)
supersymmetric models. In these latter two classes, even
for the dynamical exponent, there are no generic results,
although some particular instances are known to exhibit
superdiffusion [23, 40, 54].

The construction of static, non-Abelian, integrable
spin chains has a rich history, with different prescrip-
tions for each of the four classes of simple Lie groups:
SU(N), SO(2N), SO(2N+1) and SP(2N) [25, 36, 55–57].
As detailed in the supplementary material, we construct
nearest-neighbor models with the following four symme-
tries, SU(4), SO(3), SO(4) and SP(4). Following our
previous strategy for HSU(3), we analyze the transport
dynamics of conserved charges for each of these models.
In all cases, we observe excellent agreement with the KPZ
universality class (Fig. 3b,e).
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FIG. 3. (a-d) The KPZ scaling function emerges from a wide variety of integrable dynamics: static, non-Abelian-symmetric
models, their Floquet counterparts, and supersymmetric models. (a)[(d)] At late times, the rescaled polarization profiles of the
SU(3)[SU(2|1)] model differ from both the Gaussian and Lévy-flight expectations, but exhibit excellent agreement with the KPZ
scaling function. Insets of (a)[(d)]: relative difference with respect to the KPZ scaling function. We note that the agreement
extends to longer length-scales as time is increased. (b)[(c)] Late-time, rescaled polarization profiles of static [Floquet] integrable
models with different non-Abelian symmetries. For all symmetries explored, the dynamics exhibit excellent agreement with the
KPZ scaling function. Insets of (b)[(c)]: zoom-in of the polarization profiles. (e) For all models considered, the ratio between
the polarization gradient and the current is inhomogeneous, in stark contrast with the expectation for any linear transport
equation. The observed curvature is instead in agreement with KPZ transport. (f) In integrable supersymmetric models,
the total charge transferred across the domain wall (upper panel) and the extracted dynamical exponent z (lower panel) are
consistent with superdiffusion. (g) Polarization gradients in an integrable SU(2|1) model with varying hole density. At the
same evolution time, systems with a smaller hole density are closer to the KPZ expectation.

Extending this exploration to periodically driven sys-
tems requires systematically building the correspond-
ing Floquet integrable models. Somewhat astonishingly,
one can straightforwardly build such models from their
static counterparts [34, 58]. The Hamiltonian is divided
into terms acting on even and odd bonds (denoted as
Heven and Hodd, respectively), which are then alter-
natingly applied, leading to a Floquet unitary: U =
e−iHoddT/2e−iHevenT/2. Using this procedure, we can ex-
tend our analysis to the Floquet regime for all of the pre-
vious non-Abelian models (Fig. 3c,e). Our conclusions
are identical. The resulting transport falls within the
KPZ universality class even though energy is no longer
conserved.

Finally, let us consider integrable models where the
non-Abelian symmetry is replaced with supersymmetry.
Such models have been conjectured to exhibit superdif-
fusion, but observing this, either numerically or analyt-
ically, remains an open challenge [21, 25]. Here, we fo-
cus on a pair of spinful fermionic lattice models: the t-J
model (with t = 2J), and the Essler-Korepin-Schoutens
(EKS) model [59, 60]. These exhibit the two simplest
supersymmetries, SU(1|2) and SU(2|2), respectively.

The defining feature of models with supersymmetry is
that their conserved charges fall into two types: bosonic
and fermionic, although only the bosonic charge can in
principle exhibit superdiffusion [21]. For the t-J model,
each lattice site can be occupied by either a spin-up



5

fermion, a spin-down fermion, or a hole. The conserved
bosonic charges are given by the total number of holes,
and the total spin. Holes live in the Abelian U(1) sector
and thus lack particle-hole symmetry leading to a finite
Drude weight and ballistic transport [21]. Therefore, we
study the spin polarization, given by the difference be-
tween the number of spin-up and spin-down particles.
As before, we prepare a weak domain-wall in the spin
polarization while keeping the other charge densities—
including the hole density—constant.

For both the static and Floquet t-J models, we observe
superdiffusive spin transport (with z = 3/2) via both the
polarization transfer (Fig. 3f) and the collapse of the po-
larization profile [36]. The numerical evidence that spin
transport falls within the KPZ universality class is more
subtle. In particular, the polarization gradient, ∂rq(r, t),
exhibits a discrepancy with both the KPZ and Gaus-
sian expectations (Fig. 3d). However, the finite-time flow
of ∂rq(r, t) approaches the KPZ scaling function in the
same qualitative fashion as is observed in the SU(3) case
(insets, Fig. 3a,d). Moreover, a careful comparison of
the relative error to the Gaussian model suggests that
rescaled diffusion cannot be the correct limiting behav-
ior [36].

A few remarks are in order. First, we conjecture
that finite-time effects are exacerbated in supersymmet-
ric models owing to the presence of additional ballistic
modes. To test this conjecture, we decrease the hole den-
sity [61], and indeed observe an improved convergence to
KPZ universality (Fig. 3g). Curiously, this suggests that
KPZ dynamics might arise in supersymmetric systems
for generic fermionic filling fractions. Second, our anal-
ysis for the EKS model arrives at identical conclusions
(Fig. 3f) [36].

