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ABSTRACT OF THE DISSERTATION

Modeling the Mechanics of the Cytoskeleton

by

Mo Bai

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2012

Professor William S. Klug, Chair

This dissertation investigates the mechanics of semiflexible filament network and the effects

of polydispersity, anisotropy, and labile crosslinks through numerical simulations. The study

first demonstrates that the single parameter nonaffinity length λ derived from monodis-

perse semiflexible filament network no longer holds for polydisperse and nematic anisotropic

networks; it then extends the static response of network to dynamic response by allowing

crosslinks to break and rebind according to Bell’s law.

This study starts with exploring the effects of filament length polydispersity on the

mechanical properties of semiflexible network. Extending previous studies on monodisperse

network, the responses of networks of bimodal and exponential length distributions are tested

numerically. It is found that in polydisperse networks, mixtures of long and short filaments

interact cooperatively to generally produce mechanical response closer to the affine prediction

than comparable monodisperse networks of either long or short filaments. Overall, length

polydispersity has the effect of sharpening and shifting the affine/nonaffine(A/NA) transition

to lower network densities.

The effect of adding long, stiff filaments to a semiflexible network is studied next. It

is shown that the addition of a small fraction of longer and stiffer filaments (microtubules)

to a nonaffine network (actin filaments) leads to a significant increase in its overall elastic

moduli, even though the long filaments do not form a stress bearing network by themselves.

Moreover, there is a strong negative correlation between long filament density and local
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geometric measures of nonaffinity.

Anisotropic, monodisperse network is then investigated and like isotropic networks, it

undergoes an A/NA transition controlled by the ratio of the filament length to the nonaffin-

ity length λ. Deep in the nonaffine regime, however, these anisotropic networks exhibit a

vanishing linear response regime for highly ordered networks and a dependence of the shear

modulus on shear direction. These features can be understood in terms of a generalized

floppy modes analysis of the nonaffine mechanics and a type of cooperative Euler buckling,

which are discussed in this study, too.

Lastly, by allowing crosslinks to break and rebind, network’s dynamic response is studied.

It is shown that force-induced crosslink breakage leads to significant creeping and the network

retains part of its elastic modulus even after significant plastic flow. The spatial correlation

of crosslink breakage is also studied.

This simulation approach provides an important way to investigate the complex static

and dynamic response of semiflexible filament network. Its results have been compared

with analytical analysis and experimental data which prove its validity. The study provides

several important insights on the fundamental mechanism of semiflexible network and cy-

toskeleton under static/dynamic loading, the design of experiment on both in vivo and in

vitro cytoskeletal network, and even the design of a novel, synthetic polymer material.
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CHAPTER 1

Introduction

Eukaryotic cells present a lot of interesting engineering lessons. The mechanical behavior of

cell is of great interest to many scientists and researchers. The interior of these eukaryotic

cells is filled with a low density, chemically heterogeneous biopolymer gel, so called the

cytoskeleton. The cytoskeleton is the main source of force generation and controls the

deformation of cells.

In spite of the chemical complexity of the cytoskeleton, it appears from a variety of

experiments that the fundamental mechanics of cells stem primarily from the filaments,

crosslinks, and molecular motors, which are the building blocks of cytoskeleton. Finding the

quantitative relation between the microstructure of cytoskeleton and its observed properties

can give more insights on understanding the mechanical behavier of cells.

The microstructure of cytoskeleton exhibits some remarkable and desireable properties.

This low-density network, which only has a few percent volume fraction, can rapidly change

its morphology, modify its linear and nonlinear moduli, and exert controlled forces on its

surroundings. Those features, if transplanted to the design of new material, would have

revolutionary impacts on branches of engineering from biomedical to aerospace where the

demands for drastic but reversible changes in shape and stiffness cannot be met by today’s

synthetic materials. For example, molulus-adaptability would provide a solution for the

common bioengineering problem of stiffness mis-match of orthopedic and tissue implants.

And a stiff, light-weighted carbon-nanotube-network material capable of large deformation

would generate a new direction for design of adaptive aerospace structures.
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1.1 Cytoskeletal Structure of Cells

The cytoskeleton is a cellular “scaffold” or “skeleton” contained within the cytoplasm and

is present in all cells. Cytoskeleton is a structure that maintains cell’s shape, protects the

cell, enables cellular motion, and plays important roles in both intracellular transport and

cellular division. The cytoskeleton determines, in large part, the morphology and mechanical

properties of cells.

The cytoskeleton consists of three major classes of filaments: the cable-like actin filaments

(Fig. 1.1(A)), the rope-like intermediate filaments (Fig. 1.1(B)), and the pipe-like, hollow

microtubules(Fig. 1.1(C)). The filaments are accompanied by a large amount of accessory

proteins which either crosslink filaments to each other or crosslink them to other cellular

structures. The thickness of these three types of filaments are shown side by side in Fig. 1.1.

Typically, the diameter of actin filaments is of 6 nm; intermediate filaments are slightly

thicker with diameter around 10 nm; and microtubules have a hollow structure with outer

diameter on the order of 25 nm. With the their length in the range of 1 to 1000 µm, these

filaments are very slender. As for the cytoskeletal proteins which work as filament bonds,

they usually have a molecular dimension on the order of 10nm, which is on the same order

of filament’s thickness.

The cytoskeletal filaments were initially identified by electron microscopy. Since then, the

constituent proteins that made up the cytoskeletal filaments: actin, intermediate filament

proteins, and tubulin have been chemically purified. Furthermore, the actin and tubulin

proteins have been solved at atomic resolution. However, the structure of intermediate

filaments is still uncertain. The chemical structure of the three types of filaments will be

discussed in the following sections.

1.1.1 Actin Filaments

Actin filament is the major components of cytoskeleton. The actin family contains over a

dozen classes of proteins and its building block is the actin monomer. An actin filament is

consist of a one-start, left-handed helix of actin monomers. Fig. 1.2 shows its two-stranded
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Figure 1.1: Electron micrographs of cytoskeletal filaments [1]

lattic structure(A) and atomic model(B). The full period of the filament is 72nm, which con-

tains 26 subunits. Because rotation per monomer is large, and there is extensive monomer-

monomer contact between alternate monomers, the actin filament is more appropriately

viewed as a two-stranded, right-handed helix, with the so-called protofilaments strands.

Several experiments have been performed to evalute the actin filament’s stiffness. A

clever experiment on muscle fibers by Higuchi et al. [5] provides estimates of actin filament’s

longitudinal stiffness. Muscle fibers have banded appearance due to the repeating of structure

unit, the sarcomere. The sarcomere consists of thin filaments (mainly actin filaments) and

thick filaments. Higuchi et al. compared the stiffness of a muscle fiber at two different

lengths, 1.8 µm and 2.4 µm. They used those lengths because only the thin filaments was

stretched 0.6µm in that region, with all the other sarcomere parts unchanged in length. In

3



Figure 1.2: Structure of the actin filament [2]

this way, the only part withstands the pulling is the thin filament. The thin filament is

about 1 µm long and with a cross section area of 1.05× 10−15m2. From the experiment, an

increase in tension of 50 kPa in the shorter muscle increases the length by 1.2 nm. They

estimated the longitudinal stiffness of a 1 µm filament is 53 pN/nm. Since the thin filaments

cross section area is about 23 nm2, the Young’s modulus can be calculated to be 2.3 GPa.

Another experiment performed by Howard and Hudspeth [6] tested the bending stiffness

of stereocilia (a mechanosensing organelle of hair cells). Their results can also be used

to estimate the Young’s modulus of actin filaments, which are the main components of

stereocilia. The experiment is on a hair bundle consisting of some stereocilia, each of which

is composed of a cylindrical core of crosslinked actin filaments. A glass fiber is attached to the

hair bundle and forces are applied onto the fiber to pivot the stereocilia. The bending stiffness

attributed to the stereocilia is measured to be κ = 600µN/m. To find the Young’s modulus of

actin filament, a relation between the stereocilia and the actin filaments is needed. Consider

a cantilever beam model for a stereocilium brought forward by Howard and Ashmore [7] as

shown in Fig. 1.3. It has a base of radius a and length l. The distal region is much longer

and more rigid than the base so its deformation is neglected. At the basal region, use the

beam equation:
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Figure 1.3: A cantilever beam model with a flexible base [1]

d2y

dx2
(x) =

M(x)

EbIb
∼= FL

EbIb
(1.1)

where EbIb is the rigidity of the basal region. Since the distal region is rigid enough to

neglect its deformation, the displacement X at the end can be calculated from

X

L
=
dy

dx
(l) =

∫ 1

0

d2y

dx2
dx =

FLl

EbIb
(1.2)

After rearrangement, the bending stiffness can be represented as

κ =
EbIb
lL2

(1.3)

If the base is composed of n crosslinked filaments of radius r, then the filaments occupy

a fraction γ = n · r2

a2 of the basal cross section area. Then the flexural rigidity is

EbIb = γE · Ib = nEI
r2

a2
(1.4)

where EI is the flexural rigidity of a single filament. If considering the number of stereocilia

N , κ can be written as

κ = N
nEI

lL2

a2

r2
(1.5)

From Howard and Hudspeth’s experiment measurement, the stereocilia’s bending stiffness

κ is around 600µN/m. The number of stereocilia N is about 50, number of filaments n is
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around 30, the basal length l and radius a can be estimated to be around 1 µm and 50nm.

The area moment of inertia of a single actin filament is I = A2/4π, where A is the filament’s

cross section area, and could be estimated to be around 19nm2. Plug in those values to the

equation, and the Young’s modulus E of actin filament can be calculated to as 1.6 GPa,

which is in reasonable agreement with the 2.3 GPa predicted in the muscle experiment

presented before.

1.1.2 Microtubules

Microtubules are made up from the αβ tubulin heterodimer and there are five classes of

proteins in the tubulin family. The lattice and atomic structures of the microtubule is

shown in Fig. 1.4. The tubulin dimers associate with each other head-to-tail to form a

protofilament. The protofilaments then associate latterally to form a sheet that closes to

form the tube-like microtubule. Most cellular microtubules have 13 protofilaments and 3

starts. But microtubules are highly polymorphic in structure that some researchers have

observed microtubules with as few as 8 protofilaments and as many as 19 protofilaments.

Figure 1.4: Structure of the microtubule [3]
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Because of its hollow structure and relatively large diameter compared with other types

of filaments, microtubules have a very large bending stiffness. Some experiments have been

performed to determine the bending stiffness of microtubules. One experiment by Okuno [8]

measures the flexural rigidity of sperm whose bending rigidity is mainly due to the stiffness

of microtubules. They assume that in the most relaxed sperm there is no crosslinking be-

tween microtubules, and the flexural rigidity of a single microtubule is 20 to 30×10−24N·m2.

Another experiment made by Gittes et al. [9] tests the rigidity of microtubules polymer-

ized from purified brain tubulin. The flexural rigidity of those tested microtubules is about

26×10−24N·m2. From results of the above two experiments, the Young’s modulus of micro-

tubules can be estimated to be around 2.0 GPa, which is similar to that of the actin filaments.

However, since microtubule’s diameter is about 4 times as that of an actin filament, their

bending stiffness then should differ by 44 = 256 times. As a result, microtubule’s bending

stiffness is so stiff compared to actin filament, that it plays an important role in controlling

cytoskeleton’s overall response to mechanical loading.

1.1.3 Intermediate Filaments

The intermediate filament is made of the coiled-coil, a parallel dimer of alpha-helices. The

alpha-helics are hydrophobic on one side and hydrophilic on the other side. So coiled coils are

composed of alpha-helics whose hydrophobic surfaces are packed together to avoid exposure

to solvent.

For now, the structural organization of the coiled-coil dimers in the intermediate filament

is not known for sure, and it is possible that the arrangement differs between classes of

filaments. One model is that homodimers form antiparallel tetramers, which associate head-

to-tail to form a protofilament. And a pair of protofilaments forms a protofibril, and 4

protofibrils wrap around each other to form a 10nm filament with an organization like a

piece of string. From this model, there will be 16 coiled-coils in each intermediate filaments,

which is in agreement with a mass per unit length of 47kDa/nm for neurofilaments [10].

Because many materials composed of intermediate filament proteins are of commercial
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interest (such as hair and wool), the mechanical properties of intermediate filament have

been studied extensively. Intermediate filament has very different properties in dry and

hydrated states. For example, when hair is fully hydrated, its longitudinal Young’s modulus

decreases only about 3-fold compared with that of dry hair, whereas its transverse Young’s

modulus decrease as much as 30-fold. The reason is that hydration softens the crosslinks

between coiled-coils, allowing the intermediate filaments to shear, but the softening has very

little effect on their longitudinal stiffness [1]. For the same reason, the flexural rigidity of

hydrated intermediate filament is surprisingly low. In this sense, the intermediate filament

behaves very similarly to rope when considering mechanical properties.

1.1.4 Crosslinks

Besides filaments and microtubules, there exist some other auxiliary proteins which are very

important to the mechanics of cytoskeletal structure. Crosslink is a kind of actin binding

protein that binds nearby filaments or microtubules to form a connected structure. For

example, actin filaments must be tightly crosslinked together to resist bending forces. If

they are not crosslinked, the stiffness could be less then 1% compared with crosslinked ones.

Crosslinks are in large numbers that the mean distance between crosslinks can be as small

as 1 µm, a distance much shorter than either the typical filament length or the thermal

persistence length, which will be discussed in details in the following chapters.

1.1.5 Motors

Motor protein is another important auxiliary mini-filament protein for cytoskeleton. Motor

proteins convert chemical energy derived from the hydrolysis of ATP into mechanical work

used to drive cell motility. The widely accepted framework for understanding this chemo-

mechanical transduction process is the rotating crossbridge model. The model contains two

key ideas. First, the motor cycles between attached and detached states. Second, while

attached, the motor undergoes a conformational change (a “kick” of order 1pN) that moves

the load-bearing region of the motor in the direction along the filament. If recovery takes
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place during the detached phase of the cycle, there will be a net displacement of the motor

toward its next binding site on the filament [1].

1.2 Review of Mechanical Models of Cytoskeleton

The field of cell mechanics recently has undergone rapid development with particular at-

tention to the rheology of the cytoskeleton and the reconstituted gels of some of the major

cytoskeletal components: actin filaments, intermediate filaments, microtubules, and their

crosslinking proteins. A wide range of computational models have been developed for cy-

toskeletal mechanics, ranging from finite-element based continuum models to actin filament

based network models. Numerous experimental techniques have also been developed to

quantify cytoskeletal mechanics, typically involving a mechanical perturbation of the cell

in the form of either an imposed deformation or force and observation of the static and

dynamic responses of the cell. These experimental measurements, along with new com-

putational approaches, have given rise to several theories for describing the mechanics of

cells, modeling the cytoskeleton as a elastic, viscoelastic, or poroviscoelastic continuum, or a

tensegrity (tension integrity) network incorporating discrete structural elements bearing ten-

sion or compression [11]. The following sections will review those analytical and numerical

cytoskeletal models.

1.2.1 Continuum Elastic or Viscoelastic Models

Cells can be modeled as continuum if the smallest length scale of interest is significantly larger

than the dimensions of the microstructure. For example, if deformations are considered for a

whole cell, the length scale of interest is several orders of magnitude larger than the distance

between the cell’s filaments, and as such a continuum description may be appropriate.

In essence, continuum mechanics is a coarse-graining approach that averages the con-

tributions of the cytoskeleton’s discrete filaments and microtubules and replaces them with

the local microscopic stress-strain relationship with averaged constitutive laws that apply

at macroscopic scale. Predictions of the continuum model, are only as good as the consti-
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tutive law (stress-strain relation) on which they are based. This could range from simple

linear elasticity model, nonlinear elasticity model, to viscoelastic model which can capture

the deformation’s time-dependent behavior.

Many researchers have successfully implemented finite-element based continuum model

to capture the mechanical behavior of cells. The simulated results have also been compared

with experimental data. For example, Drury and Dembo [12] simulated the deformation of

neutrophils in micropipette aspiration using finite-element method, its mechanical behavior

has been successfully captured by their viscoelastic model.

Continuum models of cell have proven useful in exploiting and interpreting results of a

number of experiments. However, current models do not yet typically account for active biol-

ogy: deformations and stresses experienced as a direct consequence of biochemical responses

of the cell to mechanical load. But, by contrasting the predicted purely mechanical response

to experimental observations, one could isolate phenomena involving active biology, such as

cell contraction or migration, from the passive mechanical response of the cell [11].

Another limitation of continuum models is the lack of description of cytoskeletal filaments.

As such, they are not applicable for situations where the length of interest is on the same order

of the filaments, for example, the micromanipulations of the cell with a probe of the same size

or smaller than the cytoskeletal mesh (0.1-1.0µm). This includes most AFM experiments.

In addition, the continuum models exclude Brownian motions of the cytoskeleton due to

thermal fluctuations, which have been shown to play a key role in cell motility [11].

1.2.2 Multiphasic Models

Most continuum models mentioned above have implemented constitutive models that assume

cells consist of a single-phase material (fluid or solid). However, cells are highly complex

structures whose properties depend on the interactions among the varying concentrations

of water, charged or uncharged macromolecules, ions, and other molecular components con-

tained within the cytoplasm [11]. These phenomena often cannot be described by single-

phase models. To further investigate the mechanical behaviors of cells, a number of recent
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studies have developed multiphasic constitutive laws to model the interactions among solid,

fluid, and in some cases, ionic phases of cells. The goals of such studies have been to charac-

terize the relative contributions of different physical mechanisms responsible for empirically

observed phenomena such as cell viscoelasticity or volume change under mechanical or os-

motic loading, and to account for the coupling of mechanical, chemical, and electrical events

within living cells.

The multiphasic models consists of the momentum balance equations for both solid and

liquid phases, and another momentum exchange equation (Darcy’s law) relating solid and

liquid phases. The equations can be solved numerically using finite element method. Baaijens

et al. used a biphasic, viscoelastic finite-element mesh to model the micropipette aspiration

test [13]. Comparison of the model to the experimentally measured response of chondrocytes

to a step increase in aspiration pressure shows that the biphasic viscoelastic model could

predict all aspects of the cell’s creep response to a step aspiration.

Compared with single-phase continuum models, multiphasic models may provide a more

realistic insight of the physics that govern cell’s mechanical behavior. As most current

multiphasic models are based on a continuum approach, the constitutive laws and parameters

are essential to the prediction accuracy. That requires more experiments to be done to

determine appropriate parameter values for the constitutive law.

1.2.3 Tensegrity-based Cytoskeletal Models

Tensegrity, the portmanteau of tensional integrity, was first introduced into architecture

by R.B. Fuller in 1961 [14]. He defined tensegrity as a system through which structures

are stabilized by loading members in pure tension or compression (like a camp tent etc).

Ingber et al. [15] proposed a new cytoskeletal model based on tensegrity. The idea is that

the cytoskeletal filaments carry preexisting tensile stress or prestress, and this prestress is

partly balanced by compression-bearing microtubules and partly by forces that arise at cell

adhesions to the extracellular matrix.

Many experimental data is consistent with the cellular tensegrity model. One of the
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strongest evidences in support of the tensegrity model is the observed proportional relation-

ship between cell stiffness and the cytoskeletal prestress. Experimental data also show that

microtubules carry compressive stress, which balances a substantial portion of the prestress.

Both of the above phenomenona are key features of tensegrity structure. So far, these two

findings have provided the most convincing evidences in support of the cellular tensegrity

model [11].

Stamenovic [16] developed a cable-and-strut model based on the tensegrity structure.

The model consists of two elements: cable and strut. The tensile prestresses in cables are

balanced by compression-supporting struts. Stamenovic derived an analytical equation for

the shear modulus G of the cable-and-strut model as

G = 0.8(P − PQ) + 0.2(BP +BQPQ) (1.6)

where P is the prestress carried by the cables and PQ is the portion of P balanced by the

struts, B=(dF/dL)/(F/L) is the nondimensional cable stiffness and BQ=(dQ/dl)/(Q/l) is the

nondimensional strut stiffness. The difference P-PQ represents the portion of P transmitted

to and balanced by the substrate. The relationship between G and P predicted by the above

equation has been compared with experiments and it agrees very well with the data.

Tensegrity model is a model which takes account of the cytoskeletal micro-structure and

its important property: the prestress. The current formulation of tensegrity model is simple,

but can explain many of the key behaviors of cells.

1.2.4 Single Filament-based Models

MacKintosh et al. investigated the cytoskeleton network on microscopic scale [17]. They

developed an analytical model using statistical mechanics for the bending and strecthing of a

single filament. Based on this analytical model, they further analyzed filament network with

binding crosslink proteins. The response of the network to macroscopic strains and stresses

involves two distinct single-filament responses: bending and stretching. Models based on

both of these effects have been proposed and analyzed. In the case of uniform shear, if only
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rotation and stretching of individual filaments are possible, it is so-called affine network, in

which the macroscopic strain falls uniformly across the whole network. In contrast, bending-

dominated network involves non-affine deformations, in which the state of strain varies from

one region to another within the network. Head et al. investigated the cytoskeletal filament

network and claim that the affine or non-affine behaviors depend on filament length and

crosslink concentration. Non-affine behavior is expected either at low concentrations or for

short filaments, while the deformation is increasingly affine at high concentration or for

long filaments [18, 19]. The details of the affine to non-affine transition, and the important

mechanical property of cytoskeleton, semiflexibility, will be discussed in next section.

1.3 Semiflexible Networks

Cytoskeleton, which is essentially a type of biopolymer, can be studied as a system of

crosslinked networks of rather stiff one-dimensional filaments. In networks where the fil-

aments are sufficiently stiff in response to bending and crosslinked to each other at a high

enough density, the thermal persistence length of the filaments becomes longer than the mean

distance between crosslinks along a typical filament, which can then store elastic energy both

in bending and stretching deformations. Systems conforming to this ordering of length scales

may be termed semiflexible networks to distinguish them from the more thoroughly studied

gels of flexible polymers for which rubber elasticity theory may be applied [20]. For the

purpose of designing advanced structural materials, stiff synthetic polymers and even car-

bon nanotubes are attractive examples of filaments that may be used to form semiflexible

networks [21, 22]. However, the most ubiquitous example is the cytoskeleton. Cytoskeleton,

which is composed primarily of the filamentous protein aggregate F-actin, pervades much of

the extra-nuclear cellular interior and is simultaneously the principal source of cellular me-

chanics and force generation [23–27]. In addition to containing a host of molecular motors

(e.g., myosin) and a plethora of F-actin crosslinking and bundling proteins, the chemically

complex F-actin network of the cytoskeleton is pierced by a number of microtubules. These

microtubules are even more highly incompliant mechanically, having a bending stiffness ap-

proximately 250 times larger than the F-actin filaments making up the network in which
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they are embedded. Understanding the mechanical effect of these semiflexible networks is

the main focus of this dissertation. For the purpose of this work, the complex chemical mi-

crostructure of the filaments is neglected. These macromolecular aggregates can be treated

then as elastic beams when considering the collective mechanics of a gel or network formed

by crosslinking them.

Particularly in the case of F-actin it is possible to produce permanently [28–30] or

otherwise [29,31–33] crosslinked networks in which the mean distance between the crosslinks

is significantly shorter than the thermal persistence length of the constituent filaments. For

example, in the work of [29], F-actin filaments were crosslinked into a network having a

mean spacing between crosslinks on the order of 2µm, while the thermal persistence length

`P of these filaments is about an order of magnitude larger. Such systems can be thought

of as highly simplified in vitro models of the cytoskeleton, without stiff microtubules, active

molecular motors, and other constituents.

