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- Hopf Bifurcation and Plasma Instabilities

John David Crawford

Abstract .

Inv physical terms, bifurcation theory is the study of traﬁéitious between
distinct physical states which occur'.through the development of instabilities.
Such transitions are readily observed in nature, and they are necessarily non-
linear in character. Relatively recent developments in nonlinear analysis make
it possible to study bifurcation phenomena of ordinary and partial differential
equations in a unified way. Although the theory is by no means fully developed,
for tramsitions from time independent equilibria or for transitions from periodic

motions, it is sufficiently complete to be useful in applications.

In this research, center manifold theory and the theory of normal forms
are applied to examples of Hopf bifurcation in two models of plasma dynamics.

A finite dimensional model of a 3-wave system with quadratic nonlinearities



Abstract }

provides a simple example of both supercritical and subcritical. Hopf bifurca-
tion. In the secon-d model, the electrostatic instabilities of a collisional plasma
correspond to Hopf bifurcations. In this problem, the Vlasov-Poisson equations
with a Krook collision term describe the electron dynamics in a wéakly ionized - .
gas. The one mode in instability is analyzed in detail; near criticality it always

saturates in a small amplitude nonlinear oscillation.

The theory ot; the center manifold accomplishes two things. First, it estab-
lishes that the dynamics of a finite mode instability is always of a finite dimen-
sional character, even when the equations of ‘motion are partial differential equa-
tions. Secondly, it pi'ovides practical methods fér deriving the relevant reduced
set of equations w’hich deséribe the transition. Thus the cénter‘ manifold methods
provide a geometric and rigorous basis for the reduction in diniénsion which

characterizes classical amplitude expansions.

The theory of normal forms applies to the reduced dynamical system de'rivéd
for the center manifold. Two sorts of results are obtaihed. First, by considering
only the linearized dynamics of the problem, we can specify which nonlinear"

couplings are essential, and will remain after the normal form coordinate trans-
| formations are implemented. Secondly, the coordinate transformations can be

explicitly performed, the coeflicients of the essential nonlinear terms computed,

%@L UhlUrd— .,

and the resulting equations analyred.
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Introduction

Whether' a plasma is created under laboratory conditions or discovered in
éome natufal settiﬁg, its physical state is rarely that of thermal .equilibrium.
The various mechanisms and instabilities which drive a plasma toward thermal
equilibrium are therefore of central importance to the physics of these systems.
From one perspective or another most of the scientific literature on blasma is
devoted to determining the stability of plasma states, enumerating the possible
instabilities which can arise, and calculating the effect of such instabilities on the
transport of particles, momentum, and energy through the plasma. Because a
plasma exerts forces on itself through self-generated electric and magnetic fields,
. a self-consistent study of a piasma instability is inevitably a nonlinear analysis.

This makes the physics and the mathematics subtle and difficult.

For many plasma problems, existing mathematical theory does not apply,
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and physiéists proceed by inventing their own methods, and by making ap-
proximations on the strength of physical argument. Conversely new develop-
ments in mathematics can allow previously intractable physics problems to be
treated with greater rigor, with fewer uncontrolled approximations, and often
~ with more insight. This provides a useful check on heuristically developed physi-
cal theories, and stimulates the mathematical development through the challenge -
of concrete'_applications. Hopefully the relationship between the broad subject
~of plasma instabilities and the rapidly growing field of bifurcation theory will

develop in this way.

To succinctly describe the subject matter of bifucation theory requires the
abstract viewpoint of dynamical systems. A dynamical system is an evolution

equation (or equation of motion)

dz , '

defined on. some state space or phase space, M. For example if M l= R", then
the evolution equation is simply a system of n first order ordinary differential
equations. For partial differential equations, M is a functioﬁ space. The solu-
tions of (I.1) describe curves through M; these curves collectively define the flow
of (I.1). If the evolution equation depends on a free parameter, denoted by g,
then as p varies the flow varies. In particular there can be critical values p = pu,
at which the flow changes in a qﬁalitative way. When this happens, a bifur;ation

has occurred. In broadest terms, bifurcation theory studies these qualitative
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‘changes.

~ A specific and relatively well understood example is Hopf bifurcation. Here
the quélitative change in the flow occurs in the neighborhood of an equilibrium
or fixed point. For the u values of interest, let z = 0 be the fixed point, i.e.

assume

where the dependence of the flow on u is now explicitly indicated. As discussed
in Chapter 1, the stability of z = 0 with respect to small perturbations is
determined by the eigenvalue spectrum of a matrix DV ,(0) (or more generally

~ a linear operator). Here DV, (z) is the usual derivative,
(DVF»(z));'j = 327 (z)-

When all eigenvalues have strictly negative real parts, then z = 0 attracts

nearby solution curves and the fixed point is asymptotically stable; for a proof
see Arnol'd (1973). When the.re are eigenvalues with positive real parts then
solution curves are repelled from z = 0, and the equilibrium is unstable. A
bifurcation occurs when one or more of the eigenvalues for a stable equilibrium
cross the imaginary axis as u increases through p.. If the instability is triggered
by the crossing of a single complex conjugate pair of eigenvalues, then it is a

Hopf bifurcation.

In its simplest form, Hopf bifurcation marks either the creation or the

annihilation of a periodic orbit. In the first case, the fixed point is unstable for
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4 > po but in the process of becoming unstable it “emits” a stable periodic orbit
whose amplitude grows as \/u—p. , see Fig. (I.1 a). The second possibility
involves a stable fixed point (p. < pc) with é.n unstable periodic orbit in its
neighborhood. As u approaches u., the unstable orbit collapses onto the fixed
point and for u > u. only an unstable fixed point _survives, see Fig. (I'.l b). In
either case the flow near z = 0 changes qualitatively when (u— u.) changes sign.

The i:heory of Hopf bifurcation gives computable criteria which distinguish theseA‘
two possibilities. Both possibilities occur in applications, but the theory is most
useful when the bifurcation yields a stable periodic orbit (or limit cycle) since
then the new stable state can be predicted and its physically relevant properties

 calculated.

When an evolution equation, describing the dynamics of a physical system,
exhibits a Hopf bifurcation, as in Fig. (.1 a), the experimentally observable
properties of the system change in a marked way. A time independent stable
equilibrium yields a stable nonlinear oscillation characterized by a single fre-
quency. Observables of the system oscillate at this frequency. Hopf bifurcation
is dynamic, i.e. a time dependent state results, and it serves as a simple example
of certain phenomena which are quite generally associated with the dynamics
of instabilities. For instance, as is clear from Fig. {I.1 a), at criticality the equi-
librium state is weakly stable or unstable due to nonlinear eﬂ'écts, and relaxa-

tion rates are very slow. In the theory of phase transitions, this is described as
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“critical slowing down” (see Hohenberg and Halpefin (1977)).

Marsden and McCracken (1976) give a diverse list of phenomena that can
be analyvzed as Hopf bifurcations w‘h'ich. includes biological models, mechanical
systems, and geophysical problems. More recently Holmes and Marsden (1978)
described the onset of flutter in an airfoil as a Hopf bifurcation, Knobloch and
Proctor (1981) simil;ﬁrly identified one of the instabilities in: a model of double
diffusive convection, and Rand (1982) has given a lucid description of several
Couette flow éxperiments using bifurcétion theory in conjunction with group
theory. There are many other examples. These last three are of particular in-

terest because the evolution equations involved are partial differential equations.

In qﬁalitative terms this tr;cmsition from equilibriuni to oscilla‘tion is fre-
quently discovered in models of plasma behavior: a stable quiescent plasma be-
comes unstable as some parameter is varied and the instability is marked by the:
-onset of unstable collective oscillations or waves. Such a traﬁsition is clearly a

candidate for Hopf bifurcation.

There are prerequisites however if the version of Hopf bifurcation described
above is to apply. The plasma model must be d:'saipative.. Physically this
. means that the model should include some dissipative process such as collisions.
Abstractly a dissipative system produces a flow which contracts»volumes onto
“attractors such as fixed .points, limit cycles, or more complicated sets. In con-

trast, Hamiltonian systems have flows which conserve volumes in phase space;
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this precludes the existence of attractors. (There are bifurcations in Hamiltonian
systems analogous to Hopf bifurcation; they will be briefly mentioned in Chapter
3.) A second prerequisite is the requirement that the equilibrium become un-
stable due to a simple complex conjugate pair of eigenvalues crossing the imagi-
nary axis. This requirement can be relaxed to allow a finite number of eigen-
values to cross simultaneously, but the resulting instability will have dynamics
considerably more complicated than that shown in Fig. (I.1). Examples of these
more complex finite mode instabilities are discussed in Takens (1974), Langford
(1979), Guckenheimer (1981), Guckenheimer and Holmes (1983), and Scheurle
and Marsden (1982). (For plasma models which take the plasmva to have infinite
spatial extent, instabilities are frequently characterized by a continuum of un-
stable eigenvalues. Such problems have been attacked by “envelope” methods
which are somewhat distinct from the Hopf bifurcation theory discussed here,

see Newell and Whitehead (1969) and Newell (1979).)

In spite of the limitations implied by these prerequisites, there are at least
two motivations for modeling plasma instabilities as Hopf bifurcations. The
first motivation is practical. When a stable equilibrium is destroyed by the
onset of growing linear waves, a vgriety of questions becomes important: How
does the wave gfowth saturate when nonlinear effects are included? Is the
saturated state stable? What frequencies, electromagﬁetic fields, and transport

properties characterize the new nonlinear state? If the instability can be analyzed
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as a Hopf bifurcation, the calculations required to answer these questions are
straightforward though often lengthy. Even nicer, some of these questions
turn out to be the same, e.g. if the Hopf bifurcation 'produces' a supercritical
pe'riodic orbit (the saturated state), then that orbit is always stable. Moreover,
the calculations required to analyze a Hopf bifurcation can be performed in a
formalism general enough té be applied to a.ny'suc‘h bifurcation, regardless of

~ the details of the particular model.

The second motivation is one of principle, and derives from the realization.
that deterministic, low dimensio'nal evolutir)n equations may generate flows so
‘complex that the resulting physical state is turbulent. To decide if thisv deter-
ministic turbulence is actually relevant to observed phenomena in plasma is a
question which, on the theoretical side, requires that one locate such complex
dynamics in the flows of realistic kinetic or fluid plasma equations. Although this
task is not accomplished in this thesis, the methods applied here to analyze Hopf
bifurcation offer a promising Way to locate exotic phenomena such as strange
attractors in plasma dynamics. This opportunity exists because the nonlinear
dynamics associated with plasma instabilities involving a finite number of eigen-
values is essentially finite dimensional. By deriving the essential finite dimen-
sional system, and locating there a turbulent state associated with a chaotic at-
tractor, the existence of the attractor is reliably established for the full system.

Although such a result would apply only to special regions of parameter space,



Introduction 8

e.g. neighborhoods of u., it would demonstrate the relevance of low dimen-
sional strange attractors for infinite dimensional systems in a setting free of the
ambiguities which surround numerical calculations based on finite mode trunca-
tions. Thus the second motivation is simply this: by locating plasma instabilities
which correspond to (degenerate) Hopf bifurcations involving three eigenvalues .
(one real, one conjugate pair) or four eigenvalues (two conjugate pairs) certain

forms of plasma turbulence may be analyzed with finite dimensional models.

In Chapter 1, the mathematical theory of Hopf bifurcation is presented.
This consists of two distinct sets of ideas. First, associated with the dynamics of
V_Hopf bifuraction are fnvariant nonlinear manifolds which allow the problem to
be reduced to two dimensions. Second, t‘he l;esﬁlting two dimensional evolution

equation can always be written in a characteristic polar variable form.

-Z—: = pr+arr® + aor® + O(r7) :
(L.2)

dé >

— = —A+b;r? +bor' + O(r%)

dt

Here p + tA is the conjugate eigenvalue pair associated with the instability
and the coefficients {a;} and {b;} are explicitly computable functions of the
parameters in the problem. (Although the bifurcation parameter p in V,(z)
is not necessarily the real part of the eigenvalue p + tA, there is no loss of
generality in assuming this to be the case.) These equations constitute the

normal form equations for Hopf bifurcation; they describe the essential nonlinear

effects associated with the instability.
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In Chapters 2 and 3, this theory is applied to two Hopf bifurcations drawn
from the plasma physiés literature.. The first example, discussed in Chapter 2,
occurs in a finite dimensional model of three interacting plasma waves duer to
Weféinger, Finn, and Ott (1980). The stable fixed point arises from a balance
between f,he growth of an unstable wave and the decay of two damped waves.

If the decay rate of the damped waves is increased the balance becomes “over

- stable”; this transition is a Hopf bifurcation. The resulting periodic orbit has

been studied numerically by Wersinger, et al. (1980); they observed a cascade

of period doubling bifurcations resulting in aperiodic motion.

This model presents the interesting feature that the pormal forrﬁ coefficient
.ay in (1.2) chénges sign alohg the bifurcation surface in parameter space. When
a1 = 0 then higher order nonlinear effects are crucial. This degenerate bifurca-
tion is discussed in detail; an analysis which requires the normal form coefficients
a; and a» on a neighborhood of the critical parameter values. The calculation

of a> for this case slightly generalizes the results of Hassard and Wan (1978).

The second example, discussed in Chapter 3; is a. simple kinetic equation
which exhibits as Hopf bifurcations some familiar microinstabilities; here the
'setting is infinite dimensional_. The model considers electron dynamics in a
weakly ionized gas and describes the electron distribution function using the

Vlasov-Poisson equations supplemented By a Krook collision term.

The spectral analysis of Case (1959) for the Vlasov-Poisson system is easily
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extended to this model to determine the linear spectrum. For an initial distribu-
tion function consisting of a plasma component and a beam component the linear
dispersion relation is solved to determihe the bifurcation surface as a function of
beam velocity, beam temperature, beam density, and vs;a.vé number. The normal
form analysis shows a; < 0 in all cases, and provides explicit results for the

saturated distribution function.

Without collisions, the Vlasov-Poisson equations are Hamiltonian; thus the
collisionless limit of the Hopf bifurcation is a Hamiltonian bifurcation‘. Moreover
for this limiting Hamiltonian bifurcation a degenerate conjugate pair of eigen-
values is embedded in a continuous spectrum (the van Kampen continuum) at
critiéality. This makes the collisionless limit of the Hopf normal form singﬁlaf,
i.e. the normal form coefficients become inﬁnit.e due to divergences arising from
resonance denominators. This singular structure raises the interesting cjuestion
as to whether the collisionless version of the instability can be captured by a
finite dimensional normal form, and whaf, those normal form equations might
be.

Another interesting aspect of the collisional model is the existence of parameter
values for which two conjugaté pairs simultaneously cross the imaginary axis.
This would correspond to the onset of unstable plasma oscillations at two distinct
wavelengths. As indicated earlier suéh a degenerate bifurcation may involve

chaotic dynamics (Guckenheimer and Holmes (1983)).
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Figure Captions

Figure (I.1) The two possibilities for Hopf bifurcation when the normal form
coefficient a; in (I..2) does not vanish at criticality. For these diagrams A
in (I.2) is assumed negative. (a) In supercritical (a; < 0) Hopf bifurcation

“there is a stable periodic orbit for g > .. (b) In suberitical (a; > 0) Hopf
bifurcation there is an unstable periodic orbit for 4 < p.. In both cases
the stability of the fixed point changes at 4 = u., and at p = pu. the fixed

point is weakly attracting or weakly repelling due to nonlinear effects.



po< g

Figure (I.1a)
p< K

Figure (I.1b)

(

Bo= g

%>O

K= K

B>y

XBL 837-470



18

CHAPTER 1

Invafiant Man_ifolds and Normal_‘Forms'

~ Hopf bifurcation in its si'mplest form_ is a two dimensior_zal phenomenon; this
Ais true regardless of the actﬁal dimension of the djhamical system gxhibiting'
- the bifurca'tioh. To understand this fundame‘ntal fact one may use the theory of
stable, center, and unstable manifolds. This theory can be presented at various
levels of abstraction; my discussion will be intuitive, pictorial, and hopefully
practical. For more precise mathematical discussions the feader is referred to the
growing review literature; see for example Marsden and McCracken (1976), Carr
(1981),. Holmes (1981), Hassard, Kazarinoff, and Wan (1981), or Guckenheimer

and Holmes (1983).

The sté.ble, center, and unstable manifolds which occur in bifurcation theory
are nonlinear generalizations of the stable, center, and unstable linear eigenspaces

which arise in linear stability theory. For this reason I shall first quickly review
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this linear theory, then describe the manifolds. For Hopf bifurcation, often only
the stable and center manifolds are present, and the structure they impose on the
dynamics allows the bifurcation analysis to be reduced to two dimensions. The
calculations required for this reductién will be described, and the virtues and
limitations of the resulting equations will be discussed. For all of this, the setting
will be finite dimensional, e.g. a flow on !'Ié"; this- is for simplicity-the techniqués
work for partial differential equations as well. The additional technical issues
which arise in inﬁnitle dimensional applications are discussed in Marsden and
McCracken (1976), Holmes and Marsden (1978), looss and Joseph (1980), and

Hassard, Kazarinoff, and Wan (1981).

Linear Stability Theory

"The starting point for the theory is always the same: an evolution equation
for the dependent variable z(t).
| dz : ‘
—_— L“z + NI‘(Z) (1.1)
Here L, is a linear operator which depends on a parameter p. N, is a smooth

nonlinear operator with the property N,(0) = 0, so that £ = 0 is a stationary

solution (fixed point).

To be concrete, assume the evolution equation comes from a smooth vector

field, V,(z), on R" such that V,(0) = 0. Then the dynamics is governed by
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— = V,(z) z € R".

This can be written in the form (1.1) by letting L, = DV,(0), and taking N,(z)
to be the higher order terms in the formal Taylor expansion: N,(z) = V,(z) —
DV,(0) - 2

Given that £ = 0 corresponds to an equilibrium, then its stability against

perturbations must be determined. This is first done for the linearized dynamics,

— = [,z | (1.2)

The spectrum of L, denot;ed o(L,), controls the growth or damping of
perturbations. On R", o(L,) consists of n eigenval_ue_s (éounting over multiple
eigenvalues). Consider such a spectrum shown in Fig. (1.1a); there are eigen-
values in the left half plane {)\?}1%,, on the imaginary axis {\¢};<,, and in the
right half plane {\¢}7%, such that n, + n, + n, = n. Associated with these
three sets of eigenvalues are the corresponding eigenvectors: {v¢}7,, {v¢}7?,,
and {v!}7%,. (In the event that an eigenvalue has an algebraic multiplicity
greater than its geometric multiplicity, then these sets of eigenvectors include

the generalized eigenvectors also.) Each set of eigenvectors spans a linear sub-

space of R",

span of {vi}?, = E*
span of{v}] ., = E°
span of {v}} %, = E*

and R" = E°* @ E° D ™.
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An arbitrary perturbation, z(0), can be expanded,

2(0) = 3o 20(0)f + 3 5(0)05 + Y 20!

and its time evolution under (1.2) simply determined (ignoring the unimportant

complications due to generalized eigenvectors).

ng ne »‘ nu ’
z(t) = Y zi(0)e vl + Y z5(0)e**vS + > zr(0) vy (1.3)
t=1 =1 =1

As t increases the first group of terms decays exponentially, the second group
oscillates, and the third group grows exponentially; accofdingly E* is called the
stable subspace, E° the center subspace, and E* the unstable subspace. The
decomposition of R™ into these subspaces provides a complete picture of the
linearized dynamics, see.Fig. (1.1b). Furthermore frbm (1.3) each subspace
is clearly invariant under (1.2). This means that an initial perturbation lying

wholly within E° or E° or E* will evolve without leaving that subspace.

If the calculation of (L) reveals that n, = n, = 0, then all perturbat'ions
decay in linear approximation and z = 0 is linearly stable. In finite dimensions,
such linear stability implies nonlinear stability, i.e. sﬁﬁiciently small perturba-
tions will decay under the full nonlinear dynamics of (1.1). For partial differential
equations there are results analogous to this, though their precise statement is
more technical (Holmes and Marsden (1978)). In applications these conclusions
~of nonlinear stability are not always relevant, since the allowed scale of amplitude

perturbationsi may be unphysically small.
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Nonlinear Effects: Invariant Manifolds

When the nonlinear effects represented b'yvN“(z) are feintroduced, the dynamics
of the linear eigenvectors are coupled by the nonlinear terms and the linear spaces
E°, E°, and E* are no longer invariant. There are however nonlinear analogues
of the linear eigenspaces. Intuitively, the nonlinear terms distort the solutions of
the linear eigenspaces so that the flat linear eigenspaces are “warped” into
- curved surfaces or manifolds. These manifolds organize the dynamics of the
nonlinear problem just as the linear eigenspaces serve to structure the linear

dynamics.