Experimental proposal.—Recent advances in the con-
trol and manipulation of alkaline-earth atoms in opti-
cal lattices have opened the door to studying SU(N)-
symmetric spin models [62–71]. In particular, at unit-
filling in the Mott insulating phase, the lack of hyper-
fine coupling in the ns2 1S0 electronic ground state nat-
urally leads to SU(N)-symmetric spin-exchange interac-
tions [70, 72–74]:

HSU(N) = JSU(N)

∑

i

N∑

α,β=1

sα,βi sβ,αi+1, (5)

where sα,βi = |α〉 〈β| on site i; in one dimension, HSU(N)

is integrable and precisely corresponds to the models con-
sidered above (e.g. Eqn. 3).

The observation and characterization of KPZ trans-
port requires the ability to address two main experimen-
tal challenges: (i) preparing near infinite-temperature
states with a well-defined domain-wall polarization and
(ii) measuring the tails of the scaling function with sub-
percent accuracy. The former can be accomplished via a

two step process: first, optical pumping via an intercom-
bination transition (e.g. ns2 1S0 ↔ nsnp 3P1) can be
used to generate arbitrary magnetization distributions
which are preserved upon cooling to the Mott insula-
tor [36]; second, with single-site addressing [26, 75–80], a
coherent optical drive can be applied to half the system
in order to prepare the domain wall.

Achieving the latter is significantly more subtle. In or-
der to distinguish between KPZ dynamics and rescaled
diffusion, careful estimates suggest the need to experi-
mentally resolve the scaling function with a relative er-
ror of ∼ 10−3 [36]. Achieving this error floor requires the
ability to spatially resolve spin-transport dynamics over
long time-scales and large distances. For concreteness,
let us consider 87Sr atoms loaded into a two-dimensional
optical lattice [70, 81, 82]. Recent experiments have
demonstrated the elegant use of cavity-enhancement to
realize homogeneous lattices capable of supporting Mott
insulators with a diameter of ∼ 300 sites [36, 81]. By
implementing strong confinement in one direction, one
can subsequently divide the system into ∼ 250 indepen-
dent chains, each with length ∼ 150 sites. Assuming
an on-site interaction energy, U ∼ 3 kHz, and a tunnel-
ing rate, t ∼ 300 Hz, yields a spin-exchange interaction,
J = 2t2/U ≈ 60 Hz [36, 81]. Optimizing for an evolution
time of ∼ 50/J and assuming an experimental cycle time
of ∼ 10 s [70], we estimate that a relative error of ∼ 10−3,
can be achieved within two days of averaging [36]. Fi-
nally, the presence of a finite density (& 1% [36, 83]) of
doublons and holes in the Mott insulator will perturb
the polarization dynamics, but the exact nature of their
effect remains an intriguing open question.
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CONVERGENCE OF THE DMT METHOD

Similar to other TEBD-like numerical methods, the accuracy of the DMT method is controlled by the Trotter step
size dt and the bond dimension χ. In this section, we show the convergence of our numerical results with respect
to them. In particular, we simulate the same dynamics with χ ∈ {128, 192, 256}, and dt ∈ {0.4, 0.2}. For both the
total population transfer and the population profile, we observe good agreement across different tuning parameters
(Fig. 1). This confirms that the results presented in the main text are of high enough precision to distinguish between
the KPZ and the (rescaled) Gaussian expectations.

(a) (b)

(c) (d)

FIG. 1. (a)(b) Convergence of total population transfer as a function of the bond dimension χ and the Trotter step length dt.
(c)(d) Convergence of population profile of the bond dimension χ and the Trotter step length dt.

FINITE-TIME EFFECTS AND FINITE-SIZE EFFECTS IN KPZ DYNAMICS

Although the precise observation of KPZ scaling is restricted to the infinitely late-time behavior of an infinitely
long chain, any numerical investigation will always be limited to the finite time dynamics of a finite system. Given
such limitations, we perform a detailed analysis of how finite-size effects impact our observation of KPZ dynamics to
ensure that they do not affect our conclusions.
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Finite-time flow of the polarization profile

At any finite time, the polarization profile will not exactly match the KPZ expectation; however, this agreement
improves at later times, as highlighted in Fig. 3(a) inset and Fig. 3(d) inset of the main text using the relative difference
between the numerical results and the KPZ scaling function. In order to confirm that the observed dynamics are
not governed by a different transport equations, e.g., (rescaled) Gaussian transport, we measure the relative error
at different times between the numerics and the Gaussian profile, in addition to the direct comparison against the
Gaussian expectation shown in Fig. 2(c) of the main text. Crucially, we observe that the errors do not decrease to
zero as time goes on [SU(3) model in Fig. 2(a) and SU(1|2) model in Fig. 2(b)].

SU(3) SU(2|1)
(a) (b)

FIG. 2. Relative error between the population density and the Gaussian expectations for (a) the SU(3) model and (b) the
SU(1|2) model.

