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ABSTRACT

This pragmatic review synthesises the current 
understanding of prodromal dementia with 
Lewy bodies (pDLB) and prodromal Alzheimer’s 
disease (pAD), including clinical presentations, 

neuropsychological profiles, neuropsychiatric 
symptoms, biomarkers, and indications for dis‑
ease management. The core clinical features of 
dementia with Lewy bodies (DLB)—parkinson‑
ism, complex visual hallucinations, cognitive 
fluctuations, and REM sleep behaviour disorder 
are common prodromal symptoms. Supportive 
clinical features of pDLB include severe neu‑
roleptic sensitivity, as well as autonomic and 
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neuropsychiatric symptoms. The neuropsycho‑
logical profile in mild cognitive impairment 
attributable to Lewy body pathology (MCI-LB) 
tends to include impairment in visuospatial skills 
and executive functioning, distinguishing it from 
MCI due to AD, which typically presents with 
impairment in memory. pDLB may present with 
cognitive impairment, psychiatric symptoms, 
and/or recurrent episodes of delirium, indicating 
that it is not necessarily synonymous with MCI-
LB. Imaging, fluid and other biomarkers may play 
a crucial role in differentiating pDLB from pAD. 
The current MCI-LB criteria recognise low dopa‑
mine transporter uptake using positron emission 
tomography or single photon emission computed 
tomography (SPECT), loss of REM atonia on poly‑
somnography, and sympathetic cardiac denerva‑
tion using meta-iodobenzylguanidine SPECT as 
indicative biomarkers with slowing of dominant 
frequency on EEG among others as supportive 
biomarkers. This review also highlights the emer‑
gence of fluid and skin-based biomarkers. There 
is little research evidence for the treatment of 
pDLB, but pharmacological and non-pharmaco‑
logical treatments for DLB may be discussed with 
patients. Non-pharmacological interventions 
such as diet, exercise, and cognitive stimulation 
may provide benefit, while evaluation and man‑
agement of contributing factors like medications 
and sleep disturbances are vital. There is a need 

to expand research across diverse patient popu‑
lations to address existing disparities in clinical 
trial participation. In conclusion, an early and 
accurate diagnosis of pDLB or pAD presents an 
opportunity for tailored interventions, improved 
healthcare outcomes, and enhanced quality of 
life for patients and care partners.

Keywords:  Biomarkers; Clinical diagnosis; Early- 
stage dementia; Mild cognitive impairment; 
Neuropsychological profile; Psychiatric symptoms; 
Treatment planning

Key Summary Points 

Core features of dementia with Lewy bodies 
(DLB) (parkinsonism, visual hallucinations, 
cognitive fluctuations, and REM sleep behav‑
iour disorder) are common in the prodromal, 
or predementia, phase.

Prodromal DLB (pDLB) can present with 
cognitive impairment, psychiatric symp‑
toms, and/or recurrent episodes of delirium. 
Therefore, pDLB is an umbrella term which 
includes, but is not limited to, presentations 
with mild cognitive impairment.

The neuropsychological profile in pDLB 
tends to demonstrate greater weaknesses in 
visuospatial skills and executive functioning, 
while prodromal Alzheimer’s disease (pAD) 
typically reflects weaknesses in language and 
memory.

Imaging and fluid biomarkers may be help‑
ful in differentiating between pDLB and 
pAD; however, co-pathology is common and 
patients with positive biomarkers for Alzhei‑
mer’s pathology may also have underlying 
Lewy body pathology.

INTRODUCTION

The conceptual framework of the prodromal, 
or predementia, stages of neurodegenerative 
disease has evolved over the last two decades. 
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Individuals with neurodegenerative disease can 
experience cognitive, motor, psychiatric, sleep, 
and/or autonomic symptoms prior to meeting 
established criteria for dementia. Early identi‑
fication of the underlying aetiology associated 
with the clinical syndrome is vital to inform 
prognosis, which impacts care planning and 
treatment. As disease-modifying therapies 
evolve, recognising early clinical symptoms of 
neurodegenerative disease will be of increasing 
importance for clinical trials as well as clinical 
management.

In this review, we compare the clinical fea‑
tures, neuropsychological profiles, biomarkers, 
and management among people with prodromal 
dementia with Lewy bodies (pDLB) and prodro‑
mal Alzheimer’s disease (pAD). This article is 
based on previously conducted studies and con‑
tains no new studies with human participants or 
animals performed by any of the authors.

MILD COGNITIVE IMPAIRMENT

Mild cognitive impairment (MCI) is concep‑
tualised as an early, or predementia, stage of 
neurodegenerative disease including dementia 
with Lewy bodies (DLB) and Alzheimer’s disease 
(AD). The definition of MCI due to AD (MCI-AD, 
also known as pAD) according to the National 
Institute on Aging-Alzheimer’s Association (NIA-
AA) is provided in Fig. 1. In 2020, an estimated 
12.23 million people in the USA were living with 
MCI, and this number is expected to increase 
to 21.55  million by 2060 [1]. pAD accounts 
for approximately half of these MCI cases [2]. 
Aetiological diagnosis at the MCI stage can be 
challenging, as different pathologies have over‑
lapping clinical phenotypes, and the complete 
clinical syndrome may not be exhibited. Never‑
theless, there are clinical and biological features 
that can help characterise the underlying aetiol‑
ogy in prodromal disease.

CLINICAL PRESENTATION OF 
PRODROMAL DLB

After AD, DLB is the second most common neu‑
rodegenerative dementia [3]. Like Parkinson’s 
disease (PD), the prevalence of DLB is expected 
rise in the coming years [4]. People with DLB 
often experience diagnostic delays and are mis‑
diagnosed with other neurodegenerative or psy‑
chiatric conditions, contributing to increased 
burden on patients and care partners, difficulty 
planning for the future, and unsuitable treat‑
ment strategies [5, 6]. Early and accurate identi‑
fication of DLB is therefore critical.

