
UC San Diego
UC San Diego Previously Published Works

Title
A hybrid architecture for large-scale system design optimization of PDE-based models

Permalink
https://escholarship.org/uc/item/3qx6543x

Authors
Joshy, Anugrah Jo
Yan, Jiayao
Hwang, John T

Publication Date
2022-01-03

DOI
10.2514/6.2022-1614

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3qx6543x
https://escholarship.org
http://www.cdlib.org/

A hybrid architecture for large-scale system design optimization
of PDE-based models

Anugrah Jo Joshy∗, Jiayao Yan† and John T. Hwang‡

University of California San Diego, La Jolla, CA, 92093

Large-scale system design optimization has recently started being used in many fields as a
tool in the design of new concepts. This has exposedmany of its limitations, especially in regard
to its usability and computational efficiency. State-of-the-art optimization algorithms can solve
problems with tens of thousands of design variables in just hundreds of model evaluations.
However, this can be computationally expensive for complex systems with costly simulations.
A new, hybrid algorithm called SURF, which unifies the full-space and reduced-space architec-
tures, can accelerate optimization of computational models of engineering systems involving
large numbers of implicitly defined state variables. However, the theory and numerical re-
sults for SURF were restricted to equality-constrained problems solved using the method of
Newton-Lagrange. This paper investigates the extension of SURF to the inequality-constrained
optimization setting. Wefirst extend the theory of SURF to bring sequential quadratic program-
ming under the scope of SURF. Based on this extended theory, we propose an implementation
of the SURF algorithm for inequality-constrained problems. We then test the hypothesis that
this algorithm unifies the full-space and reduced-space algorithms, using a nonlinear topol-
ogy optimization problem. Finally, we measure the improvement provided by SURF over the
reduced-space method, using the same optimization problem. The results from the investiga-
tion suggest that the proposed new algorithm unifies the full-space and reduced-space methods
for any constrained optimization setting. We also observe a reduction in the total number of
linear system solutions required in solving the nonlinear systems within the model. However,
we expect an actual improvement in the overall optimization time only with an industrial qual-
ity sequential quadratic programming optimizer implemented with SURF since the optimizer
used in this study did not scale well with the number of design variables thus inherently favoring
the reduced-space approach.

Nomenclature

m�

mG
= partial derivative of a function F with respect to a variable x

d 5
dG

= total derivative of a function F with respect to a variable x

∇� (G) = gradient of a function F with respect to a variable x

I. Introduction

Large-scale system design optimization (LSDO) is a class of numerical techniques used in solving system design
problems that are defined on high dimensional design spaces. Many of the large-scale systems are interdisciplinary,

and their study requires multiphysics models and simulations. Design optimization of such large-scale systems are
therefore characterized by multiple simulations of computationally expensive models. The optimization of such systems
was considered infeasible until not long ago because of the challenges in computing the derivatives of a multidisciplinary

∗PhD Student, Department of Mechanical and Aerospace Engineering, AIAA Student Member.
†PhD Student, Department of Mechanical and Aerospace Engineering, AIAA Student Member.
‡Assistant Professor, Department of Mechanical and Aerospace Engineering, AIAA Member.

1

model for gradient-based optimization. Modelling multidisciplinary derivatives would require significant human effort
and time as there was no general derivative computation method applicable to all multidisciplinary systems. Moreover,
a gradient-free approach on a problem with hundreds of design variables is not viable with the computational power of a
workstation.

However, the discovery of the unified derivatives equation (UDE) a few years ago impacted LSDO greatly by
automating the coupled derivative computation. This automation was made possible through the UDE-based MAUD
(modular analysis and unified derivatives) architecture [1] implemented in NASA’s OpenMDAO [2], an open-source
modeling framework for multidisciplinary analysis and optimization. There has been an explosion in the number of
LSDO applications since this implementation, largely due to the improved usability of LSDO algorithms offered by
OpenMDAO. The rapid growth of LSDO applications in aircraft wing design [3–19] and wind turbine design [20–34]
are some examples.