Associated with E® and E* are unique, local, invariant manifolds: the stable
manifold W® and the unstable mansfold W* | respectively; These manifolds and
their relation to the underlying linear spaces are indicated in Fig. (1.2a). Each
contains the fixed point z = 0, and at £z = 0 is tangent to the appropriate
linear eigenspace. In virtue of this fact, each manifold has the same dimension
as its associated linear subspace. Furthermore, each local manifold is invariant
with respect to the full nonlinear dynamics: if an initial condition z(0) belongs
to W?or W*, then, for some time interval 0 < t < T, the solution z(t) to
(1.1) lies within the manifold containing z(0). Assuming the flow of (1.1) is
well defined for —oco < t < 00, i.e. globally defined, then the solution curves
composing the local manifolds may be globally extended. This extension yields

the global stable and unstable manifolds. The relationship between the local
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and global manifolds may be subtle; Palis and de Melo (1982) give a simple two
dimensional example of a fixed point whose local stable and unstable manifolds
are distinct one dimensional sets, but whose global stable and unstable manifolds
exactly coincide becausé they form.homoclinié oi'bits. Furthermore, although
the structure of the local manifolds has the simplicity indicated in Fig. (1.2a),

the global manifolds can have very compliéated shapes.

Similar to £* and E*, the center eigenspace has an associated local in-
variant manifold, the center manifold W€, which is tangent to E° at z = 0.
Unlike W* and W*, the center manifold may not be unique; Kelley (1967) and
Guckenheimer and Holmes (1983) give simple examples of fixed points which
have an infinite family of center manifolds. Moreover, less is known about the
existence of global center manifolds. Fenichel (1979) and Carr (1981) discuss
some singular perturbation problems for which global information about W¢is
available, but these results are typically less general and more complicated than

the corresponding global theory for W*® and W*.

For W¢, the difficulty in préving global existence and the possible lack of
uniqueness are rooted in the fact that, unlike fhe stable/uﬁstable manifolds,
the flow on a center manifold cannot be characterized in any general way. In
particular this prevents the global existence of the center manifold from being
established with the same methods used for W? and W*. For the appliéations to

bifurcation phenomena considered in this thesis, these issues of global existence
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and uniqueness are not essential.

The dynamics of solution curves in W®or W¥is trivial, at least near z = 0.
As t — oo all solﬁtion curves in W*®approach z = 0, and as ¢ — —oo solution
curves in W* approach z = 0; in both cases the asymptofic rate of approach is
exponential since the linearized dynamics dominates. As mentioned above, no
simple .general description is possible for the dynamics in W¢; at z = 0 the linear
stability is neutral and nonlinear effects remain essential. When the dimension
of W¢is greater thaﬁ two, the center manifold dynamics may encompass all
the complex dynamics studied in dynamical systems theory: aperiodic motion,
chaotic recurrence, Smale horseshoes, strange attractors, etc. This observation
provides strong motivation for aﬁtacking bifurcation problems along the lines

described in the next section.

Invariant Manifolds for Hopf Bifurcation

In Hopf bifurcation, a stable fixed point at £ = 0 becomes unstable as a
parameter u is varied. Stability is lost because a complex conjugate pair of
eigenvalues in o(L,) cross the imaginary axis into the right half plane as p is
increased through zero. (The prescription that the fixed point is at z = 0 and the
critical parameter valueis g = 0O is éonvenient, and entails no loss of generality.)
At criticality, # = 0 and the eigenvalue pair X\, X are pure imaginary, see Fig.

(1.2b). (Here the overbar denotes complex conjugation.) Their eigenvectors
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satisfy
' LW =\¥

(T =3V
and span the two dimensional linear eigenspace E°. For this bifurcation there is
a two dimensional center manifold and an (n - 2) dimensional stable manifold,

see Fig. (1.3a).

Near z = 0, the solution curvés in these manifolds define distinct time
scales. For solutions starting near z = 0 but not contained within either
manifold, the influence of the stable manifold rapidly pushés the solution curves
toward the center manifold on a fast timelscale; on a slow time scale, the flow
of these soi.utions is controlled by the dynamics on the center manifold. This
is the iﬁtuitive baéis for the property of W* known as local attractivity which is
precisely stated as follows: there ezists a nesghborhood U of the fized point z =
0 such that if the solution z(t), corresponding to an instial condition z(0) € U,

remains in U for allt > 0 then z(t) approaches W° ast — oo.

For 'u =0, z = 0 is no longer linearly stable and perturbations may grow;
how these perturbations evolve is a nonlinear problem. If we are willvin.g to wait
for the local attraction of W¢to pull the perturbed solution close to W°then
the time development of the perturbation involves only the dynamics on W*°.
Thus the time asymptotic behavior of the instability requires an analysis of the
center manifold dynamics; this however is only a two dimensional problem. This

reduction of the time asymptotic problem to two dimensions in fact persists for u
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small and positive. Intuitively this is so because for 4 > 0 the two dimensional
center manifold is replaced by a two dimensional unstable manifold which is
locally attracting and controls the time asymptotic behavior. This intuition may

be rigorously justified by considering the “suspended system”:
| dz

i Lpz + Ny(z)

(1.1s)
b,
dt ’

obtained by “suspending” an equation for the parameter from the original system
(1.1) (Ruelle and Takens (1971), Hassard et al. (1981)). Obviously (1.1) and
(1.1s) are equivalent; nevertheless we learn something by analyzing the invariant
manifolds of the fixed point (z, u) = (0, 0) for (1.1s). Now at u = 0, in addition
to the conjugate pairb of eigenvalues, there is also a real eigeﬁvalue at zero because
of the equation du/dt = 0. Thus for (1.1s) there is a three dimensional center

manifold and an (n — 2)-dimensional stable manifold.

T-he three dimensional center manifold must contain an. interval of the -
axis about the point g = 0; this follows from its local attractivity. An initial
condition (z, u) = (0, o), contained in the neighborhood U (as described in the
definition of local attractivity above), is a fixed point, and necessarily corresponds
to a solution which remains in U for all ¢ > 0. Therefore the point (0, ) in

fact belongs to the three dimensional center manifold.

Because du/dt = 0 in (1.1s) if we take a “slice” of our three dimensional

center manifold by fixing the value of u, the result is a two dimenstonal invariant



Invariant Manifolds and Normal Forms 22

locally attracting manifold. For example, the slice corresponding to p = 0 is the
two dirﬁensional center manifold for (1.1). A slice at p > 0 gives the two dimen-
sional unstable manifold of z = 0. In this way, the three dimensional center
manifold of’(l.is) may be regarded as a 1-parameter family of two dimensional-
invariant manifolds. Let W), denote this family; each member of W, is tangent

at £ = 0 to the linear space spanned by the eigenvectors ¥ and W.

This picture leads to the folldwing strategy: “project out” the two dimen-
sional vector field which describes the flow on W,,, then analyze that flow to

understand the asymptotic development of the instability.

Deriving the two dimensional vector field on W, requires two steps. First
a description of W,near z = 0 must be calculated, then the restriction of
the evolution equation to W, is obtained. The analysis of the two dimensional

dynamics leads to the theory of normal forms. This is discussed in a subsequent

section.
Describing W, near z = 0 requires constructing local coordinates for W,
on a neighborhood of z = 0. Since W, contains z = 0 and is tangent there

to the (¥, W)-plane, local coordinates may be constructed as a mapping from
the (¥, ¥)-plane to Wu, see Fig. (1.3b). Let the coordinates of a point in the

(¥, ¥)-plane be (A4, A), then this mapping defines a function A(A, A)

hR? — R2 h(0,0) =0
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with the property (A, A,h(A,A)) € W, for (A, A) sufficiently close to z =
0. Away from z = 0, W, may develop folds which preclude such a simple

description, but  is well defined on a neighborhood of z = 0.

To determine A requires a rewriting of the evolution equation. Represent

the general solution z(t) to (1.1) in the form

2(t) = A()¥ + AW)T + S(2) (1.4)

where A(t) is a complex-valued function of time, and S(t) represents the com-

ponent of z(t) transverse to the (¥, ¥)-plane. Precisely this means that

~

<\II,S) = (E’S) =0

where ¥ and ¥ are adjoint eigenvectors to ¥ and W respectively, and the bracket -
(e, ) denotes the inner product between adjoints and eigenvectors.. The bior-

" thogonality relations between adjoint eigenvectors and eigenvectors are denoted
by the pairings, ,
(¥, ¥) = (¥, ¥) =1

(%, F) = (¥, ) = 0.

The explicit realization of these pairings will vary from one application to the

next; here their only role is to allow the component of z(t) in the (¥, ¥)-plane

to be split off in an unambiguous way. The definition of A is then

To determine dA/dt and dS/dt, insert (1.4) into (1.1),

dA—
(fi—A\Il+i4\ll+(—i—€=

AV . 1.5
. I ” L.(AV + AV + S) + Nu(z) (1.5)
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Projecting with v gives

L@ u@ 09

where I have used (¥, L,S) = 0. This is true since ¥ is an eigenvec'tor‘for the

adjoint operator Lf‘:
(U, L,8) = (L,¥,S) = (AP, 5)=0.

Now subtract (dA/dt)¥ + (dA/dt)¥ from (1.5) to obtain the equation for trans-

verse dynamics:

= LS @) - (B L@ - T RE. )

Togetherv (1.6) and (1.7) are equivalent to (1.1); all that has been accomplished
is a decoupling of the A(¢) and S(t) dynamics at linear order. This is the desired
rewriting of the dynamics mentioned above. Note that the dA/dt equation is a
two dimensional system of 4ordixiary differential equations. However this system
is not autonomous since (¥, N,,(z)) depends on S(t). The equation for dS/dt is

an (n — 2) dimensional system of equations if the original problem occurs in n

dimensions, but when (1.1) is a partial differential equation then so is (1.7).

To see how this decomposition allows the coordinate function, h, to be
determined, observe that for a solution z°(t) lying in W, (near z = 0) (1.4)

becomes

z°(t) = A(t)¥ + A(t)T + S°(t) (1.8)
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where S¢(t) = h(A(t), A(t)). This means that there are two ways to calculate

| _ the transverse variation, dSc/dt, for these solutions. First, directly from (1.7),

dzc = LS+ N,(z°) — (¥, Ho(29)) = (W, N (2°)).

Secondly, using S° = h and (1.6)

d5° | dhdA L 9k Ok dA |
dt ~ |8Adt  gzdt|
Oh oh —_—
aA()\A+(‘II Ko(z))) +a(m+<w Nu(z)))
Equating these two results for dS¢/dt gives
dh 3h m—
A M+ (N wz)) + — (A + (¥, Mu(2))
94 | o (1.9)

= Luh+ Nu(2%) = (¥, Nau(2°) = (¥, Nu(29))
which is a nonlinear partial differential equation for h = h(A, A) to be solved
subject to A(0,0) = 0 and (¥, h) = (6, h) = 0. Geometrically, (1.9) expresses

the invariance of W, , and will be referred to as the invariance equation.

In practice, (1.9) cannot be solved exactly; fortunately it is sufficient to
obtain an asyﬁlptotic solution for h which is accurate for small |A|. For this
purpose, h is computed to some finite order as a power series in A, ‘A. This is
done explicitly in the examples discussed in Chapters 2 and 3. Wap (1977) has
shown that the possible nonuniqueness of W°does not affect this calculation;
even if there are several center manifolds, the asymptotic power series of each

center manifold is the same.
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Given h, the dynamics on W, is obtained by substituting (1.8) into (1.6).

dA - . | -
7 =M NE) (1.10)

This is now a two dimehsional, autonomous system,; since} z° is independent of S,
even the nonlinear terms are now decoupled. Thus near z = 0 the solufions in
W, have the form of (1.8) where A(t) satisfies (1.10). In terms of real céordinates
(z,y), (1.10) becomes, _ |
df” B A\(E Re(¥, Mu(2°)\
E(y) - (—A #)(y)+(lm(ql N (zc))) (1
» N

where A(t) = z(t) + iy(t) and A = p —1A.

Normal Forms for Hopf Bifurcation

For Hopf bifurcation with a simple complex conjugate pair of eigenvalues,
there is a two dimensional vector field, denoted V(¢), which determines the center
manifold dynamics. For a time asymptotic analysis of the bifurcation, only the
flow on the center manifold is relé’vant. Therefore once the center manifold
vector field is known any simplification of its structure is welcome. The theory of
normal forms allows this vector field to be simplified as much as possible. What
this means is that by making nonlinear coordinate changes, certain nonlinear
terms in V(¢) can be eliminated. There are however essential nonlinear terms

which cannot be removed and these determine the normal form of V().



Invariant Manifolds and Normal Forms { 27

In its philosophy and its results, normal form theory is closely related to
the techniques of averaging rand Lie transforms. Chow and Mallet-Paret (1977)
apply the averaging method to the calculation of normal forms, and in Chow and
Hale (1982) Lie series are used to implement averaging. For recent applications
of Lie methods to Hamiltonian mechanics and plasma physics see Cary (1981),

Cary and Kaufman (1981), and Littlejohn (1979).

In this section the normal form theory appropriate for two dimensional
Hopf bifurcation will be presented. .My discussion will be heuristic; treatments
which are more rigorous may be found in Holmes (1981), Takens (1974), or
Guckenheimer and Holmes (1983).' The theory is applied to an example in the

- next chapter.

Writing the two dimensional problem derived in (1.10) as

d :
T=V) cew (1.12)

where V(0) = 0, and V(¢) is assumed smooth enough to have a formal Taylor
expansion:

V(s) = VI(g) + V) + VI(g) - (1.13)

Here VU)(¢) is the 5** order piece of the expansion, it is a vector field whose

components are homogeneous polynomials in ¢ = (z,y) of degree 5. For Hopf

A\/z
V() =( l; )(y) (1.14)
—A

bifurcation,
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is the appropriate linear term. The conjugate eigenvalue pair is pu + 7A.

The goal is to remove V{?)(¢), V'3)(¢), etc. by coordinate changes which are
smooth in their dependence on ¢ and well deﬁned for all p'in a neighborhood of
p = 0. To determine if this can be done, let ®(¢) be a diﬁ'eoniorphism on R?

which fixes the origih and defines new coordinates 7.

Now choose the specfic form of ®(¢) to eliminate V(¥)(¢) (for fixed £ > 2) as
completely as possible. An additional requirement is to leave undisturbed terms
in V(¢) of degree less than k. These goals require a coordinate change of the

form,
o) =¢+¢*(¢) =1 (1.15)

where ¢%1(¢) is homogeneous of degree k. Higher order terms in ®(¢) are
irrelevant to the problem of removing V'¥)(¢) and additional lower order terms in
®(¢) would alter the lower order terms in V(¢). Near the origin ®(¢) is invertible

with an inverse given by

81 () = n— ™ (n) + O(**1) (1.16)

through k% order terms.

In the new coordinates, the vector field becomes

2 = V() = DH@™ (1) - V(@™ (n) (1.17)
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where

| 9%

(D(®™" ()i = 557" ().

Using (1.13), (1.15), and (1.16), the right hand side of (1.17) can be expanded
through terms of order k. First for V(®~! (1)) this gives
V(@™ (m) = V() + V) 44 VED () + V)
— DV () - ¢!¥)(n) + O(n**1)
and D®(®~! (n)) has the expansion
De(@7! (n) = (1 + D™} (&7 (m))
= I+Dg™(@™" (n) (1.19)

(1.18)

=7 +D¢(k)(n) + O(ﬂ(k+l))
where I is the identity operator. Multiplying (1.19) and (1.18) to get ¥(n) gives,
V(m) = V(0) +---VE () + V¥ () — DY () - ) ()
+ D¢ (n) - VI (n) + O(n**1).

This is the vector field in the new coordinates keeping terms of degree £ in

(1.20)

n; note that ®(¢) has not altered terms of degree less than k. At degree &
®(¢) introduces two new terms; appreciating their significance requires some

additional terminology.

Denote the set of vector fields on R*> whose components are homogeneous
polynomials of degree k by ¥'*¥)(R?). This set is a linear vector space of dimension

2k + 2. For example a possible basis for ¥{*/(R?) is

LECCGIE)
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so ¥!2/(R?) is six dimensional. Now consider a linear operator, L'¥), on ¥*)

defined by
LIk .y k), y(k)

L*(y)y= [y, Y] =Dy .-y —py) .y

where ¥ € ¥¥) and V1) is the linear term in (1.20). As indicated, L*)(Y) is
the Lie bracket of the two vector fields V') and Y. In térfns of L'*) V(n) in

(1.20) becomes
V() = V() + -+ VO () + (LB (6% )(m) + O(n*+).
Thus to eliminate V*)(n) entirely, $'*)(n) must solve

V® () + (19 (64 )(m) = 0. (L.21)
This may be done if and 6nly if the range of the linear operator L™ contains

V& (n).

If the range of L'*), denoted Ry, is all of ¥¥) then V!¥)(5) may be removed;
when R, does not equal ¥¥) then there is a direct sum decomposition of ¥(¥)

into Ry and a complementary subspace, R§,
¥R =R @ RE

and only components of V¥)(n) lying iﬁ R may be removed. The components
of V¥i(n) in RS are essential nonlinear telrms which may not be eliminated
by changing coordinates. These essential nonlinearities must be retained and
anal’yzed. A vector field containing only essential nonlinear terms is said to be

in normal form.
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Since ®(¢) left terms up to degree k£ — 1 unchanged, these coordinate
transformations to produce the normal form can be performed iteratively: first
the inessential quadratic terms aré removed, then the cubic terms, etc. In
practivce the normal form need only be compufed to some finite—hopefully low—
order. Specifyiﬁg the minimal number of terms required in the normal forms is
the problem of ﬁn;'te determinacy. This problem is briefly discussed at the close

[

of this chapter.

To understand the structure of the normal form for Hopf bifurcation, the
range of L'¥) must be computed. This is most easily accomplished when L¥) is

in diagonal form. From the definition of L{¥), the opefator has two terms,
¥y} =Dy - vV —_ py®) .y,

Diagonalizing the second term, DV{1) .Y, requires coordinates which diagonalize
DV these coordinates will eﬁ'ectiﬁ'ely diagonalize the first term as well. For

Hopf bifurcation DV!) has the form,

A
pyw =( g )
—A u)

relative to real coordinates (z, y) on R2. To diagonalize DV} starting from this

real basis, introduce the complex coordinates given by the linear transformation

O-()

T.

where
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and

pu A\ [u—iA 0
T T-1 =1 . )
| A 0  pu+iA

In (2,%) coordinates an element Y of ¥'¥)(R?) has the form
Yz(z) E) Yz(z(zx E)’ y(z’ E))
Y = =T
| Y+(z,2) Y,(2(z, %), (2 7)
where Y, and Y3 are homogeneous polynomials of degree k£ in 2,Z. The action

of L'¥) on Y is therefore ,
L(k)(Y) = pY .y _ py) Y

aY, aY, N , .
: ( 32 9% ((p - zA)z) (p — A 0 )(Y,)
(22 2= \u+inz 0 p+ir\¥z
0z 0z
) & ) £ .
((p. —~tA)z— + (p+1A)Z— — (u —1A)Y,
— 0z 0z .
\(p — iA)z% +(p + iA)E%—gz — (b +1A)Yz
By inspection, the eigenvectors of L¥) consist of vectors with Yz = 0 and Y,
a simple monomial and vice-vefsa; denote these eigenvectors by df’” and §ﬁ°’”
respectively. In (2, Z) coordinates we have,
Lisvk—i\ )
kd z(2)
E )=( )
g L j—01,.. k (1.22)
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(Note these eigenvectors are themselves vector fields.) There are obviously 2k+2
linearly independent eigenvectors so they span ¥(*¥). A simple calculation gives

the corresponding eigenvalues,
k) slk) (k) o(k1)
L ’f:t = >‘:|:_ _E:t _
where xg‘f” = (k— Dy +i(k — 2 £ DA.

| _Now the range of L'®) is easy to describe. Since the eigenvectors 5;’;‘” form
a basis, Ry is simply the linear span of the image vectors {)\g"l)fg"”}. When
all the eigenvalues are ﬁon—zéro' R =X ‘A"); if N eigenvalues happen to vanish
then dim R, = dim ¥ — N = 2k + 2 — N. Since £ > 2, ReA®" = 0
_.o'nly at criticality y. = 0. Furthermore A 3 0 implies Im )\2:’” =0 only»if
k—2l+1=0. Thus when k is even the eigenvalues cannot vanish, but when
k is odd the eigenvalues X‘_f"kﬂ)lﬂ and A5 *=1/2) Ganish at u = 0. This
means that any change of coordinates ®(¢), which removes the components of
V(k)(¢) along 62)_;.(1:4-1)/2) or EQ““‘_”/?’, will be singular at 4 = 0. Thus these
éomponents must be retained to obtain a normal form valid at 4 = 0. For
k even, there is no such diﬁiculty and nonlinear terms in V(¢) of even degree
can always be removéd. These observations lead to a simple prescription for

constructing the normal form transformation ®(¢), and determine the general

form of the normal form equations.

For terms, V'¥)(¢), of even degree (1.21) can be solved exactly. Expanding

¢*)(¢) and V*)(¢) in the eigenbasié,
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=3 { S + ¢‘_"”’£‘_"”’(_§)}

1=0
ok :
v = 3 {1 vt |
1=0
then plugging into (1.21) yields explicit solutions for the componehts of ¢“‘)(§).
(k) +
=TT (1.23)
Ay

For k odd, this also gives the desired components with the already noted ex-

ceptions ¢f"(¥*1)/2) ang ple(k=1)/2)

which are not determined, and must be
independently specified. This ambiguity in the coefficients of ®(¢) means that
the nofma.l form equations are not uniquely determined for g 7 0. For simplicity
I shall adopt the prescrlptlon ¢“° (k+1)/2) _ g and.¢g"‘k'l)/2) = 0; this choice
differs from that of Hassard and Wan (1978) and Hassard, Kazarinoff, and Wan

(1981).

