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Abstract

SUMMARY—Human orbitofrontal cortex (OFC) has long been implicated in value-based 

decision making. In recent years, convergent evidence from human and model organisms has 

further elucidated its role in representing reward-related computations underlying decision 

making. However, a detailed description of these processes remains elusive due in part to (1) 

limitations in our ability to observe human OFC neural dynamics at the timescale of decision 

processes and (2) methodological and interspecies differences that make it challenging to connect 

human and animal findings or to resolve discrepancies when they arise. Here, we sought to address 

these challenges by conducting multi-electrode electrocorticography (ECoG) recordings in 

neurosurgical patients during economic decision making to elucidate the electrophysiological 

signature, sub-second temporal profile, and anatomical distribution of reward-related computations 

within human OFC. We found that high-frequency activity (HFA) (70–200 Hz) reflected multiple 

valuation components grouped in two classes of valuation signals that were dissociable in 

temporal profile and information content: (1) fast, transient responses reflecting signals associated 

with choice and outcome processing, including anticipated risk and outcome regret, and (2) 

sustained responses explicitly encoding what happened in the immediately preceding trial. 

Anatomically, these responses were widely distributed in partially overlapping networks, including 

regions in the central OFC (Brodmann areas 11 and 13), which have been consistently implicated 
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in reward processing in animal single-unit studies. Together, these results integrate insights drawn 

from human and animal studies and provide evidence for a role of human OFC in representing 

multiple reward computations.

In Brief—Saez et al. carried out intracranial recordings in the OFC of human patients while they 

played a decision-making task and demonstrate that high-frequency activity in OFC reflects a 

variety of task-related computations, supporting the idea of a task state representation.

INTRODUCTION

Making decisions under incomplete information is a notoriously difficult problem [1, 2] that 

relies on representation of multiple types of reward-related computations across prefrontal 

cortical areas [3–5]. Among these areas, neural activity in human orbitofrontal cortex (OFC) 

has been consistently shown to represent multiple reward-related computations [6–10]. In 

particular, neuroimaging studies over the past decade have expanded our knowledge of OFC 

contributions to decision making, providing a rich characterization of OFC signals consistent 

with predictions from influential theories on valuation and learning, including those 

associated with choice value, uncertainty, and counterfactual representations, such as regret 

[5,10–12].

Despite this progress, a detailed account of human OFC processes in the human OFC 

remains elusive, due in part to limitations in our ability to observe neural dynamics at the 

timescale of decision processes, as well as methodological and interspecies differences that 

make it challenging to connect human and animal findings or to resolve discrepancies when 

they arise. First, recent data from model organisms have begun to delineate a more complex 

picture whereby OFC encodes a much broader variety of information than would be 

predicted by pure valuation and associative learning accounts. In particular, whereas there is 

evidence for the existence of valuation and learning signals that reflect integration of all 

relevant decision features, such as probability, reward magnitude, prior expectations, etc., 

OFC also responds to these value-relevant features in an independent manner that does not 

reflect overall value or level of reinforcement, which is notably different from the ventral 

striatum, where integrated representations are prevalent [8, 9]. Indeed, OFC encoding 

extends even to information such as specific identity of sensory stimuli, which, by 

themselves, do not carry reinforcing value. However, due to the inherent spatiotemporal 

limitations of non-invasive techniques, such as fMRI and electroencephalography (EEG), the 

nature of encoding in the human OFC remains to be defined.

Second, although there is a broad correspondence between human and animal findings on 

OFC functioning, important discrepancies exist, in particular at the more detailed anatomical 

level [9,13,14]. Whereas human neuroimaging studies have repeatedly implicated some 

portions of the OFC, such as ventromedial pre-frontal cortex (vmPFC) (Brodmann area 14) 

during decision making [5,15], the implication of other regions, including the directly 

adjacent central OFC (Brodmann regions 11 and 13), has received much less support. In 

contrast, nonhuman primate studies have found substantial reward-related responses in 

homologs of central OFC but interestingly little evidence for such encoding in the homologs 

of the vmPFC [9,13,14].
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Two sets of hypotheses have been offered for these differences. First, they may arise due to 

differences in human and animal study procedures, such as the extensive overtraining typical 

in animal studies, or the common use of secondary reinforcers in human studies, both of 

which may result in the engagement of different sets of cognitive processes [16]. The 

second, and non-mutually exclusive, set of possibilities is related to well-known limitations 

of fMRI measures. Human OFC is known to be particularly vulnerable to motion and sinus 

air artifacts that can corrupt fMRI signals [17,18]. In addition, as the blood-oxy-gen-level-

dependent (BOLD) signal is sensitive to both input and output events, vmPFC findings in 

fMRI may in fact reflect processing elsewhere in upstream regions. Importantly, these issues 

have different implications for our understanding of human OFC functioning but to date 

have been difficult to resolve.

Here, we sought to address these challenges by combining the rare opportunity to conduct 

intracranial recording in neurosurgical patients with the administration of a neuroeconomic 

task. Specifically, we conducted electrocorticographic (ECoG) recordings of field potentials 

(FPs) from OFC using multi-electrode strips and grids. ECoG signals capture the activity of 

hundreds of thousands of neurons at a millisecond temporal resolution and spatial resolution 

of <1 cm [19]. This intermediate spatiotemporal coverage has been referred to as a 

“mesoscale” level of analysis, lying between the extensive anatomical coverage of fMRI and 

the exquisite temporal resolution of single-unit recordings [20–22]. In addition, because 

electrodes are placed directly on the cortical surface, the resulting signals are not affected by 

susceptibility artifacts arising near air-tissue boundaries to which OFC is sensitive [17,18].