Recognising that pDLB could represent an 
important point at which disease-modifying 
interventions could be introduced, the inter‑
national DLB community recently reached a 
consensus on research criteria of pDLB. The 
group agreed that MCI often characterised the 
predementia phase of DLB. However, unlike 
the prodromal phase of AD (pAD), that there 
other non-MCI presentations of prodromal DLB 
and pDLB is not necessarily synonymous with 
MCI in Lewy body disease (MCI-LB). The crite‑
ria therefore describe three phenotypic states 
which could be considered as prodromal phases 
of DLB: (1) cognitive symptom-onset; (2) psy‑
chiatric-onset; and (3) delirium-onset pDLB [7]. 
Therefore, prodromal DLB is a term which is not 
necessarily synonymous with MCI.

Cognitive‑Onset

MCI-LB is the most common prodromal pres‑
entation of DLB. In alignment with DLB cri‑
teria, pDLB research criteria classify cases as 
“probable” or “possible” MCI-LB based on core 
clinical features and diagnostic biomarkers. 
Patients must meet the essential criteria for MCI 
(as defined by lack of functional impairment 
according to NIA-AA for MCI-AD; Fig. 1) [7, 8]. 
Thereafter, individuals are classified as having 
probable MCI-LB if exhibiting at least two of 
four core clinical features: REM sleep behaviour 
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disorder (RBD), parkinsonism, cognitive fluctua‑
tions, and visual hallucinations. Alternatively, 
one core feature and one proposed biomarker 
(discussed later in this manuscript) also sup‑
port a probable MCI-LB diagnosis. Individuals 
exhibiting one core feature without proposed 
biomarkers qualify for a diagnosis of possible 

MCI-LB (Fig. 2) [7]. Among cases in which a 
single core clinical feature is present, abnormal 
biomarkers can increase diagnositic certainty. 
Approximately 40% of patients with DLB have 
two or more core clinical features and abnormal 
scores on brief cognitive screening measures at 
least 3–4 years prior to dementia diagnosis [9]. 

Fig. 1   A comparison of diagnostic criteria for and mild 
cognitive impairment with Lewy bodies (MCI-LB) and 
mild cognitive impairment due to Alzheimer’s disease 
(MCI-AD). The three essential criteria for MCI-LB [7] are 
broadly analogous to the NIA-AA definition of MCI-AD 

[44]. Aβ amyloid beta peptide, CSF cerebrospinal fluid, CT 
computed tomography, MR magnetic resonance imaging, 
PET positron emission tomography, SPECT single photon 
emission computed tomography
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People with MCI who progress to DLB demon‑
strate a higher frequency of parkinsonism, fluc‑
tuating cognition, and RBD compared to those 
who progress to AD [10, 11].

Psychiatric‑Onset

There are several case reports of an initial pri‑
mary psychiatric presentation of DLB, includ‑
ing depression, psychosis, anxiety, and catatonia 
[12–15]. While cognitive symptoms may also be 
present, there may be a lag between the onset 
of psychiatric symptoms and cognitive decline 
in DLB [16]. According to pDLB criteria, the 
presence of visual hallucinations, subtle parkin‑
sonism, or RBD in individuals with late-onset 
psychiatric presentations should alert clinicians 
towards the possibility of pDLB. The potential of 
several neurotropic agents to cause parkinson‑
ism should be considered in any assessment, and 
the risk of neuroleptic sensitivity integrated into 
decisions around treatment strategies for pDLB. 
This area has received less attention than MCI, 
but new data are emerging [12, 17].

Delirium‑Onset

Delirium is the least commonly reported of 
pDLB presentations [18] and can be challeng‑
ing to identify, as hallucinations and cognitive 
fluctuations are features of all-cause delirium. 
Patients with DLB are at greater risk of hospi‑
talisation with delirium than those with AD [19] 
and DLB may present with an episode of delir‑
ium prior to dementia diagnosis [20]. Delirium 
incidence in patients with DLB (17.2/100 person 
years) was higher than those with AD (3.2/100 
person years) in the year prior to dementia diag‑
nosis [21]. Clinicians should consider MCI-LB 
in the differential diagnosis in people present‑
ing with recurrent, unexplained, or prolonged 
delirium [7]. Iatrogenic causes should be among 
those considered in assessment of patients with 
possible delirium-onset DLB.

Core and Supportive Features in pDLB

The prevalence and relevance of core and sup‑
portive DLB features during the pDLB phase is 
not well understood; however, RBD is perhaps 
best established as a prodromal feature of DLB 
[7, 22] and can precede other clinical symptoms 
by several years [23]. Idiopathic RBD (iRBD) can 
be a feature of both prodromal PD and pDLB. 
The clinical symptoms in these two disorders 
can overlap significantly, and there is, at present, 
insufficient evidence to determine whether they 
evolve differently. In individuals with isolated 
RBD, the temporal evolution of motor, cogni‑
tive and non-motor symptoms appear to differ 
between those who convert to DLB and those 
who convert to PD [24]. People with iRBD are 
more likely to phenoconvert to DLB if they also 
demonstrate reduced attention/executive perfor‑
mances and visuospatial abilities [25]. However 
these relationships have been derived at the 
group level, and cannot yet be applied in clini‑
cal practice for individual prediction.

