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Abstract

Most work in learnability theory assumes that both
the environment (the data to be learned) and the learning mech-
anism are static. In the case of children, however, this is an un-
realistic assumption. First-language learning occurs, for exam-
ple, at precisely that point in time when children undergo signif-
icant developmental changes. In this paper I describe the results
of simulations in which network models are unable to learn a
complex grammar when both the network and the input remain
unchanging. However, when either the input is presented incre-
mentally, or—more realistically—the network begins with lim-
ited memory that gradually increases, the network is able to
learn the grammar. Seen in this light, the early limitations in a
learner may play both a positive and critical role, and make it
possible to master a body of knowledge which could not be
learned in the mature system.

INTRODUCTION

One of the things which makes language learning such
an interesting phenomenon is what has been called the
‘projection problem’. The idea is just that, if the problem
of the language learner is to figure out the underlying reg-
ularities—that is, the grammar—which are responsible
for the language he or she hears, then the data which are
available to the learner may not be sufficient to uniquely

determine the correct grammar.1

This problem of the apparent insufficiency of
the data has been discussed in many contexts (e.g., Baker,
1979; Bowerman, 1987; Pinker, 1989; Wexler & Culli-
cover; 1980) but one of the simplest demonstrations
comes from Gold’s (1967) work. Gold shows that if a
language learner is presented with positive-only data
(what he calls ‘text presentation’), only regular languag-
es can be leammed. Regular languages are languages
which can be generated by finite state automata. The rub
is that, on the one hand, natural languages appear to be-
long to a more powerful class than this (Chomsky, 1957);
and on the other, there is no good evidence that children
receive or use negative data during learning (Brown &

LI say *may’ because much hinges on exactly what one believes
the nature of the input to be: bare sentence strings? strings ac-
companied by semantic interpretations? strings accompanied by
information about the environment in which they were uttered?
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Hanlon, 1970; Hirsh-Pasek, Treiman, and Schneiderman,
1984; Braine, 1971).

Gold advances several suggestions in order to
account for the fact that, despite his findings, children do
learn language. Although children do not appear to re-
ceive explicit negative evidence, they may receive indi-
rect negative evidence. Or possibly, some of what chil-
dren know is innate; thus they need not infer the grammar

solely on the basis of positive data.?

Almost certainly both of the possibilities out-
lined by Gold are true to some extent. That is, the child
isnot an unconstrained learning mechanism in the sense
of being able to learn any and all possible languages.
Rather, innate predispositions narrow the range of what
can be learned. Of course, it is very much an open (and
controversial) question exactly what form that innate
knowledge takes. A number of investigators have also
proposed that although direct negative evidence may not
be available, there are subtler forms of negative evidence.
For example, the non-occurrence of an expected form
constitutes an indirect sort of negative evidence. Just
how far this sort of evidence can be used has been chal-
lenged (Pinker, 1989). Thus, although innateness and in-
direct evidence plausibly participate in the solution of
the learnability problem, their contribution is not known
and remains controversial.

In this paper, I want to pursue what may be a
third factor in helping account for the apparent ability of
learners to ‘go beyond the data’. This factor hinges on
the simple fact that first language leamners (children) are
themselves undergoing significant developmental chang-
es during precisely the time that they learn language. In-
deed, language learning after these developmental
changes have completed seems to be far less successful.
This is often attributed to the passing of a “critical period’
for language learning. But this is no more than a restate-
ment of facts. What I would like to consider here is the
question of what it is about the so-called critical period

2- Gold mentions a third possibility, which is that if the text is
ordered, then positive-only presentation is sufficient to learn
even the most complex set of languages he considers. The de-
tails of this proposal are not well-developed however.
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that might facilitate learning language.

Interestingly, with the notable exception of
work by Newport (1988, 1990) almost all learnability
work ignores this basic fact. It is typically assumed that
both the learning device and training input are static.
One might wonder what the consequences are of having
either the learning device (network or child) or the input
data not be constant during learning? Recent results
from the connectionist literature (Allen, 1990; Cottrell
& Tsung, 1989; Plunkett & Marchman, 1990) suggest
that incremental training strategies may play an impor-
tant role in the successful mastery of a domain. We
might also ask what the consequences are when the
leaming mechanism itself changing.