Ballistic modes and the corresponding finite-size effect

To understand the finite-size effect in our simulations, recall that, although the charge transport is diffusive, the
underlying quasiparticles still propagate ballistically. These ballistic modes are responsible for the ballistic transport
of energy, and are more sensitive to finite-size effects: they move across the system parametrically faster than the
superdiffusive modes. For the domain wall initial state, the energy density is inhomogeneous with a peak at the
domain wall position. In the subsequent evolution, the quasiparticles that carry energy will move ballistically across
the chain, bounce back from the boundary of the chain and eventually affect the superdiffusive charge dynamics.
This happens much faster that it takes for the smoothing out of charge domain wall to reach the boundary. In this
subsection, we demonstrate this effect in the prototypical SU(3) model.

To estimate the timescale for the ballistic modes to affect the charge dynamics, we study the velocity of the energy
transport. In particular, analogous to the setup where we study the charge transport, we initialize the system with
a domain-wall-like energy density, and consider how it smooths out. In Fig. 3, we observe a clean light cone of the
energy density, from which we extract a velocity of ∼ 2.2 (in units of lattice constant per 1/J). We can also look
at the total energy transferred across the domain wall. Unlike the charge transport, we observed a linear growth of
energy, and can extract the transport velocity from the growth rate, consistent with the one measured from the light
cone.

Based on this velocity, we can estimate the time for the ballistic mode to reach the boundary as ∼ 135 for a system
size L = 600. In particular, for an initial domain wall of polarization, the energy density is homogeneous everywhere
except at the domain wall. As discussed above, the finite-size effect which limits the polarization transport occurs
when the ballistic component reflects from the boundary of the system. Given a system size of L = 600, the time for
finite-size effects to affect the charge density dynamics can then be estimated to be 135 < t . 270. Therefore, we
choose t = 100, 200 when comparing our numerical results against KPZ scaling functions (Fig. 3a in the main text).
In systems with smaller sizes, we can easily observe such finite-size effects in the relative error between the numerics
and the KPZ expectation. As highlighted in Fig. 4, this finite-size effects results in a “bump” in the relative error
resulting from the ballistic transport that bounces back from the boundary. Indeed, for system sizes of L = 150 and
L = 300, the bump emerges at around t = 60 and t = 120 respectively, in agreement with our estimate of the ballistic
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velocity.

(a) (b)

FIG. 3. Ballistic transport of energy in the SU(3) integrable model. (a) Spatial-temporal profile of local energy density. The
red dashed line marks the light-cone of the ballistic transport of energy. (b) Total energy transferred across the initial domain
wall grows linearly as a function of time. In the shaded region, the data deviates from linear growth due to the finite-size effect,
perfectly consistent with the line-cone speed extracted from (a).

FIG. 4. Relative difference between numerics and the KPZ scaling function. The red arrow marks the deviation caused by
the finite-size effect, whose timescale is consistent with the light-cone velocity in the system. As the system size doubled (for
L = 150 to L = 300), the time for the finite-size to appear also gets roughly doubled.

DETAILS OF THE MODELS

In this section, we explicitly list the matrix form of all the Hamiltonians we studied in the main text, including those
with each of the four classes of simple non-Abelian symmetries, those with super-symmetries, the symmetry-breaking
model, and the integrability-breaking model.

To simplify the notation, we use Sα,β to denote the matrix with all elements being 0 except the αth row and the
βth column which takes value 1: Sα,β = |α〉〈β|. It is easy to notice

[Sα,β , Sµ,ν ] = δβ,µS
α,ν − δν,αSµ,β . (1)

We note that one can use any sets of operators satisfying this commutation relation to replace Sα,β in the following
Hamiltonians, and also obtain integrable models with the same symmetries.
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Non-Abelian symmetry

In the main text, we consider models with the non-Abelian symmetries that can be described by simple Lie algebras.
The simple Lie algebras fall into four classical series AN [SU(N)], BN [SO(2N + 1)], CN [SP(2N)] and DN [SO(2N)],
and five exceptional cases G2, F4, E6, E7, and E8. Here, we only focus on the classical series.

Let us define two operators acting on site i and j as

Πij =
∑

α,β

Sα,βi ⊗ Sβ,αj

ΞSO
ij =

∑

α,β

Sα,βi ⊗ SN−α,N−βj

ΞSP
ij =

∑

α,β

θαθβS
α,β
i ⊗ SN−α,N−βj

(2)

where N is the dimension of the local Hilbert space, and θα = δ1≤α≤N
2
− δN

2 +1≤α≤N . We can then write down the

two-site Hamiltonian for different symmetries as

HSU
ij = Πij

HSO
ij = Πij −

2

N − 2
ΞSO
ij

HSP
ij = Πij +

2

N + 2
ΞSP
ij

(3)

with appropriate N [1–4].
The integrable static model then has the Hamiltonian H =

∑
iH

sym
i,i+1, where “sym” can be SU, SO or SP. For the

integrable Floquet model, we further define: Heven =
∑
iH

sym
2i,2i+1 and Hodd =

∑
iH

sym
2i−1,2i. The Floquet evolution is

generated by alternately evolving the system with Heven and Hodd for time T/2, where T is the Floquet period.