In particular, we concentrated on examination of high-frequency activity (HFA) (70–200 Hz) 

within the broadband FP signal to characterize the nature and anatomical distribution of 

information encoding across the human OFC. Unlike lower frequency bands that reflect 

activity in broadly distributed networks [23], growing evidence suggests HFA, which is not 

observable in traditional scalp EEG due to conduction filtering and source spread, reflects 

local non-rhythmic synaptic activity [19] and is a key marker of cortical activation [24, 25]. 

HFA analyses have significantly advanced our understanding of cortical dynamics in a 

number of domains, including attention, language, memory, and motor control [20–22,26], 

but to date, no study to our knowledge has examined the relationship between HFA and 

decision-making computations in humans [27, 28].

RESULTS

Economic Choice Behavior in Neurosurgical Patients

To probe decision-making processes in our subjects, we combined ECoG recordings in 10 

patients with administration of a neuroeconomic task that captures the tradeoff between risk 

and reward [4,29]. All patients had medically refractory epilepsy and were implanted with 

chronic subdural grid and/or strip electrodes as part of a pre-operative procedure to localize 

the epileptogenic focus, which in none of the patients was judged to be located in OFC (see 

STAR Methods). As electrode placement and treatment were based solely on the clinical 

needs of each patient, the specific number and location of electrodes varied across 

individuals. We recorded from a total of 210 electrodes, of which 192 were included in the 

final dataset (for details regarding electrode implantation, localization, ECoG recording, and 
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electrophysiological quality control, see STAR Methods; coverage in Figure 1A and 

individual subject coverage in Figure S1).

Testing was conducted over a single session of 15–20 min in the epilepsy monitoring unit, 

while paying careful attention to the patient’s neurological condition and testing only when 

the patient was fully alert and cooperative. On each trial, participants were presented with a 

choice between a sure prize and a risky gamble with a varying probability of higher 

winnings (Figure 1B; STAR Methods). Although simple, the explicit presentation of risk and 

reward information across trials allowed us to exert strong experimental control over each 

decision while minimizing working memory load. Similar tasks have been used in a number 

of previous neuroimaging studies in healthy human participants to characterize decision-

making processes in frontostriatal circuits [4, 29], providing the ability to compare findings 

across recording methodologies.

For subsequent analyses, we defined two sets of reward-related signals associated with both 

choice and outcome evaluation processes, respectively, which have been implicated in 

previous studies (see STAR Methods and Table S1). Choice-related regressors reflected 

information available during deliberation, namely, (1) the probability of the gamble resulting 

in a win (win probability); (2) the risk, or variance, associated with the gamble regardless of 

choice (risk); (3) the expected value of the chosen option (chosen value); and (4) whether the 

subject chose to gamble (gamble). Outcome evaluation regressors were defined as (1) 

whether the gamble resulted in a win (win) (2) or a loss (loss), (3) reward prediction error 

(RPE) (difference between the obtained reward and the expected value of the gamble), and 

(4) the amount of extra money that would have been won for the non-chosen option (regret).

Behaviorally, we found that subjects were approximately risk neutral, choosing to gamble 

only slightly more often than a risk neutral baseline model (55.9% ± 8.5% of risky choices). 

The proportion of risky choices increased as the offer value (win probability) increased, 

which was well captured by a logit model of decision under risk (p < 0.001; random effects 

logit analysis; Figure 1C). Importantly, a comparison of behavior from patients undergoing 

intracranial recording with those from 10 healthy comparison participants (see STAR 

Methods) shows that patterns of behavior were comparable at both level of sensitivity of 

risk-reward tradeoff (Figures 1C and S1) and reaction time (Figure S2).

OFC HFA Reflects Choice- and Outcome-Related Valuation Signals

Next, we sought to connect neural responses in OFC to valuation components related to 

choice and outcome processing. Because ECoG signals reflect cortical FP activity, one 

possibility is to analyze broadband activity using event-related potentials (ERPs) as in 

traditional EEG analyses [30, 31]. In contrast, motivated by recent human and animal 

findings, we focused on cortical HFA in the 70–200 Hz range, which is not observable in 

traditional scalp EEG due to distortions caused by signal propagation from the deep location 

of OFC and the reduced amplitude of HFA due to the 1/f power law. Growing evidence 

suggests that HFA acts as an index of local cortical computation [19, 32], unlike broadband 

power, which in addition reflects activity from coordinated interactions in broadly 

distributed networks [23, 33], and is better suited to reveal distinct computations across 

recording sites. Thus, we examined the extent to which variation in HFA power within and 
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across trials was associated with reward-related signals (see Figure 2 for analytical strategy 

and example risk- and regret-encoding electrodes).

We applied this strategy to examine OFC-wide encoding across types of information and 

electrodes. Specifically, for each regressor of interest, we selected electrodes that showed a 

significant correlation (p < 0.05) at 5 or more consecutive time windows at any point (see 

STAR Methods) and averaged their temporal encoding profiles (%EV) to reveal OFC-wide 

encoding temporal profiles. Consistent with human neuroimaging and animal 

electrophysiological studies [4, 8, 14, 28, 34, 35], we found robust evidence within the HFA 

band for multiple valuation components related to choice (risk, gamble choice, offer value, 

and expected value of chosen option; see Figure S3 for additional risk analyses) and 

outcome (gamble win, gamble loss, RPE, and regret) processing.

In particular, choice and outcome processing signals were consistently time locked across 

multiple electrodes to external game presentation (Figures 3Aand 3B) and outcome reveal 

(Figures 3C and 3D), respectively. The delays after the presentation of external information, 

game presentation and outcome reveal, respectively, were not statistically different (512.5 

± 59 ms and 287 ± 114.33 ms; p = 0.14; t test), with transient activation profiles of 

comparable duration (612.15 ± 132.9 ms and 712.5 ± 112.5 ms, respectively; p = 0.58; t 

test). The increase in overall variance for each information type was furthermore 

accompanied by an increase in the number of encoding electrodes (Figure 3). These results 

were robust to additional analyses more explicitly accounting for inter-subject or inter-

electrode variability, and similar patterns were not observed when we used motor responses, 

i.e., left or right response, as a negative control (Figure S3).