The mechanical response of these networks deviates from the predictions of traditional

rubber elasticity theory, applicable to gels of flexible polymers. The underlying reasons

are clear. Flexible polymer networks are composed of filaments whose thermal persistence

length is typically much shorter than the mean distance between crosslinks on a given fil-

ament. Each polymer acts as a random walk and, under imposed strain, stores elastic free

energy (entropically) in response to only the change in the separation between consecutive

crosslinks along the chain. There is no bending energy cost. Semiflexible filaments, on the

other hand, can store elastic energy by bending on scales comparable to or larger than the

mean distance between crosslinks. Under uniformly applied shear strain, the sample, when

deforming affinely (as in the expected minimum energy configuration required by stress bal-

ance for uniform density), should not store any energy in these bending modes. This means

that, with the appropriate modification of the single filament force extension curve, one

should be able to understand the linear elastic properties of a semiflexible network [34]. For

sufficiently sparse networks, however, the assumption of affine deformation breaks down at

small and intermediate length scales that are typically longer than both the mean distance

between crosslinks and even the length of the filaments. In such nonaffinely deforming net-
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works, elastic energy energy is stored almost entirely in the bending of filaments. Previous

work [35–39] has shown that, as a function of increasing network density or filament bending

stiffness, semiflexible networks admit a sharp cross-over from a bending dominated elastically

compliant regime, which sets in at network densities above the rigidity percolation transi-

tion [40], to stiffer networks where elastic strain energy is stored primarily in the stretching

of filaments. Moreover, under uniformly applied strain at the boundaries, the geometry of

the deformation field in the softer, bending dominated regime is spatially heterogeneous (i.e.,

non-affine) and shows large deviations from the affine deformation prediction of continuum

elasticity theory [41]. This cross-over is controlled by the ratio of the filament length L to the

so-called non-affinity length λ, which is a function of the network density parameterized by

the mean distance between cross-links along a filament as well as the bending and stretching

moduli of these constituent filaments.

Understanding the mechanics of even simple semiflexible networks has proven to be diffi-

cult. For random statistically isotropic networks of this type, their collective elastic proper-

ties should depend only on the mechanics of the individual filaments and the network density.

In more complex systems, e.g., those exhibiting broken rotational symmetries [42], compos-

ites having multiple filament types [43,44], or elastically compliant crosslinks [45–47], other

relevant variables are present. This dissertation discusses the role of polydispersity in ran-

dom and isotropic networks of mechanically identical semiflexible filaments in Chapter 3,

and polydispersity in isotrpic networks of mechanically heterogeneous filaments in Chapter

4, then network with anisotropic filament orientations is discussed in Chapter 5. While all

these chapters are focused on static responses of the system, the frequency dependent rhe-

ology [48–52] and especially living cells [53–59] have been a very interesting topic and the

focus of much attention in the research of semiflexible filament network systems. Chapter 6

of this dissertation discusses the rate dependent rheology of the system.
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CHAPTER 2

Numerical Models of Cytoskeletal Networks

To understand the multi-scale mechanical behavior of semiflexible cytoskeletal networks, a

numerical model which includes stretchable/bendable filaments and crosslinks is developed.

Filaments are placed onto a square box with random orientation and position. The density

of the network is controlled by the total number of filaments and size of the box. To facilitate

finite element method, each filament is discretized into some small segments and modelled as

beam elements with both streching and bending degree of freedom. Wherever two filaments

cross with each other, a crosslink is placed at their intersection. For permanent crosslinks,

rigid pins are used to model the crosslinks and they constrain the relative displacements

between the two filaments while allowing free rotation; for labile crosslinks, stiff springs with

finite stiffness are used to model the crosslinks such that crosslinks may be removed from

or added to the network during simulation. Periodic Lees-Edwards boundary conditions

are used at the four edges of the box generating an infinitely large network to remove the

boundary effect. The energy and force equations for an element will be derived in the

following sections.

2.1 Elastic Energy and Filament Discretization

The elastic energy of each filament is composed of bending and stretching components. For

bending energy, we apply Bernoulli-Euler beam theory to the filament that the bending

energy is a quadratic function of the filament’s curvature. For stretching, we have two

options: (a) to assume a Hookean (linear) stress strain relation, or (b) to coarse-grain the

effects of short-length-scale fluctuations and adopt a nonlinear entropic elasticity model for

the stretch energy.
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2.1.1 Bending Energy

In the limit of continuum, Bernoulli-Euler beam theory, the bending energy of an initially

straight beam is given as

Ebend =

∫
L

κ

2

( 1

R

)2

ds (2.1)

where R is the radius of curvature along the filament contour L parameterized by arclength

s, and κ is the bending modulus. Assume the configuration of filament could be described

by a position map ~x(s) of arclength s, such that the tangent to the curve of filament is

n̂(s) =
∂

∂s
~x(s) ≡ ~x,s(s) (2.2)

from which the curvature can be computed as

1/R = |n̂,s| = |~x,ss|. (2.3)

To model the filament with finite degrees of freedom, filament is discretized into a set of

(N − 1) straight beam segments (elements) Ln

L =
N−1⋃
n=1

Ln (2.4)

with each segment linearly interpolating the positon between two adjacent nodes ~xn and

~xn+1, such that the tangent vector for segment Ln is

n̂n =
~xn+1 − ~xn

`n
(2.5)

where `n is segment length calculated from

`n = |~xn+1 − ~xn|. (2.6)

Since it’s assumed that each segment is straight, all the bending energy is only associated

with the nodes connecting those straight segments. Assuming the straight segments Ln−1

and Ln represents a filament contour arc passing through nodes (n− 1),n, and (n+ 1), the

curvature at node n can then be calculated from curvature’s definition as

1/Rn =
arccos (n̂n−1 · n̂n)

`
.
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where ` is the average segment length which can be simply calculated as ` = (`n + `n+1)/2.

Now the bending energy associated with node n is

En
bend =

κ

2
(1/Rn)2` =

kbend

2
arccos2(n̂n−1 · n̂n)

where kbend is the bending stiffness which is defined as kbend ≡ κ/`. Writing the nodal

bending energy En
bend in terms of the nodal positions ~xn−1, ~xn, and ~xn+1 gives

En
bend =

kbend

2
arccos2

( ~xn − ~xn−1

|~xn − ~xn−1|
· ~xn+1 − ~xn
|~xn+1 − ~xn|

)
from which the following derivatives, i.e., nodal forces, can be computed as follows

~Fn−1 =
∂En

bend

∂~xn−1

=
kbend arccos (n̂n−1 · n̂n)

`n−1

√
1− (n̂n−1 · n̂n)2

[n̂n − (n̂n · n̂n−1)n̂n−1]

~Fn+1 =
∂En

bend

∂~xn+1

=
kbend arccos (n̂n−1 · n̂n)

`n
√

1− (n̂n−1 · n̂n)2
[(n̂n · n̂n−1)n̂n − n̂n−1]

~Fn =
∂En

bend

∂~xn
= −∂E

n
bend

∂xn−1

− ∂En
bend

∂xn+1

.

Although continuum mechanics is applied in this research, thermal forces play an impor-

tant role in the cytoskeletal filament network such that relating the statistical, microscale

thermal quantities of the filament with macroscale, continuum mechanics quantities is im-

perative. The following derivation relates filament’s macroscale bending modulus κ with its

microscale property: the persistance length Lp. The relation between κ and Lp is

κ = LpkBT. (2.7)

where kB is the Boltzmann constant and T is the absolute temperature. The persistance

length, Lp is an important parameter describing a filament’s resistance to thermal forces. It

is defined as

〈cos (θ(s)− θ(0))〉 = exp

(
− s

2Lp

)
(2.8)

where 〈〉 means average over time, and θ is the angle between the filament’s tangential
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direction and horizontal direction. Let f = 〈cos(θ(s))〉, then

df

ds
∆s ≈ f(s+ ∆s)− f(s)

= 〈cos(θ(s+ ∆s))− cos(θ(s))〉

= 〈cos(θ(s+ ∆s)− θ(s) + θ(s))− cos(θ(s))〉

= 〈cos(∆θ + θ(s))〉 − 〈cos(θ(s))〉

= 〈cos(θ) cos(∆θ)− sin(θ) sin(∆θ)〉 − 〈cos(θ)〉

Figure 2.1: Thermal bending of a slender rod [1]

Because the thermal force on segment (s, s + ∆s) are independent of the thermal force

on segment (0, s), the tangent angels θ(s) and ∆s are statistically independent. Thus it

df

ds
∆s ≈ 〈cos(θ)〉 · 〈cos(∆θ)〉 − 〈sin(θ)〉 · 〈sin(∆θ)〉 − 〈cos(θ)〉

= 〈cos(θ)〉 · [〈cos(∆θ)〉 − 1]

(2.9)

Thus
df

ds
≈ 〈cos(∆θ)− 1〉

∆s
f(s)

≈ −1

2

〈
∆θ2

∆s

〉
f(s)

= −1

2

〈
(
∆θ

∆s
)2∆s

〉
f(s)

= −〈∆U〉
EI

f(s)

= −1

2

kBT

EI
f(s)

(2.10)
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where U is energy density, whose time average can be proved to be 1
2
kBT using statistical

mechanics theory. The proof can be found from any statistical mechanics book and will be

skipped here; E is the Young’s modulus of filament, and I is the area moment of inertia of

filament’s cross section. Solving it then gives

〈cos(θ(s)− θ(0))〉 = exp(−kTs
2EI

) (2.11)

Compare Eq. 2.11 with Eq. 2.8 and note in continuum mechanics κ = EI, one can get Eq.

2.7.

2.1.2 Stretching Energy

Cytoskeleton in cells is always under thermal fluctuation. Because of their different persis-

tence length, actin filaments and microtubules act much differently under thermal forces. For

actin filament, which has a typical persistence length of 17 µm that is on the same order of

its contour length, its stretching energy is stored in thermal (entropic) form; for microtubule,

whose persistence length is around 2 mm that is much longer than its own length, stores its

energy mostly in athermal form. As a result, two different models have been used to model

the actin filaments and microtubules. For microtubules, since they are athermal, linear elas-

tic model can be applied to them. For actin filaments, if small stretching deformation is

assumed, the linearized stretching modulus from thermal fluctuation of the filament can be

treated as constant for the stretching, and linear elastic model can still be applied in this

case; for large deformation, an entropic elastic model is derived using statistical mechanics.

The following sections introduce both of these models.

2.1.2.1 Linear Hookean elasticity

In the limit of continuum, the stretching energy of a beam is given as

Estretch =

∫
L

µ

2

∣∣∣d~x
ds

∣∣∣2ds (2.12)

where µ is the stretching modulus and ~x is the position of filament’s cross-section after de-

formation. If small deformation is assumed, we may neglect the continuum limit and simply
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treat each segment as a linear Hookean spring for stretching. Define the stretching stiffness

as kstretch ≡ µ/Ln, where Ln is the unstretched length of a segment, then its stretching energy

can be written as

En
stretch =

kstretch

2
(`n − Ln)2, n = 1, . . . , N − 1 (2.13)

where segment length `n is defined as above. Assume the reference positions of the segment’s

nodes are ~xn and ~xn+1, and the current positions are ~Xn and ~Xn+1. From this definition it

is straightforward to derive the internal “spring” forces due to segment strecthing of the two

nodes as follows

~Fn =
∂En

stretch

∂~xn
= −kstretch

(
|~xn+1 − ~xn| − | ~Xn+1 − ~Xn|

)
n̂n (2.14)

~Fn+1 =
∂En

stretch

∂~xn+1

= kstretch

(
|~xn+1 − ~xn| − | ~Xn+1 − ~Xn|

)
n̂n (2.15)

where n̂n is the tangent vector of the segment as defined before.

2.1.2.2 Entropic elasticity

Actin filament and many other semiflexible networks are essentially highly non-linear ma-

terials. In constrast with the linear spring model, a more thorough treatment of the actin

filament’s elastic properties involves taking into account the so-called entropic elasticity of

the filaments; that is, the resistance of the filaments to bending/stretching due to entropy.

As an example of this, consider a filament of arclength Larc. At finite temperature T , it will

deform and wiggle due to thermal noise, resulting in a mean end-to-end filament distance

of L0(Larc). If one tries to stretch the filament beyond this length (thus lowering its elastic

energy), one will encounter resistance due to entropy.

MacKintosh et. al first discussed this feature of actin filaments [17] and derived a tran-

scendental equation for the end-to-end filament distance L as a function of applied tension τ

(or, as in the present case, the tension in the filament as a function of end-to-end distance).

This relation is given by

Larc − L =
kBT

2τ(L)

[√
τ(L)

κ
L coth

(√
τ(L)

κ
L

)
− 1

]
, (2.16)
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where κ is the bending modulus of the filament. It is easier to work in dimensionless units;

dividing each side by the persistence length Lp ≡ κ/kBT leads to the following equation for

the dimensionless variable x ≡ L/Lp:

xarc − x =
1

2φ(x)

[
x
√
φ(x) coth

(
x
√
φ(x)

)
− 1
]
, (2.17)

where φ(x) ≡ τ(Lpx)Lp
2/κ. The function φ(x) has a few important features of note: it

diverges like (xarc−x)−2 as x→ xarc; it diverges like x−2 as x→ 0; and it goes as a(x−x0) near

the equilibrium length x0. Thus, so long as the filaments are subject to small deformations,

the Hookean spring approximation of the previous section should be sufficient. However, if

the nonlinear behavior of the gel is of interest and deformation is large enough that the small

deformation assumption no longer holds, it’s needed to go beyond this approximation and

calculate the tension using the above equation.

Since it is quite computationally inefficient to solve this transcendental equation for each

rod at each simulation time step, it is necessary to find a proper fitting function for φ(x)

(and thus for τ(L)). For a given value of xarc (and thus x0), there exists a Taylor expansion

for φ(x) around x0 given by

φ(x) =
∞∑
n=1

cn(x0)

n!
(x− x0)n. (2.18)

Due to the singularities in φ(x), this series converges very slowly; a Padé approximant works

much better, but must be taken to high order to work for large tension. We have found

two approaches to fit this function: the first is an ad hoc approach inspired by Padé which

involves using two different fitting functions, one for x < x0 and one for x ≥ x0. The fit

function φfit for x ≥ x0 has the form

φfit(x) =
1

(xarc − x)2

N∑
n=1

an
n!

(x− x0)n, (2.19)

where the coefficients an are determined by matching the first N derivatives of φfit(x) with

the first N derivatives of φ(x) at x = x0.

For x < x0 the fit function has the form

φfit(x) =
π2

x2

[
Pm(x)

Qn(x)
− 1

]
, (2.20)
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where Pm(x) and Qn(x) are polynomials of order m and n, respectively. Both Pm(x) and

Qn(x) are equal to 1 at x = x0. The above equation can be rearranged to give

Pm(x)

Qn(x)
= 1 +

x2

π2
φfit(x); (2.21)

if we force the first N = m+n derivatives of φfit(x) to match those of φ(x), then Pm(x)/Qn(x)

is simply the Padé approximant to the function 1 + x2φ(x)/π2.

In order to determine the coefficients in these functions for a given m and n, we used

the usual method of determining Padé coefficients given a Taylor series. We found that the

m = 3, n = 4 Padé approximant worked best to fit φ(x) over the full range of x values 1. For

both x ≥ x0, the energy of the filament was determined by simply integrating the fit function;

for x < x0, the energy of the filament was determined by finding a Padé approximant to

1− xφfit(x)/π2.

The second approach involves using a fit function of the form

φfit(x) =
N∑
n=1

an
n!

(x− x0)n +
b(x− x0)

(xarc − x)2
(2.22)

and matching the first N derivatives of φ(x) (b is fixed by matching the constant in front of

the leading divergence of φ(x)). This function provides a good fit for tensile load, but not

for compressive load.

2.1.3 Single Filament Mechanics

The mechanics of individual filament is modelled using classical, Bernoulli-Euler linear elastic

continuum beam theory and both bending and stretching of the filament are considered.

For a filament with undeformed length L, its total strain energy after deformation can be

represented as

Efil =

∫
L

ds

[
µ

2

∣∣∣d~x
ds

∣∣∣2 +
κ

2

(dθ
ds

)2
]
, (2.23)

where s is the arc-length along undeformed filament, ~x is the position of filament’s cross-

section after deformation, and θ is the angle of rotation of the cross-section between the

1It should be noted that only the first five terms of the Taylor series are used for φ(x), rather than the
first seven. The multiplication by x2 allowed for a Padé approximant of order m+ n = 7 to be used despite
only using the first five terms of the Taylor expansion.
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undeformed, and deformed configurations. To compute the strain energy of a filament nu-

merically, each filament are discretized into piecewise straight segments as discussed above.

So a discrete version of the strain energy of a single filament is just the summation of bending

and stretching energies over all segments and adjacent segment pairs as

Efil =
∑

segments

Estretch +
∑

angles

Ebend (2.24)

=
µ

2

N−1∑
n=1

(`n − Ln)2

Ln
+
κ

2

N−1∑
n=2

β2
n

`
, (2.25)

where the Ln and `n represent the undeformed/rest length and deformed length of the

segments, β represents the angle between two adjacent segments, and the ` parameter is the

average of the rest lengths of two segments adjoined at an angle spring, i.e. ` = (`n+`n+1)/2.

Note that the total number of nodes on a filament is assumed to be N , so the number of

segments is (N − 1) and number of angles is (N − 2).

The relative stiffness of single filament bending and stretching modes is described by the

bending length `b =
√
κ/µ. For a zero-temperature prismatic rod having constant cross-

sectional and elastic properties along its length, Bernoulli-Euler continuum beam theory

gives the familiar results µ = EA and κ = EI, where E is the 3-D Youngs modulus, and A
and I are the area and area-moment of inertia of the cross section, such that `b =

√
I/A is

of the order of filament diameter. We note that for semiflexible filaments such as F-actin at

room temperature, the effective longitudinal compliance can be significantly larger than the

zero-temperature value. In this a case tensile loading extends the filament primarily through

the pulling out of thermally generated undulations [34]. This leads to an effective µ that is

smaller than the stretching rigidity EA of the underlying proteins, and thus a larger value

of `b.

2.1.4 Crosslinks

Two models are developed to implement the crosslinks which bond filaments at their inter-

sections. The first model uses linear springs with high stiffness as crosslinks to bond the

two segments at the intersection of two filaments. The energy in a bonding crosslink can be
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calculated from

Ecross =
1

2
kc(xc − xc0)2 (2.26)

where xc and xc0 are the deformed (current) and undeformed (initial) lengths of crosslink,

and kc is the stiffness of crosslink. The initial state of the spring-like crosslinks is always at

the intersection of two filaments during network model set-up, thus its initial length xc0 is

essentially zero within a tolerance as small as the computer machine precision. Thus, this

guarantees that the network is set up to a zero energy state. The spring-like crosslink is

useful when labile crosslinks are modeled in Chapter 6, where crosslinks have to be attached

and detached during each time step. Another advantage of this type of crosslink is that

filaments can be discretized uniformly because the crosslinks are placed onto segments and

they don’t have any requirement on node positions, which is different than the second model,

as discussed as follows.

The second model use node constraints to tie two intersecting filaments. As a result,

nodes have to be generated for each of the filaments where they intersect. One of the nodes

is so-called master node and the other is called slave node, which moves with master node

and is not an active degree of freedom. The constraint crosslink’s advantage over spring-like

crosslink is that there’s no need to calculate the crosslink energy and force and only the

master node’s degree of freedom will be put into solver, which saves computation time. The

major disadvantage of this type of crosslink is that filaments can not be discretized uniformly

(adaptive meshing has to be implemented) and segments may be too short due to too-close

crosslinks which can cause convergence diffculties to the numerical solver. the tie has infinite

stiffness and no energy contribution. Special care has been taken to get rid of those too-short

segments by eliminating one of every two too-close crosslink constraints.

2.2 Network Model Setup

Using discretized filament as stated above, a two-dimensional network composed of thou-

sands of filaments is generated and modelled. Each filament is placed with randomly chosen

position and orientation in a square box of width W and area A = W 2. Wherever two
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filaments cross with each other, a crosslink (spring-like or rigid constraint, depending on

applications) is placed at their intersection. Each crosslink constrains the relative displace-

ments of two filaments while allowing free rotation. Spring-like crosslink will contribute to

be the network’s total energy, while rigid constraint does not. To avoid the effect of finite

boundary and also save the computational time of simulating a too large network, Lees-

Edwards periodic boundary condition [60] is applied at the four edges of the square box.

This effectively change the simulation of network in a finite square box to the simulation of

network in an infinite two-dimensional plane with periodic patterns. Shear loading is ap-

plied on the top and bottom boundaries of the network with opposite directions. An example

network demonstrating the model for a bimodal length distribution is shown in Fig. 2.2.

Figure 2.2: A typical simulated bimodal length polydisperse network, with short filaments

shown in blue and long filaments in red. Arrows show the shearing directions imposed on

the top and bottom periodic boundaries

Both force control loading and shear control loading have been developed for the network.
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The total strain energy of a network can be calculated from summing up all the strain

energy in filaments, crosslinks (if spring-like crosslinks are used), and minus the work done

by external force (if force control is applied). Static equilibrium of the network is obtained

by minimizing the total energy using an iterative quasi-Newton optimization code L-BFGS-

B [61,62].
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CHAPTER 3

Geometric Polydispersity: Bimodal and Exponential

Length Distributions

3.1 Introduction

Previous experimental and theoretical work has shown that decreasing crosslink density in

monodisperse semiflexible networks leads to a sharp affine to nonaffine (NA/A) crossover

from a high-density affine regime to a nonaffine one, characterized by bending-dominant,

nonaffine deformation [30, 31, 35–39, 63–69]. Mechanically, nonaffine networks are several

orders of magnitude more compliant than is predicted by continuum linear elasticity for

a uniform, affine strain field; in contrast, affine networks can achieve more than 90% of

the stiffness predicted by continuum elasticity. Geometrically, when subjected to uniform

strains along their boundaries, nonaffine networks have a heterogeneous deformation field,

where denser regions in the network tend undergo local rigid body motions compelling sparser

“connector” regions to experience large bending deformations; whereas affine networks follow

a homogeneous strain field compatible with the boundary conditions and consistent with

continuum elasticity theory. Energetically, because of the sparsely connected regions with

larger distance between crosslinks, filaments in nonaffine network tend to bend more than

stretch; however, in affine networks, stretching energy accounts for as much as 99% of the

total energy.

This chapter talks about the linear elastic response of semiflexible networks with two

classes of length polydispersity : bidisperse i.e. short and long, and exponential length distri-

butions. The purpose of doing so is two-fold. First, to better connect the current state of the

theory, chiefly focussed on monodisperse networks, to both in vitro experiments on typically
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polydisperse F-actin [70–72] and eventually to studies of the elastic properties of living cells

[73]. These experimental systems are generally highly polydisperse; this work seeks to un-

derstand the implications of that type of disorder on the affine to nonaffine crossover. There

is a clear reason for doing so: in previous work it has been shown that the crossover can be

understood in terms of a single control parameter, the ratio of the length of a filament L

to the nonaffinity length, λ. While this provides a universal framework for understanding

monodisperse systems, it remains to be seen whether the crossover in polydisperse networks

can be characterized in an analogous manner. Second, a basic question related to the engi-

neering of optimal semiflexible networks is proposed. One desirable feature of these systems

is that they make fairly rigid solids at low volume fractions. For example, the cytoskeleton

occupies less than one percent of the cell’s volume but confers its mechanical rigidity. As-

suming that one could control the length distribution of the semiflexible filaments, how can

one chose the optimal length distribution to maximize the rigidity of the network at fixed

mass density? In this work, the contribution to the network’s collective rigidity per unit

mass mass density is termed as its mechanical efficiency and what network design principles

maximize this quantity is discussed in this chapter. These questions about the mechanics

of semiflexible networks with length polydispersity are addressed by numerical simulation

using two-dimensional model networks of linear elastic beams, introduced in Chap. 2.