Super-symmetry

Similar to the fact that the non-Abelian symmetries are characterized by Lie algebras, super-symmetries are char-
acterized by Lie super-algebra, which is a generalization of Lie algebra with a Z2-grading. Moreover, the simple
Lie super-algebras also fall into two classical series (i.e. superunitary and orthosymplectic) plus several exceptional
cases. Here, we focus on the superunitary series denoted as SU(M |N), as a generalization of the unitary series of
Lie algebra with a Z2-grading. A Z2-grading can be understood as follows: Lie algebras describe the commutation
relation between the generators of symmetry groups; with Z2-grading, the generators are divided into two sets; while
the generators from the same set are still defined according to commutation relation, those from different groups are
defined by an anti-commutation relation. In particular with the SU(M |N) supersymmetry, the (M +N)-dimensional
local Hilbert space is spanned by two sets of states, each of which includes M and N states respectively. The transi-
tion operators Sα,β between any two states are then classified according to whether the two states are from the same
set or not. Based on this intuition, it is natural to expect that an SU(M |N) Hamiltonian has a similar form of an
SU(m+n) Hamiltonian with some additional minus sign for certain terms in Eq. 2. Indeed, the two-site Hamiltonian
of an integrable system with supersymmetry SU(m|n) can be written as:

HSup
ij = ΠSup

ij =
∑

α,β

(−1)P (α)·P (β)Sα,βi ⊗ Sβ,αj , (4)

where P (α) = 0 if α ≤ M , otherwise P (α) = 1. Similar to the symmetric case, the static Hamiltonian is the sum
of all two-site operators, while the Floquet dynamics is generarted by alternately applying two-site Hamiltonians on
even and odd bonds.

Symmetry breaking

To break the SU(3) symmetry while still keeping the model integrable, we considered the Izergin-Korepin model,
whose Hamiltonian only consists of nearest-neighbor interaction, i.e., HI−K =

∑
iH

I−K
i,i+1, where the two-body inter-
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action is written as [5–7]:

HI−K
i,j =

1

cosh 3∆ cosh 2∆
{cosh 5∆ (S1,1

i S1,1
j + S3,3

i S3,3
j ) + sinh 2∆ (sinh 3∆− cosh 3∆)(S1,1

i S2,2
j + S2,2

i S3,3
j )

+ sinh 2∆ (sinh 3∆ + cosh 3∆)(S2,2
i S1,1

j + S3,3
i S2,2

j ) + 2 sinh ∆ sinh 2∆ (e−2∆S1,1
i S3,3

j + e2∆S3,3
i S1,1

j )

+ cosh ∆ (S1,3
i S3,1

j + S3,1
i S1,3

j ) + cosh 3∆ (S1,2
i S2,1

j + S2,1
i S1,2

j + S2,2
i S2,2

j + S2,3
i S3,2

j + S3,2
i S2,3

j )

− e−2∆ sinh 2∆ (S1,2
i S3,2

j + S2,1
i S2,3

j ) + e2∆ sinh 2∆ (S2,3
i S2,1

j + S3,2
i S1,2

j )}.

(5)

It is easy to notice that the Izergin-Korepin Hamiltonian always has a U(1) conserved charge
∑
i(S

1,1
i − S3,3

i ), and
the SU(3) symmetry recovers when ∆ = 0.

Integrability breaking

To break the integrability of the model while keeping the symmetry, for the SU(3) model studied in the main text,
we add next-nearest-neighbor interaction to the system. This modification is in general also valid for models with
other symmetries. To be specific, the non-integrable symmetric Hamiltonian can be written as:

H =
∑

i

Hi,i+1 + JnnnHi,i+2, (6)

where Jnnn is the strength of the next-nearest-neighbor interaction.
The intuition for why the integrability is broken is simple. The integrability of the nearest-neighbor-interacting

models results from a special property that any multi-body scattering process in the system is reducible to a series
of two-body scattering. This is further guaranteed by a combination of Yang-Baxter equation and the fact that all
scattering processes follow a certain order. To be specific, imagine three particles placed on different sites undergo a
scattering process. With only nearest-neighbor interaction, the leftmost particle and the rightmost one can interact
only after either of them scatters with the middle one, which sets the order of the scattering process. However, the
next-nearest-interacting term can break such order, and thus break the reducibility of the multi-body scattering.

