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Hopf Bifurcation and Plasma Instabilities 

John David Crawford 

Abstract 

In physical terms, bifurcation theory is the study of transitions between 

distinct physical states which occur through the development of instabilities. 

Such transitions are readily observed in nature, and they are necessarily non~ 

linear in character. Relatively recent developments in nonlinear analysis make 

it possible to study bifurcation phenomena of ordinary and partial differential 

~quations in a unified way. Although the theory is by no means fully developed, 

ror transitions from time independent equilibria or for transitions from periodic 

Motions, it is sufficiently complete to be useful in applications. 

In this research, center manifold theory and the theory of normal forms 

are applied to examples of Ropf bifurcation in two models of plasma dynamics. 

A finite dimensional model of a 3-wave system with quadratic nonlinearities 
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provides a simple example of both supercritical and subcritical Hopf bifurca-

tion. In the second model, the electrostatic instabilities of a collisional plasma 

correspond to Hopf bifurcations. In this problem, the Vlasov-Poisson equations 

with a Krook collision term describe the electron dynamics in a weakly ionized. 

gas. The one mode in instability is analyzed in detail; near- criticality it always 

saturates in a small amplitude nonlinear oscillation. 

The theory of the center manifold accomplishes two things. First, it estab-

Iishes that the dynamics of' a finite mode instability is always of a finitedimen--

sional character, even when the equations or motion. are partial differential equa-

tions. Secondly, it provides practical methods for deriving the relevant reduced 

set of equat.ions which describe the transition. Thlisthe center- manifold methods 

provide a geometric and rigorous basis for the reduction in dimension which 

characterizes classical amplitude expansions. 

The theory of normal forms applies to the reduced dynamical system derived 

for the center manifold. Two sorts of results are obtained. First, by considering 

only the linearized dynamics of the problem, we can specify which nonlinear' 

couplings are essential, and will remain after the normal form coordinate trans-

formations are implemented. Secondly, the coordinate transformations can be 

explicitly performed, the coefficients of the essential nonlinear terms computed, 

and the resulting equations analyr.ed. 

~~.~.~. 
~t1<- ~1U-~ 
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Introduction 

Whether a plasma is created under laboratory conditions or discovered in 

some natural setting, its physical state is rarely that of thermal equilibrium. 

The various mechanisms and instabilities which drive a plasma toward thermal 

equilibrium are therefore of central importance to the physics of these systems. 

From one perspective or another most of the scientific literature on plasma is 

devoted to determining the stability of plasma states, enumerating the possible 

instabilities which can arise, and calculating the effect of such instabilities on the 

transport of particles, momentum, and energy through the plasma. Because a 

plasma exerts forces on itself through self-generated electric and magnetic fields, 

a self-consistent study of a plasma instability is inevitably a nonlinear analysis. 

This makes the physics and the mathematics subtle and difficult. 

For many plasma problems, existing mathematical theory does not apply, 
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and physicists proceed by inventing their own methods, and by making ap-

proximations on the strength of physical argument. Conversely new develop-

-
ments in mathematics can allow previously intractable physics problems to be 

treated with greater rigor, with fewer uncontrolled approximations, and often 

with more insight. This provides a useful check on heuristically developed physi-

cal theories, and stimulates the mathematical development through the challenge 

of concrete applications. Hopefully the relationship between the broad subject 

of plasma instabilities and the rapidly growing field of bifurcation theory will 

develop in this way. 

To succinctly describe the subject. matter of bifucationtheory requires the 

abstract viewpoint of dynamical systems. A dynamical system is an evolution 

equation (or equation of motion) 

dz - = V(z) 
dt 

zEM (1.1 ) 

defined on some state space or phase space, M. For example ifM = !in, then 

the evolution equation is simply a system of n first order ordinary differential 

equations. For partial differential equations, M is a function space. Thesolu-

tions of (1.1) describe curves through M; these curves collectively define the flow 

of (1.1). If the evolution equation depends on a free parameter, denoted by j.L, 

then as j.L varies the flow varies. In particular there can be critical values J.L = J.Lc 

at which the flow changes in a qualitative way. When this happens, a bifurcation 

has occurred. In broadest terms, bifurcation theory studies these qualitative 
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. changes. 

A specific and relatively well understood example is Hopf bifu.rcation. Here 

the qualitative change in the flow occurs in the neighborhood of an equilibrium 

or" fixed point. For the J.I. values of interest, let x = 0 be the fiXed point, i.e. 

assume 

v ~(O) = 0, 

where the dependence of the flow on J.I. is now explicitly indicated. As discussed 

in Chapter 1, the stability of x = 0 with respect to small perturbations is 

determined by the eigenvalue spectrum of a matrix DV ~(O) (or more generally 

a linear operator). Here DV~(x) is the usual derivative, 

aVo i 
(DV ~(x)) .. = ~(x). " ax' 

When all eigenvalues have strictly negative real parts, then x = 0 attracts 

nearby solution curves and the fixed point is asymptotically stable; for a proof 

see Arnol'd (1973). When there are eigenvalues with positive real parts then 

solution curves are repelled from x = 0, and the equilibrium is unstable. A 

bifurcation occurs when one or more of the eigenvalues for a stable equilibrium 

cross the imaginary axis as jJ increases through jJc. If the instability is triggered 

by the crossing of a single complex conjugate pair of eigenvalues, then it is a 

Hopf bifurcation. 

In its simplest form, Hopf bifurcation marks either the creation or the 

annihilation of a periodic orbit. In the first case, the fixed point is unstable for 
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. JJ. > JJ.~ but in the process of becoming unstable it "emits" a stable periodic orbit 

whose amplitude grows as ../1' - JJ.c ,see Fig. (1.1 a). The second possibility 

involves a stable fixed point (JJ. < JJ.c) with an unstable periodic orbit in its 

neighborhood. As JJ. approaches JJ.c, the unstable orbit collapses onto the fixed 

point and for JJ. > JJ.c only an unstable fixed point survives, see Fig. (1.1 b). In 

either case the flow near z == 0 changes qualitatively when (1'- I'c) changes sign. 

The theory of Hopf bifurcation gives computable criteria which distinguish these 

two possibilities. Both possibilities occur in applications, but the theory is most 

useful when the bifurcation yields a stable periodic or·bit (or limit cycle) since 

then the new stable state can be predicted and its physically relevant properties 

calculated. 

When an evolution equation, describing the dynamics of a physical system, 

exhibits a Hopf bifurcation, as in Fig. (1.1 a), the experimentally observable 

properties of the system change in a mar ked way. A time independent stable 

equilibrium yields a stable nonlinear oscillation characterized by a single fre­

quency. Observables of the system oscillate at this frequency. Hopf bifurcation 

is dynamic, i.e. a time dependent state results, and it serves as a simple example 

of certain phenomena which are quite generally associated with the dynamics 

of instabilities. For instance, as is clear from Fig. (1.1 a), at criticality the equi­

librium state is weakly stable or unstable due to nonlinear effects, and relaxa­

tion rates are very slow. In the theory of phase transitions, this is described as 
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"critical slowing down" (see H6henberg and Halperin (1977)). 

Marsden and McCracken (1976) gIve a diverse list of phenomena that can 

be analyzed as Hopf bifurcations which includes biological models, mechanical 

systems, and geophysical problems. More recently Holmes and Marsden (1978) 

described the onset of flutter in an airfoil as a Hopf bifurcation, Knobloch and 

Proctor (1981) similarly identified one of the instabilities in a model of double 

diffusive convection, and Rand (1982) has given a lucid description of several 

Couette flow experiments using bifurcation theory in conjunction with group 

theory. There are many other examples. These last three are of particular in­

terest because the evolution equations involved are partial differential equations. 

In qualitative terms this transition from equilibrium to oscillation is fre­

quently discovered in models of plasma behavior: a stable quiescent plasma be­

comes unstable as some parameter is varied and the instability is marked by the 

onset of unstable collective oscillations or waves. Such a transition is clearly a 

candidate for Hopf bifurcation. 

There are prerequisites however if the version of Hopf bifurcation described 

above is to apply. The plasma model must be di88ipative. Physically this 

means that the model should include some dissipative process such as collisions. 

Abstractly a dissipative system produces a flow which contracts volumes onto 

attractors such as fixed points, limit cycles, or more complicated sets. In con­

trast, Hamiltonian systems have flows which conserve volumes in phase space; 
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this precludes the existence of attractors. (There are bifurcations in Hamiltonian 

systems analogous to Hopf bifurcation; they will be briefly mentioned in Chapter 

3.) A second prerequisite is the requirement that the equilibrium become un­

stable due to a simple complex conjugate pair of eigenvalues crossing the imagi­

nary axis. This requirement can be relaxed to allow a finite number of eigen­

values to cross simultaneously, but the resulting instability will have dynamics 

considerably more complicated than that shown in Fig. (1.1). Examples of these 

more complex finite mode instabilities are discussed in Takens (1974), Langford 

(1979), Guckenheimer (1981), Guckenheimer and Holmes (1983), and Scheurle 

and Marsden (1982). (For plasma models which take the plasma to have infinite 

spatial extent, instabilities are frequently characterized by a continuum of un­

stable eigenvalues. Such problems have been attacked by "envelope" methods 

which are somewhat distinct from the Hopf bifurcation theory discussed here, 

see Newell and Whitehead (1969) and Newell (1979).) 

In spite of the limitations implied by these prerequisites, there are at least 

two motivations for modeling plasma instabilities as Hopf bifurcations. The 

first motivat'ion is practical. When a stable equilibrium is destroyed by the 

onset of growing linear waves, a variety of questions becomes important: How 

does the wave growth saturate when nonlinear effects are included? Is the 

saturated state stable? What frequencies, electromagnetic fields, and transport 

properties characterize the new nonlinear state? If the instability can be analyzed 
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as a Hopf bifurcation, the calculations required to answer these questions are 

straightforward though often lengthy. Even nicer, some of these questions 

turn out to be the same, e.g. if the Hopf bifurcation produces a supercritical 

periodic orbit (the saturated state), then that orbit is always stable. Moreover, 

the calculations required to analyze a Hopf bifurcation can be performed in a 

formalism general enough to be applied to any such bifurcation, regardless of 

the details of the particular model. 

The second motivation is one of principle, and derives from the realization. 

that deterministic, low dimensional evolution equations may generate flows so 

complex that the resulting physical state is turbulent. To decide. if this deter­

ministic turbulence is actually relevant to observed phenomena in plasma is a 

question which, on the theoretical side, requires that one locate such complex 

dynamics in the flows of realistic kinetic or fluid plasma equations. Although this 

task is not accomplished in this thesis, the methods applied here to analyze Hopf 

bifurcation offer a promising way to locate exotic phenomena such as strange 

attractors in plasma dynamics. This opportunity exists because the nonlinear 

dynamics associated with plasma instabilities involving a finite number of eigen­

val ues is essentially finite dimensional. By deriving the essential finite dimen­

sional system, and locating there a turbulent state associated with a chaotic at­

tractor, the existence of the attractor is reliably established for the full system. 

Although such a result would apply only to special regions of parameter space, 
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e.g. neighborhoods of J.'c, it would demonstrate the relevance of low dimen-

sional strange attractors for infinite dimensional systems in a setting free of the 

ambiguities which surround numerical calculations based on finite mode trunca-

tions. Thus thesecond motivation is simply this: by locating plasma instabilities 

which correspond to (degenerate) Hopf bifurcations involving three eigenvalues 

(one real, one conjugate pair) or four eigenvalues (two conjugate pairs) certain 

forms of plasma turbulence may be analyzed with finite dimensional models. 

In Chapter 1, the mathematical theory of Hopf bifurcation is presented. 

This consists of two distinct sets of ideas. First, associated with the dynamics of 

Hopf bifuraction are invariant nonlinear manifolds which allow the problem to 

be reduced to two dimensions. Second, the resulting two dimensional evolution 

equation can always be written in a characteristic polar variable form. 

~~ = J.'r + al r3 + a2 r5 + O(r7) 

dO .') 4 6 
dt = -A + bl r- + b2 r + O(r ) 

(1.2) 

Here J.' ± iA is the conjugate eigenvalue pair associated with the instability 

and the coefficients {ai} and {b i} are explicitly computable functions of the 

parameters in the problem. (Although the bifurcation parameter jJ in VI'(x) 

is not necessarily the real part of the eigenvalue jJ + iA, there is no loss of 

generality in assuming this to be the case.) These equations constitute the 

normal form equations for Hopf bifurcation; they describe the. essential nonlinear 

effects associated with the instability. 
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In Chapters 2 and 3,this theory is applied to two Hopf bifurcations drawn 

from the plasma physics literature. The first example, discussed in Chapter 2, 

occurs in a finite dimensional model of three interacting plasma waves due to 

Wersinger, Finn, and Ott (1980). The stable fixed point arises from a balance 

between the growth of an unstable wave and the decay of two damped waves. 

If the decay rate of the damped waves is increased the balance becomes "over 

stable"; this transition is a Hopf bifurcation. The resulting periodic orbit has 

been studied numerically by Wersinger, et al. (1980); they observed a cascade 

of period doubling bifurcations resulting in aperiodic motion. 

This model presents the interesting feature that the normal form coefficient 

at in (1.2) changes sign along the bifurcation surface in parameter space. When 

al = 0 then higher order nonlinear effects are crucial. This degenerate bifurca­

tion is discussed in detail; an analysis which requires the normal form coefficients 

al and a2 on a neighborhood of the critical parameter values. The calculation 

of a2 for this case slightly generalizes the results of Hassard and Wan (1978). 

The second example, discussed in Chapter 3; is a simple kinetic equation 

which exhibits as Hopf bifurcations some familiar microinstabilities; here the 

setting is infinite dimensional. The model considers electron dynamics in a 

weakly ionized gas and describes the electron distribution function using the 

Vlasov-Poisson equations supplemented by a Krook collision term. 

The spectral analysis of Case (1959) for the Vlasov-Poisson system is easily 
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extended to this model to determine the linear spectrum. For an initial distribu­

tion function consisting of a plasma component and a beam component the linear 

dispersion relation is solved to determine the bifurcation surface as a function of 

beam velocity, beam temperature, beam density, and wave number. The normal 

form analysis shows al < 0 in all cases, and provides explicit results for the 

saturated distribution function. 

Without collisions, the Vlasov-Poisson equations are Hamiltonian; thus the 

coIlisionless limit of the Hopf bifurcation is a Hamiltonian bifurcation. Moreover 

for this limiting Hamiltonian bifurcation a degenerate conjugate pair of eigen­

values is embedded in a continuous spectrum (the van Kampen continuum) at 

criticality. This makes the collisionless limit of the Hopf normal form singular, 

i.e. the normal form coefficients become infinite due to divergences arising from 

resonance denominators. This singular structure' raises the interesting question 

as to whether the coIIisionless version of the instability can be captured by a 

finite dimensional normal form, and what those normal form equations might 

be. 

Another interesting aspect of the collisional model is the existence of parameter 

values for which two conjugate pairs simultaneously cross the imaginary axis. 

This would correspond to the onset of unstable plasma oscillations at two distinct 

wavelengths. As indicated earlier such a degenerate bifurcation may involve 

chaotic dynamics (Guckenheimer and Holmes (1983)). 



• 
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Figure Ca.ptions 

Figure (1.1) The two possibilities for Hopf bifurcation when the normal form 

coefficient al in (1.2) does not vanish at criticality. For these diagrams A 

in (1.2) is assumed negative. (a) In supercritical (al < 0) Hopf bifurcation 

. there is a stable periodic orbit for J-' > J-'c. (b) In subcritical (al > 0) Hopf 

bifurcation there is an unstable periodic orbit for J-' < J-'c. In both cases 

the stability of the fixed point changes at J-' = J-'c I and at J-' = J-'c the fixed 

point is weakly attracting or weakly repelling due to nonlinear effects. 



Figure (Lla) 

Figure (I.lb) 
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CHAPTER 1 

Invariant Manifolds and Normal 'Forms 

Hopf bifurcation in its simplest form is a two dimensional phenomenon; this 

is true regardless of the actual dimension of the dynamical system exhibiting 

the bifurcation. To understand this fundamental fact one may use the theory of 

stable, center, and unstable manifolds. This theory can be presented at various 

levels of abstraction; my discussion will be intuitive, pictorial, and hopefully 

practical. For more precise mathematical discussions the reader is referred to the 

growing review literature; see for example Marsden and McCracken (1976), Carr 

(1981), Holmes (1981), Hassard, Kazarinoff, and Wan (1981), or Guckenheimer 

and Holmes (1983). 

The stable, center, and unstable manifolds which occur in bifurcation theory 

are nonlinear generalizations of the stable, center, and unstable linear eigenspaces 

which arise in linear stability theory. For this reason I shall first quickly review 
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this linear theory, then de~cribe the manifolds. For Hopf bifurcation, often only 

the stable and center manifolds are present, and the structure they impose on the 

dynamics allows the bifurcation analysis to be reduced to two dimensions. The 

calculations required for this reduction will be described, and the virtues and 

limitations of the resulting equations will be discussed. For all of this, the setting 

will be finite dimensional, e.g. a flow on !in; this is for simplicity-the techniques 

work for partial differential equations as well. The additional technical issues 

which arise in infinite dimensional applications are discussed in Marsden and 

McCracken (1976), Holmes and Marsden (1978), looss and Joseph (1980), and 

Hassard, Kazarinoff, and Wan (1981). 

Linear Stability Theory 

. The starting point for the theory is always the same: an evolution equation 

for the dependent variable x{t). 

dx 
dt = LlJ.x + NIJ.(x) (1.1) 

Here LIJ. is a linear operator which depends on a parameter 1'. NIJ. is a smooth 

nonlinear operator with the property NIJ.(O) = 0, so that x = 0 is a stationary 

solution (fixed point). 

To be concrete, assume the evolution equation comes from a smooth vector 

field, VIJ.(x), on !in such that VIJ.(O) = o. Then the dynamics is governed by 
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This can be written in the form (1.1) by letting Lp. = DVp.(O), and taking .Np.(x) 

to be the higher order terms in the formal Taylor expansion: .Np.(x) = Vp.(x) -

Given that x = 0 corresponds to an equilibrium, then its stability against 

perturbations must be determined. This is first done for the linearized dynamics, 

dx 
- -.:.. L x. dt p. 

(1.2) 

The spectrum of Lp., denoted u(Lp.), controls the growth or damping of 

perturbations. On !in, u(Lp.) consists of n eigenvalues (counting over multiple 

eigenvalues). Consider such a spectrum shown in Fig. (1.1a); there are eigen­

values in the left half plane {)..n7':'I' on the imaginary axis {)..n7!I' and in the 

right half plane {)..i}7~1 such that n., + nc + nu = n. Associated with these 

three sets of eigenvalues are the corresponding eigenvectors: {vn 7.:. I' {vn 7! I' 

and {vi}7u l. (In the event that an eigenvalue has an algebraic multiplicity 

greater than its geometric multiplicity, then these sets of eigenvectors include 

the generalized eigenvectors also.) Each set of eigenvectors spans a linear sub-

space of lin, 
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An arbitrary perturbation, x(O), can be expanded, 

n8 nc nu 

x(O) = L xi(O)vi + L xi(O)vi + L xi(O)vi 
i=l i=l i=l 

and its time evolution under (1.2) simply determined (ignoring the unimportant 

complications due to generalized eigenvectors). 

n8 nc nu 

x(t) = L xi(O)eAitvi + L xi(O)eAitvi + L xi(O)eAitvi (1.3) 
i=l i=l i=l 

As t increases the first group of terms decays exponentially, the second group 

oscillates, andthe third group grows exponentially; accordingly E8 is called the 

stable subspace, EC the center subspace, and EU the unstable subspace. The 

decomposition of !in into these subspaces provides a complete picture of the 

linearized dynamics, see Fig. (LIb). Furthermore from (1.3) each subspace 

is clearly invariant under (1.2). This means that an initial perturbation lying 

wholly within E8 or EC or EU will evolve without leaving that subspace. 

If the calculation of u(L,,) reveals tha.t nc = nu = 0, then all perturbations 

decay in linear approximation and x = 0 is linearly stable. In finite dimensions, 

such linear stability implies nonlinear stability, i.e. sufficiently small perturba-

tions will decay under the full nonlinear dynamics of (1.1). For partial differential 

equations there are results analogous to this, though their precise statement is 

more technical (Holmes and Marsden (1978)). In applications these conclusions 

of nonlinear stability are not always relevant, since the allowed scale of amplitude 

perturbations may be unphysically small. 
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Nonlinear Effeets: Invariant Manifolds 

When the nonlinear effects represented by N",(x) are reintroduced, the dynamics 

of the linear eigenvectors are coupled by the nonlinear terms and the linear spaces 

Ell, EC, and EU are no longer invariant. There are however nonlinear analogues 

of the linear eigenspaces. Intuitively, the nonlinear terms distort the solutions of 

the linear eigenspaces so that the flat linear eigenspaces are "warped" into 

curved surfaces or manifolds. These manifolds organize the dynamics of the 

nonlinear problem just as the linear eigenspaces serve to structure the linear 

dynamics. 

Associated with E· and EU are unique, local, invariant manifolds: the stable 

manifold W· and the unstable manifold WU , respectively. These manifolds and 

their relation to the underlying linear spaces are indicated in Fig. (1.2a). Each 

contains the fixed point x = 0, and at x = 0 is tangent to the appropriate 

linear eigenspace. In virtue of this fact, each manifold has the same dimension 

as its associated linear subspace. Furthermore, each local manifold is invariant 

with respect to the full nonlinear dynamics: if an initial condition x(O) belongs 

to WlI or WU, then, for some time interval 0 < t < T, the solution x(t) to 

(1.1) lies within the manifold containing x(O). Assuming the flow of (1.1) is 

well defined for -00 < t < 00, i.e. globally defined, then the solution curves 

composing the local manifolds may be globally extended. This extension yields 

the global stable and unstable manifolds. The relationship between the local 
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and global manifolds may be subtle; Palis and de Melo (1982) give a simple two 

dimensional example of a fixed point whose local stable and unstable manifolds 

are distinct one dimensional sets, but whose global stable and unstable manifolds 

exactly coincide because they form ,homoclinic orbits. Furthermore, although 

the structure of the local manifolds has the simplicity indicated in Fig. (1.2a), 

the global manifolds can have very complicated shapes. 

Similar to E8 and EU, the center eigenspace has an associated local in­

variant manifold, the center manifold we, which is tangent to Ee at x = o. 

Unlike W 8 and W U
, the center manifold may not be unique; Kelley (1967) and 

Guckenheimer and Holmes (1983) give simple examples of fixed points which 

have an infinite family of center manifolds. Moreover, less is known about the 

existence of global center manifolds. Fenichel (1979) and Carr (1981) discuss 

some singular perturbation problems for which global information about we is 

available, but these results are typically less general and more complicated than 

the corresponding global theory for W 8 and W u . 