The reminder of this chapter starts with investigation of the length polydispersity with

bidisperse networks consisting of only two classes of filament length: long and short. Model

networks with exponentially distributed lengths are then considered, which more faithfully

describe experimental F-actin systems. In sec. 3.3, the simulation results are presented: first

a set of complementary phase diagrams describing the mechanical response of bidisperse net-

works with varied compositions of long and short filaments, and second, comparisons among

monodisperse, bimodal, and exponential length distributions of the effects on mechanical

modulus, deformation affinity, and energy storage. For the polydisperse networks that have

been examined, the first general finding is that while there remains a well-defined affine

to nonaffine crossover, the network density for the cross-over can be significantly depressed

relative to the predictions determined from monodisperse networks having filament lengths
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equal to mean length of the polydisperse system. Specifically, a small fraction of longer fila-

ments can have a disproportionately strong effect of increasing the mechanical stiffness of an

otherwise nonaffine network of shorter filaments, and thereby delaying the network softening

transition to lower network densities. Secondly, while examining directly the geometry of the

strain field or the partitioning of energy between bending and stretching modes, however,

little difference has been seen between monodisperse and polydisperse networks. Thus it

appears to be important to directly measure the geometry of the deformation field or the

partitioning of elastic energy between stretching and bending modes to observe affine to

nonaffine crossover in polydisperse networks. The third key finding is that, deep in the non-

affine regime where even polydisperse networks are highly compliant relative to the standard

prediction based on affine deformation, broad distributions of filament lengths provide for

the most rigid networks per unit of filament length density. This appears to be a useful

design principle for creating low density but rigid filament networks when in the nonaffine

regime. In sec. 3.4, the implications of these results are discussed for the mechanics of the

semiflexible F-actin networks that are the frequent subject of in vitro experimental models

of the cytoskeleton, and consider the bearing of our results on the strategies for design of

advanced materials. Part of the material in this chapter is from Bai et al. [74]

3.2 Network Geometry

Throughout this work, units of microns are employed for simulation length, with nominal

filament length L0 = 2 for monodisperse networks, and bending length `b = 0.012 represent-

ing typical values for F-actin filament. The dangling ends on both ends of filament do not

contribute to the mechanics of the network [36], and are removed from our simulation net-

work. The overall mechanical response of the filament network is therefore determined by `b

along with the mean distance between crosslinks `c, which serves as an effective mechanical

description of network density. For monodisperse semiflexible gels, it has been shown that

the mechanical and geometric nonaffinity depend on the combination of `b and `c through a
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single length scale, the so-called nonaffinity length,

λ = `c(`c/`b)
z

where previous numerical simulations [35] have empirically identified z = 1/3.

Extending the approach of [35–37], we calculate `c for a generic polydisperse network as

follows. Considering a filament of length L lying along the x-axis, the probability of crossing

with another filament placed with random position and orientation can be calculated as

Pc(L) =
2L〈L〉
πA

, (3.1)

where the angled brackets here and throughout this chapter denote averaging over filament

lengths for the given polydispersity P (L). Thus, 〈L〉 is the average length taken over all

filaments in the network. For a large number of filaments, N � 1, the probability pn(L)

that this filament of length L is crosslinked n times is given by a binomial distribution with

N trials and success probability Pc(L), which can be approximated well by an exponential

distribution

pn(L) =
e−NPc(L) [NPc(L)]n

n!
. (3.2)

The mean distance between crosslinks is then calculated as the ratio `c = Λ/nc of the average

total distance between crosslinks pairs (filament length less the dangling ends),

Λ =

∫ ∞
0

dLP (L)
∞∑
n=2

pn(L)L
n− 1

n+ 1

= 〈L〉+ 〈Le−NPc(L)〉 − 2〈L〉
〈NPc(L)〉

(
1− 〈e−NPc(L)〉

)
(3.3)

to the mean number of crosslink pairs per filament

nc =

∫ ∞
0

dLP (L)
∞∑
n=2

pn(L)(n− 1)

= 〈NPc(L)〉+ 〈e−NPc(L)〉 − 1. (3.4)

3.2.1 Affine Response

In comparing the mechanical responses of different networks, here throughout in this chapter

the computed shear modulus is reported relative to the value it would have under an affine
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(uniform) shear deformation, Gaffine, which can be calculated analytically in a similar manner

by averaging the shear stiffness of each filament of length L at angle θ as

Gaffine =
µN

2πA

∫ ∞
0

dLP (L)

∫ 2π

0

dθ sin2θ cos2θ

∞∑
n=2

pn(L)L n−1
n+1

,

which simplifies to

Gaffine =
µN

8A
Λ. (3.5)

There are two good reasons to report the numerically computed shear modulus, G relative

to the value that would be expected under an affine shear strain, Gaffine. First, the primary

mechanical signature of the affine to nonaffine transition is the deviation of network’s shear

modulus G from its affine prediction Gaffine, as given in Eq. (3.5). Second, the calculation of

the affine shear modulus Gaffine automatically accounts for the mechanical effect of dangling

ends. Clearly, in the strained network the dangling ends—i.e., the lengths of the filaments

extending past the crosslinks closest to the ends of the filaments—cannot store elastic energy.

They are irrelevant to the elasticity of the system. If one were to compare two monodisperse

networks having the same total length density but different filament lengths, the system

with the shorter filaments (but in greater number) would have more of these dangling ends

and thus be more elasticity compliant. By normalizing the observed shear modulus by the

affine prediction, we take this dangling end effect into account, allowing us to concentrate on

the less trivial changes in the mechanics. Finally we note in passing that as a consequence

of dangling ends, a network of monodisperse filament lengths has, in fact, a polydisperse

distribution of active, load-bearing filament lengths, as discussed further in Appendix A.

Hence, in the sense of mechanically relevant filament lengths, all random semiflexible net-

works are polydisperse. To be clear then, we use the term “monodisperse” in the commonly

understood sense, referring to the lengths of filaments in isolation.
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3.3 Results

3.3.1 Bidisperse Length Distribution

The numerical studies begins with considering bidisperse networks, composed of filaments of

only two lengths: Ns “short” filaments of length Ls, and Nl = N − Ns “long” filaments of

length Ll = rLs, with the length ratio r > 1. In anticipation of the application of this work

to polydisperse F-actin networks, the mechanical properties of all the filaments are fixed to

be identical. All filaments are assigned the same bending and stretching moduli µ and κ.

This makes the bending length `b a constant.

For such bimodal distributions the composition of the network can be described by three

scalar quantities: (i) the total filament length density, (ii) the fraction of that density stored

in the longer (or equivalently the shorter) filaments, and finally (iii) the ratio of the length

of the long filaments to the short ones. There are clearly other parameterizations of this in-

formation possible; discussions below talk about which parameterizations are most directly

obtainable from experimental parameters, and which are most useful in understanding the

mechanics of the network. Although such bidisperse filament distributions are not easily re-

alizable in experiment or commonly found in biological materials, understanding this system

is useful since it is the most easily characterized form of length polydispersity due to the

simplicity of the distribution.

In the following a mechanical phase diagram is presented which shows the observed shear

modulus of the network G as a function of two of the parameters characterizing the density

and length distribution of the network. To do this one of the three parameters discussed

above must be fixed. The ratio of the length of the long filaments to the short ones, r = Ll/Ls,

is fixed and vary independently to the length density of the short and long filaments. For

the bimodal-length networks considered here, the expression for the average length

〈L〉 =
Ns

N
Ls +

Nl

N
Ll =

Ns + rNl

N
Ls, (3.6)

leads to a natural decomposition of the length density (i.e., the total length of filaments per
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unit area in our two dimensional system) as

ρ =
N〈L〉
A

=
NsLs
A

+
NlLl
A

, (3.7)

where we denote partial densities of long and short filaments as

ρl =
NlLl
A

and ρs =
NsLs
A

. (3.8)

These two densities reflect quantities that have the most direct meaning in experiment,

representing the total amount of material (or filament length) stored in the forms of long

and short filaments. Lastly, we note that, although we separate the filament density into

long and short densities, the shear moduli G and Gaffine are computed for the entire bimodal

network as a whole. Furthermore, while for a given network composition Gaffine is defined

uniquely by eqn. (3.5), G is subject to some variation from one randomly generated network

instance to another. Although points plotted in the phase diagram and elsewhere below each

represent results for a single network instance, we have compared multiple instances for a

few compositions, measuring variations in G as much as on the order of 5% for networks

in the NA regime. Networks in the A regime are more self-averaging, showing sample-to-

sample variation of the modulus of < 1%. Most important, however, is the observation that

these sample-to-sample variations are everywhere dramatically smaller than the (average)

differences between affine and non-affine samples. Based on these considerations, and because

in the A regime G/Gaffine approaches one independent of network composition, attempt to

curtail computational costs is made by generally clustering simulation data points in the NA

region.

Fig. 3.1 shows a mechanical phase diagram for bidisperse networks with long/short length

ratio r = 5. The color contours report the simulated network shear modulus G normalized

by Gaffine over a range of long and short filament densities ρl and ρs, rendered dimensionless

by multiplication with short filament length Ls. Just as for monodisperse networks [36],

G/Gaffine generally increases with increasing density ρ (or decreasing `c). However, the plot

makes clear that the mechanics of polydisperse networks is also strongly dependent on the

composition of filament lengths, as indicated by ρl/ρs. Specifically, the contours of constant
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Figure 3.1: The phase diagram of G/Gaffine versus filament densities ρl and ρs normalized by

short filament length Ls, for a series of bimodal-length networks with r = Ll/Ls = 5. Blue

dots indicate actual simulation data points. Contours were generated by piecewise cubic

interpolation of the simulation data using the subroutine griddata from Matlab (The

MathWorks, Inc.). Dashed lines of constant total filament density ρ = ρl + ρs are shown as

a guide to the eye to distinguish the composition dependence of G/Gaffine.

mechanics (G/Gaffine) are generally curved “downward” toward the ρl axis, relative to the

straight (dashed) lines of constant total density ρ with slope −1. In other words, as the

composition is shifted from short-dominated (ρl < ρs) toward long-dominated (ρl > ρs) the

gradient direction of G/Gaffine turns increasingly toward the ρl axis. Consequently, the phase

diagram suggests an enhanced stiffening effect from redistributing the sum of filament lengths

into long filaments. That is, as the concentration of long filaments increases, addition of a

unit of length density in the form of long filaments stiffens the network increasingly more

than addition of the same unit in the form of short filaments.

Conversely, one can consider changes in the densities of the long and short filaments

along contours of constant G/Gaffine. For short-dominated networks with ρl � ρs, contours
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of constant mechanics track closely with lines of constant total density. Thus, simply ex-

changing a unit of short-filament density for a unit of long-filament density, say by splicing

together r short filaments to create one new long filament, will have little effect on the me-

chanical response of the network. However, as the concentration of long filaments increases,

the contours of constant mechanics turn continuously downward, such that many units of

short-filament density can be exchanged for a single unit of long-filament density while leav-

ing the mechanical response unchanged. In summary, long filaments are more efficient than

short filaments in stiffening the network. We refer to this property as a greater mechanical

efficiency of the long filaments relative to that of the shorter ones.

To understand the greater mechanical efficiency of the longer filaments distinct from

the dangling ends effect, it is useful to review the results of the mechanics of monodisperse

filament networks and the nonaffine to affine crossover. There, as noted above, it was found

that the shear modulus G and the so-called mechanical affinity measure G/Gaffine depends

on the filament mechanics and network density through only one parameter L/λ, the ratio

of the length of the filaments to the nonaffinity length λ = `c(`c/`b)
1
3 . If we have two

monodisperse networks of long and short filaments having the same value of G/Gaffine (such

pairs of networks can be read off of the vertical and horizontal axes of Fig. 2) then it must be

that Ll = rLs and Ls/λs = Ll/λl since the function G/Gaffine(L/λ) is one-to-one. Recalling

that the mechanics of the individual filaments in each network are identical, it follows then

that
(`c)l
(`c)s

= r
3
4 . (3.9)

For monodisperse networks at all but the smallest densities, `c is proportional to the inverse

of the length density [75]. Thus from Eq. (3.9) and r = 5 we find that networks of long

and short filaments with the same G/Gaffine will have a significant difference in the length

density ρl = r−
3
4ρs ≈ 0.3ρs. This is consistent with the values of G/Gaffine along the axes of

Fig. 3.1. The longer filament network is equally rigid (compared to the affine prediction) as

a shorter filament network at about three times the length density. In this example, we may

say that the longer filaments are three times more mechanically efficient.

One might imagine that this concept of the mechanical efficiency of a filament accounts
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Figure 3.2: Phase diagram of 〈L〉/λ as computed from eqn. (3.3) and (3.4) for a bimodal

network with long/short length ratio r = Ll/Ls = 5, as a function of partial densities of long

and short filaments ρl and ρs defined in eqn. (3.8), and normalized by short filament length

Ls.

for the entire structure of the lines of constant modulus and not just for their endpoints on the

two axes of the mechanical phase diagram and thus explains why lines of equal mechanics

deviate significantly from lines of constant total length density (shown as black dashed

lines in Fig. 2) in bidisperse networks. These ideas, however, have only been validated

for monodisperse networks. To generalize these results to polydisperse ones, we propose

replacing the filament length L in the ratio L/λ by the mean filament length in the network

〈L〉. The determination of λ proceeds as before. There is no a priori reason to demand that

the functional dependence of G/Gaffine on 〈L〉/λ is identical to that of the same quantities

for monodisperse networks, but we expect such an analogous relation between modulus and

〈L〉/λ for fixed composition to be at least monotonically increasing and one-to-one. If this

be the case, contours of constant 〈L〉/λ correspond to contours of constant modulus and
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larger values of 〈L〉/λ correspond to more affine and mechanically incompliant networks. In

Fig. 3 we plot the contours of 〈L〉/λ vs. the partial densities. The lines of constant G/Gaffine

in Fig. 2 appear to agree to much higher precision with the lines of constant 〈L〉/λ in Fig.

3 than with the (dashed) lines of constant length density.

Nl

N

Ll

λ

N
s

N

L
s λ

0 1 2 3 4 5
0

1

2

3

4

5

Nl

N

Ll

λ

Ns

N

Ls

λ

G/Gaffine

Figure 3.3: The phase diagram of G/Gaffine versus NlLl
Nλ

and NsLs
Nλ

for the same series of

bimodal-length networks with r = Ll/Ls = 5 plotted in Fig. 3.1. This alternative param-

eterization has the advantage of rendering contours of constant 〈L〉/λ as straight (dashed)

lines of slope −1 (see text). Contours of G/Gaffine bend toward the origin away from lines of

constant 〈L〉/λ, demonstrating that polydisperse networks are stiffer, or mechanically more

affine, than monodisperse networks of equal 〈L〉/λ. Inset: zoomed in view of the highly

nonaffine region of the phase diagram.

To make a quantitative comparison between Figs. 2 and 3, it is helpful to redefine the

two axes of the mechanical phase diagram in a manner that directly incorporates 〈L〉/λ. For

bidisperse networks we may use the following decomposition

〈L〉
λ

=
NlLl
Nλ

+
NsLs
Nλ

. (3.10)
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Fig. 3.3 shows the mechanical phase-diagram replotted asG/Gaffine vs. NlLl
Nλ

and NsLs
Nλ

. Dashed

lines indicate the straight contours of 〈L〉/λ with slope −1, revealing that contours of con-

stant G/Gaffine tend to curve toward lower 〈L〉/λ for mixed compositions of long and short

filaments. In other words, for each value of 〈L〉/λ, there is a mechanically optimal com-

position NlLl/NsLs = ρl/ρs at which G/Gaffine attains a maximum value. It appears that

this maximum is attained near to the line of equal composition, ρl = ρs, although a precise

location is difficult to identify due to the noise in the contour plot generated by interpo-

lation over a rather sparse set of data points. Throughout the phase-diagram, and most

clearly at lower densities (see the inset of Fig. 4), bidisperse networks, i.e., those for which

ρl, ρs 6= 0 are always stiffer than monodisperse networks (where either ρl or ρs = 0) of the

same 〈L〉/λ. Thus, the proposal that G/Gaffine depends on only 〈L〉/λ is not precisely sat-

isfied, but lines of constant 〈L〉/λ more nearly correspond to lines of constant mechanics.

Interestingly, the residual corrections, especially at small values of 〈L〉/λ, where the net-

work is expected to deform in a highly nonaffine manner, show that maximal mechanical

efficiency occurs generically for compositions in which the two contributions to 〈L〉/λ are

roughly equal: NlLl
Nλ
≈ NsLs

Nλ
.

The stiffening effect of length polydispersity is more dramatically demonstrated by com-

paring fixed composition cuts through the phase diagram, as shown in Fig. 3.4, which plots

G/Gaffine as a function of 〈L〉/λ, for a selection of different long/short filament length ratios

r = Ll/Ls, and compositions ρl/ρ. As pointed out in Fig. 4, we find that the ratio of the

mean filament length to the nonaffinity length does not determine uniquely the mechanics of

the network. G/Gaffine is dependent on both the length ratio r and composition ρl/ρ at fixed

〈L〉/λ. Consistent with the phase diagram in Figs. 3.1 and 3.3, we see that polydispersity

in filament lengths increases network’s stiffness, or more precisely, the mechanical affinity,

G/Gaffine, and that this effect is most significant for sparse networks that are in the nonaffine

regime where 〈L〉/λ . 15. For example, at 〈L〉/λ ≈ 2.5, a polydisperse network with about

10% of its density (ρl/ρ = 0.11) stored in the form of long filaments (r = 5) is an order of

magnitude stiffer than a monodisperse network of the same density. Likewise, distributing

one third of the same density (ρl/ρ = 0.35) to filaments that are 10 times longer (r = 10)
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Figure 3.4: Normalized shear modulus G/Gaffine versus 〈L〉/λ for the whole network. The

dangling ends which don’t contribute to the network’s mechanics have been removed. Curves

are grouped by long filament length fraction, ρl/ρ, and long/short length ratio r. The inset

shows significant G/Gaffine increase between monodisperse and bimodal polydisperse network

at 〈L〉/λ = 3.

than the rest stiffens the network a hundred-fold. This demonstrates that network stiffening

effect is sensitive to both long filament length fraction ρl/ρ and the long/short length ratio

r. The latter dependence is clearly demonstrated by comparison of the ρl/ρ = 0.36, r = 5

(magenta) and ρl/ρ = 0.35, r = 10 (green) curves. These have the same total length density

of long filaments, but differ by a factor of two in the long/short length ratio, illustrating

that simply splicing together pairs of long filaments stiffens the network by a roughly half

a decade, at least deep in the nonaffine regime. As expected for affine networks (i.e., those

with 〈L〉/λ > 20) there is essentially no mechanical effect of the filament length distribution

once the dangling ends effect has been removed.
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Figure 3.5: Normalized shear modulus G/Gaffine versus 〈L〉/λ, for monodisperse, bimodal

polydisperse and exponential polydisperse networks. Bimodal networks were defined with

Ls = Lmono and r = 5. Exponential length distributions were truncated at `0 = L0/4 as

indicated in eq.(3.11), so as to neglect filaments too short to be mechanically active.

3.3.2 Exponential Length Distribution

Bidisperse networks provide a restricted class of polydisperse systems that can be easily

characterized and thus systematically explored, as in the previous section. It is well-known,

however, that the most ubiquitous example of semiflexible networks is found in the predom-

inantly F-actin based cytoskeleton and its simplified in vitro models. Previous theoretical

and in vitro experimental studies have predicted and shown that the polymerization pro-

cess results in polydisperse filament networks with filaments having varying length. In vivo,

dynamically growing and remodeling actin networks are also known to have a rather broad

length distribution. Theoretically, the lengths of actin filaments have been predicted to be

exponentially distributed [1]. Viamontes et al. [72] measured the length distribution of the

filaments used in their experiment and found a peaked distribution, which appeared expo-

nential at larger lengths. They claimed that the polydispersity is responsible for affecting

41



orientational ordering and perhaps also other properties of the network. In recent theoretical

and experimental studies on composite F-actin/microtubule networks, Bai et al. [44] and Lin

et al. [43] found that polydispersity in the mechanical stiffness of filaments can have a large

effect on the overall mechanical response of a gel, while affecting the geometric nonaffinity

to a lesser degree. Those studies revealed that the addition of just a small fraction of stiff

microtubules to a soft, nonaffine, actin gel can effect an increase in the effective shear by sev-

eral orders of magnitude. Here we consider whether an exponential distribution of filament

lengths can produce similar cooperative changes to the mechanical response of networks.

Based on our intuition gleaned from the bidisperse case, we expect the rare long filaments

to have a disproportionately large effect on the mechanics of the network deep in the nonaffine

regime. To explore this we consider an exponential length distribution

P (L) =


1
`
e−

L−`0
` , for L ≥ `0

0, otherwise

(3.11)

cutoff at `0 = 0.25L0. Here L0 is the filament length of our monodisperse networks to

which we compare our data. The details of the distribution at short lengths, smaller than

that of the mean distance between crosslinks, are mechanically irrelevant. The exponential

distribution is characterized by a single decay length `, which we adjust to set the desired

mean filament length

〈L〉 =

∫ ∞
`0

P (L)LdL. (3.12)

Using this measure, in Fig. 3.5 we plot G/Gaffine for networks having an exponential length

distribution as a function of 〈L〉/λ, along with the analogous mechanical data from the

previously discussed mono- and bidisperse networks.

Comparing the mechanics of networks having exponential distributions (red triangles and

squares) to those of a monodisperse (black filled circles) and two bidisperse (blue squares and

triangles) networks we note two points. First, while the mechanics are relatively insensitive

to the mean length (comparing the red squares and red triangles), at least over the range

explored, overall in the nonaffine regime the exponential filament distribution leads to the

most stiff networks for a given value of 〈L〉/λ. Second, the curves are essentially identical
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in shape. Hence, it appears that measurement of the G/Gaffine vs. 〈L〉/λ alone does not

provide a means to determine the form of the filament length distribution. The principal

effect of polydispersity is simply to push the crossover to nonaffine mechanics to even lower

values of 〈L〉/λ. We also note that exponential length distributions generate the greatest

mechanical efficiency within the set of distributions studied. These results are consistent

with the observations that within the bidisperse networks larger r and roughly equal length

densities (i.e., broader distributions) exhibit greater mechanical efficiency. It is tempting to

speculate that all of these results when taken together point to the principle that broader

filament length distributions generally lead to higher mechanical efficiency in the nonaffine

regime. We return to this point in the discussion.
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Figure 3.6: The stretching energy fraction in total energy is plotted against 〈L〉/λ. Two

comparisons are made: the effect of long filament length fraction in bimodal polydispersity;

the effects of bimodal and exponential polydispersities.

43



3.3.3 Deformation Field and Elastic Energy Storage

Previous studies on monodisperse gels have shown that the changes in the mechanical prop-

erties across the affine-nonaffine transition are driven, as semantically implied, by changes

in the nature of the deformation field from affine at high crosslink densities, to nonaffine

at low densities. Under purely affine strains, all filaments in a network are subjected to

pure stretching (length change) deformation along their lengths. However, in sparse and

nonaffinely deforming networks, filaments undergo a combination of stretching and bending

deformations. To explore whether the same mechanisms apply for polydisperse networks,

we plot in Fig. 3.6 the fraction of energy stored in stretching, as a function of 〈L〉/λ, for

representative monodisperse, bimodal, and exponential networks. It is clear from this plot

that, just as in the monodisperse case, polydisperse networks shift their energy from stretch-

ing to bending as the density of filaments/crosslinks is decreased. A closer comparison to

the monodisperse case reveals that the polydisperse networks undergo a slightly delayed,

and sharper shift from stretching to bending. Decrease in the stretching fraction sets in

more abruptly, and at lower values of 〈L〉/λ. Thus, the enhanced stiffening seen in polydis-

perse networks at low densities is correlated with and likely derived from a suppression of

appearance of bending deformations as the network is made more sparse.