EXTRA NUMERICAL RESULTS FOR KPZ SUPERDIFFUSION

Dynamics of different charges

In the main text, we only consider the initial state of type:

ρ(t = 0) ∝ (1 + µq̂)⊗L/2 ⊗ (1− µq̂)⊗L/2, (7)

where q̂ = S1,1 − SN,N . While this is the only possible initial domain-wall state in the SU(2) model (up to a global
rotation), a generic non-Abelian symmetric model allows for different types of initial states corresponding to different
(inequivalent) ways of perturbing the infinite temperature state. Here we take SU(3) model as an illustration. There
are two inequivalent initial domain-wall states, with q̂ = S1,1 − S3,3 and q̂ = S1,1 + S2,2 − 2S3,3, which breaks the
symmetry of the state to U(1)×U(1) and SU(2)×U(1), respectively. Interestingly, the subsequent dynamics are in
agreement. Namely, they both fall into the superdiffusive KPZ universality and have with the same superdiffusion
coefficient (Fig. 5). We remark that understanding the robustness of the superdiffusive transport to the nature of
domain wall perturbation remains an open theoretical problem.

Dynamics of supersymmetric model

In the main text, Fig. 3(f) diagnoses the dynamical exponent z = 3/2 in the supersymmetric models via total
polarization transfer P(t). Here, we show that the collapse of the polarization profile also corroborates this conclusion.
Same as the symmetric cases (Fig. 1(c) of the main text), we plot the polarization profile as a function of rescaled
position r · t−2/3, and observe perfect collapse across the entire late-time evolution (Fig. 6). We note that similar to
the Floquet symmetric model, the Floquet supersymmetric models also exhibit a small splitting between even and
odd sites, whose size decays with time [8].
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(a) (b)

FIG. 5. Starting from two different domain-wall states (corresponding to the two different charges), the integrable SU(3)
model exhibits the same KPZ dynamics. (a) Polarization profile. (b) Rescaled polarization gradient, equivalent to two-point
correlation. The spatial profile is measured at t = 100.

SU(1|2) SU(2|2)
Static FloquetStatic

SU(1|2) SU(2|2)
Floquet

(a) (b) (c) (d)

FIG. 6. In integrable models with supersymmetry, collapse of the polarization profiles at different times by rescaling the spatial
axis with dynamical exponent z = 3/2.

For the SU(1|2) supersymmetric model, we compare the gradient of the polarization profile against the KPZ scaling
function in the main text. In particular, while the evidence of KPZ dynamics is less clear at the time our simulation
accesses, we observe a clear flow of the polarization gradient towards the KPZ scaling function. Moreover, by decreasing
the hole density in the initial state, the dynamics exhibit an improved convergence to KPZ universality. Here, we
perform the similar analysis for the SU(2|2) supersymmetric model. In particular, the SU(2|2) supersymmetric model
can be thought of as a special case of the spin-1/2 Fermi-Hubbard model. We focus on the transport of the bosonic
charge corresponding to the density difference between doublon and vacancy. We remark that another Bosonic charge
is the spin density, i.e. the density difference between spin-up and spin-down fermions, which exhibit the same
superdiffusive transport. Analogous to the vacancy density in the SU(1|2), we tune the density of single-occupancy
site in the SU(2|2), and study the convergence of polarization gradient to the KPZ scaling function. Crucially, we
observe qualitatively the same behavior as in the SU(1|2) case: as the single-occupancy density decreases, the dynamics
approach to the KPZ expectation at earlier times (Fig. 7).

ADDITIONAL ANALYSIS OF SYMMETRY BREAKING AND INTEGRABILITY BREAKING MODELS

In the main text, we analyzed the dynamics when adding various perturbations to superdiffusive systems. Here,
we provide more details on the numerics and our extraction of the transport coefficients.

Adding non-zero magnetization

With a non-zero magnetization in the initial state, the charge will transport ballistically at late enough times.
However, at short times, the transport should still exhibit some superdiffusive feature and smoothly crossover to the
ballistic regime, since intuitively the perturbation will not sharply alter the dynamics. This is indeed borne out by
our data [Fig. 8, for both the SU(2) and the SU(3) models]. Moreover, we observe that the larger the magnetic field
strength δ, the earlier the crossover to the ballistic regime.



7

SU(2|2)

FIG. 7. Polarization gradients in an integrable SU(2|2) model with varying density of single-occupancy sites. At the same evo-
lution time, the system with smaller single-occupancy density is closer to the KPZ expectation, indicating a faster convergence
in time.

To extract the velocity v of the ballistic motion, we considering the fitting functional form (v2t2 + At
4
3 )

1
2 , which

takes into account of the crossover from the early-time superdiffusion. As shown in Fig. 8, such form perfectly
fits all data, across different values of δ. This can be understood as follows. The mean squared displacement
〈r2〉 ∝ t2〈h2〉 = t2h̄2 + t2〈(h− h̄)2〉; the first term is the net magnetization squared ∝ t2δ2, and the second term is due
to the fluctuation of the local magnetization ∝ t4/3 [9]. In Fig. 2c of the main text, we show the linear dependence of
v on δ, corroborating the analytically proposed underlying mechanism of the superdiffusion.

SU(3)SU(2)
(a) (b)

FIG. 8. Total population transfer with magnetized initial states. For both (a) the SU(2) model and (b) the SU(3) model, the
dynamics exhibits a crossover from the early-time superdiffusive-like transport to the late-time ballistic transport. The data

(circles) are well fitted with the functional form (v2t2 +At
4
3 )

1
2 (solid lines).

