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Abstract

Statistics of Certain Automorphic Representations through the Stable Trace Formula

by

Rahul Dalal

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Sug Woo Shin, Chair

Since Automorphic representations for general groups are very difficult to study individually,
they are often studied in families instead. The Arthur-Selberg trace formula lends itself
naturally to answering questions about averages of various parameters of the local components
of automorphic representations in so-called harmonic families. In their 2016 work, Shin
and Templier realized that, in the special case of representations with discrete series at
infinity, the trace formula simplified dramatically enough to compute statistics with good
error bounds. These bounds were good enough for applications: first, an averaged Sato-Tate
law analogous to Sato-Tate for families of elliptic curves and second, computations of the
specific random-matrix statistics that low-lying zeros of L-functions in the family follow.
Following Shin-Templier’s idea, we solve two further problems about discrete-at-infinity
families.

First, Shin-Templier’s work used the invariant trace formula which disallowed families that
distinguish representations with infinite component in the same L-packet. However, which
member of this L-packet a representation might correspond to determines some important
characteristics—whether the representation is holomorphic or quaternionic for example.
Methods related to the stable trace formula can remove this restriction. The key idea is
applying a certain ”hyperendoscopy” formulation of stabilization used first by Ferrari, though
many technical difficulties come up.

Second, while the equidistribution results achieved are interesting in their own right, they also
provide a proof-of-concept that the tools developed for proving them are sufficient for studying
very general questions about discrete-at-infinity families. As a further demonstration, we
also use these methods to solve a very different problem of computing explicit dimensions of
spaces of quaternionic forms on the exceptional group G2.
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Chapter 1

Introduction

1.1 Overview

Automorphic representations are spaces of certain very symmetric complex valued functions
that mysteriously encode information about much else in mathematics, with applications in
fields as diverse as constructing higher-dimensional expanders for computer algorithms and
computing scattering amplitudes in string theory. As a particularly interesting example for
number theorists, if one believes something called the Langlands conjectures, information
about automorphic representations directly produces information about structures called
Galois representations that are the main tool used to solve problems in modern algebraic
number theory

While useful, general automorphic representations are unfortunately quite difficult to
work with. Key problems in the field, such as the Langlands functoriality and generalized
Ramanujan conjectures, have been open for decades. Much previous work has been in
developing complicated representation-theoretic techniques to solve the overarching abstract
problem of functorial transfer, the most important being more and more sophisticated versions
of Arthur’s trace formula and its comparisons.

Because of their complexity, these more recent trace formulas have so far not been applied
much towards more explicit statistical or analytic problems—for example, proving various
equidistribution laws or bounds towards the generalized Ramanujan conjecture. However, the
formulas simplify dramatically in a particular special case of representations with ”discrete
series at infinity”, becoming tractable to compute with. Restriction to discrete-at-infinity
is analogous to studying just holomorphic modular forms instead of also Maass forms—in
particular, it still includes much interesting and rich behavior.

This thesis attempts to demonstrate that the simplified trace formulas are powerful
enough to answer many desired statistical questions about discrete-at-infinity automorphic
representations. In chapter 2, we go over current trace formula techniques. Chapter 3 is the
technical heart where we then build the extensions of these formulas needed for our specific
problems. Chapter 4 applies the results of chapter 3 towards computing equidistribution laws
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on certain families of automorphic representations on very general groups. Finally, chapter
5 uses the developed techniques to solve a very different problem of getting explicit counts
of a particularly interesting class of automorphic representations about which very little is
currently known—quaternionic representations on G2.

We hope that the example uses of the techniques in this write-up are a useful guide for
others attempting similar computations.

1.2 Mathematical Background

We start with a “pop-science”, general-math-audience introduction to the material covered
in this thesis. Any expert in the field should skip ahead to the two technical introductions.

1.2.1 Foundational Notions

Reductive Groups

Automorphic representations are built from certain mathematical objects called reductive
groups. These can be thought of as subgroups of N ×N matrices under matrix multiplication.
The “reductive” condition is that they have particularly nice representation theory—roughly
that their representations all reduce into a direct sum of irreducibles.

The key point is that a reductive group needs to be defined by only polynomial conditions
on the coordinates of the matrix, making it completely agnostic as to which exact matrix
entries are allowed—C-valued, Q-valued, etc. If G is a reductive group, we denote G(R) to be
the group of matrices satisfying the polynomial conditions with entries in R. The language
of algebraic geometry lets us abstractly prove results about a given reductive group that stay
true for very general choices of R.

Some examples of reductive groups are all the classical matrix groups: linear groups
GLn and SLn, unitary groups Un, orthogonal groups SOn, symplectic groups Sp2n, etc. A
non-example is the group of upper triangular N ×N matrices—even though it is a matrix
group picked out by polynomial conditions on the coordinates, it has representations that do
not decompose into a direct sum of irreducibles.

There is more-or-less a classification of all reductive groups defined by polynomial equations
with coefficients in some nice enough field. Over the complex numbers and up to center, the
only examples are the families of matrix groups SLn, SOn, and Sp2n, together with 5 strange
“exceptional groups” denoted G2, F4, E6, E7, and E8 of dimensions 14, 52, 78, 133, and 248
respectively. Over a non-algebraically closed field, each of these complex groups has various
“forms” that can basically be classified by certain Galois cohomology groups. For example, the
unitary groups Un are specific forms of GLn and all the various orthogonal groups SO(m,n)
are forms of SOm+n.

The book [56] is a great reference for the full theory.
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Adeles

The specific types of matrix entries that we will specialize our reductive matrix groups to are
called the adeles.

Recalling first-semester real analysis, the real numbers are produced from the rational
numbers together with the the standard metric d∞(x, y) = |x− y|. This done by a process
called completion that fills in all the “holes” in the rational numbers and makes limits with
respect to d(x, y) work nicely.

There are many other possible choices of metric on the rational numbers however. For
every prime p we can define dp(x, y) to be the power pn of p we need to multiply x− y by so
that if pn(x−y) = a/b in lowest common form, a and b are relatively prime to p. For example,
d2(0, 1/2) = 2 and d7(1/2, 343 + 1/2) = 1/343. The p-adic numbers Qp are analogous to the
real numbers: produced by completing with respect to dp. For example, there is a

√
2 in Q7

that is the limit of a sequence of certain integers an such that a2
n ≡ 2 (mod 7n), just like

there is a
√

2 in R that is the limit of a sequence of rational an such that a2
n gets closer and

closer to 2 in d∞.
In number theory, all these notions of distance are important—we not only care directly

about how big a number is, we also care about congruences mod powers of primes the number
satisfies. Speaking extremely vaguely, the adeles A are a way to put R and all the Qp together
in a way so that we can do analysis with respect to all distances at the same time. Roughly,

A ≈ R×
∏
p

Qp,

where the “≈” hides a technical fix to make sure A is locally compact so it has reasonable
analytic properties.

For the purposes of automorphic representations, we focus on some key properties of the
adeles. First, A is a locally compact abelian group under addition, so functions on it have
a good notion of Fourier transform. In addition, the diagonal embedding Q ↪→ A realizes
Q as a discrete subgroup such that Q\A is compact. The setup is analogous to the case of
Z inside R and lets us get number theoretic-information out of a lot of powerful techniques
from harmonic analysis, such as Poisson summation.

Even better, for non-abelian reductive matrix groups G, there is similarly a good theory of
non-abelian Fourier transforms for functions on G(A). In addition, G(Q) diagonally embeds
discretely into G(A) and, up to issues with centers, G(Q)\G(A) has finite volume. This
allows us to similarly get number-theoretic information out of many powerful techniques in
representation theory/non-abelian harmonic analysis, such as trace formulas.

Basic information about the adeles can be found in any graduate algebraic number theory
text, such as [61]. The book [64] is a good reference for facts about the adelic points of
reductive groups.
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1.2.2 Automorphic Representations

What are they?

If G is a reductive matrix group over a number field K, then an automorphic representation on
G is an appropriately-defined notion of irreducible subrepresentation of the square-integrable
functions L2(G(Q)\G(A)) as a representation under right translation by G(A):

(g · f)(x) = f(xg).

The space G(Q)\G(A) turns out to approximately be a limit of quotients G(R) by all the
subgroups in G(Z) defined by congruence conditions on matrix entries. As a more familiar
example, in the case G = GL2, G(Q)\G(A) is related to quotients of the complex upper-
half plane (which is the same as GL2(R)/SO2(R)) by modular subgroups. Automorphic
representations for GL2 then correspond to classical new-eigen-modular and Maass forms.
This correspondence takes some work to show.

Automorphic representations roughly factor over the primes and infinity:

π ≈ π∞ ⊗
⊗
p

πp,

where π∞ is a representation of G(R) and the πp are representations of the individual
G(Qp). Not every combination of πv forms an automorphic representation. Exactly which
combinations work is what encodes most of the useful information in applications. In the
case of classical modular forms, the πv have to do with the Fourier coefficients ap.

The component π∞ describes the qualitative “type” of the automorphic representation.
In the GL2 case, it determines whether it is a Maass form or modular form and what its
weight is. The nicest possible automorphic representations correspond to the nicest possible
π∞: representations that live discretely inside L2(G(R)), or discrete series. In the GL2 case,
discrete-at-infinity is the case of modular forms of weight k ≥ 2.

The book [24] discusses automorphic representations on GL2 and how they connect to
classical modular forms and is therefore a great reference for building intuition about the
general theory. A good general reference is the book draft [26].

Why do we care?

However strange and unmotivated their definition might be, automorphic representations
are important for one big reason: they mysteriously come up in disparate areas across
mathematics, thereby providing a common bridge and creating web of unexpected and useful
interconnections. As a non-comprehensive list:

• in Number Theory: Galois representations (Langlands conjectures),

• in Computer Science: expander graphs/higher-dimensional expanders,
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• in Differential Geometry: spectra of Laplacians on locally symmetric spaces,

• in Combinatorics: identities for the partition function,

• in Finite Group Theory: representation theory of large sporadic simple groups (moon-
shine),

• in Mathematical Physics: representations of infinite-dimensional Lie algebras,

• in String Theory: black hole partition functions, 4-graviton scattering amplitudes.

The first construction of expander graphs by [52] demonstrates the utility of the intercon-
nections. Expander graphs are graphs without many edges, but where all vertices are still
connected by very short paths relative to the number of vertices—a pretty useful property for
designing algorithms. This “expansion property” can be restated as bounds on eigenvalues of
a certain “Laplacian” operator acting on functions on the set of vertices.

Surprisingly, for certain graphs, the eigenvectors can be interpreted as coming from
automorphic representations.The bound on eigenvalues then reduces to proving something
called the Ramanujan conjecture for these automorphic representations. This conjecture is
wide open in general, but luckily, the specific automorphic representations that come up can
be looked at through the number-theoretic perspective.

This is where the power of the bridge comes in—first, the Ramanujan conjecture mysteri-
ously reduces to a problem about counting solutions to certain polynomial equations mod p.
The desired result about point counts, called the Weil conjectures, is known. However, it
is only known through extremely sophisticated techniques in algebraic geometry. In total,
automorphic representations allowed us to apply a deep result in number theory towards
constructing combinatorial graphs with surprising and useful properties. For a long time,
this was in fact the only known way to construct expander graphs, though there are direct
combinatorial methods now.

So as to not oversell, the discrete-at-infinity automorphic representations studied in this
work are of course not relevant in all of these applications. In addition, there are few other
current examples of connections as striking as the expander graph one, though I am personally
hopeful that there might be many more in the future.

1.2.3 Trace Formulas

Idea

We are now left with the question of how to actually study these objects. Automorphic rep-
resentations are approximately subrepresentations of a larger representation L2(G(Q)\G(A)).
Recalling what happens in any introductory course in representation theory, this means that
a good way to study them should be to look at traces of operators on L2 that relate somehow
to the action of G(A)
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How do we produce these operators? One standard way is to take nice enough functions
f : G(A)→ C and consider the convolutions:

Rf : v 7→
∫
G(A)

f(g)(h · v) dh,

where dg is some invariant measure on G(A). This should be though of as a sort of “averaged”
action where the average is weighted by the function f .

How do we compute their traces? The Arthur-Selberg trace formula is roughly a formula
for the trace of convolution operators of test functions on G(A) against the space of all
automorphic representations:∑

π automorphic

trπ f ≈
∑

γ∈[G(Q)]

vol(Gγ(Q)\Gγ(A))

∫
Gγ(A)\G(A)

f(g−1γg) dg. (1.1)

The right side is approximately sum over rational conjugacy classes of the volume of a
particular quotient of the centralizer of γ times an integral over the conjugation orbit of γ in
G(A).

The trace formula lets us probe which combinations of local πv produce an automorphic
representation. For example, choose a test place w and pick a function fw that traces to a
desired parameter of πw. Choose test functions fr at all other r that trace to 1 if πr satisfies
a desired condition and 0 otherwise. Then plug

∏
v fv into the trace formula. Applied in this

way, the trace formula naturally lends itself to computing statistics of a fixed local component
over families of automorphic representations defined by other local conditions—the harmonic
families of [70].

Technical issues

If G(Q)\G(A) is compact, then the “≈” in (1.1) is actually a strict equality. Otherwise,
very few of the terms actually converge and we need to use various methods of truncation
developed by Arthur. Truncating produces a variety of different and unfortunately extremely
complicated formulas that all go under the name “the Arthur-Selberg trace formula”.

The different versions of Arthur’s trace formula lie on a spectrum. On one end, there are
more explicit versions where the individual terms, while still complicated, are not as horrific
to compute. However, on this end, the approximation is more brutal and destroys any nice
abstract properties the terms might have—conjugation invariance, etc. On the other end,
the terms are extremely technical and may even not have explicit formulas, only proofs of
existence. However, they keep a lot of nice abstract properties and may even gain better ones
then the basic, compact quotient formula.

In certain special cases, better abstract properties make the more advanced trace formulas
simplify dramatically, to the point where the terms are even easier than in the explicit trace
formulas. The case used in this work is Arthur’s invariant trace formula,

Ispec(f) = Igeom(f),
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when the infinite place is restricted to be discrete series as in [4].
The paper [3] is a good introduction to all these trace formulas.

1.3 Summary of Results

1.3.1 Shin-Templier’s Result

Shin and Templier’s paper [79] realized that the discrete-at-infinity formula of [4] is explicit
enough that averaged statistics of local components πp are computable up to reasonable
error bounds. More specifically, let F be a “family” defined by giving to an automorphic
representation π a weight aF(π) that vanishes except for finitely many π and depends only on
spectral data of the components πv. Then, if fv is an unramified test function at some place v
and F is of a certain form that in particular only includes discrete-at-infinity representations,
Shin-Templier’s result bounds averages over the family. The bound has shape:

1

|F|
∑
π∈F

aF(π) trπv(fv) = µpl(f̂v) +O(qA+Bκ
v |F|−C), (1.2)

Here, µpl(f̂v) is a canonical notion of the average of tr fv on the space of representations
of G(Fv) and κ is a measure of the size of the support of fv. The constants A,B > 0 and
C ≥ 1 are inexplicit but basically only depend on G.

The error bound’s shape gives useful applications—first, an automorphic Sato-Tate
equidistribution law for local components analogous to averaged Sato-Tate for families of
elliptic curves, and second, a proof that distributions of low-lying zeros of the L-functions of
the families match some expected random matrix laws.

1.3.2 Splitting the L-packet

Discrete series representations of G(R) are partitioned into sets called L-packets. Because
[79] used the invariant version of Arthur’s trace formula, the coefficients aF defining F
needed to be constant on automorphic representations with π∞ in the same L-packet. In
other words, it could not distinguish between π with π∞ in the same packet. While this
is irrelevant for some applications, the different elements of an L-packet have differences
that are significant in others. For example, only part of the L-packet might correspond to
automorphic representations that are representable as holomorphic or quaternionic functions
or that have a Whittaker model.

Chapters 2-4 of this thesis apply techniques related to the stable trace formula to prove
Shin-Templier’s bound (1.2) for families where aF could depend on the particular π∞ within
an L-packet, thereby distinguishing between representations corresponding to the same packet
at infinity. As far as I know, it is currently the only application of the fully-general stable
trace formula towards computing statistics.
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The work involves three main technical steps: first, a generalization of a “hyperendoscopy”
formula of [17] to cases where hyperendoscopic groups do not have simply connected derived
subgroup. Second, it used some bounds on endoscopic transfers produced by the full, character-
theoretic formulation of the fundamental lemma in [34]. This required some combinatorial
formulas from [12] and [32]. Finally, the result needed an extension of [4] to general groups
with discrete series at infinity instead of just those satisfying a technical condition on their
center. This removed the corresponding technical conditions in [79] as a side effect.

1.3.3 Quaternionic forms on G2

. There are a few types of automorphic representations on specific groups that have been
studied heavily historically—classical modular forms corresponding to discrete series repre-
sentations on GL2(R), Seigel modular forms corresponding to holomorphic discrete series on
Sp2n(R), etc. Because the groups involved were simpler, a lot of progress was made using
ad-hoc methods that didn’t engaging fully with general representation-theoretic aspects.

More recently, Gross and Wallach in [31] found another special class of automorphic
representations—quaternionic forms corresponding to automorphic representations whose
infinite component is a so-called quaternionic discrete series. They were quickly found to
have many interesting properties. First, [23] showed that the Fourier transforms of those
on G2 encoded interesting arithmetic information, a result [67] extended to all exceptional
groups. More bizarrely, they seemed to appear in certain string theory computations about
black holes (see conjecture 15.13 in [21] for example).

Focusing just on G2, the ad-hoc techniques developed for classical groups of course do
not apply. Therefore, not very much is currently known about quaternionic G2-automorphic
representations. However, these representations are therefore also a great test application
for the general representation-theoretic techniques developed here. Even more interestingly,
quaternionic discrete series come in L-packets that also contain non-quaternionic members, so
studying quaternionic automorphic representations specifically requires splitting the L-packet
with our stable trace formula techniques.

As one technical pitfall, quaternionic discrete series do not satisfy a technical condition of
being “regular” necessary for invariant trace formula methods to apply. However, a miracle
occurs that being regular is not at all necessary for specifically quaternionic discrete series,
even though it is for other members of the L-packet.

Using this miracle, we are able to compute dimensions of spaces of level-1, discrete,
quaternionic automorphic representations on G2. We are also able to give a full listing of all
level-1 quaternionic representations in terms of automorphic representations on compact-at-
infinity form Gc

2 together with pairs of classical modular forms.

1.3.4 Some Selected New Techniques

One main hope of this work is that it can serve as a blueprint and set of guiding examples
for other statistics computations using the stable trace formula. Here, we highlight some
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practical methods to get around common difficulties that may arise:

• Section 3.1 gives a version of the hyperendoscopy formula from [17] that works when
groups without simply connected derived subgroup appear in hyperendoscopy. Formula
5.2 gives a telescoped version of this that only has stable terms.

• Section 3.3 gives a generalization of the simple trace formula in [4] to both non-cuspidal
groups with fixed central character datum and also to test functions with just a
pseudocoefficient at infinity instead of just an Euler-Poincaré function. We hope that
this is also useful for people studying the cohomology of Shimura varieties.

• Sections 3.2.4 and 3.2.5 present tractable formulas, computation examples, and bounds
for unramified transfers.

• Lemma 5.1.2.1 demonstrates how one might tackle studying certain non-regular discrete
series through the trace formula and how one might test when this is feasible for a
particular discrete series representation.

• Section 5.4.2 demonstrates a fast and easy way to compute endoscopic character signs
in transfer formulas for pseudocoefficients from a given choice of Whittaker datum.

• Finally, the derivation of formula 5.4 demonstrates a trick with stabilization by which
computations involving discrete-at-infinity representations can sometimes be reduced
to computations on groups that are compact at infinity.

We also attempt to comprehensively summarize the relevant endoscopy and trace formula
background in chapter 2, focusing mostly on computational practicalities.

1.4 Technical Introduction to the Equidistribution

Problem

1.4.1 Context

Chapters 2-4 of this write-up generalize work in [77] and [79] on equidistribution of local
components of families of automorphic representations (see the summary next section). We
roughly extend their weight-aspect to the case where the infinite component can be restricted
to a single discrete series instead of an entire L-packet.

Slightly more specifically, we consider certain increasing-size sets of automorphic repre-
sentations Fk with more and more complicated component at infinity. For appropriate test
functions f̂ on the space of possible local components at a finite set of primes S, we estimate∑

π∈Fk

f̂(πS) as k →∞.



CHAPTER 1. INTRODUCTION 10

These estimates are good enough to show an averaged, automorphic version of Sato-Tate
equidistribution of the the components πv for a fixed v and all π ∈ Fk as k, v →∞ jointly in
an appropriate way. The additional families that this work addresses, beyond those in [79],
are analogous to those corresponding to specifically holomorphic Siegel modular forms or
specifically quaternionic modular forms on exceptional groups. The main result appears as
theorem 4.3.1.1.

Generally, problems of statistics of families automorphic representations are interesting
for a few potential reasons. First, when interpreted classically, such statistics are information
on the spectra of lattices in locally symmetric spaces.

Second, they give so-called globalization results such as [6, lem 6.2.2] through probabilistic
method-style arguments. These allow the construction of automorphic forms satisfying
desired local conditions. This is important since a very standard technique in studying
local representations is to find a global representation with the local representation as a
component and then use global methods to study the global representation: see for example
the classification in [6] or the cohomology formula in [78]. Globalization results were the
motivation for [77].

Next, certain bounds on automorphic representations—in particular the generalized
Ramanujan conjecture and what it says about the sizes of Fourier coefficients—have various
bizarre, unexpected implications. These include some striking ones outside of number theory
such as the original construction of expander graphs. See [69] for a review of this subject.
As is common in analytic number theory, bounds on averages in families instead of bounds
on individual representations are often good enough for these applications. Conveniently
enough, average bounds over families are also directly provided by studying statistics. This
seems to be the original motivation for studying the problem in [79].

As far as we know, this is the first work to apply the general stable trace formula to
computing statistics of automorphic representations. A more common method seems to be
using the non-invariant trace formula. This has the advantage of working for very general
types of automorphic representations like Maass forms, but the disadvantage of requiring
difficult explicit computations that create problems when dealing with general groups (as
mentioned later, see [19] and [18] for current progress removing this difficulty). One of the
key insights of [79] is that, for certain families, the nicer abstract properties of terms in the
invariant trace formula simplify computations to the point where good error bounds can
be derived even for very general groups. As a next step, the more powerful stable trace
formula allows generalizing the class of more-easily-studied families. Here, we focus on a first
example of distinguishing between elements of an L-packet at infinity. Another potential
example could be families appearing in cohomologies of locally symmetric spaces—like the
type studied in [25] but maybe coming from groups that are not anisotropic. The main trace
formula term counting this family comes from endoscopic groups.

While automorphic representations with components in the same L-packet are almost
definitionally indistinguishable from the point of view of Galois representations and L-
functions, they do differ in other important aspects. For example, a discrete series L-packet
can contain both holomorphic and non-holomorphic discrete series as in the case of GSp4 (see
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[72, §3.2]). Breaking up L-packets is therefore useful in studying, for example, holomorphic
Siegel modular forms. Breaking up L-packets can be similarly useful for accessing the forms
corresponding specifically to the quaternionic discrete series from [31].

We point out some relevant previous work: pseudocoefficients and their simplification of
the trace formula were developed by Clozel and Delorme [15] and Arthur [4]. They were
used to study statistics of families by Clozel [14]. The exact families studied and the setup
to study them are of course a small modification from [77] and [79]. The use of the stable
trace formula is through the hyperendoscopy formula in [17], although the results of [63]
give a different potential strategy. The paper [38] solves this problem for GSp4 with far
more explicit bounds through different methods. For a fuller history of this field of “limit
multiplicity”-type problems, see the introduction to [19].

As for using the theory of endoscopy to count automorphic representations, there are a
few articles by Marshall and collaborators, such as [54], [55], and [25], that use endoscopic
character identities to bound cohomology dimensions of symmetric spaces for certain unitary
groups. In addition, [80] uses similar inductive methods with stabilization to compute literal
dimensions of spaces of discrete forms with specified component at infinity, though requiring
formulas from [6] that only work for classical groups.

Finally, this work should be compared to [19] and [18] by Finis, Lapid, and Mueller. These
use the non-invariant trace formula to develop similar though much more general results. In
particular, they show Shin and Templier’s level aspect with the Archimedean component
restricted to any set of positive measure in the unitary dual. The result is dependent on
some technical estimates on intertwining operators that are satisfied for GLn and SLn. A
future work promises the estimates for most other groups. In addition, their methods do not
currently deal with the weight aspect or give error bounds though they could presumably be
pushed to do both.

1.4.2 Summary

Shin-Templier’s work

Let G be a reductive group satisfying some technical conditions (described in section 4.1.1). In
[79] building off [77], Shin and Templier studied certain families of automorphic representations
with level and weight restrictions:

FU,ξ = {π ∈ ARdisc(G) : π∞ ∈ Πdisc(ξ), dim(π∞)U ≥ 1}

where ARdisc(G) is the set of the discrete automorphic representations of G, U is an open
compact subgroup of G(A∞,S0) for some finite set of places S0, ξ is a regular weight of GC,
and Πdisc(ξ) is the discrete series L-packet corresponding to ξ. Pick another finite set of
places S ⊇ S0 and consider the empirical distribution,

µF ,S =
∑
π∈FU,ξ

aπδπS ,
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of S-components of π ∈ F weighted by

aπ = mdisc(π) dim(πS,∞)U .

Shin and Templier used Arthur’s invariant trace formula to study limits of these distribu-
tions under either increasing level (U → 1) or increasing weight (ξ →∞). In both cases, the

limits converged to the Plancherel measure µpl
S on ĜS. They furthermore provided bounds on

how quickly the integrals µF ,S(f) converge in the case where both the test function f and
the elements of F are unramified on S \ S0. The increasing weight aspect required that the
center of G was trivial. The shape of the result is:

Theorem 1.4.2.1. Let f = fur ⊗ f ram be a test function on GS factoring into components
with fur unramified. Then for F in either of the two limits above,

1

|F|
µF ,S(f̂) = µpl

S (f̂) +Of ram(q
AG+BGκfur

fur |F|−CG),

where κ is a measure of the size of the support of fur,|F| is a measure of the size of F
depending on US,∞ and ξ, qfur is the product of residue field sizes over the places where f

is unramified, and AG, BG, CG are constants determined by G. (Recall that f̂ denotes the
Fourier transform π 7→ trπ f).

Their method was in a few broad steps:

1. Realize the empirical distribution µF ,S as the trace of a function with a special
Archimedean component ηξ against the discrete automorphic spectrum. Here, ηξ
is the Euler-Poincaré function from [15].

2. Since the Archimedean component is an Euler-Poincaré function, Arthur’s invariant
trance formula reduces to the simple trace formula in [4] giving a reasonably tractable
expression for this trace.

3. Bound the appropriate terms and take a limit. This is most of the work.

The form of the error bound allowed the proving of Sato-Tate equidistribution limits of
µF ,v for a single place v as v and ξ jointly go to infinity. They also provided some results on
the statistics of low-level zeros of L-functions over the entire family.

The extension

Here, we extend Shin-Templier’s weight aspect (ξ → ∞). First, instead of looking at a
sequence of entire L-packets Πdisc(ξk), we fix a single representation ρk ∈ Πdisc(ξk) for each k.
Second, we allow G to have trivial center.

Then we consider the limit as k →∞ of the empirical distribution,

µFk,S =
∑

π∈FU,ρk

aπδπS ,
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of representations with π∞ = ρk weighted by

aπ = mdisc(π) dim(πS,∞)U

and compute error bounds on its convergence to Plancherel measure as in theorem 1.4.2.1.
The precise definition of the family we study is in section 4.1.1 and the final result is theorem
4.3.1.1.

Here are the broad steps of the argument:

1. Realize the empirical distribution µF ,S as the trace of a function with a special
Archimedean component ϕπ against the discrete automorphic spectrum. The function
ϕπ is the pseudocoefficient from [15].

2. Notice that pseudocoefficients have the same stable orbital integrals as Euler-Poincaré
functions.

3. Use the stable trace formula to write this trace as a linear combination of traces of
functions with Euler-Poincaré components at infinity on the smaller endoscopic groups.

4. Proceed as before to bound each term in the sum. Showing that enough technical
conditions are satisfied and that the bounds are uniform enough that you are allowed
to do so is most of the new work.

5. Redo the computations showing the versions of Plancherel and Sato-Tate equidistribution
that the new main term gives.

It is worth discussing these in more detail. For step (3), the key difficulty is that Arthur’s
simple trace formula only works when the Archimedean component is Euler-Poincaré instead
of a pseudocoefficient. However, the stable trace formula roughly gives the trace of a function
as a linear combination of stable traces of transfers of the function on smaller endoscopic
groups—we get an expansion of shape:

IG(f) =
∑

H∈Eell(G)

SH(fH).

Since pseudocoefficients have the same stable orbital integrals as their corresponding Euler-
Poincaré functions, the fH can without loss of generality be chosen to have Euler-Poincaré
components at infinity. See section 3.2.1 for details on these transfers.

The most direct way to proceed is to then repeat the work in [4] on the stable distributions
SH instead of the invariant distribution IG. We choose to instead use the hyperendoscopy
formula of [17] (see the remark at the beginning of section 3.1).

It gives an expansion of shape

IG(f) = IG(f ∗) +
∑

H∈HEell(G)

ι(G,H)IH((f − f ∗)H).
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Here f ∗ is a function with the same stable orbital integrals as f , HEell(G) is roughly the set
of groups that can show up in a sequence of iteratively choosing an endoscopic group starting
from G, and ι(G,H) is a non-troublesome constant. See section 3.1 for the full details. The
distributions IH can then be treated exactly as in [79] provided technical conditions still hold.

There are also some complications in step (4). First, the distribution IGspec(f) is not
obviously the trace of f against the discrete automorphic spectrum like we want it to be.
The paper [4] shows this for Euler-Poincaré at infinity and an unpublished lemma of Vogan
(appearing here as lemma 3.3.3.1) is needed to extend to the pseudocoefficient case. Next,
the groups appearing in HEell(G) do not satisfy the technical simplifying conditions of [4].
We therefore need to slightly generalize the result, in particular to non-cuspidal groups. This
is section 3.3. Finally, we need some bounds on endoscopic transfers of test functions so that
Shin-Templier’s orbital integral bounds apply. This takes some work in the non-Archimedean
case and is sections 3.2.4 and 3.2.5.

For step (5), as explained in section 4.2.3, allowing a non-trivial center changes the main
term in theorem 4.3.1.1 to something more complicated than originally in [79]. We therefore
have to redo the computations for Sato-Tate and Plancherel equidistribution. This produces
slightly different limiting measures that can be roughly thought of as Sato-Tate or Plancherel
measure conditioned to be on a certain subset of ĜS: representations with central character
contained in a particular discrete set. The computations appear in section 4.4. We do not do
the computation for low-lying zeros of L-functions due to complexity.

Finally, we save the level aspect computation for a future write-up. The main difficulty
here is that as level gets larger, the test function f becomes more and more ramified adding
more and more non-zero terms to the sum over HEell(G). This necessitates proving much
stronger uniformity of the bounds in [79, §8] over endoscopic groups.

1.5 Technical Introduction to the Counting Problem

1.5.1 Context

Chapter 5 of this work tries to describe level-1, discrete, quaternionic automorphic represen-
tations on G2. Let Q1(k) be the set of such representations of weight k. For each k > 2, we
give a formula, (5.10), for |Q1(k)| in terms of counts of automorphic representations on the
compact-at-infinity inner form Gc

2 that were calculated by Chenevier and Renard in [13]. We
also give a Jacquet-Langlands-style result (corollary 5.6.2.1) describing all elements of Q1(k)
in terms of certain automorphic representations on Gc

2 and certain pairs of classical modular
forms.

Quaternionic automorphic representations were developed as a way to generalize to other
groups the special place holomorphic modular forms have among automorphic representations
of GL2. Just like holomorphic modular forms, they are characterized by their infinite
component being in a particular nice class of discrete series representations: the quaternionic
discrete series of [31]. Just like modular forms, they have a nice theory of Fourier expansions
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with interesting arithmetic content—this was described for G2 in [23] and generalized to all
exceptional groups in [67]. Quaternionic forms have been studied a lot by Pollack: see [65] for
an introductory article on them and [66] for good exposition specifically on G2-quaternionic
forms.

We attempt to study discrete, quaternionic representations on G2 using the trace formula.
Since quaternionic discrete series appear in L-packets with non-quaternionic members, this
provides a great test case of the efficacy of the techniques in chapter 3 developed to split
L-packets with the trace formula. The computation also relies heavily on methods devel-
oped in [13] and [80] to get exact counts of level-1 automorphic representations with the
invariant/stable trace formulas.

Finally, there is a particular miracle about quaternionic discrete series on G2 that crucially
underpins this result. A priori, chapter 3 cannot be applied: such discrete series are not
regular, implying that there may not be a test function at infinity whose trace picks out
exactly a quaternionic discrete series without also picking up some unwanted contributions
from non-tempered representations. However, it turns out that specifically quaternionic
discrete series on G2 don’t get entangled in this way, even though other members of their
L-packet do. The proof of this depends on results about Adams-Johnson packets for G2 that
Mundy developed for studying Eisenstein cohomology in [59].

1.5.2 Summary

We summarize the method of computation. Proposition 5.1.2.1 shows that traces against a
pseudocoefficient of a quaternionic discrete series with weight k > 2 are 0 against all other
unitary representations. This allows us to get a formula (5.1.2.2) for traces of finite-place
test functions against the space of all quaternionic representations of weight k.

Next, section 5.2 develops a general stabilized formula (5.2) for Igeom applied to test
functions like ours. We work out what this formula reduces to in section 5.3 using a
computation of the endoscopy of G2 in section 5.3.1. Instead of using formula (5.2) directly,
we compare it applied to G2 to it applied to the compact real form Gc

2 to construct a formula

for IG2
spec involving just I

Gc2
spec- and IHspec-terms. Here, H is the endoscopic group SL2 × SL2/± 1

of G2.
Section 5.4 then tells us which exact I

Gc2
spec- and IHspec-terms appear by computing endoscopic

transfers at infinity. The difficult part of this computation is pinning down various signs
coming from transfer factors. As a last piece of the puzzle, section 5.5 uses results about
level-1 forms from [13] to reduce counts of forms on H to counts of classical modular forms.

Section 5.6 uses all these formulas to characterize representations in Qk(1) with k > 2
in terms of automorphic representations on Gc

2 and certain pairs of classical modular forms.

Finally, we substitute in values for the I
Gc2
spec-terms from [13] and present a final table of

dimensions, table 5.1, in section 5.7.
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1.6 Notational Conventions

Here are some notational conventions we will use throughout:
Basics

• F is a fixed number field.

• G is a fixed reductive group over F . In certain sections where we are working locally,
G will be the local component instead.

• A is AF for shorthand.

