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There is a growing need for machine-learning-based anomaly detection strategies to broaden the search
for beyond-the-Standard-Model physics at the Large Hadron Collider (LHC) and elsewhere. The first step
of any anomaly detection approach is to specify observables and then use them to decide on a set of
anomalous events. One common choice is to select events that have low probability density. It is a well-
known fact that probability densities are not invariant under coordinate transformations, so the sensitivity
can depend on the initial choice of coordinates. The broader machine learning community has recently
connected coordinate sensitivity with anomaly detection and our goal is to bring awareness of this issue to
the growing high-energy physics literature on anomaly detection. In addition to analytical explanations, we
provide numerical examples from simple random variables and from the LHC Olympics dataset that show
how using probability density as an anomaly score can lead to events being classified as anomalous or not
depending on the coordinate frame.

DOI: 10.1103/PhysRevD.107.015009

I. INTRODUCTION

Given the vast parameter space of beyond-the-Standard-
Model (BSM) physics as well as the lack of recent
discoveries, there has been a growing interest in new
search techniques that reduce model dependence. A num-
ber of novel approaches based on machine learning (ML)
have been proposed that can automatically identify anoma-
lous regions of phase space [1–79]. These techniques can
be categorized by their BSM hypotheses, which directly
relates to their ML strategy. While most proposals do not
make these hypotheses explicit, the existing approaches
typically posit one of three possibilities: (i) the BSM is rare:
pBðxÞ is small for background probability density pB and

for BSM data point x; (ii) the BSM is overdense:
pSðxÞ=pBðxÞ is large for signal probability density pS;
(iii) the BSM is more similar to known BSMmodels than to
the background.
These three possibilities approximately map onto unsu-

pervised, weakly supervised, and semisupervised machine
learning methods, respectively. All three of these generic
hypotheses are much weaker than the usual, fully super-
vised case where the hypothesis is very specific and
involves assuming particular couplings, decay chains,
masses, etc. The unsupervised methods learn implicitly
or explicitly the probability density pB, and then anomalous
events are defined by those with a low density, usually
through the use of an anomaly score that is a proxy for pB
(such as the loss function of an autoencoder; see Sec. II A).
Weakly supervised methods learn likelihood ratios between
a target dataset and a reference (mostly anomaly-free)
dataset. Weakly supervised learning refers to learning with
noisy labels—in this context, the target dataset has a noisy
label of “signal” while the reference dataset has a noisy
label of “background.” Semisupervised methods use a
number of simulated signal models, often combined with
(mostly anomaly-free) data. This categorization is not
unique and the names used here are based on their meaning
in the high-energy physics (HEP) ML literature (see
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Ref. [80] for a recent review). Most papers on anomaly
detection for HEP fall in the unsupervised category,
although the only existing ML-based anomaly detection
physics results use weakly supervised learning [21,45]. For
this paper, we consider only the unsupervised and weakly
supervised cases, as they are the most commonly studied
for HEP analyses.
Because of the ill-posed nature of attempting to identify

any anomaly, there is no one method that will be more
sensitive than all others.1 Each approach has merits and
disadvantages. For example, previous works have explored
the tradeoffs between unsupervised and weakly supervised
learning [24,37,42]. In particular, Ref. [42] pointed out that,
in the context of resonance searches, weakly supervised
methods may outperform unsupervised methods for rela-
tively higher signal fractions because they can explicitly
use the presence of the anomalies to guide their perfor-
mance. In contrast, unsupervised approaches are nearly
independent of the presence of signal and so can maintain
performance even at low signal fraction. However, if the
signal is in the bulk of the background distribution, then
unsupervised methods may be unable to find it no matter
how much signal is present.
Another core feature of anomaly detection approaches is