Breaking the symmetry

When breaking the non-Abelian symmetry in the Hamiltonian, one observes diffusive transport at late times.
However, similar to the case in the above subsection, the early-time dynamics should also exhibit superdiffusive
features [Fig. 9, for both the SU(2) and the SU(3) models]. To extract the diffusion coefficient, we fit the polarization
transfer P(t) with

√
4Dt/π + C at late-times (t > 10/J).

Three remarks about the fit are in order. First, we allow a constant intercept C in the fitting functional form,
which is irrelevant when t → ∞, but it allows a better fitting (especially for the weak symmetry breaking cases)
given finite-time numerical data. Second, the prefactor

√
4/π is determined by solving the diffusion equation given

a domain wall initial state. Third, as the bond dimension χ increases, we observe a robust approach to diffusion at
later times, but the extracted diffusion coefficient D also increases (Fig. 2d in the main text). Interestingly, for larger
symmetry breaking, the extracted D shows a better convergence of χ.
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SU(3)SU(2) SU(3)
(a) (b) (c)

FIG. 9. Total polarization transfer under the symmetry-broken Hamiltonian. For both (a) the SU(2) model and (b)(c) the
SU(3) model, the dynamics exhibits diffusive transport at late times. As the bond dimension χ increases, the dynamics become
more consistent with diffusion, and the extracted diffusion coefficient slightly flows to a larger value. Dashed line: fit for the
data with the largest χ. Shaded region: the time window in which the data is fitted. Since the SU(2) and the SU(3) models are
completely unrelated and follow completely different parametrization, one should not directly compare the symmetry breaking
strength ∆ between these two different models.

Breaking the integrability

One may also observe diffusive behavior by breaking the integrability of the Hamiltonian without breaking the SU(2)
symmetry by adding next-nearest-neighbour terms of the form described in equation (6). The numerical simulation
shown in the main text (Fig. 2d) is taken for Jnnn = J . It is necessary to use such a strong perturbation to observe clear
diffusion at finite times because the superdiffusive transport is particularly stable (at low order in perturbation theory)
to symmetry-preserving perturbations [10]. The next-nearest-neighbour terms in the Hamiltonian are implemented in
DMT using SWAP gates, in exactly analogous fashion to their use in TEBD to implement long-range interactions [11].

DETAILS OF THE EXPERIMENTAL PROPOSAL

Derivation of the SU(N) Hamiltonian from the bare experimental setup

In the experimental setup discussed in the main text, the optically trapped alkaline-earth fermions interact via on-
site Hubbard coupling. Here we show how to obtain the integrable SU(N) Hamiltonian from the bare Fermi-Hubbard
model. As a starting point, the spin-N Fermi-Hubbard model is written as:

HF−H = −t
∑

i,α

(c†i,αci+1,α + c†i+1,αci,α) +
U

2

∑

i

ni(ni − 1), (8)

where t is the hopping strength of a fermion between two adjacent sites, U is the on-site repulsive interaction, ni is
the total fermion occupation operator on site i, c†i,α and ci,α are the creation and the annihilation operator of species
α fermion on site i, respectively.

Assuming U � t and the filling factor is 1/N (i.e., one fermion per site) the system is in the Mott-insulating phase.
To the lowest order, the dynamics arise from virtual hopping processes and are generated by the following effective
Hamiltonian:

HF−H ≈ 2t2

U

∑

i,α 6=β
c†i,αci,βc

†
i+1,βci+1,α − c†i,αci,αc†i+1,βci+1,β

=
2t2

U

∑

i,α 6=β
Sα,βi ⊗ Sβ,αi+1 − Sα,αi ⊗ Sβ,βi+1

=
2t2

U

∑

i,α 6=β
Sα,βi ⊗ Sβ,αi+1 +

2t2

U

∑

i,α

Sα,αi ⊗ Sα,αi+1 −
2t2

U

∑

i

(∑

α

Sα,αi

)
⊗


∑

β

Sβ,βi+1




=
2t2

U

∑

i,α,β

Sα,βi ⊗ Sβ,αi+1 −
2t2

U

∑

i

1i ⊗ 1i+1,

(9)
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which is exactly the SU(N) integrable Hamiltonian (Eq. 4 in the main text) up to a constant energy shift.

A few remarks are in order. First, while the effective Hamiltonian should certainly inherit the SU(N) symmetry from
the bare Hamiltonian, the same is not necessarily true for integrability. Indeed, when the filling factor is not 1/N [or
(N−1)/N ], the effective Hamiltonian is not integrable. Second, the next-order correction to the effective Hamiltonian

is of order t4

U3 , which in principle will slightly break the integrability and alter the very-long-time transport dynamics.