• A∞, A∞ are the at infinity and away from infinity parts of A respectively.

• WE is the Weil group of local or global field E.

• OE is the ring of integers of local field E.

• kE is the residue field of local field E.

• 1X is the indicator function for set X.

• Ĥ is the reductive dual of reductive group H.

• Ŝ is the unitary dual of abstract group S.

• Ŝtemp is the tempered part of Ŝ.

• f̂ is the Fourier transform of function f on an abstract group S that should be clear
from context.

• f̄ is the Fourier transform of f restricted to some subgroup of the center of S with
respect to that subgroup. The exact subgroup should be clear from context.

Reductive Groups

• ZH is the center of abstract or reductive group H.

• ZH(G) is the centralizer of H inside G.

• AH is the maximum split component in the center of reductive group H.

• HS for group H over F and finite set of places S of F is H(AS). Use the standard
conventions where an upper index means everything except S.

• H∞ may be equivalently defined as (ResFQH)(R) since (ResFQH)(R) = H(F ⊗Q R) =
H(A∞). It is in particular a real reductive group.
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• AH,rat for group H over F is AResFQ H
(R)0 (the connected component is in the real

topology).

• AH,∞ := A(ResFQ H)R
(R)0.

• H(A)1 := H(A)/AH,rat.

• H1
∞ := H∞/AH,∞.

• Hγ is the centralizer of γ in H for H either an algebraic or abstract group.

• IHγ is the connected component of the identity in the centralizer of γ in H.

• ιH(γ) is the set of connected components of Hγ with an F -point.

• [H], [H]ss, [H]ell are the sets of (semisimple, elliptic) conjugacy classes in H.

• DH(γ) is the Weyl discriminant for H.

• KS where S is a finite set of places of F is a chosen hyperspecial of G(AS).

• M usually represents some Levi subgroup.

• P usually represents some parabolic subgroup.

• KS,H for S some finite set of places usually represents some kind of maximal compact
of H(AS).

Lie Theory

• Φ∗(H),Φ+(H),Φ∗F (H),Φ+
F (H) are the sets of (positive, rational) roots of H.

• Φ∗(H),Φ+(H),Φ∗,F (H),Φ+,F (H) are the sets of (positive, rational) coroots of H.

• ∆∗(H),∆∗F (H) are the sets of (rational) simple roots of H.

• ∆∗(H),∆∗,F (H) are the sets of (rational) simple coroots of H.

• ΩH is the Weyl group of HC for H a reductive group.

• ΩH,E = ΩE for H over F and E an extension of F is the subset of ΩH generated by
conjugating by elements of H(E). Note that this depends on the maximal torus chosen
to define Ω.

Volumes

• µtam, µcan, µEP are the Tamagawa, Gross’ canonical, or Euler-Poincaré measures on
various groups.
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• µ̄? is the quotient of measure µ? by something that should be clear from context.

• τ(H) is the Tamagawa number of H.

• τ ′(H) is the modified Tamagawa number using the canonical measure µcan,EP .

Endoscopy

• (H,H, s, η) is an endoscopic quadruple for G.

• (H̃, η̃) is a z-pair for (H,H, s, η).

• (H1, η1) will also sometimes be used to represent a z-pair to keep diacritics from stacking
too much.

• Eell(H) is the set of elliptic endoscopic quadruples of reductive group H.

• HEell(H) is the set of elliptic hyperendoscopic paths of reductive group H.

• (X, χ) is a central character datum on some reductive group.

• H is further overloaded: when context is clear, it can also refer to either a hyperendo-
scopic path or the last group in the path.

Automorphic Representations and the Trace Formula

• H (H,χ) = H (H, (X, χ)) is the space of compactly supported functions on H(A) that
transform according to character χ−1 on X ⊆ ZG(A).

• H (HS, χS) for S a finite set of places of F is compactly supported functions on H(AS)
similarly transforming according to χ−1

S .

• H (HS, KS, χS) if KS is a product of hyperspecial subgroups and χS is unramified is
the Hecke algebra of KS-bi-invariant elements of H (HS, χ).

• H (HS, KS, χS)≤κ is the truncated Hecke algebra from section 3.2.3.

• L2(G(Q)\G(A), χ) for (X, χ) a central character datum is the unitaryG(A)-representation
of L2-up-to-X functions on G(Q)\G(A) transforming according to χ−1.

• L2
disc(·) is the discrete part of unitary representation L2(·).

• ARdisc(H,χ) is the set of discrete automorphic representations on H with character χ
on AH,∞.

• OH
γ (f) is the integral of f on the conjugacy orbit of γ. This can either be local or

global; f can be a function on H(A) or some H(Fv).
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• IG,χspec, I
G,χ
disc , I

G,χ
geom are the distributions on G defined by Arthur’s invariant trace formula

depending on central character datum (X, χ).

• SH,χspec, S
H,χ
disc , S

H,χ
geom are the distributions on H defined by Arthur’s stable trace formula

depending on central character datum (X, χ).

• L is the set of rational Levi’s of G containing a fixed minimal Levi.

• L cusp is the M ∈ L such that AM,rat/AG,rat = AM,∞/AG,∞. This is a generalization of
the definition of cuspidal Levi from [4] to the case where G isn’t itself cuspidal.

Representation theory

• π(λ,w0), π(w0(λ+ ρ)) are two different parametrizations for discrete series representa-
tions for λ a dominant weight.

• Πdisc(λ) is a discrete series L-packet where λ is a dominant weight.

• Θπ is the Harish-Chandra character for representation π.

• ωπ is the central character of representation π.

• ϕπ is the pseudocoefficient for discrete series representation π.

• ηλ is the Euler-Poincaré function for the L-packet Πdisc(λ).

Families

• ϕ∞ is a specific function defined in section 4.1.1.

• F is a specific family (as in [79]) of automorphic representations defined in section 4.1.1.

• aF(π) are the coefficients defining F .

• S0, S1, US∪∞, ϕS1 , fS0 are data used to define ϕ∞ and F as explained in section 4.1.1.

• Sbad,G is the unknown finite set of bad places depending on reductive group G defined
in section 4.3.

• Sbad′,G is the version of Sbad,G needed for the results from [79].

• L is the lattice ZG(F ) ∩ US,∞ ⊆ ZGS,∞/AG,rat.

• Epl(ϕ̂|ω) is the expectation defined in section 4.2.3.

• Epl(ϕ̂S|ωξ, L, χS) is defined in proposition 4.2.3.5.

Counting
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• Sk(1) is the set of normalized, classical, cuspidal eigenforms on GL2 of level 1 and
weight k.

• Qk(1) is the set of discrete, quaternionic automorphic representations on G2 of level 1
and weight k (see section 5.1.2).

Dimensional Analysis

A lot of the formulas here depend on choices of Haar measure. Since we are explicitly
bounding terms, it is sometimes helpful to have notation for how they depend on these
choices. For example, if we say that a value has dimension [G][H]−1, then it is proportional
to a choice of Haar measure on G and inversely proportional to a choice on H.

In any formula, dimensions on both sides need to match. In addition, any quantity with
dimension needs to be normalized by a formula expressing it in terms of just dimensionless
quantities and Haar measures—for example, the formulas defining traces of Hecke algebra
elements, orbital integrals, or pseudocoefficients.
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Chapter 2

Background Materials

2.1 Trace Formula Background

2.1.1 Invariant Trace Formula

Let G be a connected reductive group over a number field F . Let A = AF . Fix a central
character χ on AG,rat. Let H (G,χ) be the space of functions on G(A) that are smooth
and compactly supported when restricted to G(A)1 and satisfy f(ax) = χ−1(a)f(x) for all
a ∈ AG,rat.

Over a long series of papers that are summarized in [3] Arthur defines two equal distribu-
tions on H (G,χ):

IG,χgeom = IG,χspec.

Intuitively, one should think of Igeom as a sum of modified orbital integrals of f and Ispec as a
sum of modified traces of f against components of L2(G(Q)\G(A), χ). The exact definitions
of these distributions are impractically complicated to use directly. However, enough useful
special cases and abstract properties have been worked out—the most relevant being the
simple trace formula in [4]. The χ will often be suppressed in notation.

Both sides have dimension [G(A)1]. The individual terms in the expansions for both sides
can have more complicated dimensions.

Spectral side

As a very rough description of the spectral side, Arthur defines components

IGspec = IGcts +
∑
t≥0

IGdisc,t.

Idisc,t is 0 except for countably many t and is much easier to evaluate. Expanding further,

Idisc,t =
∑
M∈L

|ΩM |
|ΩG|

∑
w∈W (M)reg

| det(w − 1)|aGM |
−1 tr(MP,t(ω)IP,t(f)).
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To describe the most relevant terms, L is the set of Levi’s of G containing a chosen minimal
Levi, P is a chosen parabolic for M , W (M)reg is a particular set of elements of a relative
Weyl group (this and the Weyl group factor are a combinatorial term roughly parametrizing
parabolics containing the Levi), and MP,t(ω, χ) is an intertwining operator between parabolic
inductions through different parabolics containing M from the theory of Eisenstein series.

The last term is the most important for us. The χ induces a character on AM,rat by
pullback. Then IP (χ) is the representation of G(A) produced from parabolically inducing
L2

disc(M(Q)\M(A), χ). The term IP,t is the subrepresentation of this with archimedean
infinitesimal character having imaginary part of norm t. By lots of work, all these decompo-
sitions makes sense and the convolution operators IP,t(f) for f ∈H (G,χ) are trace class.
Finally, a much later result in [20] implies that the sum over t converges absolutely.

There are well-known and simple sufficient conditions on f such that Icts(f) = 0:

Definition ([3, paragraph above cor. 23.6]). If v is a place of F , f ∈H (G(Fv)) is cuspidal
if for all Levi’s Mv of Gv and πv tempered representations of Mv:

trπGv (f) = 0.

Here πGv is (any) parabolic induction of πv.

Note that this is an alternate definition to the original one from [8].

Theorem 2.1.1.1 ([8, thm 7.1]). If f factors as fv ⊗ f v for some place v with fv cuspidal,
then Icts(f) = 0.

Geometric side

The geometric side can be succinctly written as

Igeom(f) =
∑
M∈L

|ΩM,F |
|ΩG,F |

∑
γ∈[M(Q)]M,S

aM(S, γ)IGM(γ, f).

Here S is a large enough set of places in particular including those at which f is not the
characteristic function of a hyperspecial and [M(Q)]M,S is the set of conjugacy classes mod
a complicated equivalence relation involving the away-from-S components of the unipotent
parts. For γ semisimple,

aM(S, γ) = |ιM(γ)|−1 vol(IMγ (Q)\IMγ (A)1)

where |ιM (γ)| is the number of connected components of Mγ that have an F -point. In general,
there is no explicit description of aM(S, γ).

Next, IGM is a weighted orbital integral of the S-components of f . If M = G, it is simply
the orbital integral at γ. If γ is semisimple, there is an explicit formula weighting the
integral by a complicated combinatorial factor. Otherwise, it is only defined though some
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analytic continuations. The term IGM satisfies splitting and descent formulas ([3, p. 23.8] and
[3, p. 23.9]) that factor it into local components in terms of traces of f against parabolic
inductions. When f is cuspidal at some place, these splitting formulas of course then greatly
simplify.

If γ is semisimple, the aM have dimension [IMγ (A)1] while the IGM have dimensions of
[G(A)1][IMγ (A)1]−1. Otherwise the dimensions are more complicated.

A technicality

Arthur actually defines two slightly different versions of his local distributions IGM,v(γ, f).
Looking at just the place at ∞ for notational ease, the key issue is that the weighting factor
vM in his orbital integrals depends on a choice of the space AM,?/AG,? where ? ∈ {∞, rat}.

The version appearing in his splitting formula [3, p. 23.8] is ? = rat ,which we will denote
by IGM,∞(γ, f). The version in his descent formula [3][23.9] is the purely local choice ? =∞,

which we will denote by ĨGM,∞(γ, f).

Lemma 2.1.1.2. If cuspidal f ∈H (G∞, χ) (so that IGM,∞(γ, f) is defined), then

IGM,∞(γ, f) =

{
ĨGM,∞(γ, f) AM,rat/AG,rat = AM,∞/AG,∞

0 else
.

Proof. If the two spaces are equal, then the weighting factors vM at the beginning of [3][§18]

and the sum over Levi’s in [3][thm. 23.2] are equal. Note that while ÎLM(γ, φL(f)) in [3][thm.
23.2] ostensibly looks like it depends on the choice of ?, this is just based on different
descriptions of certain spaces of functions to make conditions for containment in the two
versions of Iac easier to describe. In particular, the distinction does not matter as long as f
is in both versions of Hac. In total, stepping through the definitions of IGM and ĨGM shows
that they are the same since the above are the only parts that depend on the various A’s.

Otherwise, this follows from the generalized descent formula [7][thm. 8.1], setting b to
be X∗(AM,ratAG,∞)⊗ R inside aM = X∗(AM,∞)⊗ R. This is the example considered at the
bottom of page 361 in [7]. We fill in the details for why the descent formula applies:

To check if b is special, we can without loss of generality assume AG,∞ is trivial by
modding out by X∗(AG,∞)⊗ R everywhere and noting that it is perpendicular to all roots.
Then, b is the fixed points in aM of a finite group (Galois) action that preserves the inner
product on aM . The sums on page 355 of [7] testing specialness are invariant under the group
action so their evaluation on any v is the same as their evaluation on the average of v over
the action. However, averaging over the action is the same as orthogonally projecting onto b,
so the sums need to vanish on the orthogonal complement of b.

Next, Mb = M since aMb
needs to contain all simple coroots for which the corresponding

simple-coroot-coordinate in some element of b is non-zero. Therefore, inducing a conjugacy
class from M to Mb doesn’t do anything, so the left side Ib(γ

Mb , f) = IGM,∞(γM , f) =
IGM,∞(γ, f).
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Finally evaluating the right side of the formula, f being cuspidal implies that the only
possibly non-zero fL is L = G. However, then dGM (b, G) = 0 so all terms in the sum vanish.

2.1.2 The Simple Trace Formula

Whenever G∞ has discrete series, the trace formula can be simplified by setting the test
function to have a special real component.

Parametrizing discrete series

The classification of discrete series is work of Harish-Chandra that can be found summarized
in [48, §III.5]. They only exist when G∞ has an elliptic maximal torus or equivalently if CΩG

on any torus contains −id where C is complex conjugation.
Therefore, for this subsection and the next only, let G be reductive group over R with

fixed elliptic maximal torus T . Let K be a maximal compact of G(R) containing T (R), BK

a Borel of KC containing T , and B a Borel of GC. Let ΩG be the Weyl group of (GC, TC)
and ΩG,R be the subgroup given by only conjugating by elements of G(R).

The characters of T (R) are contained in T (C) so the root space of K is contained in G.
Let ρ be half the sum of the positive roots of G. Finally, let Ω(BK) be a particular set of
coset representatives of ΩG,R\ΩG: namely, w such that wλ is BK-dominant for any λ that is
B-dominant.

The discrete series representations of G are parametrized by B-dominant weights λ ∈
X∗(T )C and elements w∗ ∈ Ω(BK). Call the representation parameterized by λ and w0 either
π(λ,w0) or π(w0(λ+ ρ)). It is the unique representation with trace character

Θπ(λ,w0) = (−1)1/2 dim(G(R)/KAG,∞)

∑
w∈ΩK

sgn(ww0)eww0(λ+ρ)∑
w∈ΩG

sgn(w)ewρ

on T . The infinitesimal character of π(λ,w) is λ + ρ: the same as that of Vλ, the finite
dimensional representation with highest weight λ. Therefore the π(λ,w) for a fixed λ are all
in the same L-packet Πdisc(λ). We call π(λ,w0) = π(w0(λ+ ρ)) regular if λ is. Finally, we
call λ the weight of π(λ,w0) = π(w0(λ+ ρ)).

Pseudocoefficients and Euler-Poincaré functions

Given a discrete series representation π of a real reductive group G(R) with character χ on
AG,∞, Clozel and Delorme in [15] define a pseudocoefficient ϕπ ∈ C∞c (χ−1). The function
ϕπ is compactly supported and has the property that for irreducible representations ρ with
character χ,

trρ(ϕπ) =


1 π = ρ

0 π 6= ρ, ρ basic

? else

.
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Here, a basic representation is a parabolic induction of a discrete series or limit of discrete series
(up to central character). The non-basic case is much more complicated. Pseudocoefficients
have dimension [G(R)1]−1.

If Πdisc(λ) is the discrete series L-packet for π, it is also useful to consider Euler-Poincaré
functions:

ηλ =
1

|Πdisc(λ)|
∑

π′∈Πdisc(λ)

ϕπ′ .

Traces against Euler-Poincaré functions can be interepreted as Euler characteristics of certain
cohomologies for basic representations and therefore all representations by the Langlands
classification. If λ is regular, these Euler characteristics can be shown to be 0 on non-tempered
representations. Therefore, if λ is regular we get

trρ(ηλ) =

{
|Πdisc(λ)|−1 π ∈ Πdisc(λ)

0 else

for all irreducible representations ρ (see sections 1 and 2 in [4]). Beware that this normalization
is different from the one in [79]. It makes endoscopic computations easier.

Note that both pseudocoefficients and Euler-Poincaré functions are cuspidal since they
have 0 trace against any non-discrete series basic representation and therefore against all
parabolic inductions of tempered representations.

Simple trace formula

The simple trace formula is the main result of [4]. A more textbook exposition is in [3, §24].
We state it here. First, assume

• G is connected,

• G is cuspidal over Q: ResFQ G/AG,rat has an R-anisotropic maximal torus.

The last condition in particular gives that G∞ has an elliptic maximal torus and therefore
has discrete series mod center. In the case where G∞ has discrete series mod center, cuspidal
is equivalent to AG,rat = AG,∞: in other words, taking infinite place points of the maximum
split torus in the center is the same as base changing to R, looking at the maximal split torus
in the center, and taking R-points.

Consider a test function of the form h = |Πdisc(ξ)|ηξ ⊗ h∞ for regular weight ξ and
h∞ ∈H (G(A∞)). Let χ be the character on AG,∞ determined by ξ. Then

Ispec(h) = Idisc(h) =
∑

π:π∞∈Πdisc(ξ)

mdisc(π) trπ∞(h∞) (2.1)
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where mdisc(π) is the multiplicity of π in ARdisc(G,χ). Let L be the set of Levi’s containing
a chosen minimal Levi of G. For each M ∈ L , choose PM a parabolic for M . Then

Igeom(h) =
∑

M∈L cusp

(−1)dim(AM/AG) |ΩM,F |
|ΩG,F |

×
∑

γ∈[M(F )]ss

χ(IMγ )|ιM(γ)|−1ΦM(γ∞, ξ)O
M
γ (h∞M). (2.2)

Here ιM (γ) is the set of connected components of the full centralizer Mγ that have an F -point
and

χ(H) = (−1)q(H) vol(H(F )AH,∞\H(A)) vol(AH,∞\H̄∞)−1|Ω(BKH∞
)|,

where H̄∞ is an inner form of H∞ such that H∞/AH,∞ has anisotropic center, Ω(BKH∞
) is the

analog of Ω(BK) for H∞, and q(H) = 1/2 dim(H∞/KH,∞AH,∞) is the Kottwitz sign. Also

h∞M(γ∞) = δPM (γ∞)1/2

∫
K∞

∫
NM (A∞)

h(k−1γ∞nk) dn dk,

where NM is the unipotent group for PM and K some chosen maximal compact. To make
dimensions work out, the Haar measures choices should satisfy:

• The choices on IMγ , M , and in the orbital integral need to coincide,

• The measure on ĪMγ comes from that on IMγ through them both coming from the same
top form on IMC ,

• The choices on NP , K, M , and G need to coincide according to the Iwasawa decompo-
sition.

Finally,

ΦM(γ∞, ξ) =


∣∣∣ DG(γ∞)
DM (γ∞)

∣∣∣1/2∑π∈ΠGdisc(ξ) Θπ(γ∞) γ∞ in an elliptic torus of M

0 else.

As written, this is only defined on regular elements, but Arthur proves it extends to a function
that is continuous on every elliptic torus.

As some notes for using this:

• Comparing character formulas computes that ΦG(γ∞, ξ) = tr ξ(γ∞) where ξ is overloaded
to also denote the finite dimensional representation with highest weight ξ.

• If M 6= G, ΦM cannot be evaluated through the standard Harish-Chandra character
formula since it involves Θπ’s evaluated on tori that are not elliptic in G. See [4, §4] for
an algorithm to actually do so.
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• The only M that contribute to the outer sum are those in Lcusp; in this case, those that
are cuspidal over Q. Arthur’s original paper implicitly showed this for M cuspidal over
R. There is a small correction using lemma 2.1.1.2 that the formula in [4][thm. 5.1]
is zero for M not cuspidal over Q (Arthur was surely aware of this but seems to have
forgotten to mention it). Alternatively, [27] shows vanishing using different methods.
See section 3.3.4 for more details.

• Because of the dimensions on ηξ, both sides of this formula have dimension [G∞].
However, explicitly computing the χ(IMγ ) terms still requires choosing Haar measures
at ∞.

2.1.3 Trace Formula with Central Character

Stabilization requires a slightly different version of the trace formula where the fixed character
χ is on a larger closed subgroup of Z(A). There is a full theory in [2] that takes quite a bit
of work to describe. We summarize the relevant parts here.

Definition. A central character datum on G is (X, χ) where

• X ⊇ AG,∞ is closed inside Z(A) such that Z(F )X is also a closed subgroup.

• χ : X ∩ Z(F )\X→ C× is a continuous character.

Furthermore, H (G, (X, χ)) = H (G,χ) is the set of smooth functions f on G(A) such that
f(gx) = χ−1(x)f(g) and f is compactly supported mod X.

Note. For our purposes here, it suffices to consider X that are the product of the adelic points
of some algebraic subtorus of Z multiplied by some abstract subgroup of ZG∞(R).

Fix central character data (X, χ). In [6, §3], Arthur defines Idisc,t,χ as a distribution on
H (G,χ):

Idisc,t,χ(f) =
∑
M∈L

|ΩM,F |
|ΩG,F |

∑
w∈W (M)reg

| det(w − 1)|aGM |
−1 tr(MP,t(ω, χ)IP,t(χ, f)). (2.3)

This is a generalization of Idisc,t and most of the terms are the same. The relevant part is
how IP,t changes. First, χ induces a character on AM,ratX by pullback and therefore lets us
define L2

disc(M(Q)\M(A), χ) analogous to other L2 spaces with character: as the discrete part
of χ−1-invariant, L2-up-to-X functions on M(Q)\M(A) as an M(A)-representation. Then,
IP,t(χ, f) can be defined analogously to IP,t from the trace formula without central character.
Decompositions and traces making sense in this context requires some extra work summarized
on [6, pg 123]. The dimensions change to [G(A)][X]−1.

For our work here, we only need to worry about the spectral side so we will not mention
the geometric version.
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2.2 Endoscopy and Stabilization Background

The standard reference for this material, [46], is written for the more general case of twisted
endoscopy. It is therefore easier to follow the summary in [36, §1.3]. The simpler summary
in [76, §2] for the simply connected derived subgroup case is also helpful. Finally, [48] is
a course-notes style writeup of this material and therefore more motivated albeit far less
general.

For this section, allow F to be a local or global number field.

2.2.1 Endoscopic Groups

Endoscopic quadruples

Definition ([46, pg 18]). An endoscopic quadruple for G is a tuple (H,H, s, η) with

• H a quasisplit connected reductive group over F ,

• H is a split extension of Ĥ by WF such that action of WF on Ĥ determined by the
splitting is the same as the one coming from H (in Out(Ĥ)),

• s ∈ ZĤ and semisimple in Ĝ,

• η : H → LG an L-embedding

such that

1. η restricts to an isomorphism Ĥ
∼−→ Ĝ0

η(s).

2. There is then a WF -equivariant sequence

1→ ZĜ → ZĤ → ZĤ/ZĜ → 0

which induces a map (ZĤ/ZĜ)WF → H1(F,ZĜ). We require that s ∈ (ZĤ/ZĜ)WF and
maps to something locally trivial under this.

It is furthermore elliptic if

3. (ZWF

Ĥ
)0 ⊆ ZĜ.

For future reference, we let K(s, η) be the elements that map to something locally trivial
under (ZĤ/ZĜ)WF → H1(F,ZĜ).

Definition. Two endoscopic quadruples (H,H, s, η), (H ′,H′, s′, η′) are isomorphic if there is

an element g ∈ Ĝ such that

1. η(H) and η′(H′) are conjugate by g,



CHAPTER 2. BACKGROUND MATERIALS 29

2. s and gsg−1 are equal in ZĤ/ZĜ.

Call the set of isomorphism classes of elliptic endoscopic quadruples Eell(G).

Note that the definition implicitly uses a fact which we state directly here to cite more
easily later:

Lemma 2.2.1.1. Let G be a reductive group over global or local field K and (H,H, η, s) an
elliptic endoscopic quadruple. Then there is a map ZG ↪→ ZH .

Proof. See [46] pg. 53.

Endoscopic pairs

Endoscopic quadruples actually contain a lot of redundant data. A more basic and easier to
think about notion is the endoscopic pair defined in [44, §7]:

Definition. An endoscopic pair for group G is (s, ρ) where

• s is a semisimple element of Ĝ/ZĜ,

• ρ is a map WF → Out(Ĥ) where Ĥ = Ĝ0
s

satisfying

1. ρ(σ) for σ ∈ WF is conjugation by an element in the normalizer of Ĥ in LG that projects
to σ.

2. Then, ρ induces a WF -action on ZĜ0
s

which fits into WF -equivariant sequence

1→ ZĜ → ZĤ → ZĤ/ZĜ → 0

which induces a map (ZĤ/ZĜ)WF → H1(F,ZĜ). We require that s ∈ (ZĤ/ZĜ)WF and
maps to something locally trivial under this.

It is furthermore elliptic if

3. (ZWF

Ĥ
)0 ⊆ ZĜ.

For future reference, we let K(s, ρ) be the elements that map to something locally trivial
under (ZĤ/ZĜ)WF → H1(F,ZĜ).

The ρ action can be further clarified: if ao γ ∈ LG and (b, 1) ∈ Ĝ ⊂ LG,

(ao γ)(bo 1)(ao γ)−1 = (ao γ)(bo 1)(γ−1(a−1) o γ−1)

= (aγ(b) o γ)(γ−1(a−1) o γ−1) = (aγ(b)a−1 o 1)
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so if ρ is part of an endoscopic pair, any ρ(γ) is of the form b 7→ aγγĜ(b)a−1
γ for some aγ ∈ Ĝ

where the subscript Ĝ denotes that the γ action is as it is on Ĝ. The choices of aγ are unique
up to

aγ ∈ Int Ĥ\Ĝ/Zγ
Ĝ
Ĥ(Ĝ) = Ĥad\Ĝ/Zγ

Ĝ
Ĥ = Ĥad\Ĝ/ZĤ = Ĥ\Ĝ

since γĜĤ is the centralizer of γĜs.

Definition. An isomorphism of endoscopic pairs (s, ρ) and (s′, ρ′) is an element g ∈ Ĝ such
that

• Ĝ0
s, Ĝ

0
s′ and ρ, ρ′ are g-conjugate,

• s, s′ have the same image in K(s, ρ).

As explained in [44, pg 630-631], ρ determines a quasisplit group H from Ĥ and therefore
the (H, s, η) part of an endoscopic quadruple. Given H and G, we can define H as follows:

Ĥ embeds into both LH and LG. Let H be the set of x ∈ LG such that there exists y ∈ LH
such that conjugation by x, y are the same on Ĥ and x, y project to the same element of WF .
In terms of the aγ from above, we can realize

H =
⋃

γ∈WF

Ĥaγ o γ

where we can choose representatives for aγ so that conjugation by aγ o γ fixes a pinning of

Ĥ. Isomorphisms are also the same on each side, so in summary:

Lemma 2.2.1.2 ([44, §7]). The set of elliptic endoscopic pairs of G up to isomorphism are
in bijection with Eell(G) where the bijection is as described above.

Motivation and the group K

There are two motivations for this definition, either spectral or geometric. We briefly and very
roughly describe the geometric explanation since it is somewhat relevant later. We ignore
many, many Galois cohomology details. In increasing generality and detail, more information
can be found in [48, §III.3], [45, §9], and [46, §6-7].

Let semisimple γ ∈ G(Fv) be contained in maximal torus T . If γ is strongly regular, then
we can write its stable orbit as (T\G)(Fv) and its orbit as T (Fv)\G(Fv). Therefore, the fibers
of the map from (T\G)(Fv) onto

D(Fv, T\G) = ker(H1(Fv, T )→ H1(Fv, G))

are exactly the unstable conjugacy classes making up (T\G)(Fv). Let

E(Fv, T\G) = ker(H1(Fv, T )→ H1
ab(Fv, G))
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be the abelian group version of this and

K(Fv, T\G) = E(Fv, T\G)∨.

Elements κ ∈ K are called endoscopic characters.
If v is a place of F and κ ∈ K(Fv, T\G), this allows the definition of twisted orbital

integrals

Oκ
γ(f) =

∫
(T\G)(Fv)

κ(g)f(g−1γg) dg

using the map (T\G)(F )→ E(F, T\G).
We can also define adelic versions of these groups D(A, T\G),E(A, T\G), and K(A, T\G)

using corresponding cohomology groups H1(A, ·). If γ ∈ G(A) is strongly regular, D(A, T\G)
parametrizes the γ′ that have every component stably conjugate to γ. It is a restricted direct
product of the D(Fv, T\G) by D(Ov, T\G) which happens to be trivial. Define a measure on
it by taking the product of the counting measures on D(Fv, T\G). Then for κ ∈ K(A, T\G)
we can define global twisted orbital integral

Oκ
γ(f) =

∑
e∈D(A,T\G)

κ(obs(γe))Oγe(f)

where γe is the conjugacy class corresponding to e with base point γ and obs is the obstruction
defined in [45] and [46].

Stabilization of the trace formula first produces sums of Oκ
γ(f)’s over triples of these

(T, γ, κ) over F . The result ([46, lem 7.2.A]) shows that such triples are in bijection with
quintuples (H,H, s, η, γH): endoscopic quadruples with a choice of strongly regular element
γH ∈ H up to appropriately defined equivalence. Through this equivalence, the group K for
T ends up being the same as the group K defined above for (s, η) (see [46, pg 105-106]).

2.2.2 z-Extensions

Our next goal is to define transfers of functions. This näıvely needs an embedding LH ↪→ LG,
but in general LH 6∼= H so we do not have one. There are two possible strategies for dealing
with this: the original in [50] is to take a nice enough central extension of G. This works
for the standard endoscopy described here but not for the more general twisted endoscopy,
so more modern sources prefer to take central extensions of H as described in [46]. As we
will remark after proposition 2.2.2.2, these methods are more or less interchangeable in the
standard endoscopy case.

We describe the second method in detail:

Definition. A z-pair (H̃, η̃) for endoscopic quadruple (H,H, s, η) is an extension H̃ by a
central induced torus such that

1. H̃der is simply connected (we call such an H̃ a z-extension).
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2. η̃ : H → LH̃ is an L-embedding that restricts to the map Ĥ → ̂̃H dual to the projection
H̃ → H.

By Lemma 2.2.A in [46], as long as (1) is satisfied, a valid η satisfying (2) always exists.

Lemma 2.2.2.1. Let H be a reductive group that splits over K ′. Then there exists a z-
extension of H splitting over K ′. Furthermore, the dimension of the extending torus is
bounded by [K ′ : Q](rankssH).

Proof. We just go through the construction in [49] or [57, pg 299] explicitly seeing how big
things get at each step. Let T sc be the maximal torus in the simply connected cover of
Hder. Let P = X∗(T )/X∗(T

sc) as a Galois module. A z-extension would correspond to an
extension of X∗(T ) making this quotient have no torsion. The torsion part has less than
rankssG generators.

The argument starts with a lemma writing P as a quotient of Galois modules

0→M → Q→ P → 0

with M free over Z[G] and Q free over P . The construction is [57, prop 3.1] and bounds
rankZM by dimK ′ times the number of generators of the torsion of P/Z which we can
further bound by (dimK ′)(rankssH).

Some work with reductive groups shows that M can be chosen to be the cocharacter
space of the extending torus, thereby finishing the argument.

In the case where G has simply connected derived subgroup, the Z-extension can be
chosen to be trivial and H ' LH. In this case, an endoscopic triple (H, s, η) contains all the
needed data.

z-extensions and central character datum

If (X, χ) is a central character datum for G, any (H,H, s, η) and (H̃, η̃) quadruple and
extension determine a central character datum (XH̃ , χH̃) on H̃. The central subgroup XH̃ is
produced from X by first taking the image under the map ZG ↪→ ZH and then taking the
preimage under H̃ → H.

To get χH̃ , pick a section c for H → WF . Then if T is the extending torus defining H̃,
the composition

WF
c−→ H η̃−→ LH̃ → LT

is an L-parameter for T . This determines a character λ−1
η̃ on T (F ) if F is local or T (F )\T (A)

if F is global through the Langlands correspondence for Tori. The inverse is to match our
convention for defining Hecke algebras.

Through considerations of transfer factors (see section 2.2.3), λη̃ can be extended to
the preimage of ZG in ZH̃ . Therefore, we can set χH̃ to be χλη̃ (where χ is defined on XH

by pullback). We will discuss this and more properties of λη̃ when we discuss transfer. In
particular, we will show that in the relevant cases, λη̃,v at a place v can be extended to a
character on H̃v.
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z-extensions do not change much

There is a vague intuition that taking a z extension should not change a groups endoscopy:

Proposition 2.2.2.2. Let G be a group over F .

(a) If G1 is a central extension of G by induced torus T , then the (elliptic) endoscopic tuples
for G are in bijection with those of G1. This bijection takes a group H to a central
extension H1 by T .

(b) If H is an (elliptic) endoscopic group of G and H1 is a central extension of H by induced
torus T , then there is a central extension G1 of G by T such that H1 is an (elliptic)
endoscopic group of G1. Furthermore, the endoscopic tuples determining H and H1

correspond under the bijection from (a).

Proof. Part (a):

The s: The map Ĝ→ Ĝ1 gives a canonical WF -equivariant isomorphism Ĝ/ZĜ → Ĝ1/ZĜ1
so

choices for s are the same. Given such an s, set Ĥ1 = (Ĝ1)0
s. Then we have the diagram

Ĥ Ĝ

Ĥ1 Ĝ1

T̂ T̂∼

The ρ and H: This gives a canonical isomorphism Ĥ1\Ĝ1 → Ĥ\Ĝ so assignments γ → aγ as
in the comment after the definition of endoscopic pair are the same for G and G1. There
are two conditions for this assignment to give a valid ρ: The first is that γ 7→ Int aγ ◦ γ is

a homomorphism up to Int Ĥ = Int Ĥ1. This condition is clearly the same with respect to
either Ĥ or Ĥ1.