Up to 60% of patients with DLB demon‑
strate motor symptoms (e.g. postural instabil‑
ity, tremor, bradykinesia) in the 5 years prior to 

Fig. 2   Probable and possible mild cognitive impairment 
with Lewy bodies (MCI-LB). In addition to the pres-
ence of all three essential criteria (blue), two core features 
(pink), or one core feature and one positive proposed bio-
marker (purple), are required for a diagnosis of MCI-LB. 
The presence of either a positive biomarker or core feature 
in addition to all three essential criteria is suggestive of pos-
sible MCI-LB [7]
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a dementia diagnosis. This prevalence increases 
to 82% in the year prior to DLB diagnosis [9]. 
Parkinsonian symptoms have been reported in 
50–70% of individuals with MCI-LB [26, 27]. 
Subtle parkinsonism is more common in indi‑
viduals with pDLB than those with pAD [10, 28, 
29]. A thorough neurological exam focusing on 
extrapyramidal signs is necessary at each visit. In 
a cohort from the UK, 41% of probable MCI-LB 
cases developed dementia over a mean 2.2 years 
follow-up and increased LB diagnostic features 
were associated with an increased risk of conver‑
sion to dementia [30].

Fluctuations in alertness, attention, and 
arousal [31] are challenging to detect in pDLB 
but can occur in up to 42% of cases [9, 22, 26]. 
Fluctuations are observed more frequently in 
pDLB than in pAD [28, 29]. Fluctuations can 
be exacerbated by poor sleep or less stimulating 
environments, or medications with anticholin‑
ergic properties, while periods of lucidity may 
coincide with novel or stimulating environ‑
ments [32]. Use of standardised instruments 
should be encouraged to detect fluctuations, as 
these symptoms may be more subtle in pDLB 
[33–35].

Visual hallucinations typically occur after 
the onset of cognitive symptoms [22] and are 
thought to be present in only 20–25% of indi‑
viduals with pDLB [9]. When the definition of 
visual hallucinations was expanded to include 
misidentifications, passage illusions (e.g. shad‑
ows moving in peripheral vision), and extra‑
campine hallucinations (e.g. sense of presence), 
approximately 65% of patients with pDLB 
endorsed these symptoms [26]. Therefore, tools 
that detect subtle forms of hallucinations may 
provide additional insight related to the possibil‑
ity of pDLB [36, 37] (Fig. 3).

Several supportive DLB symptoms can emerge 
pDLB, but these are often not specific and are 
commonly seen in other neurodegenerative dis‑
orders, particularly synucleinopathies (e.g. PD 
and multiple system atrophy (MSA)). Olfactory 
dysfunction (e.g. anosmia, olfactory hallucina‑
tions) can be a prodromal symptom in synucle‑
inopathies, including DLB [16, 23]. Although 
anosmia can occur in AD, it is more commonly 
reported in DLB and is more predictive of 
Lewy body (LB) pathology [38, 39]. Autonomic 

symptoms are reported more frequently in MCI-
LB compared to other MCI syndromes. The most 
common autonomic symptoms in pDLB include 
dry mouth (43.8%), constipation (34.7%), sexual 
dysfunction (32.8%), and rhinorrhoea (27.9%) 
[26]. Among individuals with iRBD who pheno‑
convert to DLB, changes in colour vision pre‑
sented as an early symptom [23].

Neuropsychiatric symptoms other than visual 
hallucinations are prevalent in pDLB [7]. The 
most common neuropsychiatric symptoms at 
the time of DLB diagnosis are apathy and depres‑
sion [9, 27], which are reported more frequently 
in pDLB than in pAD [29, 36, 40, 41]. Anxiety is 
often more severe in pDLB than pAD and may 
result in the need for psychiatric hospitalisation 
[42, 43]. Hallucinations in non-visual modalities 
(e.g. auditory, olfactory) may also be present in 
pDLB [7]. Given the high frequency of neuropsy‑
chiatric symptoms early in the disease, clinicians 
assessing patients with late-onset psychiatric dis‑
ease may consider obtaining biomarkers to fur‑
ther differentiate pDLB from primary psychiatric 
presentations.

CLINICAL PRESENTATION OF 
MCI‑AD

MCI-AD criteria are met with high likelihood 
if individuals have additional positive biomark‑
ers for amyloid beta (Aβ) and neuronal injury 
(described further in Biomarkers). The presence 
of two copies of the high-risk apolipoprotein E 4 
(APOE4) allele or an autosomal dominant muta‑
tion associated with AD (APP, PS1, PS2) indicates 
that cognitive impairment is likely a prodrome 
of AD in these individuals [44].

NEUROPSYCHOLOGICAL PROFILES

The cognitive profile of DLB is typically marked 
by greater deficits in attention, executive func‑
tioning, and visuospatial abilities relative to AD, 
which is typically characterised by impairment 
in memory [44, 45]. Similar patterns have been 
observed in MCI-LB and MCI-AD, respectively 
[29, 44, 46, 47].
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Amnestic MCI is characterised by a pre‑
dominant impairment in memory, while non-
amnestic MCI is characterised by impairment in 
non-memory domains, including visuospatial 
abilities and executive functions. Non-amnestic 
MCI is associated with a tenfold risk of conver‑
sion to DLB, while amnestic MCI profiles are 
more likely to progress to AD [44, 48].

Patients with MCI-LB often perform below 
expectation on complex constructive tasks, 
including copying a figure and drawing a clock 
[47]. Visuospatial problems may manifest as 
pareidolic misperceptions [37, 40, 49]. Some 
individuals with MCI-LB may also demonstrate 
reduced verbal fluency [40], inattentive errors on 
timed tasks [29], slowed processing speed [46], 

Fig. 3   Prodromal features of dementia with Lewy bodies. 
DLB dementia with Lewy bodies, MCI-LB mild cognitive 
impairment with Lewy bodies, RBD REM sleep behaviour 
disorder. Notably, prodromal DLB (pDLB) can present 

with cognitive impairment, psychiatric symptoms, and/
or recurrent episodes of delirium. Therefore, pDLB is an 
umbrella term which includes, but is not limited to, presen-
tations with mild cognitive impairment
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and executive dysfunction [27, 46, 50]. Indi‑
viduals with MCI-LB may demonstrate memory 
impairment relative to cognitively healthy older 
adults [29, 50]; however, memory impairments 
in MCI-LB are typically less severe compared to 
MCI-AD, often with preserved recognition of 
previously learned material [27, 47]. It is impor‑
tant to recognise that the aforementioned pro‑
files are based on group means and cognitive 
performances, even on screening measures, are 
influenced by age, education, language, and cul‑
tural factors, and should be interpreted accord‑
ingly. Furthermore, intraindividual variability in 
cognitive performances is also observed among 
healthy adults [44, 51].