To test the intuition from monodisperse studies that the increase in bending energy

should be also a signature of increasingly nonaffine strains, we also examine directly the

network deformation fields. Figure 3.7 shows a vector plot of the displacement field for

a random sampling of nodes in three typical bidisperse networks (r=5, ρl/ρ=0.11) above,

below, and just at the onset of the A/NA transition. At and above the transition (〈L〉/λ=10,

25) the strain field is visually indistinguishable from a pure (affine) shear; whereas below

the transition (〈L〉/λ=3) the presence of non-affine deformation is clearly manifested in

the vortex-like patterns exhibiting significant vertical (and even horizontally retrograde)

displacements. To be quantitative in describing the degree of non-affine deformation we

consider the geometric nonaffinity measure introduced previously [35–37]

Γ(r) = 〈(θ − θaffine(r))
2〉/γ2 (3.13)
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Figure 3.7: Vector field plots of the displacement field in bidisperse networks (r=5,

ρl/ρ=0.11) well above (〈L〉/λ=25), well below (〈L〉/λ=3), and just at the onset (〈L〉/λ=10)

of the A/NA transition. Network filaments are shown superposed in gray. Color contours

represent the value of horizontal displacement normalized by the maximum affine displace-

ment at the top boundary. Vector glyphs are plotted at a randomly sampled subset of nodes,

with lengths uniformly rescaled for better visibility.

where θ is the rotation angle of the line connecting two network nodes separated by distance

r, θaffine(r) is the corresponding rotation angle under an affine deformation, and γ is the

shear strain. In Fig. 3.8 we plot Γ vs. separation distance r normalized by `c, for monodis-

perse, bimodal, and exponential networks above (〈L〉/`c=25), near (〈L〉/`c=10), and below

(〈L〉/`c=3) the A-NA transition. The plot shows that polydispersity has little overall impact

on the qualitative trends of geometric nonaffinity: for affine networks Γ increases but plateaus

as r → 0, while for nonaffine networks Γ continues to grow as r is reduced. Quantitatively,

for very sparse networks (〈L〉/λ=3) polydispersity leads to some increase — albeit slight

— in the overall nonaffinity as compared with monodisperse networks. For higher 〈L〉/λ
overall quantitative differences in nonaffinity between monodisperse and polydisperse are

more ambiguous. The discrepancy between impact of polydispersity on mechanical affinity

(e.g., G/Gaffine and Estretch/E) and geometrical nonaffinity (Γ) suggest that the correlation

between network mechanical properties and deformation field that is apparent for monodis-

perse networks is not a general feature of networks of polydisperse length distributions. A

similar observation of independence between mechanical and geometrical measures of non-

affinity was also found in the work presented in next chapter on composite networks of soft
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Figure 3.8: Nonaffinity Γ plotted against normalized measuring distance r/`c. Monodisperse

and polydisperse networks with different filament densities: 〈L〉/λ = 3, 〈L〉/λ = 10, and

〈L〉/λ = 25 are tested and plotted.

F-actin-like filaments and stiff microtubule-like filaments [44].

3.4 Discussion

The principle conclusion of this chapter is that for polydisperse networks the mean filament

length alone is not sufficient to determine its mechanics when that network is in the nonaffine

regime. In order to quantify this property the bidisperse networks are examined and the

mechanical efficiency of a filament length distribution — the ratio of the network’s shear

modulus to its affine value as a function of total length density, is introduced. To put this in

another way: Given a fixed mass of filament making material (e.g., monomeric actin) to span

a given region, one may ask which partitioning of that mass into filaments (i.e., which length

distribution) provides for the most rigid network. Deep in the nonaffine regime, it appears

that the broader the distribution of lengths, the stiffer the network. Such broad length

distributions proved the most efficient use of the material to create a stiff random structure.
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In the affine regime, on the other hand, the filament length distribution is irrelevant except

for the rather trivial dangling end effect.

There are two main consequences of this result. First, experiments that seek to observe

the nonaffine regime (primarily in F-actin gels) must be concerned about the role of polydis-

persity and particularly the presence of long “impurity” filaments in the sample. These rare

long filaments suppress the mechanical effect of nonaffine deformation requiring one to create

even more sparse networks to observe a regime in which G/Gaffine � 1. One may speculate

that for a sufficiently broad filament length distribution it may be possible to suppress the

highly compliant nonaffine mechanical regime down to network densities approaching the

rigidity percolation transition. In this case there may be no mechanically distinct nonaffine

regime intermediate between the critical regime associate with stress percolation and the

G/Gaffine ≈ 1 regime normally associated with an affinely deforming elastic solid. Regard-

less of the suppression of the dramatic network softening in the nonaffine regime seen in

monodisperse networks, the geometric signature of nonaffine deformation and the change

in the partitioning of elastic energy between filament bending and stretching associated

with the entry into the nonaffine regime is still found in polydisperse networks. It appears

that these latter two signatures of the nonaffine regime originally observed in simulations

of monodisperse networks are more robust to network heterogeneity than the mechanical

signature, i.e., G/Gaffine � 1. This observation is also supported by simulations [44] and

experiments [43] on F-actin and microtubule composite networks. We suggest that measures

of the either energy storage in bending degrees of freedom or the direct geometric measure

of nonaffine deformation are more reliable experimental measures of nonaffinity than the

mechanical effect. The analytical and numerical prediction of the nonaffine/affine transition

by [35–39,65–69,76] has been found qualitatively consistent with in vitro experiments, how-

ever quantitative validation is so far not definitive. [63] performed a series of experiments

measuring overall stiffness of actin networks under varying crosslink densities with three dif-

ferent kinds of crosslinking proteins. While this study found that the overall shear modulus

of the network increased with crosslink density, the measured stiffness of networks predicted

to be in the nonaffine region as defined in the paper by [36] did not deviate noticeably from
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the affine shear modulus prediction. [64] experimentally probed the geometric nonaffinity in

F-actin networks at various actin/crosslink densities, finding that the measured nonaffinities

for both dense and sparse networks lie between the theoretical pure affine and pure nonaffine

limits. However, the differences in measured nonaffinity among networks at various densities

were found to be rather small.

Experimentalists have not yet observed the predicted abrupt change in modulus associ-

ated with the affine to nonaffine crossover for monodisperse network predicted in both theory

and simulation. Based on our results regarding the effect of polydispersity on the affine to

nonaffine transition, it appears that one contributing factor to this discrepancy is polydis-

persity, or more specifically, the presence of at least a low density of longer filaments. We

suggest that these longer filaments push the mechanical softening to even smaller network

densities. Also since for polydisperse networks, geometric nonaffinity is not directly associ-

ated with mechanical affinity as opposed ro monodisperse network, those two nonaffinities

are suggested to be measured directly and studied separately.

Secondly, if one were to engineer biomimetic semiflexible networks that are sparse and

yet wish to maximize the linear modulus for a fixed amount of material, developing a ran-

dom network with a broad filament distribution appears to be ideal. This suggests a design

principle for the construction of of simultaneously light-weight (due to the low volume frac-

tion of the network) and rigid materials from filament networks. This principle may be

exploited using F-actin, microtubules, or even carbon nanotubes. By analogy to traditional

fiber-based composites, semiflexible networks have the distinguishing feature that filaments

play both the role of fiber reinforcement, and the matrix. Accordingly, by pushing the

A/NA transition toward the percolation threshold, length polydispersity greatly enhances

the strength-to-weight ratio of the network at low fiber densities. Furthermore, in contrast

to traditional fiber composites, for which design strategies are needed to control local (non-

affine) strain gradients, which serve as the main source fiber debonding failure, semiflexible

networks are free of bi-material, fiber-matrix interfaces, and can therefore perform robustly

despite non-affine strains. These latter observations raise new questions about the optimal

design for such strong and light materials created out of crosslinked stiff filaments. Is there
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a particular length distribution, set of impurities (e.g., stiffer filaments) or even network

organization (e.g., local nematic order [42]) that maximizes the mechanical efficiency of the

filaments? In this study we note that polydispersity enhances mechanical efficiency. It re-

mains to be seen how length polydispersity interacts with the addition of mechanically stiffer

filaments to enhance (or not) the mechanical efficiency of the composite network. Moreover,

it is an open question whether the structure of the cytoskeleton is so organized as to take

advantage of the enhanced mechanical efficiency of highly polydisperse networks.

We close by pointing out some of the limitations of the present analysis. First, we have

confined our attention to polydisperse networks of filaments with fixed mechanical properties,

as described by the bending length `b. As noted above, previous studies of monodisperse

networks found that scaling by the nonaffinity length λ universally captures the effects of

changing crosslink density `c and the relative stiffness of filaments in bending and stretching.

While herein we have reported modulus results only for simulations where `c is varied with

`b fixed, we have also examined the modulus as a function of `b for a few select length

compositions (not shown). In these few cases, G/Gaffine still collapses as a function of 〈L〉/λ
along with the cases where `c was varied. Secondly, the present analysis focuses purely on

the linear shear response of networks. This leaves open the question of the effect of length

polydispersity on the nonlinear network response. In particular, previous theoretical studies

by Onck, et al. [77, 78] and Mahadevan, et al. [79, 80] have shown that changes in the local

geometry of filaments brought about by large network deformations are important in defining

the nonlinear response. By defining the network geometry with initially straight filaments,

and restricting our analysis to small shear strains, we neglect these nonlinear effects. Likewise

we neglect the role of initial prestress, which is likely present in real semiflexible networks

cross-linked in the presence of thermal fluctuations. Exhaustive studies of the interaction

of length polydispersity with each of these effects would be interesting to pursue as future

research.
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CHAPTER 4

Mechanical Polydispersity: Composite

Actin-Microtubule Networks

4.1 Introduction

As stated in previous chapters, the affine to non-affine (A/NA) cross-over of monodisperse

semiflexible network is characterized by three effects. First, the non-affine networks are

significantly softer than that predicted by the affine theory. Secondly, the geometry of

deformation in the NA regime is quite complex. Under uniformly applied shear strain at the

boundaries of a NA sample, the observed strain field is far from being spatially uniform as

would be expected for a continuum elastic object. In fact, large regions are typically found

in which the material is not shearing, but rather undergoing local rigid body motions. The

regions of the network in between these rigidly moving sections become distorted and store

elastic energy. Finally, deep in the NA regime, sheared networks store elastic energy almost

entirely in the bending deformations of the filaments. In the affine regime, however, networks

store energy predominantly in the stretching modes of the filaments as is the expected

response to a uniform shear strain. These phenomena may be understood by noting that

in more sparsely cross-linked networks that are deep in the NA regime it is not meaningful

to write the elastic free energy of the system in terms of a gradient expansion of the local

strain field. Presumably this breakdown of continuum elasticity can be attributed to the

large quenched spatial variations of local elastic response of the network. Under uniformly

applied shear, regions of the network that are slightly more dense than their surroundings

perform rigid body motions and thereby do not store elastic energy. Because these motions

do not allow for a state of uniform shear strain, filaments in the sparser regions are thereby
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forced to bend to simultaneously accommodate the strain field boundary conditions at the

edges of these more rigid regions and at the boundaries of the sample where the shear

strain is applied. Because few filaments store elastic energy, the NA networks appear to

be anomalously soft when compared to the predictions assuming affine deformation wherein

each filament undergoes a deformation determined solely by its orientation with respect to

the shearing direction. Lastly, assume the lengths of filaments could be made longer, these

slightly more rigid regions would become more strongly connected mechanically. These

stronger connections would enforce more precise self-averaging of the strain field in the

sample resulting in a more nearly affine deformation field and a stiffer mechanical response

as more filaments store elastic energy. Since the local deformation field (under uniformly

applied strain at the boundaries) approaches that of simple shear, bending deformations

could be suppressed so that the elastic energy is now stored predominantly in stretching

deformations of the filaments.

Based on this understanding, it makes intuitive sense that we should be able to shift

the NA/A cross-over by adding a small set of extremely stiff and longer impurity filaments,

or in other words, polydispersity. These stiffer and/or longer filaments are expected to act

as local affine geometry enforcers smoothing out the spatial heterogeneities in the strain

field and recruiting more of the network’s filaments to carry elastic energy. In this way it is

expected to see the addition of polydispersity to result in: (i) a large increase in the shear

modulus, (ii) a transition of elastic energy from bending to stretching, and (iii) a decrease in

some direct geometric measure of the non-affinity of the deformation field. In the work by

Lin et al. [43], such experiments were performed. From the data on the nonlinear response

of their system, it is clear that the addition of microtubules (much stiffer and longer than

actin filaments) to NA F-actin networks shifts the mode of energy storage from bending to

stretching. This may seem to be most easily interpreted as geometry driving mechanics —

the microtubules indeed act to homogenize the spatial fluctuations in the strain field and

thereby drive the system to an affine response. The numerical simulations of actin filament

and microtubule network shown later in this chapter strongly support the observation of

the shift in elastic energy storage from bending to stretching in response to the addition
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of stiffer impurity filaments. However, it is found the geometry of the deformation field is

not necessarily rendered more affine by the addition of the stiff impurity filaments. The

simulation results, discussed in more detail below, may be summarized as follows: (i) It is

found that the addition of microtubule-like impurities generically stiffens the network; (ii)

The addition of the impurity filaments to NA networks acts generically to shift the elastic

energy storage from bending to stretching modes in agreement with the work of Lin et

al.; (iii) In the transition region between the NA and A regimes the impurities do indeed

suppress the total geometric measure of non-affinity. Deep in the non-affine regime, however,

these impurities actually enhance the geometric measure of non-affinity. Examining this in

more detail, significant negative correlation is found between the local measures of impurity

density and non-affine geometry. Yet, deep in the non-affine regime the stiff filaments act

primarily to redistribute this non-affine deformation in space rather than to globally suppress

it. Finally, we point out the method by which the stiff impurity filaments are mechanically

coupled to the semiflexible network plays an important role to be discussed further below.

The fact that stiffer impurities stiffen even non-affine networks may appear trivial since

such effects are well-known with regard to the addition of rigid impurities into elastic con-

tinua [81]. The theoretical analysis of this effect, however, relies on a gradient expansion

of the elastic energy of the continuum material. Inasmuch as this gradient expansion fails

dramatically in the NA regime, it is not a priori clear that the addition of stiffer impurities

would have a similar effect on such networks. Our numerical simulations confirm that despite

the inappropriateness of gradient expansion theories for non-affine networks, the stiffening

phenomenology persists. This agreement notwithstanding, our results also suggest that ge-

ometry does not drive mechanics in the A/NA cross-over precisely as originally thought.

While the impurities always enhance the shear modulus, they do not suppress purely ge-

ometric measures of non-affinity, particularly when deep in the NA regime. This suggests

for the first time that there is some sort of decoupling between mechanics and the geome-

try of the deformation field in highly NA composite networks. The desideratum for affine

deformation in such materials remains mysterious.

The remainder of this chapter is organized as follows. In Sec. 4.2 we discuss the numerical
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finite-element model used to study the mechanics of semiflexible composite networks. There

are many types of composite semiflexible networks that may be imagined. For example, we

may consider networks in which the filaments are mechanically identical but not monodis-

perse in length. Or, we might consider networks of identical filaments linked by cross-linkers

having different elastic compliances. Here we discuss only the form of heterogeneity mo-

tivated by the experiments of Lin et al. We present our results on the mechanics, energy

storage, and deformation field geometry of the networks in Sec. 4.3. Finally, in Sec. 4.4 we

discuss the implications of our work for cellular mechanics, the mechanical modification of

synthetic fiber networks, and for more general questions of the elastic response of disordered

solids. Part of the material in this chapter is from Bai et al. [44]

4.2 Model

Our model system is a two-dimensional network composed of two types of filaments, qualita-

tively representing a mixture of F-actin and microtubules. Filaments of the first type, which

we term soft matrix filaments, are uniformly assigned a length L and bending and stretch-

ing moduli κ and µ respectively. We place these first filaments with uniformly distributed

random positions and orientations in a square box of edge length W and area A = W 2.

Intersecting filaments are rigidly pinned together at their crossing points, mimicking the

effect of actin-binding crosslinking proteins. Within this soft network, we embed a second

class of longer and stiffer impurity filaments with the same stretching modulus, µ but having

increased length LI > L and bending modulus κI > κ. To represent the steric interactions

of the impurities with the matrix, we rigidly crosslink stiff filaments at their intersections

with soft filaments. However, bearing in mind the absence of microtubule-binding protein

crosslinkers, we do not crosslink stiff filaments at their intersections with other stiff filaments.

The key associated point is that the stress percolating network is formed chiefly by the soft

matrix filaments, with the stiff impurity filaments acting only as locally stiff inclusions. The

impurities alone do not form a load bearing network. An example network representative of

the model is illustrated in Fig. 4.1, with the matrix filaments shown as thin blue lines and

the impurities as thick red lines.
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Figure 4.1: A typical polydisperse network showing the short, soft matrix filaments (thin

blue lines) and long, stiff impurity filaments (thick red lines), with LI/L = 5, L/λ = 10, and

nI = 10.3. Arrows indicate shear strain imposed through the periodic boundaries.

Apart from the system size W and filament length L, the soft matrix is characterized by

two additional key length scales: the “bending length,” `b =
√
κ/µ describing the bending

stiffness of individual filaments, and the average distance between cross-links, `c serving as

an inverse measure of matrix density (more specifically, the density of matrix crosslinks).

Previous work [35–37] has revealed that the A/NA transition in monodisperse networks is

characterized by the non-affinity length, λ, which emerges as a function of `b and `c,

λ = `c(`c/`b)
z. (4.1)

with z empirically identified to be 1/3. With the addition of stiff impurities in this work, we

track the composition of the resulting polydisperse networks by the number of impurities per

unit area, denoted nI . Accordingly, the mechanics of the composite network is characterized
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by four parameters: the ratio of the matrix filament length to nonaffinity length, L/λ;

the density of stiff impurities, nI ; the ratio of filament lengths, LI/L; and the ratio of

bending moduli, κI/κ. To simplify the our study of the model, we assume values for the

last two parameters reflecting the properties characteristic of F-actin and microtubules. We

set LI = 5L mimicking a network in which the stiffer microtubules are longer than the

surrounding network of F-actin. Likewise, noting that the measured bending persistence

length of microtubules is in the range 1–6 mm, and that of F-actin is about 17 µm, we

set κI = 250κ. In the following section we examine the influence of the remaining two

parameters, L/λ and nI on the mechanics of composite networks.

4.3 Results

The primary mechanical signature of the transition from the A to the NA regime is the

depression of the measured shear modulus, G, relative to the value for an affinely deforming

network of the same density, Gaffine. The latter can be derived analytically by considering

the pure stretching of filaments under a prescribed affine strain, which after correcting for

the non-stress-bearing ends of filaments dangling past the last crosslink, is given as [35,36]

Gaffine =
π

16

µ

L

(
L

`c
+ 2

`c
L
− 3

)
. (4.2)

Throughout this chapter we compare the measured shear modulus of composite networks to

the affine modulus of only the matrix.

Figure 4.2 shows the normalized network shearing modulus G/Gaffine as a function of

the density of impurities, nI , as obtained from simulations with L/λ = 1, 10, and 25.

These results confirm the expectation that, for an initially monodisperse soft matrix network

nominally in the affine regime (i.e., G/Gaffine > 10) the addition of stiff impurities in any

amount has little effect on the overall network stiffness. Specifically, the effect on the L/λ

= 25 case, being well above the A/NA transition, is barely distinguishable.

Even near the A/NA transition at L/λ = 10 the effect of impurities on the modulus is

minimal. However, in contrast to the insensitivity at large L/λ, addition of stiff impurities
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Figure 4.2: Normalized shear modulus G/Gaffine versus impurity density nI . The values of

L/λ describe soft matrix networks that are well above (L/λ=25), near (L/λ=10), and well

below (L/λ=1) the A/NA transition.

to a non-affine matrix (L/λ = 1 in Fig. 4.2) increases the modulus by more than four orders

of magnitude. This effect is seen even for rather small numbers of impurities.

To understand the mechanism behind the dramatic stiffening effect of the impurities, we

plot in Fig. 4.3 the fraction of energy stored in stretching of matrix filaments EM
stretch relative

to total matrix energy EM
total as a function of nI . Again for affine networks with L/λ = 25

there is no noticeable difference between the monodisperse soft network and the composite

network with impurities: across the entire range of nI nearly all of the energy is stored in

stretching of matrix filaments, consistent with the interpretation of affine deformation. Near

the A/NA transition at L/λ = 10, the stretching fraction drops to about 0.8, and begins to

show a trend of increasing with impurity density. However, this effect is most pronounced

well below the A/NA transition. At L/λ = 1, the addition of stiff impurities transforms

heavily bending-dominated monodisperse network into a composite network where nearly

all of the strain energy in the matrix is stored in the form of stretching. Remarkably, with

the addition of even very small numbers of impurities (nI=5) the stretching energy fraction
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Figure 4.3: Distribution of strain energy vs. impurity density nI . Main panel: energy fraction

stored in stretching for soft matrix filaments alone, for L/λ = 1, 10, and 25. Inset: bending

and stretching energies for matrix and impurities, as fractions of the total network energy

for L/λ = 1.

in the nonaffine L/λ = 1 matrix surpasses that of the more affine L/λ = 10, 25 networks. To

uncover in greater detail how impurities change the distribution of strain energy, we plot in

the inset of Fig. 4.3 the amount of stretching and bending energy per filament, normalized by

the shear strain γ2, for both the impurity and matrix filaments. This reveals that the increase

of the stretching to bending ratio in the matrix is associated primarily with a sharp increase

of the matrix stretching energy, while the bending energy of matrix filaments remains nearly

unchanged from its nI = 0 value. Furthermore, the energies per filament of the impurities

— which also remain roughly constant over the range of nI — are greater than those of

the matrix filaments. This reveals that the large increase in shear modulus demonstrated

in Fig. 4.2 is attributable to an overall increase in the stretching energy of the network —

stored in both the matrix and impurity filaments: as nI increases, the bending of the weak

matrix filaments is not suppressed, but rather augmented by additional stretching of the

existing matrix along with the newly added impurities. Despite the fact that the impurities
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do not form a self-supporting load bearing network, they are able to carry stresses mediated

by their connectivity through the matrix.
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Figure 4.4: Nonaffinity normalized by overall shear strain Γ = 〈(∆θ)2〉/γ2, plotted against

point pair distance r normalized by short filament length L.

Previous studies of monodisperse networks have shown that the depression of G/Gaffine

with decreasing L/λ is correlated with (i) an increasing fraction of bending energy stored

in the network, and (ii) increasingly non-affine deformation of the network. From the above

discussion of Fig. 4.3 it is clear that the first of these correlations is not shared universally

for polydisperse networks. This turns out to be the case for the second correlation as well.

The non-affinity can be characterized quantitatively by the geometric measure 〈∆θ2(r)〉 =

〈(θ− θaffine)
2〉, where θ(r) is strain-induced rotation of the vector connecting a pair of points

separated by distance r, θaffine is the rotation corresponding to an affine deformation, and

the average is taken over all point pairs with separation r in a network. Dividing by the

magnitude square of the shear strain, γ2, we define the normalized geometric nonaffinity as

Γ(r) ≡ 〈∆θ2(r)〉/γ2. Figure 4.4 shows the geometric nonaffinity measurements for several

of the combinations of L/λ and nI shown in Figs. 4.2 and 4.3. As a function of L/λ the

geometric nonaffinity shows the same trend as in monodisperse networks [35, 36]: for L/λ
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above the A/NA transition (L/λ=25, blue curves), the nonaffinity gradually increases going

to short distances but plateaus at a small value at short length scales, i.e. as r/L → 0.