In comparison, there was much weaker evidence of encoding in broadband power (Figure 

S4). Across all regressors, the proportion of encoding electrodes identified using HFA was 

significantly greater than using FP (mean HFA = 20.9% versus FP = 3.3%; p < 10–5; t test). 

In addition, overall power modulation across OFC was maximal at the time of button press 

but weak at the times of maximal HFA encoding (i.e., ~750 ms post-outcome reveal for 

outcome regressors; Figure S4), strongly suggesting that HFA activity and encoding is 

temporally distinct from broadband power modulation.

Dissociable OFC Encoding of Past Choice and Outcome Information

In addition to reward-related signals relating to choice processes, we found that HFA signals 

also responded to a variety of past-trial characteristics [36, 37]. Specifically, we regressed 

HFA power on time-shifted choice and outcome regressors reflecting the characteristics of 

previous rounds (e.g., past loss indicates a gamble loss in the immediately preceding round). 

Because of the stationary nature of our task where probabilities are explicit and underlying 

distribution does not change over time, past and current regressors were uncorrelated (mean 

R2 = 2.1 %; max R2 = 3.7%), thus allowing us to identify the extent to which neural signals 

reflected past trial information independently of current trial information. We found that past 

round features were widely represented across the OFC, with the exception of past risk, and 

were dissociable from current choice and outcome signals (Figures 4A–4D; see Figure S5 

for individual electrode examples).
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Unlike transient choice and outcome signals, which were time locked to gamble and 

outcome reveal events, respectively, signals containing past trial information were sustained, 

with a longer encoding duration (Figure 5). Comparing the longest continuous stretch of 

time where HFA showed a significant association with each regressor of interest for all 

active electrodes, both past outcome (average duration = 1,341.37 ± 49.63 ms) and past 

choice (1,169.15 ± 61.2 ms) showed significantly more sustained activation than current 

choice and outcome signals (799.6 ± 36.94 and 706.9 ± 30.56 ms, respectively; all p < 10–6; 

t test). As in the case of present information signals, this encoding was sustained through an 

increase in the number of encoding electrodes, and there was significantly less evidence of 

encoding at the level of broadband activity (Figure S4).

Interestingly, past trial characteristics were represented in spite of the fact that they did not 

appear to influence behavior. Random effects logistic regression showed that none of the 

past trial characteristics significantly affected risk-taking behavior (all p > 0.15). Moreover, 

evidence of such encoding appeared to be limited to the immediately preceding trial and not 

more temporally distant events. Specifically, we extended our time-lagged regressors to the 

past 5 trials (t−2 through t−5 ). Strikingly, we found no evidence for encoding of information 

from earlier rounds (t−2 − t−5; Figure 6A; see Figure 6B for individual regressors and Figure 

S5 for an in-depth comparison). That is, in contrast to predictions from associative learning 

accounts where learning signals contain the cumulative history of past outcomes, 

representation of past choices and outcomes in our data was short lived.

To assess the robustness of these and earlier results, we conducted several additional sets of 

analyses to address potential issues arising from multiple comparisons. First, to account for 

inter-subject or inter-electrode variation in neural activity, we ran a series of nested mixed-

effects models, including patient and electrode identity as random effects to examine the 

impact of regressors on HFA activity. We found that all of our regressors were significantly 

active (all p < 10–4; Bonferroni corrected), indicating that the computations were robust 

across electrodes and patients. To further verify that our results were not driven by regressor 

collinearity, we examined regressor correlation (Figure S6) and carried out a stepwise 

regression analysis, in which only regressors that significantly improve model fit are 

included in the results (STAR Methods). Overall, the stepwise regression showed 

comparable results to our linear regression approach (Figure S6), indicating that our results 

were not driven by collinearity effects.

Anatomical Distribution of Present and Past Valuation Signals

Finally, we examined the anatomical localization of the above signals by examining their 

location across Brodmann areas (BAs) using Freesurfer and anatomical atlases [38] (see 

STAR Methods). The majority of electrodes in our sample were located in putative BA 11 (n 

= 53 out of 192 total), 13 (n = 40/192), and 14 (n = 67/192), providing a rare opportunity to 

assess the involvement of human central OFC in economic decision making. We found that, 

consistent with findings in monkey neurophysiological studies that implicate regions in the 

monkey homolog of the human central and mid-OFC [9, 14], there was strong evidence for 

the presence of electrodes capturing each type of signal (present and past choice and 
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outcome) across all three areas (Figures 7B–7E). We found a similar proportion of 

electrodes encoded each valuation signal type across regions (Figure S7).

We found no consistent evidence for differential encoding of individual valuation 

components across OFC subregions (BA 11/13/14), or across anatomical gradients (fronto-

posterior or medio-lateral; STAR Methods). To further verify that our results were not driven 

primarily by a subset of subjects, we examined the extent to which each value’s signals were 

represented across patients. We found that all signals were present in at least 6 of the 10 

patients in our sample (mean = 7.41 ± 0.4; Table S2), suggesting that our findings are robust 

and similarly represented across individuals.

In addition, we examined the extent to which electrodes represented multiple types of 

information. Individual OFC neurons are known to be capable of encoding multiple kinds of 

reward-related information [14], but whether this multiplexing appears at the level of HFA 

activity in individual cortical sites is largely unknown. To address this question, we further 

examined the results of our stepwise regression analysis (STAR Methods). To minimize the 

number of sets, we pooled encoding electrodes into four separate groups, integrated by 

electrodes encoding choice, outcome, past choice, and past outcome. We observed 

significant overlap in electrode sets, with most electrodes (n = 132/192; 68.7%) encoding at 

least two types of signals and 15.6% of electrodes (n = 30/192) encoding all four (Figure 

7F). Electrodes encoding both present and past information were slightly overrepresented 

(chi-square test; p < 0.05; Figure S7), although a substantial proportion of electrodes 

encoded only present or past information (Figure 7F). Therefore, encoding of past and 

present information showed distinct temporal profiles and appeared in only partially 

overlapping OFC networks.