Although (1.23) for the components of ®(¢) is very compact, in practice
the indicated calculations are laborious. The primary reason for this is the
nonlinearity of V(¢). Carrying out the normal form.transformation at quadratic

order,
o(c) = ¢ + ¢1(s),

introduces additional nonlinear terms of degree 3, 4, etc. In order to compute the
normal form through terms of degree k = 3, the terms of degree 3 contributed

by #'*)(¢) must be calculated. Computing the normal form through £ = 5
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requires similar bookkeeping on the higher order nonlinear‘ terms introduced by
62 (¢) and ¢'®)(¢). General formulas for extracting the normal form up to terms
- of fifth degree are derived in the.Appendix; these results generalize slightly the

previous formulas of Hassard and Wan (197.8).

To conclude this discussion of the Hopf bifurcation normal form, consider
the general form of the normal form equations. The original vector field V(¢)

may be expanded in the eigenbasis appropriaté for each subspace )(“‘).‘

5 = V() = V() + V(g o

_ where

k
VR ="

_ =0
for & > 2. The nonlinear change of coordinates, 7 = ®(¢), constructed above

[vii‘”’eiff”(c) + YD)

transforms V(¢) into the normal form vector field,

d - < (1) - (3)
F=Vm=7"m+7"°

: (m+ 37 m) +- -

where T)m(r]) = V{)(n) and for odd values of k> 1,

¥

~ (k) ~ (k. (k+1)/2) (k. 2 < (k.(k—1)/2) —1)/2
(m) = DT et ) 5 g k=1/2) (7).

~(k,(k+1)/2 ~ (k. (k—1)})/2
Here v‘+‘ /) and V(_'( /2)

are the components along eigenvectors in
the kernel of L'¥) at 4 = 0. They include the components of V(¢) plus the
contributions arising from ®(¢).

To reveal the dynamics of the normal form equations requires re-introducing

coordinates explicitly; real polar coordinates are the optimal choice. As an in-
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. termediate step, first rewrite the normal form equations in real cartesian coor-

Ef,-"(k+l)/2). and Eg‘(k—l)/z)

r4
" wlk(k+1)/2 k—1
(kk+1)/2) ( )
(k,(k+1)/2)

in complex coordinates, thus in terms of z = rcos 6 and y = rsind, £

. z kiof 1
k.(k 2 k— r-e

—1

dinates. This requires expressing § in real coordinates.

From (1.22)

becomes

'Similarly fg"(k—l’/2) in real coordinates is

ko—i0 (1) -
glei(k—1)/2) _ T ° ( ); . (1.25)
_ 2 \;

Overall the normal form vector field becomes

)= 0)

~ (k,(k+1)/2 ~ (k,(k—1)/2 e
+ Z [vL( +1}/ )Eg‘:.(k+1)/2_) +v(_( )/ ,E(_k’(k 1)/2)
k=3.5,...

(1.26)

where only odd k values are included in the summation. To express this in polar
variables (r, 8) is very simple since z + sy = re*?. Thus from (1.24), (1.25), and

(1.26)

dz dy _ dr . df

hated — (= Vet — (—A
= T (dt+zrdt)e (pz + Ay) + i(—Az + py)

S [vifv“‘*“/‘“ rk].

k=3.5,...

Canceling e'?, and then equating real and imaginary parts yields dr/dt and d8/dt,
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| ﬂ _ p,r + Z (Re .—b:l_:,(k+l)/2) ),rk

# k=35, (1.27)
e « (K (k+1)/2) \ gy '
a4 _ 4 (1 ) .

dt + k=§ mV, r

In practice these equations are computed only to some finite order, and one

typically énalyzes (1.2) which appeared in the Introduction.

dr
— = pr+a;r3 + apr® + O(r7)

3; | (1.28)
— = A+ bir? + bort + O(r®)
' - (k. (k+1)/2)

The final loose end is the explicit relation between the components V.
‘and the components of the original vector field V(¢). This relation must be
calculated order by- order in k; in the Appendix this is done for £ = 3 and

k=>5.

Nevertheless by considering the posstble values of the normal form coefficients
‘the “menu” of allowed dynamics may be determined. First of all, since the dr/dt
equation is independent of ¢, the radial dynamics is one dimensional. Near r = 0
for yv > 0 the unstable fixed point pushes. the solution curves 6utward; the subse-

quent effects of the nonlinear terms can be determined from

% = pr +arr® + O(%). (1.29)

For u > 0, the dr/dt = 0 equation has two solutions: the unstable fixed point
at r = 0 and rp = y/—pu/a; which is relevant only if (u/a;) < 0. When

applicable the solution r = ry describes a periodic orbit in the neighborhood of
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the fixed point. Whether the orbit appears for u < 0 (subcritical bifurcation)
or for p > 0 (supercritical bifurcation) depends on f.he algebraic sign of a at
p=20. (If a; = 0 at p = 0 then the r® term must be considered. An example
of this occurs in the next chaptér.) The stability of the periodic orbit is found
by linearizing about r=nrp. Piugging r =rg + ér into (1.29) gives

dér 2
7 = -521157‘ + O(((Sr) )

Thus, supercritical bifurcation produces a limit cycle, but subecritical bifl_lrcation
involves an unstable orbit. The phase portraits for these two cases appear in

Fig. (L1).

Final Remarks

The result obtained in (1.21) did not assume a particular form for the linear
term, V(1)(¢). In fact the assumption of a two dimensional vector field could
have easily been dropped. However the subsequent analysis, leading to the
normal form in (1.27), did depend on the specific form of the linear term in
(1.14) for Hopf bifurcation. If (1.14) is generalized to allow a real eigenvalue
or a second conjugate pair to cross the imaginary axis simultaneously with the
first conjugate pair ihen the normal form involves a three of four dimensional
system respectively. The normal form for bifurcation ai; a conjugate pair plus

a real eigenvalue has been analyzed by Guckenheimer (1981) and Scheurle and

Marsden (1982). For the normal form for bifurcation with two conjugate pairs
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(which occurs in the model of Chaptef 3) see Takens (1974) and Guckenheimer

and Holmes (1983).

There are additional special features of this derivation of the normal form |
for Hopf bifurcation which simpliﬁ.ed the calcula;tions. First, the eigenvectors of
L'®) form a basis for ¥'*¥); this allows the range of L(*) to be easily determined.
Secondly, at 4 = 0 the dimension of the kernel of LI¥) is either zero or two
'depending on whether k is even or ‘odd. Morepver, for odd k, the kernel dimension
is always two; if does not vary with k In more complicated bifurcations, Spiegel
and collaborators (1983) have found that t;he kernel dimension can increase with

k. When this happens it complicates the analysis of the bdegenerate bifurcations

in which the lowest order nonlinear terms vanish. -

As mentioned earlier, there is thé dilemma of how many nonlinear terms
in the normal form must be retained tQ determine the qualitative features of
the phase portrait. For the example of Hopf bifurcation, because the analysis
reduces to a one dimensional problem for the radial dynamics there is not much
difficulty. For u £ 0, there is at most a periodic orbit in /fhe vicinity of the
fixed point and both have definite linear stability i.e. they are hyperbolic; thus
the small perturbation of adding the a2r® term cannot alter the topology of the
phase portrait near r‘ = 0. For p = 0, the periodic orbit is absent vand the
stability of r = 0 is de.termined by air® + a,r® + ---. For r sufficiently small

stability is clearly controlled by a,r%®. Thus for a neighborhood of p = 0, we
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can expect the truncated equation

dr
E:pr+a1r3 al#O

to topologically determine the flow of V(¢) near ¢ = 0. How to truncate the
normal form eqﬁations when the dimension of the system is greater than one
is moré delicate, but sometimes can be analyzed using Takens’ r“vblowing up”
procedure. This technique is discussed in detail by Guckenheimer and Holmes

(1983).

The nqrmal form theory presented here is a restricted version of a more
general theory developed be Arnold (1972), Takens (1974), Broer (1981), and
otherg. In this more general theory, the deformatio-n of fhe phase portrait of the
original vector‘ field V(¢) into the phase portrait of the normal form equations
.is done in a continuous fashion by constructing an “intermediate” vector field
whose flow pushes the integral curvevs of V(¢) onto the integral curves of the
normal férm. ‘The change of coordinates ®(¢) then corresponds to the time-one
.map of this intermediate flow. Holmes (1981) provides an introduction to this

elegant geometric viewpoint.
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Figure Captions

Figure (1.1) (a) A typical spectrum for L, consists of real and conjugate
- pairs of eigenvalues. In infinite dime.nsional‘ problems, £, may also have
continuous spectrum. (b) The linear invariant subspaces E°, E°, and E*

determine the structure of the linearized flow.
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Figure (1.2) (a) The inv’ariant manifolds W*, W° and W* are the nonlinear
\ analogues of the linear eigenspaces. Each manifold pés_ses through z = 0
and is tangent theré to its corresponding éigenspace. (b) At criticality for a .
nondegénerate Hopf bifurcation the spectrum of L, has a simple conjugate
pair of eigenvalues'on the imaginary axis. The rest of the spectrum is in

the left half plane a finite distance away from the imaginary axis.
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Figure (1.3) (a) The center manifold W* for é nondegenerate Hopf bifurcation
is two dimensional. There is no unstable manifold, and the dimension of
the stable manifold isn—2 Where n is the dimension of the phase space.

(b) Near the fixed point, the invariant manifold W, may be described as the

graph of a function A(4, A).
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CHAPTER 2

Hopf Bifurcation in a Resonant 3-Wave Interaction

Understanding wave dynamics in a plasma requires, in part, an analysis
of the interactions between waves (Davidson (1972)). Frequently, the primary
interaction-to consider occurs between three waves whose frequencies w; and

wave numbers k; satisfy the resonance conditions:
W) =ws +w3 and ky = ko + k3.

When the wave amplitudes are small, this interaction dominates higher order
processes involving more waves. If wave-particle interactions (see Chapter 3) are
unimportant as well, then the three wave interaction may be the most important

ponlinear effect to consider.

Depending on the context, the three wave interaction may serve to produce
an instability, such as the “parametric decay” instability (Chen (1974)), or to

saturate the growth of an instability. In this chapter, a model for the saturation
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of a linearly unstable wé.ve via a three wave interaction is considered. The
unstable, high frequehcy wave couples to two damped, lower frequency waves
through.nonlinear interactions which are quadratic in the wave amplitudes.
Their interaction drains energy at high frequency into lower frequency modes.
‘A well known example of this process is the decay of a Langmuir wave into an

- ion-acoustic wave plus a second Langmuir wave (Davidson (1972)).

Under suitable conditioné an overall balance results between high frequency
growth and low frequency decay. This produces a stable equilibriuh in the wave
dynamics. At this equilibrium or fixed point, the wave amplitudes arevtime.
independent. I however the paraheters of the interaction are varied to produce
less damping or less eﬁ'ectivevcoupling, Athe.n this stable balance ié_destroyed.
Some time-dependent state replaces the equilibrium; the fixed point is no longer
a stablev solution. For f,he model of this 3-wave interaction considered here,
this transition prbvides an excellent examplé, of a Hopf bifurcation in finite

dimension.

Oﬁ physical grounds, if the damping of the stable modes is decreased, one
expects at some point they would no longer be able to arrest the growth of
the unstable mode. In the model, thig stability boundary marks the shift from
supercritical Hopf bifurcation (¢; < 0 in (1.28)) to subcritical Hopf bifurcation
(a; > 0 in (128)) The calculation of a; allows the location of this transition

to be predicted, and the normal form analysis yields a detailed understanding
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of the dynamics near this critical region.

The Model

My formulation of the problem follows Wersinger, Finn, and Ott (1980),
who studied the model numerically and found a rich bifurcational structure.
The model assumes for simplicity .a single resonant triad, and neglects the self-
consistent evolution of the background plasma. Each wave is represented by a
complex arﬁplitude

| C;=a;e%i  j=1,2,3
which evolves on a slow time scale. On a fast time scale the wave frequencies,

Wi, w2, ws, are assumed to be nearly resonant; the frequency mismatch is Q.
w); = we +wz + {2

The high frequency wave w; is unstable, and its linear growth rate is normalized‘.
to unity. For simplicity, the damped low frequency waves are assigned equal
damping and assumed to have the same magnitude: a> = a3. This latter
assumption is consistent with the aésumption of equal damping. In dimensionless

variables, the amplitude equations are then

d 5

ﬁ=z—ﬂy+z—2y“

dy

— =0z+y+2zy QT >0 (2.1)
dz=—2[‘z—2zz

dt
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where
T = @ COS ¢

Yy = asing¢

z = (a3)?

p=¢1—¢2— 93

[' = linear damping rate for C and Cj.

- A derivation of these equations from the dynamics of the C; appears in Wersinger,

Finn, and Ott (1980).

This particular set of amplitude equations exhibits very complex dynamics
and intricate sequences of bifurcations. Several studies. have extended the work -
of Wérsinger et al..(1980). Meunier, Bussac, and Laval (1980) reported ex‘tensive
numerical calculations of the bifurcation sequences, and Bussac (1982) developed
a dynamical theory in terms of one dimensional maps. Some results of this

chapter are independently described in those works.

Equation (2.1) defines a two parametef family of vector fields on R2, denoted

Va.r. The divergence of this family is
divVar = 2(1 -T).

The wave dynamics can have stable, bounded solutions only forI' > 1. If ' > 1
the flow of V. r contracts volumes. Since the amplitude equations are invariant
under the shift @ — —Q and y — —y, the frequency mismatch 2 may be

assumed to be positive.
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Va.r has two fixed points. There is a trivial fixed point at (z,y, z) = (0,0, 0)
corresponding to no waves; this solution is unstable since the high frequency

wave is unstable. There is a nontrivial fixed point at

—Qr Q2 |
F —_—
-1 M er—e)

(2:0; Yo, ZO) = (—F

whose stability depends on  and T'.

Linear Analysis

" The methods of the prefious chapter allow a detailed analysis of this non-
trivial equil_ibrium, and the wave.dynamicis in its neighborhood. The first step
is a linear stability analysis. This is an exercise in linear aigebra with two goals:
determine .the spectrum of the linearized dynamics at the fixed point and cast
the problem into the form of (1.1) with the linear operator in block diagonal

form. The calculations required are simply summarized.

Shift coordinates z — z + zo,y — y + Yo,z — 2z + zp to place the fixed

point at the origin, then (2.1) becomes

z 1 I+7)p 1\ ,z —y?
d .
— = - 1-— 0 +2
dt y P v y zy
z —(1 + p?) 0 0/ \z —zz

where v = 2I" and p = Q/(y — 1) . This is an evolution equation for ¢ = (z, y, z);

dg - '
5 = Lo+ N) (2'2),
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where

1 (I+7)p 1
L= —p 11—y 0
—7(1+p%) 0 0

and 0'

_.y“

N)=2 zy

—zz

The eigenvalues of L, denoted ), are roots of its characteristic polynomial,.
M+ (=22 + 1+ (L+ 270D +v(y = (1 + %) = 0.

For v > 2, all coéﬁ'icients are nonnegative and the constant term is positive; this
implies that any real root must be negative; in particular A; = 0 cannot oééur in
this region of parameter space. If eigenvalues with Re )\. = 0 occur, they must
form a conjugate pair +7A. Thus in the regions of parameter space where the
stability of the fixed point changes, there will be a negative real eigenvalue and

a conjugate pair. From the characteristic polynomial, a complex root, p + 1A,

satisfies
3t — A2 42y —=u+1+p3(1+27v) =0, (2.3)
p(p® = 3A%) + (v = 2)(u* — A?)
+1+ 71+ 2)p+9(r -1 +4%) =0 (2-4)

Although Q and 4 are the original physical parameters, 4 and « are more

convenient. This is because u directly measures the distance in parameter space
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from criticality .(p, = 0). To express the dependence of Q on (x,~) requires p as
a function of (g,4). This is found by solving (2.3) for A2, eliminating A? from
(2.4), and solving for p°.

o _ (1=2p)7° — 201 + 4p(p— 1)}y +2[1 — p(4p® —8p +5)]
72 —2(1—2u)y —2(1 - p) |
A2 =3u% +2(y—2u+ 1+ p%(1+27)

and Q = p(y — 1). The parameter space (£2,7) for 2 > 0, v > 0 corresponds
to 4 < 0.5 and 4 > 0 as shown in Fig. (2.1). The condition g = 0 determines
the curve in parameter space where a conjugate pair of eigenvalues crosses the

imaginary axis, and the fixed point loses stability in a Hopf bifurcation.

The eigenvectors of L satisfy
Lv.- = )\,-v,-'
where
—p(L+ 7))
v = -f(\)

py(1+ p*)(1 4+ 7)

with f(z) = 2z — z + 7(1 + p*). For the lone real eigenvalue X\;, denoted
henceforth as \, v; has real components. For the conjugate pair, A2 3 = p+ 1A,

the eigenvectors have real and imaginary parts:
V23 = W £ 1Y

where
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—pp(l+17)
w = A% — f(u)

pv(1 + p?)(1+7)

and '
—p(1+7)

u=A] 1-2A
0
are real vectors spanning a two dimensional subspace.
The linearly independent set {u, w, v} determines a linear transformation,

S, which puts L in block diagonal form. Let

—pp(1+17) —pA(1 + 1) —p(L+ )2
CS=|wow v = AT—f(u)  A(1-2A) =X\ f(N)

P71+ p*)(1 +7) 0 pr(1+ p*)(1+1)

then
det § = af*A[f(N) — f(p) + A* + (X — p)(1 — 2p)]

and

aA(1 — 2p) aBA A(FO) + M1 — 2))
L r) B R ORI S VM EWIINERYS

aA(2p —1) —afA A(A® — f(p) — p(1 —2p))

where & = (1 + p*) and 8 = p(1 + 7). With the change of coordinates ¢/ =
STle=(2,y,7'), (2.2) becomes

d¢' VT |
—— — 2-5
di J¢'+ N(¢) (2.5)
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where
u A O
J=S81LS=]|-A p O
0O 0 X

and N(¢') = S~ N(S¢).
The parameter dependence of N(¢'), though complicated, is easily worked

out. From the definition of §,

—B(uz’ + Ay' + 27 | Ry (¢")
S¢/ =1 (A* = f(w)e' +AQ —2p)y' — F(N)' | =] Re(") |
| - af(z' +2) Rs(¢")
Applying N(¢) to S¢' yields
| ~(Re(s)
N(Ss') =2| Ri(s")R:(s)
—Ry (¢")Rs(s")

Finally left ﬁultiplying by S~! gives N(¢').

This cOmpletes the linear analysis and formulation of the evolution equation
(2.5). Henceforth the primes on ¢/ = (z',y', z") will be dropped. ‘As a final
remark, the invariance of the trace, TrJ = Tr L, gives the dependence of A on
(7, 1),

A= =2u—(7v-2).
This relationship gives the remaining real eigenva.lﬁe when the conjugate pair is
on the imaginary axis, e.g. at p =0, |

A= —(y-2).
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If 4 =0 and 4y = 2, then all three eigenvalues are simultaneously critical. This
situation has been studied by Langford (1979), Guckenheimer (1981), Scheurle
and Marsde;i (1982), and others. It is not quite realized in the present _model.
Examining the characteristic polynomial and Fig. (2.1) reveals that for small )
ﬁ,'the surface 4 = 0 asymptotes to the vertical line ' ~ 1.3 or v .~ 2.6, and
does not reach 4y = 2.0. An interesting extension of the analysis in this chapt‘er
would be to seek a modified parameterization of (2.1) which would allow the

bifurcation with three eigenvalues to occur.

The Dynamics on the Center Manifold

To compute the normal form for this bifurcation it is sufficient to determine
the center manifold, W*, in the neighborhood of the fixed point. As discussed
in Chapter 1, near the fixed point the center manifold has coordinates defined

by a mapping from the (z, y)-plane to we. Denoting these coordinates by ¢,
| | oR2 o W° C RS

w(z,y) = (2,9, h(z,y))
where h(z,y) gives the z coordinate of W°.~
The invariance of W¢implies

2°(t) = h(2°(t), y°(8)) (2.7)

if ¢°(¢) = (z°(t), y°(¢), 2°(t)) is a solution to (2.5) with ¢¢(0) € W*. As shown in

Chapter 1, differentiating with respect to time leads to the invariance equation
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for h(z,y),

Ah(z,y) + Ni(z,y, h(z,y)) = z—glﬂz + Ay + Ni(z,y, h(z, y))]
| | (2.8)
+ S2 e+ g + Nale,y, bz, )

where the N; are defined by,

M(g) =1 N2(s) |
| Ns(s)
To extract an asymptotic solution for h(z,y), accurate near (z,y) = (0, 0),
expand h(z,y) in a power series about (0, 0) and determine the coefficients from
(2.8). | |

h(z,y) = Az, y) + A (z, y) + Kz, y) + - - (2.9)
where '

h?)(z,y) = Byz* + Boy® + Bszy

A3z, y) = C 2% + Caz’y + Cazy® + Cyy®

) (z,y) = D z* + Daz®y + D3z’y® + Dyzy® + Dsy?*.
Since h(O;O) = 0, there can be no constant term, and the tangency which W*
has with the (z,y)-plane requires A'!)(z,y) = 0. To facilitate the calculation
denote the coefficients in N(¢) by {N:;}.
N1z + Niay? + Nyjazy + Nygzz + Nisyz + Nig2?
N(¢) =] No1z® + Naoy® + Naszy + Noyzz + Nosyz + Nogz® (2.10)
N31z2 + Naay® + Naazy + N34zz + N3syz + Nagz?