The second condition is that Int aγ ◦ γ needs to fix the appropriate group: Ĥ or Ĥ1. By

construction, Ĥ = Ĝ∩ Ĥ1. Therefore, since Ĝ is WF and Int Ĝ1-invariant, if such a map fixes
Ĥ1, it fixes Ĥ. For the other direction, since these are all complex groups and Ĝ ⊇ (Ĝ1)der,

all elements of Ĝ1 can be written as zg for z ∈ Z0
Ĝ1

and g ∈ Ĝ. This is an element of Ĥ1 if

and only if g ∈ Ĥ. In total, Ĥ1 = Z0
Ĝ1
Ĥ so we are done since Z0

Ĝ1
is fixed by WF and IntG.

Therefore, this second condition is true for Ĝ if and only if it is true for Ĝ1.
Note that for any such ρ, the columns of the above diagram and the isomorphism between

T̂ ’s are Γ-equivariant. Undoing this dual, this will give that H1 is an extension of H by T .
The cohomology condition: In total, the possible pairs (s, ρ) ignoring the cohomology condi-
tion are the same for G and G1. It remains to show that the cohomology condition holds
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with respect to G if and only if it does for G1. We have WF -equivariant diagram where the
first two rows are exact sequences (note that the actions on ZĜ from ρ and Ĝ coincide so the
action here is according to ρ):

1 ZĜ ZĤ ZĤ/ZĜ 1

1 ZĜ1
ZĤ1

ZĤ1
/ZĜ1

1

T̂ T̂

∼

∼

This gives a corresponding diagram in cohomology:

(ZĤ/ZĜ)Γ H1(Γ, ZĜ)

(ZĤ1
/ZĜ1

)Γ H1(Γ, ZĜ1
)

ϕ1

∼ ψ

ϕ2

Here Γ ⊆ WF is some local Galois group. The cohomology conditions for H and H1 matching
at Γ is equivalent to kerϕ1 = kerϕ2. To show this, consider the sequence

π0(T̂ Γ)→ H1(Γ, ZĜ)
ψ−→ H1(Γ, ZĜ1

)→ H1(Γ, T̂ ).

Since T is an induced torus, T̂ is a power of Gm with a Γ action by permuting coordinates.
This gives first, that T̂ Γ is connected and second, that T̂ is induced, so H1(Γ, T̂ ) = 0.
Therefore, ψ is an isomorphism and the cohomology conditions are equivalent at every place.
Ellipticity: The elliptic condition is that (ZWF

Ĥ∗
)0 ⊆ ZWF

Ĝ∗
. As before, ZĤ1

= ZĤZĜ1
and

ZĤ ∩ ZĜ1
= ZĜ. Then we get the sequence

1→ ZĜ → ZĤ × ZĜ1
→ ZĤ1

→ 1

where the first map is the antidiagonal. This gives a map in cohomology:

ZWF

Ĥ
× ZWF

Ĝ1
→ ZWF

Ĥ1
→ H1(WF , ZĜ)→ H1(WF , ZĜ1

)⊕H1(WF , ZĤ).

From previous arguments, T being induced gives that the last map in injective into the
first coordinate. Therefore the middle is 0 and the first is surjective. Therefore ZWF

Ĥ1
=

ZWF

Ĥ
× ZWF

Ĝ1
/ZWF

Ĝ
and (ZWF

Ĥ1
)0 ⊆ (ZWF

Ĝ1
)0(ZWF

Ĥ
)0ZWF

Ĝ
. This gives that the elliptic condition

on H implies that on H1.
For the other direction, ZĤ = ZĤ1

∩ Ĝ gives that ZWF

Ĥ
= ZWF

Ĥ1
∩ ĜWF which gives

(ZWF

Ĥ
)0 ⊆ (ZWF

Ĥ1
)0 ∩ ĜWF . Assuming (ZWF

Ĥ1
)0 ⊆ ZWF

Ĝ1
and further using that ZĜ1

∩ Ĝ = ZĜ

implies ZWF

Ĝ1
∩ ĜWF = ZWF

Ĝ
finally giving that (ZWF

Ĥ
)0 ⊆ ZWF

Ĝ
.
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Part (b):
We are given G, endoscopic group H, and extension H1 by T . There is a map ZG ↪→ ZH

(see [46] pg. 53) so we can pullback the extension ZH1 to an extension ZG1 of ZG by T .
Set G1 = ZG1 ×Gder/ZGder as an algebraic group where the ZGder is embedded antidiag-

onally. Then, since G = ZG × Gder/ZGder , G1 is an extension of G by T . If H comes from
data (s, ρ), then through the construction of the bijection in (a), (s, ρ) gives data for H1 and
is elliptic if and only if (s, ρ) is.

Consider H an endoscopic group of G and H1 a z-extension (so it has simply connected
derived subgroup). Let (H1,H1, s, η) be the quadruple for G1 produced by part (b). Then
the map LH1 → H1 is an isomorphism, so we actually do have an embedding LH1 ↪→ LG1.
This is the z-extension construction described in [50].

2.2.3 Transfer

Consider quadruple (H,H, s, η) for G over local or global K and associated z-extension
(H1, η1). There is a transfer map

T : {strongly G-regular semisimple conjugacy classes in H(K)}
→ {strongly regular stable conjugacy classes G(K)} ∪ {∗}

where the ∗ is a dummy variable to allow maps that are not necessarily defined everywhere.
We say that γH ∈ H(K) is a norm of γG ∈ G(K) if T takes the conjugacy class of γH to that
of γG. Respectively, γH1 ∈ H1(K) is a norm of something if its projection to H(F ) is.

Local Transfer

Now, consider local Fv. If strongly G-regular γH1 is a norm of strongly regular γG, a transfer
factor ∆(γH1 , γG) = ∆H1

G (γH1 , γG) can be defined (this is the content of sections 4.1− 5.1 in
[46]). The factor is non-canonical up to a uniform constant. We recall some useful properties
from [46, §5.1]:

• ∆(γH1 , γG) is 0 unless γH1 is a norm of γG.

• ∆(γH1 , γG) is constant over the stable conjugacy class of γH1 .

• Let ZG1 = ZH1 ×ZH ZG. There exists a character λη1 on ZG1(Fv) such that if (z1, z) ∈
ZG1(Fv),

∆H1
G (z1γH1 , zγG) = λ−1

η1
(z1, z)∆

H1
G (γH1 , γG).

In fact, λη1 even extends to a character on G1(Fv) (see the construction on pg. 53 in
[46] or pg. 55 in [50]).
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• Let the quadruple (H,H, s, η, γH1) correspond to the triple (T, γG, κ). Then γH1 is a
norm of γG. If γ′G is a stable conjugate of γG,

κ(γ′G)∆(γH1 , γG) = ∆(γH1 , γ
′
G).

Fix central character datum (X, χ) for G. Let f ∈ H (G(Fv), χv). We say that fH1 ∈
H (H1(Fv), χH1,v) matches f if

SOγH1
(fH1) =

∑
γG

∆(γH1 , γG)OγG(f)

for all strongly G-regular γH1 ∈ H1(Fv) where γG ranges over representatives of unstable
conjugacy classes such that γH1 is a norm of γG. Note that the right-hand side is a twisted
orbital integral multiplied by an appropriate constant.

Since γH1 and γG are strongly regular, if T is a maximal torus for G and Z is the
extending torus defining H1 from H, the orbital integrals have dimension [G(Fv)][T (Fv)]

−1

and [H1(Fv)][T (Fv)]
−1[Z(Fv)]

−1 = [H(Fv)][T (Fv)]
−1. Therefore, fH1 needs to have dimensions

[G(Fv)][H(Fv)]
−1.

A big theorem is that such an fH always exists. The Archimedean case is from Shelstad
in [73] while the non-Archimedean case was reduced to the fundamental lemma (which will
be discussed later) by Waldspurger in [84]. Call such an fH a transfer of f .

Global Transfer

If F is global, then the endoscopic datum determine local endoscopic datum at each place
v. This lets us define a global transfer factor ∆A(γH1 , δG) as the product of all the local
transfer factors. [46, cor 7.3.B] gives that all the choices defining the local factors can be
made consistently giving a canonical choice of global factor.

If f ∈H (G,χ) factors into local factors at each place, then transferring each of the local
factors gives a transfer fH satisfying a similar identity. By the fundamental lemma, this is
unramified almost everywhere and is therefore an element of H (H1, χH1).

After lots of cohomology work, fH can be shown to satisfy a global identity

SOγH1
(fH) = Oκ

γG
(f)

where (H,H, s, η, γH) corresponds to (T, γG, κ). This is [46, lem 7.3.C].

Characters from Transfer

By the above, endoscopy always defines a character on ZH1(Fv). However, for v non-
Archimedean, this actually extends to a character on H1(Fv). We will need this to state some
bounds on non-Archimedean transfers later.

Fix such a v and assume without loss of generality that G has simply connected derived
subgroup (possibly by taking a z-extension and using proposition 2.2.2.2). Take the extension
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G1 of G as in proposition 2.2.2.2(b). Then Gder
1 is an isogenous cover of Gder, so the two are

equal. The map η determines a character λη1 on ZG1(Fv) = ZH1(Fv)×ZH(Fv) ZG(Fv). Since
this lifts to a character on G1(Fv), it is actually a character on G1(Fv)/G

der
1 (Fv). If F is local

then H1(Fv, G
der
1 ) = 0 since Gder

1 is semisimple and simply connected. Therefore this is a
character on (G1)ab(Fv) so let it correspond to the L-parameter α : WFv ↪→ L(G1)ab.

Next

Lemma 2.2.3.1. Let G be a reductive group over Fv. Then Z0
Ĝ

= Ĝab as groups with
WFv-action.

Proof. Let G have maximal torus T . As WF -modules, X∗(Ĝab) = X∗(Gab) = X∗(T )Ω and

X∗(Z
0
Ĝ

) = X∗(T̂ )Ω = X∗(T )Ω. This equality of cocharacters induces an equality of torii.

Since Ĥ1 is a connected centralizer in Ĝ1, we get a map Z0
Ĝ1
↪→ Z0

Ĥ1
. Since H1 is endoscopic,

the map is Galois-equivariant so it extends to a map L(G1,ab)→ L(H1,ab). Therefore α can be
pushed forward and determines a character λ′H1

on H1.
Note that λH1 and λ′H1

are equal on ZG1(Fv) since they correspond to the same parameter
of ZG1(Fv). This common value is the character λη1 from before that determined which Hecke
algebra transfers landed in. The discussion here simply shows that it extends to a character
on Hv.

A trick for computing transfers with z-extensions

Most formulas for transfers in the literature only apply in the case when LH ∼= H. To use
these in the general case, consider the same quadruple and z-extension as before with T ↪→ H1

as the extending torus. Proposition 2.2.2.2(b) lets us find G1 such that (H1,H1, s, η) is an
endoscopic quadruple for G1 with LH1

∼= H1. Let π : G1 → G be the projection.
The key property we use is that

∆H1
G1

(γ1, δ1) = ∆H1
G (γ1, δ)

whenever δ1 ∈ G1(F ) projects to δ ∈ G(F ) and γ1 is a norm of δ1 (see [50] pg. 55). Therefore,
given f ∈H (G(F ), χ), let

f1(g) = f ◦ π(g)

for g ∈ G1(F ). If f1 and f1
H1 match, then for all appropriate γ1, δ,

SOγ1(fH1
1 ) =

∑
δ1

∆H1
G1

(γ1, δ1)Oδ1(f1) =
∑
δ1

∆H1
G (γ1, π(δ1))Oπ(δ1)(f),

which is the condition for f and f1
H1 matching. Therefore we can compute fH1 by transferring

f1.
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As a sanity check, note that γ1 being a norm of δ1 is true if and only if zγ1 is a norm of
zδ1 for all z ∈ ZG1 . In particular, if x = (z1, z) ∈ ZG1 then

∆H1
G1

(xγ1, xδ1) = ∆H1
G1

(z1γ1, xδ1) = ∆H1
G (z1γ1, zπ(δ1))

= λη1(x)−1∆H1
G (γ1, π(δ1)) = λη1(x)−1∆H1

G1
(γ1, δ1).

Therefore, the transfer factor transforms appropriately so that this transfer will be in the
Hecke algebra H (H1(F ), χH).

Beware that there is a small technical issue here. Theorems in the literature only give
the existence of transfers of compactly supported functions. We get around this by finding a
compactly supported function f ′ that averages to f ◦ φ along the central character datum
(see lemma 3.3.1.1 for example) and then transferring f ′. We then average (f ′)H1 against the
central character datum.

2.2.4 Stabilization

Using all the above and with much work, IG,χdisc,t(f) can be stabilized. In other words, it can
be expanded as

IGdisc,t(f) =
∑

H∈Eell(G)

ι(G,H)Ŝ
H̃,χH̃
disc,t (f H̃)

for some choice of z-extensions. Here Ŝ
H̃,χH̃
disc,t is a stable distribution on H (H̃, χH̃) depending

only on t, H̃. We will not use any properties of S except that it is stable. There is no explicit
construction of fH in general, so its known properties will be cited as needed.

The constant ι has an explicit formula. Recall the definition in section 2.2.1 of auto-
morphisms of quadruples (H,H, s, η) by elements g ∈ Ĝ. Let Λ(H,H, s, η) be the image of

Aut(H,H, s, η)→ Out(Ĥ). Then

ι(G,H) = |Λ(H,H, s, η)|−1τ(G)τ(H)−1

where τ is the Tamagawa number.

2.2.5 Some Properties

Endoscopy and root data

The following is a summary of the relation between roots data of endoscopic groups and the
original group:

Lemma 2.2.5.1. Let G be a reductive group over global or local field K, (H,H, η, s) an
elliptic endoscopic quadruple and (H̃, η̃) a z-extension. Let TH be a maximal torus for HK.
Then there is a maximal torus T of GK and an isomorphism TH → T . The choice of T and
the map are unique up to GK-conjugacy. Let TH̃ be the pullback of TH to H̃.

Then the following also hold:
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1. The positive (co)roots of (H,TH) can be chosen to be a subset of those of (G, T ) through
TH → T .

2. For any root of α of (H,TH), sα ∈ ΩH is the same as sα ∈ ΩG through the isomorphism
TH → T .

3. The positive roots of (H̃, TH̃) can be chosen to be a subset of those of (G, T ) through
TH̃ → TH → T .

4. The Weyl action on the roots of (H̃, TH̃) restricts to that on (H,TH) through X∗(TH) ↪→
X∗(TH̃).

Proof. The construction of TH and (1),(2) are done in [45, §3.1] and [50, §1.3].
To deal with H̃, let the extension be 1→ Z → H̃ → H → 1. Every maximal torus of H̃

is the preimage of one of H so X∗(TH) maps into the corresponding X∗(TH̃). Since in the
sequence

0→ LieZ → Lie H̃ → LieH → 0,

LieZ maps into the center, the roots of H̃ have to be the images of those of H. Choose a
Borel B̃ containing BH to get containment of positive roots. The last statement on Weyl
groups comes from Ω(H,TH)

∼= NH(T )/ZH(T ).

Be careful that this lemma says nothing about the Galois actions on the roots. We will
not need that information and getting it requires G to be quasisplit. Also beware that this
does not give that the simple roots of H are a subset of the simple roots of G or that the
coroots of H̃ are a subset of the coroots of G.

Real endoscopic characters

As another computational tool, the character κ = κG,H for elliptic elements has a nice form
in the real case. If G is a real group and T is elliptic, there is an isomorphism

ΩC,G/ΩR,G → D(R, T\G).

An endoscopic character κ can therefore be extended to ΩC(G). [48, §IV.1] gives that the
extension is left-ΩC,H invariant.

In addition, the composition

Ω(BK)→ ΩC,G → ΩC,G/ΩR,G

is a bijection. This gives a bijection between any regular Πdisc(ξ) and D(R, T\G) that depends
on the choice of BK .

This interpretation of κ will be used when computing transfers of pseudocoefficients.
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Chapter 3

New Formulas

3.1 The Hyperendoscopy Formula

Here we will describe Ferrari’s hyperendoscopy formula with some modifications in the case
where groups without simply connected derived subgroup appear in the hyperendoscopic
paths. Using this formula may appear a little bizarre since it may seem more reasonable
to try to directly mimic the work of [4] on the stable distributions SOH(fH) like the main
result of [63].

The advantage of using hyperendoscopy is that we can directly apply the work already
done in [79] instead of proving slightly different bounds for the slightly different terms
appearing in the stable trace formula. There are two disadvantages: first, it gives worse
constants in bounds, but the constants were already not explicit due to the model theory
bounds that go into them. Second, hyperendoscopy requires extending Shin-Templier’s results
to groups with fixed central character datum, but this is interesting in its own right. In
addition, the hyperendsocopic formula itself may be a useful tool for studying future forms of
the invariant trace formula that, unlike [63], do not have a reasonable stabilization.

3.1.1 Raw Formula

Recalling the key trick from [17], rearrange the stabilized trace formula:

ŜG
qs

disc,t(f
Gqs

) = IGdisc,t(f) +
∑

H∈Eell(G)
H 6=Gqs

(−ι(G,H))ŜH̃disc,t(f
H̃)

where Gqs is the quasisplit form of G. We want to continue this expansion inductively to get
a formula in terms of Idisc for the various groups. The result in [17] uses endoscopic triples,
seemingly assuming that if a group has simply connected derived subgroup, then so do all
its endoscopic groups. This is not true as there can be SO2k factors in endoscopic groups of
Sp2n (see [85, §1.8]). Nevertheless, with a little more work, a formula more-or-less equivalent
to Ferrari’s can be derived.
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Inductively substituting in the expansions for ŜH̃disc,t(f
H̃) since the H̃ are all quasisplit

gives something like

ŜG
qs

disc,t(f
Gqs

) = IGdisc,t(f) +
∑

H∈HE0
ell(G)

ι(G,H)I
HnH
disc,t(f

H).

Because of the non-canonical z-extensions, the notation defining the indexing set becomes
somewhat painful. We will later find a nicer set to index over.

Definition. A consistent choice of length-1 raw endoscopic paths for G is a set HE0
ell(G)1

consisting of pairs (H, z) where H ranges over the proper isomorphism classes in Eell(G) and
z is a choice of z-pair for H.

Given a consistent choice of length-(n − 1) raw hyperendoscopic paths HE0
ell(G)n−1, a

consistent choice of length-n hyperendoscopic paths is a set HE0
ell(G)n consisting of tuples

(H, H, z) where H ∈ HE0
ell(G)n−1, H ranges over proper isomorphism classes in Hell(H)

(overloading notation so that H also refers to the group in the last z-pair of H), and z is a
choice of z-pair for H.

A consistent choice of raw hyperendoscopic paths HE0
ell(G) is the union of an (inductively-

chosen) consistent choice of HE0
ell(G)n for all n > 0.

The sum is over a choice of HE0
ell(G). If H ∈ HE0

ell(G), let nH be its length. As shorthand,
we will sometimes write

H = (H1, H2, · · · , HnH)

where Hn is the group in the z-pair for the nth step in the path. As further shorthand, H will
sometimes be overloaded to refer to HnH . For indexing purposes, H0 = G. Similarly define:

ι(G,H) = (−1)nH
nH∏
i=1

ι(Hi−1, Hi) fH = (· · · (fH1)H2···)HnH .

Note that fH is not canonical and the choice of fH needs to be consistent with the choice of
fH
′

where H′ is H truncated by removing the last step. Finally, a hyperendoscopic path H
determines central character datum (Xn, χn) for each Hn.

This expansion of course only works if the paths are all finite. This holds:

Lemma 3.1.1.1. Every element of HE0
ell(G) has nH ≤ |Φ+(G)|+ 1.

Proof. Consider the quadruple (Hi,H, si, ηi) of Hi−1. If Hi is quasisplit, the group Ĥi is a

centralizer of si ∈ Ĥi−1 that is not Ĥi−1 since Hi−1 6= Hi and Hi−1 is necessarily quasisplit.
Therefore Hi+1 either has fewer positive roots than Ĥi−1 or changes from non-quasisplit to
quasisplit. The result follows.

The key point then is that

IGdisc,t(f) +
∑

H∈HE0
ell(G)

ι(G,H)I
HnH
disc,t(f

H)



CHAPTER 3. NEW FORMULAS 42

is a stable distribution in fG
qs

. Finally, since Gqs corresponds to the trivial endoscopic
character, if fG

qs
= fG

qs

1 , then f , f1 have the same stable orbital integrals. Setting this equal
for two such functions:

Proposition 3.1.1.2 ([17, prop 3.4.3] corrected). Let f and f1 be functions on G(A) that
have the same stable orbital integrals. Then

IGdisc,t(f) = IGdisc,t(f1) +
∑

H∈HE0
ell(G)

ι(G,H)I
HnH
disc,t((f1 − f)H).

3.1.2 Simplifying Hyperendoscopic Paths

To control which groups appear, it is nice to have an easier definition of hyperendoscopic
path.

Definition. An endoscopic path for G is a sequence (Q1, . . . , Qn) where Q1 ∈ Eell(G) and
Qi ∈ Eell(Hi−1) for i > 1 where Hi−1 is the group in Qi−1. Note that if two endoscopic
quadruples are isomorphic, then so are their groups.

We use the same notation for endoscopic paths as for raw endoscopic paths. The set of
endoscopic paths for G will be called HEell(G).

Definition. A z-pair path for an endoscopic path (Q1, . . . , Qn) is a sequence of z-pairs
(Q̃1, . . . , Q̃n) where

• Q̃1 = (H̃1, η̃1) is a choice of z-pair for Q1.

• For i > 1 assume we have already chosen Q1, . . . , Qi−1. We get a quadruple Q′i for Hi−1

through repeated applications of the bijection from lemma 2.2.2.2(a) down through the
Qi (it will be clear that Hi−1 can be produced from the group in Qi−1 by a sequence of
central extensions by induced torii). Then Q̃i = (H̃i, η̃i) should be a z-pair for Q′i.

If H ∈ HEell(G) with z-pair path H̃, we will sometimes overload notation and use H̃ to
denote that last group H̃n in the path. If (X, χ) is a central character datum for G, we will

also let (XH̃, χH̃) be the induced datum on H̃. We can also define ι(G, H̃) and transfers f H̃

similarly.
As in the definition of raw hyperendoscopic paths, we can similarly inductively define a

consistent choice of z-pair paths for all elements of HEell(G).

Lemma 3.1.2.1. Choose a consistent set of z-pair paths H̃ for H ∈ HEell(G). Then the set
of combined data {[H, H̃] : H ∈ HEell(G)} concatenated properly form a consistent set of raw
hyperendoscopic paths for G.
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Proof. We show this inductively on length. For length 1, this works by definition. For longer
length, we use lemma 2.2.2.2(a): if we know this for length i and Hi is the ith group in H,
the corresponding H ′i in the corresponding raw endoscopic path has the same possible “next
steps”—the elliptic quadruples of the two are in bijection.

Finally,

Lemma 3.1.2.2. Let H̃, H̃′ be two different z-extensions for the hyperendoscopic path H.
Let f ∈H (G,χ) for some central character datum (X, χ). Then the two terms SH̃χH̃(f H̃) and

SH̃
′

χH̃′
(f H̃

′
) are equal. In addition, ι(G, H̃) = ι(G, H̃′).

Proof. First, let G be a group, H an endoscopic group, and f ∈ H (G,χ) for some χ. Let
(H̃, η̃) and (H̃ ′, η̃′) be two z-pairs. Then part of the formalism of the stable trace formula

gives that SH̃χH̃ (f H̃) = SH̃
′

χH̃′
(f H̃

′
). By definition, ι(G, H̃) = ι(G,H) = ι(G, H̃ ′).

Second, if G1 is a z-extension of G and f1 the pullback of f to some H (G1, χ1) where χ1

is the pullback of χ, it induces extension H0 of H according lemma 2.2.2.2(a). We can find a
z-pair (H1, η1) of H such that H1 is a z-extension of H0. By a similar argument to section
2.2.3, fH1 = fH1

1 and χH1 = (χ1)H1 . Therefore SH1

(χ1)H1
(fH1

1 ) = SH1
χH1

(fH1). Since Tamagawa

measures are products of Tamagawa measures of factors, ι(G,H1) = ι(G,H) = ι(G1, H1) by
the explicit formula.

The result follows from an induction alternating on these two steps.

Define ι(G,H) to be the common value of all the ι(G, H̃). In total, we can choose
whichever z-extensions we want and ignore the consistency condition:

Theorem 3.1.2.3 (The Hyperendoscopy Formula). Let f and f1 be functions on G(A) that
have the same stable orbital integrals. Then

IGdisc,t(f) = IGdisc,t(f1) +
∑

H∈HEell(G)

ι(G,H)IH̃disc,t((f1 − f)H̃)

where H̃ is a choice of z-extension path for H and where we suppress the central character
datum.

3.1.3 Central Characters from Hyperendoscopy

Let H be a hyperendoscopic path for G with z-extension H̃ corresponding to the sequence of
groups and embeddings (H̃i, ηi). We can, without loss of generality, assume that H0 = G has
simply connected derived subgroup by taking further extensions. Then we can inductively
define character on each (Hi)v:

• χ1 is the character λη1 on (H̃1)v defined by η1 as in section 2.2.3.
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• Let χ′i be the character on (H̃i+1)v coming from character χi on (H̃i)v as in section
2.2.3. Let λi+1 be the character on (Hi)v determined by ηi+1. Then set χi+1 = χ′iλi+1.

From all the previous discussion, we know χi are the characters such that given central
character datum (X, χ) and f ∈H (G,χ), the successive transfers f H̃i lie in H (G, (XH̃i

, χχi)).

3.1.4 Remarks on Usage

Some notes for using this:

• Beware that the transfers (f1 − f)H must be chosen explicitly, since the stable orbital
integrals of (fH1)H2 depend on the standard orbital integrals of fH1 . Care should be
taken in these choices since the ease of evaluating Idisc depends much on properties of
fH1 that are not determined by stable orbital integrals.

• As a sum of distributions, the sum over Eell(Hi) can be infinite. However, for any
particular f only finitely many terms are non-zero. Nevertheless, the number of such
terms depends on the choices of fH and can be arbitrarily large. Thankfully, if we
choose the fH so that they stay unramified outside of a finite set of places S, then there
is a finite set of terms depending only on S that are non-zero. See lemma 3.2.6.1.

• If we can choose the fH to be cuspidal, we do not need to worry that this formula is
only in terms of Idisc instead of Ispec.

• If each of the Hi in path H are unramified, we can choose H̃ to only have unramified
groups since z-extensions can be chosen to have the same splitting field as the original
group.

3.2 Lemmas on transfers

3.2.1 Formulas for Archimedean Transfer

This section will compute transfers of pseudocoeffcients. We take the Whittaker normalization
of transfer factors as in [74] and [48]. Because pseudocoefficients already have the correct
dimensions, we do not need to fix Haar measures.

Recall the parametrization of discrete series in section 2.1.2. We first make a basic remark:

Lemma 3.2.1.1. Let π ∈ Πdisc(ξ) be a discrete series representation. Then for any γ ∈ G∞,

SOγ(ϕπ) = SOγ(ηξ).

Proof. Transfers from G to Gqs are determined by the identities

SOG
γ (ϕπ) = SOGqs

γ (ϕG
qs

π ), SOG
γ (ηξ) = SOGqs

γ (ηG
qs

ξ ).
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By [74], transfers of pseudocoefficients can be chosen to be linear combinations of Euler-
Poincaré functions. Such linear combinations are determined by evaluations on an elliptic
torus so both of the transfers will be equal if we can show the lemma statement for just
elliptic elements . The transfers being equal will suffice to prove the lemma.

We therefore just need the computation from [48, §IV.3] with κ trivial. The key point is
that the Ω(BK) parametrizing π ∈ Πdisc(ξ) also parametrizes conjugacy classes in an elliptic
stable class by section 2.2.5.

Now let (H∞,H, η, s) be an endoscopic quadruple of G∞. Fix an elliptic maximal torus
T and let and κ be the corresponding endoscopic character on ΩG.

Trivial z-Extension case

We will first work out the formula for transfers in the case where H ∼= LH where we do not
need a z-extension. To start,

Lemma 3.2.1.2. Unless all elliptic tori G∞ are transfers of elliptic torii of H∞, transfers
of pseudocoefficients can be taken to be 0.

Proof. See lemma 3.2 in [74] or the computation of κ-orbital integrals on page 186 of [43].

Therefore, we can choose isomorphic maximal torii TH and T of HC and GC respectively
that are both elliptic over R. The Weyl chambers of (H,TH) are a coarser partition than
those of (G, T ) by lemma 2.2.5.1. Therefore, we can choose a positive Weyl chambers for
H that contains a chosen one for G. Let BH and BG be the corresponding Borel subgorups.
Let ρ′ = ρG − ρH be the half-sum of positive roots of G that are not roots of H.

The transfer of pseudocoefficients is worked out in [43, §7]. Special cases are worked out
in terms of roots in [48, §IV.3]. For full generality when ρ′ is not a character of T , we have
to use a corrected transfer factor from [73, pg 396] as worked out in [17]. This involves an
ΩH-invariant µ∗ = µ∗G,H such that µ∗ − ρ′ is a character of T . The µ∗ is determined by the
exact chosen isomorphism LH → H. Finally, recall the endoscopic character κ := κG,H on
ΩG defined in section 2.2.5.

Proposition 3.2.1.3 ([17, prop. 4.3.1]). We can take

(ϕπG(λ))
H =

∑
ω∗∈Ω∗

κ(ω∗) sgn(ω∗ω0)ϕπH(ω∗λ−µ∗)

where ω−1
0 λ is B-dominant and Ω∗ is the set of representatives w of ΩH\ΩG such that wλ is

BH-dominant.

As a sanity check, note that if AG,∞ ∈ X, then ellipticity forces AH,∞ ∈ XH .
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[17] explicitly computes the extension to hyperendoscopy: let Ω(G,H) be a set of represen-
tatives w of ΩH\ΩG such that wµ is BH dominant for any µ that is BG dominant. Reindexing
ω∗ = ω1ω

−1
0

(ϕπG(λ))
H =

∑
ω1∈Ω(G,H)

κ(ω1ω
−1
0 ) sgn(ω1)ϕπH(ω1ω

−1
0 λ−µ∗).

Next, note that the Euler-Poincaré function ϕλ has the same stable orbital integrals as the
pseudocoefficient fπH(λ+ρH). Let µ = ω−1

0 λ− ρG so that πG(λ) becomes πG(µ, ω0). Then

Corollary 3.2.1.4. We can take

(ϕπG(µ,ω0))
H =

∑
ω1∈Ω(G,H)

κ(ω1ω
−1
0 ) sgn(ω1)ηHω1(µ+ρG)−ρH−µ∗ .

Next, since κ is ΩR-right invariant,∑
ω0∈Ω(BK)

κ(ω1ω
−1
0 ) =

∑
[ω]∈ΩR\ΩC

κ(ω1ω
−1) =

∑
[ω]∈ΩC/ΩR

κ(ω1ω) =
∑

[ω]∈ΩC/ΩR

κ(ω),

where it does not matter which representatives ω we choose. Therefore, averaging over
ω0 ∈ Ω(BK),

Corollary 3.2.1.5 (see [17, prop. 4.3.2]). We can take

(ηµ)H = κ̄
∑

ω1∈Ω(G,H)

sgn(ω1)ηω1(µ+ρG)−ρH−µ∗

where κ̄ = κ̄G,H is the average value of κ over ΩC/ΩR.

General case

For H 6∼= LH, we use the trick in section 2.2.3. Let ϕ : (G1)∞ → G∞ be the surjective map
coming from the z-extension G1 → G: if f is a function on G∞, we choose fH1 = (f ◦ φ)H1 .

Given elliptic torii TG1 and TH1 as before, we can also get elliptic torus TG by taking images
under the z-extensions. The function ϕ : (G1)∞ → G∞ gives a map φ∗ : X∗(G∞, TG) ↪→
X∗((G1)∞, TG1). Then fπ(λ)◦φ = fπ(φ∗λ) so we can still use the above formulas in the general
case as long as we treat λ as an element of X∗(G1, TG1).

Note that the character λH1 shows up through the weight µ∗—each may be used to
compute the other (not that we’ve explicitly described either here).

Hyperendoscopic Transfers

To simplify notation, for any weight µ of a group G, endoscopic group H, and ω ∈ Ω(G,H)
as before, let

TG,H(µ, ω) = ω(µ+ ρG)− ρH − µ∗G,H .
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As in the previous section, we interpret µ as an character of G1 corresponding to the chosen
z-extension H1.

For any hyperendoscopic path H = (Hi)0≤i≤n, let

Ω(H) =
n∏
i=1

Ω(Hi−1, Hi) κ̄H =
n∏
i=2

κ̄Hi−1,Hi .

For ω = (ωi)i≤i≤n ∈ Ω(H) let

ε(ω) =
n∏
i=1

ε(ωi)

and let
TH(µ, ω) = THn−1,Hn(· · ·TG,H1(µ1, ω1) · · · , ωn)

be the composition of all the THi−1,Hi . Inductively applying propositions 3.2.1.3 and 3.2.1.5
while keeping in mind section 3.2.1 then gives:

Proposition 3.2.1.6 (see [17, prop. 4.4.2]). We can take

(ϕπG(µ,ω0))
H = κ̄H

∑
ω∈ΩH

κG,H1(ω1ω
−1
0 ) sgn(ω)ηTH(µ,ω)

with the terms defined as in the above paragraph.

Note that all the coefficients in the sum have norm 1 and define Ξµ,H to be the set of
TH(µ, ω) for ω ∈ Ω(H).

3.2.2 Bounds on Archimedean Transfers

Here are few lemmas on the terms that appear in proposition 3.2.1.6. For µ a weight of G
define:

• m(µ) = mG(µ) = minα∈Φ+(G)〈α, µ+ ρG〉,

• n(µ) = nG(µ) = minα∈Φ+(G)〈α, µ〉,

• dimµ = dimG(µ) is the dimension of the finite dimensional representation with highest
weight µ.

Lemma 3.2.2.1. If µ is a weight of G andH as before, then for all µ′ ∈ Ξµ,H, nG(µ′) ≥ nH(µ).
In particular, µ′ is regular if µ is.

Proof. In the situation where H is just an endoscopic group, consider ω ∈ ΩG such that
µ′ = ω(µ + ρG) − ρH − µ∗ ∈ Ξµ,H . Consider α ∈ Φ+(H). Since µ∗ is invariant under ΩH ,
〈µ∗, α〉 = 0 so

〈µ′, α〉 = 〈ωµ, α〉+ 〈ωρG − ρH , α〉.
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Next, ρG is the sum of the fundamental weights so it is a regular weight. This implies that
ωρG is too. Therefore, for all β ∈ Φ+(G), β∨(ωρG) ∈ Z \ {0}. In particular, since ωρG is
BH-dominant, for α ∈ Φ+(H), α∨(ωρG) ≥ 1. If α is in addition simple, we can compute

α∨(ωρG − ρH) ≥ 1− α∨(ρH) = 0,

so ωρG − ρH is BH-dominant. This gives

〈µ′, α〉 ≥ 〈ωµ, α〉.