DISCUSSION

Human OFC is involved in an array of cognitive processes necessary for goal-directed 

behavior [6,10]. Neural activity in OFC has been shown to reflect a variety of valuation 

signals necessary for estimating the value of available options, with rich evidence from 

fMRI studies demonstrating the existence of multiple valuation-related signals in human 

OFC, including expected reward, risk, and learning signals [3, 4, 39]. Here, we add to this 

knowledge by (1) providing novel insights into nature of human OFC encoding and (2) 

shedding light on the relationship between past human and animal findings.

First, we show that electrophysiological HFA in the OFC indexes multiple valuation 

components to a greater extent than broadband metrics. Specifically, the fast activation 

dynamics of HFA revealed that these signals were organized into two dissociable types of 

signals, with different information content showing different time courses in partially 

overlapping but distinct OFC networks. Signals related to choice and outcome evaluation 

processes were sequentially encoded in fast, transient activation volleys (Figure 3), whereas 

information about past choices and outcomes was represented in a second set of sustained 

signals overlapping both choice and outcome epochs (Figures 4 and 5) and were therefore 

encoded using a distinct temporal mechanism. The latter sustained signals, which have been 

shown in both rodent and monkey OFC [8,14], were particularly notable in their information 
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content: they reflect only what happened in the immediately preceding trial (e.g., whether 

subject chose to gamble, whether the gamble was won or lost, how much regret was 

experienced, etc.; Figure 6) rather than a cumulative history of past associations.

Thus, the timing and anatomical features of these signals add to our knowledge of human 

OFC functioning and go beyond predictions of influential theories based on associative 

learning models [35, 40, 41]. In particular, these models predict that past expectations and 

outcomes should be represented as an integrated learning signal with progressive decay of 

past information. Neural signatures of such a signal should therefore exhibit two properties. 

First, current and past outcomes should be present in the same signal rather than in separate 

electrodes following distinct temporal profiles. Second, the strengths of responses to past 

outcomes should depreciate smoothly, with distant past events showing progressively weaker 

representations compared to more recent events [42]. In contrast, we observed past and 

current signals, including responses reflecting reward prediction errors and regret, were 

represented in distinct networks of cortical sites (Figure 7) with a sharp intertemporal 

boundary between recent and distant past events (Figure 6).

Instead, our results are more compatible with the broader view of OFC functioning put 

forward in the more recent animal literature centered on temporary maintenance and 

manipulation of goals and outcomes useful for behavioral performance [7]. The diverse 

encoding of past information is consistent with the view that OFC encodes a collection of 

relevant task states that includes not only information tied to external stimuli, such as the 

probability of winning the gamble, but also internal information that is not available in the 

environment and must be retained in memory, such as the previous action and outcome [7]. 

In particular, the sustained nature of our past encoding is consistent with proposals that OFC 

supports a working memory mechanism specialized for reward-related information [6], such 

that the OFC operates in a fashion similar to other prefrontal areas by holding relevant recent 

past information in working memory for short periods of time [43].

These ideas provide one possible explanation for the encoding of past choice and outcome 

information in our data, even as they do not appear to bias behavior. Under this proposal, 

past information may be maintained in working memory due to its potential usefulness for 

subsequent both action selection and value updating processes [5, 6, 9]. Although optimal 

decisions in our task should not incorporate past information, given the independent trial 

structure, it may nevertheless be beneficial for the brain to represent past history to detect 

any changes in the task environment, such as reversals, should they occur. Alternatively, the 

absence of signals integrating an extended history of trials may be due to the fact that our 

task did not require learning and that the nature of this signal may depend on whether 

paradigms require information to be accumulated across trials. Finally, it is possible that the 

functions of these signals were simply not captured in our behavioral assay. For example, 

past studies have suggested that OFC supports the representation of the hedonic value of 

temporally extended experiences [44], for example, what is colloquially referred to as 

“happiness.” Thus, even if past choices and outcomes do not bias overt choice behavior in 

our task, they could be important for processes that update organisms’ internal states. Future 

studies that manipulate learning, as well as expanding the set of behavioral assays, will be 

necessary to address these challenging questions.
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In addition to variation in encoding duration, an important question remains regarding the 

extent to which there exists systematic variation in the relative onset of individual 

computational components. However, our ability to make conclusions about onset 

differences was limited by both the size of our data as well as between-subject variation. 

Although our dataset is large by human intracranial recording standards, the number of trials 

(n = 200) from each subject is small compared to animal studies that involve a small number 

of subjects but a much larger number of observations.

Our results also provide evidence regarding the anatomical organization of reward-related 

computations in the human brain. Whereas neurophysiological studies in monkeys have 

mostly implicated central OFC, corresponding to Brodmann areas 11 and 13 [14, 34], 

human fMRI studies commonly report vmPFC activations, corresponding to area 14 [5, 15, 

35]. One possible explanation is that these differences reflect inter-species differences 

between humans and nonhuman primates. However, given the evidence for homology 

between monkey and human OFC [16], alternative explanations have focused on 

methodological differences between human and monkey studies, including (1) loss of OFC 

signal in fMRI due to susceptibility gradients above the orbital air-tissue interface [17, 18], 

(2) overtraining in animal studies, which often involve thousands of training trials over the 

course of months [8, 9, 14], and (3) the use of verbal instructions in human studies. Our 

electrophysiological recordings showing abundant encoding of value-related activations in 

central human OFC, including areas 11,13, and 14 across multiple electrodes, participants, 

and types of valuation components, support the proposal that signal dropout in fMRI is a 

likely contributor to the lack of reported activation in human Brodmann areas 11 and 13.