~ Here N(¢) is homogeneous of degree two; this follows from its-definition in (2.5).
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Combining (2.9) with (2.8) determines the coefficients in h(z, y) in terms of
the {IV;;}. At quadratic order, (2-.8) becomes
)\(Bl z° + Bgy2- + Bgzy) + N3, 2 + N32y2 + N3szy

= (2B1z + Bsy)(uz + Ay) + (2B2y + Bsz)(—Az + py).
Equating the coeffcients of z2, y°, and zy determines the B;. '
_ 2A(N32 - N31) =+ (2[1 - )\)N33

B, =
s (2A)2 + (2u — N)?
AB3 + N3,
B =—3731
! 2% — )\
—ABj3 + N335
Bo =
2 55— %

The calculation of the cubic coefficients, C;, and the quartic coefficients, D.-,A
is similar but more tedious. The results are simply summarized. At cubic order

the balance in (2.8) is N
MRB)(z,y) + (Nasz + Na3sy)hP(z,y) = (23,12 + B3y)(N112% + Nyay® + Niszy)

+ (2Bay + Byz)(Na12* + Naay® + Naszy)
+ (3C,2° + 2Cszy + Cay°)(uz + Ay)

+ (Ca2® + 2C3zy + 3C,y%)(—Az + py)
which implies
_[BA%Z + (3 = 2)?][(8u — X)Ch — BAC] + 2A(3u — N)[(3p — \)C% + 3AC]

¢ (3A2 + (31 — N)2)2 + 4A2(3p — \)2
o, = BB \)CY + 3AC!, — 2A(3p — \)Cs
3A% + (3 — N)?
C, — C| + AC,
(31— )
O = ACy

“= By
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where

C| = BI(N{H —2N;31) — B3Ny
Ch = Bl(Nas - 2Nl3) 2By Ny + Ba(N34 — Ny — Nas)
C = —2BIN1) + BQ(N34 - 2N23) + B3(N35 — N3 — NQQ)

0'4 = BQ(N35 - 2N. ) BgNl)

Thus the C are calculated from the original nonlinear terms N;; and the
quadratic coefficients of h(z,y), then Cs, Cs, Cy, and Cy are computed in that

order.

Finally, the results of the quartic balance in (2.8) are

BA2[2A(2D" — DY) — (4 — \)D!]

D, =
YT (10A7 + (45 — N)2)? - (BA%)?
* (10A° + (4p — N)?)[2A(2D4 — D) + (4p — X)D”]
(10A2 + (4p — X)2)2 — (6A2)2
Dy — 2A(2D! — DY) — (4p — N\)DY + 6A*Dy
- 7 10A2 + (4 — N)?
3A(Dy — D2) — DY
D; = '
(4n —X)
AD; — D"
Dy = — "1
U
. —AD,-D!
Dy = ———— 5
- (4B—X)

where
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D!=D\ +BB,

D} = D) + B, B, + B3 B}

DS = D% + BB}, + B> B + B3 B},

D' =D, + B>B, + B3B;

D! =D} + B;B, |
with -
D), = Ci(3Ny, — Nas) + C2Nay
D), = C1(3N13 — Nas) + Ca(2Ny; + Nag — Nag) + 2N21Cs
D} = 3C1 N12 + C2(2N13 + Nog — N3s) + C3(2N23 + Nyg — N3y) + 3N3 Cy
D'y = 2C;Ny2 + C3(2N33 + N1z — N3s) + C4(3N23z — N3y)

Y/
Dy

= C3Ny2 + C4(3N22 — Nys)

and
Bll = Bl(2N14 - Ngs) + B3 Noy

B’2 = 2B; N5 + Bg(NH — N3 + N25) + 2Ns4 B>
BQ = BQ(2N25 - Nas) + Ny5B;.
In using these formulas, B"- and D’,- are first evaluated from the known

quadratic and cubic coefficients, then the D" can be computed. D is given in

terms of the D"

[

and D5 involves D;; knowing D, and D, fixes Dy, D3, and
Ds.

In this chapter, the Hopf normal form will be evaluated through terms of
fiftth degree. This means that the center manifold vecter field must be computed

through fifth order. To do this, h(z,y) is needed through fourth order (i.e.

qlia.rtic terms), since the nonlinear terms in N(¢) begin at second order. Thus
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the calculation of h(z,y) is complete.

" The center manifold dynamics is extracted.by restricting (2.5) to the center
ménifold, i.e. set z = h(z, y).. Since A by definition satisfies (2.8), the componeﬁt
~equation for dz/dt in (2.5) is automatically satisfied, and only thé two dimen-
sional flow on W¢ remains. (Note that the (z,y) components of (2.5) correspond
to (1.6). In this example the fox;mal projection by adjoint vectors amounts to
simply dropping the ’z componeht of (2.5).) To resume the notation of Chapter

1, write this flow as

where

u o A\/T N1122 + ngy2 + Nyszy
V(¢) = + . 5
-A u/\Y Nayz” + Naoy” + Nazzy
(Nuzh(ﬂ?, y) + N15yh(z, y) + Nle(h(Z, y))
+
Naszh(z,y) + Nasyh(z,y) + Nos(h(z,y))

w

).

(]

Thus, in the notation of (1.13),
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uz + Ay
V() =
—Az +py /
o Ni1z* + Niay® + Nyazy O
V() =_( |

Ny, .’52 =+ N2§y2 + Nggzy

Nusz + Nisy\
VOl(5) = KDz, )
Nosz + Nosy

 (Nuz+N (N |
V‘*’(§)=( i ”y)h‘”(z,yn( “)(hm(z,y))‘%

Nasz + Nosy Nag
] Nisz + Nisy Nie
WW0=( h)(z,y) + 2 h3)(z, y)a') (2, y).
Nayz + Nasy 28

Examining these formulas r'eveals the essential role played by the curva-
ture of We. A satisfactory an'alysisv of the dynamics must take into account
h1?)/(z,y) 5% 0. If this curvature were neglected and h(z,g) = 0 assumed, then
geometrically the nonlinear manifold, W°, would be replaced by the linear (z, y)-
" plane. The effect on V(¢) would be to leave V((¢) and V3 (¢) unchanged, but
enforce VW) (¢) = 0 for 5 > 3. However, V3)(¢) is required to correctly deter-
mine the normal form coefficients a; énd by in (1.28). From (1.27), recall that
these céeﬂicients are fixed by the terms of degree 3 lying in the kernel of the
~operator L!*). Neglecting V3)(¢) would in general alter these terms; hence the

effects of Al?)(z,y) # 0 must be included.
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~

Analysis of the Normal Form

The normal form theory of Chapter 1 allows the two dimensional flow

dg
== ()

to be rewritten in polar coordinates,

dr : |

— = #r+a1(w, )’ + ax(w, )" + O(r7) ~ (2.113)
df \ |

— = —h+ b1, ) + b, M) + O(r°). (2.11b)

The formulas which express the coefficients a;, a2, b1, and b2 in terms of the
coefficients in V2)(¢), VG)(5), V1#)(¢), and V() are explicitly derived in the

Appendix.

The normal form coefficient a; is of greatest interest since it controls the
appearance or disappearance of the periodic orbit. For small r there are two
solutions to dr/dt = 0.

' dr

3
— s ur+ayr’ =90
at ] 1

The r = 0 solution is uhstable when u > 0; if ¢y(g = 0,7) < 0 then the new
stable solution is rg = v/(—u/a;) which corresponds to a stable periodic orbit.
If a;(0,~) > 0 this second solution is relevant for 4 < 0 and then describes an

unstable periodic orbit.

The graph of a;(0,v) appears in Fig. (2.2a). Notice that a;(0,~) changes

sign at 4. ~ 3.29. Only for damping rates greater than 4, will the instability
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saturate in 2 small amplitude oscillation. For '7 < 7. the normal form implies
that there is no stable attractor in the neighborhood of r = 0; in fact, numerical |

studies indicate the wave amplitudes grow without bound.

In the vicinity of (y = 7., u = 0), the stable Hopf orbit must be destréyed
in a separate bifurcation. This is clear, since fér 7 < 9,0 < p <K 1.0 thereis no
periodic orbit in the neighbofhood of the fixed point. Thus the Hopf bifurcation
surféce at 4 = 0 in parameter space must intersect at least one additional

bifurcation surface at (y = ., up = 0).

| At (¥ = 4., 4 = 0) the instability of r = 0 is a degenerate Hopf bifurcation.
It is one of the simplest examples of a co-dimension two bifurcation. The analysis
of this degenerate case in Golubitsky and Langford (1981) showé that there is
only one bifurcation surface which intersects the Hopf surface. This second
surface marks parameter values at which the stable Hopf orbit collides with an
unstable périodic orbit and both disappear. In the return map for the Hopf orbit,
this collision is a saddle-node bifurcation which annihilates two fixed points (see
Guckenheimer (1984)). For this reason, this second surface may be referred to as

the saddle-node surface; it was discovered numerically by Meunier et al. (1980).

To determine how the saddle-node surface approaches the Hopf surface (at
g = 0) requires an analysis which includes both periodic orbits. Since the saddle-
node surface intersects the Hopf surface, the saddle-node bifurcation occurs for

arbitrarily small positive values of u; see Fig. (2.6). This means that the two
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orbits can ‘collide while the Hopf orbit is still in a very small neighborhood of
r = 0. Under these circuinstances the local attractivity vo_f W¢enear r = 0 will
not permit a peri.odic orbit wh'ich.is not in fact contain;d in W¢. For this reason,
both periodic orbits must lie in W* and their collision is a feature of the center
nianif_old dynamics.

When this saddle-node bifurcatién occurs-af, small g and small r, (2.11b) |

- implies that the flow is cylindrically symmetric. Therefore (2.11a) for dr/dt

suffices to des_cribe the bifurcation.

At the saddle-node bifurcation the linear stability of the Hopf orbit is lost,
but the orbit still exists. The bifurcation surface 1s determined by these two
facts. The existence of the Hopf orbit at criticality means that r = ry is still a

solution to dr/dt = 0. From (2.11a) this implies
p+arrg +aerg =0 (2.12)

where the r§ term must be kept since a; = 0 is allowed. Linearizing (2.11a)
about theHopf orbit determines the orbit’s linear stability within W*. For p =

r—ro,
dp .
_(-i!t% = (u+ 3a,r3 + 5asry)p + - - -

Linear stability of p = 0 changes when

4+ 3ars + 5asry = 0. (2.13)

Equations (2.12) and (2.13) suffice to determine the saddle-node surface at
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small g. To eliminate rg, subtract (2.12) from (2.13) to get
2r2(2a2rs +a;) = 0.

Here a solution for ry 7% 0 exists only if

neo (2.14)
a2
then
rg = >0
a

Ap = : » (2.15)

Equations (2.14) and (2.15) describe. the saddle-node surface for 0 < p <K
1. There are two cases: the saddle-node surface Branches from thé point (a; =
0, # = 0) to the right (a; < 0) or to the left (a, > 0) depending on the algebraic
sign of a». These cases are sketched in Fig. (2.3). The graph of a3(0,7) appears

in Fig. (2.2a); at ¥ = 7., a» is positive and the situation in Fig. (2.3b) applies.

The normal form coefficients b; and bo describe amplitude dependent cor- .
rections to the linear frequency, A. Their dependence on v at 4 = 0 is shown in

Fig. (2.2b).

The information obtained from this normal form analysis was checked
numerically. Fig. (2.4) shows the Hopf bifurcation to a stable limit cycle for

4 > 4. As v decreases (at fixed g = 0.01), the limit cycle loses stability at ¥ ~
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3.55. This transition appears in Fig. (25), and represents the “experimental”

manifestation of the global saddle-node bifurcation.

A comparison of the theoretical saddle-node surface and the numerically

determined surface appe‘ars in Table 2.1 and Fig. (2.6).

Table 2.1 »

b Y¢(Normal Form) 4:(Numerical)
0.005 v 3.57 3.49
0.0075 : 3.66 3.53

0.01 3.74 3.55

0.02 4.08 ' 3.70

0.03 4.52 , 3.75

0.04 5.08 . 3.78

005 | 572 - - 3.85

0.10 7.64 | 4.05

Comparison of numerical results with the saddle-node surface

computed from equation (2.15)

The results from (2.15) compare poorly for u > 0.01; it is not clear why the

range of validity is so restricted.

A Digression: Absence of Secondary Hopf Bifurcation

There is a very simple argument which shows that in this model it is not

possible to have a secondary Hopf bifurcation to an attracting torus. This
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argument also applies to a number of other finite dimensional systems which

exhibit period doubling cascades; see Feigenbaum (1980) and McLaughlin (1981).

The linear stability of a periodic orbit is determined by the eigenvalues
of its linearized return map, or equivalently by the Floquet multipliers qf the
vector field obtained by linearizing the evolution eqﬁation (equation (2.5) for
example) about the periodic orbit. If all the multipliers are within the unit
circle, the orbit is iinearly stable. The bifurcations of a stable orbit occur when
multipliers escape fror.n-the unit circle as parameters in the evolution equation
are varied. For example, the saddle-node bifurcation jﬁst discussed corresponds
to a real multiplier exiting the unit cir(:le at -Fl. Period doublin'g‘corresponds to
a »muitip.lier passing through —1, and secondary Hopf bifurcation occurs when
a complex conjugate pair of multipliers leave the unit circle at points which are

not low order roots of unity (Guckenheimer (1984)).

In R3, there is a simple criterion for-a bifurcation involving a conjugate pair
of multipliers. Let the evolution equation

‘;_f= (z) ze®

have a periodic orbit, z.(¢), with period .

z,.(t) = z.(t + 7).

The linear stability of z.(t) is determined from the multipliers of the linearized

equation:
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%ﬁ = DV{(z.(t)) - 6z.

There are three multipliers, but one is always equal to unity since perturbations
§z along the orbit ,(t) have strictly neutral stability (Iooss and Joseph (1980)).
A simple result from Floquet theory relates the product of the multipliers,

bl p2p3, to the trace of DV(z,(t)) (Jordan and Smith (1977)).

pupos = exp | [ 1 pvee ) | e

Now in the stability problem for z,(t) when a conjugate pair of multipliers,

p1 = Pz, cross the unit circle, (2.18) reduces to
1 =-exp [/0" Tr DV (z.(t)) dt} : (2.17)
since p3 =1 as noted above. Equation (2.17) implies.a .neceaaar..z/ and auﬁici‘ent- ‘
condition for criticality: |
/(;' Tr DV (z.(t))dt = 0.
Since Tr DV (z) = (div V')(z), this is equivalent to

| /0 f(div V)(z.(t)dt =0. (2.18)

Equation (2.18) requires that the average divergence of V(z) around z.(t)
vanish at criticality for a bifurcation involviné a conjugate pair;of multipliers.
This is a geometrically intuitive requirement. For the 3-wave model the left hand
side of (2.18) is trivial to evaluate since div Vo r = 2(1—T). HenceI' =~/2 =1

determines the curve in parameter space along which these bifurcations occur.
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However fér I' < 1, the flow expands volumes, and there cannot exist a stable,
zero volume attractor. In particular this shows that a limit cycle for I' > 1
cannot bifurcate to a stable_ torus since the torus would have to exist for I' < 1.
The only allowed bifurcationé are those involving real multipliers at +1, and
indeed both types are observed in the numerical studies of Wersinger, Finn, and

Ott (1980) and Meunier, Bussac, and Laval (1980).
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Figure Captions

Figure (2.1) Surfaces of constant u in the ({2,T) parameter space. The Hopf
bifurcation surface is 4 = 0.. Note that p is never larger than 0.5 despite

the fact that 2 and I' are each unbounded._
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Figure (2.2a) At criticality (4 = 0) the normal form coefficients a; and a3 in
(2.11a) are plotted against v (y = 2I). The vertical scale is logarithmic in

terms of the function f(a) = sgn(a)log(1.0 + a).
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Figure (2.2b) At criticality the normal form coefficients 5; and b in (2.11a)
are plotted logarithmically against 4. The function f(b) is the same as in

Fig. (2.2a).
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Figure (2.3) For the degenerate Hopf bifurcation corresponding to a; = 0 and
a» #0 thére are two possibilities depending on the sign of a2 at criticality.
For a2 > 0, the saddle-node surface (SN) branches toward negative values
of ay. For as < 0, the SN surface branches toward positive values of a;.
The unstable periodic orbit which collides with the stable Hopf orbit is npt

shown.
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Figure (2.4a) z(t) from (2.1) versus t. The horizontal line shows the z coor-

dinate of the stable fixed point.
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Figure (2.4b) Same as in Fig. (2.4a) except now u = 0.1. The fixed poiht is

now unstable, and has been replaced by a stable oscillation.
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Figure (2.5a) z(t) from (2.1) versus t. The horizontal line shows the z coor-
dinate of the unstable fixed point. The trajectory relaxes onto the stable

Hopf orbit.
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Figure (2.5b) Same as in Fig. (2.5a) except v = 3.50 has been decreased
across the saddle-node bifurcation surface. No stable orbit remains. Notice

‘the difference in the vertical scale between Fig. (2.5a) and Fig. (25b) i
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Figure (2.8) H denotes the Hopf bifurcation surface (# = 0). SN is the saddle-
| node surface computed from (2.15). The points (e) are the numerical data

where the transition in Figs. (2.5a) and (2.5b) was detected.
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CHAPTER 3

Hopf Bifurcation in Plasma Kinetic Theory

In nonlinear plasma theory a distinction is frequently made between wave-
wave interactions and wave-particle interactions. If the dynamical fields, such
as the one 4pa.rticle distribution function, are Fourier decomposed in space and
time and the plasma djnamics rewritten in terms of the Fourier émplitudes _
then roughly speaking nonlinear terins which couple spafially inhémogeneous
Fourier modes are wave-wave interactions while nonlinear couplings between
homogeneous and inhomogeneous modes are wévéparticie interactions. In the

last chapter a simple model which derived from a mode truncation keeping

| only three inhomogeneous modes was considered. The characterization of the

model as a 3-wave interaction reflects this choice of modes in the truncation.
In this chapter instabilities driven by wave-particle interactions are discussed as

Hopf bifurcations. These instabilities serve as sources of waves in an otherwise
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quiescent plasma, and therefore provide the raw material for the wave-wave

interactions discussed in Chapter 2.

Wave-particlé interactidns produce unstable wave growth when the distribu-
tion of particles provides the _waLve4 with a source of ‘energy. One way this can
occur is if some particles é._re in resonance with the wave; this requires that the
particle velocity match the wave phése velocity. Reéonant particles feel a sta-
. tionary electric ﬁeld_vdue to the wave. If the resonant particles are distributed
about the phase velocity so that more particles are retarded bybthis electric field
than are accelerated, the net effect of the interaction is é transfe.r of energy
to the wave. The meqhanism of such an instability depends crucially on the
distribution of particles in velocity; consequently a kinetic theory (rathef than

a fluid model) is required to study these instabilities.

Collisions between particles is a natural form of dissipation i‘n,kinetic theory,
and collisions are an important mechanism in the relaxation to thermodynamic
equilibrium. Including collisions in a model thus satisfies the dissipative pi'e-
requisite for Hopf bifurcation, but at the cost of making thermodynamic equi-
librium essentially the unique fixed point for the dynamics. This is physically
reasonable, but awkward for the instability analysis since the distribution which -
exhibits the resonance driven instability is not an equilibrium distribution. Thus

-the instability occurs on top of the collisional relaxation to equilibrium. Under

such circumstances it may not be fruitful to speak of the resonant instability
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and the collisional relaxation as distinet phenomena unless the time scales for
1V;hAe two processes are reasoﬁably well separated. In the case for which unstable
waves develop, interact, and saturate on a time scale short compared to the
time scale required to reach thermodynamié equilibrium, then neglecting the
collisional relaxation of the initial distribution and keeping only the eﬁ'ects of
collisions on the evolution of ‘the waves is a useful approximation. This is the

approximation used in this chapter to extract ah aufonomous kinetic equation.
for the dynamics of the perturbations. This leads to an interesting model which
exhibits the familiar electrostatic instabilities, but is too idealized to quantité.—

tively describe a laboratory plasma.

The Model

To discuss electrbstatic instabilities, consider a one dimensional plasma with
the electron dynamics given by the Vlasov-Poisson equations supplemented by

a collision term, C(F).