In contrast, in NA networks the nonaffinity grows monotonically as r is reduced. Roughly

speaking, this means that the closer one examines the deformation field the more nonaffine it

appears. The behavior for intermediate values of L/λ near the A/NA transition essentially

interpolates between that of the high and low values, pushing the plateau to smaller r/L

values, and increasing the overall nonaffinity.

Figure 4.4 also shows that the qualitative L/λ dependence of the nonaffinity is unaffected

by impurity density. The main effect of variation in nI at fixed L/λ is to shift the Γ(r) curves

up or down. However, a close inspection reveals that the direction of this shift depends on

L/λ. For the affine matrix with L/λ = 25, increasing nI shifts Γ(r) downward. Consistent

with intuition, this shows that the addition of stiff impurities reduces the amount of bending

making the already affine matrix even more affine. For the matrix near the transition with

L/λ = 10, the same effect is evident, albeit much less pronounced. However, counter to

intuition, the effect of adding impurities to the nonaffine matrix with L/λ = 1 is precisely

the opposite: with increasing nI the Γ(r) curve shifts upward. This shift implies that

impurities do not reduce, but rather amplify the nonaffinity of an already nonaffine matrix.

Thus, when added to a softer network, impurities generally have the impact of enhancing the

difference between affine and nonaffine deformation. Affine networks become more affine, and

nonaffine networks become more nonaffine. The implication of this is unexpected based on

our simple picture of the stiff filaments acting as local geometric regulators: an increase in the

modulus with the addition of stiff impurities does not necessarily indicate a reduction in the

degree of geometric nonaffinity and the bending of network filaments. In all previous studies

on monodisperse networks, G/Gaffine and Γ have been inversely correlated. However, here

the addition of impurities to the nonaffine network with L/λ = 1 produces an appreciable

increase in both G/Gaffine and Γ. Hence, the relation between the mechanical and geometric

measures of nonaffinity for generic networks is apparently more complex than heretofore

believed.

To address the question of how impurities can enhance nonaffinity, the spatial distribution
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Figure 4.5: Spatial map of geometric nonaffinity, computed within each box as Γ(r) =

〈∆θ2〉/γ2, with the average taken over all point pairs with separation r in a box. The value

of r used in this figure is 1.3`c

of Γ is examined. As shown in Fig. 4.5, the simulated networks are discretized with a 18×18

grid, and the nonaffinity of the matrix filaments is computed in each box of the grid as

Γ(r) = 〈∆θ2〉/γ2, with the average computed by summing over all point pairs at some

separation r within a box. The computed spatial map of nonaffinities is plotted in Fig. 4.5

for L/λ = 1 and 10, at three different impurity densities, with the impurity filaments overlaid

as thick white lines. The nonaffinity maps of the polydisperse composite networks reveal a

general pattern of low nonaffinity (blue boxes) in regions well populated by impurities, with

the peaks of nonaffinity (red boxes) tending to the “gaps” between impurities. This pattern is

prominent for the most nonaffine networks (L/λ=1), where the addition of impurities to the

monodisperse matrix with a spatially uniform local nonaffinity measure leads to localization
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of local nonaffinity in the gaps between impurities. When averaged over the whole sample,

the net effect of this spatial rearrangement of the nonaffine deformation into the gaps between

the stiff impurities it to actually increase the total value of nonaffinity at all length scales.

For the L/λ=10 networks near the A/NA transition in the absence of impurities, the spatial

heterogeneity of the local nonaffinity is greater than for the equivalent networks with L/λ=1.

For these networks in the cross-over region between affine and nonaffine, the “corralling” of

the local nonaffinity by the impurity filaments is not as pronounced — consistent with

weak overall quantitative variation of Γ(r) with nI shown in Fig. 4.4 — but the remains

qualitatively similar.
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Figure 4.6: Nonaffinity-impurity density correlation

This localization of nonaffinity due to the introduction of impurities can be explored

in a more quantitative manner by examining the spatial correlation function of the local

measure of geometric nonaffinity Γ with the local length density (i.e. length per unit area)

of the stiff impurity filaments. This function is shown in Fig. 4.6. There is a significant

negative spatial correlation between the nonaffinity and impurity density. The correlation

length appears to be roughly constant over the entire range of L/λ and nI , suggesting

that it is set by L, the length of the filaments making up the softer semiflexible matrix
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into which the impurities are embedded. Interestingly, the magnitude of the anticorrelation

varies by two orders of magnitude as one passes through the A/NA transition. Deep in

the NA regime where the nonaffinity is large, and deep in the A regime where it is small,

the local effect on the geometric nonaffinity due to the introduction of a few stiff filaments

is approximately one hundred times weaker than it is in the transition region (L/λ ∼ 10)

between these two regimes. While this is reminiscent of a second order phase transition

where the susceptibility of order parameter field to its conjugate variable diverges at the

critical point, the dramatic enhancement of the susceptibility of the local nonaffinity to the

presence of the stiff filaments cannot be understood in this way. Specifically, there is no

diverging correlation length associated with the cross-over as seen the spatial dependence of

the correlation functions in the A, NA, and cross-over regimes. Instead, in the cross-over

regime the system can be locally coerced into affine deformation by the impurities more

readily than it can in either the NA or A regimes, but the spatial extent of this coercion is in

all cases fixed by the microscopic length scale in the problem — the length of the filament —

and no cooperative enhancement of the nonaffinity reduction occurs due to the interactions

of the (softer) filaments of the network.

Finally, it is noted that the details of how the impurity filaments are coupled to the matrix

of soft semiflexible filaments plays an important role in the mechanics of the network and in

the partitioning of elastic energy between bending and stretching modes in it. In the two-

dimensional simulations the impurity filaments are necessarily cross-linked into the network.

They are not allowed to be crosslinked to each other so that the stiff filaments cannot form a

stress-bearing network at any area density. Nevertheless, as shown in Fig. 4.3, the impurities

can store both stretching and bending energy. In contrast with three dimensional networks,

such as those explored by Lin and collaborators, the microtubules may simply be embedded

into the network of F-actin and have only steric interaction with that network. In this

case the stiff microtubules can support bending stresses but not tensile/compressive ones.

To examine in our two-dimensional simulation the importance of storing tensile stress in

the stiff impurity filaments, we re-examined the same networks described above, but with

the extensional modulus of the impurity filaments artificially set to zero (still keeping their
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bending moduli fixed). We found that while addition of impurities still produced an increase

in matrix stretching energy with no change in matrix bending energy, the effect was greatly

reduced — so much so that bending remained the dominant mode of energy storage in the

matrix. This demonstrates that build-up of tensile stress in impurities strongly enhances the

shift in the balance of elastic energy from the bending to the stretching modes of the soft

matrix filaments (i.e. the F-actin).

4.4 Discussion

Biopolymer networks of microtubules and F-actin provide an interesting testing ground for

the study of the mechanics of heterogeneous semiflexible networks. Understanding this

system has important implications for the long-term goal of determining the relationship

between the microstructure and mechanics of the cytoskeleton of living cells. More gener-

ally, these composite systems of stiff impurities in a background of cross-linked semiflexible

filaments provides a new way to study the A/NA cross-over. Can the stiff impurities be con-

sidered merely as extra geometric constraints that enforce affine deformation in a nominally

nonaffine network? Will these impurities have a significant effect on the mechanical mod-

uli of the network and what is the impurity concentration dependence of these mechanical

effects?

It is shown that in a simple model system the effect of the introduction of a small number

of stiff impurity filaments can dramatically increase the shear modulus of the network in the

nonaffine regime and shift the elastic energy storage from being primarily in the bending

of the filaments to their stretching. In affine networks the addition of impurities increases

the collective shear modulus of the network linearly in the impurity density. This linear

dependence holds even in the transition region between A and NA networks. Deep in the

NA regime we find that the introduction of a low density of impurities produces an increase

in the shear modulus of over four orders in magnitude that is nonlinear in the impurity

number density. Moreover, when the impurity filaments can store tensile stress they shift

the elastic energy storage of the network from bending to stretching modes.
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These points appear to support the simple intuitive notion that the introduction of the

stiff impurities act as extra geometric constraints forcing the nominally nonaffine network to

deform in an affine manner. This simple interpretation, however, is shown to be incorrect by

the direct examination of the geometry of the deformation field in these composite networks

(comprised by the softer semiflexible filament network and stiffer impurities). The geometric

measure of nonaffinity in all cases studied, affine networks, highly nonaffine networks, and

ones in the transition region between these two extremes, varies very little in response to

the introduction of the impurities. Rather, the impurities have the effect of redistributing

spatially the nonaffinity in the deformation field in such a way as to only weakly change its

spatially integrated value. Thus, we refer to the action of the impurities as merely corralling

rather than suppressing geometric nonaffinity in the composite network. This corralling

effect is due to the fact that the effect of an impurity filament is primarily to locally suppress

nonaffine deformations by moving such nonaffinities away from it. The magnitude of the

change in local nonaffinity around an impurity filament depends strongly on L/λ, having a

strong maximum in the transition region between A and NA networks – L/λ ≈ 10. The

range of this effect, however, is controlled by the length of the soft semiflexible filaments

making up the network and appears to be independent of both the density of impurities and

nonaffinity length λ. More work needs to be done to better understand the local response of

the network to the introduction of the impurity.

A sufficient number of impurities then will force the nonaffinity into small areas of the net-

work. This point has important implications for the particle tracking experiments designed

to explore the geometry of the deformation field in heterogeneous semiflexible networks.

The introduction of stiff impurities may make the network appear to deform affinely if the

system’s deformation field is not resolved at a sufficient level of spatial resolution since the

regions of nonaffine deformation should become localized in the network.

The principal point of contact of this work to the experiments of Lin and collaborators

is found in the effect of the impurities upon the balance of elastic energy storage between

the bending and stretching modes of the soft semiflexible network. The simulation results

show that in non-affine networks the impurities, even at very low concentrations shift the
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energy storage from bending to stretching. The interpretation of the appearance of nonlinear

stress hardening in the nonaffine F-actin networks with embedded (stiff) microtubules is that

the microtubules are shifting the elastic energy from F-actin bending to stretching. This is

clearly consistent with our results, but, as discussed above not necessarily an indication that

the global level of bending and nonaffine deformation has been reduced in the system.

In order to shift the energy storage in NA networks from bending to stretching by the

introduction of stiff impurities, it is found to be necessary that there be some sort of mechan-

ical linkage between the microtubules and the F-actin so that these stiff impurities can store

tension. When the storage of tensile stresses in the impurities is prevented, as might be ex-

pected for impurities that have only steric interactions with the softer matrix, the increase in

matrix stretching energy was less dramatic. We suppose that while the onset of stress hard-

ening may require an increase in the amount of stretching energy in the network, it may not

be necessary for the stretching energy to dominate over bending energy. Perhaps the smaller

increases in actin stretching consistent with microtubules (under zero tension) could be suf-

ficient to trigger nonlinear strain hardening. If so, we suspect that the presence of crosslinks

between the microtubules and the surrounding F-actin network should significantly increase

the effect of these impurities on the nonlinear elastic response of the composite network. It

remains for future work to examine to this hypothesis using three-dimensional models with

purely steric and crosslinked couplings of the impurities to the matrix.
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CHAPTER 5

Anisotropy and Buckling

5.1 Introduction

The previous two chapters are focused on the mechanics of statistically isotropic filament

networks. In this chapter, the mechanics of anisotropic semiflexible networks is studied.

There are two main motivations for this study. Firstly, it is found that cellular cytoskeletal

networks are sometimes dominated by oriented stress fibers and can thus be anisotropic [82].

Applying the emerging understanding of semiflexible network mechanics to cells therefore

demands that we confront such lower symmetry problems. Secondly, recall that in isotropic,

monodisperse semiflexible networks, there’s one single length scale, the nonaffinity length λ,

which controls the network’s nonaffine-affine crossover. Then there are basic questions that

we seek to answer related to the effect of a broken rotational symmetry on the nonaffine-affine

crossover and to the mechanics of the system in the nonaffine regime.

Anisotropic networks are characterized by two parameters: a filament density, same as

isotropic networks, and a nematic order parameter S, which characterizes network’s nematic

anisotropy. It is found that for all values of the nematic order parameter, the network

undergoes an affine to nonaffine crossover as network density is reduced. Previous work on

the affine to nonaffine crossover in isotropic networks showed that there is a single control

parameter for the crossover, L/λ, where the nonaffinity length λ is a function of both the

filaments’ mechanical properties and the network density; λ does not reflect the orientational

order of the filaments. It will be shown later in this chapter that, for highly anisotropic

networks, L/λ does not alone determine the elastic constants of the system in the linear

response regime. While this finding by itself is not surprising, it is also found that the linear
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response regime narrows dramatically for highly ordered networks, causing the shear response

at finite strain to develop a more complex dependence on the shearing direction than can

be understood in terms of the symmetries of the elastic constant tensor for a orthotropic

solid. This finding emphasizes the inapplicability of linear continuum elasticity theory in

the simultaneous limits of large orientational order and nonaffinity. In other words, these

nonaffine anisotropic networks do not behave as some orthotropic solid with redefined elastic

constants. The source of this strong nonlinearity is related to the vanishing of the linear

elastic response regime of a perfectly aligned filament system and, for disordered but nematic

networks, can be understood in terms of cooperative bending and then Euler buckling closely

related to the “floppy modes” analysis of Heussinger and Frey [38]. Part of the material in

this chapter is based on the work by Missel et al. [42]

5.2 Network Model and Analytical Prediction

Similar to the simulations discussed in prevoius chapters, a two-dimensional filament net-

works is studied, which is composed of identical filaments of length L and having bending

and stretching moduli κ and µ respectively. To produce a system of N filaments with sta-

tistically uniform density and filament anisotropy characterized by nematic order parameter

S, one endpoint of each filament was laid down at random in a square box of edge length

W and area W 2 = A, and assigned an orientation chosen from the distribution P (θ) with

respect to nematic direction n̂. Intersections between crossing filaments are treated as rigid

ties (crosslinks), as discussed in Sec. 2.1.4. Filaments are added until the system reaches the

selected density. A representative example of such a network, a magnified region thereof,

and the distribution of filament angles are shown in Fig. 5.1. The filaments are discretized

such that nodes were placed at all crosslink locations and also at regular intervals between

crosslinks to allow for bending.

The networks are characterized by a nematic order parameter S and a filament density,

measured in terms of the mean distance between cross-links along a filament, `c. The me-

chanics of the monodisperse filaments is set by `b =
√
κ/µ. Finally, all energy scales are set

by a single filament elastic modulus and all moduli in this chapter are measured in terms of
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Figure 5.1: Top left: A typical nematic network with diagram defining the shear orientation

angle φ. Bottom right: The angular distribution P (θ) of filament orientations relative to

the nematic director. Center: A closeup of a network (shear direction indicated by arrows)

showing the partitioning of elastic energy into filament stretching (red) and bending (blue).

µ.

For a given P (θ), the nematic order parameter is defined as S =
∫ π
−π dθ P (θ) cos 2θ

describes the degree of anisotropy; S = 0 corresponds to an isotropic system, and S = 1 is a

system with all filaments aligned. We compute the mean distance between crosslinks from

the filament density ρ = N/A using the following method, which is a generalization of the

method employed by Head et al. for isotropic systems [35]. Consider a straight filament lying

at an angle θ with respect to the nematic director. Given a second filament at some angle ψ

with respect to the first, the probability of their crossing is L2| sinψ|/A. Integrating over ψ

with a weight P (θ+ ψ) we find that the mean number of filaments crossing the original one
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lying at angle θ with respect to n̂ is Poisson distributed with mean

nc(θ) = 2ρL2

∫ π

0

dψ sinψ P (θ + ψ). (5.1)

Integrating over the orientation of the original filament, we find that the mean distance

between cross-links is given by

`c = L
1 + 〈e−nc〉 − 2

(〈
1
nc

〉
−
〈
e−nc

nc

〉)
〈nc〉 − (1− 〈e−nc〉) , (5.2)

where the angle brackets denote averaging over θ with weight P (θ). More details of the

derivation of `c and Gaffine can be found in Appendix B. For an isotropic gel, Head et al.

found that nonaffine to affine (NA-A) crossover is controlled by L/λ where λ = `c(`c/`b)
z

with z = 1/3 [35]. Scaling arguments [35] and mean field theories [69] suggest z = 2/5, 1/4

respectively. Although for anisotropic networks, it needs to be seen whether the NA-A

crossover can still be characterized by L/λ, this work just follows Head et al., and uses

z = 1/3 to calculate λ throughout this dissertation. Note that λ is built up from `b, which

is a function only of the filaments’ mechanics, and `c, which is a function only of network

density.

Two-dimensional elastic continua with nematic order (i.e. broken rotational symmetry)

may be characterized by four independent elastic constants [83]. Writing the energy density

U in terms of strain uij, we have U = 1
2
Cijkluijukl [84]. The elastic stiffness tensor Cijkl

can be identified in terms of its four independent components as C1111, C2222, C1212, and

C1122. To find out the expression of Cijkl for the network, we have to start with analyzing a

single filament. Consider a single filament in the network with direction ê(θ), which means

its direction is oriented at angle θ. If deformation field is affine, the filament’s strain energy

will solely be stored in stretching along ê(θ). Since uij is in the global coordinate system, it

has to be transformed to a rotated coordinate system with angle θ as follows

uij(θ) =

 cos θ sin θ

− sin θ cos θ

 u11 u12

u21 u22

 cos θ − sin θ

sin θ cos θ

 (5.3)

Note that only the u11(θ) is of interest which represents the stretching strain of the filament,

all the other components are irrelevant. Also noting that ê(θ) = [cos θ, sin θ], filament’s
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strething strain, u11(θ), can be written as

u11(θ) = êiuij êj (5.4)

Now, the energy density of the filament network can be written in terms of filament

stretching energy as

U = ρ

∫ 2π

0

dθ P (θ)
1

2
µ(êiuij êj)(êkuklêl)

∞∑
n=2

pn(θ)L
n− 1

n+ 1
(5.5)

where n is the number of cross-links per filament, is summed over using their Poisson distri-

bution pn(θ). From the definition of elastic stiffness tensor Cijkl = ∂U/∂uij∂ukl, the compo-

nents of elastic stiffness tensor Cijkl can be calculated in the following equation, where they

are all linearly proportional to the stretching modulus µ of the constituent filaments

Cijkl = µρ

∫ 2π

0

dθ P (θ)êiêj êkêl

∞∑
n=2

pn(θ)L
n− 1

n+ 1
, (5.6)

This work is focused exclusively on the shear modulus G(φ), which is dependent on φ,

the shear orientation angle between the displacement and nematic directions as shown in

Fig. 5.1. For a given φ, using Eq. (5.6), G takes the form of

Gaffine(φ) = Gaffine(0)
[
1− 8 sin2 φ cos2 φ

]
+ Γ sin2 φ cos2 φ (5.7)

with

Gaffine(0) = µρL

∫ 2π

0

dθ P (θ) sin2 θ cos2 θ
∞∑
n=2

pn(θ)
n− 1

n+ 1
,

Γ = µρL

∫ 2π

0

dθ P (θ)
∞∑
n=2

pn(θ)
n− 1

n+ 1
. (5.8)

We refer to the above as the affine prediction for the shear modulus of our anisotropic solids.

The angular dependence of Gaffine(φ) has a simple interpretation. A shear deformation with

displacement along x̂ is, to linear order, equivalent to stretching and compressing along the

±π/4 directions with respect to x̂. Filaments oriented at angles ±π/4 with respect to x̂

will be stretched/compressed along their axes, and thus have the most strain energy. Thus

networks sheared so that the displacement and nematic director are separated by these angles

will have maximal shear moduli.
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5.3 Results

The depression of the shear modulus G below its affine value Gaffine serves as a mechanical

measure of the departure from affinity. Geometric measures of this departure [35,85] measure

the spatial heterogeneity of the strain field as a function of length scale. Following Head

et al. [35] we adopt our geometric measure of nonaffinity as ∆(r) = 〈(ω − ωaffine)
2〉(r), where

ω is the strain-induced change in angle between an arbitrary axis and the line joining two

network points separated by a distance r, ωaffine is the change of this angle given purely affine

deformations, and the average is taken over all point pairs with separation r in a network.
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Figure 5.2: Normalized shear modulus G(φ)/Gaffine(φ) versus L/λ for varying degrees of

anisotropy S and shear orientation angle φ. For highly anisotropic and nonaffine networks

there is a large shear orientation angle dependence to the deviation from the affine shear

modulus prediction. G was determined by fitting a three parameter polynomial function to

the energy vs. shear data. Inset: The geometric nonaffinity measure ∆ as a function of

length scale for six different cases, including the S = 0.7 network at various values of φ,

showing that ∆, unlike the modulus, is insensitive to the shearing angle.

Given that λ contains no information regarding the orientational order of the filaments,
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one may ask whether the data collapse of the shear modulus for isotropic networks in the

linear response regime that results from rescaling the filament length L by λ still applies to

nematic networks. In this linear response regime we find that the data collapse is violated,

suggesting that there are now additional length scales in the collective mechanics of the

network. Fig. 5.2 plots the normalized shear modulus G(φ)/Gaffine(φ) as a function of L/λ

for various values of S and φ. The shear modulus of presumably affine networks (L/λ >

15) nearly saturates the affine prediction and has a shear orientation angle dependence as

predicted by the affine theory, as can be seen by the near-collapse of the ratios G(φ)/Gaffine(φ)

for various values of φ in the affine regime. Deep in the nonaffine regime, however, the

measured shear modulus of highly anisotropic networks (S = 0.7) varies more strongly with

φ than can be understood by the affine theory. Interestingly, the direct geometric measure

of the nonaffinity observed in the deformation fields of the networks (see inset of Fig. 5.2)

does not appear to depend on S or on φ.

Figure 5.3: Shear modulus as a function of the nematic order parameter S (for fixed filament

density) normalized by its value at S = 0. The gel with S = 0 has L/`c ' 25 and L/λ ' 5,

and all gels have φ = 0. Gels were sheared up to γ = .001.

To understand the mechanics of anisotropic networks deep in the nonaffine regime, we
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turn to an extension of the “floppy modes” model of Heussinger et al. [38]. This model as-

sumes that the deformation energy is stored predominantly in filament bending. Considering

a simply-supported beam with point load F at the center where a maximum deflection of δc

is generated, its bending stiffness kb is defined as F/δc. Using classical beam theory, kb ' EI
L3 ,

where EI = κ. Thus, for a filament segment of length `, it bending energy is Ebend ' κδ2
na/`

3,

where δna is the typical size of axial displacements, and can be estimated to be approximately

δc. From this relation it is clear that short filament segments are less compliant to bending

than longer ones. Under deformation, we expect that the bending of one filament induces

bending in filaments to which it is crosslinked; thus, network deformations in the nonaffine

regime generate bends on all length scales down to some minimum length `min at which the

bending compliance of short segments becomes too low. To determine self-consistently this

length, one notes that by energy minimization the bending energy stored in these smallest

segments equals that of the surrounding network.

We adapt these ideas to the nematic networks by considering an idealized anisotropic

gel with two classes of filaments: (i) nematic filaments oriented at θ = 0 and (ii) impurity

filaments oriented at θ = π/2. The fraction of nematic filaments 2S−1 is set to reproduce the

correct nematic order parameter. Now the balance of energy of nematic filaments with their

impurity neighbors and impurity energy with nematic neighbors results in two equations

that must be solved simultaneously:

κδ2
na

`3
min,N

= nc,I

∫ ∞
`min,I

d`I P (`I)
κδ2

na

`3
I

and

κδ2
na

`3
min,I

= nc,N

∫ ∞
`min,N

d`N P (`N)
κδ2

na

`3
N

, (5.9)

where P (`) is the distribution of segment lengths nematic (N) and impurity (I) filaments.