Initial state preparation

Besides the simulation of the correct Hamiltonian, it is crucial to also accurately prepare a near-infinite temperature
domain wall initial state. In current optical lattice experiments, the main challenge in preparing such states arises
from the need to controllably add entropy to the system after cooling the motional degrees of freedom. In past
experiments [12], this was accomplished by applying a combination of global rotations to control the spin population,
and single-site rotations to dephase individual spins with respect to one another; averaging over different single-site
rotations yields the mixed initial state of interest. However, when moving from spin-1/2 to larger spin systems
(necessary to host SU(N) symmetric models), this protocol is not suitable to prepare arbitrary spin population
distributions, since the population distribution is only changed when applying the global rotation of the spins.

To circumvent this, we propose a different scheme, which utilizes the flexibility provided by manipulating the atoms
before loading them into the optical lattice. Crucially, this allows us to leverage optical pumping techniques using
the excited hyperfine manifold to move population density across the different spin levels of interest, Fig. 10. Let us
consider two possible different implementations of this idea:

• Starting with unit population in the largest mF state of the manifold |F,mF = F 〉, a ẑ polarized laser field is
shined, exciting the system to the corresponding hyperfine state in the excited manifold, |F+1, F 〉. Spontaneous
emission then leads to decay back to the ground state manifold, into |F, F 〉 and |F, F−1〉, with a branching ratio
dictated by Clebsch-Gordan coefficients. By timing the laser duration appropriately, this enables the arbitrary
population transfer from the |F, F 〉 to the |F, F −1〉 state, Fig. 10a. In order to transfer from |F, f〉 to |F, f−1〉,
we can follow the same strategy, using a laser field to excite to |F +1, f〉, and then use the spontaneous decay to
change the population distribution. However, since there can also be decay into |F, f + 1〉, this method requires
an additional laser field to overcome this leakage. The simplest approach is to use a σ− polarized laser to excite
from |F, f + 1〉 back into |F + 1, f〉 and counteract this leakage effect, Fig. 10b. Once again, by controlling
the relative power between the two laser fields, as well as their timing, one can transfer a precise amount of
population from |F, f〉 to |F, f − 1〉. Doing this procedure repeatedly enables the preparation of an arbitrary
spin population distribution.

• While conceptually simple, the above protocol may prove difficult owing to the need of two different laser fields
with different polarizations. We now discuss a different protocol which, after an initial coherent population
transfer, only requires a single laser at any point of time. Starting again with unit population in the largest
mF state of the manifold |F, F 〉, we begin by performing a coherent rotation between |F, F 〉 and the lowest
hyperfine state we wish to have finite population, say |F, fmin〉, Fig. 10c. With unit population in |F, fmin〉, we
can now apply a σ+ polarized laser to excite the system into |F + 1, fmin + 1〉. Subsequent spontaneous decay
will transfer the polarization into {|F, fmin〉, |F, fmin + 1〉, |F, fmin + 2〉}. By doing this process for the correct
amount of time, the population in |F, fmin〉 can be set to the desired value. Critically, this procedure can be
performed iteratively—at each step the population in level |F, f〉 can be set by exciting any extra population
into |F + 1, f + 1〉 and moving it into higher hyperfine states, |F, f + 1〉 and |F, f + 2〉, Fig. 10d. As long as the
upper manifold has equal or larger total angular momentum, this process can be carried out until reaching back
to the |F, F 〉 state, using an excitation from |F, F − 1〉 to |F + 1, F 〉 to set its population.

Distinguishing KPZ from Gaussian scaling function

Since the distinction between the KPZ and Gaussian scaling functions is only evident in the tails of the distributions,
it requires measuring the system’s scaling function to quite a small uncertainty. In this section, we quantify the
requisite noise floor of an experiment whose goal is to distinguish (e.g. using a χ2 test) between these two possibilities.
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FIG. 10. Two different approaches towards preparing arbitrary population distributions. a) Starting from the |F, F 〉 state in
the ground state manifold, ẑ polarized laser can be used to move population to |F, F − 1〉. b) To continue this process toward
lower mF states, one can again apply a ẑ polarized laer. However, this would lead to additional leakage back to a higher
mF state. To counteract this effect, an additional σ− polarized laser field should be applied to prevent leakage. c) Another
approach to prepare a spin population distribution begins by moving the entire population from the |F, F 〉 into the lowest
|F, fmin〉 of interest. d) From |F, fmin〉, the population distribution can be built by iteratively applying a σ+ polarized laser to
move polarization from |F, f〉 to |F, f + 1〉 and |F, f + 2〉.

Crucially, this informs us, given a choice of time (t ∼ 50/J) and system size (L = 150), the required experimental
uncertainty.

Starting with the numerical calculation of the scaling function from DMT (Fig. 3a in the main text), we mimic
the effect of experimental uncertainty by adding random Gaussian noise of constant strength to the measured spin.
For each instance of random noise, we can compute the χ2 of the fits to the Gaussian function and the KPZ scaling
function. By repeating this analysis for different noise instances, we obtain the distribution of χ2. Crucially, when the
relative noise . 10−4, the two distributions are distinguishble and we can confidently exclude the Gaussian scaling
function as the correct description of the scaling data, Fig. 11. In Fig. 12, we compute the probability of the KPZ χ2

value being smaller than the Gaussian χ2—at a relative noise of 10−4 is it approximately 85%.