For we , th'e difficulty in proving global existence and the possible lack of 

uniqueness are rooted in the fact that, unlike the stable/unstable manifolds, 

the flow on a center manifold cannot be characterized in any general way. In 

particular this prevents the global existence of the center manifold from being 

established with the same methods used for W 8 and W U
• For the applications to 

bifurcation phenomena considered in this thesis, these issues of global existence 
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and uniqueness are not essential. 

The dynamics of solution curves in W" or W'" is trivial, at least near x = O. 

As t -+ 00 all solution curves in W" approach x = 0, and as t -+ -00 solution 

curves in W'" approach x = 0; in both cases the asymptotic rate of approach is 

exponential since the linearized dynamics dominates. As mentioned above, no 

simple general description is possible for the dynamics in we ; at x, = 0 the linear 

stability is neutral and nonlinear effects remain essential. When the dimension 

of we is greater than two, the center manifold dynamics may encompass all 

the complex dynamics studied in dynamical systems theory: aperiodic motion, 

chaotic recurrence, Smale horseshoes, strange attractors, etc. This observation 

provides strong motivation for attacking bifurcation problems along the lines 

descri bed in the next section. 

Invariant Manifolds for Hopf Bifurcation 

In Hopf bifurcation, a stable fixed point at x = 0 becomes unstable as a 

parameter JL is varied. Stability is lost because a complex conjugate pair of 

eigenvalues in u( L~) cross the imaginary axis into the right half plane as JL is 

increased through zero. (The prescription that the fixed point is at x = 0 and the 

critical parameter value is JL = 0 is convenient, and entails no loss of generality.) 

At criticality, JL = 0 and the eigenvalue pair A, X are pure imaginary, see Fig. 

(L2b). (Here the overbar denotes complex conjugation.) Their eigenvectors 
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satisfy 
[",'II = A'll 

[",'II = ):'11 

and span the two dimensional linear eigenspace EC. For this bifurcation there is 

a two dimensional center manifold and an (n - 2) dimensional stable manifold, 

see Fig. (1.3a). 

Near x - 0, the solution curves in these manifolds define distinct time 

scales. For solutions starting near x = 0 but not contained within either 

manifold, the influence of the stable manifold rapidly pushes the solution curves 

toward the center manifold on a fast time scale; on a slow time 8cale, the flow 

of these solutions is controlled by the dynamics on the center manifold. This 

is the intuitive basis for the property of WC known as local attractivity which is 

precisely stated as follows: there exists a neighborhood U of the fixed point x = 

o 8uch that if the solution x(t), corresponding to an initial condition x(O) E U, 

remains in U for all t > 0 then x(t) approaches WC as t -+ 00. 

For JJ = 0, x = 0 is no longer linearly stable and perturbations may grow; 

how these perturbations evolve is a nonlinear problem. If we are willing to wait 

for the local attraction of WC to pull the perturbed solution close to WC then 

the time development of the perturbation involves only the dynamics on WC. 

Thus the time asymptotic behavior of the instability requires an analysis of the 

center manifold dynamics; this however is only a two dimensional problem. This 

reduction of the time asymptotic problem to two dimensions in fact persists for JL 



Invariant Manifolds and Normal Forms I 21 
--~--------------------------------------

small and positive. Intuitively this is so because for I-' >0 the two dimensional 

center manifold is replaced by a two dimensional unstable manifold which is 

locally attracting and controls the time asymptotic behavior. This intuition may 

be rigorously justified by considering the "suspended system": 

dx 
dt = L,."x + .N',.,,(x) 

dl-' = 0 
dt ' 

(LIs) 

obtained by "suspending" an equation for the parameter from the original system 

(1.1) (Ruelle and Takens (1971), Hassard et al. (1981)). Obviously (1.1) and 

(LIs) are equivalent; nevertheless we learn something by analyzing the invariant 

manifolds of the fixed point (x, 1-') = (O,O) for (LIs). Now at I-' = 0, in addition 

to the conjugate pair of eigenvalues, there is also a real eigenvalue at zero because 

of the equation dl-'/dt = o. Thus for (LIs) there is a three dimensional center 

manifold and an {n - 2)-dimensional stable manifold. 

The three dimensional center manifold must contain an interval of the 1-'-

axis about the point I-' = 0; this follows from its local attractivity. An initial 

condition (x, 1-') = (0,1-'0), contained in the neighborhood U (as described in the 

definition of local attractivity above), is a fixed point, and necessarily corresponds 

to a solution which remains in U for all t > o. Therefore the point (0,1-'0) in 

fact belongs to the three dimensional center manifold. 

Because dl-'/dt = 0 in (LIs) if we take a "slice" of our three dimensional 

center manifold by fixing the value of 1-', the result is a two dimensional invariant 
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locally attracting manifold. For example, the slice corresponding to J.L = 0 is the 

two dimensional center manifold for (1.1). A slice at J.L > 0 gives the two dimen­

sional unstable manifold of x = O. In this way, the three dimensional center 

manifold of (LIs) may be regarded as a I-parameter family of two dimensional 

invariant manifolds. Let W~ denote this family; each member of W~ is tangent 

at x = 0 to the linear space spanned by the eigenvectors '" and "'. 

This picture leads to the following strategy: "project out" the two dimen­

sional vector field which describes the flow on Ww, then analyze that flow to 

understand the asymptotic development of the instability. 

Deriving the two dimensional vector field on W~ requires two steps. First 

a description of W~ near x = 0 must be calculated, then the restriction of 

the evolution equation to W~ is obtained. The analysis of the two dimensional 

dynamics leaqs to the theory of normal forms. This is discussed in a subsequent 

section. 

Describing W~ near x = 0 requires constructing local coordinates for W~ 

on a neighborhood of x = O. Since W~ contains x = 0 and is tangent there 

to the ("', 'II)-plane, local coordinates may be constructed as a mapping from 

the ('II, 'II)-plane to W~, see Fig. (1.3b). Let the coordinates of a point in the 

("', 'II)-plane be (A, A), then this mapping defines a function h(A, A) 

h(O,O) = 0 
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with. the property (A, A, h(A, A)) E W,.. for (A, A) sufficiently close to x = 

O. Away from x = 0, W,.. may develop folds which preclude such a simple 

description, but h is well defined on a neighborhood of x = o. 

To determine h requires a rewriting of the evolution equation. Represent 

the general solution x(t) to (1.1) in the form 

x(t) = A(t)w + A(t)W + S(t) (1.4) 

where A(t) is a complex-valued function of time, and S(t) represents the com­

ponent of x(t) transverse to the (w, w)-plane. Precisely this means that 

(~,S) = (~,S) = 0 

where ~ and ~ are adjoint eigenvectors to wand w respectively, and the bracket 

(.,.) denotes the inner product between adjoints and eigenvectors. The bior-

thogonality relations between adjoint eigenvectors and eigenvectors are denoted 

by the pairings, 

(~, w) = (~, w) = 1 

(~, W) = (~, w) = O. 
The explicit realization of these pairings will vary from one application to the 

next; here their only role is to allow the component of x(t) in the (w, w)-plane 

to be split off in an unambiguous way. The definition of A is then 

A(t) = (~, x(t)). 

To determine dA/ dt and dS / dt, insert (1.4) into (1.1), 

dA dA- dS --
-w + -w + - = L,..(AW + A w + S) + )J,..(x). 
dt dt dt 

(1.5) 
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Projecting with ~ gives 

dA -di = AA + (w, )J~(z)} (1.6) 

where I have used (~, L~S) = O. This is true since ~ is an eigenvector for the 

adjoint operator Lt: 

- t - -(w, L~S) = (L~ W, S) = (Aw, S) = O. 

Now subtract (dA/dt)w + (dA/dt)w from (1.5) to obtain the equation for trans-

verse dynamics: 

(1.7) 

Together (1.6) and (1.7) are equivalent to (1.1); all that has been accomplished 

is a decoupling of the A(t) and S(t) dynamics at linear order. This is the desired 

rewriting of the dynamics mentioned above. Note that the dA/ dt equation is a 

two dimensional system of ordinary differential equations. However this system 

is not autonomous since (~, )J~(z)} depends on S(t). The equation for dS/dt is 

an (n - 2) dimensional system of equations if the original problem occurs in n 

dimensions, but when (1.1) is a partial differential equation then so is (1.7). 

To see how this decomposition allows the coordinate function, h, to be 

determined, observe that for a solution ZC(t) lying in W~ (near z = 0) (1.4) 

becomes 

(1.8) 
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where se(t) = h(A(t), A(t)). This I;Ileans that there are two ways to calculate 

. the transverse variation, dSe / dt, for these solutions. First, directly from (1.7), 

Secondly, using se = hand (1.6) 

dS
e 

_ [8h dA· 8h dA] 
dt - 8A dt + 8A dt :.:=-:.:C 

8h ( - ) 8h (- - ) = 8A >'A + (W, }J~(xe)) + ~ >'A + (W, }J~(xe)) . 
8A 

Equating these two results for dSe / dt gives 

8h - 8h _ ---,_:0----

8A (>.A + (W, }J~(xe))) + ~(>'A + (W, }J~(xe))) 
8A (1.9) 

= L~h + }J~(xe) - (~, }J~(xe)) - (~, }J~(xe)) 

which is a nonlinea.r partial differential equation for h = h(A, A) to be solved 

subject to h(O,O) = 0 and (~, h) = (~, h) = o. Geometrically, (1.9) expresses 

the invariance of W~, and will be referred to as the invariance equation. 

In practice, (1.9) cannot be solved exactly; fortunately it is sufficient to 

obtain an asymptotic solution for h which is accurate for small IAI. For this 

purpose, h is computed to some finite order as a power series in A, A. This is 

done explicitly in the examples discussed in Chapters 2 and 3. Wan (1977) has 

shown that the possible nonuniqueness of we does not affect this calculation; 

even if there are several center manifolds, the asymptotic power series of each 

center manifold is the same. 
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Given h, the dynamics on W". is obtained by substituting (1.8) into (1.6). 

dA -
- = >'A + ('II, JI".(X C

)) 

dt 
(1.10) 

This is now a two dimensional, autonomous system; since XC is independent of S, 

even the nonlinear terms are now decoupled. Thus near x = 0 the solutions in 

W". have the form of (1.8) where A(t) satisfies (1.10). In terms of real coordinates 

(x, V), (1.10) becomes, 

:t(:) = (:: :)(:) + (~~;:: ~;::;:) (1.11) 

where A(t) = x(t) + iy(t) and>' = l" - iA. 

Normal Forms for Hopf Bifurcation 

For Hopf bifurcation with a simple complex conjugate pair of eigenvalues, 

there is a two dimensional vector field, denoted V(~), which determines the center 

manifold dynamics. For a time asymptotic analysis of the bifurcation, only the 

flow on the center manifold is relevant. Therefore once the center manifold 

vector field is known any simplification of its structure is welcome. The theory of 

normal forms allows this vector field to be simplified as much as possible. What 

this means is that by making nonlinear coordinate changes, certain nonlinear 

terms in V(d can be eliminated. There are however essential nonlinear terms 

which cannot be removed and these determine the normal form of V(d. 

• 
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In its philosophy and its results, normal form theory is closely related to 

the techniques of averaging and Lie transforms. Chow and Mallet-Paret (1977) 

apply the averaging method to the calculation of normal forms, and in Chow and 

Hale (1982) Lie series are used to implement averaging. For recent applications 

of Lie methods to Hamiltonian mechanics and plasma physics see Cary (1981), 

Cary and Kaufman (1981), and Littlejohn (1979). 

In this section the normal form theory appropriate for two dimensional 

Hopf bifurcation will be presented. My discussion will be heuristic; treatments 

which are more rigorous may be found in Holmes (1981), Takens (1974), or 

Guckenheimer and Holmes (1983). The theory is applied to an example in the 

next chapter. 

Writing the two dimensional problem derived in (1.10) as 

d~ 
- = V(d 
dt 

(1.12) 

where V(O) = 0, and V(d is assumed smooth enough to have a formal Taylor 

expansIOn: 

(1.13) 

Here VIi)(d is the ph order piece of the expansion, it is a vector field whose 

components are homogeneous polynomials in ~ = (x, y) of degree j. For Hopf 

bifurcation, 

(1.14) 
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is the appropriate linear term. The conjugate eigenvalue pair is J.L ± iA. 

The goal is to remove VIZ)(d, V(3)(S-), etc. by coordinate changes which are 

smooth in their dependence on S- and well defined for all J.' in a neighborhood of 

J.L = o. To determine if this can be done, let cI>(S-) be a diffeomorphism on liz 

which fixes the origin and defines new coordinates fl. 

fl = <I>(S-) <1>(0) = 0 

Now choose the specfic form of cI>(d to eliminate V(k)(S-) (for fixed k > 2) as 

completely as possible. An additional requirement is to leave undisturbed terms 

in V (S-) of degree less than k. These goals require a coordinate change of the 

form, 

(1.15) 

where <,h(le) (S-) is homogeneous of degree k. Higher order terms in cI>(d are 

irrelevant to the problem of removing V(le)(S-) and additional lower order terms in 

cI>(d would alter the lower order terms in V(d. Near the origin cI>(d is invertible 

with an inverse given by 

(1.16) 

through kth order terms. 

In the new coordinates, the vector field becomes 

(1.17) 

• 
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where 

Using (1.13), (1.15), and (1.16), the right hand side of (1.17) can be expanded 

through terms of order k. First for V(cp-l ('1)) this gives 

V(cp-l ('1)) = VP)('1) + VP)('1) + ... + V(k-l) ('1) + V(k)('1) 

- DV(l)('1) . 4>lk)('1) + O('1k+1 ) 

and Dcp(cp-l ('1)) has the expansion 

Dcp( cp-l ('1)) = ( I + D4>(k)) (cp-l ('1)) 

= I + D4>(k)(cp-l ('1)) 

= 1 + D4> lk)('1) + O('1(k+l)) 

(1.18) 

(1.19) 

where I is the identity operator. Multiplying (1.19) and (1.18) to get V('1) gives, 

V('1) = Vll)('1) + ... Vlk-l) ('1) + V1k)('1) - DV(l)('1) .4>lk)('1) 

+ D4> lk)('1) . V(1)('1) + O('1k+1 ). 

(1.20) 

This is the vector field in the new coordinates keeping terms of degree k in 

'1; note that cp(d has not altered terms of degree less than k. At degree k 

ct>(d introduces two new terms; appreciating their significance requires some 

additional terminology. 

Denote the set of vector fields on 1Rz whose components are homogeneous 

polynomials of degree k by }l(k)(1R2 ). This set is a linear vector space of dimension 

2k + 2. For example a possible basis for J/(Z)(1RZ) is 
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so )l1 2 1(llf2) is six dimensional. Now consider a linear operator, Ll k ), on )l11e) 

defined by 

L(Ie) (Y) = [V(1), Yj ~ DY . VO) - DV(I) . Y 

where Y E )l11e) and ViI) is the linear term in (1.20). As indicated, L(Ie)(y) is 

the Lie bracket of the two vector fields V (1) and Y. In terms of Llle) , 'V (,,) in 

(1.20) becomes 

Thus to eliminateV(Ie)(,,) entirely, </>11e)(,,) must solve 

(1.21) 

This may be done if and only if the range of the linear operator L(Ie) contains 

If the range of L(k), denoted RL, is all of )I(Ie) then Vl k )(,,) may be removed; 

when RL does not equal )l11e) then there is a direct sum decomposition of )Ilk) 

into RL and a complementary subspace, RL, 

and only components of Vllel(,,) lying in RL may be removed. The components 

of V (Ie) (,,) in RL are essential nonlinear terms which may not be eliminated 

by changing coordinates. These essential nonlinearities must be retained and 

analyzed. A vector field containing only essential nonlinear terms is said to be. 

in normal form. 
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Since <I>(d left terms up to degree k - 1 unchanged, these coordinate 

transformations to produce the normal form can be performed iteratively: first 

the inessential quadratic terms are removed, then the cubic terms, etc. In 

practice the normal form need only be computed to some finite-hopefully low­

order. Specifying the minimal number of terms required in the normal forms is 

the problem of finite determinacy. This problem is briefly discussed at the close 

of this chapter. 

To understand the structure of the normal form for Hopf bifurcation, the 

range of Lllel must be computed. This is most easily accomplished when Llle) IS 

in diagonal form. From the definition of L(Ie) , the operator has two terms, . 

L(Ie)(y) = DY . V(1) - DVllI . Y. 

Diagonalizing the second term, DV (I) . Y, requires coordinates which diagonalize 

D V (1); these coordinates will effectively diagonalize the first term as well. For 

Hopf bifurcation DV(l) has the form, 

mill = CA :) 
relative to real coordinates (x, y) on !i2 . To diagonalize DV(l), starting from this 

real basis, introduce the complex coordinates given by the linear transformation 

T. 

where 
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(
1 i) T= 
1 -i 

T-1 = !( 1 
2 . 

-~ 
:) 

and 

T(:A:)T- 1 
. (~~iA ~:J. 

In (z, z) coordinates an element Y of JI(1c)(!R2 ) has the form 

Y = (Yz(Z, Z)) = T(Y:I:(Z(Z, z), y(z, Z))) 
Yz(z, z) Yy(z(z, z), y(z, z)) 

where Yz and Yz are homogeneous polynomials of degree k in z, Z. The action 

of L(1c) on Y is therefore 

L(1c) (Y) ~ DY . V(1) ~ DV(I) . Y 

(

BYZ BYz) . - --= ((I' - iA)Z) (I' -iA 
= tyz tyz (I' + iA)z - 0 

Bz Bz 
~:J(~:) 

(

(I' - iA)z BYz + (I' + iA)zB~ - (I' - iA)Yz _ Bz Bz 
- . BYz . BYz . 

(I' - tA)z- + (I' + ~A)z--= - (I' + ~A)Yz 
Bz Bz 

). 
By inspection, the eigenvectors of L(1c) consist of vectors with Yz = 0 and Yz 

a simple monomial and vice-versa; denote these eigenvectors by e~,l) and e~,l) 

respectively. In (z, z) coordinates we have, 

{~.I)(,,) = (zl(Z~._I) 

e~.l)(l1)=( 0 ) 
zl(z)1c-l 

l = 0, 1, ... , k. (1.22) 
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(Note these eigenvectors are themselves vector fields.) There are obviously 2k+2 

linearly independent eigenvectors so they span J/lk). A simple calculation gives 

the corresponding eigenvalues, 

Llk) e~,l) = A~") e~,l) 

where A~,l) = (k - 1)1' + i(k - 2l ± l)A. 

Now the range of L(k) is easy to describe. Since the eigenvectors e~,l) form 

a basis, RL is simply, the linear span of the image vectors {A~") e~")}. When 

all the eigenvalues are non-zero RL = J/(k); if N eigenvalues happen to vanish 

then dim RL = dim J/(k) - N = 2k + 2 - N. Since k > 2, Re A~,l) = 0 

only at criticality I' = o. Furthermore A ::f: 0 implies 1m A~") = 0 only if 

k - 2l ± 1 = o. Thus when k is even the eigenvalues cannot vanish, but when 

k is odd the eigenvalues A~,(k+l)/2) and A~,IIc-l)/2) vanish at I' = o. This 

means that any change of coordinates <I>(d, which removes the components of 

V(k)(~) along e~,(k+Il/2) or e~,(k-l)/2) , will be singular at I' = o. Thus these 

components must be retained to obtain a normal form valid at I' = o. For 

k even, there is no such difficulty and nonlinear terms in V(d of even degree 

can always be removed. These observations lead to a simple prescription for 

constructing the normal form transformation <I>(d, and determine the general 

form of the normal form equations. 

For terms, V(k)(d, of even degree (1.21) can be solved exactly. Expanding 

¢>(k)(d and V(k)(d in the eigenbasis, 
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.pl') (so) = h {.p~.,) e~·l) (il + .p~.l) e~·l) (~) } 

V(')(~) . ~{ V~·l) e~·l)(~) + V~·l) €~,l)(~)} 

then plugging into (1.21) yields explicit solutions for the components of <p(k)(d. 

Vlk,l) 
<plle,l) = - ± (1.23) 

± A(k,l) 
± 

For k odd, this also gives the desired components with the already noted ex-

ceptions <p~,(k+l)/2) and <p~,(k-l)/2) . which are not determined, and must be 

independently specified. This ambiguity in the coefficients of ~(~) means that 

the normal form equations are not uniquely determined for J1 :I: O. For simplicity 

I shall adopt the prescription <p~,(k+l)/2) = 0 and' <p~,(k-l)/2) = 0; this choice 

differs from that of Hassard and Wan (1978) and Hassard, Kazarinoff, and Wan 

(1981). 

Although (1.23) for the components of ~(d is very compact, in practice 

the indicated calculations are laborious. The primary reason for this is the 

nonlinearity of V(~). Carrying out the normal form transformation at quadratic 

order, 

introduces additional nonlinear terms of degree 3,4, etc. In order to compute the 

normal form through terms of degree k = 3, the terms of degree 3 contributed 

by <p(:2)(~) must be calculated. Computing the normal form through k = 5 
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requires similar bookkeeping on the higher order nonlinear terms introduced by 

¢>(Z)(d and ¢>(3)(~). General formulas for extracting the normal form up to terms 

of fifth degree are derived in the Appendix; these results generalize slightly the 

previous formulas of Hassard and Wan (1978). 

To conclude this discussion of the Hopf bifurcation normal form,. consider 

the general form of the normal form equations. The original vector field V(d 

may be expanded in the eigenbasis appropriate for each subspace )I(k). 

where 

V(k)(d = t [V~'l) e~,l)(~) + V~,l) e~,l)(~)l 
. 1 .... 0 

for k > 2. The nonlinear change. of coordinates, 11 = cf>(d, constructed above 

transforms V(d into the normal form vector field, 

dl1 = V('1) = V(l)('1) + V(3)('1) + V(·5)('1) + ... 
dt 

- (1) 
where V ('1) = V(l)('1) and for odd values of k > 1, 

V(k)('1) = V~·(k+l)/Z) e~·(k+l)/2) ('1) + V~,(k-l)/2) e~,(k-l)/2) ('1). 

- (k.(k+l)/Z) - (k,(k-l)/2) . 
Here V + and V_are the components along eIgenvectors III 

the kernel of L(k) at J-' = O. They include the components of V(d plus the 

contri butions arising from cf>(~). 

To reveal the dynamics of the normal form equations requires re-introducing 

coordinates explicitly; real polar coordinates are the optimal choice. As an in-
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termediate step, first rewrite the normal form equations in real cartesian coor­

dinates. This requires expressing ~~,(k+l)/2) and ~0,(k-l)/2) in real coordinates. 