The solution, as in the isotropic case, gives G ∼ ρ7, but also predicts the dependence of the

shear modulus on S in the nonaffine regime. In Fig. 5.3 the anisotropic floppy mode theory

(sold line) agrees well with the simulation data (red dots), while the affine prediction (green

dashed line) does not.

We now turn to the nonlinear response of anisotropic networks in the nonaffine regime.

Fig. 5.4 plots the difference between G measured at φ = π/4 and φ = −π/4 at γ = 0.001 as
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a function of L/λ for a network with S = 0.7. Gγ is computed as the second derivative of the

energy density with respect to γ. As these two orientations are equivalent under a mirror

reflection, according to continuum linear elasticity ∆Gγ should vanish at suitably small

strains. Indeed it does so as we reach the affine regime (L/λ� 1). For nonaffine networks,

however, the range of strains over which linearity holds becomes exceedingly small, such that

∆Gγ is large even at strains as small as 0.1%. Examining Fig. 5.5(a) we see the origin of

this particular deviation from continuum linear elasticity for nonaffine gels (L/λ = 7.9): the

modulus for φ = −π/4 (dotted black line) monotonically softens relative to that of φ = π/4

(solid black line) as γ increases. This indicates that ∆Gγ increases with γ, demonstrating

that it is an inherently nonlinear effect. For an affine network (L/λ = 29) these two shear

moduli (green solid and dotted lines) are equal for all strains explored showing that affine

networks have a significantly larger linear response regime.

Figure 5.4: Difference in G for φ = ±π/4 at S = .7 as a function of L/λ. The shear modulus

was measured strain γ = .001.

The nonlinearity that leads to the difference ∆Gγ was hypothesized to be due to coopera-

tive Euler buckling of the network that leads to the nonlinear softening of the shear modulus

at φ = −π/4. As shown in Fig. 5.6, with the network orientation being φ = −π/4 relative to
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Figure 5.5: (a) G/Gaffine vs. γ for S = .7 for various values of L/λ and φ; (b) Fraction of

energy in stretching as a function of shear for the same networks.

the shearing direction, more filaments in nematic order are placed under compressive stress,

whereas in network of φ = π/4, only a few impurity filaments are under compression. More-

over, these nematic filaments in φ = −π/4 network have larger values of `c, which allows for

buckling at smaller strains.

To demonstrate the buckling hypothesis, in Fig. 5.5(b) the fraction of elastic energy stored

in stretching is plotted as a function of both strain and L/λ. In the nonaffine regime (L/λ =

7.9), there is generically a smaller fraction of elastic energy stored in stretching, as expected

from previous work, but the fraction of stretching energy decreases dramatically with strain

as the network is sheared at angle φ = −π/4 (dotted black line) applying compressive

stresses to the filaments along n̂. Shearing along φ = π/4 puts the nematically aligned

filaments under tension. The filaments now under compression are generically cross-linked

on a much finer scale so that the network now collectively resists buckling.

This mechanism suggests that, for fixed L/λ and φ, the nonlinear response of semiflexible
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Figure 5.6: Schematic representation of hypothesis that more filaments in φ = −π/4 net-

works are under compression and easier to buckle because of longer `c, compared with net-

work of φ = π/4.

gels should become more pronounced with increasing S. We have found that this is indeed

the case, as can be seen in Fig. 5.7, which shows both G/Gaffine and the fraction of energy in

stretching for gels with L/λ = 7.9 and φ = −π/4 for various values of S. As S increases, the

filaments along the nematic direction (which are under compression for φ = −π/4) become

more sparsely crosslinked and are thus more easily buckled, leading to a decrease in the

linearized G (Fig. 5.7(a)) and in the fraction of energy stored in stretching (Fig. 5.7(b)).

Similar to Conti and Macintosh’s measure [86], define a relative importance measurement

of buckling with respect to affine deformation B,

B =
∆Ec

∆Etot
/

∆Ec,affine

∆Etot,affine

, (5.10)

where Ec is the compressive energy, Etot is the total energy including both compressive and

bending, Ec,affine and Etot,affine have the same meaning and are taken by assuming affine

deformation of the network. The energy difference (∆) is taken between two shear steps.

This way, ∆Ec
∆Etot

is a measure of buckling event between shear steps and is always smaller

than 1. Since there is only compressive (or tensional) energy in affine deformation,
∆Ec,affine

∆Etot,affine

will always be greater than ∆Ec
∆Etot

, so that B is always smaller than 1.
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Figure 5.7: (a) G/Gaffine vs. γ for L/λ = 7.9 and φ = −π/4 for various values of S; (b)

Fraction of energy in stretching as a function of shear for the same networks.

It is intuitive to think that buckling of filaments is a chain reaction, such that one buckled

segment will generate a soft region and cause its adjacent segments more likely to buckle

as well. To investigate whether that is true, the spatial correlation of the buckling order

parameter B is calculated. Firstly, filament networks are divided into equally-sized square

boxes and each box has a unique position (x, y); Secondly, the buckling order parameter

B(x, y) is computed for each box with coordinates x and y; Thirdly, spatial correlation

function B = 〈(1−B− < 1−B >)2〉; Lastly, B is plotted as function of positions, (x, y) at

different shear. Fig. 5.8 shows the the spatial correlation of B for an isotropic network, in

which buckling events have a clear spatial correlation along the φ = −π/4 direction. Fig. 5.9

shows the spatial correlation of B of an anisotropic network, with clearly increaing spatial

correlation over increasing shear strain. It can also be seen that the correlation is more

pronounced than the previous isotropic case.

We can estimate the critical strain γc at which we expect to observe buckling leading
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Figure 5.8: Spatial correlation of B at different shear for isotropic network.

to the growth of ∆Gγ by using the critical compressive load Fc = π2κ/`2 [41] for Euler

buckling of a filament of length `. Assuming affine deformation and compressive strain along

φ = −π/4, we find a critical strain γc = 2π2(`b/`)
2 for buckling. Clearly, the longest simply-

supported segments will be the first to become unstable to compressive loads. These will

be followed, at higher strains, by segments of more typical length ∼ `c(−π/4) (the typical

distance between crosslinks on filaments under compression). The collective mechanical

response of the gel is likely to already be nonlinear at the strain values where these more

common filament segments buckle, so our assumption of affine deformation in making this

estimate is suspect. Consequently, we suggest that γc must be treated as an upper bound

on the critical strain for buckling. For a network with L/λ = 7.9 one finds that γc ' 10−2;

from Fig. 5, we see that this is an acceptable upper bound, as the gel leaves the linear
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Figure 5.9: Spatial correlation of B at different shear for anisotropic network.

response regime at strains about an order of magnitude smaller. Buckling of the longer

simply-supported segments appears to induce buckling in adjoining segments and generate

nonaffine deformations, which suppresses the critical shear strain for nonlinear response

below our estimate.

5.4 Conclusion

It is found that anisotropic networks, like isotropic networks, undergo an affine to nonaffine

cross-over that is controlled by L/λ. The geometric measure of non-affinity depends on

L/λ in a manner independent of anisotropy. The mechanics of affine networks of arbitrary

anisotropy can be understood in terms of the usual generalization of isotropic continuum

elasticity theory to orthotropic solids; nonaffine anisotropic networks, however, are more
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complex. Though the linear elastic response of these nonaffine anisotropic networks can be

accounted for by a generalization of the floppy modes analysis, the regime of linear response

is vanishingly small; well-oriented and sparse regions of the cytoskeleton will thus invariably

have a highly nonlinear elastic response dominated by buckling of filaments. Such gels are

highly sensitive to the orientation of applied loading relative to their symmetry axes—more

so than can be accounted for by the symmetries of the linear elastic modulus tensor. The

model predicts that these gels exhibit stiffening when strained with the nematic direction in

tension and softening in compression; these effects, present at the very small strains we have

studied, will be even more pronounced at larger (biologically relevant) strains, and should

be clearly observable in experiments.
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CHAPTER 6

Dynamic Network with Labile Crosslinks

6.1 Introduction

In all the previous chapters, the network is analyzed in a zero-frequency manner with the

assumption that the crosslinks, which may be thought of as modeling some type of actin

binding proteins, are permanent. In real cells, however, they can break and rebind with

varying rates [87], which is both a reason that the actin filament network is a dynamic

system, and the phenomenon that governs cytoskeleton’s rheology [88]. While most of the

existing modeling work on semiflexible networks has been focused on networks with rigid,

permanent crosslinks, recent efforts have been started to understand the role of crosslink

deformability [89] and dissociation [90, 91] on the overall transient network response under

dynamic loading. Although models of a network with permanent crosslinks can predict its

linear and nonlinear elastic response, they fall short of predicting a semiflexible network’s

viscoelastic behavior seen both in vitro [88] and in vivo [92,93]. Thus, there is a great need

to determine the contribution of crosslinks that are labile to the overall viscoelastic response

of semiflexible network.

In contrast to the permanent, infinitely stiff crosslinks used in the simulations shown in

previous chapters, crosslinks in cytoskeleton have finite stiffness and are breakable. Since

crosslinks connect filaments and therefore are also load-bearing components, their dissocia-

tion should be dependent on their local force. Here the increased dissociation rate of chemical

adhesion bond due to external load is described by a simple statistical mechanical model first

introduced by Bell [94]. Bell proposed that the dissociation rate of bond, ω, is the product of

the bond’s natural vibration frequency ω0 and the quasi-equilibrium probability of reaching
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the dissociation state with an energy barrier Eb, subtracting work done by external load

f × δ, with f being the force acting on the bond and δ being displacement, to give

ω = ω0 exp
Eb − fδ
kBT

(6.1)

Thus, the dissociation rate is exponentially dependent on the bond’s external load. Bell’s

model was the first model dealing with chemical bond dissociation to consider the impor-

tantce of mechanical forces, and all parameters of the energy barrier has been simplified into

one parameter, the displacement δ. There have been other chemical bond dissociation mod-

els based on Bell’s model. For instance, Evans et al. [95] introduced a dissociation rate model

following power law to capture the variation from ductile to brittle bond failure. Although

more sophisticated models are available, I use Bell’s original model in the following simula-

tions and will show that this model is sufficient to describe semiflexible network’s transient

response to dynamic loading.

Since broken crosslinks in cytoskeleton are free to rebind, the rebinding process will be

considered and modeled in this simulation, too. There is limited information in the literature

on the rate of crosslink rebinding of actin filament or microtubule. Based on the assumption

that there is always plenty of actin binding protein available in the proximity of network, I

use a constant rebinding rate for the network.

6.2 Model and Simulation Procedures

6.2.1 Network Discretization

Similar to the networks presented in previous chapters, some number of filaments are placed

onto a 2-D square box with random positions and orientations. The filaments are discretized

into segments of the same length and modeled as beam elements with stretching modulus

µ and bending modulus κ. Intersections of each pair of two segments (of two intersecting

filaments) are calculated and crosslinks are attached onto each of the two segments at their

intersection point. Crosslinks are modeled as linear springs with stiffness k, which is taken

to be much larger than the characteristic stiffness of the filaments. An example of such a
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network is shown in Fig. 6.1.

Figure 6.1: An example of network with labile crosslinks under shearing. Intersections with

intact or active crosslinks are shown with colored spheres: red spheres are intact crosslinks,

green ones are crosslinks that are about to break, and blue ones are crosslinks that have just

been rebound. Network is loaded by shearing the top and bottom boundaries.

Crosslinks get broken and rebound randomly at each intersection site while simulation

goes. Because crosslinks are now labile and it is generally not the case that all the intersection

sites get linked. Overall, the total number of attached crosslinks in the network is stable

with small oscillation around a number which is determined by the mechanics of the network.

The protocol of determining how crosslinks get broken and rebound will be explained in

details later in this chapter. Also, when the simulation proceeds, the intersection point

of two segments generally will change due to the changing geometry of the network. To

avoid expensive remeshing steps, the filaments are all discretized uniformly with the same

segment length. Crosslinks are then attached to intersection point of two segments by

interpolating the connection node between segment nodes. Fig. 6.2 shows a schematic of the
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crosslink interpolation connection idea. Two segment (black lines) with four filament nodes

(gray dots) are shown with a crosslink (red dots) attached at one third of each segment.

The interpolation parameter ξ denotes the relative position of the crosslink’s end on each

segment (ξ1 and ξ2). For example, ξ = 0.5 means the crosslink end is right at the center of the

segment. For the example shown in Fig. 6.2, ξ1 = ξ2 = 1
3

which means the distance between

the crosslink end to the first node of segment is one third of the segment length. Although a

crosslink has two ends which are attached to filament segments, they are not active degree

of freedom in the simulation. The positions of the ends of crosslinks are interpolated from

the segment nodes which are connected by the crosslinks. Assume the positions of the four

nodes of two segments are ~x11, ~x12, ~x21, and ~x22 respectively, then the positions of the ends

of a crosslink, that connects these two segment, ~c1 and ~c2 can be interpolated from

~c1 = ξ1 ~x11 + (1− ξ1) ~x12 (6.2)

~c2 = ξ2 ~x21 + (1− ξ2) ~x22. (6.3)

Since crosslinks are modeled as linear springs, their internal force can be calculated from

F = k∆x, where ∆ is the distance between crosslink ends. The crosslink force then has to

be transferred to the active DOF’s of the segments. I use the following formulae to make

sure that the crosslink doesn’t generate any moment on the segments

F11 = (1− ξ1)F (6.4)

F12 = ξ1F (6.5)

F21 = (1− ξ2)F (6.6)

F22 = ξ2F. (6.7)

The directions of these nodal forces are always along the crosslink’s direction, as shown in

Fig. 6.2. The interpolation parameter ξ is calculated when a crosslink is generated or rebound

at a new site. Using this technique, breaking/rebinding crosslinks are made possible without

the need of remeshing the whole network, which is very expensive.
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Figure 6.2: Schematic of a crosslink (red spring) connecting two filament segments (black

lines). The actual nodes of filaments are represented by gray circles, and the interpolation

points of the crosslinks are shown in red circles. The interpolation parameter ξ(0 < ξ < 1) is

a measure of the crosslink attaching point relative to the segment. The internal force of the

crosslink modeled as a spring is calculated from F = k∆x, and each one of the four filament

nodes connected by the crosslink gets a nodal force (F11 through F22) from the crosslink’s

internal spring force.

6.2.2 Force-controlled Loading

Besides the breakable crosslinks, another major difference between the model in this chapter

and previous is the external loading. Here we wish to examine the viscoelastic response

of network under both fixed displacement(i.e. stress relaxation) and fixed applied force(i.e.

creep). In addition to the displacement (strain) control used exclusively in previous chapters,

a variational method for force (stress) control is developed for the Lees-Edwards periodic

boundary condition and used in simulations. To load the network by a fixed external force,

the work done by it is subtracted from the total energy of the network

E = Efil + Ecross − Fd. (6.8)

Here F is the external load applied on the top and bottom boundaries (opposite directions),

d is the displacement of the network’s boundary in the shear direction, and the expressions

for Efil and Ecross can be found in Chapter 2.
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Now that the shear of the boundary, given by d, is an unknown degree of freedom, it

is clear that application of the force control loading to Lees-Edwards periodic boundaries

is a tricky problem. The reason is that we need to compute the internal force conjugate

to d, which is F = ∂
∂d

(Efil + Ecross). One crude option is to remove the periodicity on the

top/bottom boundary and use fixed/force boundary condition for each of them. Although

this may be a quick fix, this method generates an unfavorable layer near the top/bottom

boundary where sigficantly less crosslinks can be attached, and this issue can be problematic

especially for smaller networks. To develop a more robust implementation of force control

for periodic Lees-Edwards boundary, we found it helpful to define the concept of a pseudo

node, onto which the force is applied, and effectively distributed to the network nodes in a

consistent way as follows. The only DOF of the pseudo node is the displacement d in the

shearing direction, and the displacement d provides a one-on-one mapping between displace-

ment and shear strain, by γ = d/h, where h is the height of network. With γ given from d,

the network can be mapped using Lees-Edwards periodic boundary condition in the same

way as in displacement controlled networks. However, in order to equilibrate the pseudo

node and thus the system, there has to be some internal forces to counter the external force

acting on the pseudo node, and those forces, come from the crosslinks. Let’s first think about

the displacement-controlled networks: the shearing is essentially performed by mapping tied

filament nodes using periodic boundary conditions; when two nodes are mapped and tied,

there is a distance generated between them from the shear strain, and the crosslink will

try to pull one of the node to the other, thus generate shear deformation throughout the

network. So it is the same idea for a force controlled Lees-Edward boundary, where mapped

crosslinks are the ones distribute shear loading throughout the network and generate shear

deformation. This can be derived by minimizing the total energy of the network, take the

derivative of Eq. 6.8 with respect to d,

∂E

∂d
=
∂Efil

∂d
+
∂Ecross

∂d
− F = 0 (6.9)

Noting that Efil is not a function of d since shear strain of network essentially affect the
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mapped distance between two nodes of crosslink, thus

F =
∂Ecross

∂d
(6.10)

Let’s define fi being the internal force of crosslinks whose two nodes get mapped around the

periodic boundary condition, such that fi = kd if the stiffness of crosslink is stiff enough

such that the crosslink’s initial deformation can be neglected. Thus

F =
∂Ecross

∂d
=
∑
i

fi (6.11)

Thus, the shear loading F acting on the pseudo node should be balanced by the internal

spring forces (component in shearing direction) from all crosslinks that get mapped. Thus

the nodal force on the pseudo node is

fpseudo = F +
∑
i

fi,x (6.12)

where it is assumed that F is acting in the x direction, and fi,x represents the ith crosslink’s

x component. This method allows the author to use force control on a Lees-Edward periodic

network without having to deal with the boundary layer issue arised from a fixed bottom/top

boundary network.

6.2.3 Time-Stepping and Crosslink Kinetics

Using the force controlled boundary condition, the network’s equilibrium will be solved at

each time step. During each time step, crosslinks are allowed to break or rebind after which

the residual forces in the network are relaxed by minimizing the energy and allowing the

network to deform. For the crosslink breaking process, the Bell’s model in Eq. 6.1 is used.

The Bell’s model provides crosslink’s off rate, which involves time. I didn’t use physical

time in my simulation for the following reasons: First, we don’t really know the value of

energy barrier Eb in Eq. 6.1 for actin crosslinks, and it will have different values for different

type of crosslinks anyway; Second, using a fixed physical time in the simulation gives me no

control over how many crosslinks break during each step. I instead treats this problem in

pseudo time or simulation time which is a physical time unit that is equal to an unknown
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but constant time interval. Furthermore, the term expEb/kBT in Eq. 6.1 is lumped into ω0

and a new constant is defined as poff = ω0 expEb/kBT . If we consider the off rate in Bell’s

model as a measure of off probability, we may define the probability of the ith crosslink to

break during each time step to be

pi,off(fi) = poff exp(fiδ/kBT ) (6.13)

where fi is the spring force of the ith crosslink. As stated before, it is assume that the

rebinding (on) rate of a crosslink is constant independent of crosslinks or their spring forces,

thus the rebinding probability at each open intersection is

pi,on = pon (6.14)

Since the simulation time is a quantity free to be determined, we determine its value by

considering the following two aspects: First, simulation time covered by each step, ∆t, can

not be too small, because of the limited total computation time. Remember that during each

time step, the network’s equilibirum needs to be solved. Second, simulation time covered

by each step can not be too large, either. If ∆t is so large that way more than 1 crosslinks

are broken each step, the effect of all the broken crosslinks on the network will only be

solved once at the end of the step, which is not physical in reality. As a result, the program

will use adaptive time step ∆t by tuning the prefactor poff and pon before each time step

marching to make sure there is around 1 breakage during each step. Using this adaptive

time steps, during ∆t marching, both intact and broken (if any) crosslinks will be looped:

intact crosslinks are randomly selected to break following Bell’s model with probability in

Eq. 6.13; broken crosslinks are randomy selected to rebind following a constant probability

pon. The following algorithm and Fig. 6.3 demonstrate the process.

1. Before each step starts, all the intact crosslinks are looped through and the probability

for each of the crosslinks to break, pi,off is calculated (Fig. 6.3(a))

2. The breaking and rebinding constants p0 and pf are rescaled while keeping their ratio

p0/pf = 1/4 such that

0.5 <
∑
i

pi,off < 1.5
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Figure 6.3: Schematic representation of labile crosslinks breaking and rebinding algorithm

in a simulation step: (a) All the intact crosslinks (crosslinks 1 through 4 in figure) are looped

through and the probability for each crosslink breaking, pi,off is calculated; (b) Crosslinks

are randomly selected to break (crosslinks 2 and 4 in figure); (c) Available crosslink sites

(broken crosslinks) will be rebound randomly according to pi,on with zero initial spring force;

(d) Crosslink 5 is marked to rebind; (e) Crosslinks are marked to break and rebind, network

in this state is not in equilibrium; (f) Network is solved and is equilibrium, go to next step.

3. Each intact crosslink goes through the random breaking process according to a random

number p generated every time by the program, if p < pi,off, the crosslink is removed

(Fig. 6.3(b))

4. Each broken crosslink (or more precisely, open filament intersections without crosslink)

will rebind randomly according to a random number p generated every time by the

programconstant probability (Fig. 6.3(c)). If p < pon, a new crosslink will rebind at

the intersection with zero initial spring force (Fig. 6.3(d))

5. The network is solved by minimizing the total energy of the network. Note that the
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broken crosslinks will not have any contribution on the total network energy nor affect

the mechanics of the filament (Fig. 6.3(e) and (f))

6. Statistical quantities of the network is calculated; Output files are generated

7. Next step starts, go to step 1.

Due to the long computational time required by dynamic simulations, the number of

filaments and system size are reduced to about a quarter of that used in previous chapters.

For the simulations shown later in this chapter, pN and µm will be used as the force and

length units. Here are some constants and numbers used in the simulation: around 250

filaments are placed onto a 25 by 25 µm box, which generates nearly 3000 initial crosslinks;

the filaments are modeled using microtubule’s stretching and bending stiffness with LP being

2000 µm and `B being 0.025; the spring stiffness of crosslinks is chosen to be 1.0e5pN/µm;

the average length of filament is chosen to be 10 µm and δ is 0.01 µm; room temperature is

used so that kBT = 4.1e− 3µm · pN ; the load applied (F ) on network ranges from 5 to 200

pN .

6.3 Results

This section discusses the results from the simulation of semiflexible network with labile

crosslinks. First of all, several benchmark simulations are performed and presented to show

that the breaking/rebinding mechanism is working properly; secondly, simulation data is

compared with experimental data to validate the simulation procedure and study semiflexible

network’s rheology; lastly, some additional results are shown together with some discussions.

6.3.1 Labile Crosslink Benchmark Tests

Before implementing the program to do real simulations, couple of sanity checks on the

crosslinks breaking/rebinding mechanism is performed to make sure the mechanism is work-

ing properly and also to assess its behavior. Firstly, the random breaking/rebinding process

is tested on networks without loading to see whether the number of intact crosslinks can
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stabilize around the right number; secondly, the random process is tested on networks with

loading to check whether the effect from loading can shift the stabilized number of intact

crosslinks to the correct direction.

The first check is done without applying load. Using networks consist of labile crosslinks,

random breakings and rebindings are performed during each step according to Eq. 6.13

and 6.14, and around forty thousand steps are run until the simulation time reaches 4.

Networks with 30 percent crosslinks bonded initially are released/rebound with 3 different

sets of crosslink breaking probability poff and rebinding probability pon, as shown in Fig. 6.4.