As the barrier to entry lowered, many researchers from academia and industry started exploring LSDO as a tool in
the design of new engineering systems such as CubeSats [35, 36], eVTOL aircraft [37–40], and many others. This has
exposed many limitations of current LSDO algorithms, one of them being its inefficiency while optimizing large-scale
systems with expensive computational models. The authors previously published a paper introducing a new, hybrid
architecture called SURF (strong unification of reduced-space and full-space) [41] for overcoming the efficiency barrier
for a subset of LSDO problems with simulations involving highly nonlinear systems. For the problem it considered,
SURF was able to speed up the optimization by approximately an order of magnitude, compared to conventional
architectures. Optimization problems with large numbers of implicitly calculated state variables benefit greatly from
this new architecture; examples include problems involving high-fidelity CFD or nonlinear FEA solutions.

SURF defines an algorithm that unifies two conventional architectures, namely, multidisciplinary feasible (MDF),
and simultaneous analysis and design (SAND). SURF can generate any hybrid of the two architectures by just changing
nonlinear solver tolerances within the computational model and solving an additional linear system that computes the
adjoint vector for the nonlinear systems. SURF is also able to vary the hybrid across optimization iterations. Although
these properties give SURF great potential for efficiency improvement, the theoretical equivalence between SURF and its
parent algorithms is proved and validated only for equality-constrained problems, and the method of Newton-Lagrange.

This paper has four high-level objectives. The first objective is to extend the theory for the current SURF algorithm
from the method of Newton-Lagrange to sequential quadratic programming (SQP) for equality-constrained problems.
The next objective is to leverage this theory and suggest a new SQP-based SURF algorithm for general constrained
optimization problems. The third objective is to test the hypothesized new algorithm using a nonlinear topology
optimization problem. The test verifies that the proposed algorithm unifies the full-space and reduced-space algorithms
for an inequality-constrained optimization setting. The final objective is to measure and quantify the improvements
offered by the new SURF algorithm over the conventional reduced-space algorithm using the same optimization problem.

We present the paper as follows. In Sec. II, we present current approaches used in LSDO with details on different
optimization formulations. In Sec. III, we discuss the SURF algorithm in detail and its extension from the method of
Newton-Lagrange to sequential quadratic programming . We then present the new, hypothesized SQP-based SURF
algorithm for a general constrained optimization setting. In Sec. IV, we present a topology optimization problem, and
the details of its implementation. We then use this problem for a comparison study of the new SURF algorithm with the
reduced-space algorithm.

II. Background

A. Current approach in LSDO
Current LSDO methods follow the decades-old approach of a coupled model-optimizer setup where the model is run

iteratively using the design variables generated by the optimizer. The optimizer computes the new set of design variables
based on the model outputs. The model outputs needed by the optimizer are the values of the objective, constraints, and
their derivatives. The model is evaluated iteratively until the convergence criteria for optimality and feasibility are met.

In efficient model implementations, computations of the output functions and their gradients take comparable times.
The total optimization time is proportional to the number of times the model is evaluated before a solution is reached.
State-of-the-art LSDO methods can optimize systems with tens of thousands of design variables in just hundreds of
model evaluations. This makes the optimization of large and expensive models impractical as it might take weeks to
reach the optimal design of a system whose simulation takes one hour.

2

Optimizer

Model
F(x), C(x)

x

d f
d x

, d c
d x

Fig. 1 Current approach [42] . The design variables, objective and constraints are respectively, G, � (G) and � (G).

Considering the current level of efficiency with the state-of-the-art optimization algorithms, a reduction in the
optimization time is possible only if we can enable partial model evaluations. Partial model evaluations will bring
down the time for each model evaluation, and the solution can be attained in less time when there is no significant
increase in the number of model evaluations. This requires new optimizers and modeling frameworks that can facilitate
a new paradigm where the solvers in the model could be instructed by the optimizer to partially converge to specified
tolerances to speed up optimization.