To finish this one-step case,

nH(µ′) = min
α∈Φ+(H)

〈µ′, α〉 ≥ min
α∈Φ+(H)

〈ωµ, α〉 = min
α∈Φ+(H)

〈µ, ω−1α〉.

All the terms in the last two minimums have to be positive. However, µ is BG-dominant so
this means the ω−1α are all in Φ+(G) giving

nH(µ′) ≥ min
α∈Φ+(G)

〈µ, α〉 = nG(µ).

Finally, for an arbitrary endoscopic path, inductively continue this argument through
each step.

Lemma 3.2.2.2. If µ is a weight of G and H as before, then for all µ′ ∈ Ξµ,H

dimH(µ′)

dimG(µ)
= O(mG(µ)−1)

with the implied constant only depending on G and H.

Proof. This follows from the Weyl character formula. If H is just an endoscopic group, let
µ′ = ω(µ+ ρG)− ρH − µ∗ for appropriate ω ∈ ΩG. Using that µ∗ pairs to zero with any root
of H,

dimH(µ′)

dimG(µ)
=

∏
α∈Φ+(G)〈α, ρH〉∏
α∈Φ+(H)〈α, ρG〉

∏
α∈Φ+(H) (〈α, ωµ〉+ 〈α, ωρG〉)∏
α∈Φ+(G) (〈α, µ〉+ 〈α, ρG〉)

.

The first fraction is a constant depending only on G and H. The second terms in the products
in the second fraction are also. A priori, the 〈α, ωµ〉 = 〈ω−1α, µ〉 are a subset of the 〈±β, µ〉
for β ∈ Φ+(G). However, since they all have to be positive since ωµ is BH-dominant, they
are actually a subset of the 〈β, µ〉. Denote by A the subset of such β. Then

dimH(µ′)

dimG(µ)
= C

∏
α∈A(〈α, µ〉+O(1))∏

α∈Φ+(G)(〈α, µ〉+O(1))
= O

 ∏
α∈Φ+(G)\A

〈α, µ〉−1


using that the pairings are bounded below by a constant. Bounding the pairings again by
mG(µ), this is O(mG(µ)|Φ

+(H)|−|Φ+(G)|). Finally, since endoscopic groups have smaller rank,
they do not have the same root data as the original group so this difference has to be negative.

After a quick check that the mHi(µ
′) = O(mG(µ)), inducting on this argument for each

step of the hyperendoscopic path H finishes the proof .
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3.2.3 Truncated Hecke algebras

We now move on to the unramified finite places. Fix a place v at which Gv is quasisplit. Since
we are only working at v, for this subsection G will always mean Gv to simplify notation.

Choose (B, T ) to be a Borel and maximal torus defined over Fv. By G being quasisplit, all
such choices are conjugate and T automatically contains a maximal split torus A. Furthermore,
ΩF can be identified with the fixed points ΩWF and therefore the Weyl group of the relative
root system of rational roots in X∗(A). Let K be a hyperspecial subgroup from a hyperspecial
point in the apartment corresponding to A.

Eventually, we will evaluate Igeom(f) up to some error bounds which depend on how big
the support of the finite part of f is. To precisely measure this size, we slightly modify the
notion of truncated Hecke algebras as in [79, §2].

Recall then that the elements τGλ = 1Kλ($)K for a chosen uniformizer $ and λ ∈ X∗(A)+

generate H (G,K). Pick a basis B for the X∗(A) and define norm

‖λ‖B = max
ω∈Ω

(biggest |B-coordinate of ωλ|)

for λ ∈ X∗(A). Define truncated Hecke algebra

H (G,K)≤κ,B = 〈τGλ : ‖λ‖B ≤ κ〉.

It turns out (see [79, §2]) that for any two B,B′, ‖λ‖B = Θ(‖λ‖B′). All the bounds we use
will depend on κ only up to an unspecified constant. Therefore we can suppress the B.

There is also a truncated Hecke algebra with central character data: choose an (X, χ)
such that χ is unramified. In the case we care about, X is a subtorus of ZG. Let AX be its
split part. Define

H (G,K, χ)≤κ,B = 〈τGλ : ‖λ+ ζ‖B ≤ κ for some ζ ∈ X∗(AX)〉 ∩H (G,K, χ).

Note that for x ∈ Kλ($)K and z ∈ X, then there is k ∈ K and ζ ∈ X∗(AX) such that
z = ζ($)k, implying zx ∈ K(λ + ζ)($)K. Therefore, this is a reasonable, non-empty
intersection.

A useful projection

Working with the basis of τGλ , it is sometimes useful to consider the following maps. First,
there is a map Q : χ 7→

∑
ω∈ΩG

ωχ on X∗(T ). This sends every coroot of G to 0. Normalizing
Q by |ΩG|−1 gives a projection P on X∗(T )⊗Q. Note that this projection is onto X∗(ZG)⊗Q
since Weyl-invariant cocharacters are the same as central cocharacters (they pair to zero with
every root).

Recall X∗(A) embeds into X∗(T ) as the WF invariants.

Lemma 3.2.3.1. Let λ ∈ X∗(A). Then, Qλ ∈ X∗(A).
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Proof. It suffices to show this for Pλ. The map P is an orthogonal projection onto WF -
invariant X∗(ZG)⊗Q with respect to a WF -invariant inner product. Therefore it commutes
with WF and sends WF invariants to WF invariants.

Therefore, we can consider Q and P as maps of X∗(A) and X∗(A)⊗Q respectively. The
kernel of P is the span of the roots of G so the kernel in X∗(A)⊗Q is VF where VF is the
span of {α∨|α ∈ Φ∗F} inside X∗(A)⊗Q.

3.2.4 Formulas for Unramified Non-Archimedean Transfers

Fix a place v at which Gv is quasisplit. Since we are only working at v, for this subsection G
will always mean Gv to simplify notation.

The Fundamental Lemma

The fundamental lemma allows for computation of unramified non-Archimedean transfers
(the lemma is actually enough to show the existence of all non-Archimedean transfers). We
will eventually use this to control which H (Hv, KH,v, χH,v)

≤κ transfers end up being in. Use
the notation T,A, and K analogous to the last section.

As explained in [79, §2.2], the Satake transform gives two isomorphisms

ϕG : H (G,K)→H (A,A ∩K)ΩF → C[X∗(A)]ΩF .

We mention that this implies:

Lemma 3.2.4.1. The space Ĝur can be identified with ΩF\Â. The tempered part is ΩF\Âc
where Âc is the maximum compact torus in Â.

Proof. A result in representation theory of p-adic groups says that unramified representations
of G are the same as characters of H (G,K) and therefore characters on C[X∗(A)]ΩF (see

[10, §10]). These are the same as elements of ΩF\Â. Tempered representations need to

correspond to tempered characters of H (G,K) which forces the element to be in Âc.

There are more implications: let LGur := LGur be defined like LG except that the semidirect
product is only with W ur

Fv
. Define C[ch(LGur)] to be the algebra of trace characters of

representations of LGur restricted to (Ĝo Frob)ss. There is a third isomorphism

T : C[ch(LGur)]→ C[X∗(A)]ΩF

that takes a representation π to a function on T̂ given by a 7→ trπ(ao Frob). This function

can be shown to factor through Â (see [10, prop 6.7]).
If we have a map η : LHur ↪→ LGur, we get a pullback map bη : C[ch(LGur)]→ C[ch(LHur)].

We pick the Whittaker normalization for transfer factors and choose the measures µcan on H
and G that give K and KH volume 1.
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Theorem 3.2.4.2 (Full Fundamental Lemma). Let G be an unramified reductive group over
the local field Fv. Let (H,H, η, s) be an elliptic endoscopic quadruple for G such that H ∼= LH.
Then, for f ∈H (G,K) we can take

fH =

{
ϕ−1
H ◦ bη ◦ ϕG(f) H unramified

0 H ramified
.

Here we recall that if H and G are unramified, then the embedding H ↪→ LG descends to one
Hur ↪→ LGur. In addition, H being unramified allows us to pick an η : LH

∼−→ H that also
descends to unramfied L-groups. The pullback bη is defined through such an η.

Proof. The statements defining η come from the construction of H and the proof of 7.2A in
[46].

The ramified H case is by [45, §7.5]. Otherwise, it is reduced in [34] to proving the result
for just 1K . This was further reduced to a fundamental lemma for Lie algebras in [84] which
was finally proven in [62]. [34] removes a restriction on the size of the residue field of Fv.

Representations of LGur

To compute with the fundamental lemma, we need to describe representations of LGur. As a
start:

Lemma 3.2.4.3. Let π be a representation of LT ur. Then there exists λ a character of T̂ up
to W ur

F -action and α ∈ C× such that π = χλ,α where

χλ,α =
⊕

γ∈WF /Stabλ

Vγλ

and each Vµ is a 1-dimensional space with a chosen generator vµ on which T̂ acts through

µ. Let Stabλ be generated by Frobi(λ). Then Frobi(λ) acts by vλ 7→ αvλ. Finally, Frob(vλ) =
βλvFrob(λ) for some constants βλ. (Note that by scaling vµ, without loss of generality all the
βλ are 1 except one that is α).

Proof. Decompose π into eigenspaces Vµ for T̂ . We can compute that, γVµ ⊆ Vγµ for γ ∈ W ur
F .

Let γ0 generate Stabλ for some non-empty Vλ. Then γ0 acts as an element of GL(Vλ). Let vλ
be a chosen eigenvector of γ0 with eigenvalue α. The vectors vλ generates a χλ,α inside π.

Beware that this parametrization depends on the splitting WF ↪→ LT . Next

Proposition 3.2.4.4. Representations of LGur are parametrized by χλ,α of LT ur for α domi-

nant. Call the one corresponding to χλ,α by πλ,α := π
LG
λ,α.

Proof. This is by [42, pg 375-376] . We have that LT ur is the same as H+ in the reference
because the action of WF fixes the Borel B used to define LG. The construction is similar
to that for connected complex Lie groups: πλ,α forms a highest weight space on which the

actions of the root subgroups of Ĝ are determined. Together Ĝ and LT ur generate LGur.
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In fact, if πĜλ is the representation corresponding to highest weight λ of Ĝ, then each

of the Vγλ ⊆ Vλ,α generates a copy of πĜγλ under the action of Ĝ. The representation πλ,α|Ĝ
therefore decomposes as a direct sum of the πĜγλ and any γ ∈ WF sends πĜµ to πĜγµ. The exact
description of this map in complicated but can be computed by the following trick: For any
γ ∈ Γ, the µ coefficient of trπ restricted to T̂ o γ is the trace of 1 o γ acting on the µ-weight
space V λ,α

µ of πλ,α. This trace can be computed by Kostant’s character formula [42, thm 7.5].
As an easier way to think about this parametrization, let Fn be the splitting field for G.

The groups Gal(Fn/Fv) and ΩC together generate a group C in automorphisms of the set
of roots. Inside this, Gal(Fn/Fv) is the stabilizer of the positive Weyl chamber and ΩC acts
simply on the Weyl chambers so Gal(Fn/Fv) ∩ ΩC = 1. In addition, ΩC is normal since T is
fixed by Galois. Therefore, C = ΩC o Gal(Fn/Fv). The λ parametrizing πλ,α can be thought

of as a C-orbit. This decomposes into ΩC orbits representing the constituent πĜγλ.

Some Bases

We also need to describe some bases of the various spaces.
If $ is a chosen uniformizer for OF and X∗(A)+ a chosen Weyl chamber, then the functions

τGλ = 1Kλ($)K for all λ ∈ X∗(A)+

form a basis for H (G,K) (the corresponding double cosets partition G by the Cartan
decomposition).

C[X∗(A)]ΩF contains functions

χλ =

∑
σ∈ΩF

sgnF (σ)σ(λ · ρ)∑
σ∈ΩF

sgnF (σ)σ(ρ)
∈ C[X∗(A)]ΩF

for λ ∈ X∗(A)+. We write the addition in X∗(A) multiplicatively for clarity. Here, ρ = ρF
is the half-sum of the positive roots of Ĝ over Fv, which is the same as the half-sum of all
positive roots since rational roots are sums over orbits of roots. We recall that ΩF is the same
as the Weyl group for the relative root system of rational roots of Gv by quasiplitness (See
[10, §6.1]). The sgnF here are −1 to the power of the number of positive rational roots sent
to negative roots. If the rational roots form a reduced root system, this is just the standard
sgn on ΩF .

If the relative root system is reduced, these are the standard characters from Weyl’s
character formula and are studied in [37]. In the non-reduced case, these are the twisted
characters from [12, thm 1.4.1] or [32, thm 7.9]. Either way, χλ for dominant weighs λ form
a basis for C[X∗(A)]ΩF .

Finally,

Lemma 3.2.4.5.

T (πλ,α) =

{
αχλ λ ∈ X∗(A)

0 else
.
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Proof. This is just stated in the proof of [79] lemma 2.1. We give details here since there
seems to be a minor mistake (that is irrelevant to all the work there and here) when λ is not
in X∗(A). This is also proven as [12, thm 1.4.1] and as [32, thm 7.9] in a slightly different
form.

We use Kostant’s character formula [42, thm 7.5]. Using the notation there, a = to Frob

for some t ∈ T̂ and Wa is the W ur
F invariants in ΩC which is ΩF . Also, let Φσ = Φ+

C ∩ σ(−Φ+
C)

for σ ∈ ΩC where Φ+
C is the set of positive roots. Since Frob preserves a pinning, it acts by a

permutation on some diagonal basis of
⊕

φ∈Φσ
g−φ. Therefore, the determinant of the action

of a is
χσ1 (a) = sgn(Frob|Φσ)

∏
ϕ∈Φσ

ϕ−1(t).

In addition χδ1(a) for δ the representation of LT parametrized by (λ, α) is αλ(t) if λ is fixed
by Frob and 0 otherwise (the 0 otherwise case is what is missing in [79]). By a [50, pg 15],
we can find representations of σ ∈ Wa fixed by Frob so we get that χδσ(a) = ασλ(t).

In total, the trace in the non-zero case is

α

∑
σ∈ΩF

sgnC(σ) sgn(Frob|Φσ)σλ(t)
∏

ϕ∈Φσ
ϕ−1(t)∑

σ∈ΩF
sgnC(σ) sgn(Frob|Φσ)

∏
ϕ∈Φσ

ϕ−1(t)

= α
ρ(t)−1

∑
σ∈ΩF

sgnC(σ) sgn(Frob|Φσ)σλ(t)σρ(t)

ρ(t)−1
∑

σ∈ΩF
sgnC(σ) sgn(Frob|Φσ)σρ(t)

.

The sgnC here is the sign character for ΩC: the number of all positive roots sent to negative
roots. This differs from the sgnF in the formula for χλ by a factor of sgn(Frob|Φσ) through
an argument breaking up Φσ into Frob-orbits and noting that each rational root is a sum
over an orbit. Therefore, we are done.

Note that the 0 case can be done more easily by thinking about the action in block matrix
form with respect to the subspaces πĜγλ and noticing that all diagonal blocks are 0.

The key consequence of this is that the T (πλ,1) for λ ∈ X∗(A) form a basis for C[ch(LGur)].

3.2.5 Bounds on Unramified Transfers

Trivial z-extension case

As in the Archimedean case, we consider the trivial z-extension case first.
Recall the notation for various bases of spaces related to the Satake isomorphism. From
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[29] and [37] (again, see [32, §7] or [12, §1] for the non-split case), we can write

ϕG(τGλ ) = χλ +
∑

µ∈X∗(Â)+

0≤µ<λ

bGλ (µ)χGµ ,

ϕ−1
H (χHν ) = q−〈ν,ρH〉τHν +

∑
ξ∈X∗(ÂH)+

0≤ξ<ν

q−〈ξ,ρH〉dHν (ξ)τHξ .

for some constants b and d. Here µ ≤ λ means that there is some non-negative integer linear
combination of roots α∨ for α ∈ Φ+ equal to λ− µ.

Lemma 3.2.5.1. The dGλ (µ) and q−〈λ,ρH〉bGλ (µ) are bounded by a polynomial in the norm ‖µ‖
that is independent of q and λ.

Proof. First, let’s show this for dGλ (µ). By the above, we can ignore the λ = µ case. Otherwise,
we apply [79, lem 2.2]. There is a small issue here: this lemma depends on the main result of
[37] which only works when the root system is reduced. Nevertheless, [32, thm 7.10] and [12,
thm 1.9.1] provide an appropriate substitute in the non-reduced case.

[79, lem 2.2] bounds dGλ (µ) by |ΩG,Fv | times the size of the set of tuples (cα∨) for α a
positive root such that

∑
α∨ cα∨α

∨ = µ − λ (since both µ and λ are in the positive Weyl
chamber, the max in the lemma is achieved for the trivial element of the Weyl group). Looking
at the coordinate of µ in the direction used to define positivity, every α∨ is positive in this
coordinate, so some weighted sum of the cα∨ is bounded. This implies that the number of
tuples is only polynomial in this coordinate of µ. The result follows.

For bGλ (µ), note that the q−〈β,ρH〉dGα (β) for α, β ≤ λ form an upper-triangular matrix with
dimension polynomial in the size of λ. Then, bGβ (α) are coordinates of the inverse of this

matrix. Making a change of variables, the q−〈β,ρH〉bGβ (α) are the coordinates of the inverse of
the matrix with coordinates dGα (β) so these are bounded by a polynomial in ‖µ‖ by solving
through back substitution.

It remains to understand the map bη. This is computed exactly in terms of certain
partition functions in [12, §2.3], but we only need bounds so we do something slightly different
and much simpler. For µ ∈ X∗(A), define coefficients cµ(ν) by

πĜµ |Ĥ =
⊕

ν∈X∗(TH)+

0≤ν≤µ

cµ(ν)πĤν .

The cν(µ) are in particular bounded by the dimension of πĜµ so they are polynomial in the
size of µ by the Weyl character formula.

Proposition 3.2.5.2. As elements of C[ch(LHur)],

bη(π
LG
µ,1) =

⊕
ν∈X∗(AH)+

0≤ν≤µ

αµ(ν)cµ(ν)π
LH
ν,1 ,
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where AH is the maximal split torus of H contained in some maximal TH contained in a
rational Borel BH and we consider µ ∈ X∗(TH) = X∗(T ) as dominant element by taking its
Weyl-translate in the positive Weyl chamber.

For notational convenience, let Γ = W ur
Fv

. There exists tη ∈ (ZΓ
Ĝ

)0 depending only on η
such that the constants αµ(ν) satisfy two properties:

• |αµ(ν)| ≤ |ν(tη)|.

• Let YG be the maximal split torus in Z0
G. If ζ ∈ X∗(YG), then αµ+ζ(ν + ζ) = ζ(tη)αµ(ν).

Before starting the proof, note that all such TH are isomorphic and that the map
X∗(TH)→ X∗(T ) is unique up to Weyl element. Therefore, this is well defined.

Proof. Decomposition: To avoid confusion, ΓĜ is Γ acting on Ĝ and visa versa for Ĥ when it
is not clear from context. First,

bη(π
LG
µ,1)|Ĥ = (π

LG
µ,1|Ĝ)|Ĥ =

⊕
γ

πĜγµ|Ĥ =
⊕
γ

⊕
ν∈X∗(TH)+

0≤ν≤µ

cµ(ν)πĤγGν

where the γµ index the ΓĜ-orbit of µ in X∗(T ). Note that cµ(ν) is constant on ΓĜ orbits and

ΩC(Ĝ) orbits.
The ΓĤ-action is the composition of the action of ΓĜ with conjugation by elements of

NĜ(T ), so since G is quasisplit, ΓĤ acts on T̂H through a subgroup W ′ with Gal(Fn/F ) ⊆
W ′ ⊆ CH ⊆ CG (recall notation CG = Γ o ΩĜ,C). This implies that cµ(ν) is constant on
ΓĤ-orbits.

Therefore, the sum over such an orbit of the cµ(ν)πĤν decomposes into cµ(ν) different

π
LH
ν,αi,µ

for possibly different αi,µ. In total

bη(π
LG
µ,1) =

⊕
ν∈X∗(TH)+

0≤ν≤µ

cµ(ν)⊕
i=1

π
LH
ν,αi,µ(ν) =

⊕
ν∈X∗(AH)+

0≤ν≤µ

cµ(ν)∑
i=1

αi,µ(ν)

 π
LH
ν,1

as elements of C[ch(LHur)] and for some αi,µ(ν) ∈ C×. Let αµ(ν) be the average of the αi,µ(ν).
Properties of αµ(ν): It remains to show the two properties of αµ(ν). Since all (B, T )-pairs

in Ĝ are conjugate, without loss of generality take an inner automorphism of LG so that
(B̂H , T̂H) is the pullback of (B̂, T̂ ). The map η determines a cocycle cγ ∈ C1(ΓĜ, Ĝ) by
η(1 o γ) = cγ o γ. We then have that αi(ν) is the factor by which cFrob o Frob acts on the

highest weight space V of the ith πĤν .

There exists n such that the conjugation action of (cFrob o Frob)n on X∗(T̂ ) is trivial.
Since this action also fixes a pinning of H, we must have

(cFrob o Frob)n = z0 o Frobn
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for some z0 ∈ ZĤ . By the lemma below, we know 1 o Frob acts trivially on V . Therefore,
αi,µ(ν)n = ν(z0).

Next, note that the ΓĤ-action is generated by conjugation by cFrob o Frob. This fixes
z0 so z0 ∈ ZΓ

Ĥ
. We can without loss of generality make n bigger so that z0 is trivial in the

finite group π0(ZΓ
Ĥ

)—in other words, we may without loss of generality assume z0 ∈ (ZΓ
Ĥ

)0.

Then by ellipticity of H, z0 ∈ (ZΓ
Ĝ

)0. Since this a complex torus, there then exists tη ∈ Z0
Ĝ

such that tnη = z0, so taking nth roots, |αi,µ(ν)| = |ν(tη)|. Summing over i then produces the
bound on the αµ(ν).

To get the central character transformation, ζ ∈ X∗(YG) if and only if it is a ΓG and

ΩG-invariant element of X∗(T ) = X∗(T̂ ). Such characters lift to Γ-invariant characters of Ĝ
and therefore characters on LG. For such ζ, πµ+ζ,1 = ζ ⊗ πµ,1 so

bη(πµ+ζ,1) = bη(ζ)⊗ bη(πµ,1) = ζ(cFrob)ζ|Ĥbη(πµ,1).

Since cµ(ν) is 0 unless µ and ν have the same central character and since cµ+ζ(ν + ζ) = cµ(ν),
this implies that αµ+ζ(ν + ζ) = ζ(cFrob)αµ(ν). Therefore, we are done if all the choices

defining tη above are such that tη has the same image in Ĝab as cFrob.

The lemma used in this proof follows:

Lemma 3.2.5.3. Let Vν for ν ∈ X∗(A) be a weight space for π
LG
µ,α for µ ∈ X∗(A). Then

1 o Frob acts as multiplication by α on Vν.

Proof. For any γ ∈ W ur
F , the trace of γ acting on Vν is the coefficient of ν in trπ

LG
µ,α restricted

to T̂ o γ. Let n be the splitting degree of G. The same computation as lemma 3.2.4.5 gives
that this is αni+1 dimVν for any γ = Frobni+1. The only representation of W ur

F
∼= Z with

these traces sends 1 to scaling by α.

The element tη defines a function χ−1
η on G by Kλ($)K 7→ λ(tη) for λ ∈ X∗(A). Since tη

is central, if Q is the map on X∗(A) summing over ΩG-orbits, this is constant on fibers of Q.
In particular, since products of basis elements τGλ ∈H (G,K) are a linear combination of τGλ′
for λ′ in a single fiber, χ is a character of G. This is the character that corresponds to tη
considered as a Weyl-orbit in Â through the Satake isomorphism.

Furthermore, the relation αµ+ζ(ν+ζ) = ζ(tη)αµ(ν) forces χη to be the character associated
to η through transfer factors as in section 2.2.3. This all finally gives that the character on
H determined by KHλ($)KH 7→ λ(tη) for λ ∈ X∗(AH) is the same as the one from transfer
factors.

In summary, we get

(τGλ )H = δGH(λ)τHλ +
∑

ξ∈X∗(ÂH)
0≤ξ<λ

aλ(ξ)τ
H
ξ ,
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where
aλ(ξ) =

∑
µ∈X∗(Â)

ν∈X∗(ÂH)
ξ≤Hν≤Hµ≤Gλ

αµ(ν)bGλ (µ)cµ(ν)q−〈ξ,ρH〉dHν (ξ),

setting terms of the form ∗µ(µ) = 1 here for ease of indexing. We also know that the αµ(ν)
can be bounded in terms of the character on H determined by η.

Going back to the global context, this finally allows us to compute:

Proposition 3.2.5.4. Let G be a reductive group over a global field and (H,H, η, s) an
endoscopic quadruple that has a trivial z-extension. Let S be a finite set of places v such that:

• Gv, Hv are unramified.

• |kv| does not divide |ΩG|.

Let χη,S be the product of the characters χη,v on Hv for v ∈ S determined by η.
If f ∈H (G(FS), KS)≤κ with ‖f‖∞ ≤ 1, we can take fH ∈H (H(FS), KS)≤κ such that

‖χη,SfHS ‖∞ = O(qEκS1
κC|S|) for constants C,E independent of fS and qS. In addition, E can

be chosen uniformly over all G in endoscopic paths from a fixed G′.

Proof. Use the notation from the previous discussion. For s ∈ S, fs is then a linear
combination of some of τGλ . If τGλ has a τHξ component then λ − ξ is in particular a non-
negative sum of roots of G. The number of such λ is polynomial in κ. Therefore, if fHs
is written as a linear combination of τHξ , the coefficient for τHξ is bounded by a sum of
polynomially many aλ(ξ). Furthermore, all these ξ are smaller than λ.

Moving to what we are actually bounding, if tη is as in the previous discussion, the
corresponding coefficient in χ−1

η,sf
H
s is bounded by a sum of polynomially many ξ(tη)

−1aλ(ξ).
For all αµ(ν) appearing in the sum defining aλ(ξ),

|ξ(tη)−1αµ(ν)| ≤ |ξ(tη)−1ν(tη)| = 1

since ξ and ν have the same ΩG-orbit sum. In particular, if we define

a′λ(ξ) =
∑

µ∈X∗(Â)

ν∈X∗(ÂH)
ξ≤Hν≤Hµ≤Gλ

bGλ (µ)cµ(ν)q−〈ξ,ρH〉dHν (ξ),

then |ξ(tη)−1aλ(ξ)| ≤ |a′λ(ξ)|.
It remains to bound the polynomially many summands in a′λ(ξ). Bounding each of these

terms, the cµ(ν) are polynomial in how big µ is. By lemma 3.2.5.1, the term

bGλ (µ)q−〈ξ,ρH〉dHν (ξ)



CHAPTER 3. NEW FORMULAS 58

is a polynomial in the size of λ times a factor of q−〈ξ,ρH〉+〈λ,ρG〉. Therefore, we roughly bound
the entire product, aλ(ξ), by a polynomial in κ times a factor of q−〈λ,ρG〉

Finally, note that 〈λ, ρG〉 ≤ rankss(G)κ. Taking the product of fHs over s ∈ S and setting
E = rankss(G) gives the result.

Note that this lemma can be inductively applied through a hyperendoscopic path by
letting χ at each step be the character defined from the hyperendoscopic path as in section
3.1.3.

General case

Starting as in the Archimedean case argument in section 3.2.1, consider z-pair (H1, η1) for H.
The extension H1 induces an extension G1 such that H1 is an endoscopic group for G1 by
proposition 2.2.2.2. If ϕ : (G1)v → Gv is the projection, we have that fH1 = (f ◦ ϕ)H1 for
any H1 on G (interpreted as before).

If H is ramified, then all κ-orbital integrals are still 0 so this transfer is 0.
If H is unramified, T can be pulled back to a maximal torus T1 of G1 and A can be pulled

back to A1. By lemma 2.2.2.1 the extending torus Z is without loss of generality unramified
so G1 is too. As explained in [45, §7], the reductive model of G corresponding to the chosen
hyperspecial KG,v gives a reductive model of G1 so we can find a hyperspecial KG1,v that
surjects onto KG,v. The map ϕ induces ϕ∗ : X∗(A1)→ X∗(A) so

ϕ(KG1,vλ($)KG1,v) = KG,vϕ∗λ(v)KG,v.

Therefore,

τGλ ◦ ϕ =
∑

λ′∈ϕ−1
∗ (λ)

τG1

λ′

and the transfer can be computed by the fundamental lemma.
We describe the transfer of τG0 as an example computation:

Lemma 3.2.5.5. Use the notation above. Then we can take

(τG0 )H1 =
∑

λ∈X∗(AZ)

χη1(λ($))τH1
λ .

Here AZ is the split part of the extending torus Z and χη1 is the character on ZG1 determined
by η1.

Finally, we get an extension of proposition 3.2.5.4: that transfers from H (Gv, Kv, χ) land
in H (H1

v , KH,v, χχη1) with the same bound.
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3.2.6 Controlling Endoscopic Groups Appearing

Lemma 3.2.6.1. Let G be a reductive group over global field F that is cuspidal at infinity
together with central character datum (X, χ) such that X contains AG,∞. Let f = ηξ ⊗ f∞ be
a function on G(A) where ηξ is some EP-function with central character matching χ. Let
R be a finite set of places containing those on which f∞ or G are ramified. Then there
are a finite number of elliptic endoscopic quadruples (H,H, η, s) up to equivalence for which
Idisc(f

H1) 6= 0 for (all) z-extensions H1. For each such H1:

• H1 is cuspidal at infinity and XH1 contains AH1,∞.

• fH1 is unramified outside of R and H1 can be chosen to be.

• χH1 is unramified outisde of R.

Proof. If H1 is not cuspidal at infinity, then Idisc(g) = 0 for any g with infinite part that is a
EP function by the previous section. By corollary 3.2.1.5 and lemma 3.2.1.2, fH is either a
linear combination of such functions or 0. As before, we remark that XH1 ⊇ AH1,∞ due to
ellipticity.

If H is ramified outside of R, then by the full fundamental lemma together with the trick
to compute transfers on z-extensions, fH1 = 0. Otherwise, by lemma 2.2.2.1, H1 can be
chosen to be unramified outside R so fH1 is unramified outside of R by the full fundamental
lemma again. The group H1 being unramified outside of R further implies that χH1 is too.

Finiteness of the sum is implicit in the stabilization of the trace formula. Repeating the
argument here, note that the roots of HK are a subset of those of GK . Therefore, there are a
finite number of possibilities for HK and the splitting field of H has degree ≤ ΩG. Since the
splitting field is also unramified outside of R, there are a finite number of choices for it. This
leaves only a finite number of choices for H.

To get finitely many quadruples it then suffices to show there are finitely many choices
for s ∈ (ZĤ/ZĜ)WF . For this, ZWF

H /ZWF
G is finite by ellipticity and ZWF

H having finitely
many connected components. Therefore (ZĤ/ZĜ)WF is finite by finiteness of a cohomology
group.

Note that this lemma can be inductively applied through a hyperendoscopic path.

3.3 Simple Trace Formula with Central Character

3.3.1 Set-up

To apply the hyperendoscopy formula, we will need two generalizations of the simple trace
formula: first, allowing central characters and second, allowing pseudocoefficients at infinite
places on the spectral side. We use a slightly convoluted and indirect argument to avoid
having to go into too many technicalities of Arthur’s distributions I(f, γ) and I(f, π):
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Fix central character datum (X, χ) and let χ0 be the restriction of χ to AG,rat. We first
define a variant of Idisc,χ that can be more easily related to Igeom,χ0 . Let XF = X ∩ Z(F ).
There is a map

H (G,χ0)→H (G,χ) : f(g) 7→ f̄χ(g) :=

∫
X/AG,rat

f(gz)χ(z) dz.

Lemma 3.3.1.1. f 7→ f̄χ is surjective.

Proof. Let h ∈H (G,χ). There exists compact U ⊆ G(A)/AG,rat such that UX contains the
support of h. Let c be a cutoff function: compactly supported, continuous, non-negative real
valued, and positive on U . Then the function

m(g) =

∫
X/AG,rat

c(gz) dz

is continuous and non-zero on the support of h. If we take f = m−1ch, then f̄χ = h.

We follow a strategy from [40]. For any ? ∈ {geom, disc, spec}, also define distributions
on H (G,χ0):

I ′?,χ(f) =
1

vol(XF\X/AG,rat)

∫
XQ\X/AG,rat

χ(z)I?,χ0(fz) dz

where fz : g 7→ f(gz). We of course have that

I ′geom,χ = I ′spec,χ.

In addition, if f is cuspidal, then so is fz for any central z so

I ′spec,χ(f) = I ′disc,χ(f).

For our case, we can only consider central character datum where AG,∞ ⊆ X. Fix (X, χ)
for the rest of this section and let χ0 be the restriction of χ to AG,rat. The generalized simple
trace formula can then be developed in three steps:

1. Find a generalized pseudocoefficient ϕ so that ϕ̄χ is the pseudocoefficient ϕπ and traces
against ϕ can be computed easily

2. Compute I ′spec,χ(ϕ⊗f∞) and show this equals Ispec,χ(ϕπ⊗ (f∞)χ). Both these are small
modifications of Arthur’s original spectral side argument together with an extra lemma
of Vogan.

3. Sum over ϕ to get a generalized Euler-Poincaré function η. Evaluate Igeom,χ0(η ⊗ f∞)
and average to get a formula for I ′geom,χ(η ⊗ f∞).

To see how everything depends on Haar measures, ϕ will have dimension [G∞/AG,rat]
−1 and

f∞ will have dimension [X∞]−1 so that both sides of our final formula will have dimension
[G∞][X∞]−1.
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3.3.2 Generalized Pseudocoefficients

We first need to define a version of truncated/generalized pseudocoefficients from [35, §1.9] in
the real case. This actually can be done slightly more explicitly than the p-adic case. A lot
of this section is probably implicit somewhere in [15].

For this section only, let G = G(R) be a group over R with discrete series mod center.
All other variables (a, AG, etc.) will refer to real versions. There is a map

HG : G(R)→ aG∗ : λ(HG(γ)) = log |λ(γ)| for all λ ∈ a∗G.

It is well known that this maps A0 = AG(R)0 isomorphically to aG∗ so since A0 is central, we
get a splitting G(R) = G(R)1 × A0, where G(R1) is the kernel of HG.

Any character λ ∈ (a∗G)C of aG∗ corresponds to the character eλ(HG(γ)) on A0 and therefore
G through this isomorphism. The unitary characters correspond to λ ∈ ia∗G. Finally, if π is a
representation of G(R), let πλ = π ⊗ eλ(HG(γ)).