The ratio of bonded crosslinks Nb and total number of available crosslink sites, Ntotal, is

plotted evolving over time. Since there’s no load on the network, the internal force of each

crosslink should be zero at any time. Thus, every crosslink’s breaking probability should be

pi,off = poff with rebinding probability being pon, from which we can easily expect that the

ratio Nb/Ntotal should be around pon/(poff+pon) = pon when the network’s breaking/rebinding

process gains equilibrium. It can be seen from Fig. 6.4 that all the three cases start at 30%

and eventually approach to their corresponding probability ratio pon. This proves that the

random breaking/rebinding mechanism in the code produces correct statistics when load is

turned off.

The second check is on the simulations of network with various shearing loads. Fig. 6.5

compares three networks under shear loading evolving over time. All the three networks

initially have around 80% bonded crosslinks 1. The network’s shear strain response (upper

subfigure) is plotted alongside with their bonded crosslink ratio Nb/Ntotal (lower subfigure)

over time. In the strain-time plot, there are two things supporting that the program is

running right: first, the instant elastic responses from F = 5, 10, and 20pN have ratio

around 1:2:4, which means the network’s force boundary control generates linear elastic

responses when the network is applied constant force; second, network with higher load has

faster creep speed, which also makes sense, and will be discussed in more details in the

following section. The Nb/Ntotal over time plot shows that for all the three networks initially

1Note that the initial bonded crosslinks are selected randomly at each crosslink site such that each network
will not have excatly the same bonded crosslink percentage at the beginning of simulation
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Figure 6.4: Three networks with different breaking/rebinding probabilities are evolved over

tiem without load to test whether teh code generates correct statistics, all three networks

have an initial bonded crosslink ratio of 30%. Ratio of bonded crosslinks over total available

crosslink sites is plotted versus time, and all three networks approaches their corresponding

probability pon respectively

having 80% bonded crosslinks, while sheared under loads, the bonded crosslink percentage

tends to go below the 80% mark. Note that the breaking/rebinding probability for these

networks are poff = 0.2 and pon = 0.8, thus for a network without load, the Nb/Ntotal ratio

will be around 0.8/(0.8 + 0.2) = 80%. When load is applied, most of the crosslinks will have

forces due to the external loading, which according to Eq. 6.13, increases crosslinks breaking

probability. Thus, it makes sense to see that all the three networks eventually have their

Nb/Ntotal ratios below 80% mark and the higher the load applied, the lower is the Nb/Ntotal

ratio while in equilibrium.

Both of the tests shown above demonstrate that the crosslink breaking/rebinding process

is working properly in the program. More simulation data will be shown in detail in the
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Figure 6.5: Three networks under shear loading F = 5, 10, 20pN , evolving over time are

plotted. All the three networks initially have around 80% bonded crosslinks. Upper: the

network’s shear strain response over time. Lower: Bonded crosslink ratio Nb/Ntotal over

time.

following sections using the program.

6.3.2 Comparison with Experiment

To validate the crosslink breaking/rebinding mechanism, numerical simulations of network

rheology, modelling the microtubule networks has been carried out. Since it is assumed that

the mechanical relaxation of the network is arbitrarily fast in comparison, the simulation

time is the only timescale in the problem. Consequently, all the simulation dynamics will

be reported in terms of simulation time. The data is then compared with the experiment

reported by Yang et al. [4]. In their experiment, time- and force-dependent viscoelastic

responses of reconstituted networks of microtubules, which have been strongly crosslinked
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by biotin-streptavidin bonds, are investigated and reported. To measure the microscale

viscoelasticity of such networks, a magnetic tweezer device is used to apply localized forces

on a bead which in turn pulls the microtubule network.

A direct comparison is shown in Fig. 6.6 for the dependence of the creep strain rate on

applied shear stress between simulation (red circles, right ordinate axis) to the experimentally

observed creep velocity of the bead (black symbols, left ordinate axis) as a function of loading

(common abscissa). Since the simulations involve an arbitrarily chosen fundamental time

scale, and it is a complex problem in this nonlinear viscoelastic material to relate the local

shear strain rate in the network to the bead’s velocity, there is an unknown conversion factor

between the simulation and experimental data. Similarly there is a scaling factor between the

shear stress and bead’s loading. A single rescaling of the x-axis by 0.8 has been made to make

the simulation results match at the lowest loading, and the strain rate data has been plotted

using the right y-axis. The overall agreement between the simulation and experiment over

all loading regimes strongly supports our contention that a simple Bell model of crosslinker

unbinding is sufficient to account for all of the observed creep dynamics. In both cases, the

creep rate appears to be exponential for moderate loads, and then increases more slowly at

higher loads. As discussed above, to eliminate both fitting parameters in the comparison

of simulation and experiment one must either understand the solution of the hydrodynamic

flow in this highly nonlinear and viscoelastic material, or directly simulate the motion of a

bead in a model network, requiring much larger systems that are not currently feasible.

The creep velocity responses of the simulation are plotted in Fig. 6.7, for a characteristic

set of model parameters. The simulations show the same main qualitative features as the

experiments [4]: An instantaneous elastic jump, followed by a creep regime in which strain

increases roughly linearly in time. When the force is removed, there is another elastic jump

back of roughly the same magnitude as the initial elastic jump forward. This final elastic

jump is followed by an exponential relaxation of some fraction of the remaining strain.

The key utility of the simulations is that one has access to all crosslinker breakage and

formation events under load. In Fig. 6.7 we test our contention that the nonrecoverable

strain, i.e., plastic deformation of the material can be understood in terms of bond breakage.
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Figure 6.6: The creep velocity v is plotted as a function of force on the log-linear plot. From

experimental data (black symbols), the creep velocity v increases with force and decreases

with filament density. The experimental data are compared to that inferred from the simula-

tion of the strain rate as a function of applied shear stress (red circles). To enable comparison,

the author rescaled the x-axis by 0.8 so that the data and simulation agreed at the lowest

loading. The agreement over all loadings shows that the Bell’s model crosslinker unbinding

in a filament network is sufficient to explain the experimentally observed dynamics.

The network is strained for three different lengths of time chosen so that nearly all (98%)

of the original crosslinks were preserved (red), about half (54%) were preserved (green),

or only a small fraction (18%) of them were preserved (blue). It is clear that the size of

the unrecoverable strain in the network increases with the decreasing fraction of original

crosslinkers preserved. This supports our interpretation of the experimental data for which

we cannot observe individual bond breaking events. Moreover the equivalence of the elastic

jumps at the time of loading and unloading the system shows that the elasticity of the

network is essentially unchanged by the bond breakage and reformation events. Only the
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original reference state of the elastic material has evolved in time. From these numerical

results we propose that the bond breakage mechanism is sufficient to account for the observed

data in the experimental system.
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Figure 6.7: Numerical simulation of strained filament networks for three different loading

times chosen to leave different fraction of the original crosslinkers (Noriginal) intact. Total

crosslinkers is Ntotal. Simulation time is defined in terms of the Bell model crosslinker

unbinding rate for unloaded bonds – see text for more details. Each shear strain trace

shows the principal dynamics observed experimentally: loading produces an instantaneous

elastic strain followed by a creep regime (∆xc) in which the strain increases linearly in time;

unloading triggers a partial elastic recovery followed by an additional exponential relaxation.

The loading times were chosen so as to preserve differing fractions of the original crosslinkers.

For the shortest loading time (red), 98% of the original crosslinkers were preserved and

the residual plastic deformation was unobservable. As the fraction of original crosslinkers

decreased (longer force application times) the residual plastic deformation (∆xf ) increased.

The residual strain ∆xf can be further examined by normalizing with the creep strain

∆xc = vT , which is defined as the product of creep velocity v and simulation time T .

The ratio of ∆xf and ∆xc is then a dimensionless measure of plastic residue over creep
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deformation. Fig. 6.8 shows ∆xf/∆xc as function of time and force. The left panel in

Fig. 6.8 shows creep tests with load F = 10pN which are relaxed at t=0.23, 0.82, and 3.95

respectively; the longer the network is allowed to creep, the greater is ∆xf/∆xc. This is

another proof that the final plastic residue generated by creep is dependent on how many

original crosslinks are there in the network, because the longer the loading, the more original

crosslinks will get broken. The right panel in Fig. 6.8 shows that for tests with loads F =

5,10,20, and 30pN, all relaxed at t = 0.7. It shows that when networks are relaxed at

the same time, their ∆xf/∆xc ratio decreases with increasing load. In another point of

agreement with the simulations and the experiments is that, the simulations yield incomplete

recovery of networks after shear stress loading. Fig. 6.8 also shows that the permanent

plastic deformation ∆xf retained after unloading and relaxation is in the range of 50-75%

of the creep deformation, meaning that about 25-50% of the viscous creep deformation is

recoverable.
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Figure 6.8: Using the total creep distance ∆xc and residual plastic deformation ∆xf , the

author computes from the simulation data the analogues of experimental data [4]. Left:

∆xf/∆xc vs. force, all four networks relexed at t = 0.7. The ratio of ∆xf/∆xc decreases

with force, which is in good agreement with the experiment. Right: ∆xf/∆xc vs. time,

all three networks having load F = 10pN. ∆xc/∆xf increases with time, which supports

the claim that plastic residue is dependent on how many original crosslinks are there in the

network
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6.4 Discussion

It has been shown in the previous sections that the network model with labile crosslinks is

working properly and produces reasonable results matching experimental data. This sec-

tion shows some more simulation results which are not available from experiment measure-

ment but will shed light onto the dynamics of semiflexible network with breaking/rebinding

crosslinks.

The dynamic response of semiflexible network with labile crosslinks under external force

loading is shown in Fig. 6.7, where the network’s creep shear strain over time is plotted.

So how is the strain energy stored in the network? This question could not be answered

by experiment since strain energy measurement is not achievable in semiflexible network

experiment, simulations can easily track network’s strain energy storage. Fig. 6.9 plots

strain energy distribution (bending, stretching, and crosslinks) and work done by external

load over time, and three cases with different loading time are plotted individually to better

show their trends. First of all, it can be seen that most of the strain energy of the network

is stored in stretching energy form, which is as expected from our understanding of istropic

network in Chap.3 and 4 that dense network like this (L/`c ≈ 20) has most energy stored

in stretching. Secondly, after an initial jump of energy due to the network’s elastic response

to loading, all energy increases over time but eventually approaches a plateau. This means

the energy dissipation rate, which is the difference between work done by external load and

strain energy stored per unit time, will increase when the network is just loaded, and will

eventually approach to a constant rate. The constant rate is just the power of the external

loading since eventually the network can not take in any more energy and all the power done

by external load will be dissipated. Thirdly, when network is released from loading after

some time, the stretching and bending energy will instantly recover approximately the same

amount of energy as the initial loading energy, which means the portion of network/filament

deformation accounting for the initial loading energy is never dissipated until the load is

removed. Also, notice that in Fig. 6.7, the network’s shear strain has a significant residue

∆xf if loaded over a long time (blue and green curves); however in Fig. 6.9, none of the three

cases has any residual energy, i.e. all the strain energy will be dissipated at the end. The
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difference in strain and strain energy residues proves that, during the creep stage, there is

some type of structual reorganization of the filaments in the network, e.g. reletive filament

sliding/moving, which permanently changes the undeformed state of the network such that

when all the strain energy is dissipated through crosslink breaking/rebinding, network will

have permanent, plastic residual strain.
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Figure 6.9: Strain energy and work done by external load over time for networks under

shear loading and unloaded at three different time. The network is the same and under the

same loading as in Fig.6.7

Talking about network’s structural reorganization, there is an interesting question to ask:

whether crosslinks have any preference while choosing which one to break? To answer this
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question, let’s first see whether crosslink breakages tend to happen at the same filament.

Define the event of the i’th filament having some crosslink on it to break at time t, as Bi,t,

then

Bi,t =


1, filament i has some crosslink on it breaking at time t

0, filament i doesn’t have any breakage at time t

(6.15)

Then the event Bi,t’s autocorrelation is

〈Bi,t+∆t ·Bi,t〉 =

(∑
t

Bi,t+∆t ·Bi,t

)
/
∑
t

(6.16)

where ∆t is the simulation time during each time step since the simulation has discrete time

steps. For the whole network, the autocorrelation of crosslink breakage on the same filament,

〈B∆t〉, can be calculated from

〈B∆t〉 =

(∑
i

∑
t

Bi,t+∆t ·Bi,t

)
/
∑
i,t

. (6.17)

Fig.6.10 shows autocorrelation of same filament crosslink breakage over ∆t = 0 ∼ 0.2

simulation time, and obviously there’s no correlation up to 0.2 simulation time interval.

That’s means when the i’th filament has a crosslink breakage at time t, for the next 0.2

time, the same filament doesn’t have a higher chance to have another crosslink breakage.

So, now the answer to whether crosslinks tend to break at the same filament, is no. Let’s

then see whether there is any spatial correlation on crosslink breakage.

To calculate the spatial correlation of crosslink breakage in the network, the spatial

snapshots of all crosslink breakage locations over several time steps are saved and analyzed.

Fig.6.11’s right panel shows a snapshot of broken crosslink’s positions in 300 steps collapsed

together. The position snapshot is used to count each pair of broken crosslinks and sorted

according to their distance. The number of pairs in each bin of distance is then normalized

by its annulus area to get avearage number of pairs per unit area (equivalent to probability

density function as function of radius P (r)), as shown in the left panel of Fig.6.11. The

plot clearly shows there is a strong spatial correlation of crosslink breakage, in other words,

crosslink breakages tend to happen near each other. From the plot, the correlation is up to

1 µm, which is about 3 times average distance between crosslinks `c.
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Figure 6.10: Defining the event of filament i has some crosslink on it break at time t, as

Bi,t, its autocorrelation 〈B∆t〉 is plotted over ∆t = 0 ∼ 0.2. There is no obvious correlation

of same filament crosslink breakage up to ∆t = 0.2.

So from Fig. 6.10 and 6.11, crosslink breakage has spatial correlation but not same

filament correlation. To explain this, crosslinks around each broken crosslink is examined

right before and after the breakage to see what are the changes in those crosslinks’ mechanics.

Fig. 6.12 shows four snapshots at different time step of network with each crosslink’s force

difference (vector) plotted, which is calculated by subtracting each crosslink’s force vector

before and after a crosslink breakage. Three observations can be made from those figures:

first, the force changes in crosslinks around the broken one is smaller but on the same order

of the force initially in the broken crosslink before it breaks, which means if the force in the

broken crosslink was large enough to make it highly probable to break, after its breaking,

the crosslinks right next to it will get higher probability to break too; second, the effect

from the broken crosslink is only limited to several crosslinks away, which is consistent with

the 3 × `c spatial correlation distance shown in Fig. 6.11; third, the effect from the broken

crosslink is transmitted to any filament connected to the crosslink site, without any filament

preference. From these observations, a possible explanation is that although there’s strong
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Figure 6.11: Broken crosslink pairs per unit area versus pair distance. Broken crosslink

pairs are counted and sorted according to their distance and then normalized by the annulus

area cover by the distance range, which in essence represents the probability of the distance

between two crosslink breakages during a short time interval (here is 300 simulation time.

It clearly shows that there’s a spatial correlation between two breakages up to 1 µm apart,

which is about 3 times the average crosslink distance `c

spatial correlation of crosslinks, crosslink may not tend to break on the same filament; the

breakage, as shown in Fig. 6.12, always has the opportunity to be passed on from one filament

to another filament it connects to. Thus, although crosslinks tend to break close to each

other (Fig. 6.11), the broken crosslink effect can be transferred from one filament to another,

without any favoribility to stay on the same filament.
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(a) case 1 (simulation time 200)

(b) case 2 (simulation time 400)

(c) case 3 (simulation time 600)

(d) case 4 (simulation time 1000)

Figure 6.12: The whole network’s crosslinks force change (shown as arrow vectors) before

and after one crosslink breakage. The blue arrow is the force change of the broken crosslink;

The red arrows are the force changes of all the other bonded crosslinks; Left column shows

the whole network, right column shows the details around the broken crosslink site; Note

that although all the crosslink’s force changes are displayed, most of the crosslinks away

from the breakage site barely have any force changes (thus no arrows could be seen for most

of the network) 103



CHAPTER 7

Conclusions and Future Work

7.1 Main Conclusions

This study reports a numerical model of semiflexible filament network using beam and spring

elements with peoridic boundary conditions. The mechanical response of network to both

displacement and force loading conditions are tested. Networks with length and stiffness

polydispersity, anisotropy, and labile crosslinks, which are inspired by both in vivo cytoskele-

ton and in vitro filament networks, have been investigated numerically and analytically, and

also compared with experimental data. The main conclusions from these numerical studies

are summarized as follows:

Length polydispersity, which is prevalent both in vivo and in vitro semiflexible networks,

makes the mean filament length alone not sufficient to determine network’s mechanics, espe-

cially when the network is in deep nonaffine region. To better quantify the effect of length

polydispersity in network’s mechanics, bidisperse networks with only long and short fila-

ments are examined. The concept of mechanical efficiency : the ratio of the network’s shear

modulus to its affine prediction as a function of total length density, is introduced. It is

found that, network with bidisperse length distribution outperforms monodisperse network

in network rigidity when their filament densities are kept the smae. Further examination

on network with exponential length distribution found that the broader the distribution of

lengths, the stiffer the network. Such broad length distributions proved the most efficient use

of the material to create a stiff random structure, which is especially true in deep nonaffine

region. In the affine regime, on the other hand, the filament length distribution is irrelevant,

if the trivial dangling end effect is removed.
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Another type of polydispersity, the stiffness heterogenuity among filaments (e.g. actin

filament and microtubule), which commonly seen in the cytoskeleton of cells, represents an

ideal test ground for heterogenuous filament networks. Filaments with the same stretching

modulus (actin filament) are interconnected to form a network and a small number of them

are made much longer and stiffer in bending modulus to represent impurities (microtubules).

It is shown that the effect of introducing a small number of stiff impurity filaments can

dramatically increase the shear modulus of the network originally in the nonaffine regime

and shift the elastic energy storage from being primarily in the bending of the filaments

to their stretching. In originally affine networks, the addition of impurities still slightly

increases the collective shear modulus of the network, pushing it to the affine limit. This

stiffening effect on collective network shear modulus is more significant for networks in the

transition region between affine and affine. Deep in the nonaffine region, it is found that

the introduction of a low density of impurities produces an increase in the shear modulus of

over four orders in magnitude that is nonlinear in the impurity number density. Moreover,

when the impurity filaments can store tensile stress they shift the elastic energy storage

of the network from bending to stretching modes, more specifically, the impurity filaments

stretch other filaments even more but without decreasing their bending energy. For geometric

nonaffinity, a sufficient number of impurity filaments will force the nonaffinity into small areas

of the network.

Those findings from numerical simulation on polydisperse networks have important impli-

cations for experiments on semiflexible networks. It has been long reported that experiments

on semiflexible networks didn’t find significant affine/nonaffine transition, which is predicted

by both analytical and simulation on monodisperse semiflexible networks. This may be very

well explained by the fact that most in vivo and in vitro semiflexible networks are poly-

diperse and even heterogenous, such that the nonaffine regions predicted by monodisperse

network thoery is partially suppressed by polydispersity in networks, both mechanically and

geometrically. For example, in the particle tracking experiments designed to explore the

deformation field in heterogeneous semiflexible networks, the introduction of stiff impurities

may make the network appear to deform affinely if the system’s deformation field is not
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resolved at a sufficient level of spatial resolution since the regions of nonaffine deformation

should become localized in the network.

On the other hand, anisotropic networks with monodisperse filaments, like isotropic net-

works, undergo an affine to nonaffine cross-over that is controlled solely by L/λ, in a manner

independent of anisotropy. The mechanics of affine networks of arbitrary anisotropy can

be understood in terms of the usual generalization of isotropic continuum elasticity theory

to orthotropic solids, as an extension of the analysis of isotropic, monodisperse network;

nonaffine anisotropic networks, however, are more complex. Though the linear elastic re-

sponse of these nonaffine anisotropic networks can be accounted for by a generalization of

the floppy modes analysis, the regime of linear response is vanishingly small; well-oriented

and sparse semiflexible networks will thus invariably have a highly nonlinear elastic response

dominated by buckling of filaments. Such gels are highly dependent on the orientation of

applied loading relative to their nematic axes—more so than can be accounted for by the

symmetries of the linear elastic modulus tensor. It is predicted by simulation that these gels

with nematic order exhibit stiffening when sheared in the nematic direction in tension and

softening in compression.

Adding labile crosslinks that are breakable and reformable to the network makes the

model able to predict the network’s dynamic response to loading. Creep test to examine

the network’s viscoelasticiy is performed by marching the network under loading over tens

of thousands of time steps. It has been shown that the simple Bell’s model is sufficient

to model semiflexible gel’s viscoelasticity as observed from many in vitro experiments. It

is found that creep eventually changes the network’s initial undeformed state of structure,

and whether the network can recover most of its shear strain depends on how many original

original crosslinks are left in the network. As a result, the final plastic residual strain is

dependent on both loading time and magnitude. It increases with time but decreases with

force, which is also found in experiments. The simulation also provides some observations

which are not yet available from experiments. The main finding is that there is a strong

spatial correlation on crosslink breakage but no transient correlation of crosslink breaking

on the same filament, which suggests that the crosslink breakage event does affect nearby
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crosslinks and make them more likely to break afterwards, but the breakage spreads through

network without any specific direction preference (i.e. along any filament).

7.2 Future Work

The future work on this cytoskeleton model would be focused on extending the network

model with labile crosslinks. It has been shown in Chapter 6 that the model with labile

crosslinks generates reasonable results predicting network’s viscoelastic behavior, which is

validated by comparing with experimental data. There are a lot of potentials with this

model, and I recommend the following improvement and research:

First, if measurement data is available, it is interesting to see how the results from

this model would be compared with experimental data, provided that the actual physical

parameters in Bell’s model for cytoskeletal crosslinks are used. With the actual measured

parameters of crosslinks, there is no need to use the simulation time any more, and real time

could be used, which will make comparing with actual experimental data possible.

Second, implementing a true, event-driven adaptive time stepping would save more com-

putational time. At this time, the kinetic Monte Carlo method seems to be the most promis-

ing method for this application.

Third, the effect of viscous force from fluid solution needs to be added. All cytoskeletal

network, both in vivo and in vitro, are in fluid solution, which affects network’s mechani-

cal response by providing viscous damping onto its filaments. It is possible that the lack

of transition between network’s instantaneous elastic response and its later creeping from

simulation, is due to the lack of viscous force in the model.

Lastly, one of many interesting tests the model could perform is to investigate network’s

dynamic response under oscillating load. The relation between network’s dynamic modulus

and loading frequency is commonly measured in experiments of in vitro filament network,

and it will be very interesting to see how will network in this model respond in this test.
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Appendix A

Derivation of Gaffine for Polydisperse Filament Network

We assume that the distribution of filament lengths L in a gel is given by the probability

density function P (L), and that the mean filament length 〈L〉 is finite. Imagine a filament of

length L lying along the x-axis. If another filament of length L′ is now placed in the system

at some random position with some random angle θ, the probability of the two filaments

crossing is given by

pcross(L,L
′, θ) =

LL′| sin θ|
A

, (A.1)

where A is the area of the system. Averaging this probability over the angle θ gives the

probability that the first filament is crossed by the second filament:

Pcross(L,L
′) =

2LL′

πA
. (A.2)

This quantity can then be averaged over the length of the second filament L′ to produce

Pcross(L), which is simply the probability that a second filament (with its length chosen from

the distribution P (L)) placed randomly in the system intersects the first filament:

Pcross(L) =
2L〈L〉
πA

. (A.3)

If there are N � 1 filaments in the system, then the probability distribution for the

number of crosslinks on a filament of length L is given by the binomial distribution with N

trials and a success probability Pcross(L) as

pn(L) =
[Pcross(L)]n [1− Pcross(L)]N−nN !