OF _ OF & 040F
at dz m dz v

: oo (3-1)
-9 ,
—— = 4meng|l — dv' F
dz* —oo
Here FF = F(z,v,t) is the electron distribution normalized such that
no / dv' F(z,v',t) = n(z,t), number density of electrons
= (3.2)

L
/ dz n(z,t) = N, total number of electrons
0
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and ¢ = ¢(z,t) is the self-consistent electrostatic potential. The plasma has
finite length 0 < z < L with periodic boundary conditioﬁs, an average electron
| density ng = N /VL, and an electron charge/mass ratio of —e/m. The dynamics
of ions and neutral atoms is ignored except that a fixed background of ions
provides overall charge neutrality in the Poisson equation and electron-ion or

electron-neutral collisions could be included in C(F).

Let F = Fp(v) denote a spatially uniform distribution whose stability
against electrostatic perturbations is of interest. Let F; and F» be solutions

0 (3.-1) corresponding to slightly different initial conditions,
Fy(z,v,t =0) = Fy(v)

| Fa(z,v,t =0) = Fo(v) + f(z,v,t =0)
with f(z,v,t) = Fy(z,v,t) — Fi(z,v,t). Note that '

[F] dstostem =

since IV is fixed for both initial conditions. The dynamics for f(z, v, t) is obtained

by subtracting (3.1) for F» from (3.1) for F; which yields,

af Of e|0¢20F> 3¢, 0F
8t+vaz+ [8:1: dv dz Odv

Using the déﬁnition b = ¢ — ¢i and the Poisson equation for ¢ and ¢,, the

} —oF)-oF).  (33)

nonlinear terms in (3.3) become

0¢20F, 9¢,9F, 3¢1§i+a¢f FL +f)
dz By dz Qv 8z v Oz dv

with ¢, given in terms of f by,

92 =
‘éf = 47ren0/ dv' f(z,v',t). o (3.9)

8222 —00
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So (3.3) becomes
of 0  e[0619] 091 9(F + )

at 082: m| 8z Ov oz dv

=C(Fy + f)=C(F\). (3.53)

Since the initial condition for F; is spatially homogeneous, in the absence

of applied electric fields the initial electric field will be zero; i.e.

09,
—(z,t =0)=0.
az (Z, ) .

For collision models, C(F), considered here the spatial Fourier expansion
C(F) =Y _ e*=Cy(F)
: k ’ : o
has the property that when F(z,v) is sp'atiially homogeneous then Ck(F) = 0 for
k 7 0. This prvoperty»of' C(F) insures that as F; evolves spatial inhouiogeneities
do not develop and t:herefore 8,461 = 0 for t > 0. Hence the term 9.¢,3,f in

(3.5a) vanishes. If moreover C(F) is linear then
C(Fy + [) - C(Fy) = C(/)

and (3.5a) simplifies to
8] _ 3f . e 365 8(F+J)

—5?+vé-;+maz av

=c(). (3.5b)

Equations (3.5b) and (3.4) for the dynamics of f are not autonomous since
Fy; depends on time. The time dependence of F) arises because in general
C(Fy) # 0 for interesting choices of Fy and realistic choices for C(F). This
is simply the collisional relaxation of Fy méntioned earlier. When Fy is unstable

to electrostatic waves, then f(z,v,t) describes the dynamics of these waves. If
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the relaxation of F; is slower than the growth of the waves, an autonomous
approximate description of the waves is obtained by neglecting the variation
of Fy from its initial state, i.e. replace 9,(F1 + f) by 84(Fo + f). Then the |

evolution of f is described by,b
8f 8f e 0b70(Fo+f)

E“’E ;82 dv

i = 4mwenyg / dv' f(z,v',¢t).

)
3:2:" _ — o0

= C(f)
(3.6)

The approximation 8,(Fy + f) — 8.(Fo + f) doés have an unrealistic
qqalitative effect on the physics which should be borne in mind. In the plasma
configurations considered below, the stationary solution f = 0 for (3.6) will
be (initially) stable. If we consider the original problem (3.5b), then f = O
corresponds to a non-stationary solution. The approximation 3,(F; +. f) -
3u(Fo + f) serves to stabilize this non-equilibrium distribution, giving. it an
exaggerated robustness agaiﬁst perturbations by retaining only those dissipative
effects which act to restore f = 0. For example when f = 0 corresponds
" to a beam-plasma distribution (see Fig. (3.3a)), the replacement 8,(Fy + f) —
du(Fo + f) servesto sté.bilize the beam. Effectively those collisional effects which
“replenish” the beam are preferentially retained. This exaggerates the amount
of energy available to a beam-plasma instablility and inflates the saturated

- amplitudes of the unstable waves.

The choice for C(F) will vary depending on the plasma in which the waves

occur. For a fully ionized gas, a Fokker-Planck description yields a linear collision
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operator. A simpler case is the Krook collision model for a weakly ionized gas
(Krall and Trivelpiece (1973)); this model will be considered here. The Krook

form for C(F) is
C(F) = ve(Feq = F), ve >0

where Fe(z,v,t) = n(z,t)geq(v)/no and
W1

Jeq(v) = (2:ka) e 2k

n(z,%) =/ dv' F(z,v',t).

) —oo

3

~

For a weakly ionized gas, the dominant collisions are with neutral atoms,'and
these may be qualitatively viewed as simply exerting a frictional drag on the
electrons which brings the electron species to rest with a locally Maxwellian
distribution, #.,. This collision model conserves local particle density

o0 .

/ dv' C(F) =0,

-_—00
but not momentum or energy since the momentum and energy transferred to
the neutrals is lost if the dynamics of the neutrals is ignored. Now the right

hand side of (3.6) becomes

oC

C(f) = =V, f(zr v, t) - gcq(v)/ dv’ f(zx v,r t) J . (3’7)

—o0

Combining (3.6) and (3.7) produces an evolution equation for f,

af
E—Lf+}/(f) (3.8)v
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where ¢7(z,t) has been eliminated using the Fourier expansions for f and ¢;

f(z,v,t) = Z fi(v, t)e*=
k
br(z,8) = dult)e™>
k

in Poisson’s equation. In these sums the allowed k values are integer multiples

of 2x/L. The linear operator in (3.8) is defined by

Lf= L(Z fke"'“)‘ =) e*= (L fi)(v) (3.9)
B e

13

where

LOfO = ~v.fo

Lefi = —[(ikv +Ve)fi + ikﬂk_/

(> =]

-0

dv’ fk(v')] | : kF#0

with

nk(v)

we \2 8 Fy we) |
(%) G+ (5ot
and the nonlinear operator in (3.8) is

N(f) = N fre®=)
k

— ilz w2 dfiox [T [y
—Ze ZTT/‘ dv fk(v,t).

{ k50 e

(3.10)

Here w,®> = 4me?>ng/m is the plasma frequency.

In (3.8), the point f = 0 is a stationary solution; physically it corresponds to

the distribution function Fy(v). The linear stability of f = 0 is now considered.
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Linear Spectrum

AY

If v = 0in (3.9), then L reduces -to the linear operator which appears in
the evolution equation defined by the V_lasof-Poissdh equations. The spectral
theory for the Vlasov-Poisson operator is well developed. N. van Kampen (1955)
considered the case when Fy is a Maxwellian and showed that the spéctr_lim of
L, o(L), consisted of the imaginary axis with associated eigenfunctions which
were distributions; there was no discrete spectrum and fhere were ﬁo nonsingular
eigenfunctions. Case (1959) analyzed L for general Fo and found, in addition
to vanb Kampen’s continuous spectrum, there could be discrete spectrum with
nonsingular eigenfunctions when a certain function, the dispersion function, had
.zeros; for Fo a ‘Maxwellian; the dispersion function does not vanish so only
the van Kampen cdntinﬁum remains. Case aléo defined an adjoint operator,
L?, whose spectrum coincided with o(L) and whosev eigenfunctions satisfied
biorthogonality relations with the eigenfunctions of L. Moreover Case proved a

completeness theorem for the eigenfunctions of L.

- Subsequent applic‘ations uncovered‘two problems. Case’s results applied to
problems for which f,he dispersion function had simple roots, and the extension
to degenerate roots was not clear. Also for the particular instance of a simple
real root .of the dispersion function it was discovered that there were two eigen-
functions for LT, but only one eigenfunction of L In response to the latter

problem, Siewart (1977) constructed a second solution to



Hopf Bifurcation in Plasma Kinetic Theory 98

af
5 = L7

which could be combined with Case’s eigenfunction to restore the biorthogonality
relations and completeness theorem. Case (1978) reviewed Siewart’s construction
and extended the entire method to include roots of the dispersion function of

arbitrary multiplicity..

In a separate development Arthur, Greenberg, and Zweifel (1977) derived
a spectral theorem for L using resolvent integration techniques which had been
developed for a similar operator in neutron transport thedry. They enlarged the
scope of Case’s completeness results and also treated the case of a degenerate

root for thé‘dispersion function.

‘Case’s normal mode analysis éan be carried over to the ve. > 0 problem in
this chapter. Since compléteness results are not necessary, a spectral theqrem
is not required. Furthermore only complex roots of the dispersion function are
relevant for the collisional instability so the complications associated with réal
roots don’t come up. In the discussion below it is assumed that the dispersion

function has at most simple roots.

For v, > 04, o(L) is determined by solutions to

LU =\¥ (3.11)

L poo
/ / dz dv ¥(z,v) = 0.
0 -0

subject to
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The latter requirement is imposed in order to be consistent with the analogous

property of f. Using (3.9) and the Fourier expansion of ¥
¥(z,v) = Z Vi (v)e'*=
SN — _

then (3.11) becomes
LO\I’() = —V,;-‘I’O = )\\I’o

(= =]

(3.12) |

—-—C

LeWy = —|(ikv + ve) ¥y + ikﬁk/ dv’ \Pk(v')] =2V,  kFO.

'From the equation for k = 0, it is clear that ¥(z, v) = ¥y (v) is an eigenfunc-
tion with eigenvalue A\ = —v,. Thus spatially homogeneous perturbations are

uniformly damped; these eigenfunctions clearly cannot produce an instability.

" For k 7 0, (3.12) can be rewritten, using the definition of L in (3.9), to’

obtain _
(v — 2)¥i(v) = —qk(v)/ dv' Ui (v') (3.13)
. -0
where z = —(v, + \)/1k. The following argument shows that the case where

fjooo dv' ¥ = 0 does not yield eigenfunctions. If f_°°°° dv’ ¥y = 0 then Wy
satisfies ..

(v—2)¥r=0.
For Im z 5 0 clearly ¥y = 0; when Imz = 0 then v, = C8(v — 2z) is the
distribution which solves (3.13), but the condition fjooo dv' ¥ = 0 implies C =

0. Hence if ffcoo dv' ¥, = 0 then W; = 0 and there are no nontrivial solutions.

Since (3.13) is linear in W, the normalization



Hopf Bifurcation in Plasma Kinetic Theory l 100

/oo dv' Up(v') =1  (3.14)

—_c

can be imposed, then (3.13) becomes
(v — 2)¥k(v) = —m(v). (3.15)

This is precisely the eigenvalue problem analyzed by Case (1959) except that

here nx(v) has an additional term, ¢v.g.q/k, because v, # 0.

For Im z 5 0, (3.15) is easily solved for Wy,

We(v) = =) (3.16).

v—z2

Furthermore the normalization condition (3.14) implies

(e =]

Ak-(z) =1+ / av 2 g | (3.17)

—0 vl — 2

Ax(z) is Case’s dispersion function, and this is his result that a complez root of

Ak(z) determines an eigenfunction

¥(z, v) = e‘kz(l"—"—(ﬁ)—), (3.18)

v—=z

and an eigenvalue A = —v, — tkz of L. Moreover since -

nk(v) = n—k (v),

it follows from (3.17) that if zp is a root of Ag, then Zg is a root of A_ . Sothereis .

a complex conjugate pair of eigenvalues (with complex conjugate eigenfunctions)

AN = —v,—tkzg

Ay = —v, —i(—k)Zg = —v. +1kZg = N
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corresponding to the root zo. Because linear instability requires Re \ = 0, it is

these elements of o(L) corresponding to Im z % 0 which are of greatest interest.

- Now consider (3.15) for 2 real, i.e. z=1r € R. The general solution is now

a distribution because the left hand side of (3.15) vanishes at v = r.

Vi (v) = Pr (_‘jk_(}j_)_) + ')\k(v)ﬁ(vv—— r) (3;19)

v—r

where A\ (v) is determined by the normalization of Wy,

(o ]

Ae(r) = 1+ Pr / g 1) - (3.20)

—o0 v —r

Here Pr denotes the Cauchy principal value of the integral.

For these solutions to be well behaved functions of v requires e(r) =
Ak(r) = 0. This can be restated in terms of the boundary values of the dispersion
function on the cut; see Roos (1969).

Af(r) = 6151(1) Ax(r £1€)

oo (o) (3.21)
=1+ Pr/ dy' T trn(r)

v —r
-or

Af (r) = Ne{r) 2 imni(r).

So in the case of z real, the well behaved eigenfunctions correspond to real roots
of Ak(z) which furthermore satisfy the dual conditions \g(r) = 0 and nx(r) = 0.
When r is not a root of Ax(z) then it corresponds to a point in the (van Kampen)

continuous spectrum for this operator.
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For the collisionless problem (v, = 0) considered by Case, ng(v) is a‘real
valued function which vanishes at the critical points of Fy. For v, > 0, if Jeq(v)
is chosen to be some smooth positive function which vanishes only as |v| — oo,
then nk(v) defined in (3.9) will vanish only as |v] — oo, and there will be no
finite real roots of Ax(z) which generate eigenva;lues. In this case the line A\ =
—v, — tkr, —00o < r < o0, corresponds to the continuous spectrum. The

general picture for o(L) is shown in Fig. (3.1a).

Adjoints and Biorthogonality

To define an adjoint operator introduce the_‘complt_a)_( innep product,
(9, V) = /O‘L'/:: dz dv ¢(z, v)¥(z,v) (3.22)
then L is defined .to satisfy
(LT¢, W) = (¢, L V). (3.23)

Using (3.9) for L, (3.23) implies

LT = U(‘Z e"‘=¢>k(v)) =) e*=(L] ¢x)(v) (3.24)
ko

=
where

(Lo ¢0)(v) = —vedo(v)

(e ]

(L60)(0) = (ikw — ve)gulo) + ik [ do! Tiguls), £ 0.

-0

The adjoint eigenvalue problem

L1é = 2é (3.25)
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is similar to the eigenvalue problem for L. From (3.24) and (3.25) the spatially
homogeneous functions ¢(z,v) = Po(v) are eigenfunctions with eigenvalue A\ =

—V,.

For k 5 0, after taking into account the definition of LZ, (3.25) becomes

(v—2)p = — / Cdv m(v)gR() (3.26)

—_—0

where now z = (v, + \)/ik. For Imz % 0, [_._ dv' ni(v')éx(v’) = O implies

¢r = 0 so without loss of generality the normalization

—_—00

. / dv' ne(v)é.(v') =1 (3.27)

can be adopted. The solution of (3.26) is then

and the normalization requires

1+ / N dv’ () =0
—co v —z
which is equivalent to A_g (2) = 0. Thus a complex root of A_g (2) determines

an adjoint eigenfunction

(z,v) = eikz(v——lz ) |

with eigenvalue A = —v, + tkz. These adjoint eigenfunctions are the relevant
ones for the center manifold analysis.

When z = r € R, the solutions to (3.26) depend on whether A_x (r) =

n—k (r) = 0 or not. Consider first those values of r which do not satisfy these
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conditions; specifically assume M_g (r) £ 0. Then there are two possibilities:
. O 7 N . . . .
either [ dv’ ni(v')gx(v') vanishes or it can be normalized to unity. In the

former case, (3.26) implies
dr(v) = Co(v —r) o (3.28)

and consistency requires nx(r) = 0. When [*°_ dv' ni(v")¢x(v') = 1, then the

solution to (3.28) is

1 )
(o) = = Pr( =) + Da(e)o(o ) (3.29)
with the normalization yielding
Mk (r) = n—k (r)Di(r). ' ' (3.30)

Now consistency with Ak(r) £ 0 requires n— (r) 0. The remaining possibility
allowed by AL, (r) 7 0 is A—x (r) = 0 but n_, (r) # 0. This amounts to setting

Dk (r) =0 in (3.30) and (3.29) with the resulting solution

¢k(v)=—Pr( - ) (3.31)

v—-—-r

If r does satisfy A_x (r) = n—i (r) = O then there are two possibilities. If
the right hand side of (3.26) vanishes then the solution is (3.28). When the right
hand side does not vanish the solution is (3.31). Thus for these special values
of r there are two linearly independent adjoint solutions. As in the discussion
for L, it is worth noting that for typical choices of g.q(v) the dispersion function
~ does not have real roots which satisfy A_g (r) = n—k (r) = 0 except perhaps at

r = +00.
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The biorthogonality of eigenfunctions and adjoint eigenfunctions follows

from (3.23). Let ¥y be an eigenfunction
| LYy =2V,
and ¢, an adjqint eigenfunction
LT¢s = 0¢,

then
0= (L ¢s, Us) — ($s, LU)
(3.32)

= (@ = M{¢s, ¥s)- |

This will be applied to eigenfunctions associated with complex roots of Ax(z).

Let zp (Im 29 5% 0) satisfy Ax(20) = 0, then there are two eigenfunctions ¥

and VU, :
¥(z,v) = e""(——_m‘(v) )
‘ ! v—2p _
(3.33)
U(z,v) = e~ *k= (M)
v—2
with eigenvalues A\ = —v, —1kzo and X respectively. There are also two adjoint
eigenfunctions (reverting to the notation of Chapter 1),
¥(z,v) = Ne'.ki( —1_ )
v —20
L (3.34)
¥(z,v) = Ne k= ( — ) '
v—2
with eigenvalues X and X respectively. From (3.32) it follows that
| Im X\ E, ¥y =0
( X ) (3.35)

(ImX\)(¥, ¥) =0
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'so for a conjugate pair (A 5% X) the inner products must vanish. The normaliza-

tion factor IV in (3.34) is chosen to enforce

-~

¥ =P H=1 (3.36)

Note that even in the case of a real eigenvalue corresponding to Re zp = 0, the

inner products in (3.35) will vanish due to the integrations over z.

The extension of Case’s completeness results to this problem should be
possible, as well as a corresponding extension of existing results for v, = 0 on
the problem of degenerate eigenvalues. However for an analysis of the simﬁlest '
.instability corresponding to‘_a simple complex conjugate pair, the relations in

(3.35) and (3.38) are sufficient. - - | -

Linear Instability

When Fy(v) depends on parametefs then o(L) inherits this dependence. As
~_these parameters are varied, the shape of Fo(v) varies, and the linear stability
of f = 0 may change. When this instability occurs due to a conjugate pair
of eigenvalues, the Hopf bifurcation theqry of Chapter 1 can be applied. For
the remainder‘ of the chapter, the problem of bifurcation at a simple conjugate
pair of eigenvalues (with eigenfunctions in (3.33)) is considered. Aside from this
eigenvalue pair the rest of o(L) remains off the imaginary axis in the left half

plane.
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Using the spectral results define a complex amplitude |
Alt) = (Y, 1)

and decompose the distribution function

f(,0,8) = A©)¥(z,0) + AOF(2,0) + S(z,0,8)

where .

-~

(¥, S) = (¥, ) =0.

Using (3.38) the evolution equation (3.8) becomes

dA < :
E=fo(\P,N(f)) | |
% = LS+ N(f) = (&, N(N) = (¥, N (1)),

(3.37)

(3.38)

(339)

Now the restriction of (3.39) to the center manifold associated with ¥, W is

required. As before this necessitates a local description of W*°.

Computing the Center Manifold

As discussed in Chapter 1, for small |A| W¢is the graph of a function A =

h(z, v,A,Z) defined such that é. distribution function

fe(z,v,t) = AV + AV + h(z,v, A, A)

(3.40)

evolves on W¢. Note that for this infinite dimensional problem z and v are

simply continuous indices, the dynamical arguments of h are A(t) and A(t); see.



Hopf Bifurcation in Plasma Kinetic Theory 108

Fig. (1.3b). The invariance of W°implies an equation for h,

dhdA | 3hdA
J0A dt az dt

] = Lh+ N(f°)
| femjo (3.41)

— (T, N(£°) = (¥, N(£°).

To solve (3.41) to lowest order in A, introduce the Fourier expansion in z
h(z,v,A,A) = E e hy(v, A, A) (3.42)
[ _ .
and the Taylor series in A

hi(v, 4, A) = h{V(0)42 + KD ()| 4] + R + 0(4%)

where the reality condition hi(v, A, A) = h_i(v, A, A) has been assumed. Now.

the Fourier expansion of f¢ is
f(z,v,t) = [A(t)\llzo(v) + hk(v,A(t),Z(t))] e'k=
+ AT (0) + bt v, A0, FO)| 5 (349

+ Y el=hy(v, A(t), A(t))
v I4k
where the wavelength of the linear instability is assumed to be (27/k), and the

.

velocity space factor of the eigenfunction is denoted W, i.e.

U(z,v) = e"kz(-g"_"—g’o)) = c** ¥, (v). (3.44)

To extract the lowest order balance in (3.41) requires N(f¢) and (¥, N(f°)).