Let f be any smooth, compactly supported function on aG∗ and π a discrete series
representation. The main theorem [15] also allows us to construct a (again not-necessarily
unique) compactly supported ϕπ,f such that for any unitary ρ

trρ(ϕπ,f ) =


f̂(λ) ρ = πλ for some λ ∈ (a∗G)C

0 ρ basic, ρ 6= πλ for all λ ∈ (a∗G)C

? else

.

Call such a ϕπ,f a generalized pseudocoefficient. For any character ω on A0, we can define

ϕπ,f,ω(g) =

∫
A0

ω(a)ϕπ,f (ag) da.

This is compactly supported mod center and transforms according to ω−1 on A0. Therefore,
if ρ has character ω on A0, we can define

trρ(ϕπ,f,ω) =

∫
G/A0

ϕf,π,ω(g)Θρ(g) dg =

∫
G/A0

∫
A0

ϕπ,f (ag)ω(a)Θρ(g) da dg

=

∫
G/A0

∫
A0

ϕπ,f (ag)Θρ(ag) da dg =

∫
G

ϕf,π(g)Θρ(g) dg = trρ(ϕπ,f ). (3.1)

where Θ is the Harish-Chandra trace character. In particular, ϕπ,f,ω appropriately scaled is a
pseudocoefficient.

Averaging ϕπ,f over an L-packet Πdisc(τ) for fixed f produces a generalized Euler-Poincaré
function ητ,f . Since the ητ,f,ω are averages of pseudocoeffecients over L-packets, they are
actually standard Euler-Poincaré functions. Therefore, computation (3.1) gives that whenever
τ is regular:

trρ(ητ,f ) =

{
f̂(λ)|Πdisc(τ)|−1 ρ = πλ for some π ∈ Πdisc(τ), λ ∈ (a∗G)C

0 else
.



CHAPTER 3. NEW FORMULAS 62

Generalized pseudocoefficients and Euler-Poincaré functions are cuspidal for the same reason
as the normal versions.

Finally, as a useful lemma relating our notion to the one in [35],

Lemma 3.3.2.1. Let π be a discrete series representation with character eλ(HG(a)) on A0 for
λ ∈ (a∗G)C. Let f on aG∗ be smooth and compactly supported. Then we can make choices for
ϕπ and ϕπ,f such that ϕπ,f = fϕπ.

Proof. Make a preliminary choice for ϕπ,f . Then f̂(0)−1ϕπ,f,λ is a valid choice of ϕπ We
evaluate

trρ(fϕπ,f,λ) =

∫
G

f(g)ϕπ,f,λ(g)Θρ(g) dg

=

∫
A0

∫
G/A0

f(ag)ϕπ,f,λ(ag)Θρ(ag) dg da

=

∫
A0

f(a)e(µ−λ)(HG(a))

∫
G/A0

ϕπ,f,λ(g)Θρλ−µ(g) dg da

where we choose µ ∈ (a∗G)C so that eµ(HG(g)) is the central character of ρ on A0. By previous
properties, the inner integral therefore becomes trρλ−µ(ϕπ,f ) and we get

trρ(fϕπ,f,λ) = f̂(µ− λ) trρλ−µ(ϕπ,f ).

Checking each of the three cases in its definition, ff̂(0)−1ϕπ,f,λ is then a valid alternative
choice for ϕπ,f .

A similar property also therefore holds for Euler-Poincaré functions.

A small modification

Generalized pseudocoefficients are in C∞c (G∞). We instead want functions in some C∞c (G∞, χ0)
so we make a small modification.

Return to the previous notation where G is a group over F . Let χ0 be a character on
AG,rat and π0 a representation of G∞ consistent with χ0. Let ϕπ0,f = fϕπ0 be a generalized
pseudocoefficient for π0 and consider the partial average

ϕ̄(g) =

∫
AG,rat

χ0(a)f(ag)ϕπ0(ag) da

=

∫
AG,rat

χ0(a)f(ag)χ−1
0 (a)ϕπ0(g) da = ϕπ0(g)

∫
AG,rat

f(ag) da.

This is an element of C∞c (G∞, χ0) and every function f ∈ C∞c (AG,∞/AG,rat) arises as an
integral this way. Finally, by a similar computation to (3.1), this has the same traces against
representations π consistent with χ0 as ϕπ0,f .
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Therefore, for any function f ∈ C∞c (AG,∞/AG,rat), we can construct analogues of gen-
eralized pseudocoefficients ϕπ0,f = fϕπ0 ∈ C∞c (G∞, χ0). For computations later, note that
such f have Fourier transforms defined on any character of AG,∞ trivial on AG,rat. The same
discussion carries over to Euler-Poincaré functions. These are the functions we will actually
be using.

We fix f to be dimensionless so these generalized pseudocoefficients have dimension
[G∞/AG,rat]

−1[AG,∞/AG,rat] = [G∞]−1[AG,∞].

3.3.3 Spectral Side with Central Character

To get a simple trace formula with central character, we need two spectral side computations:
one for I ′spec and one for Ispec. Start with a lemma:

Lemma 3.3.3.1. Let π0 be a regular discrete series representation of G∞ with weight ξ0 and
character χ0 on AG,∞. Then for any real irreducible representation ρ of G∞ with character
χ0 on AG,∞, trρ(ϕπ0) = δπ0(ρ).

Proof. We thank David Vogan for this argument and note that all mistakes in this writeup
are our own.

The case ρ = π0 follows immediately. Consider ρ 6= π0. In the Grothendieck group, ρ is a
linear combination of basic representations with infinitesimal character matching π0:

ρ =
∑
ρ′ basic

mρ(ρ
′)ρ′.

Taking traces of both sides, trρ(ϕπ0) = mρ(π0). Now, taking the trace against an EP-function
ηξ0 :

0 = trρ(ηξ0) =
1

|Πdisc(ξ0)|
∑

ρ′∈Πdisc(ξ0)

mρ(ρ
′)

where Πdisc(ξ0) is the L-packet for ξ0. It therefore suffices to show that the mρ(ρ
′) for

ρ′ ∈ Πdisc(ξ0) all have the same sign. This would force them all to be 0.
The most direct way is to use the classification of all unitary representations with

infinitesimal character of a discrete series from [68]. These are of the form of certain Aq(λ)
described in terms of Zuckerman functors. These have an explicit decomposition in the
Grothendieck group through a version of Zuckerman’s character formula proposition 9.4.16
in [82]: λ is a character on Levi L∞ so first get a character formula λ by twisting both
sides of 9.4.16 for L∞ by λ. Then cohomologically induce to get a character formula on G∞.
Alternatively, by Kazhdan-Lusztig theory, the mρ(ρ

′) are Euler characteristics of stalks of
certain perverse sheaves. By theorem 1.12 in [53] their cohomologies are either concentrated
in even degree or odd degree. See the comments in the proof to corollary 4.6 in [81], for
example, for why this applies to C in addition to Fp.
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Combining with computation (3.1) (note that twisting by a character does not change
the regularity of the discrete series) then gives:

Corollary 3.3.3.2. Let π0 be a regular discrete series representation of G∞ with weight ξ0.
Let f ∈ C∞c (AG,∞). Then for any real representation ρ of G∞, trρ(ϕπ0,f ) = f(ρ, π0) where

f(π, π0) =

{
f̂(λ) π = πλ for some λ ∈ (a∗G∞)C

0 else
.

A similar result holds for f ∈ C∞c (AG,∞/AG,rat).
This allows us to prove:

Proposition 3.3.3.3. Let π0 be a regular discrete series representation of G∞ with weight
ξ0 and character χ0 on AG,rat. Let f ∈ C∞c (AG,∞/AG,rat). Then for all ϕ∞ ∈H (G∞):

IGspec(ϕπ0,f ⊗ ϕ∞) =
∑

π∈ARdisc(G,χ0)

mdisc(π)f(π∞, π0) trπ∞(ϕ∞)

where

f(π∞, π0) =

{
f̂(λ) π∞ = (π0)λ for some λ ∈ (a∗G∞)C

0 else
.

Proof. This is simply a due-diligence check that none of the steps in the derivation of formula
3.5 in [4] break. First, ϕπ0,f being cuspidal gives

IGspec(ϕ) =
∑
t≥0

IGdisc,t(ϕ)

=
∑
t≥0

∑
L∈L (G)

|ΩM,F |
|ΩG,F |

×
∑

s∈WG(aL)reg

| det(s− 1)|aL/aG |−1 tr(MQ|Q(s, 0)ρQ,t(0, (ϕπkϕ
∞)1)),

using that G is connected. This uses a lot of the notation from [4]. In particular, L (G) is the
set of Levi subgroups of G, Q is a parabolic for L, MQ|Q(s, 0) is some intertwining operator,
ρQ,t is a sum of parabolically-induced representations from Q with Archimedean infinitesimal
character having imaginary part of norm t, and (ϕπϕ

∞)1 is the restriction of the function to
G(A)1.

The full definition of the rest of the terms in the inner sum is unnecessary: the only detail
Arthur uses is that when Q 6= G it is a sum∑

π∈AR(G)

cπ trπ((ϕπ0,fϕ
∞)1)
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where the cπ vanish whenever the Archimedean infintesimal character of π is regular. However,
a property of the pseudocoefficient ϕπ0,f is that it is only supported on representations which
have the same infinitesimal character as π0 (similar to the the proof of [14] lemma 1). This
character minus ρ has to be regular. Therefore the sum is 0.

For the leftover term, Q = G so L = G and MQ|Q(s, 0) is trivial. This gives

IGdisc(ϕπ0,f ⊗ ϕ∞) =
∑
t≥0

tr ρG,t(0, (ϕπ0,fϕ
∞)1).

By its definition, ρG,t(0) is the sum of all irreducible, discrete subrepresentations of the
space L2(G(Q)\G(A)1) with Archimedean infinitesimal character having imaginary part with
norm t. Arthur’s original argument for the sum over discrete representations converging
absolutely does not work since there are now potentially infinitely many t on which this trace
is supported. However, absolute convergence is now known in general by [20].

Finally, (ϕπ0,fϕ
∞)1 acting on L2(G(Q)\G(A)1) is the same operator as ϕπ0,fϕ

∞ acting
on L2(G(Q)\G(A), χ0). Therefore, summing over the representations that are actually
subrepresentations of L2,

IGdisc(ϕπ0,f ⊗ ϕ∞) =
∑

π∈ARdisc(G,χ0)

mdisc(π) trπ(ϕπ0,fϕ
∞)

=
∑

π∈ARdisc(G,χ0)

mdisc(π) trπ∞(ϕπ0,f ) trπ∞(ϕ∞).

Corollary 3.3.3.2 gives that trπ∞(ϕπ0,f ) = f(π∞, π0) finishing the argument.

Next, let ϕ = ϕπ0,f ⊗ ϕ∞. Then

I ′spec,χ(ϕ) =
1

vol(XF\X/AG,rat)

∫
XF \X/AG,rat

χ(z)Ispec,χ0(ϕz) dz.

Computing

Ispec,χ0(ϕz) =
∑

π∈ARdisc(G,χ0)

mdisc(π) trπ(ϕz)

=
∑

π∈ARdisc(G,χ0)

mdisc(π)ω−1
π (z) trπ(ϕ)

where ωπ is the central character of π. Substituting this in and factoring out the sum and
constants from the integral gives∫

XF \X/AG,rat

χ(z)ω−1
π (z) dz =

{
vol(XF\X/AG,rat) χ = ωπ|X
0 else

.
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Therefore, a lot of terms in the sum go to 0. Finally, since π∞ has central character χ∞, it
can be traced against functions in H (G∞, χ∞). By definition

trπ∞(ϕ∞) = trπ∞((ϕ∞)χ∞).

Putting it all together,

Corollary 3.3.3.4. Let π0 be a regular discrete series representation of G∞ with weight ξ0

and character χ0 on AG,rat. Let f ∈ C∞c (AG,∞, χ0). Then for all ϕ∞ ∈H (G∞):

I ′spec,χ(ϕπ0,f ⊗ ϕ∞) =
∑

π∈ARdisc(G,χ)

mdisc(π)f(π∞, π0) trπ∞((ϕ∞)χ∞)

(where we only sum over automorphic representations with the correct central character on
all of X instead of just AG,rat).

Finally, the same arguments as in 3.3.3.3 again work for the terms in equation (2.3)
giving that for ϕ∞ ∈H (G∞, χ∞),

Ispec,χ(ϕπ0 ⊗ ϕ∞) =
1

vol(X1
∞)

∑
π∈ARdisc(G,χ)

mdisc(π)δπ0,π∞ trπ∞(ϕ∞)

where we factor X∞ = X1
∞ × AG,∞. Sanity checking dimensions here, we need

[G(A)][X]−1[G∞]−1[AG,∞] = [X∞/AG,∞]−1[G∞][X∞]

which holds.
Putting everything together:

Proposition 3.3.3.5. Let π0 be a regular discrete series representation of G∞ with weight
ξ0 and that matches character χ on X. Let f ∈ C∞c (AG,∞/AG,rat) and ϕ∞1 ∈ H (G∞, χ∞)

such that (ϕ∞1)χ = ϕ∞. Then:

vol(X1
∞)Ispec,χ(ϕπ0 ⊗ ϕ∞) = ∑

π∈ARdisc(G,χ)

mdisc(π)δπ0,π∞ trπ∞(ϕ∞)

=
1

f̂(0)
I ′spec,χ(ϕπ0,f ⊗ ϕ∞1).

The second equality uses that for any πλ ∈ ARdisc(G,χ), λ = 0. We fix ϕ∞ to be
dimensionless and normalize ϕ∞1 by it. Therefore, the dimensions are all [G∞][X∞]−1.



CHAPTER 3. NEW FORMULAS 67

3.3.4 Geometric Side with Central Character

Vanishing of IGM,∞(γ, ψ)

We explicitly describe all the implicit vanishing arguments in [4] for the ease of the reader.
Assume ψ is some cuspidal function. First, by lemma 2.1.1.2, IGM vanishes unless M ∈ L cusp;
i.e., unless AM,rat/AG,rat = AM,∞/AG,∞. Furthermore, in this case, IGM,∞(γ, ψ) = ĨGM,∞(γ, ψ).

Furthermore, as explained in the summary [3, §24], unless γ is elliptic in M over ∞, it
is contained in a smaller Levi at ∞, so the descent formula to the smaller Levi shows that
ĨGM,∞(γ, ψ) vanishes. The main result of [5] also gives this.

Computation of Igeom,χ0

Next, we compute the geometric side. Let Πdisc(λ) be a regular discrete series L-packet for
G∞ consistent with χ and f ∈ C∞c (AG,∞/AG,rat). We again try to mimic Arthur’s arguments.
Cuspidality of ηλ,f and the splitting formulas reduce the geometric side to

Igeom,χ0(ηλ,f ⊗ ϕ∞) =
∑
M∈L

|ΩM,F |
|ΩG,F |

∑
γ∈[M(Q)]M,S

aM(S, γ)IGM(γR, ηλ,f )O
M
γ (ϕ∞M).

Define for ψ ∈ C∞c (G∞, χ):

ΦM(γR, ψ) = |DM(γ)|−1/2ĨGM(γ, ψ),

By the previous subsubsection, we can without loss of generality set ΦM(γ, ψ) = 0 if M is
not cuspidal over R

For L-packet Πdisc(λ) and elliptic regular γ ∈M∞,

ΦM(γ, λ) = (−1)q(G)|DG
M |1/2

∑
π∈Πdisc(λ)

Θπ(γ).

Arthur shows that ΦM (γ, λ) can be extended by continuity to all elements in elliptic maximal
tori. Define it to be 0 for other elements to extend it to all of M∞; in particular, to
non-semisimple elements.

Next, we need a defintion:

Definition. Let χ be a character on AG,∞. A cuspidal function ψ ∈ C∞c (G∞, χ) is stable
cuspidal if its trace is supported on discrete series and constant on L-packets.

Note that Euler-Poincaré functions are stable cuspidal. Part of the main result of [15]
gives that Euler-Poincaré functions are also K-finite.

As some notation for the next step, if H is a reductive group over R, let H be the compact
form of H. Any Haar measure on H comes from a differential form on HC and therefore
induces a Haar measure on H. Then:
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Theorem 3.3.4.1 ([4, thm 5.1] slightly rephrased). Let χ be a character on AG,∞ and
ϕ ∈ C∞c (G∞, χ) be stable cuspidal and K-finite. Then for any γ ∈M∞

ΦM(γ, ϕ) = (−1)dim(AM/AG)ν(IMγ )−1
∑

λχ−1∈X∗C(T )
λ matches χ

ΦM(γ, λ) trλ∨(ϕ) :

where ν(Mγ) = (−1)q(G) vol(ĪMγ,∞/AIMγ ,∞)|Ω(BK
IMγ,∞

)|−1.

Note that there is a correction here changing AIMγ ,rat to AIMγ ,∞ and using ĨGM instead of

IGM . (see the end of [27, §7]).
Since lemma 3.1 gives that without loss of generality, ηλ,f = fηλ, we recall the following

rephrasing of a fact used in deriving the invariant trace formula:

Lemma 3.3.4.2. Let f = f1 ◦HG∞ be a function on G∞/AG,rat where f1 is a function on
C∞c (AG,∞/AG,rat). Let ϕ be any function on G∞ compactly supported mod center. Then for
any γ ∈ G∞ and Levi M

ĨGM(γ, fϕ) = f(γ)ĨGM(ϕ).

Proof. Remark 4 after theorems 23.2 and 23.3 in [3] gives that ĨGM(γ, fϕ) only depends on
the values of fϕ on g ∈ G∞ with the same image as γ under HG∞ . On this set f is constant
so the result follows.

In particular, keeping in mind our normalization for EP-functions, for any γ ∈ G∞:

|Πdisc(λ)|ΦM(γ, ηλ,f ) = f(γ)ΦM(γ, ηλ) = (−1)dim(AM/AG)f(γ)ν(Mγ)
−1ΦM(γ, λ),

so following the computation in [4] section 6 gives:

Corollary 3.3.4.3. Let λ0 be weight consistent with χ0 and f ∈ C∞c (AG,∞/AG,rat). Then

|Πdisc(λ0)|Igeom,χ0(ηλ0,f ⊗ ϕ∞) =
∑

M∈L cusp

(−1)dim(AM/AG) |ΩM,F |
|ΩG,F |

×
∑

γ∈[M(F )]ss

χ(IMγ )|ιM(γ)|−1f(γ)ΦM(γ, λ0)OM
γ (ϕ∞M)

where

χ(IMγ ) =
vol(IMγ (F )\IMγ (A)/AIMγ ,rat)

vol(ĪMγ,∞/AIMγ ,∞)
|Ω(BK

IMγ,∞
)|

and ιM(γ) is the set of connected components of Mγ that have an F -point.

As explained on the top of page 19 in [77], we can actually set

χ(IMγ ) = µ̄can,EP (IMγ (F )\IMγ (A)/AIMγ ,rat)

by picking measures appropriately on IMγ . Note a key change from Arthur’s formula: the
Levi’s that appear are those for which AM,rat/AG,rat = AM,∞/AG,∞ instead of just those
satisfying Arthur’s notion of cuspidal.
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Computation of I ′geom,χ

It remains to compute I ′geom,χ(ηλ,f ⊗ ϕ∞) by averaging. To make the final formula more
elegant, without loss of generality assume λ0 is consistent with χ. We have

I ′geom,χ(ηλ0,f ⊗ ϕ∞) =
1

vol(XF\X/AG,rat)

∫
XF \X/AG,rat

χ(z)Igeom,χ0((ϕπ0,f ⊗ ϕ∞)z) dz.

Without loss of generality, taking ηλ0,f = fηλ0 by lemma 3.1:

(ηλ0,f ⊗ ϕ∞)z = (ηλ0,f )z∞ ⊗ ϕ∞z∞ = ω−1
λ0

(z∞)ηλ0,fz∞ ⊗ ϕ
∞
z∞

where ωλ0 is the central character associated to λ0. Here, ϕλ0,fza is still a generalized
Euler-Poincaré function so we substitute in corollary 3.3.4.3. The terms that change are

f(γ)ΦM(γ, λ0) 7→ ω−1
λ0

(z∞)fz∞(γ)ΦM(γ, λ0)

and
OM
γ (ϕ∞M) 7→ OM

γ ((ϕ∞z∞)M).

By our simplifying assumptions, the ω−1
λ0

(z∞) can be pulled out and partially cancelled against
the χ(z). Finally, we use proposition 3.3.3.5:

vol(X1
∞)Ispec,χ(ηλ0 ⊗ ϕ∞) =

1

f̂(0)
I ′spec,χ0

(ηλ0,f ⊗ ϕ∞) =
1

f̂(0)
I ′geom,χ0

(ηλ0,f ⊗ ϕ∞),

thereby getting the full formula we will use later:

Proposition 3.3.4.4. Let Πdisc(λ0) be a regular discrete series L-packet of G∞ with weight ξ0

and central character χ on X, f a function pulled back through HG∞ from C∞c (AG,∞/AG,rat),

and ϕ∞1 ∈H (G∞, χ0) such that (ϕ∞1)χ∞ = ϕ∞. Then we have geometric expansion

vol(X1
∞)|Πdisc(λ0)|Ispec,χ(ηλ0 ⊗ ϕ∞) =

1

f̂(0)

1

vol(XF\X/AG,rat)

∫
XF \X/AG,rat

χ(z∞)
∑

M∈L cusp

(−1)dim(AM/AG) |ΩM,F |
|ΩG,F |

×
∑

γ∈[M(F )]ss

χ(IMγ )|ιM(γ)|−1f(z∞γ)ΦM(γ, λ0)OM
γ ((ϕ∞1

z∞ )M) dz

where

χ(IMγ ) =
vol(IMγ (F )\IMγ (A)/AIMγ ,rat)

vol(ĪMγ,∞/AIMγ ,∞)
|Ω(BK

IMγ,∞
)|

and ιM(γ) is the set of connected components of Mγ that have an F -point.
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Further Simplification

Mimicking some simplifications from [40], the integral can be evaluated to remove f and
ϕ1-dependence. This version of the formula and the method of its derivation are useful for
some bounds later.

XF acts on [M(F )]ss by multiplication. Let the set of orbits be [M(F )]ssX . For any
γ, let StabX(γ) be the stabilizer of γ under this action. This is finite by using a faithful
representation (which always induces a finite-to-one map on semisimple conjugacy classes)
to reduce to the case G = GLn. Here conjugacy classes are just sets of eigenvalues and the
X-action just scales each eigenvalue. Note also that since X is central, ι and ν are constant
on X-orbits.

We can therefore move the integral into the inner sum over γ and break it up as∑
γ∈[M(F )]ssX

χ(IMγ )|ιM(γ)|−1| StabX(γ)|−1

×
∑
x∈XF

∫
XF \X/AG,rat

χ(z∞)fz∞(xγ)ΦM(xγ, λ0)OM
γ ((ϕ∞1

xz∞)M) dz.

Since χ is defined to be trivial on rational points, the innermost sum simplifies to

∑
x∈XF

∫
XF \X/AG,rat

χ(z∞x)f(z∞xγ)ω−1
λ0

(x)ΦM(γ, λ0)OM
γ ((ϕ∞1

xz∞)M) dz

= ΦM(γ, λ0)

(∫
X∞/AG,rat

f(zγ) dz

)(∫
X∞

χ(z)OM
γ ((ϕ∞1

z )M) dz

)
.

Recalling

(ϕ∞1
z )M = δPM (γ∞)1/2

∫
K∞

∫
NM (A∞)

ϕ∞1(k−1γ∞znk) dn dk,

a bunch of Fubini’s steps gives that the non-Archimedean integral is OM
γ (((ϕ∞1)χ)M) =

OM
γ ((ϕ∞)M) where we recall

ϕχ(g) =

∫
X∞

ϕ(gz)χ(z) dz

for any ϕ.
For the Archimedean integral, let the G∞ = G1

∞ × AG,∞ components of any g be
g1 × ga. Then f(zγ) = f(zaγa). This factorization gives a corresponding one X∞/AG,rat =
X1
∞ × AG,∞/AG,rat. Then the integral becomes∫

X1
∞

∫
AG,∞/AG,rat

f(zaγa) dza dz1 = vol(X1
∞)f̂(0).
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Putting it all together:

|Πdisc(λ0)|I ′geom,χ(ηλ0,f ⊗ ϕ∞) =
vol(X1

∞)f̂(0)

vol(XF\X/AG,rat)

∑
M∈L cusp

(−1)dim(AM/AG) |ΩM,F |
|ΩG,F |

×
∑

γ∈[M(F )]ssX

χ(IMγ )|ιM(γ)|−1| StabX(γ)|−1ΦM(γ, λ0)OM
γ ((ϕ∞)M).

Using proposition 3.3.3.5 as before finally gives:

Proposition 3.3.4.5. Let Πdisc(λ0) be a regular discrete series L-packet of G∞ with weight
ξ0 and central character χ on X. Then, for any ϕ∞ ∈ H (G∞, χ∞), we have geometric
expansion:

Ispec,χ(ηλ0 ⊗ ϕ∞) =
1

|Πdisc(λ0)|
1

vol(XF\X/AG,rat)

∑
M∈L cusp

(−1)dim(AM/AG) |ΩM,F |
|ΩG,F |∑

γ∈[M(F )]ssX

χ(IMγ )|ιM(γ)|−1| StabX(γ)|−1ΦM(γ, λ0)OM
γ ((ϕ∞)M).

The dimensions on both sides are [G∞][X∞]−1[X1
∞]−1 = [G∞][X/AG,∞]−1. We state again

that the Levi’s that appear are those for which AM,rat/AG,rat = AM,∞/AG,∞ instead of just
those satisfying Arthur’s notion of cuspidal.

3.3.5 Irregular Discrete Series

When λ0 is not regular, trπ∞ ηλ0 does not simply test if π∞ is in a given L-packet. However,
it can be interpreted as a cohomology as in [4, §2]. While we will not use this more general
result, we state it here in case it is useful in other applications.

Even with irregular λ0, we still have

|Πdisc(λ0)|Ispec,χ(ηλ0 ⊗ ϕ∞) =
1

vol(X1
∞)

∑
π∈ARdisc(G,χ)

mdisc(π) trπ∞(ηλ0) trπ∞(ϕ∞).

The Euler-Poincaré function ηλ0 always satisfies trπ∞(ηλ0) = χλ0(π∞) where χλ0 is the Euler
characteristic

χλ0(π∞) =
∑
q

(−1)q dimHq(g(R), K∞, π∞ ⊗ πλ0).

Here, Hq is the (g, K)-cohomology: K∞ is a maximal compact of G∞ and πλ0 is the finite
dimensional complex representation with highest weight λ0. The equality holds in general
because it holds on basic representations which generate the Grothendieck group.

In particular, if we define the L2-Lefschetz number

Lλ0(ϕ∞) =
∑

π∈ARdisc(G,χ)

mdisc(π)χλ0(π∞) trπ∞(ϕ∞),
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we get

|Πdisc(λ0)|Ispec,χ(ηλ0 ⊗ ϕ∞) =
1

vol(X1
∞)

Lλ0(ϕ∞).

Combining with the calculations before proposition 3.3.4.5 gives the formula:

Corollary 3.3.5.1. Let π0 be a possibly irregular discrete series representation of G∞ with
weight ξ0 matching character χ on X. Then, for any ϕ∞ ∈H (G∞, χ∞):

Lλ0(ϕ∞) =
vol(X1

∞)

vol(XF\X/AG,rat)

∑
M∈L cusp

(−1)dim(AM/AG) |ΩM,F |
|ΩG,F |

×
∑

γ∈[M(F )]ssX

χ(IMγ )|ιM(γ)|−1| StabX(γ)|−1ΦM(γ, λ0)OM
γ ((ϕ∞)M).

The dimensions on both sides are [G∞][X∞]−1.
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Chapter 4

Application to Equidistribution

4.1 Trace Formula Computation Set-Up

Now we can finally set up our main computation.

4.1.1 Conditions on G and Defining Families

Let G be a reductive group over a number field F with discrete series at ∞. By instead
looking at ResFQ G, we could without loss of generality take F = Q since ResFQ G(Q) = G(F )

and ResFQ G(A) = G(AF ) as topological groups. Fix central character datum (X, χ). Assume
G is connected.

Let:

• π0 be a regular real discrete series representation for G with weight ξ0 and character χ
on AG,∞.

• ϕπ0 be its pseudocoefficient.

• S0 be a finite set of finite places and choose ϕS0 ∈H (GS0 , χS0).

• S1 be another finite set of finite places disjoint from S0 such that χS1 is unramfied.

• S = S0 t S1.

• US,∞ ⊂ G(AS,∞) an open compact subset on which χS,∞ is trivial.

• Sbad is a set of places that S1 needs to be disjoint from that will be defined in section
4.3.

Define a family of automorphic representations F in ARdisc(G,χ) through discrete multi-
plicities

aF(π) = mdisc(π)δπ0,π∞ dim(πS,∞)U
S,∞ 1̂KS1

(πS1)

vol(KS1)
.
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Note that the second-to-last term is just checking if πS1 is unramified. The coefficient aF(π)
is dimensionless.

Define function
1US,∞,χ = vol(US,∞ ∩ XS,∞)−1(1US,∞)χ.

This is normalized so that 1US,∞,χ(1) = 1. For any test function ϕS1 ∈ Hur(GS1 , χS1) let

ϕ = ϕπ0,f,ϕS0
= ϕπ0 ⊗ ϕ∞ = ϕπ0 ⊗ 1US,∞,χ ⊗ ϕS0 ⊗ ϕS1

where as before, ϕπ is the pseudocoefficient for π. Test function ϕ will momentarily be shown
to pick out the family aF .

Intuitively, the test function is

• putting weight restrictions on the infinite place,

• putting level restrictions on finite places away from S,

• forcing S1 parts to be unramified,

• counting possible components at S according to test function ϕS with ϕS1 unramified.

To make all the traces well-defined, we fix Haar measures on factors of G(AF ):

• Use the normalization from [79, §6.6] of Gross’ canonical measure from [28] on GS and
the XS.

• Use Euler-Poincaré measure on G∞, AG,∞, AG,rat, and X1
∞.

This determines all appropriate Plancherel measures. We call the product measure µcan,EP

and the volume of the adelic quotient under it the modified Tamagawa number τ ′(G).

4.1.2 Spectral Side

We can now directly compute the spectral expansion of Ispec,χ(ϕ):

Corollary 4.1.2.1. Let π0 be a regular discrete series representation of G with weight ξ0.
Then:

IGspec,χ(ϕπ0 ⊗ ϕ∞) = µ̄can(US,∞
X )

∑
π∈ARdisc(G,χ)

aF(π)ϕ̂S(π)

where US,∞
X = US,∞/XS,∞ ∩ US,∞.

Proof. By proposition 3.3.3.5 and using that vol(X1
∞) = 1,

IGspec,χ(ϕπ0 ⊗ ϕ∞) =
1

vol(X1
∞)

∑
π∈ARdisc(G,χ)

mdisc(π)δπ0,π∞ trπ∞(ϕ∞).
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Factoring the finite trace into its S0, S1 and other components gives that

trπ∞(ϕ∞) = ϕ̂S0(πS0)
1̂KS1

(πS1)

vol(KS1)
ϕ̂S1(π)µcan(US,∞

X ) dim(πS,∞)U
S,∞
,

so we are done.

4.1.3 Geomteric Side Outline

We get a geometric expansion Ispec,χ(ϕπ0 ⊗ϕ∞) by using the hyperendoscopy formula (propo-
sition 3.1.2.3). Since Euler-Poincaré functions and pseudocoefficients have the same stable
orbital integrals:

IGspec,χ(ϕπ0 ⊗ ϕ∞)

= IGspec,χ(ηλ0 ⊗ ϕ∞) +
∑

H∈HEell(G)

ι(G,H)IHspec,χH
((ηξ0 − ϕπ∞)H ⊗ (ϕ∞)H).

Simplifying and bounding this takes a few steps:

1. Notice that transfers (ηξ0 − ϕπ∞)H through hyperendoscopic paths can be chosen to be
linear combinations of regular Euler-Poincaré functions.

2. Substitute in proposition 3.3.4.4 for each hyperendoscopic group.

3. The result will have a main term consisting of central elements of G and an error term
consisting of non-central elements, Levi terms, and terms from the hyperendoscopic
groups.

4. Use a Poisson summation argument to compute the main term.

5. Bound the error term using bounds on non-Archimedean transfers and small general-
izations of the results of [79].

For sanity checks later, note that both sides of our computation have dimension [G∞][X/AG,∞]−1.

4.2 Geometric Side Details

We are eventually going to use the hyperendoscopic formula with f1 of the form

f1 = ηξ ⊗ ϕ∞.

All transfers appearing will have linear combinations of Euler-Poincaré functions as infinite
parts so we only need to analyze the geometric side with test functions of the form ηξ ⊗ ϕ∞.
This is similar to what was done in [79].



CHAPTER 4. APPLICATION TO EQUIDISTRIBUTION 76

4.2.1 Original Bounds

Recall the notation and conditions from 4.1.1. We state the main bounds from [79] for
reference. G determines a finite set of places Sbad′,G in a complicated, uncontrolled manner.
We assume three conditions:

• S does not intersect Sbad′,G.

• G is cuspidal.

• X is trivial.

Then we get the following bounds (changing to our normalization of EP-functions):

Theorem 4.2.1.1 (Weight-aspect bound [79, thm 9.19]). Consider the case where ZG = 1.
Let fS1 ∈H ur(G(FS1))≤κ such that ‖fS1‖∞ ≤ 1. Let ξ be a dominant weight. Then

|Πdisc(λ0)|
τ ′(G) dim(ξ)µ̂pl

S0
(ϕ̂S0)

Ispec(ηξ ⊗ ϕ∞) = µ̂pl
S1

(f̂S1) +OG,ϕS0
(qAwt+Bwtκ
S1

m(ξ)−Cwt)

for some constants Awt, Bwt, Cwt depending only on G.

Theorem 4.2.1.2 (Level-aspect bound [79, thm 9.16]). Consider the case where US,∞ is a
level subgroup KS,∞(n) for some ideal n relatively prime to Sbad′,G. Let fS1 ∈H ur(G(FS1))≤κ

such that ‖fS1‖∞ ≤ 1. Let ξ be a dominant weight. Then, if N(n) is large enough,

|Πdisc(λ0)|
τ ′(G) dim(ξ)µ̂pl

S0
(ϕ̂S0)

Ispec(ηξ ⊗ ϕ∞) = µ̂pl
S1

(f̂S1) +OG,ϕS0
(qAlv+Blvκ
S1

N(n)−Clv)

for some constants Alv, Blv, Clv depending only on G.

For clarity later, we emphasize that the implied constants in the big O depend on G
and ϕS0 . As noted in errata on the authors’ websites, there is a mistake in [79, §7] so the
alternate argument in [79, B] must be used for the orbital integral bounds that go into the
results. This alternate argument does not provide any control on the constants or Sbad′ .