0 200 400 600 800

Model evaluations

10
�6

10
�4

10
�2

10
0

10
2

10
4

O
p
t
im

a
li
t
y

0 200 400 600 800

Model evaluations

10
�16

10
�12

10
�8

10
�4

10
0

F
e
a
s
ib

il
it
y

0 200 400 600 800

Model evaluations

10
0

10
1

10
2

10
3

10
4

N
u
m

.
s
u
p
e
r
b
a
s
ic

v
a
r
s
.

Cantilever beam thickness opt.

Airliner design-allocation MDO

Propeller blade and shape opt.

CubeSat MDO

X-57 preliminary design MDO

2-D topology optimization

Morphing aircraft design opt.

CRM wing aerostructural opt.

Air taxi design-economics opt.

Robotic arm design & control opt.

Air taxi system-level MDO

Fig. 6 Optimization convergence histories using SNOPT. Superbasic variables are design variables that are
not a�xed to active constraints.

to be an active application area for large-scale MDO, both with OpenMDAO [42] and without it, where algorithmic
di�erentiation is used instead of the adjoint method [43].

Aircraft Another large application area is aircraft design. Several studies have used large-scale MDO to consider the
simultaneous design and airline allocation of commercial aircraft with the later studies using OpenMDAO. Some of
these studies incorporate computational fluid dynamics [17] and use the framework to automate the parallelization of the
model, and others use this problem to explore e�cient methods for mixed integer nonlinear programming (MINLP) [44]
where there are thousands of continuous design variables [15].

In aircraft design, OpenMDAO has been used to incorporate disciplines other than the ones most commonly
considered in MDO such as aerodynamics and structures. For instance, thermal constraints were considered in studies
by Falck et al. [23] and Jasa et al. [31]. Falck et al. focus on the need to reject waste heat from electric aircraft, covering
three di�erent cases: maximizing range covered, maximizing e�ciency (equivalent to that of a minimum-fuel trajectory
for a fuel-burning aircraft), and lastly minimum-time trajectories which fly a desired range subject to constraints on
remaining state of charge. They approach this as an optimal control problem using gradient-based MDO to combine
four connected disciplines using a Legendre–Gauss–Lobatto (LGL) collocation method. They found thermal loads
can be reduced with only minor adjustments to the climb rate. Jasa et al. [31] explore this area for supersonic aircraft,
covering seven separate optimization cases for a climb segment, reaching Mach 1, a horizontal flight angle, allowing
recirculation, and the e�ect of pump-rate-dependent heating. Each case factors 25 mission segments into a complex
model integrating five separate disciplines, and found even with trajectory optimization, without improvements in
fuel thermal management systems (FTMS), the aircraft requires additional fuel to stay within thermal constraints.
By introducing a heat exchanger and recirculating warmed fuel back into the tank, Jasa et al. find improvements in

7

Fig. 2 The state-of-the-art in LSDO [43] . Previous LSDO applications are optimized in hundreds of model
evaluations. Superbasic variables are the design variables that are not fixed due to bounds or constraints.

B. Optimization formulations
An optimization formulation or architecture refers to the way in which a system-level optimization problem is

mathematically defined. There are multiple formulations possible for any given design problem but we will focus on the
reduced-space (RS) formulation and the full-space (FS) formulation, also popularly known as the multidisciplinary

3

feasible (MDF) architecture and the simultaneous analysis and design (SAND) architecture, respectively. The full-space
formulation considers the state variables defined by implicit equations as additional design variables, and the respective
implicit equations as additional constraints. In the reduced-space formulation, the implicit equations are solved within
the model to compute the state variables.