From (1.22) 

~~.lk+11/21 = Izlk- 1 C) 
in complex coordinates, thus in terms of z = r cos 0 and y = r sin 0, ~~,(k+l)/2) 

becomes 

. (Z) k i8 ( 1 ) ~~,(k+l)/2) = Izlk -
1 T 0 . T -i . (1.24) 

Similarly ~0,(k-II/2) in real coordinates is 

~~.lk-l)/21 = rOe;" C} (1.25) 

Overall the normal form vector field becomes 

(1.26) 
" [V(k,(k+l)/2) ~(k.(k+l)/2) V(k,(k-l)/2) d k ,(k-l)/2)] 

+ L- + ~+ + - ~-
".=3.5 .... 

where only odd k values are included in the summation. To express this in polar 

variables (r,O) is very simple since z + iy = re i8 . Thus from (1.24), (1.25), and 

(1.26) 

dz . dy ( dr . dO) i8 ( A)'( A ) - +t- = - +tr- e = pz+ y +t - z+py 
dt dt dt dt 

i8 " [v- (k,(k+l)/2) k] +e L- + r . 
k=3.5 .... 

Canceling ei8 , and then equating real and imaginary parts yields dr / dt and dO / dt, 
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~: = J.Lr + L (Re V~,lk+I)/21 )rk 
k=3,o5, ... 

dO 
-=-A+ 
dt 

L (1m V~,lk+l)/21 )rk - l . 

k=3,o5, ... 

(1.27) 

In practice these equations are computed only to some finite order, and one 

typically analyzes (1.2) which appeared in the Introduction. 

dr . 3 05 7 - = J.Lr + al r + a2r + O(r ) 
dt 

dO = -A + bl r2 + b2 r4 + O(r6 ) 
dt 

(1.28) 

. . .. . V- (k,(k+l)/21 
The final loose end 1S the explIc1t relatlOn between the components + 

and the components of the original vector field V(d. This relation must be 

calculated order by order in k; in the Appendix this is done for k = 3 and 

k = 5. 

Nevertheless by considering the possible values of the normal form coefficients 

the "menu" of allowed dynamics may be determined. First of all, since the dr / dt 

equation is independent of 0, the radial dynamics is one dimensional. Near r = 0 

for J.L > 0 the unstable fixed point pushes the solution curves outward; the subse-

quent effects of the nonlinear terms can be determined from 

(1.29) 

For J.L > 0, the dr / dt = 0 equation has two solutions: the unstable fixed point 

at r = 0 and ro = ..j -J.L/ al which is relevant only if (J.L/ al) < o. When 

applicable the solution r = ro describes a periodic orbit in the neighborhood of 
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the fixed point. Whether the orbit appears for /-' < 0 (subcritical bifurcation) 

or for /-' > 0 (supercritical bifurcation) depends on the algebraic sign of al at 

/-' = o. (If al = 0 at /-' = 0 then the r 5 term must be considered. An example 

of this occurs in the next chapter.) The stability of the periodic orbit is found 

by linearizing about r = roo Plugging r = ro + Or into (1.29) gives 

dor ( ?) dt = -2/-,or + 0 (ort . 

Thus, supercritical bifurcation produces a limit cycle, but subcritical bifurcation 

involves an unstable or bit. The phase portraits for these two cases appear in 

Fig. (1.1). 

Final Remarks 

The result obtained in (1.21) did not assume a particular form for the linear 

term,V(ll(~). In fact the assumption of a two dimensional vector field could 

have easily been dropped. However the subsequent analysis, leading to the 

normal form in (1.27), did depend on the specific form of the linear term in 

(1.14) for Hopf bifurcation. If (1.14) is generalized to allow a real eigenvalue 

or a second conjugate pair to cross the imaginary axis simult~neously with the 

first conj ugate pair then the normal form involves a three of four dimensional 

system respectively. The normal form for bifurcation at a conjugate pair plus 

a real eigenvalue has been analyzed by Guckenheimer (1981) and Scheurle and 

Marsden (1982). For the normal form for bifurcation with two conjugate pairs 
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(which occurs in the model of Chapter 3) see Takens (1974) and Guckenheimer 

and Holmes (1983). 

There are additional special features of this derivation of the normal form 

for Hopf bifurcation which simplified the calculations. First, the eigenvectors of 

L(kl form a basis for )I(kl; this allows the range of L(kl to be easily determined. 

Secondly, at J.I. _ 0 the dimension of the kernel of L(kl is either zero or two 

depending on whether k is even or odd. Moreover-, for odd k, the kernel dimension 

is always two; it does not vary with k. In more complicated bifurcations, Spiegel 

and collaborators (1983) have found that the kernel dimension can increase with 

k. When this happens it complicates the analysis of the degenerate bifurcations 

in which the lowest order nonlinear terms vanish. 

As mentioned earlier, there is the dilemma of how many nonlinear terms 

in the normal form must be retained to determine the qualitative features of 

the phase portrait. For the example of Hopf bifurcation, because the analysis 

reduces to a one dimensional problem for the radial dynamics there is not much 
I 

difficulty. For J.I. =I:- 0, there is at most a periodic orbit in the vicinity of the 

fixed point and both have definite linear stability i.e. they are hyperbolic; thus 

the small perturbation of adding the a2r5 term cannot alter the topology of the 

phase portrait near r = o. For J.I. = 0, the periodic orbit is absent and the 

stability of r = 0 is determined by al r3 + al r 5 + . ... For r sufficiently small 

stability is clearly controlled by al r3. Thus for a neighborhood of J.I. = 0, we 
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can expect the truncated equation 

dr 3 
dt = J-Lr + aIr 

to topologically determine the flow of lJ(~) near ~ = o. How to truncate the 

normal form equations when the dimension of the system is .greater than one 

is more delicate, but sometimes can be analyzed using Takens' "blowing up" 

procedure. This technique is discussed in detail by Guckenheimer and Holmes 

(1983). 

The normal form theory presented here is a restricted version of a more . . 

general theory developed by Arnold (1972), Takens (1974), Broer (1981), and 

others. In this more general theory, the deformation of the phase portrait of the 

original vector field lJ (~) into the phase portrait of the normal form equations 

is done in a continuous fashion by constructing an "intermediate" vector field 

whose flow pushes the integral curves of lJ(d onto the integral curves of. the 

normal form. The change of coordinates <I>(~) then corresponds to the time-one 

map of this intermediate flow. Holmes (1981) provides an introduction to this 

elegant geometric viewpoint. 
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Figure Captions 

Figure (1.1) (a) A typical spectrum for L~ consists of real and conjugate 

pairs of eigenvalues. In infinite dimensional problems, L~ may also have 

continuous spectrum. (b) The linear invariant subspaces EB, EC, and EU 

determine the structure of the linearized flow. 
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Figure (1.2) (a) The invariant manifolds W· I we I and WU are the nonlinear 

analogues of the linear eigenspaces. Each manifold passes through z = 0 

and is tangent there to its corresponding eigenspace. (b) At criticality for a 

nondegenerate Hopf bifurcation the spectrum of L". has a simple conjugate 

pair of eigenvalues on the imaginary axis. The rest of the spectrum is in 

the left half plane a finite distance away from the imaginary axis. 
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Figure (1.3) (a) The center manifold we for a nondegenerate Hopf bifurcation 

is two dimensional. There is no unstable manifold, and the dimension of 

the stable manifold is n - 2 wheren is the dimension of the phase space. 

(b) Near the fixed point, the invariant manifold WI' may be described as the 

graph of a function h(A, A). 
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CHAPTER 2 

Hopf Bifurcation In a Resonant 3-Wave Interaction 

Understanding wave dynamics in a plasma requires, in part, an analysis 

of the interactions between waves (Davidson (1972)). Frequently, the primary 

interaction to consider occurs between three waves whose frequencies Wi and 

wave numbers ki satisfy the resonance conditions: 

WI = W2 + W3 and ki = k2 + k3 • 

When the wave amplitudes are small, this interaction dominates higher order 

processes involving more waves. If wave-particle interactions (see Chapter 3) are 

unimportant as well, then the three wave interaction may be the most important 

nonlinear effect to consider. 

Depending on the context, the three wave interaction may serve to produce 

an instability, such as the "parametric decay" instability (Chen (1974)), or to 

saturate the growth of an instability. In this chapter, a model for the saturation 
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of a linearly unstable wave via a three wave interaction is considered. The 

unstable, high frequency wave couples to two damped, lower frequency waves 

through nonlinear interactions which are quadratic in the wave amplitudes. 

Their interaction drains energy at high frequency into lower frequency modes. 

A well known example of this process is the decay of a Langmuir wave into an 

ion-acoustic wave plus a second Langmuir wave (Davidson (1972)). 

Under suitable conditions an overall balance results between high frequency 

growth and low frequency decay. This produces a stable equilibrium in the wave 

dynamics. At this equilibrium or fixed point, the wave amplitudes are time 

independent. If however the parameters of the interaction are varied to produce 

less damping or less effective coupling, then this stable balance is destroyed. 

Some time-dependent state replaces the equilibrium; the fixed point is no longer 

a stable solution. For the model of this 3":wave interaction considered here, 

this transition provides an excellent example of a Hopf bifurcation in finite 

dimension. 

On physical grounds, if the damping of the stable modes is decreased, one 

expects at some point they would no longer be able to arrest the growth of 

the unstable mode. In the model, this stability boundary marks the shift from 

supercritical Hopf bifurcation {at < 0 in (1.28)) to subcritical Hopf bifurcation 

(at > 0 in (1.28)). The calculation of at allows the location of this transition 

to be predicted, and the normal form analysis yields a detailed understanding 

• 
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of the dynamics near this critical region. 

The Model 

My formulation of the problem follows Wersinger, Finn, and Ott (1980), 

who studied the model numerically and found a rich bifurcational structure. 

The model assumes for simplicity a single resonant triad, and neglects the self-

consistent evolution of the background plasma. Each wave is represented by a 

complex amplitude 

j=I,2,3 

which evolves on a slow time scale. On a fast time scale the wave frequencies, 

WI, W2, W3, are assumed to be nearly resonant; the frequency mismatch is O. 

The high frequency wave WI is unstable, and its linear growth rate is normalized 

to unity. For simplicity, the damped low frequency waves are assigned equal 

damping and assumed to have the same magnitude: a2 = a3. This latter 

assumption is consistent with the assumption of equal damping. In dimensionless 

variables, the amplitude equations are then 

dx .) - = x - Oy + z - 2y­
dt 

dy 
. dt = Ox + y + 2xy 

dz 
-=-2rz-2xz 
dt 

o,r > 0 (2.1) 



where 
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y = at sin ¢> 

z = (a2)2 

r = linear damping rate for C2 and 0 3. 
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A derivation of these equations from the dynamics of the Cj appears in Wersinger, 

Finn, and Ott (1980). 

This particular set of amplitude equations exhibits very complex dynamics 

and intricate sequences of bifurcations. Several studies have extended the work 

of Wersinger et al. (1980). Meunier, Bussac, and Laval (1980) reported extensive 
. ! 

numerical calculations of the bifurcation sequences; and Bussac (1982) developed 

a dynamical theory in terms of one dimensional maps. Some results of this 

chapter are independently described in those works. 

Equation (2.1) defines a two parameter family of vector fields on !R3 , denoted 

Vn.r. The divergence of this family is 

div Vn,r = 2(1 - r). 

The wave dynamics can have stable, bounded solutions only for r > 1. If r > 1 

the flow of Vn.r contracts volumes. Since the amplitude equations are invariant 

under the shift 0 -+ -0 and y ~ -y, the frequency mismatch 0 may be 

assumed to be positive. 
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Vn,r has two fixed points. There is a trivial fixed point at (x, V, z) = (0,0,0) 

corresponding to no waves; this solution is unstable since the high frequency 

wave is unstable. There is a nontrivial fixed point at 

-Of 0 2 

(xo, Yo, zo) = (-f, 2f _ 1 ,f(l + (2f _ 1)2 )) 

whose stability depends on 0 and f . 

Linear Analysis 

The methods of the previous chapter allow a detailed analysis of this non-

trivial equilibrium, and the wave dynamics in its neighborhood. The first step 

is a linear stability analysis. This is an exercise in linear algebra with two goals: 

determine the spectrum of the linearized dynamics at the fixed point and cast 

the problem into the form of (1.1) with the linear operator in block diagonal 

form. The calculations required are simply summarized. 

Shift coordinates x -+ x + xo, V -+ V + vo, z -+ z + Zo to place the fixed 

point at the origin, then (2.1) becomes 

1 (1 + ,..,)p 

where,.., = 2f and p = Olb - 1) . This is an evolution equation for ~ = (x, V, z); 

d~ . 
-d = L~ + )J(~) . t (2.2) 
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where 
1 (1 + '1)p 

:l L =( -P 1-'1 

-'1(1 + l) 0 

and 

( . 1 -y-

JI(~) = 2 zy . 

-zz 

The eigenvalues of L, denoted Ai, are roots of its characteristic polynomial, 

For '1 > 2, all coefficients are nonnegative and the constant term is positive; this 

implies that any real root must be negative; in particular Ai = 0 cannot occur in 

this region of parameter space. If eigenvalues with Re A. = 0 occur, they must 

form a conjugate pair ±iA. Thus in the regions of parameter space where the 

stability of the fixed point changes, there will be a negative real eigenvalue and 

a conjugate pair. From the characteristic polynomial, a complex root, I-' + iA, 

satisfies 

31-'2 - A2 + 2('1 - 2)1-' + 1 + p2(1 + 2'1) 

1-'(1-'2 - 3A 2 ) + ('1 - 2)(1-'2 - A 2) 

+[1 + p2(1 + 2'1)]1-' + '1('1 - 1)(1 + p2) 

=0, (2.3) 

=0. (2.4) 

Although nand '1 are the original physical parameters, I-' and '1 are more 

convenient. This is because I-' directly measures the distance in parameter space 

• 
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from criticality (I' = 0). To express the dependence of 0 on (1', 1) require~ p as 

a function of (1',1). This is found by solving (2.3) for Ai, eliminating A2 from 

(2.4), and solving for p2. 

p2 = (1 - 2J.th2 - 2[1 + 41'(1' - 1)11 + 2[1 - 1'(41'2 - 81' + 5)] 
12 - 2(1 - 2J.th - 2(1 - 1') . 

A2 = 31'2 + 2(1 - 2)1' + 1 + p2(1 + 21) 

and 0 = p(ry - 1). The parameter space (0,1) for 0 > 0, 1 > 0 corresponds 

to I' < 0.5 and 1 > 0 as shown in Fig. (2.1). The condition I' = 0 determines 

the curve in parameter space where a conjugate pair of eigenvalues crosses the 

imaginary axis, and the fixed point loses stability in a Hopf bifurcation. 

The eigenvectors of Lsatisfy 

where 

. (-P(1 + 1)Ai ) 

tJi = - !(Ai) . 

P1(1 + p2)(1 + 1) 

with !(x) = x2 - x + 1(1 + p2). For the lone real eigenvalue AI, denoted 

henceforth as A, tJ1 has real components. For the conjugate pair, A2,3 = I' ± iA, 

the eigenvectors have real and imaginary parts: 

tJ2,3 = w ± itt. 

where 
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( 

-JLp(1 + 1) ) 

w = A2 - /(1') 

P1(1 + p2)(1 + 1) 

and 

(

-P(1 + 1) ) 

u = A 1- 2A 

o 
are real vectors spanning a two dimensional subspace. 

The linearly independent set {u, w, vr} determines a linear transformation, 

S, which puts L in block diagonal form. Let 

) ( 

-JLp(1 + 1) 

u VI = A2 -l(JL) 

P1(1 + p2)(1 + 1) 

then 

-pA(1 + 1) 

A(1 - 2A) 

o 

-p(1 + 1)A ) 

-A/(A) 

P1(1 + p2)(1 + 1) 

det S = a{32 A[/(A) - /(1') + A 2 + (A - 1')(1 - 21')] 

and 

a{3A 

af3(A - JL) 

-a{3A 

A(f(A) + A(1 - 21')) ) 

A/(JL) - JL/(A) - AA2 

A(k~ - f(JL) -1'(1 - 21')) 

where a = 1(1 + p2) and (3 = p(1 + 1). With the change of coordinates ~' = 

S-1 ~ = (x', V', Zl), (2.2) becomes 

d I 

2... = J~' + N(~/) 
dt 

(2.5) 
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where 

The parameter dependence of Jt(~'), though complicated, is easily worked 

out. From the definition of 5, 

-f3(JLZ' + Ay' + 'Xz' 

5~' = (A2 - f(JL))x' + A(l- 2JL)Y' - f('X)z' 

af3(x' + z') 

Applying JI (~) to 5~' yields 

-(R2 (~'))2 

JI(5~') = 2 Rd~')R2(~') 

- Rl (~')R3 (~') 

Finally left multiplying by 5-1 gives Jt(~'). 

Rl (~') 

- R2(~') 

R3 (~') 

This completes the linear analysis and formulation of the evolution equation 

(2.5). Henceforth the primes on ~' = (x', y', z') will be dropped. As a final 

remar k, the invariance of the trace, Tr J = Tr L, gives the dependence of 'X on 

'X = -21" - (I - 2). 

This relationship gives the remaining real eigenvalue when the conjugate pair is 

on the imaginary axis, e.g. at JL = 0, 

'X = -(I - 2). 
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If p. = 0 and 1 = 2, then all three eigenvalues are simultaneously critical. This 

situation has been studied by Langford (1979), Guckenheimer (1981), Scheurle 

and Marsden (1982), and others. It is not quite realized in the present model. 

Examining the characteristic polynomial and Fig. (2.1) reveals that for small 

1, the surface J.' = 0 asymptotes to the vertical line r ,..... 1.3 or 1 ,..... 2.6, and 

does not reach 1 = 2.0. An interesting extension of the analysis in this chapter 

would be to seek a modified parameterization of (2.1) which would allow the 

bifurcation with three eigenvalues to occur. 

The Dynamics on the Center Manifold 

To compute the normal form for this bifurcation it is sufficient to determine 

the center manifold, WC, in the neighborhood of the fixed point. As discussed 

in Chapter 1, near the fixed point the center manifold has coordinates defined 

by a mapping from the (x, y)-plane to WC. Denoting these coordinates by 'P, 

<p:!R2 -+ W C C !R3 

<p(x, y) = (x, y, h(x, V)) 

where h(x, y) gives the z coordinate orwc~-

The invariance of WC implies 

(2.7) 

if ~C(t) = (XC(t), yC(t), ZC(t)) is a solution to (2.5) with ~C(O) E WC. As shown in 

Chapter 1, differentiating with respect to time leads to the invariance equation 
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for h(x, V), 

. ah 
)"h(x, V) + Na(x, V, h(x, V)) = ax [J.'X + AV + Ndx, V, h(x, V))] 

+ ~~ [-Ax + J.'V + N 2 (x, v, h(x, V))] 

(2.8) 

where the Ni are defined by, 

(

Ndd) 
Ned = N2(~) . 

N3(~) 

To extract an asymptotic solution for h(x, V), accurate near (x, V) = (0,0), 

expand h(x, V) in a power series about (0,0) and determine the coefficients from 

(2.8). 

(2.9) 

where 
h(2)(X, V) = B1xZ + BzVz + BaxV 

h(a)(x, V) = G1X3 + GzxzV + G3 xV2 + G4V3 

h(4)(X, V) = DI X4 + D2x3V + Dax2y2 + D4XV3 + D5V4
. 

Since h(O,O) = 0, there can be no constant term, and the tangency which we 
has with the (x, v)-plane requires h(1)(x, V) = O. To facilitate the calculation 

denote the coefficients in )J (d by {Nij}. 

NllX2 + NIZV2 + N l3 XV + N l4 XZ + N l5 VZ + N l6 ZZ 

(2.10) 

.}.} . .) 

Nal x- + N 3Z Y- + N33XV + N 34 XZ + N 35 VZ + N a6 z-

Here )J(d is homogeneous of degree two; this follows from its definition in (2.5). 
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Combining (2.9) with (2.8) determines the coefficients in h(x, y) in terms of 

the {Nij}. At quadratic order, (2.8) becomes 

)"(BIX2 + B2y2 + B3XY) + N31X2 + N32y2 + N33XY 

= (2B1x + B3Y)(~X + Ay) + (2B2y + B3 X)(-Ax + I-'y). 

Equating the coefl'cients of x2, y2, and xy determines the Bi . 

B _ 2A(N32 - N3Il + (21-' - )")N33 
3 - (2A)2 + (21-' - ).,)2 

B 
_ AB3 +N31 

1 -
21-' - )., 

B _ - AB3 +N32 
2 - 21-'-)" 

The calculation of the cubic coefficients, Ci, and the quartic coefficients, Di, 

is similar but more tedious. The results are simply summarized. At cubic order 

the balance in (2.8) is \ 

)"hI3 )(x, y) + (N34X + N 3.5y)h(2)(x, y) = (2B~x + B3y)(NllX2 + N12y2 + NI3XY) 

which implies 

+ (2B2y + B3X)(N21X2 + N22y2 + N23XY) 

+ (3C1 x2 + 2C2xy + C3y2)(I-'X + Ay) 

+ (C2X2 + 2C3xy + 3C4y2)(-Ax + I-'Y) 

[3A2 + (31-' - ).,)2][(31-' - )")C~ - 3AC~1 + 2A(31-' - )")[(3~ - )")C~ + 3AC~1 
C') = ~--~----~~----~~----~--~----~~--~~----~~-

- (3A2 + (31-' - ).,)2)2 + 4A2(31-' - ).,)2 

(31-' - )")C~ + 3AC~ - 2A(3~ - ),,)C2 
C3 = 3A2 + (31-' _ ).,)2 

C'1 + AC) 
C - -

1 - (31-' - ).,) 

C~ - AC3 C4 = --'----
(31-' - ).,) 



• 
where 

Hopf Bifurcation In a Resonant 3-Wave Interaction 

c~ = B1(N34 - 2N11 ) - B3N21 

C~ = BdN35 - 2N13 ) - 2B2N21 + B3(N34 - Nll - N23) 

C~ = -2BIN12 + B2(N34 - 2N23 ) + B3(N35 - N 13 - N 22 ) 

. C~ = B2(N35 - 2N22 ) - B3N 12 . 

I 59 

Thus the C~ are calculated from the original nonlinear terms Nii and the 

quadratic coefficients of h(z, V), then 02, C3 , C1 , and C4 are computed in that 

order. 