In this paper, I will report the effect of staged
input on learning in a connectionist model. The network
fails to learn the task when the entire data set is present-
ed all at once, but succeeds when the data are presented
incrementally. I then show how similar effects can be
obtained by the more realistic assumption that the the in-
put is held constant, but the learning mechanism itself
undergoes developmental changes. Finally, I examine
the network to see what the mechanism is which allows
this to happen and suggest what conditions are necessary
for incremental learning to be useful.

Simulations

This work was originally motivated by an interest in
studying ways in which connectionist networks might
use distributed representations to encode complex, hier-
archically organized information. By this I mean just the
sort of relationships which typically occur in language.
For example, in the sentence The girls who the teacher
has picked for the play which will be produced next
month practice every afternoon, there are several events
which are described. Some are backgrounded or subor-
dinate to the main event. This has grammatical conse-
quences. Thus, the main verb (practice) is in the plural
because it agrees with the girls (not the teacher, nor the
play). And although picked is a transitive verb which of-
ten takes a direct object following it, no noun appears af-
ter the verb because the direct object (the girls) has al-
ready been mentioned.

These sorts of facts (specifically, the recursive
nature of embedded relative clauses) led many linguists
to conclude that natural language could not be modeled
by a finite state grammar (Chomsky, 1957), and that sta-
tistical inference as a learning mechanism for language
was untenable (Miller & Chomsky, 1963). These con-
clusions about the representational and learnability re-
quirements of natural language seem to pose real prob-
lems for connectionist networks, which typically rely
heavily (though not necessarily exclusively) on statisti-
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cal inference, and which are more similar to finite state
machines than other sorts of computational devices (e.g.,
pushdown automata; but see Pollack, 1990).

My first approach was to try construct a semi-
realistic artificial language which had some of the crucial
properties that were cited by Chomsky and his col-
leagues as being problematic for FSA’s and statistical
learning, and to train a neural network o process sen-
tences from this language. The network was a simple re-
current network (Elman, 1990, in press; Jordan, 1986;
Servan-Schreiber, Cleeremans, & McClelland, 1988).
The salient property of this architecture is that it is a kind
of dynamical system which allows inputs to be processed
in sequence, and in which the internal states are fed back
at every time step to provide an additional input. The net-
work must learn to develop internal states (i.e., the hid-
den unit activation patterns) which encode temporal in-
formation in ways which enable the network to produce
the correct outputs. The network architecture that was
used is shown in Figure 1.

The input corpus consisted of sentences which
were generated by a grammar that had certain critical
properties: (a) there was number agreement between
subject nouns and their verbs; (b) verbs differes with re-
gard to argument expectations (some required direct ob-
jects, others optionally permitted objects; others preclud-
ed direct objects); (c) sentences could contain multiple
embeddings in the form of relative clauses (in which the
head could be either the subject or object of the subordi-
nate cluase). The existence of these relative clauses con-
siderably complicated the set of agreement and verb ar-
gument facts. (See Elman, in press, for details of this
language.)

The results of the first trials were quite disap-
pointing. The network failed to master the task, even for
the training data. Performance was not uniformly bad.
Indeed, in some sentences, the network would correctly
coordinate the number of the main clause subject, men-
tioned early in a sentence, with the number of the main
clause verb, mentioned after many embedded relative
clauses. But it would then fail to get the agreement cor-
rect on some of the relative clause subjects and verbs,
even when these were close together. (For example, it
might produce The boys who the girl chase see the dog,
getting the number agreement of boys and see right, but
failing on the more proximal—and presumably, easier—
girl chase.) Buteven this pattern was idiosyncratic.

This result, of course, is exactly what might
have been predicted by Chomsky, Miller, and Gold.