By analyzing field potentials in the human OFC, our results provide a level of description 

complementary to the rich human BOLD [3–5,11] and animal single unit [2, 8, 9,14] 

literatures on the neural substrates of decision making. First, our time frequency analyses 

reveal that HFA are a more sensitive measure of reward-related responses than broadband FP 

activity. This is consistent with previous observations on the relationship between single-unit 

spiking, HFA, and BOLD. In particular, although broadband local field potential (LFP) 

activity is known to be correlated with both BOLD and single-unit spiking [45–47], these 

associations appear driven by activity in higher frequency bands. Specifically, power 

modulation in higher frequencies (40–130 Hz) has been shown to be significantly better at 

explaining BOLD responses than activity in lower frequencies, which are instead thought to 

reflect activity in broadly distributed networks [45, 48, 49]. Indeed, experiments in 

nonhuman primates, which do not face the same time constraints as our human intracranial 

recordings, have shown the existence of reward-related information in OFC LFP at the level 

of ERPs [50].

Similarly, HFA as captured using ECoG has been shown to be a better measure of neuronal 

spiking than broadband LFPs [46, 47], consistent with the idea that HFA reflects aggregate 

local neuronal output [19]. In contrast, due to challenges associated with conducting filtering 

and source spread, frequency-band-specific analyses using non-invasive recording 

techniques, such as EEG/MEG, have largely concentrated on the lower frequency bands, 

including low gamma band (50–60 Hz) [51]. Our observation that encoding is distributed 

across OFC also supports recent suggestions of intermingled, mixed selectivity in OFC [32]. 
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Specifically, recent findings have shown that signals from multiple neurons with different 

encoding schemes [14] in the HFA signal do not result in weakening of encoding but rather 

generate comparably strong responses with clearer spatial and temporal structure [32]. Such 

functional grouping has been speculated to be computationally advantageous for decoding 

task-relevant information and for allowing behavioral flexibility [52].

As electrode locations were based solely on clinical criteria, variation in anatomical 

coverage can pose challenges for characterizing processing across brain regions. Within the 

OFC, a number of hypotheses have been proposed regarding functional differences across 

medial (area 14) and more lateral (areas 11 and 13) portions of OFC, including desirability 

(appetitive or aversive), primary or secondary nature of rewards, and processes (valuation or 

choice) [44, 53]. However, although we observed value-related signals across Brodmann 

areas 11, 13, and 14, there were no clear fronto-posterior or medio-lateral gradients for any 

of the reward-related computations we examined. Instead, we show that distinct types of 

signals are represented in overlapping but distinct cortical networks (Figure 7). A partial 

overlap provides a way in which a rich representation of task variables can be maintained in 

unique OFC sites, and sites that encode multiple types of signals provide a potential 

substrate for information integration. This distributed representation may be biased by the 

number of patients and electrodes in our sample. Alternatively, our data may reflect a 

distributed representation of distinct types of information across the orbital surface rather 

than anatomically clustered representations that can be uniquely captured by our multi-

electrode ECoG approach. Consistent with this interpretation, distributed activation patterns 

have been observed in a number of cortical areas in ECoG studies [54, 55].

As with other studies involving rare patient populations, important methodological and 

interpretational limitations exist. First, there may be concerns regarding the generalizability 

of both neural activity and behavior of our patient participants to the general population. To 

address potential abnormalities in neural activity, we undertook extensive efforts to only test 

patients fully alert and cooperative and removed from analysis electrodes placed over seizure 

foci or abnormal tissue (see STAR Methods). Behaviorally, we addressed potential fatigue 

issues and the strict time limits of our recording sessions by minimizing the cognitive 

complexity of the task. Indeed, we found that behavioral performance of patients was 

consistent with those from healthy participants (Figure 1C), suggesting that key circuits 

implicated in decision making under uncertainty are intact in our patient sample.

Finally, although ECoG is not affected by air-tissue artifacts present in fMRI measures of 

OFC activity, there are concerns of signal contamination by adjacent extra-ocular muscle 

movements that may have spectral characteristics similar to those of neural signals of 

interest. We were unable to record eye movement with our intracranial data and cannot rule 

out the existence of such artifacts in our data directly. However, prior findings incorporating 

eye movement data found no evidence for such artifacts in the OFC [56]. In addition, we 

examined whether movement-related activity was represented in OFC and found no 

significant association between the direction of movement (left-right) and HFA activity 

(Figure S3), suggesting that movement-related activity Is not present in OFC HFA.
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More generally, intracranial recording approaches open the door for human studies to build 

on insights from animal and neuroimaging research to study long-standing questions 

involving human OFC functioning, such as the interregional communication and flow of 

information across different brain regions [21, 23, 57]. For example, given their different 

information content, transient and sustained encoding modes may be related to their routes 

of entry into OFC such that the former signals reflect external input reaching OFC from 

ascending sensory pathways [58], and the latter signals reflect Internal Inputs relayed In a 

top-down manner from executive control and memory structures, such as lateral PFC or 

hippocampus [59]. Similarly, past fMRI studies have emphasized the importance of lateral 

PFC in controlling and biasing valuation signals In OFC during decision making [5], but the 

precise nature of the underlying mechanisms have remained unclear. Addressing these 

questions will help elucidate the neural basis of uniquely human decisions related to highly 

complex decisions, abstract rewards, or those performed in complex social settings.

STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Electrophysiological and behavioral data This paper https://crcns.org/data-sets/ofc/ofc-3

Software and Algorithms

MATLAB R2016b Mathworks software RRID: SCR:001622

RStudio running R v.3.4.1 R Foundation for Statistical 
Computing

RRID: SCR:000432

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Ming Hsu (mhsu@haas.berkeley.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects

Data was collected from 10 (4 female) adult subjects with intractable epilepsy who were 

implanted with chronic subdural grid and/or strip electrodes as part of a pre-operative 

procedure to localize the epileptogenic focus. We paid careful attention to the patient’s 

neurological condition and only tested when the patient was fully alert and cooperative. The 

surgeons determined electrode placement and treatment based solely on the clinical needs of 

each patient. Patient recordings took place at four hospitals: the University of California, San 

Francisco (UCSF) Hospital (n = 2), the Stanford School of Medicine (n = 2), the University 

of California, Irvine Medical Center (UCI) (n = 5) and at Albany Medical College (n = 1). 

Due to IRB limitations, subjects were not paid for their participation in the study but were 

encouraged to make as many points as possible. As part of the clinical observation 

procedure, patients were off antiepileptic medication during these experiments. Healthy 
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participants (n = 10) with no prior history of neurological disease were recruited from UC 

Berkeley’s undergraduate population and played an identical version of the gambling task. 

All subjects gave written informed consent to participate in the study in accordance with the 

University of California, Berkeley Institutional Review Board.

METHOD DETAILS

Behavioral task

We probed risk-reward tradeoffs using a simple gambling task in which subjects chose 

between a sure payoff and a gamble for potential higher winnings. Trials started with a 

fixation cross (t = 0), followed by the game presentation screen (t = 750ms). At that time, 

patients were given up to 2 s to choose between a fixed prize (safe bet, $10) and a higher 

payoff gamble (e.g., $30; Figure 1). Gamble prizes varied between $10 and $30, in $5 

increments. If the patient did not choose within the allotted time limit, a timeout occurred 

and no reward was awarded for that round. Timeouts were infrequent (9.98% of all trials) 

and were excluded from analysis. Gamble win probability varied round by round; at the time 

of game presentation, subjects are shown a number between 0–10. At the time of outcome (t 

= 550ms post-choice), a second number (also 0–10) is revealed, and the subject wins the 

prize if the second number is greater than the first one. Only integers were presented, and 

ties were not allowed; therefore, a shown ‘2′ had a win probability of 20%. The delay 

between buttonpress and gamble outcome presentation (550ms) was fixed, and activity for 

both epochs is temporally aligned. Therefore, offer value, risk and chosen value vary 

parametrically on a round-by-round basis, and patients had full knowledge of the (fair) task 

structure from the beginning of the game. Both numbers were randomly generated using a 

uniform distribution. The gamble outcome (win/loss) was revealed regardless of subject 

choice, allowing us to calculate experiential and counterfactual prediction errors (see 

Behavioral analysis,, below). A new round started 1 s after outcome reveal. Patients played a 

total of 200 rounds (plus practice rounds), and a full experimental run typically lasted 12–

15min. Location of safe bet and gamble options (left/right) was randomized across trials. 

Patients completed a training session prior to the game in which they played at least 10 

rounds under the experimenter’s supervision until they felt confident they understood the 

task, at which point they started the game. This gambling task minimized other cognitive 

demands (working memory, learning, etc.) on our participants, while at the same time 

allowing us to probe important decision-making components implicated in previous 

computational and empirical studies, such as expected reward, payoff risk, prediction errors, 

and counterfactual signals.

ECoG Recording

ECoG was recorded and stored with behavioral data. Data collection was carried out using 

Tucker-Davis Technologies (Albany, Stanford and UCSF) or Nihon-Kohden (at UCI) 

systems. Data processing was identical across all sites: channels were amplified ×10000, 

analog filtered (0.01–1000 Hz) with > 2kHz digitization rate, re-referenced to a common 

average offline, high-pass filtered at 1.0 Hz with a symmetrical (phase true) finite impulse 

response (FIR) filter (~35 dB/octave roll-off). Channels with low signal-to-noise ratio (SNR) 

were identified and deleted (i.e., 60 Hz line interference, electromagnetic equipment noise, 
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amplifier saturation, poor contact with cortical surface). Out of 210 OFC electrodes, 192 

were artifact-free and included in subsequent analyses. Additionally, all channels were 

visually inspected by a neurologist to exclude epochs of aberrant or noisy activity (typically 

< 1 % of data-points). A photodiode recorded screen updates in the behavioral task, recorded 

in the electrophysiological system as an analog input and used to synchronize behavioral and 

electrophysiological data. Data analysis was carried out in MATLAB and R using custom 

scripts. Data for each channel was downsampled to 1 KHz and filtered into high frequency 

activity (HFA; 70–200 Hz) using a two-way, zero phase-lag, finite impulse response band 

pass filter to prevent phase distortion.

Anatomical reconstructions

For each patient, we collected a pre-operative anatomical MRI (T1) image and a post-

implantation CT scan. The CT scan allows identification of individual electrodes but offers 

poor anatomical resolution, making it difficult to determine their anatomical location. 

Therefore, the CT scan was realigned to the pre-operative MRI scan. Briefly, both the MRI 

and CT images were aligned to a common coordinate system and fused with each other 

using a rigid body transformation. Following CT-MR co-registration, we compensated for 

brain shift, an inward sinking and shrinking of brain tissue caused by the implantation 

surgery. A hull of the patient brain was generated using the Freesurfer analysis suite, and 

each grid and strip was realigned independently onto the hull of the patient’s brain. This step 

often avoided localization errors of several millimeters. Subsequently, each patient’s brain 

and the corresponding electrode locations were normalized to a template using a volume-

based normalization technique, and snapped to the cortical surface [38]. Finally, the 

electrode coordinates are cross-referenced with labeled anatomical atlases (JuBrain and 

AAL atlases) to obtain the gross anatomical location of the electrodes, verified by visual 

confirmation of electrode location based on surgical notes. Only electrodes confirmed to be 

in OFC (n = 192) were included in the analysis. For display purposes, electrodes are 

displayed over a traced reconstruction of the ventral surface showing putative Brodmann 

areas. For analysis of anatomical gradients of encoding, for every electrode/regressor 

combination we took the %EV at the time of average regressor encoding (i.e., at the 

maximum %EV in the average activation profile across electrodes) as an index of 

information encoding. We then carried out two different analyses: first, we compared the 

distribution of %EV values for each regressor across areas using a K-S test. Second, we 

examined whether a correlation existed between the %EV values and the fronto-posterior 

and medio-lateral location of individual electrodes (i.e., x and y coordinates in the 

anatomical reconstruction, referenced to the anterior commisure).