Finally, the results of the quartic balance in (2.8) are 

where 

D _ 6A2[2A(2D'{ -D~) - (41-' - )')D~l 
4 - (lOA2 + (41-' - ).)2)2- (6A2)2 

(lOA2 + (41-' - ).)2)[2A(2D~ - D~) + (41-' - )')D~l 
(lOA2 + (41-' - ).)2)2 - (6A2)2 

2A(2D~ - D~) - (41-' - )')D~ + 6A2 D4 
D·) = -.:.....-....:......-.....::....:.--:--~---:.~----

- . lOA2 + (41-' -).)2 

3A{D4 - D2) - D~ 
D3 = -.:.....---.....;.....--=--

(41-'-).) 

AD2 -D~ 
Dl = ---=-

(41-'-).) 

-AD4 -D~ 
D5 = (41-'-).) 
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D'i = Di + BIBi 

D~ = D~ + BIB~ + B3Bi 

D~ = D~ + BIB'3 + B2Bi + B3B~ 

D~ = D~ + B2B~ + B3B~ 

D~ = D~ + B2Ha 

D'l = Ct{3Nll - N34) + C2N 21 

D~ = Ct{3N13 - N35 ) + C2 (2Nll + N 23 - N 34 ) + 2N21 C3 

D~ = 3C1 Nl2 + C2(2Nl3 + N22 -N35 ) + C3(2N23 + Nll - N 34 ) + 3N2l C4 

D~ = 2C2N l2 + C3(2N22 + N l3 - N 35 ) + C .. (3N23 - N 34 ) 

D~5 = C3 Nl2 + C .. (3N22 - N 35 ) 

and 
Bi = Bl (2Nl4 - N36 ) + B3 N 24 

B~ = 2B1N l5 + B3(N14 - N36 + N25 ) + 2N24B2 

B~ = B2(2N25 - N36 ) + N 15 B3. 
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In using these formulas, B~ and D~ are first evaluated from the known 

quadratic and cubic coefficients, then the D'I can be computed. D4 is given in 

terms of the D'l, and D2 involves D .. ; knowing D2 and D.. fixes Dl , D3, and 

D.5 • 

In this chapter, the Hopf normal form will be evaluated through terms of 

fifth degree. This means that the center manifold vecter field must be computed 

through fifth order. To do this, h(x, y) is needed through fourth order (i.e. 

quartic terms), since the nonlinear terms in )./(~) begin at second order. Thus 
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the calculation of h(x, y) is complete. 

The center manifold dynamics is extracted by restricting (2.5) to the center 

manifold, i.e. set z = h(x, y). Since h by definition satisfies (2.8), the component 

equation for dz / dt in (2.5) is automatically satisfied, and only the two dimen­

sional flow on we remains. (Note that the (x, y) components of (2.5) correspond 

to (1.6). In this example the formal projection by adjoint vectors amounts to 

simply dropping the z component of (2.5).) To resume the notation of Chapter 

1, write this flow as 

where 

V(d = ( J-' 
-A 

~~ = V(d ~ = (x, y)E !i2 

A)() ( ') :2 ) X Nll x- + N 12 y + N 13 XY 

J-' Y + N21 x2 + N22y2 + N 23 xy 

+ (N14Xh(X' y) + N 15 yh(x, y) + N16(h(x, Y)): ). 

N24Xh(x, y) + N 25 yh(x, y) + N 26 (h(x, Y))-

Thus, in the notation of (1.13), 
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( 

J.Lx + Ay ) 
V(1)(~)= 

-Ax + J.Ly . 

Examining these formulas reveals the essential role played by the curva­

ture of we. A satisfactory analysis of the dynamics must take into account 

h(2)(X, y) =r6 O. If this curvature were neglected and h(x, y) = 0 assumed, then 

geometrically the nonlinear manifold, we, would be replaced by the linear (x, y)­

plane. The effect on V(~) would be to leave V(1)(~) and V(2)(d unchanged, but 

enforce V(i)(d = 0 for j > 3. However, V(3)(~) is required to correctly deter­

mine the normal form coefficients al and bl in (1.28). From (1.27), recall that 

these coefficients are fixed by the terms of degree 3 lying in the kernel of the 

operator L(3). Neglecting V(3)(d would in general alter these terms; hence the 

effects of h(2)(x, y) =r6 0 must be included. 
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Analysis of the Normal Form 
r 

The normal form theory of Chapter 1 allows the two dimensional :flow 

d~ 
-=V(d 
dt 

to be rewritten in polar coordinates, 

dr . 
dt = p.r + adp., 1)r3 + a2(p., 1)r5 + 0(r7) 

dO ? 4 6 
dt = -A + bdp., 1)r~ + b2(P., 1)r + O(r ). 

(2.11a) 

(2.11b) 

The formulas which express the coefficients at, a2, bI, and b2 in terms of the 

coefficients in V(2)(~), V(3)(d, V(4)(d, and V(5)(d are explicitly derived in the 

Appendix. 

The normal form coefficient al is of greatest interest since it controls the 

appearance or disappearance of the periodic orbit. For small r there are two 

solutions to dr / dt = o. 

The r = 0 solution is unstable when p. > 0; if adp. = 0,1) < 0 then the new 

stable solution is ro = V(-p./ad which corresponds to a stable periodic orbit. 

If adO, 1) > 0 this second solution is relevant for p. < 0 and then describes an 

unstable periodic orbit. 

The graph of al (0,1) appears in Fig. (2.2a). Notice that al (0,1) changes 

sign at 1c ""' 3.29, Only for damping rates greater than 1c will the instability 
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saturate in a small amplitude oscillation. For "I < "Ie the normal form implies 

that there is no stable attractor in the neighborhood of r = 0; in fact, numerical 

studies indicate the wave amplitudes grow without bound. 

In the vicinity of b = "Ie, J1. = 0), the stable Hopf orbit must be destroyed 

in a separate bifurcation. This is clear, since for "I < "Ie, 0 < J1. <: 1.0 there is no 

periodic orbit in the neighborhood of the fixed point. Thus the Hopf bifurcation 

surface at J1. = 0 in parameter space must intersect at least one additional 

bifurcation surface at b = "Ie, J1. = 0). 

At ("I = "Ie, J1. = 0) the instability of r = 0 is a degenerate Hopf bifurcation. 

It is one of the simplest examples of a co-dimension two bifurcation. The analysis 

of this degenerate case in Golubitsky and Langford (1981) shows that there is 

only one bifurcation surface which intersects the Hopf surface. This second 

surface marks parameter values at which the stable Hopf orbit collides with an 

unstable periodic orbit and both disappear. In the ret.urn map for the Hopf orbit, 

this collision is a saddle-node bifurcation which annihilates two fixed points (see 

Guckenheimer (1984)). For this reason, this second surface may be referred to as 

the saddle-node surface; it was discovered numerically by Meunier et al. (1980). 

To determine how the saddle-node surface approaches the Hopf surface (at 

J1. = 0) requires an analysis which includes both periodic orbits. Since the saddle­

node surface intersects the Hopf surface, the saddle-node bifurcation occurs for 

arbitrarily small positive values of /J; see Fig. (2.6). This means that the two 
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orbits can collide while the Hopf orbit is still in a very small neighborhood of 

r = O. Under these circumstances the local attractivity of we near r = 0 will 

not permit a periodic or bit which is not in fact contained in we. For this reason, 

both periodic orbits must lie in we and their collision is a feature of the center 

manifold dynamics. 

When this saddle-node bifurcation occurs at small J.I. and small r, (2.11b) 

implies that the flow is cylindrically symmetric. Therefore (2.11a) for dr / dt 

suffices to describe the bifurcation. 

At the saddle-node bifurcation the linear stability of the Hopf orbit is lost, 

but the orbit still exists. The bifurcation surface is determined by these two 

facts. The existence of the Hopf orbit at criticality means that r = ro is still a 

solution to dr / dt = O. From (2.11a) this implies 

(2.12) 

where the r6 term must be kept since al = 0 is allowed. Linearizing (2.11a) 

about the Hopf orbit determines the orbit's linear stability within we. For p = 
r - ro, 

Linear stability of p = 0 changes when 

(2.13) 

Equations (2.12) and (2.13) suffice to determine the saddle-node surface at 
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small p,. To eliminate ro, subtract (2.12) from (2.13) to get 

Here a solution for ro ~ 0 exists only if 

(2.14) 

then 

Inserting this solution into either (2.12) or (2.13) yields 

(2.15) 

Equations (2.14) and (2.15) describe the saddle-node surface for 0 < p, ~ 

1. There are two cases: the saddle-node surface branches from the point (at = 

0, p, = 0) to the right (at < 0) or to the left (at> 0) depending on the algebraic 

sign of az. These cases are sketched in Fig. (2.3). The graph of az(O, 'Y) appears 

in Fig. (2.2a); at 'Y = 'Yc, az is positive and the situation in Fig. (2.3b) applies. 

The normal form coefficients bt and bz describe amplitude dependent cor-

rections to the linear frequency, A. Their dependence on I at J.' = 0 is shown in 

Fig. (2.2b). 

The information obtained from this normal form analysis was checked 

numerically. Fig. (2.4) shows the Hopf bifurcation to a stable limit cycle for 

I > IC' As'Y decreases (at fixed p, = 0.01), the limit cycle loses stability at 'Y 1"'0..1 

• 
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3.55. This transition appears in Fig. (2.5), and represents the "experimental" 

manifestation of the global saddle-node bifurcation. 

A comparison of the theoretical saddle-node surface and the numerically 

determined surface appears in Table 2.1 and Fig. (2.6). 

Table 2.1 

I' 1c{Normal Form) 1c{Numerical) 
0.005 3.57 3.49 

0.0075 3.66 3.53 
0.01 3.74 3.55 
0.02 4.08 3.70 
0.03 4.52 3.75 
0.04 5.08 3.78 
0.05 5.72 3.85 
0.10 7.64 4.05 

Comparison of numerical results with the saddle-node surface 

computed from equation (2.15) 

The results from (2.15) compare poorly for J-' > 0.01; it is not clear why the 

range of validity is so restricted. 

A Digression: Absence of Secondary Hopf Bifurcation 

There is a very simple argument which shows that in this model it is not 

possible to have a secondary Hopf bifurcation to an attracting torus. This 
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argument also applies to a number of other finite dimensional systems which 

exhibit period doubling cascades; see Feigenbaum (1980) and McLaughlin (1981). 

The linear stability of a periodic orbit is determined by the eigenvalues 

of its linearized return map, or equivalently by the Floquet multipliers of the 

vector field obtained by linearizing the evolution equation (equation (2.5) for 

example) about the periodic orbit. If all the multipliers are within the unit 

circle, the orbit is linearly stable. The bifurcations of a stable orbit occur when 

multipliers escape from the unit circle as parameters in the evolution equation 

are varied. For example, the saddle-node bifurcation just discussed corresponds 

to a real multiplier exiting the unit circle at + 1. Period doubling corresponds to 

a multiplier passing through -1, and secondary Hopf bifurcation occurs when 

a complex conjugate pair of multipliers leave the unit circle at points which are 

not low order roots of unity (Guckenheimer (1984)). 

In lR3 , there is a simple criterion for,a bifurcation involving a conjugate pair 

of multipliers. Let the evolution equation 

dx - = V(x) 
dt 

have a periodic orbit, xr(t), with period T. 

The linear stability of xr(t) is determined from the multipliers of the linearized 

equation: 
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dox - = DV(xr(t)) . ox. 
dt 

I 69 

There are three multipliers, but one is always equal to unity since perturbations 

o x along the orbit xr(t) have strictly neutral stability (Iooss and Joseph (1980)). 

A simple result from Floquet theory relates the product of the multipliers, 

PIP2P3, to the trace of DV(xr(t)) (Jordan and Smith (1977)). 

PIPZP, = exp [I. r 
Tr DV(zr(t)) dt] (2.16) 

Now in the stability problem for xr(t) when a conjugate pair of multipliers, 

PI = P2, cross the unit circle, (2.16) reduces t? 

1 = exp [for Tr DV(xr(t)) dt] (2.17) 

since P3 = 1 as noted above. Equation (2.17) implies a neceuary and sufficient 

condition for criticality: 

Since Tr DV(x) = (div V)(x), this is equivalent to 

for (div V)(xr(t)) dt = o. (2.18) 

Equation (2.18) requires that the average divergence of V(x) around xr(t) 

vanish at criticality for a bifurcation involving a conjugate pair, of multipliers. 

This is a geometrically intuitive requirement. For the 3-wave model the left hand 

side of (2.18) is trivial to evaluate since div Vn,r = 2(I-r). Hence r = "1/2 = 1 

determines the curve in parameter space along which these bifurcations occur. 
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However for r < 1, the flow expands volumes, and there cannot exist a stable, 

zero volume attractor. In particular this shows that a limit cycle for r > 1 

cannot bifurcate to a stable torus since the torus would have to exist for r < 1. 

The only allowed bifurcations are those involving real multipliers at ±1, and 

indeed both types are observed in the numerical studies of Wersinger, Finn, and 

Ott (1980) and Meunier, Bussac, and Laval (1980). 
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Figure Captions 

Figure (2.1) Surfaces of constant J.L in the (0, r) parameter space. The Hopf 

bifurcation surface is J.L = o. Note that J.L is never larger than 0.5 despite 

the fact that 0 and r are each unbounded. 
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Figure (2.28) At criticality (JI. = 0) the normal form coefficients al and a2 in 

(2.11a) are plotted against "f b = 2f). The vertical scale is logarithmic in 

terms of the function f(a) = sgn(a) log(l.O + a). 
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Figure (2.2b) At criticality the normal form coefficients 61 and 62 in (2.11a) 

are plotted logarithmically against "(. The function f(6) is the same as in 

Fig. (2.2a). 
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Figure (2.3) For the degenerate Hopf bifurcation corresponding to al = 0 and 

az ~ 0 there are two possibilities depending on the sign of a2 at criticality. 

For a2 > 0, the saddle-node surface (SN) branches toward negative values 

of al. For a2 < 0, the SN surface branches toward positive values of al. 

The unstable periodic orbit which collides with the stable Hopf orbit is not 

shown. 
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Figure (2.48) x(t) from (2.1) versus t. The horizontal line shows the x coor­

dinate of the stable fixed point. 
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Figure (2.4b) Same as in Fig. (2.4a) except now JL = 0.1. The fixed point is 

now unstable, and has been replaced by a stable oscillation. 
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Figure (2.5&) x(t) from (2.1) versus t. The horizontal line shows the x coor-

dinate of the unstable fixed point. The trajectory relaxes onto the stable 

Hopf orbit . 
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Figure (2.5b) Same as in Fig. (2.5a) except ,.., = 3.50 has been decreased 

across the saddle-node bifurcation surface. No stable orbit remains. Notice 

the difference in the vertical scale between Fig. (2.5a) and Fig. (2.5b). 
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Figure (2.6) H denotes the Hopf bifurcation surface (I' = 0). SN is the saddle­

node surface computed from (2.15). The points (e) are the numerical data 

where the transition in Figs. (2.5a) and (2.5b) was detected . 
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CHAPTER 3 

Hopf Bifurcation In Plasma Kinetic Theory 

In nonlinear plasma theory a distinction is frequently made between wave­

wave interactions and wave-particle interactions. If the dynamical fields, such 

as the one particle distribution function, are Fourier decomposed in space and 

time and the plasma dynamics rewritten in terms of the Fourier amplitudes 

then roughly speaking nonlinear terms which couple spatially inhomogeneous 

Fourier modes are wave-wave interactions while nonlinear couplings between 

homogeneous and inhomogeneous modes are wave-particle interactions. In the 

last chapter a simple model which derived from a mode truncation keeping 

only three inhomogeneous modes was considered. The characterization of the 

model as a 3-wave interaction reflects this choice of modes in the truncation. 

In this chapter instabilities driven by wave-particle interactions are discussed as 

Hopf bifurcations. These instabilities serve as sources of waves in an otherwise 
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quiescent plasma, and therefore provide the raw material for the wave-wave 

interactions discussed in Chapter 2. 

Wave-particle interactions produce unstable wave growth when the distribu­

tion of particles provides the wave. with a source of energy. One way this can 

occur is if some particles are in resonance with the wave; this requires that the 

particle velocity match the wave phase velocity. Resonant particles feel a sta­

tionary electric field due to the wave. If the resonant particles are distributed 

about the phase velocity so that more particles are retarded by this electric field 

than are accelerated, the net effect of the interaction is a transfer of energy 

to the wave. The mechanism of such an instability depends crucially on the 

distribution of particles in velocity; consequently a kinetic theory (rather than 

a fluid model) is required to study these instabilities. 

Collisions between particles is a natural form of dissipation in kinetic theory, . 

and collisions are an important mechanism in the relaxation to thermodynamic 

equilibrium. Including collisions in a model thus satisfies the dissipative pre­

requisite for Hopf bifurcation, but at the cost of making thermodynamic equi­

librium essentially the unique fixed point for the dynamics. This is physically 

reasonable, but awkward for the instability analysis since the distribution which 

exhibits the resonance driven instability is not an equilibrium distribution. Thus 

the instability occurs on top of the collisional relaxation to equilibrium. Under 

such circumstances it may not be fruitful to speak of the resonant instability 

" 
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and the collisional relaxation as distind phenomena unless the time scales for 

the two processes are reasonably well separated. In the case for which unstable 

waves develop, interact, and saturate on a time scale short compared to the 

time scale required to reach thermodynamic equilibrium, then neglecting the 

collisional relaxation of the initial distribution and keeping only the effects of 

collisions on the evolution of the waves is a useful approximation. This is the 

approximation used in this chapter to extract an autonomous kinetic equation 

for the dynamics of the perturbations. This leads to an interesting model which 

exhibits the familiar electrostatic instabilities, but is too idealized to quantita-

tively describe a laboratory plasma. 

The Model 

To discuss electrostatic instabilities, consider a one dimensional plasma with 

the electron dynamics given by the Vlasov-Poisson equations supplemented by 

a collision term, C(F}. 

aF +v aF +!....al/JaF =C(F} 
at ax max av 

a
O

) if> [100 

1 --'2 = 41reno 1 - dv' F 
ax -00 

(3.1) 

Here F = F(x, v, t} is the electron distribution normalized such that 

no i: dv' F(x, v', t} = n(x, t}, number density of electrons 

J.L dx n(x, t) = N, total number of electrons 

(3.2) 
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and ¢> = ¢>(x, t) is the self-consistent electrostatic potential. The plasma has 

finite length 0 < x < L with periodic boundary conditions, an average electron 

density no = N / L, and an electron charge/mass ratio of -elm. The dynamics 

of ions and neutral atoms is ignored except that a fixed background of ions 

provides overall charge neutrality in the Poisson equation and electron-ion or· 

electron-neutral collisions could be included in C(F). 

Let F = Fo (v) denote a spatially uniform distribution whose stability 

against electrostatic perturbations is of interest. Let F1 and F2 be solutions 

to (3;1) corresponding to slightly different initial conditions, 

Fdx, v, t = 0) = Fo(v) 

F2(x, v, t = 0) ~ Fo(v) + [(x, v, t = 0) 
with I(x, v, t) = F2(x, v, t) - Ft{x, v, t). Note that 

r
L 100 

dx dv I(x, v, t) = 0 10 -00 

since N is fixed for both initial conditions. The dynamics for I{x, v, t) is obtained 

by subtracting (3.1) for F2 from (3.1) for F1 which yields, 

81 + v 81 + !....[8¢>2 8F2 _ 8¢>1 8F1] = C(F,» _ C(F1)' (3.3) 
8t 8x m 8x 8v 8x 8v -

Using the definition ¢>, = ¢>2 - ¢>1 and the Poisson equation for ¢>2 and ¢>1, the 

nonlinear terms in (3.3) become 

a¢>2 aF2 8¢>1 aF1 a¢>1 al a¢>, a(F1 + 1) ---- - ---- = ---- + -- -....:....-~---"--:.... 
8x av ax av 8x av 8x 8v 

with ¢>, given in terms of 1 by, 

a
2

¢> 100 --+ = 41reno dv' I(x, v', t). 
ax- -00 

(3.4) 

· . 

•• 
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So (3.3) becomes 

af +vaf +.:..[a<Plaf + a<Pfa(F1+f)] =C(Fl+f)-C(Fd. 
at ax m ax av ax av 

(3.5a) 

Since the initial condition for Fl is spatially homogeneous, in the abse.nce 

of applied electric fields the initial electric field will be zero; i.e. 

a<Pl -(x,t = 0) = o. 
ax 

For collision models, C(F), considered here the spatial Fourier expansion 

C(F) = L eihCIe(F) 
Ie 

has the property that when F(x, v) is spatially homogeneous then CIe(F) = 0 for 

k ¥- o. This property of C(F) insures that as Fl evolves spatial inhomogeneities 

do not develop and therefore a:£<Pl = 0 for t > o. Hence the term a:£<PlalJf in 

(3.5a) vanishes. If moreover C(F) is linear then 

C(FI + f) - C(F1) = CU) 

and (3.5a) simplifies to 

af + v af +.:.. a<Pf a{FI + f) = CU). 
at ax m ax av 

(3.5b) 

Equations (3.5b) and (3.4) for the dynamics of f are not autonomous since 

FI depends on time. The time dependence of Fl arises because in general 

C{Fo) ¥- 0 ·for interesting choices of Fo and realistic choices for C(F). This 

is simply the collisional relaxation of Fl mentioned earlier. When Fo is unstable 

to electrostatic waves, then f(x, v, t) describes the dynamics of these waves. If 
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the relaxation of Fl is slower than the growth of the waves, an autonomous 

approximate description of the waves is obtained by neglecting the variation 

of Fl from its initial state, i.e. replace 8,,(F1 + f) by 8,,(Fo + f). Then the 

evolution of ! is described by, 

8! + v 8! + ~ 84>, 8(Fo + f) = CU) 
at ax m 8x 8v 

a2
4> JOO 

a : = 41reno dv' !(x, v', t). 
x -00 

(3.6) 

The approximation a,,(Fl + f) -+- 8,,(Fo + f) does have an unrealistic 

qualitative effect on .the physics which should be borne in mind. In the plasma 

configurations considered below, the stationary solution ! = 0 for (3.6) will 

be (initially) stable, If we consider the original problem (3.5b), then! = 0 

corresponds to a non-stationary solution. The approximation 8,,(F1 + f) -+-

8,,(Fo + f) serves to stabilize this non-equilibrium distribution, giving it an 

exaggerated robustness against perturbations by retaining only those dissipative 

effects which act to restore! = o. For example when! = 0 corresponds 

to a beam-plasma distribution (see Fig. (3.3a)), the replacement 8,,(F1 + f) -+-

8,,(Fo + f) serves to stabilize the beam. Effectively those collisional effects which 

"replenish" the beam are preferentially retained. This exaggerates the amount 

of energy available to a beam-plasma instablility and inflates the saturated 

amplitudes of the unstable waves. 