Using (3.43) to expand the definition of N(f) in (3.10) yields



ov,. . '3-‘11—3— ov, _o 0V, )
A‘?. 0 2kz A‘.’ 0 0 _° 0 —i2kz
dv ¢ +14] ( dv Jv . 4 ¢

1:&)62 il ah[_-k —ahl'f-k ] :
A —A
N El: ‘ [ dv dv

L0, .9y, ] . e
A?tkz . 0 +Ae—:kz O]e:lz/ dv' h[(v’)

15£0 v v B
tmz W 2 ahm—l [ ) |
+ Ze ;) —; e /_oo dv' hy(v')

(3.45)

where terms have been collected according to the number of factors of hi.

Projecting with ¥ picks out the e*** component

The leading terms in (3.45) and (3.46) are O(A2?) and O(A3) respectively.

The lowest order balance in (3.41) occurs at O(A?); the left hand side of

(3.41) contributes
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ohdA  0hdA
BAdt T gz dt

{Z eil [2h{"A + h{Q’ZJ }(.)\A)
f=se

{

{Z etz [h‘ )4+ 2n1! Z] }(m) + 0(4%)

=Y e "[ axhiV A% + () +X)hf2)|A|2 +onn A
{
- +0(4%)
. (3.47)
and the quadratic terms on the right hand side of (3.41) are
Lh+ N(f) = (T, N(f)) = (¥, N(f9)) =
Y eftzry [h}”A2 +h{ AP + hl) 22]
[
w2 0%, 8V, av, - (3.48)
p e | g2l 20 pizke S _ 0)|A|2 ¢
k . Ov dv dov
0.y ..
- — ka7 L 0(4Y).
dv
" Equating coefficients of A% and |A|? yields

w2 o0V ’

W, £ _ )
(L= )" = {“ PRET for [ = 2k (3.49)

0 otherwise
chz a‘l’—zo a‘l’zo f I 0
(L= +3)R =" "% |30~ 6w ort= (3.50)
0 " otherwise

Coefficients of A simply give the conjugate of (3.49).

To solve (3.49) and (3.50) first note that if 2X\ or (A + ) were eigenvalues

of L; this would imply that at criticality, when X\, X\ cross the imaginary axis,
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there would also be other eigenvalues, 2\ or X\ + X, crossing the imaginary axis
simultaneously. For the simplest case of nondegenerate Hopf bifurcation this

does not happen; thus our spectral assumptions on q(L)_ imply
(L — 2R £ 0 * unless hm =
and,
- ) 4(2) (2) —
(Li= (A + X))k 5#0 unless h” =0.

~ The only nontrivial solutions are for { = 0, 2k. For | = 2k (3.49) becomes

k av

[(z2lcv + v )hlk )+i2kqgk/ dv' h“)] +2xh“’ 7

—_o0

“which can be compactly rewfitten,
v ¥z
hby —"—")/ dv' ) (v') = = 3.51
k+(v—zl e )= (Ic) v—2z , (8:51)

ilve +2)) _ —ive
2% 2% 0

where

21

Integrating (3.51) over velocity gives

Agk(zl)/_o:o dv' BiD(v') = -;-(“’7) /w kil (3.52)

— o0 v—21
It follows from the spectral assumptions on o(L) that A2x(z1) 5% 0, otherwise

there would be additional eigenvalues on the imaginary axis at criticality. With

H-ng/OO dv' B (v")

il ]
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determined by (3.52), the solution of (3.51) is

[%(%)231)\[’:0 - H2kn2k]

hax (v) = T
where .
1 w2 [ A PR
e (8 [ ar2bn
2k 2A2k(zl)( k ) -0 v v —z

For { =0, (3. 50) gives

(Ve + X+ M)A = iw,” {a‘l’zo ‘9‘1’%]

k _av_av

SO,

tw,2 [a.,\p_,o - 3.,‘1’,,0]
by (v) = -

k(ve + X+ X)
From (3.42) the solution for A to this order is
h(z,v, A, A) = k2 pV) (942 + h{D (v)| A2

+ =2k B () A" + 0(4°)

with h.(_)lk) and h{f’ given by (3;53) and (3.54) respectively.

This calculatlon breaks down in the collisioniess hmlt as both h(l) and

(3.53)

(3.54) |

(3.55)

h(2)

become singular. The details of this will not be considered here except to note

that taking into account the behavior of W, as v, — 0 (see Case (1978)) leads

to the following estimate at critscalsty,

h§? (v), K5 (v) ~ {

0O(1/v?) v = Re 2p
finite v 7 Re 2
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The Amplitude Equation

The two dimensional autonomous system describing the W*¢dynamics near
A=0is

LN (3.56)

from (3.39) and (3.40). Given the asymptotic approximation to h(z,v, A, A) the
right hand side of (3.56) may be evaluated through cubic order in A, A. Plugging

the asymptotic expressions,
hak(v, A, A) = A2RY) (v) + O(4%)
ho(v, 4, A) = |AP " (v) + O(4°)

into (3.46) yields

- AR ' 2
(8, M) = 22 A, 4 048 — 018 )
: (3.57)
“"‘ —lAPAY, ‘kzygkavﬁwo'(m.
Thus (3.56) has asymptotic form
CZ: AA + BJAPRA +0(4%) (3.58)
where
tw.> =

B=—(¥ec k2| 5, b — 9,8 + LHop0, 0L | ).

f consists of two contributions, f = Pp + Bw. The instability at wave

number k with amplitude A excites secondary waves at wave numbers 2k and 0;
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these appear at O(A?) in (3.55). These secondary waves beat with the primary to
produce a tertiary wave at wave number k£ with amplitude O(A3) This provides
the lowest order nonlinear correction to the linear growth rate. g, is the piece of
this nonlineaf correction due to the secondary wave at wave number 0, i.e. the
modification of the spatially homogeneous background distributioﬁ generates (3,

. 9
1w,

k

By = 2 (¥, e*20,n0)).

B arises from the secondary wave at 2k,

. 9
W

k

.Bw (\‘i’; es'kz _aoh'(glk) + %H‘Zkaoq’_zo )

As we shall see, f§, is the dominant contribution.

In polar variables, A = pe*?, the amplitude equation (3.58) reads

%;-’ = (Re\)p + (Re B)p* + O(p*)
i | (3.59)
— = (Im)) + (Im B)0* + 0(,*).

Through cubic ofder this is already in normal forin, see (1.28); the'reason is
that becauée N(f) is quadratically nonlinear the first nonlinear effects in the
e'*% Fourier subspace Iﬁust be of cubic order. The corréctions to dp/dt at O(p?)
can of course be removed by a normal form transformation, the first esséntial

correction appearing at O(p?).
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Dispersion Relations

To apply the results of (3.58) requires a model for Fy(v)and geq(v). Given
these functions, the discrete spectrum of L is determined by the dispersion

function, and the coefficient 4 in (3.58) may be evaluated.

For purposes of illustration, F(j (v) and g.4(v) will be selected to simplify the
search for roots of Ax(2). Let Fo(v) have two Lorentzian components: a plasma
with mean density n, and a beam with mean density n; and mean velocity u

relative to the plasma.
g = Np + N} 7
1 [ ang, bny } | (3.60)

noFo(v) = ~
nofo(v) r(v? + a? +(v—u)2+62

Instead of representing the equilibrium distribution, g.q, by a Maxwellian, let

Jea(v) = 1(—‘-’-——-) | (3.61)

T\ v? + o?

Now ni(v) in (3.9) is

m(v) = %{w[(o?n;vl)‘z M [(vrffi()v:;)] ] * v?i-:-l} (302

where C = w,/ka, € = v./w,, velocities have been scaled to a, and densities

expressed in terms of ng.

The dispersion function (3.17) evaluates to

an'l n502 1eC
z+iF  (z+ib—u? (249 mz >0
Ae(z) =1— o ) . (3.63)
T e + e Imz < 0.

G—17  (r=ib-w? @ (z—9)
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Recalling A = —v, — tkz, it is clear that instability (ReX > 0) for £ > 0

requires Im z > 0 and for £ < 0 requires Im 2 < 0. Since Ax(2) = A (2), for
the conjugate pairs associated with Hopf bifurcation, it is sufficient to consider

k > 0, Im z > 0 and seek solutions to

1 — an'Z 4 anQ + 1eC =0
(z+1)2 (2416 —u)? (z+1) ] (3.64)

Imz > 0.

This dispersion relation may be rewritten,

(z +4)2(z +46 —u)® —n,C%(z + 16 — u)?

(3.65)
—npC%(z +14)? —ieCz +1)(2+16 —u)> =0
and simplified by substituting z = y — (6 +.1 + 11)/2 to get
(v +w)*(y —w)? —npC*y—w)® | ~
‘ = (3.66)

— nyC3(y + w)* — 1eCy + w)(y — w)'.z__= 0
where w = ¢(1 — § —1u)/2.
The criterion for instability, Re A\ > 0, may be restated in the dimensionless

variables of (3.64) using A = —v, —tkz. For k > 0,Im2 > 0
Rex> 0o Imz > C (3.67)

where A and v, are scaled to w,, and z is scaled to a. There will in general be
four solutions to the dispersion relation (3.65), but a solution only corresponds
to an eigenvalue if Im 2 > 0. The eigenvalue reaches the imaginé.ry axis when
Imz = ¢C.

As a first application of (3.66) consider the stability of a plasma with no

beam: ny, =1, ny = 0. Then (3.66) reads
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(v - w)*[(y + w)? —ieCly +w) - c? =0

Since 2 = y + w — 1, the solutions are

z=2w—1=u—16, double root
eC 2 (3.68)
cz=—t1-— C\/[1—-—.
-.z,’( F)Eeyi-5 |
The double root is in fact spurious since setting np, = 0 in (3.64) produces

a quadratic équation not a quartic;' even so the double root does not satisfy
Imz > 0. The other two roots, which are referred to as the plasma roots, c.an
satisfy Im z > 0 for appropriate choices of ¢ and C, bﬁt it is easy to check that -
the conditioﬁ for instability (3.67) .is never met. Thus the equilibriuIﬁ plasma

Fo(v) = geq(v) is in fact stable.

Our model has four parameters: beam density, n;, beam' velocity, u, beam
thefmal speed, §, and the collision frequency, v.. In the computation of the
bifurcation fesults, w and § will be varied with ¢ held fixed. For beam density only
two cases will be considered: a low density beam (the bump-on-tail instability)
characterized by ny = 0.05 and n, = 0.95, and an equal density beam (the two

stream instability) where ny = n, = 0.5.

Within the linear problem, varying € shifts the bifurcation surface; increas-
ing € suppresses the linear instability. This is consistent with the dependence of
o(L) on ¢, recall that increasing ¢ shifts the spectrum into the left half plane (see
Fig. (3.1a)). In Fig. (3.2) the intersection of the bifurcation surface (Rex =

0) with the (u, k)-plane is plotted for various values of ¢, and fixed ny and 4.
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Henceforth I shall fix € arbitrarily at ¢ = 0.001 and consider some of the pos-

sibilities for ny = 0.05 and ny = 0.5 in detail.

Low Density Beam

In Figs. (3.3a) and (3.8a) linear stability results for ny = 0.05 are given
corresponding to a cool beam, § = 0.5, and a warm beam, § = 5.0. Superposed
on the bifurcation surface in the (u, k)-plane is the surface obtained by halving
the & c_oordinate. This allows the critical beam velocity for the instability at &
and 2k to be directly compared. The most interestihg result of this exercise is the
existence of parameter valués, (uc, k), for which thes_e two modes simultaneous?y
become unstable. For example in Fig. (3.3a), this double instability occurs for
k. ~ 0.08 and 2k, ~ 0.16. At these special points on the Hopf bifurcation
surface, two complex conjugate pairs simultaneously arrive at the imaginary
axis resulting in a codimension two, doubie Hopf. bifurcation. This degenerate
Hopf bifurcation is considerably more complicé.ted than the codimension two
bifurcation analyzed in the previous chapter. The reason is the increase in the
dimension of the center manifold from two to four, allowing the possibility of

chaotic dynamics right at the linear stability threshold.

A discussion of this codimension two instability will not be pursued here; an

introduction to the appropriate normal form theory is given by Guckenheimer

and Holmes (1983). It should be clear that the assumptions on the spectrum of
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L required by the center manifold calculations in this chapter can be satisfied

only for wave numbers above the codimension two point.

For § = 0.5 and 6§ = 5.0, a typical wave number has been chosen and the
four solutions of the dispersion relation (3.65) plotted as a function of u in Figs.
(3.3b) and (3.8b). In both cases the unstable waves are carried by the “beam
roots”, i.e. the two solutions of Ak(z) = 0 introduced by the condition ny > 0,
and distinguished by the property w 4 w. as ku — 0. For this model the
transfer of the unstable waves to the plasma root branch, described by O’Neil

and Malmberg (1968), occurs for § ~ 25.

Now consider the normal form coefficient, 8, and the results for the distribu-
tion function derived earlier. From (3.58), 8 §vas evalﬁated along the-bifurcat;ion
surface, and plotted logarithmicélly in Figs. (3.4) and (3.9). In computing g,
B, and B, were evaluated separately and their magnitudes compared for wave

numbers above k.. For § = 0.5 this showed

10-% > [RePu) 5 yp-5 k> k.
"~ |Repp
and for § = 5.0,
Re § . '
107 > |——=|>10"" k> k..
“|Refp| — ' >

At both values of §, 3, was relatively larger for wave numbers near the codimen-
sion two singularity. Nevertheless Re ,Bp is clearly the dominant contribution to

Re 8 and from Fig. (3.4a) Re 8 < 0. This is consistent with the physical pic-
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ture that the instability saturates because the unstable wave alters the resonant

particle-distribution.

Since Re § < 0, the direction of bif_urcatlion is supercritical, and the saturated

distribution function is approximately

Fa(2,0,) ~ Fo(v) + As()¥(z, v) + A, (1) ¥(z, v) + A2(t)hSY) (v)e'2k= 3.9
+ A, 2A (o) + A (@AY (v)e ke 4. -

where ' .
A,(t) —_ p’e:a(:)

Re )\
—Repg

0(t) = [T\ + (Im B)p + -] t + 6(0)

is'the saturated wave amplitude. By shifting into the reference frame of the

RS

wave, (z/,v'), defined by
vV =v—v,

=1 —v,t
dd
kvy = ——

dt

the saturated distribution function (3.69) becomes

Fo(o! + 2 ) — o, {{ (v’ + v ) }e,-k,' N { NCET)] ]e_;k,f }

v+ v, — 2 v'+vy, — 2o
> o ! L 1) . . ol
+p:{"‘>lk'(v + v ) 4 A0+ vy ) + G (01 + 0 )T }

Of interest is the effect of the instability on the homogeneous (or spatially

averaged) piece of the distribution,
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L

1 9 (2]

Z/ dz Fo(z,v' + v, ,t) = Fo(v'+v.,)+p;hf,")(v'+v.,,)+---. (3.70)
0 v '

The form of the lowest order correction is fixed by h{,‘”; its magnitude is deter-

mined by p2.

For both § = 0.5 and § = 5.0, this éorrection is plotted at small and large
growth rates. (As we move away from the bifurcation surface towards larger
growth rates, it is quite possible for secondary bifurcations-such as trapped
particle instabilities-to occur. These are beyond the reach of this one mode
calculation, but might well be captured by the four dimensional normal form
associated with the double Hopf bifurcation.) For § = 0.5 in Figs. (3.5) and
(3.7) the parameter V;alues c‘o-rrespo'nd to points A and B in Fig. (3.3a). At point
A, the grthh rate is low; Re X\ ~ 0.009, and the plot of h{f’ indicates negligible
effects except in the resonant region near the wave velocity. At the wave velocity,
_hgz) shows the resonant particles just above v,, (or v’ = 0) being vslowe'd as their
kinetic energy is transferred into the electrostatic field of the wave. This transfer
.occurs until p? reaches pf' ~ 321078 when saturation occurs. The resulting

distortion of Fy appears in Fig. (3.6).

At point B, the growth rate is an order of magnitude greater, and hgz)
shows both plasma and beam being heated, i.e. broadened, by the instability.
This broadening of the nonresonant particle distribution is also predicted by

a weak turbulence theory of this instability (Davidson (1972)). The saturation
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amplitude, p2 ~ 2..7:1710"4 , 18 much larger, and the effect on F is much greater.
The qualitative shape of the saturated distribution function in Fig. (3.7b) was
also found in the numerical studies of Armstrong aﬁd Montgomery (1969). They
solvedv the (Vc-ollisionless) Vlasov-Poisson equations for a beam-plasma distribu-
tion with essentially one unstable mode, .and observed a depletion of particles
from the center of the beam as well as a broadening of the nonresonant plasma
distribution. However, these effects are much more pronounced in this calcula-

tion.

In fact the approximate saturated distribution function in Fig. (3.7b)
becomes negative near the beam velocity. This lack of positivity must be an
a'rtifact of -the approximations used since the original dynaniics 'in (3'1_) will
preserve the positivity of F(z,v,t). There have been two approximétions: the
collisional relaxation of Fy(z,v,t) in (3.5b) was neglected and f(z,v,t) has been
computed only through second order in p,. For the parameter values in question,
the ratio of the linear growth rate to v, is approximately 100 and the replacement
Fi(z,v,t) = F|(z,v,0) seems reasonable. This suggests that the higher order
terms in p, may be appreciable near the beam velocity. These higher order
corrections should be more impbrtant in the resohaht region of velocity space

than elsewhere because the additional (small) factors of p, could be offset by

higher order resonant denominators.

For the low density warm beam, similar plots appear in Figs. (3.10) and
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(3.12) corresponding to points A and B in Fig. (3.8a). At point A, Re X ~
V0.013, and‘hgz) in" Fig. (3.10b) already shows some broadening of the plésma
distribution in addition to the slowing of the resonant beam particles,ibut the
size of hg” is much smaller tha‘n for the case of the cool beam and small growth
rate. As seen in Fig. (3.11) the effects on Fol are negligible even though the
saturation amplitude is larger than in the case of § = 0.5 and small growth
rate. For pbint B, Re A ~ 0.07 and the saturation ampiitude has increased to
p? ~ 0.9z10~* so that the effects of the instabilitj are visible in the peak of the

plasma and near the wave velocity.

Equal Density Beam -

The bifurcation surfaces for § = 0.5, 1.0, and 2.0 appear in Figs. (3.14a),
(3.19a), and (3.24a). Asthe temperature increases, the region of unstable parameter
values tends to contract toward lower wave numbers and higher beam velocities.
The codimension two point discussed earlier occurs here also. At each beam tem-
perature, for a fixed wave number chosen above the 2k stability curve, the roots
of the dispersion relation are plotted in Figs. (3.14b), (3.19b), and (3.24b). In all
cases the unstable waves are associated with the beam roots; as the beam tem-
perature increases the instability shifts from the lower beam root to the upper

beam root.
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The real and imaginary parts of 3 are plétted along the bifurcation surface
in Figs. (3.15), (3.20), and (3.25). For wave numbers above the codimension two
point the bifurcation is supercritical as before. In the vicinity of the codimension

two bifurcation, particularly for 8 correspondiﬁg‘ to 6§ = 1.0, there is a rapid
variation in the normal form coefficient. This structure reflects a coincidence.
At the codimension two pdint, both £ and 2k simultaneously become unstable.
This means that there are two roots, zg and z3, to the dispérsion relation such

that at criticality they satisfy,

Ak(z0) =0 Imzo = %
k.
A.) 5 ] = 0 = -,
-k(z-) Im(22) " 2%k

Generally there is no fixed relationship between Re 2y and Re z; although both
will be close to u/2. However for the symmetric (ny = np, 6 = 1.0), collisionless
(e_'= 0) case, the two phase velocities match, Re 2 - Re 25, and the second
root 2 is ezactly equal to z; in (3.51). This means that bA-p_k(zl) which appears

in the denominator in (3.53) satisfies
A-zk(zl) =0

at the degenerate bifurcation. In the plots of 8 for § = 1, we have ¢ = 0.001
(not zero) so z; is not an exact root but it is sufficiently close to a root of Agk(2)

that h.‘;k)(v) and hence S exhibit a rapid variation near the codimension two

point.

A comparison of g, with g, for £ > k. shows for § = 0.5
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103 > Refu > 1078
- Reﬂp
~and for 6 =1.0
1.0 > Re By > 10~°
e Pl
and for § = 2.0
102 > Refu| o 10-8 .
Reﬂp -

In each case, the ratio is largest for £ ~ k., and approaches unity for the
symmetric situation (6 = 1.0) when the small magnitude of Agx(z1) at criticality
dramatically increases |#,|. Again, the wave-particle effects, represented by f,,

are typically much more important in bringing about saturation.

The.ﬁgures of hg?') aﬁd Fo + pfhg'))v' show the effect of the instability. For
relatively weak growth rates at point A on the stability diagram, the primarj
structure in h!f’ occurs at the wave velocity. In Fig. (3.21b) for § = 1.0 particles
are symmetrically pushed towards the wave velocity. IIi'Figs. (3.16b) and (3.26b)
the shapes of hf,'” at 6 = 0.5 and § = 2.0 are essentially related by reflection
through a line at v/ = 0.