Clarifying a minor detail

As another note, there is a small detail assumed in the bound for aγ,M used in proving
the weight aspect bound: corollary 6.16 used to bound the L function in the formula for
µ̄can,EP (G(F )\G(A)/AG,rat) only applies to groups with anisotropic center. However 6.17 uses
it for centralizers of elements and these can have arbitrary center. We can use the following
lemma to get an alternate bound for µ̄can,EP (G(F )\G(A)/AG,rat) in general in terms of the
bound for groups with anisotropic center:
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Lemma 4.2.1.3. Let G be a connected reductive group over F and G′ = G/AG. Then

µ̄can,EP (G(F )\G(A)/AG,rat)

= µ̄can,EP (G′(F )\G′(A))µ̄can,EP (AG(F )\AG(A)/AAG,rat).

Note that the factor µcan,EP (AG(F )\AG(A)/AAG,rat) is a constant depending only on the field
F and the dimension of AG.

Proof. If G is quasisplit at finite v, there is a special model G over Fv. Then G(Ov)∩AG(Fv) is
a maximal (a bigger subgroup times G(Ov) is otherwise a bigger compact) connected compact
subgroup and therefore corresponds to a model AG consistent with the inclusion. Consider
the quotient model G/AG. By Lang’s theorem, G′(kv) = G(kv)/AG(kv), so by Hensel’s lemma
and smoothness of quotient maps by smooth subgroups, G/AG(Ov) = G(Ov)/AG(Ov). By
Hilbert 90, G′(Fv) = G(Fv)/AG(Fv) for any local Fv. This gives that G′(A) = G(A)/AG(A)
implying G′(A)1 = G′(A) = G(A)1/AG(A)1.

Using G′(F ) = G(F )/AG(F ), we then get an isomorphism of topological spaces

G(F )\G(A)1 ∼= G′(F )\G′(A)× AG(F )\AG(A)1.

Next, µcan,EP on G′(A) and G(A) induces a measure µA on AG(A). By the above factorization,
it suffices to show that this equals µcan,EP

A place by place. At the infinite place, they are the
same by definition (see [79, §6.5]).

If G is quasisplit at finite v, then µcan is characterized by giving any special subgroup
volume 1. As before, G/AG(Ov) = G(Ov)/AG(Ov). In particular, G/AG(Ov) also needs to be
maximal connected so it is special. Since these are all special subgroups, this forces µA = µcan

A

at v.
If G is not quasisplit at v, then µcan is determined by the transfer of a top-form ωGqs

from Gqs (since the normalization factor Λ in [79] depends only on the motive for G which
depends only on the quasisplit form of G). The isomorphism Gk

∼−→ Gqs

k
carries (AG)k to

(AGqs)k since centers are identified between inner forms. This means that G′qs = Gqs/AGqs

through the isomorphism over k. By the previous paragraph, the defining top-forms for G′qs

and AGqs wedge together to that of Gqs. Therefore, this same property holds for G and AG,
which is what we want.

The previous lemma is implicit in later sections of [79] but not explained in detail.

4.2.2 New Bounds Set-up

For our use, we will need a generalization of these bounds that works when ZG 6= 1 and
when G is not necessarily cuspidal. We will also need the big O, choices of Sbad,H , and the
constants A,B,C to be uniform over all groups H appearing in hyperendoscopic paths of G.
The final statement requires some notation and will be in Theorem 4.3.1.1.
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Let ξ be a dominant weight and choose central character datum (X, χ) where AG,∞ ⊆ X
and χ is consistent with ξ. Let χ0 be its restriction to AG,rat. We start similar to [77, thm
4.11] and [79, thm 9.19], instead trying to apply proposition 3.3.4.4. This requires making
some choices:

• a cutoff function f ∈ C∞c (AG,∞/AG,rat),

• a ϕ∞1 ∈H (G∞, χ0) such that (ϕ∞1)χ = ϕ∞,

• lots of Haar measures: fix them to be µcan×EP whenever necessary.

We need to bound the term for all endoscopic groups. Considering all the previous lemmas
on transfers, we are interested in the case where:

• ϕ and χ are unramified outside of S0 and ∞.

• χ extends to a character on Gv.

• (ϕS,∞)1 can be chosen to be vol(XS,∞ ∩ US,∞)−11US,∞ . For endoscopic groups we will
without loss of generality expand S0 so that US,∞ = KS,∞. Then this follows from the
computation of transfers in section 3.2.5.

• ϕs ∈H (Gs, Ks, χs)
≤κ and ‖χsϕs‖∞ ≤ 1 for all s ∈ S1.

We choose a specific ϕ1
s for s ∈ S1 according to the following lemma.

Lemma 4.2.2.1. Pick unramified character datum (Xv, χv) such that χv extends to a char-
acter on G. Let ϕv ∈H (Gv, Kv, χv)

≤κ such that ‖χvϕv‖∞ ≤ 1. Fix the canonical measure
on Xv so that vol(K ∩ Xv) = 1. Then there exists ϕ1

v ∈H (Gv, Kv)
≤κ such that (ϕ1

v)χv = ϕv
and ‖χvϕ1

v‖∞ ≤ 1.

Proof. Let

ϕv =
∑

λ∈X∗(A)

aλτλ.

Let AXv be the split part of Xv. Then for any ζ ∈ X∗(AXv), aλ+ζ = χ(ζ($))−1aλ. For each
λ such that aλ 6= 0, there is a representative λ′ of its class [λ] ∈ X∗(A)/X∗(AXv) such that
‖λ′‖ ≤ κ. Let Λ be the set of all these chosen representatives. Then

ϕ1
v = ϕv =

∑
λ∈Λ

aλτλ

satisfies (ϕ1
v)χv = ϕv The L∞ bound on ϕv gives that |χv(λ($))aλ| = 1 implying the needed

bound on ϕ1
v.
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Note. There is a small technicality here. The original χv chosen on the subgroup of Gv may
not necessarily extend to Gv. However, section 3.1.3 still gives that χH,v on any Hv is a
character λ that extends to Hv times χv. Since ZGder is finite, χv can be factored as a unitary
character times a character on Gv. Since the bounds here are only up to absolute value, this
does not matter.

Beginning the computation:

|Πdisc(λ0)|
τ ′(G) dim(ξ)

Ispec,χ(ηξ ⊗ ϕ∞) =
1

f̂(0)

1

vol(XF\X/AG,rat)

∫
XF \X/AG,rat

χ(z∞)

×
∑

M∈L cusp

∑
γ∈[M(F )]ss

aM,γ|ιM(γ)|−1f(z∞γ)
ΦM(γ, ξ)

dim ξ
OM
γ ((ϕ∞1

z∞ )M) dz.

Here

aM,γ = τ ′(G)−1 |ΩM,F |
|ΩG,F |

µcan,EP (IMγ (F )\IMγ (AF )/AIMγ ,Q)

µEP (ĪMγ,∞/AIMγ ,∞)

(see the top of page 19 in [77]).
This double sum breaks into three pieces: M = G and γ ∈ ZG, M = G otherwise, and

M 6= G. For M = G, ΦM(γ, ξ) = tr ξ(γ∞). For central γ, the centralizer is everything so
|ιG(γ)| = 1. In addition, the measure on the quotient is just counting measure on a point so
OM
γ (ϕ∞1

z∞ ) = ϕ∞1(z∞γ). Finally,

aG,γ = τ ′(G)−1µ
can,EP (G(F )\G(AF )/AG,rat)

µEP (Ḡ∞/AG,∞)
= µEP (Ḡ∞/AG,∞)−1 = 1

since existence of a discrete series requires that the last group is compact and therefore has
EP-measure 1.This leaves us with

1

f̂(0)

1

vol(XF\X/AG,rat)

∫
XF \X/AG,rat

χ(z∞)
∑

γ∈ZG(F )

ϕ∞1(γ)f(zγ)
tr ξ(z∞γ)

dim ξ
dz.

Next, note that by a Fourier inversion formula

tr ξ(γ)

dim ξ
= ω−1

ξ (γ) = ωξ(z∞)ω−1
ξ (z∞γ) = ωξ(z∞)ηξ(z∞γ)ηξ(1)−1

where ωξ is the central character for ξ. Therefore, the term inside the sum is simply
ωξ(z∞)f(zγ)ϕ1(zγ) where ϕ1 = ηξϕ

∞1 .
Combining the ωξ(z∞) factor with the χ, we get a main term

1

f̂(0)ηξ(1)

1

vol(XF\X/AG,rat)

∫
XF \X/AG,rat

χ(z)
∑

γ∈ZG(F )

f(z∞γ)ϕ1(zγ) dz (4.1)
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The leftovers form an error term

1

f̂(0)

1

vol(XF\X/AG,rat)

∫
XF \X/AG,rat

χ(z∞)

×

 ∑
γ∈[G(F )]ss

γ /∈ZG

aG,γ|ιG(γ)|−1f(z∞γ)
tr ξ(γ∞)

dim ξ
OG
z∞γ(ϕ

∞1)

+
∑

M∈L cusp

M 6=G

∑
γ∈[M(F )]ss

aM,γ|ιM(γ)|−1f(z∞γ)
ΦM(γ, ξ)

dim ξ
OM
z∞γ(ϕ

∞1
M )

 dz (4.2)

We compute these separately since they require pretty different ideas to understand.

4.2.3 The Main Term

Central Fourier transforms

This section uses material on Fourier analysis on non-abelian groups. See [22] chapter 7 for a
good reference. That p-adic reductive groups are type I is a classic result from [9].

The main term initially simplifies in terms of the Fourier transform f̄S of fS with respect
to (ZG)S. To actually get a reasonable interpretation, we need to relate f̄S to f̂S. Therefore,
for this subsection only, redefine G = GS, Z = (ZG)S and consider arbitrary f ∈ H(GS).
Note that the following results probably hold for general type I unimodular groups with an
appropriate modification of H(G) to a more complicated function space; the case of p-adic
groups just makes the analytic issues a lot nicer.

There is a map from P : Ĝ→ ẐG taking π to its central character ωπ.

Lemma 4.2.3.1. P is measurable with respect to the usual sigma algebras on Ĝ and Ẑ.

Proof. Fix a Hilbert space Hi of dimension i for i ∈ N or countable infinity. Let Π be the set
of irreducible unitary representations of G on some Hi. Consider the functions on Π defined
by π 7→ 〈π(g)v, w〉 for g ∈ G and v, w in the appropriate Hilbert space. Since G is type

I, the σ-algebra on Ĝ is the quotient of the smallest one on Π that makes these functions
continuous. An analogous statement holds for Ẑ.

Then, since central elements act by central characters, the functions defined by z ∈ Z on
Ĝ are exactly the pullbacks by P of the analogous functions on Ẑ.

Denote the Fourier transform of f |ZG by f̄ .

Lemma 4.2.3.2. For any functions ϕ ∈ H(Ẑ) and f ∈ H(G)∫
Ẑ

ϕf̄ dµpl =

∫
Ĝ

(ϕ ◦ P )f̂ dµpl.
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Proof. Using both Fourier inversion theorems, for any z ∈ Z∫
Ẑ

ω(z)f̄(ω) dω = f(z) =

∫
Ĝ

ωπ(z)f̂(π) dπ.

For a general ϕ∫
Ĝ

ϕ(ωπ)f̂(π) dπ =

∫
Ĝ

∫
Z

ϕ̄(z)ω−1
π (z)f̂(π) dz dπ

=

∫
Z

ϕ̄(z)

∫
Ĝ

ω−1
π (z)f̂(π) dπ dz

=

∫
Z

ϕ̄(z)

∫
Ẑ

ω−1(z)f̄(ω) dω dz

=

∫
Ẑ

∫
Z

ϕ̄(z)ω−1(z)f̄(ω) dz dω =

∫
Ẑ

ϕ(ω)f̄(ω) dω

so we are done.

Intuitively, we can therefore think of f̄(ω) as an average of f̂ over representations with

central character ω. To make this notion precise, push f̂ dµpl forward to a measure µf̂ on ẐG.

Lemma 4.2.3.3. µf̂ is absolutely continuous with respect to Haar measure on ẐG.

Proof. Let X ⊂ Ẑ have measure 0. By σ-finiteness, outer regularity, and continuity of f̄ , for
any ε > 0, X is contained in a union Xε of countably many compact open sets such that∫
Xε
f̄dµpl < ε. Then

µf̂ (X) ≤ µf̂ (Xε) =

∫
Ĝ

1P−1(Xε)f̂ dµ
pl =

∫
Ẑ

1Xε f̄ dµ
pl < ε.

Since this is true for every ε > 0, µf̂ (X) = 0, so we are done.

Therefore we can define:

Definition. The conditional Plancherel expectation is the Radon-Nikodym derivative

Epl(f̂ |ω) :=
dµf̂

dµpl
ZG

(ω).

This is defined up to a set of measure 0. However, note that the measures Epl(f̂ |ω) dµpl

and f̄dµpl are the same on Ẑ so:

Corollary 4.2.3.4. Epl(f̂ |ω) can be taken to be continuous. If so Epl(f̂ |ω) = f̄(ω).

We borrow the notation of conditional expectation from probability theory to emphasize
first, the same definition in terms of Radon-Nikodym derivatives and second, the analogous
intuition as an average over the measure-zero set of representations with central character ω.
Beware that under this analogy, Epl is an unnormalized expectation since Epl(f̂ |ω) = f̄ and
the operation f 7→ f̄ multiplies in a factor of [Z] to the dimensions of f .
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Main term computation

Proposition 4.2.3.5. The main term (4.1) simplifies to

1

|X|
µ

vol(Z ′S,∞/L)

∑
ωS∈ẐS,L,ξ,χ

Epl(ϕ̂S|ωS),

where Z ′S,∞ = ZGS,∞/AG,rat, L = ZG(F ) ∩ US,∞, and ẐS,L,ξ,χ is the set of ωS ∈ ẐS such that
ωS|L = ωξ|L and ωS|XS = χS. The normalizing factors are:

• µ = µZ′∞/µ
EP
Z′∞

where µZ′∞ is the measure chosen on Z ′∞ to compute the other terms.

• X is the finite group XS,∞/XS,∞ ∩ ZG(F )ZUS,∞ where the closure is taken in ZS,∞.

For shorthand, we denote this sum E(ϕ̂S|ωξ, L, χS).

Proof. Start with (4.1):

1

f̂(0)ηξ(1)

1

vol(XF\X/AG,rat)

∫
XF \X/AG,rat

χ(z)
∑

γ∈ZG(F )

f(z∞γ)ϕ1(zγ) dz.

ZG(F ) is cocompact and discrete inside Z1 = ZG(A)/AG,rat. Then by Poisson summation,
the inner sum becomes

1

vol(Z/ZG(F ))

∑
ω∈Ẑ1

ω(ZG(F ))=1

ω−1(z)fϕ1(ω)

since if ϕz : x 7→ ϕ(zx), then ϕ̄z(ω) = ω−1(z)ϕ̄(ω). Integrating over z, all terms with ω 6= χ
vanish so (4.1) becomes

1

f̂(0)

1

vol(Z1/ZG(F ))

∑
ω∈Ẑ1

ω(ZG(F ))=1
ω|X=χ

fϕ(ω).

Here we use that ϕ∞ has Fourier transforms on any ω∞ in the sum and ϕ∞ = ϕ∞1 on these
characters. We next break this up into local components to make it more interpretable. First,

ϕ̄(ω) = fηξ(ω∞)ϕ̄S(ωS)ϕ̄S,∞(ωS,∞)

after choosing Haar measures on the components of Z1. Let ωξ be the central character
associated to ξ. For any test function ψ compactly supported on Z ′∞ = ZG,∞/AG,rat, by
lemma 4.2.3.2 applied to G∞/AG,rat,∫

Ẑ′∞

ψ(ω)fηξ(ω) dωpl =

∫
(G∞/AG,rat)∨

ψ(ωπ)f̂ηξ(π) dπpl =∫
Â

∫
Ĝ1
∞

ψ(ωωπ)f̂ηξ(π ⊗ ω) dπpl dωpl = vol
Ĝ1
∞

(Πdisc(ξ))

∫
Â

ψ(ωξω)f̂(ω) dωpl
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where A = AG,∞/AG,rat. We want to change the integral to be over Ẑ ′∞. The measure

chosen on on Z ′∞ induces Plancherel measure on Ẑ ′∞ which restricts to a measure on Â lying
co-discretely inside. This corresponds to the quotient measure on A coming from setting
vol(Z1

∞) = 1. Therefore, if we had EP-measure on Z ′∞, our fixed EP-measure on Â would

have matched that on Ẑ ′∞. The choices of measures we made also fix EP-measure on G1
∞ so

the volume factor becomes 1.
In general, let µ = µZ′∞/µ

EP
Z′∞

. Then the identity finally simplifies to∫
Ẑ′∞

ψ(ω)fηξ(ω) dωpl = µ

∫
Ẑ′∞

ψ(ωξω)1Â(ω)f̂(ω) dωpl

for any test function ψ. Therefore we get

fϕ∞(ω) = µδω|
Z1∞

=ωξ|Z1∞
f̂(ωω−1

ξ ).

In our case AG,∞ ⊆ X∞ so for ω|X∞ = ωξ|X∞ , this simplifies to

fϕ∞(ω) = µδω∞=ωξ f̂(0).

Next, let ZUS,∞ = US,∞ ∩ Z1. Since it is an integral over a subgroup

ϕ̄S,∞(ωS,∞) =

{
vol(ZUS,∞) ωS,∞|Z

US,∞
= 1

0 else
.

In total, cancelling the f̂(0) factors, the terms that do not vanish are

µ vol(ZUS,∞)

vol(Z1/ZG(F ))
ϕ̄S(ωS)

for every character ω satisfying

1. ω(ZG(F )) = 1,

2. ω|X = χ,

3. ω∞ = ωξ,

4. ωS,∞(ZUS,∞) = 1.

We try to characterize such ω. Consider ω = ω∞ωSω
S,∞. Let L = ZG(F ) ∩ US,∞. These

conditions require that ωSω∞ = 1 on L and that ωSχ
−1
S = 1 on XS. Given ωS satisfying this,

the conditions determine ωS,∞ = ω−1
S ω−1

∞ on ZG(F ). Since the determined ωS,∞ is trivial on

ZG(F ) ∩ US,∞, it extends to a continuous character on ZG(F ) ⊆ ZS,∞. The character ωS,∞

is also determined on US,∞ and XS,∞ so in total, the possible choices of ωS,∞ are those that
restrict to a particular value on ES,∞ = ZG(F )ZUS,∞X

S,∞.



CHAPTER 4. APPLICATION TO EQUIDISTRIBUTION 84

Since quotient maps of groups are open, ZUS,∞ is open mod ZG(F ). Therefore, since
ZS,∞/ZG(F ) is compact, ZS,∞/ES,∞ is a finite group. Therefore the choices are in bijection
with ZS,∞/ES,∞.

By comparing US,∞ times a fundamental domain for Z1/ZG(F ) to a fundamental domain
for Z1

S,∞/L, we get

vol(ZUS,∞)

vol(Z1/ZG(F ))
=

1

vol(Z ′S,∞/L)|ZS,∞/ZG(F )ZUS,∞|
.

Therefore, pulling out just the non-zero terms in the sum gives

1

|X|
µ

vol(Z ′S,∞/L)

∑
ωS∈ẐS

ωSω
−1
ξ (L)=1

ωSχ
−1
S (XS)=1

ϕ̄S(ωS)

where

|X|−1 =
|ZS,∞/ZG(F )ZUS,∞X

S,∞|
|ZS,∞/ZG(F )ZUS,∞|

= |ZG(F )ZUS,∞X
S,∞/ZG(F )ZUS,∞ |−1.

An application of corollary 4.2.3.4 to GS/XS then finishes the argument.

The formula here is complicated and requires some discussion. First, ωξ determines a
character on L consistent with χS. Therefore, ωξ and χS together determine a character λ
on LXS. The term E(ϕ̂S|ωξ, L, χS) can be thought of as some sort of normalized average of
ϕ̂S along representations with central character extending λ.

Note that if ZG is compact and X = AG,rat = 1, we can choose a measure so that µ(Zv) = 1
for all v. This gives µ = 1 so

1

|X|
µ

vol(ZS,∞/L)
=

1

µ(ZS,∞/L)
= |L| = |ZG(F ) ∩ US,∞|

and ẐS has the counting measure. Therefore, Epl(f̂ |ω) is the literal integral of f dµpl over
representations with character ω. This is in line with the result in [39].

This computation can be compared to the very short argument at the beginning of [18,
§2]. Reconciling notation, Θ in that paper is the same as L here and S there is S ∪∞ here.
Our argument is much longer since we are factoring out the infinite part of µΘ,S requiring a
sum over a complicated set of ωS instead of just a term for Epl(ϕS,∞|1). In addition, issues
involving X appear.

Main term bound

It will also be useful to have a very rough bound on the magnitude of this main term.



CHAPTER 4. APPLICATION TO EQUIDISTRIBUTION 85

Proposition 4.2.3.6. Let ϕS1 ∈H (GS1 , KS1 , χS1)≤κ such that |χS1(x)ϕS1(x)| ≤ 1 for all x.
Then for some constant C depending only on G, the main term (4.1) is OϕS0

(qC log κ
S1

) where
the implied constant is independent of ϕS1 and the L-packet weight ξ.

Proof. Start with the expression (4.1):

1

f̂(0)ηξ(1)

1

vol(XF\X/AG,rat)

∫
XF \X/AG,rat

χ(z)
∑

γ∈ZG(F )

f(z∞γ)ϕ1(zγ) dz.

Here, it is actually convenient to evaluate the integral, giving the central terms in 3.3.4.5:

1

vol(XF\X/AG,rat)

∑
γ∈[ZG(F )]ssX

ω−1
ξ (γ)ϕ(γ).

The sum becomes ∑
γ∈[ZG(F )]ssX

χS1(γ)ϕS1(γ)χS0(γ)ϕS0(γ)ϕS,∞.

By construction, ϕ1
S1

and (ϕ1)S,∞ intersect every X-class in ZG(F ) that ϕS1 does. Pick a
ϕ1
S0

with the same property. Finally let U∞ ⊂ Z∞ be such that every point with non-zero
summand can be translated into it. We will choose specific U∞ later.

We may then instead bound∑
γ∈[L]ssX

1U∞(γ)χS1(γ)ϕ1
S1

(γ)χS0(γ)ϕ1
S0

(γ)

where L = ZG(F )∩US,∞. We will do this by first bounding the number of terms in this sum
by the size of L ∩ U∞ SuppϕS.

If Ks are the chosen maximal compacts, for each s ∈ S1, ϕ
1
s ∈ H (Gs, Ks)

≤κ so ϕ1
s is

a linear combination of indicator functions 1Ksλ(ω)Ks for a number of possible ω that is
polynomial in κ. Therefore, for some constant C, ϕS1 is supported on a union of O(κC|S1|)
double cosets of KS1 . Since ϕ1

S0
is compactly supported, this gives that ϕ1

S is supported on a

union of Oϕ1
S0

(κC|S1|) double cosets of KS. Note that κC|S1| ≤ κC log qS1 = qC log κ
S1

.

Let ZKS = ZS ∩KS be the maximal compact for abelian ZS. Consider the double coset
D = KSαKS. If D ∩ ZS 6= ∅, without loss of generality let α be in the intersection. Then
D = αKS and D ∩ ZS is a union of cosets of ZKS in ZS. Consider two of these cosets xZKS
and yZKS . Then there exists k ∈ KS such that x = ky =⇒ k = xy−1 =⇒ k ∈ ZS.
Therefore, x ∈ ZKS and the two cosets are equal. In total, D ∩ ZS is either empty or a coset
of KS. This finally implies that Suppϕ ∩ ZS is contained in a union of Oϕ1

S0
(qC log κ
S1

) cosets

of ZKS .
To continue, we need to choose a particular U∞. First, Z∞ factors as AG,∞/AG,rat times

a compact real torus Zc. Let U ′∞ be some subset of AG,∞/AG,rat and choose f to be the
pullback of the characteristic function of U ′∞ through HG∞ (we are not technically allowed to
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do this due to the smoothness restriction but we can take a close enough approximation in
L1). Then f has support on U∞ = U ′∞ × Zc.

Let c1 = |L ∩ ZKSU∞| and assume for now that this is finite. If coset C = αSZKSU∞
contains an element of L, without loss of generality let this element be αS. Multiplying
by α−1

S bijects L ∩ C to L ∩ ZKSU∞ so |L ∩ C| = c1. Counting all possible cosets, |L ∩
Supp(fϕS)| = OϕS0

(c1q
C log κ
S1

). By a similar argument, |L ∩ Supp(fϕS)z| = OϕS0
(czq

C log κ
S1

)
where cz = |L ∩ ZKSz−1

∞ U∞|.
It remains to bound

cz = |ZG(F ) ∩ ZKSZUS,∞z−1
∞ U∞| ≤ |ZG(F ) ∩ ZKSZKS,∞z−1

∞ U∞|

where KS,∞ is the maximal compact (since ZS,∞ is abelian). This is finite since ZG(F ) is
discrete inside Z/AG,rat. Then, ZG(F ) ∩ ZKSZKS,∞ is a co-compact lattice inside Z∞. It is
still so when projecting down to AG,∞/AG,Q. Choose U ′∞ to be a fundamental domain for

this lattice. Then cz = 1 for all z and f̂(0) = vol(U ′∞) which depends only on G.
Finally, the terms in the sum all have norm 1 up to the factor χS0ϕ

1
S0

that depends on

ϕS0 . Therefore the sum is OϕS0
(qC log κ
S1

) for all z. The factor in front depends only on (G,X)

so the entire term is OϕS0
,G(qC log κ

S1
) .

4.2.4 The Error Term

We need to do a few things to bound the error term. First, the orbital integral bounds
used only apply to elements in H (Hv, KH,v)

≤κ so we need to extend them to spaces like
H (Hv, KH,v, χ)≤κ.

Second, a given group has infinitely many endoscopic groups. Unfortunately, the alternate
proof of orbital integral bounds in [79, §B] gives no control over constants and Sbad′ . Therefore,
it is useful to have some result that allows the use of the same constants and a choice of
uniform Sbad.

Finally, we need to do another due-diligence check that one, all the lemmas used in the
proofs of theorems 4.2.1.1 and 4.2.1.2 still hold over to the non-trivial center case, and two,
all the constants from those lemmas can also be uniformly bounded over all hyperendoscopic
groups that contribute a non-zero term. This in particular uses the correction to [79, cor
6.17].

Uniform bounds for orbital integrals

The model-theoretic method for bounding orbital integrals gives the following

Theorem 4.2.4.1 ([79, thm B.2]). Let Ξ be the root datum for an unramified group over
some non-Archimedean local field (so the Galois action is determined by the Frobenius action).
Choose a norm of the form ‖ · ‖B on X∗(A). Then there exist TΞ, aΞ, bΞ depending only
on (Ξ, ‖ · ‖B) such that for all non-Archimedean local fields F (including ones of positive
characteristic) with residue field degree q ≥ TΞ the following holds:
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Let GF be the unramified group over F with root datum Ξ, K a hyperspecial of GF , A a
maximal split torus, and $ a uniformizer for F . Then for all λ ∈ X∗(A) with ‖λ‖ ≤ κ and
semisimple γ ∈ GF (F ):

|Oγ(τ
GF

λ )| ≤ qaΞκ+bΞDGF (γ)−1/2

where as before, τG
F

λ = 1Kλ($)K.

Note. Elements of H (GS1 , KS1)
≤κ are linear combinations of a number of 1Kλ($)K that is

bounded by a polynomial in κ. Therefore, this can be used to get a bound of shape

|Oγ(ϕS1)| = O(‖ϕS1‖∞q
aΞκ+bΞ
S1

DG
S1

(γ)−1/2)

for ϕS1 ∈H (GS1 , KS1)≤κ and where we slightly increase aΞ to absorb the κd|S1| factor from
the polynomials.

Note. We actually need a bound on ϕ ∈H (GS1 , KS1 , χS1)
≤κ. By shifting double cosets by

central elements, we can extend it at the cost of a factor of |χ−1
S1

(γS1)|. (Recall that this is
well defined by the note in section 4.2.2).

By the following lemma, we can choose aΞ, bΞ, and T uniformly over all H appearing in
an endoscopic path of G and all places v where H is unramified:

Lemma 4.2.4.2. Let H be a group appearing in a hyperendoscopic path for G, MH a Levi
of H, v a place where H is unramified, and Ξ the unramified root data for (MH)v. Then Ξ is
an element of a finite set depending only on G.

Proof. The (co)root spaces of MH are isomorphic to those of G and the (co)roots of MH are
a subset of those of G so there are only finitely many possibilities for the root system of
MH (without Galois action) since its rank is bounded by a finite number through iteratively
applying lemma 2.2.2.1. Then, there are only finitely many ways for Frobenius to map into
the automorphisms of this root system.

This bound is absurdly inefficient—in particular, it involves factorials nested to the degree
of |Φ+(G)|. In any application, one should use properties of the exact group being studied to
describe the set more explicitly.

Error term bound for weight aspect

We can now show

Proposition 4.2.4.3. Assume that ϕS1 ∈ H (GS1 , KS1 , χS1)
≤κ with ‖χS1ϕS1‖∞ ≤ 1. Con-

sider error term (4.2) for any group H unramified on S1 and appearing in an endoscopic path
of G with induced central character datum (X, χ) such that AH,∞ ⊆ X and χ is unramified on

S1. It is Oϕ0,H(q
Awt,H+Bwt,Hκ
S1

m(ξ)−Cwt,H ) for some constants Awt,H , Bwt,H , and Cwt,H as long
as S1 contains no fields with residue degree less than some MG that is uniform over all H.
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Proof. Let MG be the maximum of the TΞ from 4.2.4.1 over all root data Ξ from lemma
4.2.4.2. This is then a due-diligence check that all the steps in [79, thm 9.19] still hold. We
start by evaluating the integral in (4.2) getting term

vol(X1
∞)

vol(XF\X/AH,rat)

 ∑
γ∈[H(F )]ss

γ /∈ZH

aH,γ|ιH(γ)|−1| StabX(γ)|−1 tr ξ(γ∞)

dim ξ
OM
γ (ϕ∞M)

+
∑

M∈L cusp
H

M 6=H

∑
γ∈[M(F )]ss

aM,γ|ιH(γ)|−1| StabX(γ)|−1 ΦM(γ, ξ)

dim ξ
OM
γ ((ϕ∞)M)

 .

Without loss of generality, expand S0 so that ϕ is the characteristic function of a hyperspecial
KS,∞ away from S ∪∞ and that the places less than MG are contained in S0. If a conjugacy
class intersects the support of ϕS1 , then we can scale it by an element of XS so that it
intersects the support of ϕ1

S1
. The same holds for ϕS,∞ which has support KS,∞. Choose ϕS0

and ϕS similarly and let their supports after taking constant terms to M be US0,M and U∞,M .
We can then replace terms in the sum through the rule

ΦM(γ, ξ)

dim ξ
OM
γ ((ϕ∞)M) 7→ 1U∞,M

ΦM(γ, ξ)

dim ξ
OM
γ ((ϕ∞)1

M).

Let US1,M = Supp H ur(MS1)≤κ. Let YM be the set of semisimple rational conjugacy classes

intersecting the set US1,MUS0,MU∞,MK
S,∞
M . The number of terms in the sum is less than or

equal to |YM |.
We check that each of factors can be bounded as in the proof of [79, thm 9.19]. The finite

set of places SM,γ disjoint from S can be defined in the same way. Then:

• [79, cor 6.17] still applies to aM,γ, (see the missing step lemma 4.2.1.3 for why this
works for general center).

• The bound in [79, lem 6.11] still applies to the ΦM (γ, ξ) terms. There is an extra factor
of χ−1

∞ (γ∞).

• A version of [79, thm A.1] modified to work on functions with central character still
applies to bound OM

γ (ϕS0,M). There is an extra factor of |χ−1
S0

(γS0)|.

• Proposition 4.2.4.1 still bounds OM
γ (ϕS1,M). There is an extra factor of |χ−1

S1
(γS1)|.

• Proposition 4.2.4.1 still gives the same bound for OM
γ (ϕv,M) for v ∈ SM,γ since MH ≤

MG.There is again an extra factor of |χ|.

• [79, lem 2.18] and [79, lem 2.21] still provide a bound on the DM terms since we can
still construct the embedding from [79, prop 8.1].
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• |YM | can still be bounded by [79, cor 8.10] (this also applies to groups with general
center).

• | StabX(γ)|−1 ≤ 1.

Since χ is trivial at rational elements, all the χv terms cancel. Therefore, the entire term can
similarly be bounded by

O(q
Awt,H+Bwt,Hκ
S1

m(ξ)−cwt,H ),

folding in the constant that only depends on H and X.

This very weak uniformity in just MG is all we will need for the weight aspect.

4.3 Final Computation

4.3.1 Weight Aspect

Assume the previous conditions on (G,X, χ) from section 4.1.1. Let πk be a sequence
of discrete series representations of G∞ such that their corresponding finite-dimensional
representations ξk have regular weights m(ξk)→∞. Let S1 be disjoint from Sbad,G: the set
of places with residue degree less than the uniform MG from proposition 4.2.4.3. Choose
constant S0, ϕS0 and US,∞ to define a sequence of families Fk for each ξk.

Theorem 4.3.1.1. There are constants A′G,wt and B′G,wt such that for any ϕS0 and ϕS1 ∈
H (GS1 , KS1 , χS1)≤κ,

µ̄can(US,∞
X )|Πdisc(ξk)|

τ ′(G) dim(ξk)

∑
π∈ARdisc(G,χ)

aFk(π)ϕ̂S(π)

= E(ϕ̂S|ωξ, L, χS) +O(q
A′wt+B

′
wtκ

S1
m(ξk)

−1)

(using notation from corollary 4.1.2.1 and theorem 4.2.3.5). The constants in the error depend
on (G,X, χ), ϕS0, and US,∞.

Proof. For ‖ϕS1χS1‖∞ ≤ 1, let

ϕk = ϕπk ⊗ 1US,∞,χ ⊗ ϕS1 ⊗ ϕS0

as in section 4.1.1. Let ϕ1
k = ηξk ⊗ ϕ∞k . Then ϕk and ϕ1

k are unramified outside of S. Let A
be the set of hyperendoscopic tuples that contribute a non-zero value to the hyperendoscopy
formula as in lemma 3.2.6.1.
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Then using the hyperendoscopy formula:

|Πdisc(ξk)|
τ ′(G) dim(ξk)

Idisc(ϕk)

=
|Πdisc(ξk)|

τ ′(G) dim(ξk)

(
IGdisc(ϕ

1
k) +

∑
H∈A

ι(G,H)I
HnH
disc ((ϕ1

k − ϕk)H)

)
.

We choose arbitrary transfers of ϕ0. Choose (1KS,∞
G

)H according to lemma 3.2.5.5 since by

lemma 3.2.6.1, H stays unramified away from S,∞. Let Πdisc(ξk) be the L-packet containing
πk and let its size be Xk. Then

(ϕ1
k − ϕk)∞ = ϕ∞k (ϕ1

k − ϕk)∞ =
1

Xk

∑
πk 6=π∈Πdisc(ξk)

ϕπ −
Xk − 1

Xk

ϕπk .