The choice for C(F) will vary depending on the plasma in which the waves 

occur. For a fully ionized gas, a Fokker-Planck description yields a linear collision 
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operator. A simpler case is, the Krook collision model for a weakly ionized gas 

(Krall and Trivelpiece (1973)); this model will be considered here. The Krook 

form for C(F) is 

C(F) = vc(Feq - F), Vc > 0 

where Feq(x, v, t) = n(x, t)geq(v)/no and 

1 ') 

( 
m )2 _.mJZ.:. geq(v) = -- e 2kT 

27rkT 

n(x,t) = roo dv' F(x,v',t). 
no 1-00 

For a weakly ionized gas, the dominant collisions are with neutral atoms, and 

these may be qualitatively viewed as simply exerting a frictional drag on the 

electrons which brings the electron species to rest with a locally Maxwellian 

distribution, Feq. This collision model conserves local particle density 

1-: dv' C(F) =,0, 

but not momentum or energy since the momentum and energy transferred to 

the neutrals is lost if the dynamics of the neutrals is ignored. Now the right 

hand side of (3.6) becomes 

CU) = -vc[f(x,v,t) ~ geq(v) i: dv' I(x,v',t) ]. (3.7) 

Combining (3.6) and (3.7) produces an evolution equation for I, 

~~ = LI + JJU) (3.8) 
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where ¢J,(x , t) has been eliminated using the Fourier expansions for I and ¢J, 

I(x , V, t) = L!A:( V, t)e i
1c:e 

k 

¢J ,( X, t) = L ¢Jk(t)e i
1c:e 

k 

in Poisson's equation. In these sums the allowed k values are integer multiples 

of 21r / L. The linear operator in (3.8) is defined by 

LJ = L( ~J.ei") = ~""(Ld.)(") (3.9) 

where 

Lolo = -ve/o 

Lklk = -[(ikV + Ve)lk + ikTtki: dv' !A:(V')] 

with 

( We)ZaFO() (ive) () Ttk(V)=- k av V + T geqv, 

and the nonlinear operator in (3.8) is 

k 

= Le il% L iWez8ft_k Coo

oo 

dv' !A:(v',t); 
l krO k av 1-

(3.10) 

Here w/· = 41re'2 no / m is the plasma frequency. 

In (3.8), the point I = 0 is a stationary solution; physically it corresponds to 

the distri bution function Fo (v). The linear stability of I = 0 is now considered. 



Hopf Bifurcation in Plasma Kinetic Theory I 97 
--------------------------------~---------

Linea.r Spectrum 

If Vc = 0 in (3.9), then L reduces to the linear operator which appears in 

the evolution equation defined by the Vlasov-Poisson equations. The spectral 

theory for the Vlasov-Poisson operator is well developed. N. van Kampen (1955) 

considered the case when Fo is a Maxwellian and showed that the spectrum of 

L, C7(L), consisted of the imaginary axis with associated eigenfunctions which 

were distributions; there was no discrete spectrum and there were no nonsingular 

eigenfunctions. Case (1959) analyzed L for general Fo and found, in addition 

to van Kampen's continuous spectrum, there could be discrete spectrum with 

nonsingular eigenfunctions when a certain function, the dispersion function, had 

zeros; for Fo a Maxwellian, the dispersion function does not vanish so only 

the van Kampen continuum remains. Case also defined an adjoint operator, 

[t, whose spectrum coincided with C7(L) and whose eigenfunctions satisfied 

biorthogonality relations with the eigenfunctions of L. Moreover Case proved a 

completeness theorem for the eigenfunctions of L. 

Subsequent applications uncovered two problems. Case's results applied to 

problems for which the dispersion function had simple roots, and the extension 

to degenerate roots was not clear. Also for the particular instance of a simple 

real root of the dispersion function it was discovered that there were two eigen­

functions for L t, but only one eigenfunction of L. In response to the latter 

problem, Siewart (1977) constructed a second solution to 
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BJ = £J 
Bt 

which could be combined with Case's eigenfunction to restore the biorthogonality 

relations and completeness theorem. Case (1978) reviewed Siewart's construction 

and extended the entire method to include roots of the dispersion function of 

arbitrary multiplicity. 

In a separate development Arthur, Greenberg, and Zweifel (1977) derived 

a spectral theorem for £ using resolvent integration techniques which had .been 

developed for a similar operator in neutron transport theory. They enlarged the 

scope of Case's completeness results and also treated the case of a degenerate 

root for the· dispersion funCtion . 

. Case's normal mode analysis can be carried over to the lie > 0 problem in 

this chapter. Since completeness results are not necessary, a spectral theorem 

is not required. Furthermore only complex roots of the dispersion function are 

relevant for the collisional instability so the complications associated with real 

roots don't come up. In the discussion below it is assumed that the dispersion 

function has at most simple roots. 

For lie > 0, 0'(£) is determined by solutions to 

subject to 

[L [<Xl dx dv w(x, v) = o. 
10 1-<Xl 

(3.11) 
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The latter requirement is imposed in order to be consistent with the analogous 

property of f. Using (3.9) and the Fourier expansion of \II 

then (3.11) becomes 

Lo \110 = -Vc \110 = A \110 

\II (x , v) = L \IIk(v)eih 

k 

. L. >/I. = -[(ikV + v,)>/I. + ik7/. L: dv' >/I.(V')] = X>/I., 
. (3.12)· 
k =1= o. 

From the equation for k .0, it is clear that \II(x, v) = \IIo(v) is an eigenfunc-

tion with eigenvalue A = -Vc' Thus spatially homogeneous perturbations are 

uniformly damped; these eigenfunctions clearly cannot produce an instability. 

For k =1= 0, (3.12) can be rewritten, using the definition of Lk in (3.9), to· 

obtain 

(3.13) 

where z = -(vc + A)Jik. The following argument shows that the case where 

f~oo dv' \II k = 0 does not yield eigenfunctiqns. If f~oo dv' \Ilk = 0 then \Ilk 

satisfies 

(v - Z)\IIk = O. 

For 1m z =1= 0 clearly \Ilk = 0; when 1m z = 0 then \Ilk = Co(v - z) is the 

distribution which solves (3.13), but the condition f~oo dv' \Ilk = 0 implies C = 

O. Hence if f~oo dv' \Ilk = 0 then \Ilk = 0 and there are no nontrivial solutions. 

Since (3.13) is linear in \Ilk the normalization 
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(3.14) 

can be imposed, then (3.13) becomes 

(3.15) 

This is precisely the eigenvalue problem analyzed by Case (1959) except that 

. here "lie ( v) has an additional term, ivcgeq / k, because Vc ¥:- O. 

For 1m Z ¥:- 0, (3.15) is easily solved for WIe, 

(3.16). 

Furthermore the normalization condition (3.14) implies 

AIe(z) = 1 + [00 dv' "lie ( v') = 0 
1-00 v'-z 

(3.17) 

AIe(z) is Case's dispersion function, and this is his result that a comple:: root of 

Ale (z) determines an eigenfunction 

.T« ) _ ile~( -"lie ( v) ) 
't' X, V - e , 

v-z 
(3.18) 

and an eigenvalue A = -Vc - ikz of L. Moreover since· 

it follows from (3.17) that if Zo is a root of Ale, then Zo is a root of A_Ie. So there is 

a complex conjugate pair of eigenvalues (with complex conjugate eigenfunctions) 

Al = -Vc - ikzo 

A~ = -Vc - i(-k)zo = -Vc + ikzo . ~ 
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corresponding to the root Zo. Becaus~ linear instability requires Re A = 0, it is 

these elements of u( L) corresponding to 1m Z =j:. 0 which are of greatest interest. 

Now consider (3.15) for Z real, i.e. z = r E !i. The general solution is now 

a distribution because the left hand side of (3.15) vanishes at v -.:... r. 

(3.19) 

where Ak(V) is determined by the normalization of '11k, 

(3.20) 

Here Pr denotes the Cauchy. principal value of the integral. 

For these solutions to be well behaved functions of v reqUIres 1'11c(r) = 

Ak(r) = o. This can be restated in terms of the boundary values of the dispersion 

function on the cut; see Roos (1969). 

Ar (r) = lim Ak(r ± if) . 
10-0 

(3.21) 

or 

So in the case of z real, the well behaved eigenfunctions correspond to real roots 

of Ak(Z) which furthermore satisfy the dual conditions Ak(r) = 0 and 1'11c(r) = o. 

When r is not a root of Ak(Z) then it corresponds to a point in the (van Kampen) 

continuous spectrum for this operator. 
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For the collisionless problem (vc = 0) considered by Case, '1k(V) is a real 

valued function which vanishes at the critical points of Fo. For Vc > 0, H geq(v) 

is chosen to be some smooth positive function which vanishes only as Ivl -+ 00, 

then 11k ( v) defined in (3.9) will vanish only as Ivl -+ 00, and there will be no 

finite real roots of Ak(Z) which generate eigenvalues. In this case the line A = 

-Vc - ikr, -00 < r < 00, corresponds to the continuous spectrum. The 

general picture for l1(L) is shown in Fig. (3.1a). 

Adjoints and Biorthogonality 

To define an adjoint operator introduce the complex inner product, 

(<p, \II) = l L ioo 

dx dv ¢>(x, v)\II(x, v) 
o -00 

then L -;- is defined to satisfy 

(L t <p, \II) = (<p, L \II). 

Using (3.9) for L, (3.23) implies 

Lt", = Lt( ~e;h",.(v») = ~';h(Lt"'.)(v) 
where 

(L~<po)(v) = -vc<Po(v) 

(3.22) 

(3.23) 

(3.24) 

(Lk<pk)(V) = (ikv - Vc)<Pk(V) + ik I: dv' '1k(V')<Pk(V'), 

The adjoint eigenvalue problem 

k =I:- O. 

(3.25) 
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is similar to the eigenvalue problem for L. From (3.24) and (3.25) the spatially 

homogeneous functions ~(x, v) = ~o (v) are eigenfunctions with eigenvalue A = 

For k ~ 0, after taking "into account the definition of L!, (3.25) becomes 

(v - Z)~k = - i: dv' '1k(V')~k(V') (3.26) 

where now z = (vc + A)/ik. For 1m z ~ 0, f~oo dv' '1k(V')~k(V') = 0 implies 

~k = 0 so without loss of generality the normalization 

i: dv' '1k(V')~,(v') = 1 

can be adopted. The solution of (3.26) is then 

-1 
~k(V)" , v-z 

and the normalization requires 

1 + 100 

dv' '1k(V') = 0 
-00 v' - z 

(3.27) 

which is equivalent to A_k (z) = O. Thus a complex root of A_k (z) determines 

an adjoint eigenfunction 

~(x, v) = eih ( -1 ) 
v-z 

with eigenvalue A = -Vc + ikz. These adjoint eigenfunctions are the relevant 

ones for the center manifold analysis. 

When z = r E !i, the solutions to (3.26) depend on whether A-k (r) -

'I-Ie (r) = 0 or not. Consider first those values of r which do not satisfy these 
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conditions; specifically assume A.,....k (r) =I:- O. Then there are two possibilities: 

either f~oo dv' 1'1k( V')¢>k( v') vanishes or it can be normalized to unity. In the 

former case, (3.26) implies 

(3.28) 

and consistency requires 1'1k(r) = O. When f~oo dV'1'1k(V')¢>k(V') = I, then the 

solution to (3.26) is 

¢>k(V) = -Pr(_I_)+Dk(v)D(v-r) 
v-r 

(3.29) 

with the normalization yielding 

(3.30) 

Now consistency with AI:(r) =I:- 0 requires 1'1-1: (r) =I:- O. The remaining possibility 

allowed by A::k (r) =I:- 0 is A-I: (r) = 0 but 1'1-1: (r) =I:- O. This amounts to setting 

Dk (r) = 0 in (3.30) and (3.29) with the resulting solution 

¢>I:(v) = _ Pr (_1 ). 
v-r 

(3.31) 

If r does satisfy A-I: (r) = 1'1-1: (r) = 0 then there are two possibilities. If 

the right hand side of (3.26) vanishes then the solution is (3.28). When the right 

hand side does not vanish the solution is (3.31). Thus for these special values 

of r there are two linearly independent adjoint solutions. As in the discussion 

for L, it is worth noting that for typical choices of geq( v) the dispersion function 

does not have real roots which satisfy A-I: (r) = 1'1-k (r) = 0 except perhaps at 

r = ±oo. 
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The biorthogonality of eigenfunctions and adjoint eigenfunctions follows 

from (3.23). Let \II).. be an eigenfunction 

and ¢>a- an adjoint eigenfunction 

then 
o = (L t ¢>a-, \II>.) - (¢>a-, L\II)..) 

(3.32) 
= (u - X)(¢>a-, \II>.). 

This will be applied to eigenfunctions associated with complex roots of Ak(Z). 

Let Zo (1m Zo =I:- 0) satisfy Ak(ZO) = 0, then there are two eigenfunctions \II 

and \II, 

\II(x, v) = eih(-'7k(V)) 
v - Zo 

\II(x, v) = e- ih (-'7-k~) ) 
v - Zo 

(3.33) 

with eigenvalues X = -lie -ikzo and X respectively. There are also two adjoint 

eigenfunctions (reverting to the notation of Chapter 1), 

\iI(x,v) = Neik~( -1_.) 
v - Zo 

\iI( x, v) = N e - ih ( -1 .) 
v - Zo 

with eigenvalues X and X respectively. From (3.32) it follows that 

(ImX)(\iI, \II) = 0 

(ImX)(\iI, \II) = 0 

(3.34) 

(3.35) 
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so for a conjugate pair (A =/: >:) the inner products must vanish. The normaliza­

tion factor N in (3.34) is chosen to enforce 

(~, w) = (~, w) = 1. (3.36) 

Note that even in the case of a real eigenvalue corresponding to Re Zo = 0, the 

inner products in (3.35) will vanish due to the integrations over x. 

The extension of Case's completeness results to this problem should be 

possible, as well as a corresponding extension of existing results for Vc = 0 on 

the problem of degenerate eigenvalues. However for an analysis of the simplest 

instability corresponding to a simple complex conjugate pair, the relations in 

(3.35) and (3.36) are sufficient. 

Linear Instability 

When Fo{v) depends on parameters then O'{£) inherits this dependence. As 

. these parameters are varied, the shape of Fo (v) varies, and the linear stability 

of f = 0 may change. When this instability occurs due to a conjugate pair 

of eigenvalues, the Hopf bifurcation theory of Chapter 1 can be applied. For 

the remainder of the chapter, the problem of bifurcation at a simple conjugate 

pair of eigenvalues (with eigenfunctions in (3.33)) is considered. Aside from this 

eigenvalue pair the rest of 0'(£) remains off the imaginary axis in the left half 

plane. 
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Using the spectral results define a complex amplitude 

A(t) = (~, f) (3.37) 

and decompose the distribution function 

f(x, v, t) = A(t)w(x, v) + A(t)w(x, v) + S(x, v, t) (3.38) 

where 

(~,S) = (~,S) = O. 

Using (3.38) the evolution equation (3.8) becomes 

dA -dt = AA + (w, N(I)) 

~~ 0= IS + N(I) - (~, N(I)) - (~, N(I)). 

(3.39) ° 

Now the restriction of (3.39) to the center manifold associated with W, W is 

required. As before this necessitates a local description of WC . 

Computing the Center Manifold 

As discussed in Chapter 1, for small IAI WC is the graph of a function h = 

h{x, v,A,A) defined such that a distribution function 

fC(x, v, t) = Aw + Aw + h(x, v,A,A) (3.40) 

evolves on WC. Note that for this infinite dimensional problem x and v are 

simply continuous indices, the dynamical arguments of hare A(t) and A(t); see 
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Fig. (1.3b). The invariance of WC implies an equation for h, 

[
8h dA + 8h dA] = Lh + JI(r) 
8A dt 8A dt 

/=/C 

To solve (3.41) to lowest order in A, introduce the Fourier expansion in x 

h(x, v,A,A) = I: ei'2:h,(v,A,A) 
l 

and the Taylor series in A 

108 

(3.41) 

(3.42) 

where the reality condition h,(v,A,A) = h-l (v,A,A) has been assumed. Now 

the Fourier expansion of r is 

r(x, v, t) = [A(t)"'zo(v) + hk(v,A(t),A(t))] eih 

+ [A(t)"'zo(v) + h-k (v,A(t),A(t))] e- ih (3.43) 

+ I: eii2:h,(v,A(t),A(t)) 
l~k 

where the wavelength of the linear instability is assumed to be (27r/k), and the 

velocity space factor of the eigenfunction is denoted'" zo' i.e. 

(3.44) 

To extract the lowest order balance in (3.41) requires JI(r) and (~, JI(r)). 

Using (3.43) to expand the definition of JI(f) in (3.10) yields 
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+ ~We L eib A l-k _ A l+k ':2 [ ah ah 1 
k I au au 

(3.45) 

where terms have been collected according to the number of factors of hi. 

Projecting with ~ picks out the eikz component 

. (3.46) 

The leading terms in (3.45) and (3.46) are O(A:2) and O(A3) respectively. 

The lowest order balance in (3.41) occurs at O(A:2); the left hand side of 

(3.41) contributes 
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+ { ~>i/. [ hl21 A + 2h~) A] }(>.A) + O(A3) 

= ~>i/' [ 2Xhl 1 
I A2 + (X + l\)hl21 IAI' + 2l\h~) A 2] 

+ O(A3) 

and the quadratic terms on the right hand side of (3.41) are 

Lh + JlU e
) - (~, JI(r)} - (~, JI(jC)} = 

~ ,;" L, [hJII A2 + hl21 1AI2 + h~) A'] 

+ iWke 2[A2 aa'llu~O ei21c:J: (a'll %0 a'll %0) 2 + a;;- -, a;- IAI 

_ a'll%O e- i21c:J: A2] + O(A3). 
au 

. Equating coefficients of A2 and IAI2 yields 

{ 

iWe 2 a'll %0 
PI -----(Ll - 2~)h, = ~ av for l = 2k 

otherwise 

{ 

iWe 
2 [a'll %0 a'll %0] 

(Ll - (~ + ~))h}2) = - -k- oa" - a;;- . for l = 0 

otherwise 
_0) 

Coefficients of A- simply give the conjugate of (3.49). 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

To solve (3.49) and (3.50) first note that if 2~ or (~ + ~) were eigenvalues 

of L, this would imply that at criticality, when ~, ~ cross the imaginary axis, 



Hopf Bifurcation In Plasma Kinetic Theory 111 
--------------~----------------------------~----------~ 

there would also be other eigenvalues, 2)" or 0).. + >:, crossing the imaginary axis 

simultaneously. For the simplest case of nondegenerate Hopf bifurcation this 

does not happen; thus our spectral assumptions on u(L) imply 

unless 

and, 

unless h (2) = ° I - • 

The only nontrivial solutions are for I = 0, 2k. For l = 2k (3049) becomes 

which can be compactly rewritten, 

h~~+( t121c )100 

dv'h~~(v')= !(We)2(
0l1WZ

O) 
v - Zl -00 2 k v - Zl 

(3.51) 

where 

_ i(vc + 2),,) -1.Vc 
Zl = = --+zo· 

2k 2k 

Integrating (3.51) over velocity gives 

(3.52) 

It follows from the spectral assumptions on u(L) that A21c(zd =I: 0, otherwise 

there would be additional eigenvalues on the imaginary axis at criticality. With 

• 
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determined by (3.52), the solution of (3.51) is 

[!(r)2au "'zo -H2kf72k] 
11) h2k (v) = ---------

v - ZI 

where 

For l = 0, (3.50) gives 

- (2) iwe2[a",zo a",zo] (Vc+A+A)ho =- -----
k av av 

so, 

From (3.42) the solution for h to this order is 

h(x, v,A,A) = ei2kzh~~(v)A2 + hb2)(v)IAI2 

+ e-i2kz h~~(v)A2 + O(A3) 

with h~~ and h~2) given by (3.5-3) and (3.54) respectively. 
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(3.53) 

(3.54) 

(3.55) 

This calculation breaks down in the collisionless limit as both h~~ and hb2) 

become singular. The details of this will not be considered here except to note 

that taking into account the behavior of '" zo as Vc -+ 0 (see Case (1978)) leads 

to the following estimate at criticality, 

1")) 11) {O(I/V;) 
ho- (v), h2k(v) '" 

finite 

v = Re Zo 

v =I:- Re Zo 

.. 
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The Amplitude Equation 

The two dimensional autonomous system describing the WCdynamics near 

A=O is 

dA = >'A + (~, JI(r)} 
dt 

(3.56) 

from (3.39) and (3.40)~ Given the asymptotic approximation to h(x, v,A,A) the 

right hand side of (3.56) may be evaluated through cubic order in A, A. Plugging 

the asymptotic expressions, 

into (3.46) yields 

hZIe(v,A,A) . A2h~~(v) + O(A3) 

ho(v, A, A) = IAIZh~2)(v) + O(A3) 

h-:-zle (v,A,A) = hzle(v,A,A) 

hi(v,A,A) = O(A3) for l =I: 0, ±2k 

(~, JI(r)) = iW;ZIAIZ A(~, eih [ 8"h~2) - 8"h~~ 1 ) 
. .) 

1. We - 2 _·Ie - (4) + 2kIAI A('If, el 
:z Hz Ie 8" 'If %0) + 0 A . 

Thus (3.56) has asymptotic form 

where 

(3.57) 

(3.58) 

/3 consists of two contributions, /3 = {3p + /3111. The instability at wave 

number k with amplitude A excites secondary waves at wave numbers 2kand 0; 
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these appear at O(A2) in (3.55); These secondary waves beat with the primary to 

produce a tertiary wave at wave number k with amplitude O(A3 ). This provides 

the lowest order nonlinear correction to the linear growth rate. {3p is the piece of 

this nonlinear correction due to the secondary wave :it wave number 0, i.e. the 

modification of the spatially homogeneous background distribution generates (3p, 

. ') 

a = l. W e W (,To ilc:.: a h(2)} 
JJp - k 'l', e "0· 

{3tD arises from the secondary wave at 2k, 

As we shall see, {3p is the dominant contribution. 

In polar variables, A = pe i8 , the amplitude equation (3.58) reads 

dp = (Re A)p + (Re (3)p3 + O(p4) 
dt 

dO ') 3) 
dt = (ImA) + (Im{3)r + O(p . 

(3.59) 

Through cubic order this is already in normal form, see (1.28); the reason is 

that because )J (f) is quadratically nonlinear the first nonlinear effects in the 

eih Fourier subspace must be of cubic order. The corrections to dp/dt at O(p4) 

can of course be removed by a normal form transformation, the first essential 

correction appearing at O(p5). 
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Dispersion Relations 

To apply the results of (3.58) requires a model for Fo (v land geq( v). Given 

these functions, the discrete spectrum of L is determined by the dispersion 

function, and the coefficient f3 in (3.58) may be evaluated. 