Some studies report faster rates of cogni‑
tive decline in MCI-LB relative to MCI-AD [30, 
52]. However, there are also studies showing a 
broadly similar mean trajectory on brief cogni‑
tive screening measures in MCI-LB and MCI-AD 
[47]. In one study, the mean time to develop 
DLB from the MCI baseline evaluation was 
2.6 ± 2  years [48]. Comprehensive neuropsy‑
chological evaluations can be helpful in distin‑
guishing MCI-LB from MCI-AD [40, 48] but the 
additional presence of DLB core clinical features 
likely increases diagnostic accuracy in clinical 
practice [40].

NEUROPATHOLOGY

Postmortem neuropathological confirmation 
remains the gold standard for diagnosis in DLB 
and AD [31, 53]. Neuropathological diagnosis of 
DLB is based on the accumulation of misfolded 
alpha-synuclein (α-syn) in LB and neurites in 
the central nervous system [31]. The majority 
of clinically diagnosed DLB cases also have loss 
of the pigmented dopaminergic neurons within 
the substantia nigra pars compacta; however, 
this is not an essential criterion for a pathologi‑
cal diagnosis. Different histopathological staging 
systems have been proposed for LB pathology 
reflecting that pathological changes can occur in 
topographically restricted regions at early stages, 
with more diffuse changes seen in advanced dis‑
ease [31, 54–56].

AD pathology is characterised by extracellular 
amyloid beta peptide (Aβ) plaques, and intracel‑
lular neurofibrillary tau tangles. Importantly, in 
both DLB and pDLB it is not only possible to 
possess AD co-pathology but that “pure” dis‑
ease is very uncommon [7, 31]. At least half of 
individuals with DLB have AD-related pathologi‑
cal changes at autopsy, and almost two-thirds 
of individuals with AD demonstrate α-syn 
pathology [57, 58]. Diagnostic criteria for each 
acknowledge and integrate the high likelihood 
of co-pathology, and there is little evidence dif‑
ferentiating pDLB from pDLB/AD in the clinical 
setting. Although a handful of research centres 
may leverage multimodal biomarker panels in 
the characterisation of pDLB [59], the subopti‑
mal utility of these tools in pDLB, discussed else‑
where in this paper, requires that interpretation 
of results should occur in the clinical context 
of the patient, since pure cases seem to be the 
exception, not the rule.

The degree of AD pathology affects the expres‑
sion of DLB-related symptoms [60]; the likeli‑
hood of a typical DLB phenotype is higher in 
those with more severe LB pathology, whereas 
the likelihood of a DLB phenotype decreases as 
the severity of AD pathology increases [31, 61, 
62]. Diagnostic classification schemes therefore 
require assessment of both pathologies [31]. The 
prevalence of co-pathology has important clini‑
cal implications for the correct interpretation of 
biomarkers used to distinguish pDLB from pAD.

BIOMARKERS

Biomarkers are increasingly incorporated into 
diagnostic criteria, and clinical practice, to 
improve diagnostic accuracy in AD and DLB. 
Arguably, in vivo biomarkers are essential in 
early stages (e.g. MCI) where clinical features 
may be more subtle or absent. Biomarkers serve 
several purposes, as they can (1) provide evi‑
dence of neuronal injury (e.g. atrophy on struc‑
tural magnetic resonance imaging, MRI); (2) 
detect the presence of abnormal proteins (e.g. 
α-syn, Aβ, or tau); or (3) confirm the presence 
of clinical disease features (e.g. polysomno‑
gram) [44, 63]. In this section, we will discuss 
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the diagnostic criteria and the current literature 
regarding clinical and research biomarkers for 
pDLB and pAD, with an emphasis on established 
biomarkers (Table 1).

The 2011 National Institute on Aging (NIA)/
Alzheimer’s Association (AA) recommendations 
for use of biomarkers in the clinical diagnostic 
criteria for MCI-AD are outlined in Table 1 [44]. 
More recently, the amyloid/tau/neurodegen‑
eration (ATN) framework has been utilised in 
research settings to identify neuropathological 
changes in prodromal and overt AD [64, 65]. 
The limitations of AD biomarker use in clini‑
cal practice have been reviewed elsewhere [64] 
and include the risk of false negative results 
and the challenge of incidental findings with 
evidence that cognitively unimpaired individu‑
als can have neurodegenerative pathological 
changes. The increasing adoption of the ATN 
framework has concentrated efforts especially 
on the identification of in vivo signatures of Aβ 
and tau pathology, and whilst this may have 
important future therapeutic implications, it 
may not have discriminatory value in situations 
where co-pathology may be common, as in DLB. 
Recent successful trials with α-syn biomarkers 
have motived a unified “neuronal α-synuclein 
disease” (NSD) biological framework for DLB 
and PD that parallels the ATN framework of AD 
[66] and is briefly discussed below.

The 2020 consensus criteria for MCI-LB were 
established as research criteria. Proposed bio‑
markers closely mirror the indicative biomarkers 
established in diagnostic criteria for DLB which 
were chosen especially owing to their increased 
specificity for LB pathology, and ability in some 
cases to differentiate them from AD. These pro‑
posed and potential pDLB biomarkers are out‑
lined in Table 1 [7]. Although some biomarkers 
are under investigation and are not accessible 
in a clinical setting, biomarker results from 
research efforts are at times made available to 
clinicians and shared with the study participant.