their response to coordinate transformations. While like-
lihood ratios are independent of invertible coordinate
transformations, the notion of an event being “rare” is
inherently coordinate dependent. Since unsupervised meth-
ods cannot be guided by the presence of anomalies as in
weakly supervised approaches, the selection of observables
used for anomaly detection may be more important for
unsupervised methods compared with weakly supervised
approaches. The fact that probability densities are not
invariant under coordinate transformations is well known
and the connection to anomaly detection has recently been
explored in the broader machine learning community [81].
Our goal is to bring awareness of this issue to HEP, where
there are a growing number of proposals that make use of
coordinate-dependent methods. While coordinate sensitiv-
ity is relevant for both achieving signal sensitivity and
estimating the Standard Model background, we focus
entirely on the former, as it is usually the focus of recent
anomaly detection proposals.
This paper is organized as follows. Section II provides a

taxonomy of ML-based anomaly detection methods. The
statistical properties of coordinate transformations of
observables are described in Sec. III. Illustrative numerical
examples are given in Sec. IV, first with a simple, analytic
example and then a more realistic example based on a dijet

search at the Large Hadron Collider (LHC). The paper ends
with conclusions in Sec. V.

II. LANDSCAPE OF ANOMALY DETECTION
METHODS

In this section, we provide a brief summary of unsu-
pervised and weakly supervised anomaly detection meth-
ods. We also provide references to recent applications of
these methods in the HEP field.

A. Unsupervised

One of the most popular approaches studied in the
phenomenology literature is the autoencoder (AE). The first
AE approaches [5,6,10] worked by simultaneously training
two neural networks: an encoder network f∶ RN → RM and
then a decoder network g∶ RM → RN . The typical loss
function is the mean squared error2: hðgðfðXÞÞ − XÞ2i.
For arbitrarily flexible networks and training procedures,
f∘g could approach the identity. To ensure this does not
happen, the network capacities and training procedure are
restricted and M ≪ N. Anomalies are then characterised by
high reconstruction loss ðgðfðxÞÞ − xÞ2 compared to the
background.
As with any compression algorithm, the autoencoder

will maximize its efficiency if it dedicates its limited
capacity based on the probability density of a given event.
For this reason, the AE implicitly3 estimates pBðxÞ.
Anomaly scores based on autoencoders can also be created
to take advantage of the compressed latent space created by
the algorithm. Those are often based on variational
autoencoders (VAEs) [82,83] or similar methods, trained
to generate a latent space with useful statistical properties
[8,25,31,32,41,43,58,58,78,84].
Beyond VAEs, other deep generative models proposed

for unsupervised anomaly detection include generative
adversarial networks (GANs) [85,86] and normalizing
flows (NFs) [87,88]. In all of these cases, the generative
model is implicitly (GANs and VAEs) or explicitly (NFs)
learning pBðxÞ, so anomaly scores are directly linked to the
probability density. In the case of GANs, anomalies can be
identified by combining the generative model with an
autoencoder [20] and assigning an anomaly score to the
reconstruction loss between the inputs and the generated
outputs. With a direct estimate of the density, the output of
a NF can be used directly as an anomaly score [48,76,79].4

A detailed comparison of various generative models on
benchmark BSM signals was studied in Ref. [48].

1In the limit of infinite statistics, flawless background estima-
tion, and arbitrarily powerful ML model architecture/training,
weakly supervised methods can be universally optimal. Of
course, this is never true in practice; see Ref. [16], Appendix A.

2Capital letters represent random variables and lowercase
letters represent realizations of the random variables.

3Vanilla AEs have a strong dependence on the ML architecture
and training procedure, which means that they may not be as
precise at estimating the density as other approaches.