For the large growth rates at point B, this reflection symmetry recurs, but

the form of hif' now shows significant acceleration of particles near the centers

of the two unperturbed components as well as bunching near the wave velocity.
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The v, — 0 Limit

In the coilisionless limit, the dynamics becomes Hamiltonian (Mori‘isoﬁ
(1980), Marsden and Weinstein (1982)). As indicated above, the prf normal
form becomes singular due to the resonance at the wave velocity. In terms of
o(L) this resonance occurs between a conjugate pair of eigenvalues, +ikr, of
multiplicity two and thé continuous spectrum aiong the imaginary axis. The
presence of the continous spectrum precludes a straightforward application of
the invariant manifold ideas of Chapter 1; consequently it is no longer clear that
the Hamiltonian bifurcation can be analyzed using a finite dimensional sét of
normal form equations. Even if .one assumes this to be true, it is not obvious

what the normal form is when v, = 0.

This probleﬁl becomes more puzzling in view of existing theories of the
saturated state which describe the time asymptotic state as a BGK mode with an
amplitude proportional to (Re )\)2 (Galeev and Sagdeev (1978)). This represents
a dramatic change from the scaling p, ~ vReX found in Hopf bifurcation,
and together with the singular behavior at v, = 0 of the Hopf normal form,
strongly suggests that the limits v, — 0 and ¢ — oo may not be interchanged.
In other words, the time asymptotic state of the collisionless instability (first
v, — 0 then t — 00) is not equal to the collisionless limit of the time asymptotic
state for the collisional instability (first ¢ —+. oo then v, — 0). Using a multiple-

time-scales perturbation theory, Simon and Rosenbluth (1976) found a saturated
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state for the cOllisionless instability whose amplitude did scale as vRe X, but
their calculation is somewhat formal and does not inélude a careful treatment
of the continuous spectrum; in par'picular their calculation was plagued by the
singularities noted above. A satisfactory bifurcation thedry fof the collistonless,

. one-mode instability remains to be developed.

In the simpler setting of finite dimensional Hamiltonian systems, the analogous
vbifurcatibn has been analyzed for two degrees of freedom. Here there are no
“extra” spectral elements on the imaginary axis to set up a resonance, and Meyer
and Schmidt (1971) have determined that there two possibilities: the “bubble”
bifuréation or the “liberation” bifui'cation, corresponding (very roughly) to sub-

critical and supercritical Hopf bifurcation. Abraham and Marsden (1978) provide |
an introduction to this theory. Whether it has. any relevance to the infinite

dimensional problem is unclear.
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Figure Captions

Figure (3.1) (a) Typical spectrum of the linear operator in (3.11) for v, > 0.
The continuum is always present. The roots of the dispersion function
determine the discrete eigenvalues. (b) For v, = 0, o(L) reflects the
Hamiltonian strﬁcture of the dynamics. Here the fixed point is linearly
unstable; at criticality the quadruplet would collAapse to a conjugate pair.of

eigenvalues (of multiplicity two) embedded in the continuous spectrum.
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Figure (3.2a) Bifurcation surfaces for n; = 0.05 at various values of the

collision frequency, €. The beam velocity is u, and k is the wave number.
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Figure (3.2b) Bifurcation surfaces for n, = 0.5 at various values of the colli-

sion frequency, €. The beam velocity is 4, and k is the wave number.
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Figure (3.3) (a) Bifurcation surface for a cool, low dénsity beam (solid line).
Also shown is the bifurcation surface for 2k (dotted line); the intersection of
the two surfaces is a double Hdpf bifurcation. Points A and B for k& = 0.17
are the selected points of low and high grovﬁ.h rate. (b) The four solutions to
the dispersion relation in (3.65) for £ = 0.17. The real part of the frequency
w = Ré kz is plotted against.the drift frequency ku in units where w, =1
On the branch indicated, the imaginary part of z satisfies condition (3.67).
for a linear instability. The remaining three roots corréspond to stable

solutions.
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Figure (3.4) Logarithmic plots of 3 along the bifurcation surface shown in
Fig. (3.3a). The curves presented here may be correlated with Fig. (3.3a)
by matching their endpoints at £ ~ 0 and & ~ 0.08 to the corresponding

endpoints on the bifurcation surface. Asin Fig. (2.2a), f(8) = sgn(8) log(1.0+

B).
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Figure (3.5)  (a) Initial velocity distribution at point A (¢ = 0.5, ny = 0.05,
k = 0.17, and u ~ 2.5) in Fig. (3.3a) as seen in the wave frame. (b)
The lowest order correction to the spatially homogeneous component of the

distribution function. Shown for point A in Fig. (3.3a) in the wave frame.
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Figure (3.8) The homogeneous component of the saturated distribution func-
tion showing the effect of the lowest order correction: a small rearrangement
of the resonant particles near v/ = 0. Here ¥ = Re X is the linear growth

rate. Shown for point A in Fig. (3.3a) in the wave frame.
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Figure (3.7) (a) .The lowest, order correction to the spatially homogeneous
component of the distribution function. Shown for point B (§ = 0.5, np =
0.05, £ = 0.17, and u ~ 6.0) in Fig. (3.33) in the wave frame. (b) The
initial velocity distribution (dotted line) and the homogeneous component
of the saturated distribution function (solid line) showing the effect of the
lowest order éorrection. ~ is defined as iﬁ Fig. (3.6). Shown for point B in

the wave frame.
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Figure (3.8) (a) Bifqrcation surface for a Warm, low density beam (solid line).
Also shown is the bifurcation surface for 2k (dotted line), the intersection
is a double Hopf bifurcation. Points A and B (off scale at u ~ 23.0) for
k = 0.05 are the selected points of low and high growth rate. (b) The
four solutions to the dispersion relation in (3.65) for & = 0.05. The real
part of the frequency w = Re kz is pldtted against the drift freAquency in
units where w, = 1. On the branch indicated, the imaginary part of z
satisfies condition (3.67) for a linear instability. The remaining three roots

correspond to stable solutions.
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Figure (3.9) Logarithmic plots of 3 along the bifurcation surface in Fig. (3.8a).
| The curves presented should be correlated with Fig. (3.8a) by matching
their endpoints at £ ~ 0.02 and & ~ 0.07 to the corresponding endpoints

on the bifurcation surface. As in Fig. (2.2a), f(4) = sgn(f) log(1.0 + §).
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Figure (3.10) (a) Initial velocity distribution at point A (§ = 5.0, ny = 0.05,
k = 0.05, and u ~ 16.0) in Fig. (3.8a) as seen in the wave frame. (b)
The lowest order correction to the spatially homogeneous component of the

distribution function. Shown for point A in Fig. (3.8a) in the wave frame.
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Figure (3.11) The homogeneous component of the saturated distribution func-
tion showing the (negligible) effect of the lowest order correction. 7 is as in

Fig. (3.8). Shown for point A in Fig. (3.8a) in the wave frame.
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Figure (3.12) (a) The initial velocity distribution at point B (§ = 5.0, ny =
0.05, k = 0.05, and u ~ 23.0) in Fig. (3.8a) as seen in the wave frame. (b)
The lowest order correction to the spatially homogeneous component of the

distribution function. Shown for point B in Fig. (3.8a) in the wave frame.
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Figure (3.13) The homogeneous component of the saturated distribution func-
tion showing the effect of the lowest order correction. « is as in Fig. (3.6).

Shown for point B in Fig. (3.8a) in the wave frame. )
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Figure (3.14) (a) Bifurcation surface for a cool, equal density beam (solid line).
Also shown is the bifurcation surface for 2k (dotted line), the intersection
is a double Hopf bifurcation. Points A and B for k£ = 0.26 are the selected

- points of low and high grthh rate. (b) The four solutions to the disbersion |
relation in (3.85) for £ = 0.26. The real part of the frequency w = Re kz is
plotted against the drift,vfr.equency in units where w, = 1. On the branch
indicated, the imaginary part of z satisfies condition (3.67) for a linear

instability. The remaining three roots correspond to stable solutions.
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Figure (3.15) Logarithmic plots of # along the bifurcation surface shown
in Fig. (3.14a). The curves presented here should be correlated with
Fig. (3.14a) by matching their endpoints at £k ~ 0 and £ ~ 0.1 to the

corresponding éndpoints on the bifurcation surface. As in Fig. (2.2a),

f(8) = sgn(B)log(1.0 + ).
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Figure (3.16)  (a) Initial velocity distribution at point A (§ = 0.5, ny = 0.5,
-k = 0.26, and ¥ ~ 1.5) in Fig. (3.14a) as seen in the wave frame: (b)
The lowest order correction to the spatially homogeneous component of the
distribution function. Shown for point A in Fig. (3.14a) as seen in the wave

frame.
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Figure (3.17) The homogeneous component of the saturated distribution func-
tion showing the effect of the lowest order correction (visible only at the
resonance v’ = 0). ~ is as in Fig: (3.6). Shown for point A in Fig. (3.14a)

in the wave frame.
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Figure (3.18) (a) The lowest order correction té the spatially homogeneous
component of the distriBution function. Shown for point B (§ = 0.5, ny =
0.5, k = 0.26, and u ~ 4.5) in Fig. (3.14a) in the wave frame. (b) The
initial velocity distribution (dofted' line) and the homogen)eous component
of the saturated distribution function (solid liné) showing the effect of the
lowest order correction. + is as in Flg (3.8). Shown for point B in Fig.

(3.14a) in the wave frame.
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Figure (3.19) (a) Bifurcation surface for an equal temperature, equal density
beam (solid line). Also shown is the bifurcation surfaée for 2k (dotted line),
the intersection is a double Hopf bifurcation. Points A and B for k£ = 0.18
are the selected points of low and high growth rate. (b) The four solutions to
the dispersion relation in (3.65) for £ = 0.18. The real part of the frequency
w = Re kz is plotted against the drift frequency in units where w, = 1. On
the branch indicated, the imaginary pért of z satisfies condition (3.87) for a

linear instability. The remaining three roots correspond to stable solutions. .
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Figure (3.20) Logarithmic plots of 4 along the bifurcation surface shown
in Fig. (3.19a). The curves presented here may be correlated with Fig.
(3.19a) by matching their endpoints at £ ~ 0 and £ ~ 0.13 to the cor-

responding endpoints on the bifurcation surface. As in Fig. (2.2a), f(B) =

sgn(0) log(1.0 + B).
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Figure (3.21) (a) Initial veldcity distribution at point A (§ = 1.0, n; = 0.5,
k = 0.18, and u ~ 2.1) in Fig. (3.19a) as seen in the wave frame. (b)
The lowest order correction to the spatially homogeneous component of the

distribution function. Shown for point A in Fig. (3.19a) in the wave frame.
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Figure (3.22) The homogeneous component of the saturated distribution func-
tion showing the effect of the lowest order correction. 7 is as in Fig. (3.6).

Shown for point A in Fig. (3.19a) in the wave frame. -
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Figure (3.23) (a) The lowest order correction to the spatially homogeneous
component of the distribution function. Shown for point B (§ = 1.0, ny =
0.5, £ = 0.18, and u ~ 6.5) in Fig. (3.19a) in the wave frame. (b) The.
initial velocity distribution (dotted line) and the homogeneous component
of the saturated distribution function (solid line) éhowing the effect of the
lowest order correction. ~ is as in Fig. | (3.8). Shown for point B in the wave

- frame.
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Figure (3.24) (a) Bifurcation surface for a warm, equal density beam (soiid
line). Also shown is the bifurcation surface for 2k (dotted line), the inter-
section is a double Hdpf bifurcation. Points A and B for k£ = 0.14 are the
selected points of low and high growth rate. (b) The foﬁr solutions to the
dispersion relation in (3.65) for £ = 0.14. The real part of the frequency
w = Re kz is plotted against the drift frequency in units where we = 1.
On the branch indicated the iﬁaginary part of z satisfies condition (3.67)
for a linear instability. The remaining three roots ccorrespond to stable

solutions.
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Figure (3.25) (a) Logarithmic plots of 3 along the bifurcation surface shown
" in Fig. (3.24a). The curves presented here may be correlated with Fig.
(3.24a) by matching their endpoints at ¥ ~ 0 and k£ ~ 0.1 to the cor-

- responding endpoints on the bifurcation surface. As in Fig. (2.2a), f(ﬂ) =

sgn(f) log(1.0 + B).
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Figure (3.26) | (a) Initial velocity distribution at point A (§ = 2.0, np = 0.5,
k = 0.14, and u ~ 3.5) in Fig. (3.24a) as seen in the wave frame. (b)
' The lowest order correction to the spatially homogeneous component of the

distribution function. Shown for point A in Fig. (3.24a) in the wave frame.
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Figure (3.27) The homogeneous component of the saturated distribution func-
tion showing the effect of the lowest order correction. 4 is as in Fig. (3.6).

Shown for point A in Fig. (3.24a) in the wave frame.
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Figure (3.28) (a) The lowest order correction to the spatially homogeneous
component of the distribution function. Shown for point B (¢ = 2.0, np =
0.5, £ = 0.14, and u ~ 8.7) in Fig. (3.24a) in the wave frame. (b) The
“initial velocity distribution (dotted liné), and the homogeneous component
‘of the saturated distribution function (solid line) showing the effect of the

lowest order correction. 4 is as in Fig. (3.6). Shown for point B in the wave

frame.
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Appendix

In Chapter 1 the two dimensional vector .ﬁeld,

S = () = V() + VO)(5) +

was transformed by a local nonlinear change of coordinates,

n = &(¢)

into the normal form

d ~ (k,(k+1)/2) (k. (k+1)/2
an — 'v(l)(n) + E [v+ :_ {k+1)/ )(7’)
dt k==3.5,...

< (k.(k=1)/2) —1)/2
+ 9 gk (k=1)/2) ().

In polar variables, this normal form vector field was

d .
d—: = pr + a1 + axr® + O(r")

Z—f = —A+b;r? + bart + O(r?)

\

(A.3)
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where
a; = Re T)(g )
a; = Re '\)(5 4)
by = Im P
T O
~(3.2) +(5.3)
In this appendix, I derive the explicit relatlons between V ) + andthe

components of the original vector field V(¢). This determines the norr;lal form
coefﬁcienfs through fifth degree as functions of the parameters in the original
problem. These results slightly generalizé the calculation of Hassard and Wan
(1978) in that the coefficients a2 and be are obtained for arbitrary p. Other
differences between vthe normal form ¢oefﬁcients derived here and those compui;éd

by Hassard and Wan (1978) are explained at the end of the appendix.

To begin, recall from Chapter 1 that in the Taylor expansion of V(¢) the
terms of degree k, denoted V!¥)(¢), could be expanded in terms of the basis for

}(“‘)(5)22) formed by the eigenvectors of L{*).

k

Ve (g) = Z[Vi’-"” () + P& gkt () (A.5)

{==0

where

L(k)E(k d) )\(k')f(k h

The relations between the components v::'” in this eigenbasis and the com-

ponents of V¥)(¢) in a real basis will be given later; for the moment the eigen-
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. basis components vg‘"f’ are to be regarded as known complex-valued functions

of the parameters in the problem.

To remove inessential nonlinear terms, through terms of fifth degree, re-

quires a coordinate change of the form

1= () = 5 + 425) + p(5) + 6(5) + $°)() (A9)

where ¢""(g) is homogeneous of degree k in ¢. Now ¢(*)(¢) feﬁmves terms of
degree four and generates higher order terms, but only of degree greater than
five. Similarly ¢®)(¢) eliminates thé inessential fifth degree terms, but these
terms can be identified without explicitly evaluating ¢(°)(¢). Thus, in practice,

to compute the normal form through fifth degree requires only that ®(¢) be

implemented through terms of third degree, i.e. up to ¢®)(¢). o

Calculation of the Transformed Vector Field

With this in mind the calculation of the transformed vector ﬁeld (through
fifth degree) is straightforward. From (A.1) and (A.8) dn/dt is given by

%'tl = DO(&" (n)) - V(& (n)- (A7)

To evaluate this, first determine ®~! (n). Let

"1 (n)=n+ 9y (n)+ ¥ (n) + oM (n) + () + -
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and determine the ¢'¥)(5) by solving

¢ =& (n). - (A8)

Inserting 7 from (A.8) into each $%)(n) and expanding through fifth order
gives | .
P+ ¢20) + ¢%(e) = 9B (¢) + DP'P(c) - [$P)(5) + ¢ (¢)]
+ %D2¢‘2»’(c)=[¢‘2’(c) +¢B()[82(5) + 6(¢)]
= 91 (¢) + Dy (¢) - 8B (g) + D1 (¢) - 91¥)(c)
4 DR 6)8(0) + DR (5)i0 ) ()6 )
.
PG5+ 7(5) + () = 9!(5) + Dy(c) - [87(5) + 61°)(c)]
+ 3PP (6)9 ) + -
= ¢B3(¢) + DP®(5) - 812)(¢) + Dp1P)(5) - )(¢)

2 D258 (g) +
P +62(c) + 6%(e) = pM(5) + Dyp!(5) - 4(5) + -

P + 817 + () = () + -

Here a notation such as D?431(¢):4(3)(¢)¢'®)(¢) represents a vector field whose

** component is

: 200 (2)\
(D691 (e)) = ZLE)

5o B¢
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with 'repeated indices summed. Collecting terms of the same degree, (A.8)

becomes

(s 80+ 99| + [69(9) + D) 50(5) + #()
s [Dw“-”(c) -4 (¢)+ %Dz¢‘2’(c)=¢‘2’(§)¢‘2’(§) +D¢"3'(;) ()
+ zb“'(c)]
+ [ D298 6)8 s+ D) -8

+ FDHIE(O(0) + DY) - 40(s) + #(g)

The %!*)(¢) are Idetermined recursively. At second order.. (A.8) requires
() = —g2)(s) T
as was noted‘previously in (1.16). Using (A.9) and (A.8) at third order gives
$19(c) = ~6)(5) + D' () - $)()- (A.10)

With (A.9) and (A.10), ¥¥)(¢) is
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#(5) = D#I(s) - () - 2 D282 (5): 6 ()9 (g)
= (DP(c))* - 6)(5) + D'V (5) - ().

(A.11)

Finally, after eliminating %(*(¢), ¢(3>(g), and ¥*)(¢), the result for ¢(%)(¢) is

W9I(5) = DAPIGHIDH(5) - 2 (6)gP(s) + 3 D (6) - DP4)(0):412)(5)82) )]
+(D8RI)? - [D8R) - 6)(5)] — 324 (5):0 ) (5)92)()
~ D) - [D4')(c) - ') (5)] — D (5) - (D) (c) - (5]
= D*¢(5):6®(5)8(5) - (D ())* - 7))

+Dg!¥(s) - %)s). " ‘12)

~ Equations (A.9) through (A.12) determine <I>"1.(11) through fifth degree.

Returning to (A.7) for the transformed vector field, now expand V(®~! (7).

V(@™ (n)) = VO (n)) + V@ () + -+ VO(@ () + - (A1)

- where -

V(@7 () = V() + DV (n)- [ () + 93N () + ) () + P ()] + - -

V(@ (1) = V() + DY) - (0 (n) + () + 9]
1
~+

§D2 v(2)(n):¢(2)(,’)¢(2)(n) + D2V () ()P (m) + - -
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VO & (n)) = V() + DY) - [92(n) + #* ()]

+ D2V ) )2 () + -

V(@ (1) = V() + DV () - 9 () + -

and

VE(@! (m) = VO )+ -
Collecting terms of the same degree, (A.13) becomes

YO () = V) + [ V) + DY) 40
+ [ V) + DY) 90 + DY) 9|
+ [V‘*’(n)f DV () - #% () + DY) - 9% ()
+ D2V + DY) 60| (A9
g [ws’(n)+ DY (n) - 2 () + DY (n) - ) ()
+ %Dzv“"’(n):w?’(n)w‘-”(}:) + DV () - 419r)

+ D2V gt o)) + DY) 9 ) -
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Since all terms in (A.lzl) are at least first degree, to expand (A.7) through
fitth degree requires D®($~! (7)) through fourth degree. From (A.6), and the

form of ®~1(x), this expansion is

= I+ D¢®(n)+ D*¢!*(n) D () + #(n) + 9 ()]
+ D¢ (n) + D*$)(n) - [P () + ) (n)]

+ D50 ) ) ) + -

D@~ (n) = I +D¢‘2'(q>-1 (n)) + Dg!* (@™  (m)) + - --

where I is the 2z2 identity matrix. Collecting terms of the same degree yields

D¢@r‘m»==I+Dw”mr+Pﬂw”mr¢“mn+Dw“mﬂ

+PwmwyWWm+D%mmwam} | |
(A.15)
+ [D2¢‘2'(n) W)+ D2 () - 9 (n)

+ 2008 a2 )| + -

Now left multiplying (A.14) by (A.15) and keeping only terms up to fifth
- degree yields the desired expan.sion of (A.7). After terms of the same degree

have been collected this multiplication yields,
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& = ¥(a) + {V ) 4 DY) %) + DY) - V(o)

VB ape DY) 9 (a) + DY) 90) -
4D (n) - [V () + DV () - 42 (m)] + D¢ (n):9 ) (m) V()

+ D)) V) }
+ (Va4 DY) 9 (0) + DY) 90 a)

4 DRV ) () + DV ) - ()
+ D4 () - [V () + DY) - 4 () + DV ) - 910 ()]
+[D*¢(n) - 93 () + D) (m)] - [V (m) + DV () - 12 ()]

+ D2 (0 (m) Y () + D'2¢‘3’(n)’=¢‘2’(n)v“’(n)}
; {v'*"’(n)+ DV (n) - 2 (n) + DY) - 4 )

+ 5 DXV ()9 )yt () + DY () - $(r)

+ D2V (7)) ()9 (n) + DV (n) - ) (n)

+ D¢ (n) - (VW (n) + DVCY(n) - P (m) |

+ DV () - 9 () + D2V )y )yt 0) + DY) - 1)

+[D?¢1(n) - $2)(n) + D ()] - [V (m) + DV () - 92 (n)
+DV(n) - ()]

+[D*¢ (n) - 1) (m) + D* ¢ (n) - ) (m)] - [V (m) + DV () - 92 ()]

+ D¢ (m):!) () VM () + D¢ n):9 1) () VI ()

+ 2D ) P )V )

+ PP
(A.16)



Appendix _ | 195

By fixing ¢'?)(n) and ¢'®)(n) this expression will be greatly simplified.