New prospective trials of positron emission 
tomography (PET) and cerebrospinal fluid α-syn 
biomarkers in prodromal and early PD show 
excellent test performance and have motivated 
a new “NSD” biological framework for DLB and 
PD akin to the ATN framework of AD [66]. Simi‑
lar to the MCI-LB 2020 report and ATN frame‑
works, the early goal of the NSD framework is to 
speed up therapeutic development in a research 
setting, but future studies will almost certainly 
evaluate the clinical performance of combined 
NSD and ATN frameworks for accurate diagnosis 
of DLB and AD. However, relying on only one 
disease biomarker (pAD or pDLB) may be insuf‑
ficient, and clinicians should consider the like‑
lihood of different co-pathologies contributing 
to the clinical profile. This can be detected by 

Table 1   Suggested biomarkers for clinical practice in mild cognitive impairment with Lewy bodies (MCI-LB) and mild cog-
nitive impairment due to Alzheimer’s disease (MCI-AD)

DaTSCAN dopamine transporter single photon emission computerized tomography, FDG-PET fluorodeoxyglucose posi-
tron emission tomography, MCI mild cognitive impairment, MIBG iodine-123 meta-iodobenzylguanidine myocardial scin-
tigraphy, MRI magnetic resonance imaging, PET positron emission tomography, PSG polysomnography, qEEG quantitative 
electroencephalogram

Type of biomarker MCI-LB MCI-AD

Diagnostic Dopamine transporter imaging: reduced update 
in the basal ganglia

PSG confirmation of RBD
MIBG: reduced uptake

Amyloid and tau PET: increased burden
Cerebrospinal fluid: low levels of amyloid-β42 or 

abnormal amyloid-β42/40 plus high levels of 
phosphorylated tau181

Supportive qEEG: showing slowing and dominant frequency 
variability

MRI: relative preservation of the medial tempo-
ral lobe, and insular thinning

FDG-PET: low occipital uptake

Biomarkers for neurodegeneration:
FDG-PET: abnormal temporoparietal uptake
MRI: atrophy (in particular in the medial temporal 

lobe)
Cerebrospinal fluid: high levels of total tau
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combined use of multiple biomarkers for differ‑
ent pathologies and suggest a diagnosis of mixed 
MCI.

Structural Neuroimaging

Although visual assessment of medial temporal 
lobe (MTL) volume is considered the most acces‑
sible and feasible biomarker for discriminating 
between pDLB and pAD [67], and hippocampal 
atrophy is a well-established early marker of AD 
[68–70], a recent Cochrane review found that 
both hippocampal (sensitivity 73%, specificity 
71%) and MTL volume (sensitivity 64%, specific‑
ity 65%) demonstrated insufficient accuracy in 
detecting early AD, and that structural imaging 
should not be used as a means of differentiating 
AD from other dementias.

The preservation of MRI hippocampal vol‑
umes in patients with MCI has been suggested to 
have utility in differentiating in pDLB from pAD 
(sensitivity 85%, specificity 61%) with a higher 
risk of phenoconversion to DLB than AD [7, 71]. 
However, a recent systematic review concluded 
that MTL atrophy may not effectively discrimi‑
nate pDLB and pAD [72], which may be due to 
significant AD co-pathology in DLB.

Nuclear Medicine Imaging

PET and single photon emission computed 
tomography (SPECT) are functional imaging 
techniques which use radioactive tracers to 
assess brain perfusion/metabolism, synaptic 
integrity (such as availability of dopaminergic 
or sympathetic nerve terminals), or presence of 
pathological proteins, such as Aβ plaques. Their 
availability and diagnostic utility have encour‑
aged incorporation of molecular imaging bio‑
markers into diagnostic criteria.

Glucose Metabolism Imaging

18-Fluorodeoxyglucose (FDG)-PET is more com‑
monly used than Aβ-PET and tau-PET for the 
distinction between DLB and AD. FDG is a proxy 

for brain metabolism and of neurodegeneration, 
and is included in diagnostic criteria for both 
DLB and AD [31, 65]. Temporoparietal hypo‑
metabolism classically characterises AD [73], 
although atypical patterns have been recognised 
[74]. The typical FDG-PET signature of DLB of 
occipital hypometabolism with relative spar‑
ing of the mid and posterior cingulate cortex 
(known as the ‘cingulate island sign’) [31, 75] 
has been shown to be more specific (90%) in 
distinguishing pDLB from pAD, albeit with low 
sensitivity (59%) [76]. Hypometabolism in the 
primary visual cortex may be observed in pDLB 
[76–80] and can also extend to parietal and tem‑
poral cortex [76, 78, 79]. More extensive hypo‑
metabolism could indicate higher likelihood of 
phenoconversion to DLB [81].

Dopamine Transporter Imaging

[123I]-2-β-carbomethoxy-3β-(4-iodophenyl)-N-
(3-fluoropropyl)nortropane (FP-CIT) is one of 
several radiotracers capable of quantifying pre‑
synaptic dopamine functioning. FP-CIT is an 
indicative biomarker for DLB with a moderate 
to high utility in differentiating DLB from AD 
(86%; sensitivity 80%, specificity 92%) [82–84]. 
Although FP-CIT is proposed as a biomarker 
for MCI-LB [7], comparatively few studies have 
investigated its accuracy in prodromal cohorts. 
In patients with probable pDLB and pAD, FP-CIT 
demonstrated an accuracy of 76% (sensitivity 
66%, specificity 88%) [85, 86].