4Normalizing flows have also been proposed for use as weakly
supervised anomaly detection methods; see Refs. [16,55,73,89].
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B. Weakly supervised

In contrast to unsupervised methods, weakly supervised
approaches require two datasets: a reference and a target.
Some approaches emphasize the estimation of the reference
sample [2,3,15,16,55,55,73] and some approaches take the
reference sample as given [1,4,38,65,70,74,90]. Strategies
for determining the reference sample span a spectrum
ranging from signal-model agnostic and background-
model-dependent approaches using simulations to reso-
nance searches, where sideband information can be directly
used to estimate a background-only reference. Hybrid
methods have also been proposed, as in the case of creating
noisy labels for weak supervision using unsupervised
autoencoders [24].
Once the reference sample is acquired, most methods

estimate the likelihood ratio directly by training a classifier
to distinguish examples from the target and reference
datasets. It is well known that the output of a classifier
trained with a standard loss function like binary cross
entropy is monotonically related to the likelihood ratio (see,
e.g., Refs. [91,92]). Directly estimating probability den-
sities and taking ratios has also been explored [16].

III. STATISTICS OF COORDINATE
TRANSFORMATIONS

In this section, we will review some elementary facts
about probability densities and their applications to
anomaly detection.5

Suppose that we have initial coordinates X ∈ RN and
coordinate transformation Y ¼ fðXÞ, where f is an invert-
ible and differentiable function.6 If a point in phase space x
has probability density pX, then the corresponding point
y ¼ fðxÞ has probability density

pYðyÞ ¼ pXðf−1ðyÞÞ
���� ddy f−1ðyÞ

����; ð1Þ

where the last term is the Jacobian determinant of f−1

evaluated at y. If f is a linear transformation, then the
Jacobian determinant is independent of x. This means that
if we order events by density, then the ordering is
unchanged. As an example, consider the linear function
y ¼ axþ b. By the above equation, we have pYðyÞ ¼
pXðy−ba Þj 1a j. Coordinate changes of these types produce a
simple shift and rescaling of the probability distribution pX,
as shown in Fig. 1(a). Note that this includes standardiza-
tion where the mean is subtracted and then the data are
divided by the standard deviation.

In contrast, if f is nonlinear, then the Jacobian deter-
minant can depend on x. As an example, the nonlinear
function y ¼ e−x yields the probability density pYðyÞ ¼
pXð− lnðyÞÞj 1y j, so the Jacobian determinant is still a
function of y and therefore also of x. Since the Jacobian
determinant is nonconstant, this choice of coordinate
transformation can dramatically affect the density-ranked
order of events, as shown in Fig. 1: low-density values of X
are mapped to high-density values of Y.
One popular anomaly detection protocol would be to

take events that are rare in an absolute sense: pXðxÞ < c for
some threshold c. If c is fixed, then the events selected
would change under coordinate transformations due to
the Jacobian factor in Eq. (1). An alternative protocol
that is more robust (but still sensitive) to coordinate

FIG. 1. Histograms for a random normal variable X with a
(a) linear transform Y ¼ 2X þ 5, (b) nonlinear transform
Y ¼ e−X . The shaded regions mark where jXj > 1. Variables
that originate from low-density values of X are hatched (“/” for
X < 1 and “\” for X > 1). For the linear transformation, low-
density values of X map to low-density values of Y. For the
nonlinear transformation, however, the low-density values origi-
nating from X > 1 are mapped to high-density values of Y.

5Note that methods that do not exactly learn the density like
vanilla autoencoders may have additional susceptibilities to
variable transformations.

6Much of the discussion also still applies if this is not true
everywhere, but the bookkeeping becomes significantly more
complex, so we focus on this case.
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transformations would consider the term rare in a relative
sense so that the Jacobian factors cancel. In particular,
instead of comparing densities to an absolute threshold, we
could compare the density of one event to the density of
other events. A protocol in this direction would be to take a
fraction q of the “rarest” events.
For example, in one dimension, this corresponds to using

a threshold c given by the q quantile of the density.
Symbolically, the quantile in X for a one-dimensional
random variable is given by7

q ¼
Z

∞

c
pXðxÞdx: ð2Þ

Since c is now defined by an integral over a density and not
a bare density, one may hope that it is more robust to
coordinate transformations. Ideally, if we compute the
threshold c0 after transforming into y ¼ fðxÞ, we would
have fðcÞ ¼ c0. In reality,