Reduced-space

min
G
F (G,Y(G))

s.t. C(G,Y(G)) ≥ 0
with R(G,Y(G)) = 0

(1)

Full-space

min
G,H

F (G, H)

s.t. C(G, H) ≥ 0
R(G, H) = 0

(2)

Optimizer x x x x x

Component 1
R1(x, y) = 0

y1 y1 y1 y1

y...
... y... y... y...

yn yn
Component n
Rn(x, y) = 0

yn yn

f
Objective

f = F(x, y)

c
Constraints
c = C(x, y)

Optimizer x, y x, y x, y x, y x, y

r1
Component 1
r1 = R1(x, y)

r...
...

rn
Component n
rn = Rn(x, y)

f
Objective

f = F(x, y)

c
Constraints
c = C(x, y)

Fig. 3 Reduced-space versus full-space formulation for an inequality-constrained problem in the presence of
implicitly computed state variables [42] .

Given the design variables G, the reduced-space formulation solves the residual equations R(G,Y(G)) = 0 (which
defines the implicit state variables H) within the model to obtain the state variables as H = Y(G). Therefore, vectors in
the design space for the reduced-space formulation consists of only G. In contrast, the full-space formulation treats the
implicit state variables, H, as additional design variables and thus, the vectors in the design space consists of both G and
H. The full-space formulation also treats the residuals R(G, H) = 0 as additional constraints thereby ensuring that the H
at a feasible solution will satisfy the residual equations. Each formulation has its own merits:

• The RS formulation results in expensive model evaluations because of the nonlinear solutions required but the
optimization problem becomes smaller and simpler with fewer design variables and constraints.

• The FS formulation results in cheaper model evaluations since it does not solve any nonlinear systems but the
optimization problem becomes larger and more complex with more design variables and constraints.

The FS formulation has the potential to be more efficient but in practice, optimization convergence issues or a greater
increase in the number of model evaluations makes it less robust and negates the benefits from an inexpensive model.
Therefore, most LSDO applications consider only a reduced-space approach for solving their problems. However, the
RS formulation is very inefficient since it has to ensure tight convergence for the solutions of all nonlinear residuals in
each optimization iteration. This requirement is necessary to ensure that the objective and constraints are consistent
with their derivatives computed by the model at any G given by the optimizer.

We now look at the optimality conditions and Karush-Kuhn-Tucker (KKT) systems for both formulations in a
simplified, equality-constrained setting.

Reduced-space equations
We restrict Eq. (1) to equality contraints and define the Lagrangian ; = L(G, _) as

L(G, _) = F (G,Y(G)) + _) C(G,Y(G)) (3)

4

Using the method of Newton-Lagrange, we obtain the following first order necessary optimality conditions:
d;
dG

=

(
mF
mG
− mF
mH

m'

mH

−1 mR
mG

)
+ _)

(
mC
mG
− mC
mH

m'

mH

−1 mR
mG

)
= 0

d;
d_

= C(G,Y(G)) = 0
(4)

The reduced-space KKT system for computing the search direction ?: is given by[
;GG 2G

)

2G 0

] [
?
(G)
:

?
(_)
:

]
=

[
−;G

−C(G: ,Y(G:))

]
, (5)

where ;GG = 32;/3G2, 2G = 32/3G, and ;G = 3;/3G.

Full-space equations
We restrict Eq. (2) to equality constraints and define the Lagrangian < =M(G, H, k, _) as

M(G, H, k, _) = F (G, H) + k) R(G, H) + _) C(G, H) (6)

Once again, using the method of Newton-Lagrange, we obtain the following first order necessary optimality conditions:
d<
dG

=
mF
mG
+ k) mR

mG
+ _) mC

mG
= 0

d<
dk

= R(G, H) = 0
d<
dH

=
mF
mH
+ k) mR

mH
+ _) mC

mH
= 0

d<
d_

= C(G, H) = 0
(7)

The full-space KKT system is then given by
<GG <GH RG

) CG)

<HG <HH RH
) CH)

RG RH 0 0
CG CH 0 0



?
(G)
:

?
(H)
:

?
(k)
:

?
(_)
:


=


−<G

−<H

−R(G: , H:)
−C(G: , H:)


, (8)

where <GG = 32</3G2, <GH = 32</3H3G, <HG = 32</3G3H, <HH = 32</3H2 , RG = mR/mG, RH = mR/mH,
CG = mC/mG, CH = mC/mH, <G = 3</3G and <H = 3</3H.