(N − n)!n!
. (A.4)
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To simplify this, take the natural logarithm of pn(L), and using Stirling’s Approximation

ln(n!) ≈ n ln(n)− n, which yields

ln(pn(L)) ≈ n ln [Pcross(L)] + (N − n) ln [1− Pcross(L)] +N ln(N)−N − (N − n) ln(N − n)

+N − n− n ln(n) + n

= n ln [Pcross(L)] + (N − n) ln [1− Pcross(L)] +N ln(N)

−(N − n) ln(N − n)− n ln(n) (A.5)

Note that Pcross(L) � 1, so by Taylor expansion at 1, ln [1− Pcross(L)] can be approxi-

mated by −Pcross(L). Also, considering N � n, the above equation can be written as

ln(pn(L)) ≈ n ln [Pcross(L)]− (N − n)Pcross(L) +N ln(N)− (N − n) ln(N − n)− n ln(n)

= n ln [Pcross(L)]− (N − n)Pcross(L)−N ln(
N − n
N

) + n ln(
N − n
n

)

≈ n ln [Pcross(L)]−NPcross(L) + n ln(
N

n
) (A.6)

Thus, getting back to pn(L) and applying nn ≈ n! yields

pn(L) ≈ [Pcross(L)]n e−NPcross(L) − (
N

n
)n

≈ [NPcross(L)]n e−NPcross(L)

n!
(A.7)

Thus, it’s shown that since N is large and Pcross(L) is expected to be small, the binomial

distribution can be approximated by the exponential distribution with parameter λ(L) =

NPcross(L). That is, we take the probability pn(L) that a filament of length L is crosslinked

n times to be

pn(L) =
e−λ(L) [λ(L)]n

n!
, (A.8)

with λ(L) = 2ρL〈L〉/π and ρ = N/A.

Now we are in a position to calculate `c, the mean distance between crosslinks. This

quantity is equal to the average total distance between crosslinks pairs Λc divided by the
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mean number of crosslink pairs Nc. These quantities are given by:

Λc =

∫ ∞
0

dLP (L)
∞∑
n=2

pn(L)L
n− 1

n+ 1
;

Nc =

∫ ∞
0

dLP (L)
∞∑
n=2

pn(L)(n− 1). (A.9)

Noting Taylor expansion

eλ =
∞∑
n=0

λn

n!
(A.10)

Then, the sums can be done exactly as follows

∞∑
n=2

pn(L)
n− 1

n+ 1
=

∞∑
n=2

e−λ(L) [λ(L)]n

n!

n− 1

n+ 1

= e−λ
∞∑
n=2

λn

n!
(1− 2

n+ 1
)

= e−λ

[
∞∑
n=2

λn

n!
− 2

λ

∞∑
n=3

λn

n!

]

= e−λ
[
eλ − 1− λ− 2

λ
(eλ − 1− λ− λ2

2
)

]
= 1 + e−λ − 2

λ
(1− e−λ) (A.11)

The average total distance between crosslinks pairs Λc then can be written as

Λc =

∫ ∞
0

dLP (L)L

[
1 + e−λ − 2

λ
(1− e−λ)

]
= 〈L〉+ 〈Le−λ〉 −

∫ ∞
0

dLP (L)
2L

λ
(1− e−λ) (A.12)

Note λ(L) = 2ρL〈L〉/π, thus L/λ is not dependent on L and can be taken out of the integral.

So

Λc = 〈L〉+ 〈Le−λ〉 − 2〈L〉
〈λ〉 (1− 〈e−λ〉) (A.13)

Likewise, the mean number of crosslink pairs Nc can be calculated exactly as

Nc = 〈λ〉 − 1〈e−λ〉 (A.14)

Finally, Eq. (A.13) and (A.14) lead to the following expression for the ratio 〈L〉/`c:
〈L〉
`c

=
〈L〉

[
〈λ(L)〉 −

(
1− 〈e−λ(L)〉

)]
〈L〉+ 〈Le−λ(L)〉 − 2〈L〉

〈λ(L)〉 (1− 〈e−λ(L)〉)
, (A.15)
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where the brackets denote averaging over filaments lengths with the weight P (L) and 〈λ(L)〉 =

2ρ〈L〉2/π. For the case of a monodisperse network, this reduces to the formula derived by

Head et al.:
L

`c

∣∣∣∣
monodisperse

=
λ− (1− e−λ)

1 + e−λ − 2
λ

(1− e−λ) (A.16)

Figure A.1: Schematic of a single filament in undeformed and deformed states

The calculation of Gaffine, and indeed all of the elastic constants, proceeds in a similar

manner. Consider a single filament of length L with angle θ0 in the undeformed network

(Fig. A.1).We must sum over filament orientations and lengths and average over the number

of crosslinks to get the affine modulus:

Gaffine = µρ

∫ ∞
0

dLP (L)
1

2π

∫ 2π

0

dθ sin2 θ cos2 θ
∞∑
n=2

pn(L)L
n− 1

n+ 1
, (A.17)

where µ is the stretching modulus. Performing the sum and the integrals leads to

Gaffine =
µρ

8

[
〈L〉+ 〈Le−λ(L)〉 − 2〈L〉

〈λ(L)〉
(
1− 〈e−λ(L)〉

)]
. (A.18)

We can also express this in terms of the mean crosslink separation `c:

Gaffine =
µρ`c

8

[
〈λ(L)〉 − (1− 〈e−λ(L)〉)

]
. (A.19)

We refer to the above as the affine prediction for the shear modulus of our polydisperse

networks.
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Appendix B

Derivation of Gaffine for Anisotropic Filament Network

The procedure for calculating the elastic constants of an affinely-deforming anisotropic gel

is very similar to that presented in the previous section for a polydisperse gel. The major

difference is that an anisotropic gel in two dimensions is characterized by four elastic con-

stants rather than two; therefore, we will need to consider expansion deformations as well

as shear deformations in order to fully characterize the material.

We start by again considering a straight filament of length L lying down in the plane.

Because the rotational symmetry of the isotropic gel is now broken, we will need to specify

the angle θ this filament makes with the nematic direction. If we now place a second filament

down at some angle φ with respect to the first filament, the probability of the two filaments

crossing is

pcross(θ, φ) =
L2| sinφ|

A
. (B.1)

In order to obtain the crossing probability independent of the relative angle φ, we need

to integrate the above quantity over φ with a weight P (θ + φ), where P (x) is the angular

probability distribution. Doing this gives:

Pcross(θ) =
2L2

A

∫ π

0

dφ sinφP (θ + φ). (B.2)

This quantity is simply the probability that a given filament oriented with angle θ to the

nematic direction is crossed by a second filament with its direction chosen from the angular

probability distribution and its position chosen randomly. We will again assume that our

system contains a large number of filaments N in a large area A, so that Pcross(θ) is small;

in this limit, the probability distribution pn(θ) for the number of crosslinks on a filament
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oriented with angle θ to the nematic direction is simply

pn =
e−λ(θ) [λ(θ)]n

n!
, (B.3)

where

λ(θ) ≡ NPcross(θ) = 2ρL2

∫ π

0

dφ sinφP (θ + φ). (B.4)

In the above equation, ρ = N/A is the number density of filaments. Note that λ(θ) is simply

the mean number of crosslinks on a filament oriented with angle θ.

The calculation of L/`c is similar to the one already shown for a polydisperse network.

The mean crosslink distance `c is once again identified as the average total distance between

crosslink pairs Λc divided by the mean number of crosslinks pairs Nc:

Λc = NL

∫ 2π

0

dθ P (θ)
∞∑
n=2

pn(θ)
n− 1

n+ 1
;

Nc = N

∫ ∞
0

dθ P (θ)
∞∑
n=2

pn(θ)(n− 1). (B.5)

The quantity L/`c is thus

L

`c
=

〈λ〉 −
(
1− 〈e−λ〉

)
1 + 〈e−λ〉 − 2

(
〈 1
λ
〉 − 〈 e−λ

λ
〉
) , (B.6)

where the angle brackets denote averaging with the weight P (θ).

Now that we have found an expression for L/`c in an anisotropic network, we can turn

to the calculation of the elastic constants for the case of affine deformations. We will first

calculate the shear modulus G for the case where the shear direction—defined in Fig. B.1—

makes an angle φ with the nematic direction. That is, we assume that we are shearing the

gel so that the shear direction is +x and the nematic director points at an angle φ with

respect to the x direction. A crosslinked filament segment of length dL oriented at angle ψ

with respect to the x-axis contributes an energy µ dLγ2 cos2 ψ sin2 ψ/2 upon shearing, so the

total energy density can be written as:

E(φ) =
µργ2

2

∫ 2π

0

dψ P (ψ − φ) sin2 ψ cos2 ψ
∞∑
n=2

pn(ψ − φ)L
n− 1

n+ 1
. (B.7)
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Figure B.1: Definition of the shear direction and the angle φ between the shear and nematic

directions. Note that due to the nematic order of the sysem, all elastic constants that depend

on φ must remain the same as φ→ φ± π,

Using the fact that E(φ) = G(φ)γ2/2 for small shear, we can write the affine shear modulus

as:

Gaffine(φ) = µρL

∫ −φ+2π

−φ
dθ P (θ) sin2 (θ + φ) cos2 (θ + φ)

∞∑
n=2

pn(θ)
n− 1

n+ 1
, (B.8)

where we have switched integration variables to θ = ψ − φ. We can use standard trig

identities to expand out the sin(θ+φ) and cos(θ+φ) terms, leading, after some rearranging,

to the following expression for Gaffine(φ):

Gaffine(φ) = Gaffine(0)
[
1− 8 sin2 φ cos2 φ

]
+ ∆ sin2 φ cos2 φ (B.9)

where

∆ = µρL

∫ 2π

0

dθ P (θ)
∞∑
n=2

pn(θ)
n− 1

n+ 1
,

and Gaffine(0) is the affine shear modulus for the case where the shear direction is parallel

to the nematic direction. Note that Gaffine(φ) is unchanged under φ → φ ± π and under

φ→ φ±π/2. This latter symmetry is simply a restatement of the fact that a two-dimensional

anisotropic continuum solid has only one shear modulus.

SPECIAL NOTE: The filament angle distribution P (θ) should have certain properties:

first, it must be symmetric under θ → −θ; second, it must be symmetric under θ → θ± nπ,
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where n is some integer; finally, it should produce a nematic order parameter S according to

S =

∫ 2π

0

dθ P (θ) cos 2θ. (B.10)

We have been using the following distribution in our simulations:

P (θ) =
eα cos 2θ

2πI0(α)
, (B.11)

where I0(α) is the modified Bessel function of the first kind of order 0. It is possible to

analytially calculate a few of the quantities discussed in this paper using this distribution.

First off, the nematic order parameter is given by:

S =
I1(α)

I0(α)
. (B.12)

For a given S, one only needs to solve this simple equation numerically to determine the

parameter α. Second, the quantity λ(θ) is given, for this filament angle PDF, by

λ(θ) =
ρL2

√
2πα I0(α)

[
e−α cos θ erfi(

√
2α cos θ) + eα sin θ erf(

√
2α sin θ)

]
, (B.13)

where erf(x) and erfi(x) are the error and imaginary error functions, respectively.
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Appendix C

Probability Distribution of Dangling Ends

In this appendix we will derive the probability distribution for the dangling end length

mentioned at the end of Section 4.2. Imagine a filament of length L with n ≥ 2 crosslinks. We

begin by noting that the probability that no crosslinks exist within a distance s1 of one end

of the filament and s2 of the other end of the filament is given by [1− (s1 + s2)/L]n. Taking

the derivative with respect to s1 and again with respect to s2 gives the joint probability

density for having the outermost crosslinks on the filament at distances s1 and s2 from the

ends. This probability is given by:

p(s1, s2, L, n) =
n(n− 1)

L2

[
1− s1 + s2

L

]n−2

Integrating across s1 and s2 subject to the constraints L− (s1 + s2) = Lmech and, of course,

s1 + s2 ≤ L results in a probability density for the mechanically relevant filament length

Lmech as a function of L and n:

p(Lmech, L, n) =
n(n− 1)

L2

(
Lmech

L

)n−2

(L− Lmech) .

To arrive at a probability density that is independent of the number of crosslinks, we must

sum over n with the weight pn(L) given in Eq. 3.2. This results in the probability distribution

for the mechanical length of a filament of length L that is crosslinked at least twice; from

this, it is trivial to derive the probability distribution for having a dangling end length of

Lend given a filament length of L:

p(Lend, L) =
ω2Lende

−ωLend/L

L2[1− e−ω(1 + ω)]
,

where ω(L) = 2ρL〈L〉/π, with ρ the total number density of filaments and 〈L〉 the mean

filament length.

116



References

[1] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Associates, Inc,
Sunderland, MA, 2001.

[2] M.A. Geeves and K.C. Holmes, “Structural mechanism of muscle contraction”, Annu.
Rev. Biochem, vol. 68, pp. 687–728, 1999.

[3] E. Nogales, M. Whittaker, R.A. Milligan, and K.H. Downing, “High-resolution model
of the microtubule”, Cell, vol. 96, pp. 79–88, 1999.

[4] Y. Yang, M. Bai, W.S. Klug, A.J. Levine, and M.T. Valentine, “Microrheology of highly
crosslinked microtubule networks is dominated by force-induced crosslinker unbinding”,
Soft Matter, Accepted for publication.

[5] H.T. Higuchi, T. Yanagida, and Y.E. Goldman, “Compliance of thin filaments in
skinned fibers of rabbit skeletal muscle”, Biophys. J., vol. 69, pp. 1000–1010, 1995.

[6] J. Howard and A.J. Hudspeth, “Mechanical relxation of the hair bundle mediates
adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell”, Proc.
Natl. Acad. Sci. USA, vol. 84, pp. 3064–3068, 1987.

[7] J. Howard and J.F. Ashmore, “Stiffness of sensory hair bundles in the sacculus of the
frog”, Hear. Res., vol. 23, pp. 93–104, 1986.

[8] M. Okuno and Y. Hiramoto, “Direct measurements of the stiffness of echinoderm sperm
flagella”, J. Exp. Biol., vol. 79, pp. 235–243, 1979.

[9] F. Gittes, B. Mickey, J. Nettleton, and J. Howard, “Flexural rigidity of microtubules
and actin filaments measured from thermal fluctuations in shape”, J. Cell Biol., vol.
120, pp. 923–934, 1993.

[10] S. Heins, P.C. Wong, S. Muller, K. Goldie, D.W. Cleveland, and U. Aebi, “The rod
domain of nf-l determines neurofilament architecture, whereas the end domains specify
filament assembly and network formation”, J. Cell Biol., vol. 123, pp. 1517–1533, 1993.

[11] M.R.K. Mofrad and R.D. Kamm, Cytoskeletal Mechanics, models and measurements,
Cambridge University Press, New York, 2006.

[12] J.L. Drury and M. Dembo, “Aspiration of human neutrophils: effects of shear thinning
and cortical dissipation”, Biophys. J., vol. 81(6), pp. 3166–3177, 2001.

[13] F.P.T. Baaijens, W.R. Trickey, T.A. Laursen, and F. Guilak, “Large deformation finite
element analysis of micropipette aspiration to determine the mechanical properties of
the chondrocyte”, An. Biomed. Eng., vol. 33, pp. 494–501, 2005.

[14] R.B. Fuller, “Tensegrity”, Portfolio Artnews Annual, vol. 4, pp. 112–127, 1961.

117



[15] D.E. Ingber and J.D. Jameison, Cells as tensegrity structures: Architectural regulation
of histodifferentiation by physical forces transduced over basement membrane. In: Gene
Expression during Normal and Malignant Differentiation, Academic Press, Orlando,
FL, 1981.

[16] D. Stamenovic, “Microtubules may harden or soften cells, depending on the extent of
cell distension”, J. Biomech., vol. 38, pp. 1728–1732, 2005.

[17] F.C. MacKintosh, J. Kas, and P.A. Janmey, “Elasticity of semiflexible biopolymer
networks”, Phys. Rev. Lett, vol. 75, pp. 4425, 1995.

[18] D.A. Head, A.J. Levine, and F.C. MacKintosh, “Deformation of cross-linked semiflexi-
ble polymer networks”, Phys. Rev. Lett, vol. 91, pp. 108102, 2003.

[19] D.A. Head, A.J. Levine, and F.C. MacKintosh, “Distinct regimes of elastic response
and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks”,
Phys. Rev. E, vol. 68, pp. 061907, 2003.

[20] M. Rubinstein and R.H. Colby, Polymer physics, Oxford University Press, USA, 2003.

[21] O. Breuer and U. Sundararaj, “Big returns from small fibers: a review of poly-
mer/carbon nanotube composites”, Polymer composites, vol. 25, no. 6, pp. 630–645,
2004.

[22] J.N. Coleman, U. Khan, and Y.K. Gun’ko, “Mechanical reinforcement of polymers
using carbon nanotubes”, Advanced materials, vol. 18, no. 6, pp. 689–706, 2006.

[23] P.A. Janmey and D.A. Weitz, “Dealing with mechanics: mechanisms of force transduc-
tion in cells”, Trends in biochemical sciences, vol. 29, no. 7, pp. 364–370, 2004.

[24] ML Gardel, F. Nakamura, JH Hartwig, JC Crocker, TP Stossel, and DA Weitz, “Pre-
stressed F-actin networks cross-linked by hinged filamins replicate mechanical properties
of cells”, Proceedings of the National Academy of Sciences, vol. 103, no. 6, pp. 1762,
2006.

[25] AR Bausch and K. Kroy, “A bottom-up approach to cell mechanics”, Nature Physics,
vol. 2, no. 4, pp. 231–238, 2006.

[26] P.A. Janmey and C.A. McCulloch, “Cell mechanics: integrating cell responses to me-
chanical stimuli”, Annual Review of Biomedical Engineering, vol. 9, pp. 1–34, 2007.

[27] T.P. Stossel, J. Condeelis, L. Cooley, J.H. Hartwig, A. Noegel, M. Schleicher, and S.S.
Shapiro, “Filamins as integrators of cell mechanics and signalling”, Nature Reviews
Molecular Cell Biology, vol. 2, no. 2, pp. 138–145, 2001.

[28] DH Wachsstock, WH Schwarz, and TD Pollard, “Cross-linker dynamics determine the
mechanical properties of actin gels”, Biophysical journal, vol. 66, no. 3P1, pp. 801–809,
1994.

118



[29] D Mizuno, C Tardin, CF Schmidt, and FC MacKintosh, “Nonequilibrium mechanics of
active cytoskeletal networks”, Science, vol. 315, no. 5810, pp. 370, 2007.

[30] ML Gardel, JH Shin, FC MacKintosh, L. Mahadevan, P. Matsudaira, and DA Weitz,
“Elastic behavior of cross-linked and bundled actin networks”, Science, vol. 304, no.
5675, pp. 1301, 2004.

[31] F. Gittes, B. Schnurr, PD Olmsted, FC MacKintosh, and CF Schmidt, “Microscopic
viscoelasticity: shear moduli of soft materials determined from thermal fluctuations”,
Physical Review Letters, vol. 79, no. 17, pp. 3286–3289, 1997.

[32] D. Humphrey, C. Duggan, D. Saha, D. Smith, and J. Käs, “Active fluidization of
polymer networks through molecular motors”, Nature, vol. 416, no. 6879, pp. 413–416,
2002.

[33] KM Schmoller, O. Lieleg, and AR Bausch, “Cross-linking molecules modify composite
actin networks independently”, Physical review letters, vol. 101, no. 11, pp. 118102,
2008.

[34] FC MacKintosh, J. Käs, and PA Janmey, “Elasticity of semiflexible biopolymer net-
works”, Physical Review Letters, vol. 75, no. 24, pp. 4425–4428, 1995.

[35] D.A. Head, A.J. Levine, and FC MacKintosh, “Deformation of cross-linked semiflexible
polymer networks”, Physical review letters, vol. 91, no. 10, pp. 108102, 2003.

[36] DA Head, AJ Levine, and FC MacKintosh, “Distinct regimes of elastic response and de-
formation modes of cross-linked cytoskeletal and semiflexible polymer networks”, Phys-
ical Review E, vol. 68, no. 6, pp. 61907, 2003.

[37] DA Head, AJ Levine, and FC MacKintosh, “Mechanical response of semiflexible net-
works to localized perturbations”, Physical Review E, vol. 72, no. 6, pp. 61914, 2005.

[38] C. Heussinger and E. Frey, “Floppy modes and nonaffine deformations in random fiber
networks”, Physical review letters, vol. 97, no. 10, pp. 105501, 2006.

[39] C. Heussinger, B. Schaefer, and E. Frey, “Nonaffine rubber elasticity for stiff polymer
networks”, Physical Review E, vol. 76, no. 3, pp. 31906, 2007.

[40] MF Thorpe, “Continuous deformations in random networks”, Journal of Non-
Crystalline Solids, vol. 57, no. 3, pp. 355–370, 1983.

[41] L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Course of Theoretical Physics vol
7, 1995.

[42] A.R. Missel, M. Bai, W.S. Klug, and A.J. Levine, “Affine-nonaffine transition in net-
works of nematically ordered semiflexible polymers”, Physical Review E, vol. 82, no. 4,
pp. 041907, 2010.

[43] Y-C. Lin, G.H. Koenkerink, F.C. MacKintosh, and D.A Weitz, “Control of nonlinear
elasticity in actin networks with microtubules”, Submitted to Soft Matter., 2010.

119



[44] M. Bai, A.R. Missel, W.S. Klug, and A.J. Levine, “The mechanics and affine–nonaffine
transition in polydisperse semiflexible networks”, Soft Matter, vol. 7, no. 3, pp. 907–914,
2011.

[45] KE Kasza, CP Broedersz, GH Koenderink, YC Lin, W. Messner, EA Millman, F. Naka-
mura, TP Stossel, FC MacKintosh, and DA Weitz, “Actin Filament Length Tunes
Elasticity of Flexibly Cross-Linked Actin Networks”, Biophysical Journal, vol. 99, no.
4, pp. 1091–1100, 2010.

[46] BA DiDonna and A.J. Levine, “Unfolding cross-linkers as rheology regulators in F-actin
networks”, Physical Review E, vol. 75, no. 4, pp. 41909, 2007.

[47] CP Broedersz, C. Storm, and FC MacKintosh, “Effective-medium approach for stiff
polymer networks with flexible cross-links”, Physical Review E, vol. 79, no. 6, pp.
61914, 2009.

[48] P.A. Janmey, U. Euteneuer, P. Traub, and M. Schliwa, “Viscoelastic properties of
vimentin compared with other filamentous biopolymer networks.”, The Journal of cell
biology, vol. 113, no. 1, pp. 155, 1991.

[49] C. Storm, J.J. Pastore, F.C. MacKintosh, T.C. Lubensky, and P.A. Janmey, “Nonlinear
elasticity in biological gels”, Nature, vol. 435, no. 7039, pp. 191–194, 2005.

[50] J. Xu, D. Wirtz, and T.D. Pollard, “Dynamic cross-linking by α-actinin determines the
mechanical properties of actin filament networks”, Journal of Biological Chemistry, vol.
273, no. 16, pp. 9570, 1998.

[51] JH Shin, ML Gardel, L. Mahadevan, P. Matsudaira, and DA Weitz, “Relating mi-
crostructure to rheology of a bundled and cross-linked F-actin network in vitro”, Pro-
ceedings of the National Academy of Sciences, vol. 101, no. 26, pp. 9636, 2004.

[52] T. Gisler and D.A. Weitz, “Scaling of the microrheology of semidilute F-actin solutions”,
Physical Review Letters, vol. 82, no. 7, pp. 1606–1609, 1999.
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