q ¼
Z

∞

c0
pYðyÞdy ð3Þ

¼
Z

∞

c0
pXðf−1ðyÞÞ

���� ddy f−1ðyÞ
����dy

¼
Z

f−1ð∞Þ

f−1ðc0Þ
pXðxÞ

���� dfdx
����
−1 df

dx
dx: ð4Þ

The features X over which the quantile is computed could
be the original observables or one could first map to the
anomaly score and consider the most anomalous events.
If the Jacobian in Eq. (3) is non-negative, then the two
penultimate terms cancel and f−1ðc0Þ ¼ c, so the same
events are selected before and after the coordinate trans-
formation. However, if the Jacobian takes on negative
values, the order of events under f is reversed and then
different events can be selected [f−1ðc0Þ ≠ c]. For example,
if fðxÞ ¼ −x, then the lowest and highest quantiles are
completely reversed. Another extreme example is when f is
the cumulative distribution function (CDF). In this case,
fðXÞ is uniformly distributed between 0 and 1 so no point is
rarer than any other.
In contrast, likelihood ratio methods are invariant under

coordinate transformations because the Jacobian determi-
nant in Eq. (1) is the same for the target probability density
and the reference probability density (and thus drops out in
the ratio). This is strictly only true when f is bijective (as
assumed above), but it may be approximately true even if
this is not the case. Note that, even though likelihood ratios
are formally invariant under coordinate transformations, it

may be that practical approaches benefit from a judicial
choice of coordinates. For example, observable standardi-
zation is often essential in enabling effective ML training.
Equation (1) is a well-known fact found in textbooks of

probability and statistics. Its connection with anomaly
detection was recently made by the machine learning
community [81]. In the following section, we provide an
illustrative Gaussian example and then make an explicit
connection with HEP, both using the relative threshold
protocol.

IV. NUMERICAL EXAMPLES

A. Analytic case

To clearly illustrate the ideas discussed in the previous
section, we will construct a simple example to demonstrate a
dramatic consequence of this sensitivity to coordinate trans-
formations. Let Xb ∼N ð0; 1Þ represent a set of background
observables, and let Xs ∼N ð1; 1Þ represent a set of signal
observables. This scenario is illustrated in Fig. 2(a). A
density estimation-based search for anomalies would consist
of learning the density of the background pXb

, then making a
cut where the density is low. This would designate the two
tails of Xb as rare, and a search for anomalies would then
successfully pick up the signal events Xs overlapping with
the right-tail phase space of the background.
Now, suppose that, instead of the variables Xb and Xs,

we used Yb ¼ fðXbÞ and Ys ¼ fðXsÞ, where f is the CDF
of a standard normal random variable. This scenario is
illustrated in Fig. 2(b). In this case, Yb (but not Ys) would
be distributed uniformly from 0 to 1. A density estimation-
based anomaly detection search would then fail: while the
signal is mapped to high values under the transformation
Ys ¼ fðXsÞ, there are no anomalous (i.e., low-density)
regions of the background variable Yb that would be
identified and probed for signal.
One could imagine even less optimal transformations

that produce high background densities where there are
high signal densities and low background densities where
there are low (or zero) signal densities. One such scenario
is illustrated in Fig. 2(c) for the transformation Yb;s ¼
gðXb;sÞ ¼ tanhðXb;s þ 2Þ. Anomaly detection through den-
sity estimation would fail for such a transformation of
variables due to the background distribution aligning
closely with the signal distribution.
We also illustrate the impact of a change of coordinates

when popular anomaly detection algorithms are used to
identify the anomalies. We train an autoencoder, a normal-
izing flow, and a weakly supervised model based on the
classification without labels (CWOLA) paradigm [2,3,93].
The dataset before the change of coordinates consists of two-
dimensional distributions of background Xb ∼N ð0; 1Þ and
signal Xs ∼N ð1; 1Þ, with each dimension independent and
identically distributed. The two-dimensional dataset is used
to ensure the bottleneck layer of the autoencoder is lower