Incremental input

In an attempt to understand where the breakdown was
occurring, and just how complex a language the network
might be able to learn, I devised a regimen in which the
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Figure 1

training input was organized into corpora of increasing
complexity, and the network was trained first with the
simplest input. There were five phases in all. In the first
phase, 10,000 sentences consisting solely of simple sen-
tences were presented. The network was trained on five
exposures (‘epochs’) to this database. At the conclusion
of this phase, the training data were discarded and the
network exposed to a new set of sentences. In this second
phase, 7,500 of the sentences were simple, and 2,500
complex sentences were also included. As before, the
network was trained for 5 epochs, after which perfor-
mance was also quite high, even on the complex sentenc-
es. In phase three, the mixture was 5,000 simple/5,000
complex sentences, for 5 epochs. In phase four, the mix-
ture was 2,500 simple/7,500 complex. And in phase
five, the network was trained on 10,000 complex sen-
tences.

Since the prediction task—given this gram-
mar—is non-deterministic, the best measure of perfor-
mance is not the extent to which the literal prediction is
correct (measured thus, 0 error would require the net-
work to memorize the training data) but rather the degree
to which the network’s predictions approximate the em-
pirical probability distributions. Performance using this
metric was high at the conclusion of all phases of train-
ing, including the final phase: final performance had an
error of 0.177, with network output measured against the
empirically derived likelihood estimates. (Alternatively,
one can measure the cosine of the angle between these
two vectors. Mean cosine at the end of traing was 0.852;
perfect performance would have been 1.00.) Further-
more, the network's high performance generalized to a
variety of novel sentences which systematically test the
capacity to predict grammatically correct forms across a
range of different structures.

This result contrasts strikingly with the earlier
failure of the network to learn when the full corpus was
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presented at the outset.? Put simply, the network was un-
able to learn the complex grammar when trained from
the outset with the full ‘adult’ language. However, when
the training data were selected such that simple sentences
were presented first, the network succeeded in not only
mastering these, but then going on to master the complex
sentences as well.

In one sense, this is a pleasing result, because
the behavior of the network partially reesembles that of
children. Children do not begin by mastering the adult
language in all its complexity. Rather, they begin with
the simplest of structures, and build incrementally until
they achieve the adult language.

There is an important disanalogy, however. In
this simulation, the network was placed in an environ-
ment which was carefully constructed so that it only en-
countered the simple sentences at the beginning. As
learning and performance progressed, the environment
was gradually enriched by the inclusion of more and
more complex sentences. This is not a good model for
the situation in which children learn language. Although
there is evidence that adults modify their language to
some extent when interacting with children, it is not clear
that these modifications affect the grammatical structure
of their speech. Unlike the network, children hear exem-
plars of all aspects of the adult language from the begin-
ning.

If it is not true that the child’s environment
changes radically (as in this first simulation), what is true
is that the child changes during the period he or she is
learning language. A more realistic network model
would have a constant learning environment, but some
aspect of the network itself would undergo change dur-
ing learning.

Incremental memory

One developmental change which is plausibly relevant to
learning is the gradual increase in memory and attention
span which is characteristic of children. In the network,
the analog of memory is supplied by the access the net-
work has (via the recurrent connections) to its own prior
internal states. The network can be given a more limited
memory by depriving it of access, periodically, to this
feedback. The network would thus have only a limited
temporal window within which patterns could be pro-
cessed.

3-Both this result and the earlier failure were replicated several
times with different starting conditions, a variety of different
architectures, and various settings of the learning parameters
(learning rate, momentum, bounds on beginning random
weight initialization).



A second simulation was therefore carried out
with the goal of seeing what the effect would be, not of
staging the input, but of beginning with a limited memory
and gradually increasing memory span. The rationale was
that this scenario more closely resembled the conditions
under which children learn language.

In this simulation, the network was trained from
the outset with the full adult language (i.e., the target cor-
pus that had previously been shown to be unlearnable
when it was presented from the beginning). However, the
network itself was modified such that during the first
phase, the recurrent feedback was eliminated after every

third or fourth word (randomly).* In the second phase,
the network continued with another set of sentences
drawn from the the adult language (the first set was dis-
carded simply so the network would not be able to mem-
orize it); more importantly, the memory window was in-
creased to 4-5 words. In the third phase, the memory win-
dow was increased to 5-6 words; in the fourth phase, (o 6-
7 words; and in the fifth phase, the feedback was not in-
terfered with at all.