For purposes of illustration, Fo (v) and geq( v) will be selected to simplify the 

search for roots of AIc(z). Let Fo(v) have two Lorentzian components: a plasma 

with mean density np and a beam with mean density nb and mean velocity tL 

relative to the plasma. 

(3.60) 

Instead of representing the equilibrium distribution, geq, by a Maxwellian, let 

geq(v) = ;( v2 : a2 ). (3.61) 

Now 1l1c(v) in (3.9) is 

C{ [ npv 
Tflc(v)=; 2C (ti2+1)2 (3.62) 

where C = we/ka, € = vc/we, velocities have been scaled to a, and densities 

expressed in terms of no. 

The dispersion function (3.17) evaluates to 

npC'!. nbC2 i€C 

( ')') + ( . J: )') + ( .) z + ~ -z + ~u - tL - Z + ~ 
Imz > 0 

(3.63) 

Imz < o . 
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Recalling A = -Vc - ikz, it is clear that instability (Re A > 0) for k > 0 

requires 1m z > 0 and for k < 0 requires 1m z < o. Since Ak(Z) = A-k (z), for 

the conjugate pairs associated with Hopf bifurcation, it is sufficient to consider 

k > 0, 1m z > 0 and seek solutions to 

[ 
npC2 nbC2 

1- .. )+ . OJ 
(z+t)- (z+t5-u)-

ifC 1 0 
+ (z + i) = 

Imz > O. 
This dispersion relation may be rewritten, 

(z + i)2(z + i5 - u)2 - npC2(z + i5 - u)2 

- nbC2 (z + i)2 - ifC(Z + i)(z + i5 - u)2 = 0 

and simplified by substituting z = y - i(5 +.1 + iu)/2 to get 

(y + wr~(Y - w)~ - npC2(y- w)2 

- nb C2 (y + w)2 - ifC(y + w)(y - w)2 = 0 

where w ~ i(I - 5 - iu)/2. 

(3.64) 

(3.65) 

(3.66) 

The criterion for instability, Re A > 0, may be restated in the dimensionless 

variables of (3.64) using A = -Vc - ikz. For k > 0, 1m z > 0 

Re A > 0 +-+ 1m z > fC (3.67) 

where A and Vc are scaled to We, and z is scaled to ll:. There will in general be 

four solutions to the dispersion relation (3.65), but a solution only corresponds 

to an eigenvalue if 1m z > o. The eigenvalue reaches the imaginary axis when 

Imz = fC. 

As a first application of (3.66) consider the stability of a plasma with no 

beam: np = I, nb = o. Then (3.66) reads 
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Since z = y + w - i, the solutions are 

z = 2w - i = u - iO, double root 

( fC) ~ z=-i 1- 2 ±CV1~4. 
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(3.68) 

The double root is in fact SpUrIOUS SInce setting nb = 0 in (3.64) produces 

a quadratic equation not a quartic; even so the double root does not satisfy 

1m z > o. The other two roots, which are referred to as the plasma roots, can 

satisfy 1m z > 0 for appropriate choices of f and C, but it is easy to check that 

the condition for instability (3.67) is never met. Thus the equilibrium plasma 

Fo (v) = geq( v) is in fact stable. 

Our model has four parameters: beam density, nb, beam velocity, u, beam 

thermal speed, 6, and the collision frequency, VC. In the computation of the 

bifurcation results, U and 6 will be varied with f held fixed. For beam density only 

two cases will be considered: a low density beam (the bump-on-tail instability) 

characterized by nb = 0.05 and np = 0.95, and an equal density beam (the two 

stream instability) where nb = np = 0.5. 

Within the linear problem, varying f shifts the bifurcation surface; increas-

ing f suppresses the linear instability. This is consistent with the dependence of 

0'( L) on f, recall that increasing f shifts the spectrum into the left half plane (see 

Fig. (3.1a)). In Fig. (3.2) the intersection of the bifurcation surface (Re A = 

0) with the (u, k )-plane is plotted for various values of f, and fixed nb and 6 . 
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Henceforth I shall fix f arbitrarily at f = 0.001 and consider some of the pos­

sibilities for nb = 0.05 and nb = 0.5 in detail. 

Low Density Beam 

In Figs. (3.3a) and (3.8a) linear stability results for nb = 0.05 are given 

corresponding to a cool beam, 6 = 0.5, and a warm beam, 6 = 5.0. Superposed 

on the bifurcation surface in the (ti, k)-plane is the surface obtained by halving 

the k coordinate. This allows the critical beam velocity for the instability at k 

and 2k t~ be directly compared. The most interesting result of this exercise is the 

existence of parameter values, (tic, kc ), for which these two modes simultaneously 

become unstable. For example in Fig. (3.3a), this double instability occurs for 

kc '"'""-J 0.08 and 2kc '"'-J 0.16. At these special points on the Hopf bifurcation 

surface, two complex conjugate pa.irs simultaneously arrive at the imaginary 

axis resulting in a codimension two, double Hopf- bifurcation. This degenerate 

Hopf bifurcation is considerably more complicated than the codimension two 

bifurcation analyzed in the previous chapter. The reason is the increase in the 

dimension of the center manifold from two to four, allowing the possibility of 

chaotic dynamics right at the linear stability threshold. 

A discussion of this codimension two instability will not be pursued here; an 

introduction to the appropriate normal form theory is given by Guckenheimer 

and Holmes (1983). It should be clear that the assumptions on the spectrum of 
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L required by the center manifold calculations in this chapter can be satisfied 

only for wave numbers above the codimension two point. 

For 0 = 0.5 and 0 = 5.0, a typical wave number has been chosen and the 

four solutions of the dispersion relation (3.65) plotted as a function of u in Figs. 

(3.3b) and (3.8b). In both cases the unstable waves are carried by the "beam 

roots", i.e. the two solutions of A/t(z) = 0 introduced by the condition nb > 0, 

and distinguished by the property W -f- We as ku ~ O. For this model the 

transfer of the unstable waves to the plasma root branch, described by O'Neil 

and Malmberg (1968), occurs for 0.'" 25. 

Now consider the normal form coefficient, /3, and the results for the distribu-

tion function derived earlier. From (3.58), /3 was evaluated along the bifurcation 

surface, and plotted logarithmically in Figs. (3.4) and (3.9). In computing /3, 

j3p and /3V1 were evaluated separately and their magnitudes compared for wave 

numbers above kc . For 0 = 0.5 this showed 

10-3 > I Re /3U! I > 10-5 
- Re /3p - , 

and for 0 = 5.0, 

10-4 > I Re /3V1 I > 10-6 
- Re j3p - , 

At both values of 0, j3V1 was relatively larger for wave numbers near the codimen-

sion two singularity. Nevertheless Re /3p is clearly the dominant contribution to 

Re /3 and from Fig. (3.4a) Re j3 < O. This is consistent with the physical pic-
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ture that the instability saturates because the unstable wave alters the resonant 

particle· distri bution. 

Since Re f3 < 0, the direction of bifurcation is supercritical, and the saturated 

distribution function is approximately 

- - '> . (1) ")k 
F2(x,v,t) ~ Fo(v) +A.(t)\II(x,v) + A.(t)\II(x, v) +A;(t)h2k(v)e'~ :£ 

+ IA.12h~2)(v) +A2(t)h~~(v)e-i2h + ... 
(3.69) 

where 

is·. the saturated wave amplitude. By shifting into the reference frame of the 

wave, (x', v'), defined by 
v' = v - VUl 

dO 
kv =--

UI dt 

the saturated distribution function (3.69) becomes 

Fo (v' + VUl ) _ P.{[ '1k( v' + VUl ) ]eih' + [ '1k( v' + vUl.2]e-ik:£' } 
v' + v UI - Zo v' + v UI - Zo 

+ P:{ h~~'(v' + VUl )ei2h' + hk~'(v' + VUl ) + h~~(v' + VUl )e-i2h' } 

+ .... 

Of interest is the effect of the instability on the homogeneous (or spatially 

averaged) piece of the distribution, 
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(3.70) 

The form of the lowest order correction is fixed by h~21; its magnitude is deter­

mined by p;. 

For both 6 = 0.5 and 6 = 5.0, this correction is plotted at small and large 

growth rates. (As we move away from the bifurcation surface towards larger 

growth rates, it is quite possible for secondary bifurcations-such as trapped 

particle instabilities-to occur. These are beyond the reach of this one mode 

calculation, but might well be captured by the four dimensional normal form 

associated with the double Hopf bifurcation.) For 6 = 0.5 in Figs. (3.5) and 

(3.7) the parameter values correspond to points A and B in Fig. (3.3a). At point 

A, the growth rate is low, Re). '" 0.009, and the plot of h~2) indicates negligible 

effects except in the resonant region near the wave velocity. At the wave velocity, 

h~21 shows the resonant particles just above VtO (or v' = 0) being slowed as their 

kinetic energy is transferred into the electrostatic field of the wave. This, transfer 

occurs until p2 reaches p; '" 3xl0-8 when saturation occurs. The resulting 

distortion of Fo appears in Fig. (3.6). 

At point B, the growth rate is an order of magnitude greater, and h&21 

shows both plasma and beam being heated, i.e. broadened, by the instability. 

This broadening of the nonresonant particle distribution is also predicted by 

a weak turbulence theory of this instability (Davidson (1972)). The saturation 
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amplitude, p; '" 2.7xlO-4 , is much larger, and the effect on Fo is much greater. 

The qualitative shape of the saturated distribution function in Fig. (3.7b) was 

also found in the numerical studies of Armstrong and Montgomery (1969). They 

solved the (collisionless) Vlasov-Poisson equations for a beam-plasma distribu­

tion with essentially one unstable mode, and observed a depletion of particles 

from the center of the beam as well as a broadening of the nonresonant plasma 

distribution. However, these effects are much more pronounced in this calcula­

tion. 

In fact the approximate saturated distribution function in Fig. (3.7b) 

becomes negative near the beam velocity. This lack of positivity must be an 

artifact of the approximations used since the original dynamics in (3.1) will 

preserve the positivity of F(x, v, t). There have been two approximations: the 

collisional relaxation of Fl (x, V, t) in (3.5b) was neglected and I(x, v, t) has been 

computed only through second order in P •. For the parameter values in question, 

the ratio of the linear growth rate to Vc is approximately 100 and the replacement 

Fl (x, V, t) ~ Fl (x, V, 0) seems reasonable. This suggests that the higher order 

terms in P. may be appreciable near the beam velocity. These higher order 

corrections should be more important in the resonant region of velocity space 

than elsewhere because the additional (small) factors of P. could be offset by 

higher order resonant denominators. 

For the low density warm beam, similar plots appear in Figs. (3.10) and 



• 

Hopf Blfureatlon In Plasma Klnetle Theory ~ les 

(3.12) corresponding to points A and B in Fig. (3.8a). At point A, Re A I"'V 

0.013, and h~:2) in Fig. (3.10b) already shows some broadening of the plasma 

distribution in addition to the slowing of the resonant beam particles, but the 

size of h~2) is much smaller than for the case of the cool beam and small growth 

rate. As seen in Fig. (3.11) the effects on Fo are negligible even though the 

saturation amplitude is larger than in the case of 6 = 0.5 and small growth 

rate. For point B, Re A I"'V 0.07 and the saturation amplitude has increased to 

p; I"'V 0.9xl0-4 so that the effects of the instability are visible in the peak of the 

plasma and near the wave velocity. 

Equal Density Beam 

The bifurcation surfaces for 6 = 0.5, LO, and 2.0 appear in Figs. (3.14a), 

(3.19a), and (3.24a). As the temperature increases, the region of unstable parameter 

val ues tends to contract toward lower wave numbers and higher beam velocities. 

The codimension two point discussed earlier occurs here also. At each beam tem-

perature, for a fixed wave number chosen above the 2k stability curve, the roots 

of the dispersion relation are plotted in Figs. (3.14b), (3.19b), and (3.24b). In all 
• 

cases the unstable waves are associated with the beam roots; as the beam tem-

perature increases the instability shifts from the lower beam root to the upper 

beam root. 
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The real and imaginary parts of f3 are plotted along the bifurcation surface 

in Figs. (3.15), (3.20), and (3.25). For wave numbers above the codimension two 

point the bifurcation is supercritical as before. In the vicinity of the codimension 

two bifurcation, particularly for f3 corresponding to 8 = 1.0, there is a rapid 

variation in the normal form coefficient. This structure reflects a coincidence. 

At the codimension two point, both k and 2k simultaneously become unstable. 

This means that there are two roots, Zo and Z2, to the dispersion relation such 

that at criticality they satisfy, 

Vc 
Imzo =­

k 
Vc 

Im(z2) =-. 
2k 

Generally there is no fixed relationship between Re Zo and Re Z2 although both 

will be close to u/2. However for the symmetric (nb = n p , 8 = 1.0), collisionless 

(E = 0) case, the two phase velocities match, Re Zo = Re Z2, and the second 

root Z2 is exactly equal to Zl in (3.51). This means that A2k(Zt} which appears 

in the denominator in (3.53) satisfies 

at the degenerate bifurcation. In the plots of f3 for 8 = I, we have E = 0.001 

(not zero) so Zl is not an exact root but it is sufficiently close to a root of AZk (z) 
, 

that h~~ (v) and hence f3 exhibit a rapid variation near the codimension two 

point. 

A comparison of f31D with f3p for k > kc shows for 8 = 0.5 



and for 6 = 1.0 

and for 6 = 2.0 
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10-3 > I Re{3ut I > 10-6 

Re {3p 

1.0 > I Re {3ut I > 10-5 

Re {3p 

10-2 > I Re {3ut I > 10-6 . 
- . Re {3p -
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In each case, the ratio is largest for k ~ kc, and approaches unity for the 

symmetric situation (6 = 1.0) when the small magnitude of A2k(zd at criticality 

dramatically increases l{3utl. Again, the wave-particle effects, represented by (3p, 

are typically much more important in bringing about saturation. 

The figures of h~2) and Fo + p;h~2) show the effect of the instability. For 

relatively weak growth rates at point A on the stability diagram, the primary 

structure in h~2) occurs at the wave velocity. In Fig. (3.21b) for 6 = 1.0 particles 

are symmetrically pushed towards the wave velocity. In Figs. (3.16b) and (3.26b) 

the shapes of h~2) at 6 = 0.5 and 6 = 2.0 are essentially related by reflection 

through a line at v' = o. 

For the large growth rates at point B, this reflection symmetry recurs, but 

the form of h~2) now shows significant acceleration of particles near the centers 

of the two unperturbed components as well as bunching near the wave velocity. 
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The Vc ~ 0 Limit 

In the collisionless limit, the dynamics becomes Hamiltonian (Morrison 

(1980), Marsden and Weinstein (1982)). As indicated above, the Hopf normal 

form becomes singular due to the resonance at the wave velocity. In terms of 

0"( L) this resonance occurs between a conjugate pair of eigenvalues, ±ikr, of 

multiplicity two and the continuous spectrum along the imaginary axis. The 

presence of the continous spectrum precludes a straightforward application of 

the invariant manifold ideas of Chapter 1; consequently it is no longer clear that 

the Hamiltonian bifurcation can be analyzed using a finite dimensional set of 

normal form equations. Even if one assumes this to be true, it is not obvious 

what the normal form is when Vc = O. 

This problem becomes more puzzling in view of existing theories of the 

saturated state which describe the time asymptotic state as a BGK mode with an 

amplitude proportional to (Re Af (Galeev and Sagdeev (1978)). This represents 

a dramatic change from the scaling p. "'-J v'Re A found in Hopf bifurcation, 

and together with the singular behavior at Vc = 0 of the Hopf normal form, 

strongly suggests that the limits Vc ~ 0 and t ~ 00 may not be interchanged. 

In other words, the time asymptotic state of the collisionless instability (first 

Vc ~ 0 then t ~ 00) is not equal to the collisionless limit of the time asymptotic 

state for the collisional instability (first t ~ 00 then Vc ~ 0). Using a multiple­

time-scales perturbation theory, Simon and Rosenbluth (1976) found a saturated 

• 
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state for the collisionless instability whose amplitude did scale as -IRe >.., but 

their calculation is somewhat formal and does not include a careful treatment 

of the continuous spectrum; in particular their calculation was plagued by the 

singularities noted above. A satisfactory bifurcation theory for the colli8ionle88, 

one-mode instability remains to be developed. 

In the simpler setting of finite dimensional Hamiltonian systems, the analogous 

bifurcation has been analyzed for two degrees of freedom. Here there are no 

"extra" spectral elements on the imaginary axis to set up a resonance, and Meyer 

and Schmidt (1971) have determined that there two possibilities: the "bubble" 

bifurcation or the "liberation" bifurcation, corresponding (very roughly) to sub­

critical and supercritical Hopf bifurcation. Abraham and Marsden (1978) provide 

an introduction to this theory. Whether it has any relevance to the infinite 

dimensional problem is unclear. 
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Figure Captions 

Figure (3.1) (a) Typical spectrum of the linear operator in (3.11) for Vc > o. 

The continuum is always present. The roots of the dispersion function 

determine the discrete eigenvalues. (b) For Vc = 0, O'(L) reflects the 

Hamiltonian structure of the dynamics. Here the fixed point is linearly 

unstable; at criticality the quadruplet would collapse to a conjugate pair of 

eigenvalues (of multiplicity two) embedded in the continuous spectrum. 
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Figure (3.2&) Bifurcation surfaces for nb = 0.05 at ,various values of the 

collision frequency, f. The beam velocity is ti, and k is the wave number. 
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Figure (3.2b) Bifurcation surfaces for nb = 0.5 at various values of the colli-

sion frequency, L The beam velocity is tL, and k is the wave number. 
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Figure (3.3) (a) Bifurcation surface for a cool, low density beam (solid line). 

Also shown is the bifurcation surface for 2k (dotted line); the intersection of 

the two surfaces is a double Hopf bifurcation. Points A and B for k = 0.17 

are the selected points of low and high growth rate. (b) The four solutions to 

the dispersion relation in (3.65) for k = 0.17. The real part of the frequency 

W = Re kz is plotted against the drift frequency ku in units where We = l. 

On the branch indicated, the imaginary part of z satisfies condition (3.67) 

for a linear instability. The remaining three roots correspond to stable 

solutions. 
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Figure (3.4) Logarithmic plots of 13 along the bifurcation surface shown in 

Fig. (3.3a). The curves presented here may be correlated with Fig. (3.3a) 

by matching their endpoints at k r-J 0 and k r-J 0.08 to the corresponding 

endpoints on the bifurcation surface. As in Fig. (2.2a), f(f3) = sgn(f3) log(l.O+ 

13). 



.-.. 
~ 
CI) 

a: ...... 
'I-

Figure (3.4a) 

-...... 

Figure (3.4b) 

-19 ~--------------, 

- 20 tr-
I 
I 

~21 r-

-22 -

o 

----------

, , I , 
0.1 

I 
0.2 

k 

, I 
0.3 

20~----------------------~ 

\ 
\ 

i 
10 

o 

-10 

o 

\ ) 
'-......-/ 

0.1 0.2 
k 

0.3 

XB L 838-2975 

137 



Hopf Bifureation in Plasma Klnetie Theory 198 

Figure (3.5) (a) .Initial velocity distribution at point A (8 ' 0.5, nb = 0.05, 

k = 0.17, and u '""""-J 2.5) in Fig. (3.3a) as seen in the wave frame. (b) 

The lowest order correction to the spatially homogeneous component of the 

distribution function. Shown for point A in Fig. (3.3a) in the wave frame. 
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Hopf Bifurcation in Plasma Kinetic Theory 

Figure (3.6) The homogeneous component of ~he saturated distribution func­

tion showing the effect of the lowest order correction: a small rearrangement 

of the resonant particles near v' = O. Here 'Y = Re A is the linear growth 

rate. Shown for point A in Fig. (3.3a) in the wave frame. 
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Figure (3.7) (a) The lowest order correction to the spatially homogene<?us 

component of the distribution function. Shown for point B (15 = 0.5, nb = 

0.05, k = 0.17, and U "J 6.0) in Fig. (3.3a) in the wave frame. (b) The 

initial velocity distribution (dotted line) and the homogeneous component 

of the saturated distribution function (solid line) showing the effect of the 

lowest order correction."Y is defined as in Fig. (3.6). Shown for point B in 

the wave frame. 
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Figure (3.8) (a) Bifurcation surface for a warm, low density beam (solid line). 

Also shown is the bifurcation surface for 2k (dotted line), the intersection 

is a double Hopf bifurcation. Points A and B (off scale at. u ~ 23.0) for 

k = 0.05 are the selected points of low and high growth rate. (b) The 

four solutions to the dispersion relation in (3.65) for k = 0.05. The real 

part of the frequency W = Re kz is plotted against the drift frequency in 

units where We = 1. On the branch indicated, the imaginary part of z 

satisfies condition (3.67) for a linear instability. The remaining three roots 

correspond to stable solutions. 
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Figure (3.9) Logarithmic plots of f3 along the bifurcation surface in Fig. (3.8a). 

The curves presented should be correlated with Fig. (3.8a) by matching 

their endpoints at k I"J 0.02 and k I"J 0.07 to the corresponding endpoints 

on the bifurcation surface. As in Fig. (2.2a), f(f3) = sgn(f3) log(l.O + (3). 
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Figure (3.10) (a) Initial velocity distribution at point A (6 = 5.0, nb = 0.05, 

k = 0.05, and u roy 16.0) in Fig. (3.8a) as seen in the wave frame. (b) 

The lowest order correction to the spatially homogeneous component of the 

distribution function. Shown for point A in Fig. (3.8a) in the wave frame. 
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Figure (3.11) The homogeneous component of the saturated distribution func­

tion showing the (negligible) effect of the lowest order correction. '"1 is as in 

Fig. (3.6). Shown for point A in Fig. (3.8a) in the wave frame. 
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Figure (3.12) (a) The initial velocity distribution at point B (5 = 5.0, nb = 

0.05, k = 0.05, and u,....., 23.0) in Fig. (3.Sa) as seen in the wave frame. (b) 

The lowest order correction to the spatially homogeneous component of the 

distribution function. Shown for point B in Fig. (3.Sa) in the wave frame. 
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Figure (3.13) The homogeneous component of the saturated distribution func­

tion showing the effect of the lowest order correction. '1 is as in Fig. (3.6). 

Shown for point B in Fig. (3.8a) in the wave frame. 
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Figure (3.14) (a) Bifurcation surface for a cool, equal density beam (solid line). 