Determining ¢(*)(n) and ¢'®)(n)

First, as described in Chapter 1, by introducing the operator LI¥)
Lty (k) gtk
¥ (y)y=py .-y -pyW.y -

the terms of second degree in (A.16) become
Vi2) () + DY) 4 () + DY) VA () = V() + L) (62 m))  (A17)
where (A.9) for %(2)(5) has been used. ¢(?)(n) is uniquely determined by

£ (¢2) () = — V(). @)

Expanding ¢!?)(n) in the eigenbasis,

9

1) (n) = Z[ 0eE () + 920 20(n)

=0

and plugging into (A.18) using (A.5) yields

21 _v(z'l) .
oyt = —— (A.19)
b

which is a special case of (1.23). This choice for ¢(*)(n) eliminates the quadratic

terms in (A.16); moreover it implies from (A.17) three identities:

V2 (5) + DV (5) - %3 (n) + D' (n) .‘vl(”(,,) =0, (A.20a)

DV®)(n) + DV () - Dy () (A.20Db)

+ D33 (n) - VW(n) + D¢ (n) - DV () = 0,
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and

D2V (n) + DV (n) - D29 () | (A.200)

+D?¢(n) - DY) () + D*¢)(n) - DV () = 0
where (A.20b,c) are derivatives of (A.20a). Contracting (A.20b) with (*)(n)
gives » _ _
DY®(n) - 4P (n) + D (n) - DV (n) - ()
+ D* ¢ (m):9 (n) V() (A-21)
= —DV"(n) - Dy®)(n) - 3 (n).

This identity greatly simplifies the terms of fhird degree in (A.16); applying
(A.21) and (A.10) to these terms leads to the compact expressi.on,

V{Third degree terms in (A.16)} = v(3)(n) + D¢(2)(n) . V(Q)(ﬂ) .

(A.2'2)
+ L) (¢3)(n)).

Now ¢!3)(n) is chosen to remove the inessential components of V) (n) +

D¢'3)(n) - V)(n). With the expansions

0 [~ (3.0) (3, = (3.0)
VO (g) + Dg(a) V) = 3092 + P20
‘:0' | (A.23)
A A
60m) = 3 [#5 () + 9200 0(r)
. l=0.
the components of ¢(3)(n) are A
< (3.0)
-
(3.0) +
¢ N 1=0,1,3
* - (A.24)
"'(3-[)
P —" '1=10,2,3
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and ¢f'2) = ¢Q’” = 0. (As noted in Chapter 1, this choice for ¢ff'2), q‘:g”“ is

not unique.)

With the fouowipg definition of K(3)(n)
KO m) = DL 6B () + 9 e () (A25)

the equation satisﬁed by ¢3)(n) is
KB n) = VO ) + DgP(n) - VO () + LI @O (m).  (A26)

Differentiating (A.28) yields identities which simplify the remaining terms of

higher degree in (A.16). For X, ¥ arbitrary vectors these identities are

DK®)n)- X = DV (n) - X + D*¢12n): V) ()X
 +D#P(m)- DY) X + DOV ImX  (A2Ta)
+D¢!¥(n) - DV M (n) - X — DV (n) - D) (n) - X
and

D*K®(n):XY = D*V®)(n):XY + D*¢®) ():(DV)(n) - Y]X
+ D?¢®)(9):[DVP)(n) - X]Y + D¢!?)(n) - [D2 VP (9):XY]
+D*¢® () V()XY + D*¢P (n):(DVM(n) - Y]X
+ D*¢!)(n):(DV M (n) - X]¥

~ DV W (n) - [D*¢®)(n):XTY].
(A.27b)
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Here X, Y are simply placeholders to distinguish terms such as D?¢'?)(5):[DV?(n)Y | X

and D?¢2)(n):[DV?)(n) - X]Y.

As noted previously, the terms of fourth degree are (in principle) removed
by ¢!*)(n) which does not perturb the fifth degree terms. Thus the fourth order
terms in (A.16) may be simply di'opped; and then only the simplification of the

fifth degree terms remains. First, using (A.20b) and (A.20c), derive the identities,

—DVM(n) - Dp!H(n) - $14)(n) = DV®(n) - $¥)(n) + D?¢'2(n): V) (m)p!*) ()

+ D¢ (n) - DV (n) - p*)(n)
(A.28a)

and

=DV () - D¢ ) ()¢ () = D>V ()t m)9 (o)
+ D¢ (n):(DV ) (n) - ) (m)]$ ) (n)

+D*¢P (n):[DV P (n) - v ()] ().
(A.28b)
The terms appearing on the right in (A.28) may be located among the fifth degree

terms of (A.16); after substituting from (A.28) these fifth degree terms become
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{Fifth degree terms of (A.16)} = —DV‘”(n) - Dy (n) - 9 ()

— DV (n) - D24 (n):91 ()p'*) () + VE) ()
+ DV () - 1 (n) + DV (n) - p1*)(n)
+ 3PPV ) (r)g ) + DY () - 9P )
+ D¢ (n) - [V (m) + DV () - ) (m)

+ DY) (5) - $(n)

+ %DQVm(n):fb‘z_’(n)i/)“"’(n)l
+ D¢ ()4 () [V (m) + DYP () - ()]
+ D¢ (n) - [V (n) + DV (n) - 4 (n)

+ DV (n) - ()
+ D2 (V)
+ D*®) (n):9 P () [V (n) + DV (n) - 912 (n)]
+ D*¢9) ()% () V) ()

+§WmeMmemwwmmy
(A.29)

Now choosing X = ¢'®)(n) in (A.27a) and X =Y = 9(*)(n) in (A.27b) produces

the identities,

DY) () - D¢ (n) - ) (n) + DK (n) - () = DV (n) - $'*)(n)
+ D¢ (n): V) () *) (n)
+ D¢ (n) - DV (n) - 41 (m) + D* 1 (): V) (m)$* ()

(n
+ D¢ (n) - DV (n) - $!¥(n)
(A.30a)
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and
% DK ()P ()P (n) + DV (n) - (D243 (n):9p B ()P ()] | =

3 D2V ()2 ()2
+ D*¢ B (m):DVE ) - pH ) 4 30p)

+ %D¢‘2’(n) - [D2V®) (n):912) ()9 ()]
+ D2 )V ) () )
+ D240y (DY () - 9 ()l ).
Again the terms on the right in (A.30a,b) appear in (A.29); after they are
eliminated (A.29) reads, | |
{Fifth degree terms of (A.18)} = Dv‘“(n) =D () - 9! (n)
| — D23 (n):p ) ()$®) ()
+ 9 () + D) (n) - v (n)
+ 3 D* ) ()9 ()]

+ DK () - ¢ (n) + 2D K g (m)p) )

+ V) (n) + DV (n) - p12)(n)
+ DY) - [V(n) + DVE)r) - ()
+ D¢ *)(n) - [V (n) + DVE)(n) - 9 (n)]
+ D¢ (n):2 () V) ()

(n

+D? ¢ (n):9!) () V1) (n)
(A.31)

where all the terms left multiplied by DV(*)(5) have been grouped together;
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_ /
these terms cancel identically. This can be verified by direct calculation from

(A.10), (A.11), and (A.12). Thus the fifth degree terms come down to,

- {Fifth degree terms of (A.16)} = v“’( )+ DK®)(n) - 93 (n)

+ 2D > K@ (n):9 (n)p® (1) + DVH(n) - 91 (n)
+ D¢ (n) - [V (n) + DV () - ) ()]

+ D2 (0) 9 ) VO ) |

+ D¢ (n) - (V) (n) + DV (n) - ) ()]

+ D¢ (n): ) () V()
« (A-32)

which can be rewritten as

{Fifth degree terms of (A.16)} = V(®)(n) + —;—D2K(3)(n):¢(2)(q)¢(2)(r])
+ DK (n) - [=)(n) + D> (n) - ¢!*)(n)]
— DV(n) - (n) + DeP(n) - VI (n)
+Dgr) - V()
— D[D¢®)(n) - V()
)

+ D¢ (n) - VB (n)] - 9 (n)

(A.33a)
using (A.9) and (A.10). Now, as for the cubic terms in (A.23), the right hand

side of (A.33a) is expanded in the eigenbasis
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VB! (5) + DK®)(n) - [=4!(n) + D () - $* ()]
+ 3D K (0):42) ()8 (1) — DY () - ()
+ D) - V() + D) () - V(1)

(A.33b)
= DIDF) () - V() + D) - VO )] - 42(n)
Ej(“)”” + 90V ey
=0 '
and all components except
- (5,3 |
KO () = 922 ) + V27 e (A34

will be removed by ¢!%)(n). This of course does not have to be done explicitly;

the final form for (A.16) is then

% = VO () + KC(g) + KO () +---. . (A.35)

~(3,2 ~ (5,3
Calculation of v‘+ ’ and V:_ )

y ‘392)

5,3
The desired normal form coefficients, V_ (5:3)

and T)_,_

, can now be evaluated
= (3,2 .
in terms of the components of V(n). To extract v‘+ ) from (A.23) requires the

'3-2) component of D¢ (n) - V3)(n). To expand D¢?)(n)- V()(n) in the eigen-

+
(k) (K1)
basis involves the expansion of products such as D" - £, 7 .
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(k' .

The calculation of Ds(k - is representative. From the definitions in

Chapter 1, see (1.22),

Dg”‘ 0 (k’ l,):: (lzl-—l (E)k"" : (/c _ l)z'z(E)k—l—l )(z"('i)k’—")

0 , 0 0

(lzl+l'—l (E)k+k’—(l+l') )

0
l€(k+k —1,1+1'-1)

Similar calculations yield the useful relations

D§“‘” (kl) lE(k+k—ll+l'—1)

- (A.36)
DE“‘ o) E-(f A ( )€(k+k ~1,0+")
and
ISR o o
D? E‘k” (k.09 S: AN ( ){‘K 2,L—2) |
D2 EN g g =y — el (A37)

2 . [ nn K-=2L
D2k W (WY (g — 1 — 1)l =20
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where L=I[+U+!"and K =k + kK + K£".

~ (3,1 ~ (3
Applying (A.36) to (A.23), gives explicit results for Vf ) (note that V(_

< (3,3—1
may be obtained from v(3 ) v(_g' 3 ))’

V) () + D (n) - V() = Ev(s :)5(3,:)

=0
2 ! ! .
N 2,1 2.y (2,1
(2‘15‘2 ) pel2: )(E [VL 620 ()
=0 =0 .
+V‘f""€‘_2”"(n)l )
— Z‘v(ad)s ,J)(’_’
J=0 .
R E [145 -,t)v(oz) (3l+l-—1) (fl)
LIl =0
' Ay (2.01) o304+
+ (2= npPyEN R ()
+..
Hence from (A.23),
POV YO |y g0y
f,(j_"v“ — v‘j_"” + ¢(2,1)(v(-2.1) + Y(2.0))

+2(p MV + gV

.38
o (A38)

v+ 'v(3 )+¢( 1)(‘v(- -) (—‘2,1))
+2(sFHVEY 4+ 900 VE)

= (3.3) (3.3) (2.1) (2.2 (2:2)4(2.2)
VT =V el V2 429 =YY
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S e m(32) | .
This result for v‘+ ) quite generally expresses the normal form coefficients a;
and 6; (see (A.4)) in terms of the. quadratic and cubic terms of V(). The

other components in (A.38) determine ¢13)(n) through (A.24).

A similar evaluation of T’f'w from (A.33b) is more painful; listed below are

the contributions of each term on the left Liand side of (A.33Db).

VO () = V3B py 4 - (A.392)
DK®)(n) - ¢ (n) = V" (2650 4 ¢8-S gy 4 .. (A.39b)

2 2 ' +1(3.2) 2,2) (2, 2.2y (2,0]
DK (n)- D¢ (n) - p)(n) = 3V, 7 |2( 7931 + 92920

S 2,1 2 2 5.3
+ g2 g g2 1 g20 | €33 ()

+ PPN
(A.39c¢)
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| . ; 2) V~(&2) 2.2) (2, 2,2)
F D2 K )8 (n)g ) n) = 20,77 | g9 0 Y + g 29120)

(2,1 2.1) 2,0 2.2) 5,3
4 g2 g21 g0 4(2.2) ) £05:8) )

(A.39d)

DVYW(n) - B (n) = |4VE O 1+ V(3G + 412

+ 2V 4 ) + 3V g2 20 )

+ .«
- (A.39¢)
D¢ (n) - V) (n) = [2(¢‘f‘2’v‘:’2’ +42 01
T o (A.39f)
+ 8DV ey )
+ e
D¢ () - V() = [3(¢L?’3’V‘£"” + ¢V

+ ¢ 2PV 4y (A.39)

+ Ve 4 2vE)| ()

and finally,
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D(D§")(n) - V2 (n) + D$'*)(n) - V() - ¢‘2’(n)

{ 3913 0)[2(v(-,-»¢(° 2 4 peagen) 4 gy e ]
+¢‘j”[ (VBR324 Y2y L 2)4(2.00) 4 3Y2Dg22)

FA(VENGE 1 YENGED) 4 gy +V‘3’°'¢‘_‘~"2’)}
+ ¢f'”[1}9”¢‘3’°’ +2(V0p21) 4 Y(2:0)4(20) +vv£f"-”¢(3s°’)

+ 3‘v(2 1)¢(~ 1) + 4( (-,- ¢(-’0) v&?vl)(bg,l) 1)¢(2»-))

(V(2 0)¢(2 2)+v(-,- (2,1))}
4 3¢‘f’3)[ 1)¢(2 0 4 o(yBOgR 4 Y 0)¢(2 2)
+ 3v‘~ R S 4v‘f’2’¢‘j’°)]
+ 2¢f’°’[v‘_"~3’¢‘_2'°' +2(VEAgE 4+ v'(f’z’¢ff2 )
+ 3V 1 g(20) +v‘_‘"‘”¢‘f"’)}

+Vf'2’¢‘_2'” v(3 ’¢‘2'2’)+3(v(_~°~°'¢‘_‘2~‘2’+v9’2’¢‘f’”
+ VA L YR + 4vﬁ"3’¢‘f’°,’}
+ 2¢L3;'3'[vf'2’¢‘_‘3v°’ +2(V g1 4 v 3R
3.0 2.2 3.2 2,1 3.3 2, 5.3
+3(VE V22 4 y 32 4 gy P 0'}}5‘; (n)

4o,
(A.39h)
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By reeXpress‘ing ¢i:'” in terms of Vg"” these formulas can be compressed some-
what, but basically they are lengthy because of their generality. -In applicétions
they are most easily left in approximately this form, and evaluated numerically.
This completes tﬁe calculation of 'Df'z’) and T"f’s) in terms of the components

of the original vector field, v‘f".

These components however are relative to the eigenbasis, and the center
manifold vector field is frequently obtained in a real basis. A final (though
practical) chore is to relate the components of the two bases.

- Change of Basis Formulas -

At second order V(3)(¢) in (A.1) has the form
' My, z° + Myzy + Mysy®
V(o) = (

in the real basis.for ¥(3)(R?):

OO0

It is a straightforward calculation to express these basis vectors in terms of the

My, 2% + Maazy + Masy?

(2,0)

eigenbasis {1 }7.o, then re-expand V{?(¢) to determine the v‘j"" in terms
of the M;;. |
' ' VS'}’O’ =m; +itms = p2:2
VY = my 4 imy = VY (A.40a)

V3 = ms + img = VE?
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where
1. | |
my = Z(Mu — M3 — M»;)
my = i‘(Mm + M3, — Ma3)
m3 = %(Mu + M;;)
my = %(MZI + Mz;)

: 1
ms = Z(M“ — M3 + M>,)

(May — M2 — Ma3).

3
&
i
o | -

At third order for

| My 2% + My2zPy + Myszy® + Mygy®
VO(5) =

My 2% + M22z2y + Mazzy® + Mayy®

the eigenbasis components are

Ve =my +imy = VE?)
VY = my +imy = VE
Ve = ms +img = VE

VB — s+ img = VY

where
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m; = —;'(Mu + M2y — M3 — M)
my = ‘;-(Mm — My — M3 + My2)
m3 = %(3(M11 —'Muv) + M3 — M2;)
my = %(3(_M21 + My4) + Mas + My2)
ms = %(3(Mu + May) + M13 + Mas)
mg = -;'(3(M-21 — My4) + M23 — M)2)
my = %(Mu - My — M3 + My»)

1
mg = E(MZI + My — Moz — My2).

At fourth order for

YI() (Mu zt + Myoz3y + Myzz?y? + Miszy® + Mysy* )

Msyzt + Maoz’y + Masz?y® + Mayzy® + Masy?

1)[:'4) = my +ime = Y
-v[:(i) = ms3 +im4 = -v‘_f'l)
v(:.-z) = ms +img = VI (A.40c)

Vi = mg +img = VY
VE:.O) = mg + tmg = 1)(_“'

where
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and at fifth order

1 :
E(Mu — M3+ M5 + Maz — May)

i—lé-(— 12 + M“_ + M3y — M3 + M>;)

T%MMH — Mis) + 2(Ma2 + May))

%(—2(M12 + Myy) + 4(Mar — Mas))

-l—lé-(ﬁ(Mu + Mys) + 2Mi3)

%(6(M21 + Mys) + 2 Ms3)

Ilg(‘i(Mu — M;s5) — 2(Maz + May))

%(2@&2 + Mi4) + 4(-M?1 — Mzs))

1_16(M11 — My + MI; — M2, + My,)
= 1lﬁ(M12 ~ My + M2y — Méa + Mys),

(5')( ) (Muil:5 + Mpzty + Mysz®y® + Myg22y® + Miszy* + Mygy® )
Vi) = :

M2 2% + Mazz'y + Masz®y® + Moy 2y + Moszy* + Masy®

vf’s) =m; +img = VEO)
VY = mg +imy = Y&
VO = ms + img = VE?)
. (A.40d)
V) = mg +img = V&)
V‘f'” = mg +imyg = v(_s’“
(5.5)

_ Vf’o’ =m +im12 =YV
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where

m, = 32(M11 — M3 + M5 + Mas — Moy + Mag)
my = 312( Mis + Miy = Mio + Mar — Mss + Mys)
Mg, = 32(5M11 — 3Mys — Mys — 5Mag + 3Mas + May)

= 32(5M16 — 3My2 — Mig +5May — 3Mas — Mas)
ms = 312(10M11 +2(Mys + Mys) + 10Mag + 2(Mas + May))
me == 5(—10M16 - 2(My2 + Myy) + 10 M5, + 2(Mas + M2§))
mr = 3—12'(10M11 +2(Mys + Mys) — 10Mog — A Moz + May))
mg = 3i2-(10M15 + 2(M1.2 + Myy) + 10Mz, + 2(Mss + Mas))
mg = 312(5M11 —3M;;5 — M13 + 5Mag — 3Mso — Myy)

Mg = 312( SMyg +3Mi2 + Myy +5Ms — 3M>s — M‘)g)

my = 32(Mu — M3+ M5 — Moo — Mg + May)

rﬁm 312(M1) — My + Mig + May — Ma3 + Mys).

Now from (A.40a-d) the complex components of V(¢) through fifth degree
are computable, and from the complex components, using (A.38) and (A.39), the

normal form coefficients through fifth degree are computable.
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Final Remarks

If the result for T"_f’z) in (A.38) is compared to the equivalent result in
Hassard, Kazarinoff, and Wan (1981) (see pages 86-90 of Hassard; Kazarinoff,
| and Wan) there is disagreement for u % 0; away from criticaiity the lowest
order normal form coefficients differ. This can be traced to differing choices
for the components ¢Ef‘2) and ¢(_3'1’ of the coordinate change. In (A.24) of my
calculation these components were set to zero; however Hassard et al. (1981)

adopt a different choice, namely,

2 , . , , 3.
030 = 3020 4 2930922 4 g2 g21) = g1

AWhichvalters the form of ]-)L:-n) for p £ 0.

The practical consequence of t;his is simply to remind us that the normal
form résults tend to mix different orders of the parameter \/u. For example in
the expression for the Hopf frequency dt)/di = —A+br3+ bgré + ---, since
ri ~ O(u), both b;rZ and bery contain contributions of O(pu?). In effect, different
choices for the component ¢f’2) will alter the way the O(u?) contribution is
divided between these two terms. A similar remark holds for higher order normal

form terms and higher order corrections in u* as well.
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