C. SURF: strong unification of reduced-space and full-space
SURF [42] is an algorithm that unifies the full-space and reduced-space formulations. It has the ability to generate

any hybrid of the two formulations. The theory of the SURF algorithm is developed based on the modified full-space
(MFS) method; MFS can generate the same sequence of design variable and Lagrange multiplier iterates as the
reduced-space method using an underlying full-space KKT system. MFS provides a way to unify the full-space and
reduced-space methods. It can then be used to derive the SURF algorithm, which provides access to a continuous
spectrum of hybrids of the full-space and reduced-space methods. The existing SURF algorithm is limited to the
equality-constrained optimization setting. The goal of the current paper is to extend it to the inequality-constrained
optimization setting. To avoid any confusion, it is worth noting that MFS was originally called corrected full-space or
CFS method in [42].

1. Modified full-space formulation
The MFS architecture shown in Fig. 4 is essentially a modified version of the original full-space method; it updates

the state variable vector H, and the vector of Lagrange multipliers k associated with the residual equations before
solving the full-space KKT system. If [G: , H: , k: , _:]) are the design variables, state variables, and the corresponding
Lagrange multipliers at the end of the :-th iteration, this method updates H: to H′: by solving R(G: , H

′
:
) = 0 and then k:

to k ′
:
by setting 3</3H = 0. The FS KKT system is then solved at the updated point [G: , H′: , k

′
:
, _:]) to obtain the

search direction ?: toward the next iterate. The modified KKT system for the MFS method is then given by
<GG <GH RG

) CG)

<HG <HH RH
) CH)

RG RH 0 0
CG CH 0 0



?
(G)
:

?
(H)
:

?
(k)
:

?
(_)
:


=


−<G

0
0

−C(G: , H′:)


(9)

5

<H = 0 and R(G: , H′:) = 0 after the two modifications are reflected in the left hand side vector. At this point, it is worth
noting that <GG , <GH , <HG , <HH , <G , RG , RH , CG , and CH are not the same for the FS and MFS methods since the
MFS KKT system is computed at [G: , H′: , k

′
:
, _:]) while the FS KKT system is computed at [G: , H: , k: , _:]) . As a

result of this modification of the FS KKT system (8), the solution ? (G)
:

and ? (_)
:

from the MFS KKT system (9) is the
same as the solution provided by the RS KKT system (5), the detailed proof of which can be found in [42]. Hence, the
sequence of iterates generated by the modified full-space method and the reduced-space method are identical.

Modified full-space

min
G,H

F (G, H)

s.t. C(G, H) ≥ 0
R(G, H) = 0

with R(G,Y(G)) = 0
3</3H = 0

(10)

Optimizer
dm/dy = 0

x, y x, y x, y x x

y′1
Component 1
R1(x, y

′) = 0
y′1 y′1 y′1 y′1

y′... y′...
... y′... y′... y′...

y′n y′n y′n
Component n
Rn(x, y

′) = 0
y′n y′n

f
Objective

f = F(x, y′)

c
Constraints
c = C(x, y′)

Fig. 4 Modified full-space architecture [42] .

A comparison of the reduced-space, full-space and modified full-space methods [42]:

Algorithm 1 RS method
1: loop
2: Run the model at G: solving

R(G: ,Y(G:)) = 0
3: Assemble �: , 1:
4: Solve �: ?: = 1:

5: Update

G:+1

_:+1

 =


G:

_:

 + ?:
6: end loop

�: =


;GG 2G

2G 0


1: =


−;G

−C(G: ,Y(G:))



Algorithm 2 FS method
1: loop
2: Run the model at (G: , H:)
3: Assemble �: , 1:
4: Solve �: ?: = 1:

5: Update



G:+1

H:+1

k:+1

_:+1


=



G:

H:

k:

_:


+ ?:

6: end loop

�: =



<GG <GH RG
) CG)

<HG <HH RH) CH)