Also shown is the bifurcation surface for 2k (dotted line), the intersection 

is a double Hopf bifurcation. Points A-and B for k = 0.26 are the selected 

points of low and high groWth rate. (b) The four solutions to the dispersion 

relation in (3~65) for k = 0.26. The real part of the frequency W = Re kz is 

plotted against the drift frequency in units where We = 1. On the branch 

indicated, the imaginary part of z satisfies condition (3.67) for a linear 

instability. The remaining three roots correspond to stable solutions. 
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Figure (3.15) Logarithmic plots of fi along the bifurcation surface shown 

in Fig. (3.14a). The curves presented here should be correlated with 

Fig. (3.14a) by matching their endpoints at k '"'-J 0 and k '"'-J 0.1 to the 

corresponding endpoints on the bifurcation surface. As in Fig. (2.2a), 

f(fi) = sgn(fi) log(l.O + fi). 
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Figure (3.16) (a) Initial velocity distribution at point A (6 = 0.5, nb = 0.5, 

k = 0.26, andu ,....... 1.5) in Fig. (3.14a) as seen in the wave frame. (b) 

The lowest order correction to the spatially homogeneous component of the 

distribution function. Shown for point A in Fig. (3.14a) as seen in the wave 

frame. 
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Figure (3.17) The homogeneous component of the saturated distribution func­

tion showing the effect of the lowest order correction (visible only at the 

resonance Vi = 0). "1 is as in Fig; (3.6). Shown for point A in Fig. (3.14a) 

in the wave frame. 
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Figure (3.18) (a) The lowest order correction to the spatially homogeneous 

component of the distribution function. Shown for point B (5 = 0.5, nb = 

0.5, k = 0.26, and U r-J 4.5) in Fig. (3.Ha) in the wave frame. (b) The 

initial velocity distribution (dotted line) and the homogeneous component , 

of the saturated distribution function (solid line) showing the effect of the 

lowest order correction. "'1 is as in Fig. (3.6). Shown for point B in Fig. 

(3.Ha) in the wave frame. 
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Figure (3.19) (a) Bifurcation surface for an equal temperature, equal density 

beam (solid line). Also shown is the bifurcation surface for 2k (dotted line), 

the intersection is a double Hopf bifurcation. Points A and B for k = 0.18 

are the selected points of low and high growth rate. (b) The four solutions to 

the dispersion relation in (3.65) for k = 0.18. The real part of the frequency 

W = Re kz is plotted against the drift frequency in units where We = 1. On 

the branch indicated, the imaginary part of z satisfies condition (3.67) for a 

linear instability. The remaining three roots correspond to stable solutions. 
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Figure (3.20) Logarithmic plots of f3 along the bifurcation surface shown 

in Fig. (3.19a). The curves presented here may be correlated with Fig. 

(3.19a) by matching their endpoints at Ie '"'-J 0 and Ie '"'-J 0.13 to the cor­

responding endpoints on the bifurcation surface. As in Fig. (2.2a), f(f3) = 
sgn(f3) log(l.O + (3). 
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Figure (3.21) (a) Initial velocity distribution at point A (5 = 1.0, nb = 0.5, 

k = 0.18, and U "-J 2.1) in Fig. (3.19a) as seen in the wave frame. (b) 

. The lowest order correction to the spatially homogeneous component of the 

distribution function. Shown for point A in Fig. (3.19a) in the wave frame. 
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Figure (3.22) The homogeneous component of the saturated distribution func­

tion showing the effect of the lowest order correction. "f is as in Fig. (3.6). 

Shown for point A in Fig. (3.19a) in the wave frame. 
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Figure (3.23) (a) The lowest order correction to the spatially homogeneous 

component of the distribution function. Shown for point B (5 = 1.0, nb = 

0.5, k = 0.18, and u ~ 6.5) in Fig. (3.19a) in the wave frame. (b) The 

initial velocity distribution (dotted line) and the homogeneous component 

of the saturated distribution function (solid line) showing the effect of the 

lowest order correction. ,.., is as in Fig. (3.6). Shown for point B in the wave 

frame. 

• 
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Figure (3.24) (a) Bifurcation surface for a warm, equal density beam (solid 

line). Also shown is the bifurcation surface for 2k (dotted line), the inter­

section is a double Hopf bifurcation. Points A and B for k = 0.14 are the 

selected points of low and high growth rate. (b) The four solutions to the 

dispersion relation in (3.65) for k = 0.14. The real part of the frequency 

W = Re kz is plotted against the drift frequency in units where We = 1. 

On the branch indicated the imaginary part of z satisfies condition (3.67) 

for a linear instability. The remaining three roots ccorrespond to stable 

solutions. 
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Figure (3.25) (a) Logarithmic plots of (3 along the bifurcation surface shown 

in Fig. (3.24a). The curves presented here may be correlated with Fig. 

(3.24a) by matching their endpoints at k "-J 0 and k "-J 0.1 to the cor­

responding endpoints on the bifurcation surface. As in Fig. (2.2a), f((3) = 
sgn((3) log(l.O + (3). 
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Figure (3.26) (a) Initial velocity distribution at point A (5 = 2.0, nb = 0.5, 

k = 0.14, and U <"J 3.5) in Fig. (3.24a) as seen in the wave frame. (b) 

The lowest order correction to the spatially homogeneous component of the 

distribution function. Shown for point A in Fig. (3.24a) in the wave frame. 
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Figure (3.27) The homogeneous component of the saturated distribution func­

tion showing the effect of the lowest order correction. "1 is as in Fig. (3.6). 

Shown for point A in Fig. (3.24a) in the wave frame. 
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Figure (3.28) (a) The lowest order correction to the spatially homogeneous 

component of the distribution function. Shown for point B (6 = 2.0, nb = 

0.5, k = 0.14, and u r-...; 8.7) in Fig. (3.24a) in the wave frame. (b) The 

initial velocity distribution (dotted line), and the homogeneous component 

of the saturated distribution function (solid line) showing the effect of the 

lowest order correction. 'Y is as in Fig. (3.6). Shown for point B in the wave 

frame. 
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Appendix 

In Chapter 1 the two dimensional vector field, 

(A.I) 

was transformed by a local nonlinear change of coordinates, 

(A.2) 

into the normal form 

~~ = VPI (,ll + L [V~'(k+ll/21 e~,(k+I)/21 (,,) 
k-3.5 .... 

+ V~,(k-I)/21 e~,(k-II/2) (,,)]. 
(A.3) 

In polar variables, this normal form vector field was 

dr 3 5 -
dt = I-'r + aIr + a2 r + O(r

l
) 

dO .).. 6 
dt =-A+b1r-+b2 r +O(r) 

(A.4) 



• 

• 

where 

Appendix 

R V
-(3,2) 

al =e + 

- (5.3) 
a2 = Re V+ 

6 - I V- (3,2) 
1 - m + 

6 - I V-(5,3) 
2 - m + 

187 

I h' d' I d' h I" I' b V- (3.2) V- (5.3) d h ntis appen IX, erlve t e exp IClt re atlOns etween + , +. an t e 

components of the original vector field V(~). This determines the normal form 

coefficients through fifth degree as functions of the parameters in the original 

problem. These results slightly generalize the calculation of Hassard and Wan 

(1978) in that the coefficients a2 and 62 are obtained for arbitrary 1'. Other 

differences between the normal form coefficients derived here and those computed 

by Hassard and Wan (1978) are explained at the end of the appendix. 

To begin, recall from Chapter 1 that in the Taylor expansion of V (~) the 

terms of degree k, denotedV(k)(~), could be expanded in terms of the basis for 

)llk l(!R2 ) formed by the eigenvectors of L(k). 

k 

Vlkl(S") = L [v~·l) e~·l)(~) + V~·l) e~·l)(~) 1 
1-0 

(A.5) 

where 

Llk) .elk.l) _ \ Ik,l) .elk,l) 
'-± - ""± '-± . 

The relations between the components V~,l) in this eigenbasis and the com­

ponents of Vlkl(S") in a real basis will be given later; for the moment the eigen-
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basis components V~·l) are to be regarded as known complex-valued functions 

of the parameters in the problem. 

To remove inessential nonlinear terms, through terms of fifth degree, re-

quires a coordinate change of the form 

(A.6) 

where cP(k)(~) is homogeneous of degree k in~. Now cP(4)(~) removes terms of 

degree four and generates higher order terms, but only of degree greater than 

five. Similarly cP(5)(~) eliminates the inessential fifth degree terms, but these 

terms can be identified without explicitly evaluating cP(5)(~). Thus, in practice, 

to compute the normal form through fifth degree 'requires only that 4>(d be 

implemented through terms of third degree, i.e. up to cP(3)(d. 

Calculation of the Transformed Vector Field 

With this in mind the calculation of the transformed vector field (through 

fifth degree) is straightforward. From (A.I) and (A.6) d.,,/dt is given by 

d." = D4>(4)-l (.,,)) . V(4)-l (.,,)). 
dt 

To evaluate this, first determine 4>-1 (.,,). Let 

(A.7) 



Appendix 1189 

and determine the '¢'(k)(rT) by solving 

~ = <1>-1 (1]). (A.B) 

Inserting 1] from (A.6) into each ,¢,(k)(1]) and expanding through fifth order 

gIves· 

1/J(2)(~ + </>(2r(~) + </>(3)(~)) = ,¢,(2)(d + D1/J(2)(d . [</>(2)(d + </>(3)(dl 

+ !D2'¢'(2J(d:[<p(21(~) + </>(3) (d][</>(2)(d + <p(31(~)1 
2 

= '¢'(2)(~) + D'¢'(2)(~) . <p(2)(~) + D'¢'(2)(~) . </>(3)(~) 

+ !D2'¢'(2)(~):</>(2)(d</>(2)(d + D2'¢'(2)(d:</>(2)(~)</>(3)(d 
2 

.+ .... 

'¢'(31(~ + </>(2)(d+ </>(3)(~)) = '¢'(3)(~) + D1/J(3)(~) . [</>(2)(d + <p(3)(dl 

+ !D21/J(3)(~):</>(2)(d<p(2)(d + ... 
2 

= '¢'(31(~) + D,¢,(3)(d . </>(2)(~) + D1/J(3)(~) . </>(3){~) 

. + iD2'¢'(3)(d:</>(2)(~)</>(2)(d + ... 

'¢'(4)(~ + </>(2)(d + </>(3)(d) = '¢'(4){~) + D,¢,(4)(d . </>(2)(d + .,. 

Here a notation such as D2'¢'(2)(d:<p(2)(~)</>(3)(d represents a vector field whose 

ith component is 
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with repeated indices summed. Collecting terms of the same degree, (A .. 8) 

becomes 

~ = ~ + [4>(2/(d + 'l/J(2/(~)] + [tP(3/(~) + D'l/J(2/(d . 4>(2)(d + 'l/J(3)(d] 

+ [D'l/J(2/(d' 4>(3/(~)+ ~D2'l/J(2/(d:4>(2)(~)4>(2)(~) + D'l/J(3)(~). 4>(2)(d 

+ 'l/J(4)(~)] 

+ [D2'l/J(2)(~):4>(2)(~)4>(3)(d+ D'l/J(3)(d' 4>(3/(d 

+ iD2 'l/J(3)(d:4>(2/(d4>(2)(d + D'l/J(4)(d· 4>(2)(~) + 'l/J(5)(~)] 
+ .... 

The 'l/J(k)(~) are determined recursively. At second order (A.8) requires 

(A.9) 

as was noted previously in (1.16). Using (A.9) and (A.8) at third order gives 

(A.IO) 

With (A.9) and (A.lO), 'l/J(4)(~) is 
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'Ij1(4)(d = D4>(Z,(S-). 4>(3}(S-) - !D24>(2)(S-):4>(2'(S-)4>(2,(S-) 
2 

- (D4>(Z,(S-))Z . 4>(2)(S-) + D4>(3)(d .4>(2)(d. 

1191 

(A.l1) 

'Ij1(.5'(d = D24>(2'(S-):[D4>(2)(d· 4>(2)(S-)]4>(2)(S-) + !D4>(2,(S-). [D24>(2'(S-):4>(2'(d4>(2)(d] 
2 

+ (D4>(2'(S-))2 . [D4>(2'(d . 4>(2,(S-)]- !D24>(3)(d:4>(2'(S-)4>(2'(d 
2 ' 

- D4>(3'(d . [D4>(2)(d . 4>(2}(d]- D4>(2'(d . [D4>(3'(d .4>(2,(S-)] 

- D24>(2'(d:4>(2)(S-)4>(3)(d - (D4>(2)(S-))2 . 4>(3)(S-) 

+ D4>(3}(d .4>(3)(S-). 
(A.12) 

Equations (A.9) through (A.12) determine 4>-1 (fI) through fifth degree. 

Returning to (A.7) for the transformed vector field, now expand V(<I>-1 (fI)). 

where 

V(2'(<I>-1 (fI)) = V(2'(fI) + DV(2'(fI) . ['Ij1(2'(fI) + 'Ij1(3'(fI) + 'Ij1(4) (fI)] 

+ !D2V(2)(fI):'Ij1(2)(fI)'Ij1(2)(fI) + D2V(2'(fI):'Ij1(2)(fI)'Ij1(3)(fI) + ... 
2 



and 

Appendix 

V(3)(<I>-1 (11)) = V(3)(11) + DV(3)(11) . [1/1(2)(11) + 1/1(3)(11)] 

+ !D2V(3)(11):1/I(2)(11)1/I12)(11) + 000 

2 

Collecting terms of the same degree, (A.13) becomes 

v ( <1>-1 (11)) =V (1 ) ( 11) + [ V (2) ( 11) + D V (1 ) ( 11) . 1/1 (2) ( 11 ) ] 

+ [V(3)(11) + DV(2)(11) .1/1(2)(11) + DV(I)(11) .1/1(3)(11)] 

+ [V(4)(11)+ DV (3)(11) .1/1(2)(11) + DV(2)(11) .1/1(3)(11) 

1192 

+ !D2V(2)(11)o1/l(2)(11)1/I12)(11) + DV(l)(11) .1/1(4)(11)] (A. 14) 2 . 

+ [VI.5'(11)+ DV I4'(11) .1/1(2)(11) + DV(3)(11) : 1/1(3)(11) 

+ !D2V(3)(11):1/I(2)(11)1/I(2'(11) + DV(2'(11) .1/1(4'(11) 
2 

+ D2V(2)(11):1/I12)(11)1/I13)(11) + DV(I)(11) .1/1(.'»)(11)] + .... 

• 
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Since all terms in (A.14) are at least first degree, to expand (A.7) through 

fifth degree requires D4>(4)-1 (1/)) through fourth degree. From (A.6), and the 

form of 4>-1 (1/), this expansion is 

D<I>(4)-l (1/)) = I + D¢>(2 1(<I>-1 (1/)) + D¢>(31(<I>-1 (1/)) + ... 

= I + D¢>(2) (1/) + D2¢>(2)(1/) -.[",,(2)(1/) + ",,(3)(1/) + ",,(4)(1/)] 

+ D¢>(3 1(1/) + D2¢>(3)(1/) . [",,(2)(1/) + ",,(3)(1/)] 

+ !D3¢>(3)(1/):""(2)(1/),,,,(2)(1/) + ... 
2 

where I is the 2x2 identity matrix. Collecting terms .of the same degree yields 

D4>(4)-l (1/)) = 1+ D¢>(2 1(1/) + [D2¢>(2)(1/)' ",,(21(1/) + D¢>(3 1(1/)] 

+ [D2¢>(2)(1/)' ",,(3 1(1/) + D2¢>(31(1/)' ",,(2)(1/)] 

+ [D2¢>(21(1/)' ",,(4)(1/)+ D2¢>(31(1/)' ",,(3 1(1/) 

+ i D3 ¢> ( 3 ) ( 1/ ) : "" ( 2 ) ( 1/ ) "" ( 21 ( 1/ )] + . . '. 

(A. IS) 

Now left multiplying (A.14) by (A.IS) and keeping only terms up to fifth 

degree yields the desired expansion of (A.7). After terms of the same degree 

have been collected this multiplication yields, 
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~~ = V(lI(11) + {V(2 1(Tf) + DV(I'(Tf) .1/1(21(Tf) + D¢>121(Tf)· V(lI(Tf)} 

+ { V(3'(Tf)+ DV(21(Tf) .1/1(21(Tf) + DV(lI(Tf) .1/1(31(Tf) 

+ D¢>(21(Tf) . [VI21(Tf) + DV(lI(Tf) . 1/112' (Tf)] + D2¢>(2)(Tf):1/I12)(Tf)V(I)(Tf) 

+ D¢>13 1(Tf) . V(lI(Tf)} 

+ { V(4)(Tf)+ DV I3'(Tf) .1/1121(Tf) + DV I21(Tf) .1/1(3)(Tf) 

+ !D2 VI21(Tf):1/I121(Tf)1/I(2'(Tf) + DV(I)(Tf) .1/1(4)(Tf) 
2 

+ D¢>(21(Tf) . [V(3)(Tf) + DV(2)(Tf) .1/1(2)(Tf) + DV(1)(Tf) . 1/1(3) (Tf)] 

+ [D2¢>(2)(Tf) .1/1(2)(Tf) + D¢>(3)(Tf)]· [V(2)(Tf) + DV(I)(Tf) . 1/1(2) (Tf)] 

+ D2¢>(21(Tf):1/I(31(Tf)V(I)(Tf) + D2¢>(3)(Tf):1/I(2)(Tf)V(I)(Tf)} 

+ { V(5)(Tf)+ DV14I(Tf) .1/1(21(Tf) + DV(31(Tf) .1/1(3)(Tf) 

+ !D2V(3 1(Tf):1/I(2)(Tf)1/I12)(Tf) + DV I21(Tf)· 1/I(41(Tf) 
2 

+ D2 V(2 1(Tf):1/I121(Tf)1/I(3)(Tf) + DV(II(Tf) .1/1(5)(Tf) 

+ D¢>(21(Tf) . [V(4 1(Tf) + DV(31(Tf) .1/1(2)(Tf) 

+ DV I21(Tf) .1/1(31(Tf) + !D2 V(21(Tf):1/I121(Tf)1/I(21(Tf) + DV(I)(Tf) .1/1(4)(Tf)] 
2 

+ [D2¢>(21(Tf) .1/1(21(Tf) +D¢>(31(Tf)]·[V I3)(Tf) + DV(21(Tf). 1/1(21(,,) 

+ DV(lI(Tf) . 1/1(3I(Tf)] 

+ [D 2 ¢>(21(Tf)· 1/I(31(Tf) + D2¢>(31(,,). 1/I121(Tf)]· [V(2)(Tf) + DV(l)(Tf)· 1/1(21(,,)] 

+ D2¢>(21(Tf):1/I(4 1(Tf)V(1I(Tf) + D2¢>(31(Tf):1/I(3 1(Tf)V(1)(Tf) 

+ i D3 ¢> (31 ( Tf r 1/1 (21 ( Tf ) 1/1 (21 ( Tf ) V ( 11 ( Tf ) } 

+ .... 
(A.16) 

• 



• 

• 

• 

Appendix 

-
By fixing 4>121(f7) and 4>(3 1(f7) this expression will be greatly simplified. 

First, as described in Chapter 1, by introducing the operator L(I,) 

Lllel :)I(Ie) -+- )l11e) 

Llle) (Y) = DY . VII) - DV(I) . Y 

the terms of second degree in (A.16) become 

1
195 

where (A.9) for 1jJ(2)(f7) has been used. 4>(2)(f7) is uniquely determined by 

(A.18) 

Expanding4>(2)(f7) in the eigenbasis, 
i) 

4>(21(f7) = t[4>~'ll e~,ll(f7) + 4>!:.I) e!:,l) (f7)] 
, l ==-0 

and plugging into (A.18) using (A.5) yields 

V I2 •l ) 
12,1) - ± 

4>± = A (2,l) (A.19) 
± 

which is a special case of (1.23). 'This choice for 4>(2) (f7) eliminates the quadratic 

terms in (A.16); moreover it implies from (A.17) three identities: 

V(2 1(f7) + DV(ll(f7) .1jJ121(f7) + D4>(21(f7) . V(l)(f7) = 0, 

D V (2) ( f7) + D V (1 ) (,,) . D1jJ I 2) ( f7 ) 

+ D24>(2)('1)' VI I )(f7) + D4>I'l)(f7)' DV(l)(f7) = 0, 

(A.20a) 

(A.20b) 
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and 

D2V(21(q) + DVU)(q). D2'¢/(2)(q) 

+ D 2<jJ(2 1(q). DV(11(q) + j)2<jJ(2)(q). DV(ll(q) = 0 
(A.20c) 

where (A.20b,c) are derivatives of (A.20a). Contracting (A.20b) with '¢/(21(q) 

gIves 

DV(2)(q) , '¢/(21(q) + D<jJ(2)(q) . DV(l)(q)' '¢/(21(q) 

+ D 2<jJ(2)(q):'¢/(2)(q)V(1)(q) (A.21) 

..:.... -DV(1)(q) . D'¢/(2)(q) . '¢/(2)(q). 

This i~entity greatly simplifies the terms of third degree in (A.16); applying 

(A.21) and (A.I0) to these terms leads to the compact expression, 

{Third degree terms in (A.16)} = V(3)(q) + D<jJ(2)(q) . V(2)(q) . 

+ L(3) (<jJ(3) (q)). 
(A.22) 

Now <jJ(3)(q) is chosen to remove the inessential components of V(3)(q) + 

D<jJ(21(q) . V(2 1(q). With the expansions 

V(31(q) + D<jJ(21(q). V(21(q) = t[V~·11 e~,l)(q) + V~") e~·ll(q)l 
1-0 

.p131(q) = t[ .p~"1 {~"I(q) + .p~"1 {~"I(q) 1 
1=-0 

the components of <jJ(3)(q) are 

_ V(3.1) 
<jJ(3,1) = + 

+ >.(3.1) 
+ 

_ V (3,1) 

<jJ(3,11 = -
- >.~,tl 

l = 0,1,3 

l = 0,2,3 

(A.23) 

(A.24) 

t, 

• 

• 



Appendix 
1

197 

and ¢>~.21 = ¢>~.ll = O. (As noted in Chapter I, this choice for ¢>~,2', ¢>~,ll is 

not unique.) 