Although abnormal FP-CIT findings are more 
likely in patients with MCI-LB and clinical par‑
kinsonism compared to those without [86, 87], 
abnormal FP-CIT findings have been observed 
in half of individuals with probable pDLB who 
do not have parkinsonism suggesting that dopa‑
minergic deficits can precede clinical parkinson‑
ism in pDLB [78]. Abnormal FP-CIT findings are 
commonly reported in patients with iRBD and 
predict phenoconversion to a synucleinopathy 
[88]. One limitation of dopamine transporter 
imaging is that it may not distinguish between 
forms of atypical parkinsonism, as findings can 
be abnormal in MSA and progressive supranu‑
clear palsy [89].
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Amyloid and Tau PET

Functional imaging methods using Aβ and tau 
tracers have been incorporated into clinical and 
research criteria to diagnose established and 
pAD and select patients for novel therapies [73]. 
As a result of significant co-pathology, neither 
Aβ-PET nor tau-PET can accurately distinguish 
DLB from AD and these methods have been 
investigated little in pDLB [90–97]. Both Aβ 
and tau-PET positivity may help predict more 
rapid cognitive decline in DLB [95, 98, 99], but 
widespread adoption of these tracers has been 
limited in clinical settings because of technical 
and resource-related factors discussed elsewhere 
[94]. Currently, there are no reliable tracers for 
α-syn pathology, although efforts are currently 
underway.

[123I]‑meta‑iodobenzylguanidine Cardiac 
Scintigraphy

[123I]-meta-iodobenzylguanidine (MIBG) cardiac 
scintigraphy is an indicative biomarker in DLB 
[31] and a proposed biomarker in MCI-LB [7]. 
Reduced uptake of the noradrenaline analogue 
MIBG reflects denervation secondary to cardiac 
α-syn pathology and has good sensitivity (77%) 
with excellent specificity (94%) in differentiat‑
ing DLB from AD [100]. A study using a com‑
bination of MIBG and FP-CIT in MCI-AD and 
MCI-LB (including five pathologically confirmed 
cases) found that MIBG had a sensitivity of 59% 
and specificity 88% for differentiating probable 
MCI-LB from MCI-AD [101]. As LB pathology is 
hypothesised to adopt a caudo-rostral pattern 
of propagation [102, 103], abnormalities in car‑
diac MIBG scintigraphy may occur earlier in the 
course of MCI-LB than abnormalities in FP-CIT 
[85, 104].

Other Molecular Tracers

Other PET tracers are largely beyond the scope of 
this review but, briefly, tracers for the choliner‑
gic system have been used both in AD and DLB 
because of the well-known strong cholinergic 
deficit in both disorders [105]. Recently, some 
studies have explored PET tracers for neuroin‑
flammation and synaptic density in DLB [106, 

107] and AD [108, 109]. The findings are still 
preliminary, and studies are research-oriented, 
so the clinical implications of these recent 
approaches remain unknown.

Polysomnography

Loss of REM atonia with witnessed dream enact‑
ment behaviours captured by overnight video-
polysomnography (PSG) is the gold standard for 
RBD diagnosis [110] and a proposed biomarker 
in research criteria for pDLB [7]. Different cut‑
offs for accepted quantities of REM sleep with‑
out atonia have been proposed depending on 
the protocol used [111], and manual detection 
and quantification can be time-consuming and 
requires specialised expertise. Several screen‑
ing instruments have been developed for RBD, 
which are easily administered in clinical set‑
tings where PSG assessment is not available. A 
detailed review on the performance of RBD 
screening scales is presented elsewhere [112].

Electroencephalography

EEG is a widely available, non-invasive neuro‑
physiological tool that may identify early-stage 
abnormalities in DLB and AD. The characteris‑
tic EEG pattern in the DLB and PD dementia 
continuum includes stable or intermixed slow‑
ing of posterior dominant frequency, reduced 
or absent reactivity to eye opening, and wide‑
spread increase in slow-wave frequency power 
[31, 113–117]. Using quantitative EEG meth‑
ods, Bonanni et al. [118] identified typical DLB 
changes in patients with MCI-LB with a shift of 
the occipital dominant frequency towards fast-
theta or “pre-alpha” band (below 8 Hz) and asso‑
ciated dominant frequency variability greater 
than 1.5  Hz. When followed longitudinally, 
83% of individuals with MCI-LB with this spe‑
cific EEG pattern at baseline converted to DLB 
after 3 years. Longitudinal EEG changes (follow-
up for at least 2 years) were predictive of more 
rapid progression to DLB, including higher EEG 
severity score (visual EEG assessment by clini‑
cal neurophysiologist) and reduced power in the 
alpha-2 frequency band [119].
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The common EEG findings seen in AD are less 
specific and overlap somewhat with DLB, mani‑
festing mainly as diffuse slowing, evidenced by 
reduced alpha (and beta) power accompanied 
by increasing delta and theta power [120, 121]. 
EEG studies specifically in MCI-AD population 
are more limited, but the overall pattern remains 
similar with remarkable alpha power reduc‑
tion and mild slowing of the posterior domi‑
nant rhythm within the alpha range [122–124]. 
Patients with AD appear to have decreased 
slow-wave sleep and REM sleep, associated with 
increased Aβ burden, and may be an emerging 
area of interest in MCI-AD [125].

Several studies reported early posterior EEG 
slowing (e.g. slower dominant frequency shift‑
ing towards pre-alpha and lower bands) as a 
specific feature of MCI-LB compared to healthy 
controls and MCI-AD [126, 127], although sig‑
nificant overlap has been recognised [128]. EEG 
abnormalities are more prominent in MCI-LB 
than MCI-AD [129], as individuals with MCI-LB 
exhibit pronounced slow-wave activity, which 
could also be evidenced as frontal intermittent 
rhythmic delta activity (FIRDA), compared to 
MCI-AD [130].