7It may be useful to consider both the highest and lowest
quantiles, although for ordering by anomaly score, presumably
only the most anomalous events should be considered (not the
least).
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dimensional than the input. The two functions used are the
same ones introduced previously: f, i.e., the CDF of a
standard normal random variable, and gðxÞ ¼ tanhðxþ 2Þ.
The autoencoder compresses the two-dimensional data

into a one-dimensional latent space using fully connected
layers of sizes (50, 20, 10) and rectified linear unit (ReLU)

activation functions before the bottleneck layer of size 1.
The decoder is simply the mirrored version of the encoder
architecture. Only background events are used during
training, and the anomaly score is then defined by the
reconstruction loss. The normalizing flow is built using a
continuous normalizing flow [94] with a backbone neural
network defined by two stacked fully connected models
with layer sizes (50, 20, 10) and tanh activation. The
background-only density is estimated with anomaly score
defined as minus the probability density of a single event.
Finally, the weakly supervised model based on CWOLA is
trained using a classifier consisting of six fully connected
layers of sizes (50, 50, 20, 20, 10, 10) and the RELU

activation function. The model is trained to separate a
reference sample of background-only events from a mixed
sample of signal plus background events, with signal events
representing 10% of the overall dataset size. The anomaly
score is taken as the ratio hðxÞ=ð1 − hðxÞÞ, where hðxÞ is
the classifier output after a sigmoid activation function.
A summary of the anomaly detection methods and the
anomaly scores is given in Table I with the different model
architectures shown in Fig. 3. All methods are implemented
using TENSORFLOW [95] and the Adam [96] optimizer with
learning rate of 0.001 for 500 epochs or until the validation
loss, assessed using an independent dataset, does not
improve for ten consecutive epochs.
We evaluate the performance for each algorithm using

the receiver operating characteristic (ROC) curve for signal
and background events, as shown in Fig. 4.
Both the autoencoder and normalizing flow show rea-

sonable performance in the Gaussian example, but both
fail to identify the anomaly after the CDF change of
coordinates and even end up systematically removing
signal events after the hyperbolic tangent transformation.
The weakly supervised algorithm, on the other hand,
identifies the anomaly and shows the same performance
for all choices of coordinate systems.

B. LHC Olympics case

The examples in the previous section were contrived in
order to demonstrate the most extreme cases. This section
uses realistic HEP observables where the impact is not as
dramatic, but the effects of coordinate transformations are
still non-negligible.
The dataset used here was originally developed for

the LHC Olympics [37] and is briefly described in the

FIG. 2. Histograms for the background and signal events in the
Gaussian example for (a) the nominal coordinates, (b) after the
coordinate transformation Y ¼ fðXÞ where f is the CDF of a
standard normal, and (c) after the coordinate transformation
Y ¼ gðXÞ ¼ tanhðX þ 2Þ.

TABLE I. Choice of anomaly detection methods and anomaly
scores used in this work.

Algorithm Anomaly score

Autoencoder ðgðfðxÞÞ − xÞ2
Normalizing flow −pbðxÞ
Weakly supervised hðxÞ=ð1 − hðxÞÞ
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following. The background process is dijets and the signal
is W0 → Xð→ qqÞYð→ qqÞ with mW0 ¼ 3.5 TeV, mX ¼
500 GeV, and mY ¼ 100 GeV. All events are generated
using PYTHIA8 [97] and DELPHES3.4.1 [98–100]. The jets are
clustered using FASTJET [101] with the anti-kT algorithm
[102] using R ¼ 1. Finally, all events are required to have at
least one jet with pT > 1.2 TeV.