By proposition 3.2.1.6, we can choose the infinite part transfer to be a linear combination of
EP-functions ∑

ξ∈Ξξk,H

cξηξ

for some constants

|cξ| ≤ (Xk − 1)
1

Xk

+
Xk − 1

Xk

≤ 2.

Now, checking some conditions:

• All groups in the hyperndoscopic paths are unramified on S1 and cuspidal at infinity.
In addition, each XH ⊇ AH,∞ by lemma 3.2.6.1.

• Let χH be the character determined by H as in section 3.1.3. The transfer χH,S1ϕ
H
S1

can be chosen to be in H (GS1 , KS1 , χH,S1)
≤κ and have L∞-norm bounded by some

qEHκS1
κ|S1| by repeated application of proposition 3.2.5.4. We can apply this due to the

above.

• The ξ are regular by lemma 3.2.2.1.

• Without loss of generality, enlarge S0 so that US,∞ = KS,∞. Then 1HUS,∞ is still the

indicator function of an open compact subgroup averaged over χS,∞H .

We can therefore apply the main term bound in proposition 4.2.3.6 and the error term
bound in propostion 4.2.4.3 to each term in the sum and get

IHdisc((ϕ
1
k − ϕk)H) = IHspec((ϕ

1
k − ϕk)H) =∑
ξ∈Ξξk,H

ι(G,H)
τ ′(H) dim(ξ)

|ΠHdisc(ξ)|
OϕH0 ,U

S,∞,H(q
(Awt,H+EH+ε)κ+Bwt,H
S1

)
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for some constant Uξ,H. We use here that O(κC|S1|)O(q
(A+E)κ+B
S1

) = O(q
(A+E+ε)κ+B
S1

).
By the computation in 4.2.3.5 and the error term bound 4.2.4.3,

|Πdisc(ξk)|
τ ′(G) dim(ξk)

IGdisc(ϕ
1
k) = E +O(q

Awt,G+Bwt,Gκ1

S1
m(ξk)

−Cwt,G)

where we shorthand E = E(ϕ̂S|ωξ, L, χS). Multiplying through,

|Πdisc(ξk)|
τ ′(G) dim(ξk)

Idisc(ϕk) =

E +
∑
H∈A

∑
ξ∈Ξξk,H

Wξ,H
dim(ξ)

dim(ξk)
OH,ϕH0 (q

(Awt,H+EH+ε)κ+Bwt,H
S1

)

+O(q
Awt,Gκ+Bwt,G

S1
m(ξk)

−Cwt)

where ∣∣∣∣Wξ,H = ι(G,H)
τ ′(H)

τ ′(G)

|ΠG
disc(ξk)|
|ΠHdisc(ξ)|

∣∣∣∣ ≤ W

for some constant W independent of ξk, k, and qS1 . Finally, by lemma 3.2.2.2 the ratio of
dimensions is O(m(ξk)

−1).
In total, the inner sum has |ΩH| elements so the entire double sum has finite size

independent of S1 and ξ. Therefore, it can be bounded to

|Πdisc(ξk)|
τ ′(G) dim(ξk)

Idisc(ϕk) = E +O(q
A′wt+B

′
wtκ

S1
m(ξk)

−1).

where A′wt, B
′
wt are anything bigger than the maxima over all groups appearing in A (Note

that Cwt can be chosen to be ≥ 1). Finally, plug in corollary 4.1.2.1.

4.4 Corollaries

Theorem 4.3.1.1 can be substituted in for [79]’s 9.19 to most of the same corollaries. We leave
the result on zeros of L-functions for the future because the computations are complicated—
the term βpl

v gets replaced by something far more complicated in the case with central
character.

Recall the notation from last section and for brevity define

µFk(ϕ̂S) =
µ̄can(US,∞

X )|Πdisc(ξk)|
τ ′(G) dim(ξk)

∑
π∈ARdisc(G,χ)

aFk(π)ϕ̂S(π)

for any ϕ̂S on ĜS. Theorem 4.3.1.1 computes this when ϕS ∈ H (GS, χS) and ϕS1 is
unramified.
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4.4.1 Plancherel Equidistribution

First, we get a version of [79, cor 9.22] using a similar Sauvageot density argument. We thank
the reviewers for pointing out that [60, pg. 111] discusses a possible gap in [71, pg. 181].
Here, Bernstein components are conflated with “l-components” (defined in [60, §23.7]) when
arguing that a certain algebra separates points. Most of this section is dependent on that
gap being fixed.

We phrase things as in [18]. Restrict to the case where all the ξk have the same central
character ωξ and S1 is trivial. Let Θ = LXS and let ψ be the character on Θ induced by ωξ
and χS. Let ĜS,ψ ⊆ ĜS be all representations with central character extending ψ. We can

define a measure µpl
ψ on ĜS,ψ by µpl

ψ (f̂) = E(f̂ ∗|ωξ, L, χS) where f̂ ∗ is a continuous extension

of f̂ to ĜS.
Here is a summary of the unconditional results for reference:

Corollary 4.4.1.1 (Unconditional Plancherel equidistribution up to central character). In
the notation above:

1. For any f ∈H (GS, χS),

lim
k→∞

µFk(f̂) = µpl
ψ (f̂).

2. For any Riemann integrable f̂ supported on Ĝur
S,ψ,

lim
k→∞

µFk(f̂) = µpl
ψ (f̂).

3. For any bounded A ⊆ ĜS,ψ \ Ĝtemp
S,ψ ,

lim
k→∞

µFk(1A) = 0.

Proof. The first statement is a quick consequence of 4.3.1.1 restated in the terminology of
this section.

We then note which parts of the following arguments in gray hold unconditionally. For
the second statement, remark 9.5 in [79] replaces Sauvageot’s result for functions on the

unramified spectrum Ĝur
S so (2) of 4.4.1.2 holds unconditionally for f on Ĝur

S,ψ. This implies
the corresponding piece of 4.4.1.3.

The third statement depends on using [71, cor. 6.2] to show (1) in 4.4.1.2. Corollary 6.2
only depends the interaction between Bernstein components and l-components through the
use of Sauvageot’s lemma 5.1 and corollary 3.3. The issue [60] raises is about distinguishing
representations in an l-component that might have the same infinitesimal character. However,
the application of 3.3 in 5.1 only cares about representations up to infinitesimal character.
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Note that there is no uniformity in this result—the rate of convergence depends heavily
on the exact f .

The following is all conditional on [71]: When ψ is trivial, µpl
ψ = µΘ,pl from [18] up to

some constant. The lemma in the middle of the proof of [18, thm 2.1] extends to our case of
non-trivial ψ and Θ a general subgroup of ZGS .

Lemma 4.4.1.2. Let ε > 0:

1. For any bounded A ⊆ ĜS,ψ \ Ĝtemp
S,ψ , there exists h ∈ H (GS, χS) such that ĥ ≥ 0 on

ĜS,ψ, ĥ ≥ 1 on A, and µpl
ψ (ĥ) ≤ ε.

2. For any Riemann integrable function f̂ on Ĝtemp
S,ψ , there exist h1, h2 ∈H (GS, χS) such

that |f̂ − ĥ1| ≤ ĥ2 on ĜS,ψ and µpl
ψ (ĥ2) ≤ ε.

Proof. We try to mimic the argument in [18, thm 2.1]. Let Θf = Θ∩ZGder
(FS) and Θ = Θ/Θf .

Then Θf is finite. In addition, if we denote by X(·) taking complex-valued characters, the
map X(GS)→ X(ZG,S/ZGder

(FS))→ X(Θ) is surjective. Choose a set-theoretic section s of
this map.

We can ignore normalization constants by, without loss of generality, changing ε. Then
this result for Θ trivial follows from the main result of [71]. If Θ is trivial, then the various

ĜS,ψ are positive-measure clopen subsets of ĜS so we can use the hi for either A or the

extension of f by 0 on ĜS.
For the general case, given f on ĜS,ψ define F on ĜS,ψ|Θf by

F (π) = f(π ⊗ s(ω−1
π ψ))1C(ω−1

π ψ),

where C ⊆ X(Θ) is compact. Choose H1 and H2 satisfying |F̂ − Ĥ1| ≤ Ĥ2 on ĜS,ψ|Θf and

µpl
ψ|Θf

(Ĥ2) ≤ ε/(2 vol(C)). For any finite subset T0 ⊆ C, the averages

hi =
1

|T0|
∑
λ∈T0

s(λ)Hi

satisfy |f̂ − ĥi| ≤ ĥ2 (each individual term in the sum does), so we simply need to find a T0

that allows us to prove µpl
ψ (ĥ2) ≤ ε.

Up to some constants:

µpl
ψ (ĥ2) =

∫
Θ

ψ(z)h2(z) dz =
1

|T0|
∑
λ∈T0

H2(λψ)

by variations of the arguments in section 4.2.3. Taking Riemann sums, we can find finite
T0 ⊆ C such that such that this sum is within ε/2 of

vol(ψC)

∫
ψC

Ĥ2(χ) dχ = vol(C)

∫
p−1(ψC)

Ĥ2(π) dµpl
ψ|Θf

(π).
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where the equality is again by results in section 4.2.3. Since Ĥ2 is positive, this is further
bounded by vol(C)µpl

ψ|Θf
(Ĥ2) ≤ ε/2, finally showing that µpl

ψ (ĥ2) ≤ ε.

The argument for subsets A is the same averaging trick—in place of the function F , we
use set A′ = {π ⊗ λ : π ∈ A, λ ∈ C ⊆ X(Θ)}.

Finally, this only produces functions on H (GS, ), so we simply average against χS to get
functions in H (GS, χS) that have all the same trace properties on GS,ψ.

The same “3ε”-argument as [79, cor 9.22] then gives:

Corollary 4.4.1.3 (Plancherel equidistribution up to central character). Recall the conditions
and notation from the above discussion. Then

1. For any bounded A ⊆ ĜS,ψ \ Ĝtemp
S,ψ ,

lim
k→∞

µFk(1A) = 0.

2. For any Riemann integrable f̂ on Ĝtemp
S,ψ ,

lim
k→∞

µFk(f̂) = µpl
ψ (f̂).

Beware that part (1) does not give a Ramanujan conjecture at S on average; it cannot
count that the total number of π in F with non-tempered πS is O(m(ξk))

−1 since A needs to
be bounded. It is nevertheless somewhat close.

4.4.2 Sato-Tate Equidistribution

For this section we need to slightly modify our notation. Allow S1 to be infinite and define
modified measure

µ\Fk,v(ϕ̂v) =
µ̄can(US,∞

X )|Πdisc(ξk)|
τ ′(G) dim(ξk)

∑
π∈ARdisc(G,χ)

aFk(π)ϕ̂S0(πS0)ϕ̂v(πv)

for any v ∈ S1. Then µ\k,v(ϕ̂v) can still be picked out by a test function ϕ of the form we
have been considering by setting ϕw = 1Kw for all w ∈ S1 \ v.

Sato-Tate measures

We recall the definition of the Sato-Tate measure from [79, §3, §5]. Recall the Satake
isomorphism H (Gv, Kv)→ C[X∗(A)]ΩF in the notation of section 3.2.4 and how it identifies

Ĝur,temp
v with ΩFv\Âc.

We can find a maximal compact K̂ of Ĝ invariant under Frobv. Then since Gv is
unramified, ΩFv\Âc can be identified with the Ĝ classes in K̂ o Frobv ⊆ LG and also

T̂c,v = ΩFv\T̂c/(Frobv − id)T̂c (see [79, lem 3.2]).
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In general, let G split over F1 and let Γ1 = Gal(F1/F ). Given Θ ∈ Γ1, define

T̂c,Θ = ΩΘ
G\T̂c/(Θ− id)T̂c.

Given τ ∈ Γ1, t 7→ τt canonically identifies Tc,Θ with Tc,τΘτ−1 . All these identifications are
consistent with each other so Tc,Θ depends only on the Γ1-conjugacy class of Θ. Note then

that T̂c,Frobv = T̂c,v since Gv is quasisplit.

Choose the Haar measure on K̂ with total volume 1. This induces a quotient measure on
the set of conjugacy classes in K̂ o Θ and therefore on T̂c,Θ. Call this µST

Θ . Finally, let VF (Θ)
be the set of places v such that F1 is unramified at v and Frobv is in the conjugacy class of
Θ. For such a v, we get a measure µpl,ur

v from the identification Tc,Θ with Ĝur,temp
v . Normalize

this to also have total volume 1.

Proposition 4.4.2.1 ([79, prop 5.3]). For any Θ ∈ [Γ1], let v →∞ in VF (Θ). Then there
is weak convergence µpl,ur

v → µST
Θ .

Proof. by the explicit formulas [79, prop 3.3] and [79, lem 5.2]

Central character issues

Recall all the notation from proposition 4.2.3.5. Our result is in terms of E(ϕ̂|ωξ, L, χS)
instead of µpl,ur

v so we need to define an alternate Sato-Tate measure in terms of this. First,
we need to understand Epl,ur

v better.

There is a central character map Tc,Θ → ẐGv . This lets us define EST,Θ(ϕ̂|ω) for any ϕ̂

on Tc,Θ similar to Epl,ur
v (ϕ̂|ω) from section 4.2.3. Now Langlands for tori gives that ẐGv is

the set of L-parameters ϕ : W ur
Fv
↪→ L(ZG)ur

Fv
. If Frobv and Frobw are conjugate in Γ1, we can

identify the set of these parameters and therefore ẐGv and ẐGw . For v ∈ VF (Θ), call this

common set ẐΘ. Note that these identifications commute with the identifications of T̂c,v and
the map taking central characters.

Lemma 4.4.2.2. Fix a common measure on ẐΘ. Choose ϕ̂Θ on T̂c,Θ. Then Epl,ur
v (ϕ̂|ω)→

EST,Θ(ϕ̂|ω) pointwise for ω ∈ ẐΘ.

Proof. The previous result gives weak convergence Epl,ur
v (ϕ̂Θ|ω)→ EST,Θ(ϕ̂Θ|ω) in L2(ẐΘ).

By the formula [79, prop 3.3], the Epl,ur
v (ϕ̂|ω) are equicontinuous so this implies pointwise

convergence.

To understand the more complicated E(ϕ̂|ωξ, L, χS), we now have to parametrize ZS,ξ,L,χ
in terms of local components. Assume ωS = ωS1ωS0 ∈ ZS,ξ,L,χ: i.e. ωSωξ = 1 on L and
ωS|XS = χS. Assume also that ωS1 is unramified. Let L0 = L∩KS1 . It is a cocompact lattice
in ZS0 . Then we always have that ωS0ωξ = 1 on L0 and that ωS0|XS0

= χS0 .

Given such ωS0 , it forces ωS1 = ω−1
S0
ω−1
ξ on L. The determined ωS1 is trivial on L ∩KS1

and therefore extends to a continuous character on L ⊆ ZS1 . Therefore, the possible choices
for ωS1 are those that restrict to ω−1

S0
ω−1
ξ on L, restrict to χS1 on XS1 , and are unramified.
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Let ES1 be the group LKS1XS1 . Since ZS1/ES1 is finite, there are finitely many choices
for ωS1 and we can factor∑

ωS∈ẐS
ωSωξ(L)=1
ωS |XS=χS

Epl(ϕ̂S|ωS) =
∑

ωS0
∈ẐS0

ωS0
ωξ(L0)=1

ωS0
|XS0

=χS0

Epl(ϕ̂S0|ωS0)
∑

ωS∈Ẑur
S1

ωS1
ωS0

ωξ(L)=1

ωS1
|XS1

=χS1

Epl(ϕ̂S1|ωS1).

To compute µ\k,v, we consider ϕS1 = 1KS1\v
ϕv so

Epl(ϕ̂S1|ωS1) = Epl(ϕ̂v|ωv)
∏

w∈S1\v

vol(Zw ∩Kw) =
vol(ZS1 ∩KS1)

vol(Zv ∩Kv)
Epl(ϕ̂v|ωv).

Let the set of summands for the second sum be Ẑv,ωS0
,χv ⊆ Ẑv and let ωS ∈ Ẑv,ωS0

,χv . The
possible ωv components are those satisfying two conditions: ωvωS0ωξ extends continuously to
L ⊆ ZS\v, and ωv|Xv = χv. The first condition is equivalent to ωv being the Fv-component of
a character ω on ZG(A)/ZG(F ) trivial on US,∞ that also has FS0,∞-component ωS0ωξ.

Next, by global Langlands for tori, this is equivalent to its parameter ψωv : WFv → L(ZG)Fv
being a restriction of a global parameter ψω : WF → LZG satisfying certain conditions.
However, if Frobw is conjugate to Frobw, then ψω|WFw

is the transport of ψω|WFv
through

the identification before. In particular, if we identify all the Ẑv for v ∈ VF (Θ) ∩ S1, Ẑv,ωS0
,χv

depends on v only through Θ. Call the common value ẐΘ,ωS0
,χv ⊆ ẐΘ.

In total, if we set ϕS1 = 1KS1\v
ϕv for some v ∈ VF (Θ) ∩ S1,

E(ϕ̂S|ωξ, L, χS) =
1

|X|
µ

vol(Z ′S,∞/L)

vol(ZS1 ∩KS1)

vol(Zv ∩Kv)

×
∑

ωS0
∈ẐS0

ωS0
ωξ(L0)=1

ωS0
|XS0

=χS0

Epl(ϕ̂S0|ωS0)
∑

ωv∈ẐΘ,ωS0
,χv

Epl(ϕ̂v|ωv).

This allows us to define an EST,Θ(ϕ̂v|ωξ, L, χS, ϕ̂S0) analogously:

EST,Θ(ϕ̂S|ωξ, L, χS, ϕ̂S0) =
1

|X|
µ

vol(Z ′S,∞/L)

vol(ZS1 ∩KS1)

vol(Zv ∩Kv)

×
∑

ωS0
∈ẐS0

ωS0
ωξ(L0)=1

ωS0
|XS0

=χS0

Epl(ϕ̂S0 |ωS0)
∑

ωv∈ẐΘ,ωS0
,χv

EST,Θ(ϕ̂v|ωv).

Then we get:
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Proposition 4.4.2.3. Choose a sequence v →∞ in VF (Θ) ∩ S1 such that the characters χv
all correspond in X̂Θ. Choose ϕ̂Θ on T̂c,Θ. Then

E(1̂KS1\v
ϕ̂Θϕ̂S0|ωξ, L, χS, )→ EST,Θ(ϕ̂Θ|ωξ, L, χS, ϕ̂S0).

Proof. Use the above formula for EST and E together with the previous lemma. We can
compute both sides by fixing a common measure on ẐΘ which makes vol(Zv ∩Kv) constant
on v ∈ VF (Θ).

This is a replacement for [79, prop 5.3] in our case.

Final Statment

Arguing as in [79, thm 9.26], we get the full corollary. Note that remark 9.5 in [79] removes
the dependence on Sauvageot’s result.

Corollary 4.4.2.4 (Sato-Tate equidistribution up to central character). Choose a sequence

vj →∞ in VF (Θ) ∩ S1 such that the characters χv all correspond in X̂Θ. Choose a Riemann

integrable function f̂Θ on T̂c,Θ. Then

lim
(j,k)→∞

µ\Fk,vj(f̂Θ) = EST,Θ(f̂Θ|ωξ, L, χS, ϕ̂S0)

where the limit is over any sequence of pairs (j, k) such that qNvjm(ξk)
−1 → 0 for all integers

N .

This can be thought of as sort of a “diagonal” equidistribution as opposed to the “vertical”
Plancherel equidistribution involving limk→∞ µ

\
Fk,vj(f̂Θ) or the conjectural “pure horizontal”

Sato-Tate equidistribution involving limj→∞ µ
\
Fk,vj(f̂Θ).
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Chapter 5

Application to Quaternionic Forms on
G2

We use some extra notation in this chapter:

• G2 is as the split, simple, and simply-connected exceptional group. It can be defined
over Z.

• Gc
2 is the sole inner form of G2 over Q. It is compact at infinity, equal to split G2 at all

finite places, and can also be defined over Z.

• H will generally refer to the specific endoscopic group SL2× SL2/± 1 (split SO4) of G2.

• αi, λi, εi, δi, sαi are various pieces of the root data for G2 defined in section 5.1.1.

Finally, as shorthand, any variable requiring a general reductive group subscript will be for
G2 if the group isn’t specified.

5.1 G2 and Quaternionic Discrete Series

5.1.1 Root System of G2

Roots

We use notation from [51] to specify the root system of G2. Let K be the maximal compact
SU(2)× SU(2)/± 1 of G2(R). Choose a dominant chamber for K and the choice of simple
roots of G2 consistent with this. Let β be the highest root with respect to this and note that
it is long .

We now give explicit coordinates. As a mnemonic convention, roots indexed 1 will be
short and roots indexed 2 will be long. Figure 5.1 displays all the roots and shades our choices
of dominant Weyl chambers with respect to both G2 and K. Compact roots at infinity are in
red and non-compact in blue.
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Figure 5.1: Character lattice, roots, and choices of dominant chamber for G2
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ρG2

If the roots of the short and long SU2 are 2ε1 and 2ε2 respectively, then the simple roots
of G2 are:

(short) α1 = −ε1 + ε2, (long) α2 = 3ε1 − ε2.
The other positive roots are:

(short) 2ε1 = α1 + α2, ε1 + ε2 = 2α1 + α2,

(long) 2ε2 = 3α1 + α2, 3ε1 + ε2 = 3α2 + 2α2.

The fundamental weights are:

λ1 = 2α1 + α2, λ2 = 3α2 + 2α2.

Of course β = λ2.
The Weyl group is generated by simple reflections:

sα1

(
2ε1
2ε2

)
=

(
ε1 + ε2
3ε1 − ε2

)
, sα2

(
2ε1
2ε2

)
=

(
−ε1 + ε2
3ε1 + ε2

)
.

Finally:

ρK = ε1 + ε2 = 2α1 + α2,

ρG = 4ε1 + 2ε2 = 5α1 + 3α2.
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Coroots

Coroots will follow the opposite mnemonic: coroots indexed 1 are long and coroots indexed 2
are short.

Let T be a split maximal torus. Since G2 has trivial center, X∗(T ) is the root lattice:

X∗(T ) = {aε1 + bε2 : a, b ∈ Z, a+ b ∈ 2Z}.

Let (δ1, δ2) be the dual basis to (2ε1, 2ε2): i.e. (δi, εj) = 1/21i=j. Then:

X∗(T ) = {aδ1 + bδ2 : a, b ∈ Z, a+ b ∈ 2Z}.

Since ε1 and ε2 are perpendicular:

(2ε1)∨ = 2δ1,

(2ε2)∨ = 2δ2.

More generally, the Weyl action gives:

(α∨1 , 2ε1) = −1, (α∨1 , 2ε2) = 3,

(α∨2 , 2ε1) = 1, (α∨2 , 2ε2) = −1,

so we get simple coroots:

α∨1 = −δ1 + 3δ2,

α∨2 = δ1 − δ2.

This reproduces that the coroot lattice is X∗(T ), implying that G2 is simply connected. For
completeness:

λ∨1 = δ1 + 3δ2,

λ∨2 = δ1 + δ2.

5.1.2 Quaternionic Discrete Series

Description

Recall the notation from 2.1.2 to discuss discrete series. In particular, recall the two
parametrizations of discrete series on G2(R):

πG2
λ,ω = πG2

ω(λ+ρG2
)

for λ a dominant (but possibly irregular) weight of G2 and ω a Weyl-element that takes the
ΩG2 dominant chamber to something ΩK-dominant—in other words, 1, sα1 , or sα2 . Note that
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πG2
λ,ω has infinitesimal character λ+ ρG2 . Recall that ω(λ+ ρG2) is called the Harish-Chandra

parameter of this discrete series.
The quaternionic discrete series of weight k for k ≥ 2 lies in the L-packet

Πdisc((k − 2)β).

The members of this L-packet have Harish-Chandra parameters:

(k − 2)β + ρG, sα1((k − 2)β + ρG), sα2((k − 2)β + ρG).

As in [23], the quaternionic member is the one with minimal K-type λB = 2kε2. We know
that the discrete series π(ω, λ) has minimal K-type

λB = ω(λ+ 2ρG)− 2ρK

by [41, Thm. 9.20]. Therefore the weight-k quaternionic discrete series πk is specifically
π(sα2 , (k − 2)β)—computing, sα2 fixes ρK so

sα2(λ+ 2ρG)− 2ρK = sα2(λ+ 2ρG − 2ρK) = sα2(λ+ 2β) = sα2(kβ) = 2kε2.

This is the discrete series with Harish-Chandra parameter

λk,H := sα2((k − 2)β + ρG).

Their pseudocoefficients

Let ϕk be a pseudocoefficient for πk. A priori, πk is not a regular discrete series, so the trace
against ϕk may be non-zero for certain non-tempered representations in addition to just πk.
This could make it not work as a test function to pick out just automorphic representations
π with π∞ = πk. However, this is miraculously not a problem for specifically quaternionic
discrete series.

Proposition 5.1.2.1. Let k > 2. Then for any unitary representation ρ of G2(R):

trρ(ϕk) =

{
1 ρ = πk

0 else
.

Proof. By the same argument of Vogan described in lemma 3.3.3.1, the trace is 0 unless
trρ(η(k−2)β) 6= 0 for η(k−2)β the Euler-Poincaré function. This is only possible if ρ appears in
an appropriate (g, k)-cohomology. By the main result of [83], the only representations that
do so are the packet Πλ((k − 2)β) and something denoted Aq((k − 2)β) for q corresponding
to the Levi subgroup with roots ±α1 and Weyl group ΩL = {sα1 , 1}. This is because k > 2
implies that this is the only Levi such that (k − 2)β is fixed by ΩL. See also [51][lem. 2.2].
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If ρ ∈ Πλ((k − 2)β) and trρ(ϕk) = 0, then ρ = πk by definition. It therefore suffices to
exclude the case of Aq((k − 2)β). We use that trAq((k−2)β)(ϕk) is the coefficient of πk in the
sum expansion

Aq((k − 2)β) =
∑
ρ′ basic

m(ρ′)ρ′

in the Grothendieck group and will show that this coefficient is 0.
By [59][thm. 6.4.4], Aq is a Langlands quotient of a discrete series on a GL2 Levi. Let

the corresponding parabolic induction be I. Since GL2 is a maximal proper Levi and the
infinitesimal character is regular, the other terms in the expansion need to be discrete series.
There have to be two of these since trAq((k−2)β)(η(k−2)β) = −2 (see [51][lem. 2.2] again). Call
these ρ1 and ρ2 to make the expansion into basics

Aq((k − 2)β) = I − ρ1 − ρ2.

The computation of the A-packet in [59][thm. 6.4.4] shows that the character

Aq((k − 2)β)− πk = I − ρ1 − ρ2 − πk

is stable. By [75][lem. 5.2], I is stable so ρ1 + ρ2 + πk also has to be. Then, [75][lem.
5.1] further implies that ρ1 + ρ2 + πk is fully Weyl-invariant on an elliptic maximal torus.
Examining Harish-Chandra’s character formula for discrete series, this is only possible if the
three discrete series are exactly the three members Πdisc((k − 2)β). In particular, πk 6= ρ1, ρ2

so we are done.

Corollary 5.1.2.2. Let f∞ be a compactly supported locally constant function on G2(A∞)
and k > 2. Then

Ispec(ϕk ⊗ f∞) =
∑

π∈ARdisc(G2)

mdisc(π)δπ∞=πk trπ∞(f∞)

=
∑

π∈ARcusp(G2)

mcusp(π)δπ∞=πk trπ∞(f∞).

Proof. The statement for discrete representations is the same argument as 3.3.3.3 after we
know proposition 5.1.2.1. Since π∞ = πk is necessarily discrete series for the non-zero terms,
the main result of [86] shows that mcusp(π) = mdisc(π).

We therefore have
|Qk(1)| = Ispec(ϕk ⊗ 1K) (5.1)

if we choose Gross’ canonical measure from [28] at finite places. Note again that this heavily
depends on the miracle of proposition 5.1.2.1 and a similar result does not hold either for the
other members of Πdisc((k − 2)β) or for the Euler-Poincaré function.
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5.2 Geometric Side/Application of Endoscopy

5.2.1 Notation

We will need to recall some extra notation related to general reductive group H over F :

• Ωc
H is the Weyl group generated by compact roots at infinity.

• d(H∞) is the size of the discrete series L-packets of H∞. Alternatively, d(H∞) =
|ΩH |/|Ωc

H |.

• k(H∞) is the size of the group K = ker(H1(R, Tell)→ H1(R, G∞)) that appears in the
theory of endoscopy for G∞.

• q(H∞) = dim(H∞/K∞ZH∞) where K∞ is a maximal compact subgroup of H∞.

• H∗∞ is the quasisplit inner form of H∞.

• H̄∞ is the compact form. If H∞ has an elliptic maximal torus, this is inner.

• e(H∞) is the Kottwitz sign (−1)q(H
∗
∞)−q(H∞).

• [H : M ] = [H : M ]F = dim(AM/AG), where A? is the maximal F -split torus in the
center of ?. We call this the index of M in H.

• τ(H) is the Tamagawa number of H.

• MotH is the Gross motive for H.

• L(MotH) is the value of the corresponding L-function at 0 (or residue of the pole).

• ιH(γ) = ιHF (γ) for γ ∈ H(F ) is the number of connected components of Hγ that have
an F -point.

5.2.2 The Hyperendoscopy Formula

Preliminaries

We will use the hyperendoscopy formula of [17] to compute Igeom(ϕk ⊗ f∞). A priori, we
need to apply the general case of Theorem 3.1.2.3 since G2 has endoscopy without simply
connected derived subgroup.

Let ηk be the Euler-Poincaré function for Πdisc((k − 2)β). Let HEell(G2) be the set of
non-trivial hyperendoscopic paths for G2. Then, in the notation of section 3.1,

IG2
geom(ϕk ⊗ f∞) = IG2

geom(ηk ⊗ f∞) +
∑

H∈HEell(G2)

ι(G,H)IH̃geom(((ηk − ϕk)⊗ f∞)H̃),

where the H̃ are choices of z-pair paths when they are needed.
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Telescoping

Next, an unpublished work of Kottwitz summarized in [58, §5.4] and proved by other methods
in [63] stabilizes Igeom(ϕ⊗ f∞) when ϕ is stable-cuspidal (as all terms on the right side above
can be taken to be).

Theorem 5.2.2.1. Let ϕ be stable cuspidal on G2(R) and f∞ a test function on G(A∞).
Then

IG2
geom(ϕ⊗ f∞) =

∑
H∈Eell(G2)

ι(G,H)SH̃geom((ϕ⊗ f∞)H̃),

where Eell(G2) is the set of elliptic endoscopic groups for G2 and the H̃ are z-extensions if

necessary. The transfers (ϕ⊗ f∞)H̃ depend on choices of measures for G and H.
The Sgeom terms are defined by their values on Euler-Poincaré functions:

SHgeom(ηλ ⊗ f∞) =
∑

M∈Lcusp(H)

(−1)[H:M ] |ΩM,F |
|ΩH,F |

τ(M)

×
∑

γ∈[M(Q)]st,ell∞

|ιM(γ)|−1 e(M̄γ,∞)

vol(M̄γ,∞/AM̄γ ,∞)

k(M∞)

k(H∞)
ΦH
M(γ, λ)SO∞γ ((f∞)M),

choosing Tamagawa globally measure on all centralizers. The volume on M̄γ,∞ is transferred
from that on Mγ,∞ in the standard way for inner forms so that the entire term doesn’t depend
on a choice of measure at infinity.

There’s an alternating sign in the hyperendoscopy formula: if H is a hyperendoscopic
path, then −ι(G,H)ι(H, H) = ι(G, (H, H)) for H any endoscopic group of H. Here, (H, H)
represents the concatenation and H is overloaded to also refer to the last group in H.

In particular, substituting in the stabilization telescopes the hyperendoscopy formula.

Final Geometric Formulas and Method of Computation

The final telescoped formula is:

IG2
geom(ϕk ⊗ f∞) = SG2

geom(ηk ⊗ f∞) +
∑

H∈Eell(G2)
H 6=G2

ι(G,H)SH̃geom((ϕk ⊗ f∞)H̃). (5.2)

We recall:

ι(G,H) = |Λ(H,H, s, η)|−1 τ(G)

τ(H)
,

where Λ(H,H, s, η) is the image in Out(Ĥ) of the automorphisms of the endoscopic quadruple.
There are two possible methods to proceed here. We will be using method 2 and mention

method 1 in case it is useful for anyone attempting a similar computation on another group.
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Method 1:
We can try calculate the Sgeom terms directly from their formula. We will need to choose

Euler-Poincaré measure at M̄γ times canonical measure for the orbital integrals (canonical
measure is the same for all inner forms). This adds an extra factor of

d(M̄γ,∞)
L(MotMγ )

e(M̄γ,∞)2rank(Mγ,∞)

by [79, lem. 6.2]. Since d(H∞) = 1 and volEP (H∞/AH∞) = 1 for H compact, this expands
the terms in (5.2) as:

SHgeom(ηλ ⊗ f∞) =
∑

M∈Lcusp(H)

(
(−1)[H:M ] |ΩM,F |

|ΩH,F |

)(
τ(M)

k(M∞)

k(H∞)

)
×

∑
γ∈[M(Q)]st,ell∞

2− rank(Mγ,∞)ΦH
M(γ, λ)

(
L(MotMγ )|ιM(γ)|−1SO∞γ ((f∞)M)

)
,

where the stable orbital integrals are now computed using canonical measure on centralizers.
The hardest terms here are the stable orbital integrals, the L-values, and the characters

Φ. Note that since we are using f∞ = 1K∞ , the constant terms (f∞)M are also indicator
functions of hyperspecials.

The L-values may be computed as products of values of Artin L-functions by explicitly
describing the motives from [28]. The terms Φ can be reduced to linear combinations traces
of γ against finite dimensional representations of G2 by the algorithm on [4, pg. 273]. These
can of be computed by the Weyl character formula and it’s extension to irregular elements
stated in, for example, [13, prop. 2.3].

The stable orbital integrals unfortunately cause far more difficulty. They are computed
and listed in a table on [30, pg. 159]. First, they are interpreted as orbital integrals on
compact-at-infinity Gc

2. The spectral side of the trace formula on Gc
2 is then possible to

compute, allowing the orbital integrals to be solved for once the coefficients in terms of
L-values are known.