With the following definition of KI31('7) 

(A.25) 

the equation satisfied by ¢>13,('7) is 

(A.26) 

Differentiating (A.26) yields identities which simplify the remaining terms of 

higher degree in (A.I6). For X, Y arbitrary vectors these identities are 

DK(3,('7) . X = DV I31('7) . X + D2¢>12)('7):VI2)('7)X 

+ D¢>(2,('7) . DV I21('7)' X + D2¢>(3)('7):V(1)('7)X (A.27a) 

+ D¢>131('7) . DV(1I(1/) . X - DV l l)('7) . D¢>(31('7) . X 

and 

D2 K(31('7):XY = D2 V(3 1('7):XY + D2¢>12)('7):[DV(21('7) . YjX 

+ D2¢>(21('7):[DV(21('7) . XjY + D¢>(21('7) . [D2 V(21('7):XYj 

+ D3¢>(3)('7):V(1I('7)XY + D2¢>(21('7):[DV(1I('7)' YjX 

+ D2¢>(31('7):[DV(11('7) . XjY 

- DV(lI('7)' [D2¢>(31('7):XYj. 
(A.27b) 
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Here X, Yare simply placeholders to distinguish terms such as D21/>(2)(,,):[DV(2)(,,)y]X 

As noted previously, the terms of fourth degree are (in principle) removed 

by 1/>(4)(,,) which does not perturb the fifth degree terms. Thus the fourth order 

terms in (A.16) may be simply dropped, and then only the simplification of the 

fifth degree terms remains. First, using (A.20b) and (A.20c), derive the identities, 

-DV(1)(,,). D'IjJ(2)(,,). 'IjJ(4)(,,) = DV(2)(,,). 'IjJ(4)(,,) + D21/>(2)(,,):V(1)(,,)'IjJ(4)(,,) 

+ DI/>(2)(,,) . DV(l)(,,) . 'IjJ(4)(,,) 
(A.28a) 

and 

-DV(l)(,,). D2 'IjJ(2)(,,):'IjJ(2)(,,)'IjJ(3)(,,) = D2 V(2)(,,):'IjJ(2)(,,)'IjJ(3)(,,) 

+ D21/>(2)(,,):[DV(1)(,,). 'IjJ(2)(,,)]'IjJ(3)(,,) 

+ D21/>(2)(,,):[DV(1)(,,). 'IjJ(3) (,,)]'IjJ(2) (,,). 
(A.28b) 

The terms appearing on the right in (A.28) may be located among the fifth degree 

terms of (A.16); after substituting from (A.28) these fifth degree terms become 

.. 
, 

• 

'_. 

• 



• 
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{Fifth degree terms of (A.1B)} = -D1.1 I1 )(,,) . D1/J(2)(,,) .1/J(4)(,,) 

_ D1.1 I1 )(,,) . D21/J(2) (,,):1/J(2) (,,)1/J(3)(,,) + 1.1l-'i)(,,) 

+ D1.1(4)(,,) . 1/J(2)(,,) + D1.1(3)(,,) .1/J(3)(,,) 

+ !D21.1(3)(,,):1/J(2)(,,)1/J(2)(,,) + D1.1(I)(,,) .1/J(5)(,,) 
2 

+ D¢J(2)(,,) . [1.1(4)(,,) + D1.1(3)(,,) .1/J(2)(,,) 

+ D1.1(2)(,,) .1/J(3)(,,) 

+ !D21.1(2)(,,):1/J(2)(,,)1/J(2)(,,)] 
2 

+ D2¢J(2)("):1/J(2)(,,H1.1(3)(,,) + D1.1(2)(,,) .1/J(2)(,,)] 

+ D¢J(3)(,,) . [1.1(3)(,,) + D1.1(2)(,,) '1/J(2}(,,) 

+ D1.1(l)(,,) . 1/J(3) (,,)] 

+ D2¢J(2)(,,):1/J(3)(,,)1.1(2)(,,) 

+ D2¢J(3)("):1/J(2)(,,H1.1(2)(,,) + DlJ(l)(,,) .1/J(2)(,,)] 

+ D2¢J(3)(,,):1/J(3)(,,)1.1(1)(,,) 

+ ! D3 ¢J(3) (" r1/J(2) (" )1/J(2) (,,)1.1 (1)(,,). 
2 

(A.29) 

Now choosing X = ",,(3)(,,) in (A.27a) and X = Y = ",,(2)(,,) in (A.27b) produces 

the identities, 

D1.1(l)(,,) . D¢J(3)(,,). ",,(3)(,,) + DK(3)(,,). ",,(3)(,,) = D1.1(3)(,,). ",,(3)(,,) 

+ D2¢J(2)("):1.1(2)(,,),,,,(3)(,,) 

+ D¢J(21(,,). D1.1(2)(,,). ",,(3)(,,) + D2¢J(3)(,,):1.1(1)(,,)1/J(3)(,,) 

+ D¢J(3)(,,) . D1.1(l)(,,) . ",,(3)(,,) 
(A.30a) 
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and 

~[DZ K(3'(fJ):1/J(Z'(fJ)1/J(2'(fJ) + DVO'(fJ)' [D2<p13'(fJ):1/J(21(fJ)1/J12)(fJ)]] = 

! D2 V (3) (fJ ):1/J12, (fJ )1/J(2, (fJ) 
2 

+ D2<p(2)(fJ):[DV(2'(fJ) . 1/J(21(fJ)]1/J(2)(fJ) 

+ !D<p(2)(fJ)' [D2V(21(fJ):1/J(2)(fJ)1/J(Z'(fJ)] 
2 

(A.30b) 

+ ! D3 <p(3 )( fJ):V (1) (fJ )1/J{2) ( ,r) 1/J (2) (fJ) 
2 

+ D2<p(3)(fJ):[DV(1)(fJ) . 1/J(2) (fJ)]1/J(2)(fJ). 

Again the terms on the right in (A.30a,b) appear in (A.29); after they are 

eliminated (A.29) reads, 

{Fifth degree terms of (A.IB)} = DV(ll(fJ)' [-D1/J(2)(f1) '1/J(4)(fJ) 

- D21/J(2) (fJ):1/J121 (fJ)1/I(3, (fJ) 

+ 1/I(5)(fJ) + D<p(31(fJ) .1/J(3)(fJ) 

+ ! D2 <p13 , (fJ ):1/J(2) (fJ )1/J(2) (fJ)] 
2 

+ DKI3'(fJ) .1/J (3)(fJ)+ !Dz K(31(fJ):1/J(Z)(fJ)1/J12'(fJ) 
2 

+ V(5)(fJ) + DV I4'(fJ) .1/I(2'(fJ) 

+ D<p(Z)(fJ) . [V I4'(fJ) + DV (3 )(fJ) .1/J(21(fJ)] 

+ D<p(3'(fJ) , [V(3'(fJ) + DV(Z)(fJ) .1/I(2'(fJ)] 

+ DZ<p(Z'(fJ):1/I(Z'(fJ)V(3'(fJ) 

+ DZ<p(3)(fJ):1/I(Z'(fJ)V(Z'(fJ) 
(A.3I) 

where all the terms left multiplied by DV(l'(fJ) have been grouped together; 

• 



.. 
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/ 

these terms cancel identically. This can be verified by direct calculation from 

(A.IO), (A.H), and (A.12). Thus the fifth degree terms come down to, 

{Fifth degree terms of (A.IB)} = V(.5,(,,) + DK(3,(,,) . '1/1(3)(,,) 

+ !D2 K(3'(,,):'I/I(2)(,,)'I/I(2,(,,) + DV(4J(,,) • '1/1(2,(,,) 
2 

which can be rewritten as 

+ D</>(2)(,,) . [V(4)(,,) + DV(3)(,,) . '1/1(2)(,,)] 

+ D2 </>(2) (,,):'1/1(2,(,,) V (3'(;,) 

+D</>(3,(,,) . [V(3,(,,) + DV(2,(,,) . '1/1(2)(,,)] 

+ D2 </>(3)(,,):'I/I(2'(,,)V(2)(,,) 

{Fifth degree terms of (A.IB)} = V(.5,(,,) + !D2 K(3'(,,):</>(2)(,,)</>(2,(,,) 
2 

(A.32) 

+ DK(3,(,,). [_</>(3)(,,) + D</>(2,(,,). </>(2,(,,)] 

_ DV(4,(,,) . '1/1(2,(,,) + D</>(2,(,,) . V(41(,,) 

+ D</>(3) (11) . V(3'(11) 

_ D[D</>(3,(,,) . V(2)(,,) 

+ D</>(2)(,,) . V(3,(,,)] . </>(2,(,,) 
(A.33a) 

using (A.9) and (A.lO). Now, as for the cubic terms in (A.23), the right hand 

side of (A.33a) is expanded in the eigenbasis 



Appendix 

VF>I(r1) + DK(31(r!) . [_¢/31(Tf) + D¢(2)(Tf) . ¢(2)(Tf)] 

+ !D2 K(3)(Tf):¢(21(Tf)¢(2)(Tf) - DV(4)(Tf) .1/J(21(Tf) 
2 

+ D¢(2){'Tf) . V(4)(Tf) + D¢(3)(Tf) . V(3)(Tf) 

- D[D¢(31(Tf) . V(2)(Tf) + D¢(2)(Tf) . V(3 1(Tf)] . ¢(2)(Tf) 

= t[ii~") €~")(Tf) + ii~") €~")(Tf)l 
1=-0 

and all components except 

(A.33b) 

(A.34) 

will be removed by ¢(5)(Tf). This of course does not have to be done explicitly; 

the final form for (A.16) is then 

(A.35) 

• - (3,2) - (5,3) 
CalculatIOn of V + and V + 

. . -(3,2) -(5,3) 
The desired normal form coeffiCients, V + and V + ' can now be evaluated 

in terms of the components of V(Tf). To extract ii~,2) from (A.23) requires'the 

€~.21 component of D¢(2)(Tf)' V(2)(Tf). To expand D¢(21(Tf)· V(2)(Tf) in the eigen­

basis involves the expansion of products such as D€~,l) . €~'.l'). 
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The calculation of De~"l . €~f.l'1 is representative. From the definitions in 

Chapter I, see (1.22), 

and 

(l l-I (-)"-' {",ll {"f,t'l Z Z 
D€+ . €+ = 

. 0 

(k - l)zl (z)"-l-I 

o 

= CZ'+"-I (:,,:+0'-1,+,') ) 

_ l~("+,,f_l,,+,f_l) 
- ~+ . 

Similar calculations yield the useful relations 

D€~,l) . €~f.l') = l€~+"f_l.l+lf_l) 

D€~,l) . €~'.l'1 = (k _l)€~+k'-I,,+,f) 

D2 €~.ll :€~'.l'l €~",t'f) = l(l _ I)€~K -2,L-2) 

D2 €~.,):€~,.,f) €~"",,) = l(k _l)€~K-2.L-lI 

D2€~"I:€~'.,')€~".l") = (k -l)(k _l_I)€~K-2,L) 

(A.36) 

(A.37) 
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where L = l + l' + l" and K = k + k' + k". 

A I · (A ) (A ). I' . 1 f V- (3,1) ( h V- (3.l) pp ymg .36 to .23 , gIves exp ICIt resu ts or + note t at _ 

. - (3,1) - (3,3-1) 
may be obtamed from V + = V _ ), 

3 

v(3)('1l + D<p(2)(,,) . V(2)(,,) = L V~·i) e~,i)(,,) 
i=O 

3 

= L V~,i) e~,i)(,,) 
i=-O 

2 .[ I ,. 
+ L l<p~'I)V~'I)e~,'+I-I) (,,) 

1,1'-0 

+ (2 _l)<p~,l)v~"')e~,l+,l) (,,)] 

+ .... 

Hence from (A.23), 

V(3,O) _ V(3,0) + A,(2,I)V(2.0) + 2A,(2,0)V(2,0) 
+ - + 'f'+ + 'f'+-

V(3.1) _ V(3,1) + A,(2,1)(V(2.1) + V I2,0)) 
+ - + 'f'+ + -

+ 2(<p~,2)V~'0) + <p~,O)V~,I)) 

V I3 .2 ) _ V(3,2) + A,(2,1)(V(2.2) + V(2,1)) 
+ - + 'f'+ + -

(A.38) 

+ 2(<p~,2)V~,I) + <p~.0)V~,2)) 

V I3 .3 ) = V(3,3) + A,(2·l)V(2.2) + 2A,(2.2)V(2.2). 
+ + 'f'+ _ 'f'+. + 

• 



Appendix I 205 

This result for V ~.21 quite generally expresses the normal form coefficients al 

and 61 (see (A.4)) in terms of the quadratic and cubic terms of V(T/). The 

other components in (A.3S) determine 4>(3)(T/) through (A.24). 

A similar evaluation of V~,31 from (A.33b) is more painful; listed below are 

the contributions of each term on the left hand side of (A.33b). 

(A.39a) 

(A.39b) 

DK(31(T/)' D4>(21(T/)' 4>(21(T/) = 3V~·2)[2(4)~'214>~.1) + 4>~,214>~.OI) 

+ 4>~,1l4>~.11 +4>~'ll4>~.Oll e~·3)(T/) 

+ ... 
(A.39c) 



Appendix 1206 

~D2 K(3'(r,):<p(2)(")<p(2'(,,f= 2V~'2)[<p~.2)<p~'1) + <p~,2)<p~'O) 

+ <p~,1) <p~,ll+<p~'o, <p~.2'l e~,3)(,,) 

+ ... 
(A.39d) 

DV(4)(,,). <p(2)(,,) = [4V~'4)<p~'O) + V~,3)(3<p~,1) + <p~,O») 

+ 2V ~,2)( <p~,2) + <p~,1)) +3V~'1.) <p~,2) 1 e~,3)(,,) 
+ ... 

D<p(2,(,,) . V(4)(,,) = [2(<P~'2)V~'2) + <p~.O)V~,3)) 

+ <p~,1)(V~·3) + V~'2')l e~,3)(,,) 

+ ... 

D<p(3,(,,). V(3,(,,) = [3(<P~'3)v~·1) + <p~,O)V~,3)) 

+ <p~.2'(2V~,2' + v~·ll) 

+ <p~,1) (V~,3' + 2V~·2') 1 e~,3' (,,) 
+ ... 

and finally, 

(A.3ge) 

(A.39f) 

(A.39g) 

• 
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D(D¢J(31(Tf) . V(2)(Tf) + D¢J(2)(Tf) . V(3)(Tf)) . ¢J(2)(Tf) 

= {3¢J~'O)[ 2(V!:,21¢J~,2) + V!:, 21 ¢J!.:,1)) +3V!:,11¢J!:,2)] 

+ ",(3,1'[2(V(2,2)",(2,2) + V(2,2)",(2,1) + V(2,21",(2,OI) + 3V(2.il",(2,21 
~+ + ~+ + ~- - ~- +~-

+ 4(V!.:·11¢J~.2) + V!:,l)¢J!.:,ll) + 6(V!:,21¢J~,1) + V!:,OI¢J!:,2))] 

+ 4>~.21 [ V~' 114>~,ol + 2(V ~,OI4>~.11 + V ~,O) 4> ~,Ol + V ~.214>!:.OI) 

+ 3V(2,11",(2,1) + 4(V(2,2)",(2,O) + V(2,11",(2,l) + V(2,11",(2,2)) 
- ~+ - ~+ . + ~- + ~+ 

+ 6(V~'O) ¢J!:,21 + V~,2) ¢J~'l))] 

+ 3¢J~'31[ V~,l)¢J!:'O) + 2(V~,O)¢J!:,1) + V~,O)¢J~,2)) 

+ 3V(2,11",(2,1) + 4V(2,21",(2,O)] 
+ ~+ + ~+ 

+ 2¢J~'O)[ V~,3)¢J!:'O) + 2(V~,21¢J!.:.1) + V~,2)¢J~,2)) 

+ 3(V~,1)¢J~'O) + V~'31¢J~'11)] 

+ ¢J~'l'[ V~,21¢J!:,ol + V~·3)¢J~,OI + 2(V~,11¢J!:,1) + V~,1)¢J~.21 

+ V(3,21",(2.1) + V(3.21",(2,21) + 3(V(3,OI",(2.21 + V(3,2)",(2,11 
+ ~- + ~+ - ~- - ~+ 

+ V(3.11",(2.2) + V(3.3)",(2,11) + 4V(3,31",(2.01] 
+ ~- + ~+ - ~+ 

+ 2",(2.21[V(3.2)",(2,OI + 2(V(3,11",(2.1) + V(3,11",(2.2)) 
~+. + ~- + ~- + ~+ 

+ 3(V~·OI ¢J!.:.21 + V~·21 ¢J~.1 ') + 4 V~·31 ¢J!.:'O, ]}~~.31(Tf) 

+ .... 
(A.39h) 



Appendix 208 

By reexpressing ¢>~.l) in terms of 'V~,l) these formulas can be compressed some­

what, but basically they are lengthy because of their generality. In applications 

they are most easily left in approximately this form, and evaluated numerically. 

Th' I h' I I' f ;.(3,2) d ;.(5.3) . h 
IS comp etes t e ca cu atlOn 0 v + an v +' In terms of t e components 

of the original vector field, 'V ~,l) • 

These components however are relative to the eigenbasis, and the center 

manifold vector field is frequently obtained in a real basis. A final (though 

practical) chore is to relate the components of the two bases. 

Change of Basis Formulas 

in the real basis for )I(2}()R2): 

It is a straightforward calculation to express these basis vectors in terms of the 

eigenbasis {e~·l)H .... o, then re-expand 'V(2)(~) to determine the 'V~.l) in terms 

of the Mij. 

,.(2.0) + . ,.(2,2) 
v + = ml l,m2 = v_ 

,.(2.1) + . ,.(2,1) 
v + = m3 l,m4 = v- (A.40a) 

( .) .») (.) 0) ,. -.- - + . - ,. -, v+ - ms l,m6 - v-
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where 

1 . . 
ml = 4(Mll - M13 - M22 ) 

1 
m2 = 4(M12 + M21 - M23 ) 

1 . 
m3 = 2"(Mll + M13 ) 

1 
m4 = 2"(M21 + M 23 ) 

1 
ms = 4(Mu - M 13 + M22 ) 

1 . 
m6 = 4(M21 - M12 - M23). 

At third order for 

the eigenbasis components are 

where 

V(3.0) _ +' _ V(3,3) + - ml tm2 - -

V{3,l) + . V(3,2). 
+ = m3. tm4 = -

V (3,2) + . V(3,1) 
+ = ms tm6 = -

V (3.3) + . V(3,O) 
+ = mj tms = -

209 
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1 
mi = g(Mll + M24 - MI3 - M 22 ) 

1 
m2 = g(M2I - M14 - M 23 + MI2 ) 

1 
m3 = g(3(Mu - M2'.) + MI3 - M22) 

1 
m4 = g(3(MzI + M 14 ) + MZ3 + MI2) 

1 
ms =g(3(MII + M 24 ) + MI3 + M22) 

1 
m6 == g(3(MzI - M 14 ) + M 23 - M 12 ) 

1 
m7 = g(Mll - M24 - M 13 + M 22 ) 

1 
ms = g(MZI + M14 ~ M 23 - MI2)' 

At fourth order for 

V
(4.41 + . V(4,OI + = mi l.m2 = -

V(4.3) + . V(4,II + = m3 l. m 4 = -

V
(4.21 + . V(4,21 + = ms l.m6 = - (A.40c) . 

V
(4.11 + . V(4.3 1 + = m7 l. m s = -

V(4.01 + . V(4.41 + = mg l.mIO = -

where 
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1 
mi = 16 (Mll - M I3 + MIS + M22 - M24 ) 

1 
m2 = 16(-MI2 + M14 + M2I - M23 + M2S ) 

1 
m3 =16 (4(Mll - MIS) + 2(M22 + M24 )) 

1 
m4 = 16 (-2(MI2 + M14 ) + 4(M21 - M2S )) 

1 
m5 = 16 (6(Mll + MIS) + 2MI3 ) 

1 
m6 = 16 (6(M2I + M2S ) + 2M23 ) 

1 
m7 = 16 (4(Mll - MIS) - 2(M22 + M24 )) 

1 
ms = -(2(MI2 + M14 ) + 4(M2I - M2S )) 

16 -
1 . '. 

mg = -(Mll - MI3 + MIS - M22 + M24 ) 
16 
1 

miO = 16 (MI2 - MI4 + M2I - M23 + M 2S ), 

and at fifth order 

V
IS,S) _ + . _ V(s.O) 
+ - mi l.m 2 - -

V (5.4) + . V(5.I) 
+ = m3 l.m 4 = -

V
I.5,3) + . V(S.2) 
+ = ms l. m 6 = -

V
I5.2) + . V(S,3) 
+ = m7 l. m s = -

V
I.5.I) + . V I5 .4 ) + = mg l.mIO = _. 

V
I.5,O) . V IS ,.5) 
+ = ml1 + l. m 12 = -
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where 

1 
mi = 32(Mll - M I3 + MI5 + M22 - M24 + M 26 ) 

1 
m2 = 32(-MI2 + M14 ~ M I6 + M2I - M 23 + ~25) 

1 
m3 = 32 (5Mll - 3MI5 - M I3 - 5M26 + 3M22 + M 24 ) 

. 1 
m4 = 32 (5MI6 - 3MI2 - M14 + 5M21 - 3M25 - M 23 ) 

1 
m5 = 32 (10Mll + 2(MI3 + M I5 ) + lOM26 + 2(M22 + M 24 )) 

1 
m6 = 32(-10MI6 - 2(M12 + M 14 ) + 10M2I + 2(M23 + M 2S )) 

1 
m7 = 32 (10Mll + 2(MI3 + M I5 ) - 10M26 - 2(M22 + M 24 )) 

1 
ms = 32(10MI6 + 2(MI2 + M I4 ) + 10M21 + 2(M23 + M 25 )) 

1 
mg = 32 (5Mll - 3MI5 - M I3 + 5M26 - 3M22 - M 24 ) 

1 
mlO = 32 (-5M16 + 3MI2 + M14 + 5M2I - 3M25 - M 23 ) 

1 
mIl = 32(Mu - M I3 + M I 5 - M22 - M 26 + M24) 

, 1 
m12 = 32(MI2 - MI4 + M I6 + M21 - M 23 + M25). 

Now from (AAOa-d) the complex components of V(d through fifth degree 

are computable, and from the complex components, using (A.38) and (A.39), the 

normal form coefficients through fifth degree are computable. 
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Final Remarks 

- {3,2) 
If the result for V + In (A.38) is compared to the equivalent result in 

Hassard, Kazarinoff, and Wan (1981) (~ee pages 86-90 of Hassard, Kazarinoff, 

and Wan) there is disagreement for I' =rf 0; away from criticality the lowest 

order normal form coefficients differ. This can be traced to differing choices 

for the components <p~.2) and <p~.l) of the coordinate change. In (A.24) of my 

calculation these components were set to zero; however Hassard et al. (1981) 

adopt a different choice, namely,· 

. - {3 2) 
which alters the form of Y+' . for I' =rf O. 

The practical consequence of this is simply to remind us that the normal 

form results tend to mix different orders of the parameter Vii, For example in 

the expression for the Hopf frequency dfJ/dt = -A + blr~ + b2r~ + "', since 

r~ ~ 0(1'), both bl r~ and b2r~ contain contributions of 0(1'2). In effect, different 

choices for the component <p~,2) will alter the way the 0(1'2) contribution is 

divided between these two terms. A similar remark holds for higher order normal 

form terms and higher order corrections in 1'2 as well. 
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