Some important discriminating features in the LHC
Olympics dataset are the masses of the leading and
subleading jets. In particular, the masses of the leading
(m1) and subleading (m2) jets should approximately cor-
respond to the masses of the X and Y particles for the
signal. Since the masses have a large kinematic range, they
are often preprocessed by taking the natural logarithm,
m ↦ logðm=TeVÞ (henceforth, the units are suppressed).
Other natural examples include the n-subjettiness observ-
ables τ1 and τ2 [103,104]. These observables quantify the
extent to which a jet is more consistent with having one or
two prongs. The variable τ1 captures similar properties
of the jet radiation pattern as the jet mass. A researcher
aiming to preprocess as minimally as possible might
attempt to do anomaly detection with ðτ1; τ2Þ directly,
while someone wanting to use standard preprocessing
might use instead ðτ1; τ2=τ1Þ. The n-subjettiness ratio
τ21 ¼ τ2=τ1 is one of the most widely used taggers for
identifying two-prong substructure. This is characteristic
of Lorentz-boosted W=Z boson decays, but it is also the
case for our BSM particles X and Y. We show results form
and logðmÞ, but we found similar, although less dramatic,
results for n subjettiness.
If ðm1; m2Þ is described by probability density p, then

the transformed coordinates are described by density
p̃ðlogðm1Þ; logðm2ÞÞ ¼ pðm1; m2Þm1m2. This shows that
the ordering by anomaly score can be reversed depending
on the relative sizes of p, m1, and m2.
Unlike in the Gaussian case, for the LHC Olympics

dataset we do not know the probability densities analyti-
cally and so we can only estimate the densities numerically.
A comparison of the selected anomalies in the background-
only case with a NF are presented in Fig. 5. The shaded
regions in Fig. 5 indicate the selected anomalies using a 1%
criteria. Interestingly, the two selections agree on only
about 20% of events. This means that even though we have

FIG. 4. ROC curve for different anomaly detection algorithms
trained using the Gaussian dataset in the original coordinate
system (Gaussian) and after the transformations fðxÞ ¼ ΦðxÞ
(CDF) and fðxÞ ¼ tanhðxþ 2Þ (tanh). The black line denotes the
expected ROC curve for a random algorithm.

FIG. 5. A comparison of the two probability densities for the
same events. The shaded regions and the red dots indicate the 1%
most anomalous events.

FIG. 3. Network architectures used to implement the anomaly
detection methods.
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the same events and the same input features, we have
different anomaly selections depending on the coordinates
we use to represent the events.
Analogous to the previous section, we compare anomaly

detection strategies in Fig. 6. We employ the same neural
network models and hyperparameters as the ones used in
the Gaussian example. Once again, the performance of the
weakly supervised training is independent from the choice
of coordinates, while all other algorithms show differences
in performance based on the initial choice of coordinates.
The AE and NF have a similar performance, reinforcing the
claim that the approaches are targeting similar regions of
phase space. However, the change in performance after the
coordinate transformation is more pronounced for the AE,

which may have other contributions aside from the indirect
density estimation.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have described the sensitivity of
anomaly detection approaches to coordinate transforma-
tions. We have connected BSM hypotheses with ML
strategies in order to make explicit what is being assumed
and when coordinate transformations are potentially
important. While it is not new, we have highlighted the
coordinate sensitivity of unsupervised approaches (target-
ing rare events). This does not mean that we should
not use unsupervised algorithms—on the contrary, these
approaches provide valuable complementarity to other less-
than-supervised methods. However, we should be cautious
about optimal claims, and it seems wise to explore multiple
coordinate systems and anomaly detection methods when
determining the sensitivity for a given signal hypothesis.
While weakly supervised approaches are formally coor-
dinate independent, it could be that in practice some set of
coordinates enables more efficient learning. These and
other practical issues are critically important to explore as
anomaly detection proposals become physics results in the
near future.

The code for this paper can be found at [105].
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