RG RH 0 0

CG CH 0 0


1: =



−<G

−<H

−R(G: , H:)
−C(G: , H:)



Algorithm 3MFS method
1: loop
2: Run the model at (G: , H:) solving

R(G: , H′:) = 0
3: Compute k′

:
by solving

R)H k′: = −F)
H − C)H _:

4: Assemble �: , 1:
5: Solve �: ?: = 1:

6: Update



G:+1

H:+1

k:+1

_:+1


=



G:

H′
:

k′
:

_:


+ ?:

7: end loop

�: =



<GG <GH RG
) CG)

<HG <HH RH) CH)

RG RH 0 0

CG CH 0 0


1: =



−<G

0

0

−C(G: , H′:)



6

2. Strong unification of reduced-space and full-space
The complete unification of the full-space and reduced-space methods results from employing inexact solvers to

perform the two modifications in the original MFS method. The algorithm that achieves the complete unification is
called SURF (Algorithm 4) and is simply obtained by applying inexact solvers in lines 2 and 3 of the Algorithm 3. The
loop that starts at line 1 indicates the start of each outer iteration. Line 4 updates the approximation to the Lagrangian
Hessian evaluated at [G: , H′: , k

′
:
, _:]) . Lines 5 and 6 assembles and solves the FS KKT system at the updated point

[G: , H′: , k
′
:
, _:]) using a preconditioner. Lines 7 and 8 compute the step length using an appropriate line search, and

apply the step along the search direction ?: . We note at this point that we did not prove that the MFS method was
equivalent to the RS method with the addition of a line search into the algorithm. However, the equivalence still holds
and it follows from the unification proof presented in [42], the details of which were not explicitly provided.

The SURF algorithm provides a complete unification of the FS and RS methods because it can give any hybrid of
the RS and FS methods by just modifying the inexact solver tolerances in lines 2 and 3. Lines 2 and 3 performed with
a zero tolerance gives us the exact solutions to R(G, H) = 0, and 3</3H = 0, in which case the algorithm is just the
same as the MFS method in Algorithm 3. Thus, a zero tolerance on the inexact solvers inside the SURF optimizer is
equivalent to the reduced-space method since both MFS and RS generate the same sequence of iterates. Now, if we do
not execute lines 2 and 3 in Algorithm 4 (which is equivalent to an infinite tolerance on the solvers), SURF reduces
to the Algorithm 2 for the FS method. Therefore, SURF unifies the full-space and reduced-space methods, and can
generate one of the two or a hybrid, simply by changing the inexact solver tolerances. The architecture resulting from
the SURF algorithm is shown in Fig. 5.

Algorithm 4 SURF (strong unification of reduced-space and full-space)
SURF unifies the reduced- and full-space methods for an equality-constrained optimization setting.
1: loop
2: Run the model at (G: , H:) inexactly solving R(G: , H′:) = 0
3: Compute k′

:
by inexactly solving R)H k′: = −F)

H − C)H _:
4: Update the approximation to the Lagrangian Hessian, �: , at [G: , H′: , k

′
:
, _:])

5: Assemble �: , 1: , "̃−1
:

6: Solve "̃−1
:
�: ?: = "̃−1

:
1:

7: Compute U: via a line search

8: Update
[
G:+1, H:+1, k:+1, _:+1

])
=

[
G: , H

′
:
, k′

:
, _:

])
+ U: ?:

9: end loop
Note:

1) �: =


<GG <GH

<HG <HH

 is the Hessian of the Lagrangian, ?: is the search direction and U: is the step size.