At the same time, we find that performing a rolling average over n̄ points (thus effectively reducing the error
strength by n̄), enables to differentiate the two distributions at a larger of relative error—using n̄ = 10, a relative
error of ∼ 10−3 already distinguishes the two hypothesis, Figs. 11 and 12.

Estimating experimental runtime

From the analysis above, we require relative magnetization uncertainty on the order of δm̄/µ ∼ 10−4 to determine
whether the observed magnetization dynamics falls under the KPZ or Gaussian universality class. Leveraging the
rolling average over n̄ sites reduces this requirement to δm̄/µ ∼ 10−3. In order to operate within the small domain-
wall regime where the gradient of the polarization accurately captures the two-point correlation function, we need the
domain wall size to be at most µ . 0.2, leading to an absolute uncertainty in the magnetization error of δm̄ ∼ 2×10−4.
Crucially, a projective measurement of a single spin with N levels follows a multinomial distribution with variance
1/N thus requiring a total of Nsamples >

1
Nδm̄2 = 2.5 × 106 spin measurements. As we demonstrate below, this is

within the realm of current experimental capabilities.

For instance, a two-dimensional cavity-enhanced 813 nm optical lattice can be loaded with a Mott-insulator of
87Sr atoms as large as 300 sites in diameter [13] then subsequently divided into mx = 250 parallel chains, L = 150
sites in length. Assuming an on-site interaction energy of U ≈ 3.2 kHz and a tunneling rate along the 1D-chains
of ty ≈ 300 Hz gives a coupling strength of J = 2t2y/U ≈ 56 Hz. Decoherence rates in current implementations
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(a)  Without rolling average

(b)  Rolling average over 3 sites

(c)  Rolling average over 10 sites

FIG. 11. χ2 analysis of the confidence to confirm the KPZ dynamics. By adding random noise on the data from DMT numerics,
we can mimic experimental data. For each noise realization drawn from a normal distribution, we fit the noisy data with both
the KPZ and the Gaussian expectations, and obtain the corresponding χ2. The histogram of χ2 indicates the confidence of
whether the data agrees better with KPZ or Gaussian expectation. As the size of noise decreases, χ2 corresponding to KPZ
approaches to zero and is separated from χ2 corresponding to Gaussian fit. Performing rolling average of polarization profile
over n consecutive sites can effectively reduce the effect of noise roughly by a factor of n. The numerics are performed on the
integrable SU(3) model with µ = 0.1, and we choose to fit the polarization profile at t = 52/J .

of cavity-buildup optical lattices have been shown to limited by heating out of the ground band due to intra-cavity
intensity noise at the THeating ≈ 80 s level for relevant lattice depths [13]. However, with moderate improvements in
intrinsic laser noise as in Ref. [14], coherence is limited by single atom loss due to finite vacuum pressure at a time of
Tatom loss > 180 s [13]. Post-selection on chains with fewer than L atoms can remove such effects from the analysis
while increasing the required number of iterations by a factor of ε = exp(Lt/Tatom loss) ∼ 2.1, where t ∼ 50/J is the
duration of the coherent evolution. Thus a single experimental cycle provides Nsamples per exp = 2×mx/ε ≈ 2.4× 102

spin measurements (where 2 comes from averaging both the two sides of the domain wall). As a result, one requires
Nexp = Nsamples/Nsamples per exp = 1.1 × 104. Because each experimental cycle requires τ ∼ 10 s to run [15], we
estimate a total averaging time of Nexpτ ∼ 1.1× 105 s ∼ 30 hours is required.

Let us finally remark that in practice, the lattice may not be entirely homogeneous. The shape of the Gaussian
beam leads to a small quadradic inhomogeneity on the local onsite energy V (r) = ∆r2nr, which modifies the hopping

between nearby sites to be J(r) ∼ J
[
1 + ( 2∆

U r)2
]−1

. Nevertheless, using the experimentally demonstrated ∆ = 1 Hz,
we observe no effect on the system’s dynamics within the timescales proposed, Fig. 13.

∗ These authors contributed equally to this work.
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FIG. 12. χ2 analysis to confirm KPZ dynamics and to exclude Gaussian expectation. To quantify the confidence with which
we can conclude KPZ fits the data better, we compute the possibility of obtaining a smaller χ2 in the KPZ fit than in the
Gaussian fit. Without performing a rolling average, when the relative noise amplitude is below 10−4, it becomes almost certain
that the KPZ expectation fits the data better, suggesting that the experiment can conclusively confirm the KPZ expectation
at such noise level. By further performing a rolling average over n sites, we can increase the minimum relative noise required
by roughly n times.
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FIG. 13. Influence of a quadratic inhomogeneity of the local onsite energy. Evolving under the estimated size of the inho-
mogeneity in experiment, the spatial gradient of the polarization profile remains almost the same, and does not affect the
observation of the KPZ dynamics. The numerics are performed for the integrable SU(3) model.
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