EEG changes have been also suggested to be 
sensitive to dysfunction in the cholinergic sys‑
tem and therefore may be predictive of response 
to cholinergic medications in both AD and DLB 
[115, 128, 131]. While promising, quantitative 
EEG methods have yet to be cross-validated in 
other cohorts. Therefore, EEG remains a ‘poten‑
tial’ rather than ‘proposed’ biomarker for pDLB 
[7].

Cerebrospinal Fluid

CSF biomarkers for AD, measuring Aβ42, Aβ40, 
t-tau, and phosphorylated tau (p-tau181) are in 
widespread clinical use and are included in the 
diagnostic criteria for AD [44]. Specifically, the 
presence of low CSF Aβ42 or Aβ42/Aβ40 ratio is 
consistent with AD pathology and has been 
shown to be useful in identifying MCI-AD [44, 
53, 65]. Although increased Aβ and tau burden 
in the brain are more common with older age, 
their presence at early stages or in younger indi‑
viduals may be more useful as a strong predictor 

of AD [44, 132–136]. Care must be taken when 
translating normative CSF biomarker values 
across different ethnic and racial backgrounds, 
with studies reporting lower AD biomarkers in 
patients with AD who identify as Black com‑
pared to patients identifying as White and non-
Hispanic [137].

In DLB, t-tau and p-tau181 levels are typically 
within normal limits compared to elevated lev‑
els in pAD [132, 133, 138]. Although normal CSF 
profile in terms of Aβ42, Aβ40, t-tau, and p-tau 
has good negative predictive value for pAD, an 
abnormal profile does not necessarily exclude 
pDLB. AD CSF markers alongside DLB can be a 
negative prognostic marker for rapid progression 
of cognitive decline [139].

Other CSF biomarkers remain restricted to 
research use. Many recent studies have shown 
great promise in the use of protein misfolding 
amplification assays including real-time quak‑
ing-induced conversion (RT-QuIC, and protein 
misfolding cyclic amplification (PMCA), for dif‑
ferentiation of DLB and other synucleinopathies 
from AD and controls [140, 141].

Blood, Skin, and Saliva Biomarkers

Plasma

Although not yet in common clinical use, 
significant progress has been made in blood-
based biomarkers in AD including both Aβ and 
phosphorylated-tau neuropathology detection. 
Plasma biomarkers can predict conversion to AD 
from normal cognition or MCI, and promising 
data has emerged from combining plasma and 
other accessible biomarkers for better predic‑
tion about risk of developing future AD [142, 
143]. Palmqvist and colleagues [142] found that 
combining plasma p-tau, brief cognitive testing, 
and APOE genotyping improved the predictive 
accuracy of phenoconversion to MCI-AD or AD 
among individuals with subjective cognitive 
decline.

Plasma neurofilament light (NfL) polypep‑
tide is a more established marker of neuronal 
injury; though NfL level changes are associ‑
ated with cognitive decline [144, 145], they 
consistently predict diagnostic conversion to 
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a specific pathologic syndrome [144]. Widely 
variable results across studies may stem from 
different types of plasma markers measured and 
methodologies used to extract the levels [143]. 
It remains to be seen how combination(s) of 
other non-Aβ/non-tau plasma biomarkers may 
improve diagnostic and prognostic values [146]. 
Plasma and serum α-syn levels are still under 
investigation as potential biomarkers in synucle‑
inopathies. Preliminary data suggest decreased 
plasma and serum α-syn levels in individuals 
with DLB [147] but has yet to be tested in pDLB.

Skin Biomarkers

There is growing interest in the potential diagnos‑
tic role of skin biopsies to detect prodromal stages 
of synucleinopathies, particularly in people with 
iRBD [148, 149], but it remains to be seen how 
well this assay can distinguish between DLB, PD, 
and MSA. Newer techniques of protein amplifi‑
cation, including RT-QuIC, are promising [150, 
151] but not widely used in clinical settings at this 
time. Early data does not show a utility for this 
assay in distinguishing between DLB and other 
synucleinopathies [151]. Skin biopsies have not 
been well studied in AD or pAD. Prior investiga‑
tions included changes in non-fibrillar Aβ, and 
skin fibroblasts [152–154], but the clinical utility, 
especially in pAD, remains unclear.

Saliva

Saliva is an easily accessible peripheral source for 
biomarkers. Current barriers for implementation 
in clinical practice include non-specific and non-
standardised methodology (e.g. saliva collection; 
methods to stimulate salivary flow), low protein 
concentration in saliva, high intra- and inter-
individual variability or fluctuations in salivary 
biomarker protein concentrations [146]. Salivary 
α-syn has been investigated in PD [155], but there 
are no published studies investigating salivary 
biomarkers in pDLB or DLB. Early trials also show 
that biopsy of the submandibular gland is promis‑
ing [156] but requires further investigation.

AD-specific salivary biomarkers that have been 
studied include Aβ1–40, Aβ1–42, p-tau, t-tau, 
and lactoferrin [146]. Less is known about diag‑
nostic use of these salivary markers in pAD, but 

most studies have found increased Aβ1–42 levels 
in patients at risk for AD; salivary p-tau and t-tau 
levels have been more variable [157–160]. More 
research is needed to address how salivary markers 
may distinguish AD from other neurodegenera‑
tive diseases.

EARLY INTERVENTION AND 
DISEASE MANAGEMENT

In clinical practice, it is common to base some 
of the recommendations provided to those with 
pDLB on evidence collected in pAD. Clinicians 
should evaluate and address potential contrib‑
uting factors, such as polypharmacy, sleep, or 
mood disturbances and comorbid medical con‑
ditions, and metabolic deficiencies (e.g. vita‑
min B12). Anticholinergic and sedative medica‑
tion affect cognitive performance and increase 
the risk of progression to dementia and oppor‑
tunities to reduce such agents should be sought 
[8, 161, 162].