Under these conditions, it turned out that the
first phase had to be extended to much longer than in the
previous simulation in order to achieve a comparable lev-
el of performance (12 epochs rather than 5; for purposes
of comparison, performance was measured only on the
simple sentences even though the network was trained on
complex sentences as well). However, once this initially
prolonged stage of learning was over, learning proceeded
as quickly through the remaining stages (5 epochs per
stage). At the end, performance on both the training data,
and also on a wide range of novel data, was as good as in
the prior simulation. If the leaming mechanism itself was
allowed to undergo ‘maturational changes’ (in this case,
increasing its memory capacity) during learning, then out-
come was just as good as if the environment itself had
been staged.

Before discussing some of the implications of
this finding, it is important to try to understand exactly
what the basic mechanism is which results in the appar-
ently paradoxical finding that learning can be improved
under conditions of limited capacity. One would like to
know, for example, whether this outcome is always 1o be
expected, or whether this result might be obtained in only
special circumstances.

We begin by looking at the way the network
eventually solved the problem of representing complex
sentences. The network has available to it, in the form of
its hidden unit patterns, a high-dimensional space for in-
ternal representations. It is well known that in such net-
works these internal representations can play a key role in

4 This was done by setting the context units to values of 0.5.
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the solution to a problem. Among other things, the inter-
nal representations permit the network to escape the tyr-
anny of a form-based interpretation of the world. Some-
times the form of an input is not a reliable indicator of
how it should be treated; put another way, appearances
can deceive. In such cases, the network uses its hidden
units to construct a functionally-based representational
scheme. Thus, the similarity structure of the internal rep-
resentations can be more reliable indicator of ‘meaning’
than the similarity structure of the bare inputs.

In this simulation, the network utlized the var-
ious dimensions of the internal state to represent a num-
ber of different factors which were relevant to the task.
These include: individual lexical item; grammatical cat-
egory (noun, verb, relative pronoun, etc.); number (sin-
gular vs. plural); grammatical role (subject vs. object);
level of embedding (main clause, subordinate, etc.); and
verb argument type (transitive, intransitive, optional).
Principle component analysis (Gonzalez & Wintz, 1977)
can be used to identify the specific dimensions associat-
ed with each factor. The internal representations of spe-
cific sentences can then be visualized as movements
through this state space (one looks at selected dimen-
sions or planes, chosen to illustrate the factor of interest).

One can also visualize the representational
space more globally by having the network process a
large number of sentences, and recording the positions in
state space for each word; and then displaying the overall
positions. This is done in Figure 2a. Three dimensions
(out of the 70 total) are shown, the x and y coordinates
together encode depth of embedding and the z coordinate
encodes number. (See Elman, in press, for details.)

At the outset of leamning, of course, none of
these dimensions have been assigned to these functions.
If one passes the same sentences through a network prior
to training, the internal representations have no discern-
ible structure. These internal representations are the im-
portant outcome of learning; they are also the necessary
basis for good performance.

The state-space graph shown in Figure2a was
produced under conditions of incremental training,
which, we have seen, was crucial for successful learning.
What does the state-space look like under conditions of
failure, such as when we train a fully-mature network on
the adult corpus from the beginning? Figure 2b shows
such a plot.

Unlike Figure 2a, Figure 2b reveals a less clear-
ly organized use of the state space. There is far greater
variability, and words have noisier internal representa-
tions. We do not see the kind of sharp distinctions which
are associated with the encoding of number, verb argu-
ment type, and embedding as we do when the network
has succeeded in mastering the language. Why might this
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Figure 2
(a) Graph of dimensions which encode embedding (x,y) and number (z) from a network which succeded in learning the grammar. (b)
The same graph from a network which failed in the learning task.

be? This subset of data, the simple sentences, contain

When the network is confronted from the begin- three of the four sources of variance (grammatical catego-
ning with the entire adult corpus the problem is this. ry, number, and verb argument type) and there are no long-
There are actually a relatively small number of sources of distance dependencies. As a result, the network is able to
variance (number, grammatical category, verb-argument develop internal representations which encode these
type, and level of embedding). However, these sources of sources of variance. When learning advances (either be-
variance interact in complex ways. Some of the interac- cause of new input, or because improvements in the net-
tions involve fairly long-distance dependencies. For ex- work’s memory capacity give it a larger temporal win-
ample, in the sentence The girls who the dogs that I dow), all additional changes are constrained by this early
chased down the block frightened, ran away, the evidence commitment to the basic grammatical factors.