Even using the previous work of [30], this method is horrendously complicated.
Method 2:

Fortunately, there is a much simpler way to compute our desired count. Recalling that
IG

c
2 is known from [13], we can compare the expansions (5.2) for G2 and Gc

2. The term for
SG2 a appears in the expansion for IG

c
2 and can therefore be solved for and substituted in

the expansion for IG2 . In total we get a formula

IG2 = IG
c
2 + corrections,

where the corrections are in terms of SH for smaller endoscopic H.
In the next section we will see that there aren’t actually that many H appearing. Finally,

section 5.5 will show that the terms for these H are easily computed through another trick.
Method 2 also gives in section 5.6 a Jacquet-Langlands-style result comparing quaternionic
representations on G2 to representations on Gc

2.
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5.3 Groups Contributing and Related Constants

5.3.1 Elliptic Endoscopy of G2

The elliptic endoscopic groups of G2 are G2, PGL3, SO4, and potentially some tori. This is
stated in a thesis [1] but not fully explained, so we work out the computation here for reader
convenience. We again use our previous notational conventions for endoscopy as in section
2.2.

By inspecting the root data, the conjugacy classes of centralizers Ĥ of a semisimple
element in Ĝ2 ' G2(C) are:

• G2 itself,

• SL3 from the long roots,

• SL2 × SL2/{±1} from a short and long root that are orthogonal,

• GL2 from a short root,

• GL2 from a long root,

• G2
m.

We compute the possible endoscopic pairs (s, ρ) for each possibility. Recall that, since G2 is

split, ρ is a map from a Galois group to Out(Ĥ) ∩ ΩG2 .
Since G2 has trivial center, the cohomology condition on s is always satisfied so we don’t

bother checking it. Trivial center further gives that the isomorphism class of the pair cannot
change with s. Therefore the only thing that depends on s is whether we can exhibit one
that is Galois invariant when ρ is non-trivial.

For each pair we will also compute the automorphism group Λ that comes up in the
formula for ι(G,H).
G2:

Then ρ is trivial. This gives the trivial endoscopic group G2. Since only the trivial element
of Out(Ĥ) can be realized in ΩG2 , Λ = 1.
SL3:

There are two possibilities for ρ: trivial or sending a quadratic Galois element to the
outer automorphism of SL3: (δ1, δ2) 7→ (δ1,−δ2) (fixing a long root). We are forced to choose

s so that without loss of generality (δ1 + δ2)(s) = (δ1 − δ2)(s) = ζ3 (two short roots of Ĝ2 at
120◦). This is preserved by only the trivial ρ.

This gives endoscopic group PGL3. Here, Out(Ĥ) is realized in ΩG2 and commutes with
ρ so |Λ| = 2.
SL2 × SL2/{±1}:

No outer automorphisms can be realized through conjugation in Ĝ2 so ρ is trivial. This
gives endoscopic group SL2 × SL2/{±1}. Since Out(Ĥ) ∩ ΩG2 is trivial, Λ = 1.
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Short GL2:
Without loss of generality assume the short root is 2δ2. To be elliptic ρ needs to send a

quadratic Galois element to the outer automorphism (δ1, δ2) 7→ (−δ1, δ2) of GL2. To have the
right centralizer, 2δ1(s) = α for some α 6= 1 and 2δ2(s) = 1. However, then (δ1+δ2)(s) = ±

√
α

which can’t be equal to it’s inverse. Therefore s can’t invariant under ρ. In total, there are
no such elliptic endoscopic groups.
Long GL2:

This is the same as the previous case and gives no elliptic endoscopy.
G2
m:

Here ρ send Galois elements to any element of ΩG2 . Elliptic means the action can have
no invariants except zero in X∗(T ). To find which ρ have an invariant, regular s, we look
through the possible images of Galois: conjugacy classes of subgroups of D12 that don’t fix
any line.

• C2: generated by α 7→ −α: Then an invariant s needs to evaluate on all roots to −1
which is impossible

• C3: Then three short roots in an orbit need to evaluate to the same value on s. The other
three short roots evaluate to the square, so we need α1(s)−1 = α1(s)2 =⇒ α1(s) = ζ3,
which means that long roots evaluate to 1, which is impossible.

• D4: impossible since C2 is.

• D6: impossible since C3 is

• C6: impossible since C2, C3 are.

• D12: impossible since C2, C3 are.

Therefore none are elliptic endoscopic groups.
If a group contributes to the stabilization applied to our test function, then by the

fundamental lemma, it needs to be unramified away from infinity. By formulas for transfers
of pseudocoefficients, it needs to be elliptic at infinity. The only groups contributing are
therefore the G2 and the SL2 × SL2/{±1}.

5.3.2 Endoscopic Constants and Normalizations

The ι

Let H = SL2× SL2/± 1 and let Gc
2 be the unique non-split inner form of G2 over Q which is

compact at infinity. Then,

ι(Gc
2, H) = ι(G2, H) = |Λ(H,H, s, η)|−1 τ(G)

τ(H)
= 1 · 1

2
,

ι(Gc
2, G2) = 1,

by Kottwitz’s formula for Tamagawa numbers (note that ker1(Q, ZH) = ker1(Q, {±1}) = 1).
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The transfer factors

We also need to fix transfer factors at all places to compute transfers. The computations
in [80] demonstrate how to do so explicitly. First, they can be chosen consistently by fixing
a global Whittaker datum. The corresponding local Whittaker datum determine the local
transfer factors as in [46]. Since G2 is defined over Z, we can choose a global datum that is
unramified/admissible at all finite places with respect to the G2(Zp) as in [33, §7], so we can
use the fundamental lemma at all finite places.

All we will need to know about the Archimedean Whittaker datum for G2 is which element
of Πdisc((k − 2)β) it makes Whittaker-generic. This will have to be π(k−2)β,1 since our choice
of dominant Weyl chamber has all simple roots non-compact and is the only possible such
choice up to ΩK (see the discussion before lemma 4.2.1 in [80]. In fact, there is only one
possible conjugacy class of Whittaker datum at infinity by considerations explained there).

The stabilizations

We fix canonical measure at finite places so that the fundamental lemma directly gives
1HK∞G2

= 1K∞H . Recall that EP-functions and pseudocoefficients are defined depending on

measure so we don’t need to fix measure at infinity.
Then, (5.2) gives

IG2(ϕπG2
(sα2 ,(k−2)β) ⊗ 1K∞G2

)

= SG2(ηG2

(k−2)β ⊗ 1K∞G2
) +

1

2
SH((ϕπG2

(sα2 ,(k−2)β))
H ⊗ 1K∞H ). (5.3)

A simple case of the discrete transfer formula in [48, §IV.3] computes that (η
Gc2
(k−2)β)G2 = ηG2

(k−2)β

(note that ΩR(Gc
2)\ΩC(Gc

2) is trivial so κ is too), so

IG
c
2(η

Gc2
(k−2)β ⊗ 1K∞

Gc2

) = SG2(ηG2

(k−2)β ⊗ 1K∞G2
) +

1

2
SH((η

Gc2
(k−2)β)H ⊗ 1K∞H ).

Since type A1×A1 has no non-trivial centralizer of full semisimple rank, all elliptic endoscopy
of SL2 × SL2/ ± 1 is non-split. Therefore, it is ramified at some prime, so the transfers of
1K∞H vanish, implying that, SH = IH on our test functions. Substituting one stabilization
into another finally gives:

IG2(ϕπG2
(sα2 ,(k−2)β) ⊗ 1K∞G2

) = IG
c
2(η

Gc2
(k−2)β ⊗ 1K∞

Gc2

)

− 1

2
IH((η

Gc2
(k−2)β)H ⊗ 1K∞H ) +

1

2
IH((ϕπG2

(sα2 ,(k−2)β))
H ⊗ 1K∞H ) (5.4)

under canonical measure at finite places.
This is our realization of method 2. There are three steps remaining to get counts:

1. Compute the transfers of EP-functions to H.
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2. Write the resulting IH(ηλ ⊗ 1KH ) terms in terms of counts of level-1, classical modular
forms.

3. Look up values for the Gc
2-term from [13].

5.4 Real Endoscopic Transfers

Let H again be the one endoscopic group we care about: SL2 × SL2/{±1}. We want to

compute (ϕπG2
(sα2 ,(k−2)β))

H and (η
Gc2
(k−2)β)H . By our choice of transfer factors, we may do so

by the formulas in [48, §IV.3].
As a choice for computation that doesn’t affect the final result, we realize the roots of

H as 2ε1 and 2ε2. Orient X∗(T ) by setting the 1st quadrant in ε1 and ε2 to be dominant.
The Weyl elements Ω(G,H) that send the G-dominant chamber to an H-dominant one are
{1, sα1 , sα2}.

5.4.1 Root Combinatorics

Since ρG − ρH ∈ X∗(T ), [48, §IV.3] gives the transfer of the pseudocoefficient of the quater-
nionic discrete series to H:

(ϕπG2
(sα2 ,(k−2)β))

H =

κH(s−1
α2

)ηH(k−2)β+ρG−ρH − κ
H(sα1s

−1
α2

)ηHsα1 ((k−2)β+ρG)−ρH − η
H
sα2 ((k−2)β+ρG)−ρH (5.5)

for some signs κ.
We compute that ρH = ε1 + ε2. Then

(k − 2)β + ρG − ρH = (k − 2)(3ε1 + ε2) + (3ε1 + ε) = 3(k − 1)ε1 + (k − 1)ε2.

In addition,

sα1ρG = 5ε1 + ε2, sα1β = β,

sα2ρG = ε1 + 3ε2, sα2β = 2ε2,

so
sα1((k − 2)β + ρG)− ρH = (k − 2)(3ε1 + ε2) + (4ε1) = (3k − 2)ε1 + (k − 2)ε2

and
sα2((k − 2)β + ρG)− ρH = (k − 2)(2ε2) + (2ε2) = 2(k − 1)ε2.
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5.4.2 Endoscopic Characters

It remains to compute the κ terms in 5.5. These signs depend in a very complicated way on
the realization of H and the exact transfer factors chosen. They can be pinned down most
easily by looking at endoscopic character identities.

Let ψH be a (discrete in our case) L-parameter for H(R) and ψG the composition with
LH ↪→ LG2. The we have an identity of traces over L-packets:

SΘψH (fH) =
∑

π∈ΠψG

〈ϕH , π〉Θπ(f),

where fH is a transfer of f , Θπ is the Harish-Chandra character, SΘψH is the stable character
corresponding to the L-packet, ΠϕG is the L-packet corresponding to the L-parameter, and
〈ϕH , π〉 is a particular pairing depending on transfer factors. See [36, §1] for an exposition of
how this works in general.

If π on G2 is discrete series, Labesse’s formula tells us:

(ϕG2
π )H =

∑
λ

ε(λ, π)ηHλ

for some signs ε and weights λ. Let ψλ be the L-parameter corresponding to weight-λ discrete
series on H. Plugging this formula into the character identity for ψλ gives that ψλ is required
to push forward to the parameter for π and that ε(λ, π) = 〈ψλ, π〉.

The only fact we need now is that ε(λ, π) = 〈ψλ, π〉 = 1 whenever π is the Whittaker-
generic member of its L-packet. Therefore, in Labesse’s formula for the generic member
π1,(k−2)β,

(ϕπG2
(1,(k−2)β))

H = ηH(k−2)β+ρG−ρH + κH(sα1) sgn(sα1)ηHsα1 ((k−2)β+ρG)−ρH

+ κH(sα2) sgn(sα2)ηHsα2 ((k−2)β+ρG)−ρH ,

all the coefficients need to be 1. The allows to solve

κH(sα1) = κH(sα2) = −1

for our choice of transfer factors. Right-ΩR-invariance of κ then also gives that

κH(sα1sα2) = −1.

5.4.3 Final Formulas for Transfers

Therefore, our final transfer is

(ϕπG2
(sα2 ,(k−2)β))

H = −ηH3(k−1)ε1+(k−1)ε2
+ ηH(3k−2)ε1+(k−2)ε2

− ηH2(k−1)ε2
. (5.6)

Transfers from Gc
2 are easier. Here, ΩR(Gc

2)\ΩC(Gc
2) is trivial so the average value of κ is 1.

Averaging Labesse’s formula as in corollary 3.2.1.5 therefore gives:

(η
Gc2
(k−2)β)H = ηH3(k−1)ε1+(k−1)ε2

− ηH(3k−2)ε1+(k−2)ε2
− ηH2(k−1)ε2

. (5.7)
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5.5 The H = SL2 × SL2/± 1 term

Here we compute the terms IH(ηλ⊗ 1KH ) for Euler-Poincaré functions ηλ. Any λ = aε1 + bε2
is a weight of H if a+ b is even. Note first that

IH(ηHλ ⊗ 1KH ) =
∑

π∈ARdisc(H)

trπ∞(ηHλ ) trπ∞(1KH ) =
∑

π∈ARdisc(H)
π unram.

trπ∞(ηHλ ),

by Arthur’s simple trace formula and using our choice of canonical measure at finite places.
To move forward, we need to understand automorphic reps on H by relating them to

other groups. Consider the sequence

1→ ±1→ SL2 × SL2 → H → 1.

It induces on local or global F :

1→ ±1→ SL2 × SL2(F )→ H(F )→ F×/(F×)2 → 1,

using that H1(F,±1) = F×/(F×)2 and H1(F, SL2) = 1 for the F we care about (the R case
of the second equality comes from the determinant exact sequence on GL2). Let H ′F be the
image of SL2 × SL2(F ).

As noted in a similar analysis for SL2 in [47], unitary irreducibles for H ′F induce to
semisimple representations of H(F ).

5.5.1 Cohomological Representations of H(R)

Next, we recall that the infinite trace measures an Euler characteristic against (h, KH,∞)-
cohomology:

trπ∞(ηHλ ) = χ(H∗(h, KH,∞, π∞ ⊗ Vλ)),

where h is the Lie algebra of H(R) and Vλ is the finite dimensional representation of weight
λ. Using the definition from [11, §5.1],

H∗(h, KH,∞, π∞ ⊗ Vλ) = H∗(h, K0
H,∞, π∞ ⊗ Vλ)KH,∞/K

0
H,∞ ,

it suffices to consider the π∞ whose restrictions to H ′∞ contain a component that is cohomo-
logical when pulled back to [SL2 × SL2](R). By Frobenius reciprocity and semisimplicity of
inductions, these are exactly the irreducible constituents of IndH∞H′∞ π

′ for π′ cohomological of
H ′∞.

Next, H ′∞ is index 2. Pick h ∈ H∞−H ′∞ and let π′(h) be the representation γ 7→ π′(h−1γh).
Define character

χ : H∞ 7→ H∞/H
′
∞ = ±1.

There are two cases for H ′∞-cohomological π′:
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1. π′ 6= π′(h): then IndH∞H′∞ π
′ is irreducible, and ResH∞H′∞ IndH∞H′∞ π

′ = π′ ⊕ π′(h).

2. π′ = π′(h): then IndH∞H′∞ π
′ = V ⊕ (V ⊗ χ) for some irreducible V . Only one of these

factors will have a subspace fixed by KH,∞ so only one of them will have fixed chains
and therefore be cohomological. Also, ResH∞H′∞ IndH∞H′∞ π

′ = π′ ⊕ π′.

Recalling a standard result, the cohomological representations of SL2(R) with respect to
λ are:

• A discrete series L-packet πλ,1, πλ,s (where ΩSL2 = {1, s}),

• The trivial representation 1SL2 if λ = 0.

By the Künneth rule, cohomological representations of SL2 × SL2(R) are exactly products of
those on SL2(R). Those of H ′∞ are exactly the SL2 × SL2(R) ones that are trivial on ±1—in
other words, with λ = aε1 + bε2 and a+ b even.

Consider such λ. There are three cases of inductions to consider to compute the cohomo-
logical representations of H. Note that conjugation by h ∈ H∞ −H ′∞ switches both factors
to the other member of their SL2-L-packet if they are discrete series and otherwise fixes the
trivial representation.

• a, b 6= 0: We look at the inductions of products of discrete series. This is case (1) so
the 4 products pair up in sums that are 2 members of an L-packet. These are of course
πHλ,1 and πHλ,s where s is a length-1 element of ΩH :

πHλ,1|H′∞ = (πaε1,1 � πbε2,1)⊕ (πaε1,s � πbε2,s),

πHλ,s|H′∞ = (πaε1,1 � πbε2,s)⊕ (πaε1,s � πbε2,1).

• Without loss of generality, a = 0, b 6= 0: We also need to consider inductions of 1�πbε2,?.
This is case (1) and both induce to a single irreducible σHλ :

σHλ |H′∞ = (1 � πbε2,1)⊕ (1 � πbε2,s).

• a = b = 0: In addition to both the above, we need to consider the induction of
1SL2 � 1SL2 . This is case (2). This trivial representation induces to 1H∞ ⊕ χ on H∞.
The cohomological piece is 1H∞ .

Grothendieck group relations stay true restricted to H ′∞ so we can compute traces against
ηλ. Recall that in SL2(R):

1 = I − π0,1 − π0,s,

where I is some non-cohomological parabolically induced representation.
First, by our normalization

trπHλ,1(ηHλ ) = trπHλ,s(η
H
λ ) = 1/2.
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Next, working in H ′∞:

1 � πλ,? = (I − π0,1 − π0,s) � πλ,? = I � πλ,? − π0,1 � πλ,? − π0,s � πλ,?,

so
σHλ = 1 � πλ,1 + 1 � πλ,s = I � (πλ,1 + πλ,s)− πH0+λ,1 − πH0+λ,s,

implying
trσHλ (ηHλ ) = −1.

Finally

1 � 1 = (I − π0,1 − π0,s) � (I − π0,1 − π0,s)

= I � I − I � (π0,1 + π0,s)− (π0,1 + π0,s) � I + πH0+0,1 + πH0+0,s,

so
tr1(ηHλ ) = 1.

In total, our H-term becomes a count∑
π∈ARdisc,ur(H)

w(π∞),

where w is a weight

wH(π∞) =


0 π∞ not cohomological

1/2 π∞ one of the πHλ,∗
−1 π∞ one of the σHλ,∗
1 π∞ trivial

.

Call the cohomological cases type I, II, and III in order.

5.5.2 Reduction to Modular Form Counts

We now recall a result from [13]. Consider central isogeny G→ G′ of algebraic groups over Z.
If π′ = π′∞ ⊗ π′∞ is an unramified, discrete automorphic representation of G′, let R(π′) be
the set of unitary, admissible representations π = π∞ ⊗ π∞ of G(A) that satisfy:

• π∞ is unramified with Satake parameters induced from those of π′∞ through Ĝ′ → Ĝ.

• π∞ is a constituent of the restriction of π′∞ through G(R)→ G′(R).

Note that the size of R(π′) is the number of constituents of the restriction of π′∞.

Theorem 5.5.2.1 ([13, cor. 4.10]). Assume that all π ∈ ARdisc,ur(G) have multiplicity one.
Then the same holds for G′ and the R(π′) with π′ ∈ ARdisc,ur(G

′) partition ARdisc,ur(G).
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Make similar definitions of type I, II, and III for representations of [SL2 × SL2](R) and
[GL2×GL2](R). Since type I and II on H decompose into two constituents in SL2× SL2 and
type III decomposes into 1, our count becomes π ∈ ARdisc,ur(SL2 × SL2) weighted by

wSL2×SL2(π∞) =


1/4 π∞ type I

−1/2 π∞ type II

1 π∞ type III

.

Each π ∈ ARdisc,ur(SL2 × SL2) lifts to a rep of SL2 × SL2 × G2
m. This group is further

isogenous to GL2 ×GL2 so we apply the theorem again. Type I on GL2 ×GL2 decomposes
into 4 constituents on SL2 × SL2 ×G2

m, type II into 2, and type III into 1. Therefore, we get
a count of π ∈ ARdisc,ur(GL2 ×GL2) weighted by

wGL2×GL2(π∞) =


1 π∞ type I

−1 π∞ type II

1 π∞ type III

.

Let Sk(1) be the set of normalized, level-1, weight-k cuspidal eigenforms. If λ = aε1 + bε2,
then type I representations on GL2 ×GL2 correspond to pairs in Sa+2(1)× Sb+2(1). Type II
is a single form times the trivial representation and Type I is only the trivial representation.

5.5.3 Final Formula for SH

Therefore, if
Sk = |Sk(1)|,

we get:
IH(ηHaε1+bε2

⊗ 1KH ) = (Sa+2 − 1a=0)(Sb+2 − 1b=0), (5.8)

using canonical measure at finite places. By a classical formula ([16, Thm. 3.5.2] for example),

Sa+2 =


0 a+ 2 = 2 or a+ 2 odd

ba+2
12
c − 1 a+ 2 ≡ 2 (mod 12)

ba+2
12
c else

.

5.6 A Jacquet-Langlands-style result

5.6.1 First Form

Generalizing (5.4) slightly and substituting in (5.6) and (5.7) gives:

IG2(ϕπk ⊗ f∞) = IG
c
2(η

Gc2
(k−2)β ⊗ f

∞)− IH(ηH(3k−3)ε1+(k−1)ε2
⊗ (f∞)H)

+ IH(ηH(3k−2)ε1+(k−2)ε2
⊗ (f∞)H). (5.9)
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for any unramified function f∞ (we use here that (Gc
2)∞ = (G2)∞). This will let us describe

the set Qk(1) for k > 2 in terms of certain representations of Gc
2 and H.

Choose π = πk ⊗ π∞ ∈ Qk(1). Since π∞ is unramified, it can be described by a sequence

of Satake parameters: for each prime p, a semisimple conjugacy class cp(π
∞) ∈ [Ĝ2]ss (note

that G2 is split so we don’t need to worry about the full Langlands dual).

The endoscopic datum for H also gives an embedding Ĥ ↪→ Ĝ2 (noting again that
everything is split) whose image contains a chosen maximal torus and therefore induces a
map

TG2
H : [Ĥ]ss � [Ĝ2]ss.

The fibers of this map are ΩG2-orbits of conjugacy classes in H and have size 3 at G2-regular
elements.

Proposition 5.6.1.1. Let k > 2 and π∞ an unramified representation of (G2)∞. Then

mG2
disc(πk ⊗ π

∞) = m
Gc2
disc(V(k−2)β ⊗ π∞)− 1

2
|SH(π∞, (3k − 3)ε1 + (k − 1)ε2)|

+
1

2
|SH(π∞, (3k − 2)ε1 + (k − 2)ε2)|.

Recall here that Vλ is the finite dimensional representation of Gc
2 with highest weight λ. Also,

SH(π∞, λ) is the set of π∞ ⊗ π∞1 ∈ ARdisc(H) such that:

• π∞ ∈ ΠH
disc(λ),

• For all p, cp(π
∞
1 ) ∈ (TG2

H )−1(cp(π
∞)).

Proof. This is a standard Jacquet-Langlands-style argument. Through the Satake isomor-
phism, each fp can be thought of as a function [Ĝ2]ss → C through fp(cp(π)) = trπp(fp). It is

in fact a Weyl-invariant regular function on a maximal torus in Ĝ2. The full version of the
fundamental lemma (see the introduction to [34] for example) shows that

fHp (cp) = fp(T
G2
H (cp))

for all cp ∈ Ĥ.
There are only finitely many sequences cp(π

∞
1 ) and TG2

H (cp(π
∞
1 )) for π∞1 the unramified

finite component of an automorphic representation either:

• of G2 with infinite part πk,

• of Gc
2 with infinite part V(k−2)β,

• or of H with infinite part in Πdisc((3k− 3)ε1 + (k− 1)ε2) or Πdisc((3k− 2)ε1 + (k− 2)ε2).

Therefore we can choose an f∞ that is 0 on all of these sequences cp(π
∞
1 ) except 1 on exactly

the sequence cp(π
∞) (this reduces to finding Weyl-invariant polynomials on (C×)2 that take

specified values on certain Weyl orbits). The result follows from plugging this f∞ into (5.9)
and noting that mH

disc(π) is always 0 or 1.
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5.6.2 In terms of Modular Forms

We can use the argument from section 5.5.2 to reduce the H-multiplicity terms to GL2-
multiplicty ones. Since we already got multiplicity 1 from comparing H to SL2 × SL2 there,
it will end up being more convenient here to compare H to PGL2 × PGL2.

First, we have a map on conjugacy classes

THPGL2×PGL2
: [ ̂PGL2 × PGL2]ss � [Ĥ]ss.

Since the first group is SL2 × SL2(C), the fibers of this map are of the form {c,−c} for some
c ∈ [SL2 × SL2(C)]ss. Composing then gives map

TG2
PGL2×PGL2

: [ ̂PGL2 × PGL2]ss � [Ĝ2]ss.

This allows us to define SPGL2×PGL2(π∞, λ) analogous to SH(π∞, λ) for all λ = aε1 + bε2 with
both a and b even. For indexing purposes, set it to be empty when a and b aren’t even.

Formula (5.8) gives us that SH(π∞, aε1 + bε2) = ∅ also when a and b aren’t both even.
In addition, the restriction of discrete series πPGL2×PGL2

λ to H(R) has as components the
entire L-packet ΠH

disc(λ). Therefore, theorem 5.5.2.1 shows that the RH
PGL2×PGL2

(π′) for
π′ ∈ SPGL2×PGL2(π∞, λ) partition SH(π∞, λ). Since RH

PGL2×PGL2
is two-to-one, this gives

|SH(π∞, λ)| = 2|SPGL2×PGL2(π∞, λ)|.

Finally, PGL2 is a quotient of GL2 by a central torus with trivial Galois cohomology, so
automorphic representations on PGL2 are just those on GL2 with all components having
trivial central character. Recalling injection

ι : [SL2 × SL2(C)]ss ↪→ [GL2 ×GL2(C)]ss,

this gives:

Corollary 5.6.2.1. Let k > 2 and π∞ an unramified representation of (G2)∞. Then

mG2
disc(πk ⊗ π

∞) = m
Gc2
disc(V(k−2)β ⊗ π∞)− |SGL2×GL2(π∞, (3k − 3)ε1 + (k − 1)ε2)|

+ |SGL2×GL2(π∞, (3k − 2)ε1 + (k − 2)ε2)|.

Recall here that Vλ is the finite dimensional representation of Gc
2 with highest weight λ. Also,

SGL2×GL2(π∞, λ) is the set of π∞ ⊗ π∞1 ∈ ARdisc(GL2 ×GL2) such that:

• π∞ is the discrete series πGL2×GL2
λ ,

• For all p, cp(π
∞
1 ) = ι(c′p) for some c′p ∈ (TG2

PGL2×PGL2
)−1(cp(π

∞)). Here ι is the map
[SL2 × SL2(C)]ss ↪→ [GL2 ×GL2(C)]ss.
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Of course, since all infinite terms in sight are discrete series, we may again replace the
mdisc by mcusp using [86].

Note of course that SGL2×GL2(π∞, aε1 + bε2) = ∅ unless both a and b are even. Therefore,
we can interpret this as, for k > 2:

• If k is even: Qk(1) is the corresponding set of representations transferred from Gc
2 in

addition to representations transferred from pairs of cuspidal eigenforms in S3k−2(1)×
Sk−2(1).

• If k is odd: Qk(1) is the corresponding set of representations transferred from Gc
2

except for representations that are also transferred from pairs of cuspidal eigenforms in
S3k−3(1)× Sk−1(1).

Results for level > 1 would be a lot more complicated since formula (5.4) would have
many further hyperendoscopic terms and the comparison to GL2 ×GL2 would not work as
nicely.

5.7 Counts of forms

5.7.1 Formula in terms of IG
c
2

. To get counts instead of a list, combining formulas (5.1),(5.9), and (5.8) gives that

|Qk(1)| = IG
c
2(η

Gc2
λ ⊗ 1K∞

Gc2

)− (S3k−1 − 13k−3=0)(Sk+1 − 1k−1=0)

+ (S3k − 13k−2=0)(Sk − 1k−2=0).

This finally becomes, for k > 2:

|Qk(1)| = IG
c
2(ηλ ⊗ 1K∞

Gc2

)

+



bk
4
c
(
b k

12
c − 1

)
k ≡ 2 (mod 12)

bk
4
cb k

12
c k ≡ 0, 4, 6, 8, 10 (mod 12)

−
(
b3k−1

12
c − 1

) (
bk+1

12
c − 1

)
k ≡ 1 (mod 12)

−
(
b3k−1

12
c − 1

)
bk+1

12
c k ≡ 5, 9 (mod 12)

−b3k−1
12
cbk+1

12
c k ≡ 3, 7, 11 (mod 12)

. (5.10)

5.7.2 Computing IG
c
2

The group Gc
2(R) is compact so the IG

c
2 term takes a very simple form: L2(Gc

2(Q)\Gc
2(A))

decomposes as a direct sum of automorphic representations and the EP-functions ηλ are just
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scaled matrix coefficients of the finite-dimensional representations Vλ with highest weight λ
on Gc

2(R). Therefore

IG
c
2(ηλ ⊗ 1K∞

Gc2

) =
∑

π∈AR(Gc2)

1π∞=Vλ trπ∞(1K∞
Gc2

),

which is just counting the number of unramifed automorphic reps of Gc
2 that have infinite

component Vλ.
By standard results on unramified representations, taking K∞Gc2 invariants sends each such

π to a linearly independent copy of Vλ that together span the Vλ-isotypic component of

L2(Gc
2(Q)\Gc

2(A)/K∞Gc2) = L2(Gc
2(Z)\Gc

2(R)) ⊆ L2(Gc
2(R)).

By Peter-Weyl, L2(Gc
2(R)) has Vλ-isotypic component V ⊕ dimVλ

λ . In fact, this component for
both the left- and right-actions is the same subspace. Therefore the number of copies of

Vλ ⊆ L2(Gc
2(Z)\Gc

2(R)) is dim
(
V
Gc2(Z)
λ

)
by a dimension count.

Summarizing:

IG
c
2(ηλ ⊗ 1K∞

Gc2

) = dim
(
V
Gc2(Z)
λ

)
. (5.11)

A PARI/GP 2.5.0 program in the online appendix to [13] computes this for all λ by pairing
the trace character of Vλ|G2(Z) with the trivial character.

5.7.3 Table of Counts

Table 5.1 gives values of |Qk(1)| for k = 3 to 52 produced by formula (5.10) and [13]’s table
for formula (5.11). The lowest-weight example is bolded, although this work does not rule
out the existence of an example with weight 2 or weight 1 (as defined by [67, §1.1]).

Table 5.1: Counts of discrete, quaternionic automorphic representations of level 1 on G2.

k |Qk(1)| k |Qk(1)| k |Qk(1)| k |Qk(1)| k |Qk(1)|

3 0 13 5 23 76 33 478 43 1792
4 0 14 13 24 126 34 610 44 2112
5 0 15 8 25 121 35 637 45 2250
6 1 16 23 26 175 36 807 46 2619
7 0 17 17 27 173 37 849 47 2790
8 2 18 37 28 248 38 1037 48 3233
9 1 19 30 29 250 39 1097 49 3447
10 4 20 56 30 341 40 1332 50 3938
11 1 21 50 31 349 41 1412 51 4201
12 9 22 83 32 460 42 1686 52 4780

.
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Mathematics. Birkhäuser, Boston, Mass., 1981, pp. xvii+754. isbn: 3-7643-3037-6.

[83] David A. Vogan Jr. and Gregg J. Zuckerman. “Unitary representations with nonzero
cohomology”. In: Compositio Math. 53.1 (1984), pp. 51–90. issn: 0010-437X. url:
http://www.numdam.org/item?id=CM_1984__53_1_51_0.

[84] J.-L. Waldspurger. “Le lemme fondamental implique le transfert”. In: Compositio Math.
105.2 (1997), pp. 153–236. issn: 0010-437X. doi: 10.1023/A:1000103112268. url:
https://doi.org/10.1023/A:1000103112268.

[85] J.-L. Waldspurger. “Les facteurs de transfert pour les groupes classiques: un formulaire”.
In: Manuscripta Math. 133.1-2 (2010), pp. 41–82. issn: 0025-2611. doi: 10.1007/
s00229-010-0363-3. url: https://doi.org/10.1007/s00229-010-0363-3.

[86] N. R. Wallach. “On the constant term of a square integrable automorphic form”. In:
Operator algebras and group representations, Vol. II (Neptun, 1980). Vol. 18. Monogr.
Stud. Math. Pitman, Boston, MA, 1984, pp. 227–237.

https://doi.org/10.1112/blms/bdu105
https://doi.org/10.1112/blms/bdu105
https://doi.org/10.1112/blms/bdu105
http://www.numdam.org/item?id=CM_1984__53_1_51_0
https://doi.org/10.1023/A:1000103112268
https://doi.org/10.1023/A:1000103112268
https://doi.org/10.1007/s00229-010-0363-3
https://doi.org/10.1007/s00229-010-0363-3
https://doi.org/10.1007/s00229-010-0363-3

	Contents
	Introduction
	Overview
	Mathematical Background
	Foundational Notions
	Automorphic Representations
	Trace Formulas

	Summary of Results
	Shin-Templier's Result
	Splitting the L-packet
	Quaternionic forms on G2
	Some Selected New Techniques

	Technical Introduction to the Equidistribution Problem
	Context
	Summary

	Technical Introduction to the Counting Problem
	Context
	Summary

	Notational Conventions

	Background Materials
	Trace Formula Background
	Invariant Trace Formula
	The Simple Trace Formula
	Trace Formula with Central Character

	Endoscopy and Stabilization Background
	Endoscopic Groups
	z-Extensions
	Transfer
	Stabilization
	Some Properties


	New Formulas
	The Hyperendoscopy Formula
	Raw Formula
	Simplifying Hyperendoscopic Paths
	Central Characters from Hyperendoscopy
	Remarks on Usage

	Lemmas on transfers
	Formulas for Archimedean Transfer
	Bounds on Archimedean Transfers
	Truncated Hecke algebras
	Formulas for Unramified Non-Archimedean Transfers
	Bounds on Unramified Transfers
	Controlling Endoscopic Groups Appearing

	Simple Trace Formula with Central Character
	Set-up
	Generalized Pseudocoefficients
	Spectral Side with Central Character
	Geometric Side with Central Character
	Irregular Discrete Series


	Application to Equidistribution
	Trace Formula Computation Set-Up
	Conditions on G and Defining Families
	Spectral Side
	Geomteric Side Outline

	Geometric Side Details
	Original Bounds
	New Bounds Set-up
	The Main Term
	The Error Term

	Final Computation
	Weight Aspect

	Corollaries
	Plancherel Equidistribution
	Sato-Tate Equidistribution


	Application to Quaternionic Forms on G2
	G2 and Quaternionic Discrete Series
	Root System of G2
	Quaternionic Discrete Series

	Geometric Side/Application of Endoscopy
	Notation
	The Hyperendoscopy Formula

	Groups Contributing and Related Constants
	Elliptic Endoscopy of G2
	Endoscopic Constants and Normalizations

	Real Endoscopic Transfers
	Root Combinatorics
	Endoscopic Characters
	Final Formulas for Transfers

	The H = SL2 SL2 / 1 term
	Cohomological Representations of H(R)
	Reduction to Modular Form Counts
	Final Formula for SH

	A Jacquet-Langlands-style result
	First Form
	In terms of Modular Forms

	Counts of forms
	Formula in terms of IG2c
	Computing IG2c
	Table of Counts


	Bibliography