Behavioral Analysis

We derived round-to-round parametric signals from a value-based decision-making 

framework that includes notions of win probability, expected reward, reward-prediction 

errors and counterfactual errors (defined as the difference between actual reward and the 

maximum reward that could have been obtained, commonly described as “regret,” in $) and 

risk, as well as binary classifications related to choice (gamble/safe bet) and outcome 

(gamble win, gamble loss; see Table S1 for a complete description). As an example, if a ‘2′ 
is initially shown, in a $30 prize trial and the subject chose to gamble, win probability would 
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be 0.8 (probability of obtaining a second number > 2), chosen value would be $24 ($30 × 

0.8) and the binary gamble indicator would be 1. Risk is maximal at 0.5 win probability and 

lowest at pw = 0 and pw = 1, so in this example it would be low. If the gamble resulted in a 

loss, the RPE would be large and negative (-$24, the difference between the chosen value of 

$24 and the actual outcome, $0) and regret would be -$10 (the difference between the actual 

outcome, $0 and the counterfactual best possible outcome, the safe bet worth $10). 

Importantly, RPEs are zero in safe bet trials (the won amount is always as expected, $10), 

but regret may not be (i.e., “would have won”). To examine whether HFA captured 

information about past events, we built time-shifted versions of the regressors in our sample. 

We used the same parameterization as for current regressors, but derived using information 

from earlier trials (one trial back,t‐1, through 5 trials back,t‐5). For example, gamblet‐3
indicates whether the subject chose to gamble 3 trials back. As for present regressors, % of 

active electrodes was calculated as the proportion that shows significant encoding (linear 

regression p < 0.05) for over 5 consecutive windows.

QUANTIFICATION AND STATISTICAL ANALYSIS

ECoG analysis and behavioral regression

To identify HFA encoding, we used a regression approach where the dependent variable was 

defined as the analytic amplitude of the HFA time series extracted via Hilbert transform. 

Next, we divided HFA time series into event-related epochs using a 200-ms baseline to 

remove any pre-stimulus differences in baseline amplitude, averaging HFA activity using a 

200ms rolling window at 50ms increments. To identity task-selective channels, we 

performed separate linear regressions of average HFA activity on each reward-related 

regressor of interest. Given the inter-trial variability in response latencies, we performed this 

analysis separately for time-locked to both game presentation (game epoch) and to 

buttonpress/reward events (buttonpress epoch). Analyses to identify encoding in FPs 

followed a similar procedure, except replacing HFA with broadband power as the dependent 

variable.

We used the resulting R2 (variance in the neural data that can be explained by the behavioral 

regressors of interest, % explained variance, %EV) as a metric of the quality of the fit. This 

approach is insensitive with respect to time of task-related activation and to the direction of 

encoding (i.e., HFA increases or decreases). Electrodes were classified as task active for any 

given regressor if they showed a significant correlation (p < 0.05) at 5 or more consecutive 

time windows at any point during the epochs. False positive rate was determined using a 

permutation strategy. For each regressor-HFA regression, we shuffled the relationship 

between behavioral labels and HFA activity 1,000 times. The resulting distribution was 

taken as the null for that particular regressor-electrode combination. Duration of encoding in 

individual regressors/electrodes (Figure 5) was defined as the longest stretch of time in 

which all time points showed significant encoding (p < 0.05).

Saez et al. Page 14

Curr Biol. Author manuscript; available in PMC 2019 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Stepwise regression

To verify the encoding profile of individual electrodes was not affected by regressor 

collinearity, we used a stepwise regression model successfully used in the analysis of single 

unit activity in similar settings in the past [9]. The analysis for each electrode proceeded as 

follows: first, we carried out multiple individual linear regressions for all regressors. To 

leverage the time profile of the signals without imposing restrictions on activation timing, an 

aggregate statistic was calculated as the sum of F-stats for the longest stretch of consecutive 

significant (linear regression p < 0.05) windows. We then repeated this procedure 10,000 

times after shuffling the behavioral labels, and took the proportion of permuted fits with a 

sum-of-F-stat higher than that in the original dataset was taken as the permutation p value. 

This p value was further corrected for multiple comparisons using a Bonferroni correction 

(across n = 192 electrodes); regressors that did not survive multiple comparisons were 

discarded at this point.

Subsequently, we sought to identify the set of regressors that best explains neural HFA 

variance by performed a model selection procedure on the surviving regressor set. We first 

selected the regressor that explained the most variance in the neural data (maximum peak 

%EV) as the base model. We then created an alternative complex model by incorporating the 

second regressor that most improved the model. These two models were compared using an 

ANOVA test; if the complex model resulted in a significantly improved fit (ANOVA p < 

0.05), we rejected the basic model. This process was iteratively repeated by adding new 

regressors, sorted by residual %EV improvement, until the model could not be further 

improved (ANOVA p > 0.05). Finally, we estimated the proportion of electrodes encoding 

each variable across all electrodes, regardless of the order in which they were incorporated 

into the model.

To verify that the results were not driven by inter-subject or inter-electrode variability, we 

conducted mixed-effects model analysis using the concatenated HFA for all electrodes as 

dependent variable, round-by-round regressors of interest (risk, regret, etc.) as fixed effects, 

and patient and electrode ID as nested mixed-effects.