that the verb frightened is transitive is a bit obscure, be-
cause the direct object (the girls) not only does not occur
after the verb (the normal position for a direct object in
simple English sentences), but occurs 10 words earlier;
and there are several other nouns and verbs in between.
The simple recurrent network does not have perfect mem-
ory. All things being equal, information decays exponen-
tially. What happens is that the network finds a solution to
the task which works enough of the time to yield reason-
able performance. However, the solution is imperfect and
results in a set of internal representations which do not re-
flect the true underlying sources of variance. The out-
come is, as already pointed out, consistent with the claims

The effect of early learning, thus, is to constrain
the solution space to a much smaller region. The solution
space is initially very large, and contains many false solu-
tions (in network parlance, local minima). Whether or not
it is really the case that the data truly underdetermine the
solution, it does seem to be true that the chances of stum-
bling on the correct solution are small. However, by selec-
tively focusing on the simpler set of facts, the network ap-
pears to learn the basic distinctions—noun/verb/relative
pronoun, singular/plural, etc.—which form the necessary
basis for learning the more difficult set of facts which arise
with complex sentences.

of Chomsky (1957) Miller & Chomsky (1963), and Gold Seen in this light, the early limitations on memo-
(1967). ry capacily assume a more positive character. Itis natural

When learning proceeds in an incremental fash- to believe that the more powerful a network, the greater its
ion—cither because the environment has been altered or ability to learn a complex domain. However, this appears
because the network itself is initially handicapped—the not always to be the case. If the domain is of sufficient
result is that the network only sees a subset of the data. complexity, and if there are abundant “false solutions”,
When the input is staged, the data are just the simple sen- then the opportunities for failure are great. What is re-
tences. When the network is given a limited temporal quired is some way to artificially constrain the solution
window, the data are the full adult language but the effec- space to just that region which contains the true solution.
five d_al_a are Only [hosc sentences, and po]'ﬁons Of sentenc- Tl'le inillal memory 1imi[afj0ns fill [hiS role; lhey actas a
es, which fall within the window. These are the simple filter on the input, and focus learning on just that subset of
sentences. (Now we see why the initial phase of learning facts which lay the foundation for future success. This
takes a bit longer in this condition; the network also has to conjecture is in fact just what Newport (1988, 1990) has
wade through a great deal of input which it is essentially previously suggested, under what she has termed the “less
noise.) is more” hypothesis.
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Higher primates are distinguished by their ex-
tended period of development, and by their relatively di-
minished capacities at early stages of development. It has
been suggested that this is an evolutionary development
which represents a compromise between large brain size
and the narrow pelvic girdle required for upright posture.
This is a plausible hypothesis; however, there may be ad-
ditional benefits to a prolonged period of maturation. Ear-
ly developmental limitations may play an essential role in
leaming complex domains, and may ultimately be what
enable the higher primates to achieve their characteristi-
cally high level of cognitive function.

Thus, the so-called critical period may be criti-
cal not by virtue of special capacities which are present
during childhood and magically and lamentably lost at
puberty. Rather, the critical period may be special be-
cause the later abilities which are found in adults have not
yet fully developed. The simpler view of the world which
this affords makes learning tractable.

Finally, it is worth pointing out that the advan-
tage which accrues to incremental learning does not arise
in all circumstances. Consider the extreme case where
what is to be learned is a completely random collection of
facts. In such circumstances, undersampling the data
(which is what incremental learning involves) runs the
risk of establishing faulty generalizations. Incrememen-
tal learning can only be useful if (a) the environment con-
tains structure; and (b) the material learned early embod-
ies the major generalizations in a simpler form. In prac-
tice, the world is not a random place, and the sorts of
things children have to learn about typically contain a
great deal of structure. In the specific case of language,
it may also be that the filtering which occurs as a result
of limited memory picks out just that evidence which is
required for successful language learning, and which al-
low the child to indeed go beyond the data.
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