Non-pharmacological strategies to improve 
brain health or cognitive reserve should be 
explored (e.g. adherence to a Mediterranean 
diet or adoption of aerobic exercise), both asso‑
ciated with lower risk of conversion to demen‑
tia [8, 163]. Cognitive stimulation, particularly 
through social activities, is associated with 
improvements in progression and improve cog‑
nition [164, 165].

There are few studies specifically investigating 
non-pharmacological strategies to decrease DLB 
risk [166] or psychotherapeutic interventions in 
pDLB [167, 168]. Pharmacological approaches 
to pDLB closely resemble DLB. Where appropri‑
ate, clinicians should consider pharmacological 
approaches for non-motor features, including 
mood, anxiety, irritative bladder symptoms, and 
constipation. As in DLB, antipsychotics should 
be prescribed with caution in pDLB because of 
the risk of neuroleptic sensitivity [169, 170]. 
Levodopa-carbidopa should be considered for 
parkinsonism in MCI-LB, while balancing risk 
of worsening of neuropsychiatric symptoms 
[171]. Melatonin and clonazepam may mitigate 
the risk of injury in RBD [172] but consideration 
of associated side effects is critical [173]. Other 
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sleep disturbances, including sleep apnoea, 
should also be evaluated and rectified [174, 
175]. Antihypertensive agents can interfere with 
cognition and energy, as well as contribute to 
falls through exacerbation of orthostatic hypo‑
tension [176]. Evaluation and management of 
metabolic and dietary abnormalities is recom‑
mended in pAD [8] but, in the absence of iden‑
tified deficiencies, dietary supplements are not 
recommended [177].

Acetylcholinesterase inhibitors (AChEI) are 
the mainstay of symptomatic therapy in both 
AD [178] and DLB [179]. Although some mild 
benefits of donepezil in pAD have been observed 
[180], prescription does not affect phenocon‑
version and is therefore not recommended in 
pAD [8, 181, 182]. Large trials of AChEI have 
not been conducted in pDLB but may improve 
visual hallucinations and cognitive fluctuations 
[183]. Although there is little evidence to sup‑
port the use of memantine in pAD or pDLB, 
some improvement in neuropsychiatric features 
may be observed [183].

There are no disease-modifying therapies 
for pDLB. Anti-amyloid monoclonal antibod‑
ies (such as aducanumab and lecanemab) have 
received accelerated approval for the treatment 
of early AD by the US Food and Drug Admin‑
istration (FDA) but have not been studied in 
DLB. The high prevalence of AD co-pathology 
in this group [184] suggests that a role for anti-
amyloid antibodies should be explored in the 
coming years.

CALL FOR DIVERSITY

There is a critical need to expand DLB and AD 
research across diverse populations, including 
different ethnic, racial, sex, gender, and sexual 
minority, socioeconomic, and neurodivergent 
groups, as well as people in different geographic 
locations [185]. Currently available data in 
dementia, driving the clinical diagnostic crite‑
ria, mostly stem from individuals identifying 
as White from North America or Europe, often 
with high levels of education [186].

Individuals from minoritised racial and ethnic 
groups can be at a higher risk for AD and related 

dementias [187]. Social determinants of health, 
discrimination, lifelong stress, access to care, 
and intersectionality of the factors contributing 
to disparities need to be addressed. Such factors 
also contribute to the exclusion of ethnic and 
racially diverse groups from clinical trials, which 
poses another important issue in research [188]. 
An estimated 95% of the participants in AD 
clinical trials conducted before December 2019 
identified as White [189], substantially limiting 
the applicability of findings. Efforts to increase 
diversity, sample size, and data harmonisa‑
tion from different AD [190] and DLB consor‑
tia are growing [191] and culturally competent 
teams are working towards overcoming barriers 
to reach and recruit participants from diverse 
backgrounds.

Sex (i.e. biological and physiological differ‑
ences between female and male individuals) 
and gender (i.e. socially constructed roles and 
behaviours) have become increasingly impor‑
tant factors in neurodegeneration [192]. Sev‑
eral studies in DLB and AD support sex differ‑
ences for protective and risk factors [193–195]. 
Although it has long been thought that men are 
at higher risk of developing DLB, emerging data 
suggests that prevalence may be similar in men 
and women [3, 196]. In contrast, the prevalence 
of AD is higher in women [197]. Sex and gen‑
der differences in AD and DLB are not limited 
to prevalence [184, 198, 199]. Women with LB 
pathology are at greater risk of underdiagnosis 
or misdiagnosis [184, 190]. Sex differences for 
prodromal biomarkers need to be further inves‑
tigated to guide and improve the accuracy of 
pDLB diagnostic criteria.

CONCLUSION

Diagnosis of prodromal neurodegenerative 
diseases is key to our understanding of the 
evolution of disease and developing disease-
modifying treatments. Early and accurate diag‑
nosis can help guide appropriate management 
and improve healthcare outcomes for patients 
through identifying appropriate social supports 
for patients and their care partners and refer‑
ring patients to recommended therapies such as 
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physical, occupational, and/or speech therapy. 
The diagnosis of pDLB or pAD should be con‑
sidered an opportunity to encourage lifestyle 
changes to promote brain health including exer‑
cise, sleep, and a healthy diet.

In clinical practice, differential diagnosis is 
commonly based on the phenotype, including 
clinical examinations and neuropsychological 
evaluations. However, for individuals with clini‑
cal exam findings and neuropsychological test‑
ing results that do not provide a clear distinc‑
tion between pAD and pDLB, both established 
and proposed biomarkers may provide increased 
diagnostic certainty of pathophysiological pro‑
cesses associated with the clinical syndrome and 
therefore guide treatment.
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