DATA AND SOFTWARE AVAILABILITY

The accession number for the electrophysiological and behavioral data reported in this paper 

is CRCNS: K0VM49GF (https://doi.org/10.6080/K0VM49GF).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• High-frequency activity in human OFC reflects multiple valuation 

computations

• Transient or sustained encoding modes support present or past reward 

information

• Encoding occurred in central and lateral OFC without fine anatomical 

organization

• Results support representation of a complex task state in human OFC
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Figure 1. Experimental Approach
(A) Anatomical reconstruction showing placement of all 192 ECoG electrodes in OFC 

across all 10 patients. Each color corresponds to a patient.

(B) Subjects (n = 10) chose between a sure prize and a risky gamble with varying 

probabilities for potential higher winnings. Trials resulted in a win if a second number was 

higher than the first. Gamble outcome was shown regardless of choice.

(c)Subjects’ choices were significantly affected by likelihood of winning the gamble (p < 

0.001; random effects logit analysis; error bars = SEM) and were comparable to those of 

healthy participants (gray line; all p > 0.2).

See also Figures S1 and S2 and Tables S1 and S2.
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Figure 2. Analytical Approach and Example Encoding Electrodes
Electrode HFA time series was parsed into choice- and outcome-related epochs, and the 

inter-trial correlation between the HFA analytical amplitude and regressors of interest across 

task time was taken as an indication of encoding strength.

(A) HFA trials from example electrode encoding win information. Trials are time locked to 

gamble outcome reveal (t = 0) and split according to whether they resulted in a win (top) or 

not (bottom).
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(B) Average HFA power for all win (blue trace; shade = SEM) and no win (red trace and 

shading) trials depicted in (A).

(C) Percentage of variance in the HFA signal in (A) and (B) explained by win or no win 

regressor (%EV).

(D) Three example electrodes encoding risk information. Activity Is time locked to the time 

of initial game presentation (i.e., the deliberation period; left) and choice or outcome (right) 

and is expressed (as in D) as the percentage of variance in the HFA signal accounted for by 

risk information (%EV, linear regression; see STAR Methods).

(E) Relationship between win probability and HFA for one of the example electrodes at the 

time of peak encoding. The relationship follows an inverted u shape with win probabilities 

as would be expected for risk encoding.

(F) Three example electrodes, as in (D), but encoding regret information. (G) As in (E), but 

showing a linear drop for electrodes encoding regret (parametrized as the extra payoff that 

would have been obtained by making a different choice).

See also Figures S4 and S6.
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Figure 3. Human OFC Encodes Present Choice and Outcome Information
(A) Average % explained variance (%EV) (line plots and left axis; shade = SEM) and % of 

encoding electrodes (bars and right axis) time courses for linear regression of HFA neural 

activity onto all choice regressors (risk, gamble/safe bet choice, offer value, and expected 

chosen value) time locked to game presentation (t = 0); horizontal dotted line Indicates 

chance results.

(B) Superimposed and average time courses for choice regressors; each gray line represents 

the average %EV shown for each regressor in (A).
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(C) As In (A), but for outcome regressors (gamble win, gamble loss, reward prediction error 

[RPE], and regret), time locked to gamble outcome (t = 0).

(D) As In (B), but for outcome regressors (gamble win, gamble loss, RPE, and regret), time 

locked to gamble outcome (t = 0).

See also Figures S3, S4, and S6.
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Figure 4. Human OFC Encodes Past Choice and Outcome Information from the Preceding Trial
(A) Average %EV (line plots and left axis; shade = SEM) and % of encoding electrodes 

(bars and right axis) time courses for linear regression of HFA neural activity onto all past 

choice regressors time locked to game (t = 0, left) and gamble outcome (t = 0, right); shade 

= SEM; horizontal dotted line indicates chance results.

(B) Superimposed and average time courses for past choice regressors, excluding past risk; 

each gray line represents the average %EV shown for each regressor in (A).

(C) As in (A), for past outcome regressors. (D) As in (B), for past outcome regressors.

See also Figures S4, S5, and S6.
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Figure 5. Dissociable Time Courses Representing Current and Past Information
(A) Mean duration of encoding across electrodes for each type of information (choice/

outcome or past choice or past outcome). Choice groups include risk, gamble, offer value, 

and expected chosen value regressors (present/past); outcome groups include win, loss, RPE, 

and regret regressors (present/past). Duration of encoding was significantly longer for past 

than present valuation signals (**p < 0.01; t test; error bars = SEM).

(B) Histograms representing the distribution of encoding duration for individual electrodes. 

Each plot represents the duration of encoding for individual electrodes for all regressors in 

each group; data are the same as in (A).
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Figure 6. Past Representations Are Short Lived
(A) Significantly lower proportion of electrodes encoding distant (2–5 trials back;t‐2 through

t‐5) past choices and outcomes compared to present (t) and immediate past (previous trial,t‐1; 

**p < 0.01; t test; error bars = SEM).

(B) Proportion of electrodes encoding present and past information, separated by regressor: 

choice (left) and outcome (right) regressors. Horizontal dotted line indicates Null regressor 

results.

See also Figure S5.
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Figure 7. Anatomical Distribution of Valuation Components
(A) Ventral view of the brain. Blue shadowed area corresponds to OFC as shown in (B) and 

(E). Boundaries and white numbers (left) Indicate putative Brodmann areas [6].

(B) Anatomical localization of electrodes encoding choice signals (red dots; white dots 

represent non-encoding electrodes).

(C–E) Same as (B) for electrodes encoding outcome (C), past choice (D), and past outcome 

(E) signals.

(F) Venn diagram indicating the number of electrodes (out of n = 192) encoding one or 

several types of signals.
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