2) �: ?: = 1: is the FS KKT system (8), and "−1
:

and "̃−1
:

are exact and approximate preconditioners for �: such that
": = "1"2,:"3,:"4, and

�: =



<GG <GH RG
) CG)

<HG <HH RH) CH)

RG RH 0 0

CG CH 0 0


, 1: =



−<G

−<H

−R(G: , H′:)
−C(G: , H′:)


, "1 =



0 0 I 0

0 I 0 0

I 0 0 0

0 0 0 I


, "2,: =



RH 0 0 0

<HH R)H 0 0

<GH R)G I 0

CH 0 0 I


(11)

"3,: =



I 0 R−1
H RG 0

0 I R−)H <HG − R−)H <HHR−1
H RG R−)H C)H

0 0 <GG − <GHR−1
H RG − R)G R−)H <HG + R)G R−)H <HHR−1

H RG C)G − R)G R−)H C)H
0 0 CG − CHR−1

H RG 0


, "4 =



0 I 0 0

0 0 I 0

I 0 0 0

0 0 0 I


.

7

SURF

min
G,H

F (G, H)

s.t. C(G, H) ≥ 0
R(G, H) = 0

with R(G, H′) ≈ 0
3</3H ≈ 0

(12)

Optimizer
dm/dy ≈ 0

x, y, εy x, y, εy x, y, εy x x

y′1, r1
Component 1
r1 = R1(x, y

′)
≈ 0

y′1 y′1 y′1 y′1

y′..., r... y′...
... y′... y′... y′...

y′n, rn y′n y′n

Component n
rn = Rn(x, y

′)
≈ 0

y′n y′n

f
Objective
f = F(x, y′)

c
Constraints
c = C(x, y′)

Fig. 5 SURF architecture[42] . Model solves the residual equations to tolerances nH provided by the optimizer.

III. Methodology
The current SURF algorithm unifies the RS and FS methods only for equality-constrained problems that are solved

using the method of Newton-Lagrange. However, most of the practical optimization problems cannot be formulated as an
equality-constrained problem due to the presence of inequality constraints. Moreover, the method of Newton-Lagrange
is not well-suited for large-scale problems, even if they are equality-constrained.

As a first step toward broadening the range of applicability of SURF, we extend the SURF algorithm to make it
compatible with the sequential quadratic programming (SQP) method for an equality-constrained optimization setting.
This has two advantages. First, SQP methods represent one of the most successful class of methods for solving
large-scale optimization problems (equality- or inequality-constrained) which means that SURF could now be used
solve any equality-constrained optimization problem. Second, there is the possibility of a natural extension of SURF
from equality-constrained problems to inequality-constrained problems through the SQP method since SQP methods
handle both equality- and inequality-constrained problems in similar ways.

A. Extension of the SURF algorithm to an equality-constrained SQP method
We saw earlier in Sec. II.C.1 that the MFS KKT system (9) yields the same ? (G)

:
and ? (_)

:
values as the RS KKT

system (5). Here we show that the solution provided by the MFS KKT system and a modified full-space quadratic
programmming (QP) subproblem are the same. Altogether, this would imply that the ? (G)

:
and ? (_)

:
iterates generated by

the modified full-space SQP algorithm and the reduced-space algorithm are the same.
The SQP algorithm for an equality-constrained problem solves a sequence of equality-constrained quadratic

programming (QP) subproblems to find the search direction toward the next iterate. Each QP subproblem minimizes a
quadratic approximation of the objective subject to linearized constraints. The quadratic approximation is based on the
Hessian of the Lagrangian instead of the Hessian of the objective.

Considering the full-space problem (2) with only equality constraints, the QP subproblem at the (: + 1)st iteration
takes the form

min
E
∇F (E:)) (E − E:) + (E − E:))�: (E − E:) E = [G, H]) , E: = [G: , H:]) ,

s.t. C(E:) + CE (E:) (E − E:) = 0 where CE = [CG , CH], RE = [RG ,RH], and
R(E:) + RE (E:) (E − E:) = 0 �: is the Lagrangian Hessian at E: , k: , _:

(13)

The solution to the QP subproblem 13 is then equivalent to the solution of the following linear system:
<GG <GH RG

) CG)

<HG <HH RH
) CH)

RG RH 0 0
CG CH 0 0



?
(G)
:

?
(H)
:

k:+1
_:+1


=


−∇GF (G: , H:)
−∇HF (G: , H:)
−R(G: , H:)
−C(G: , H:)


(14)

8

By rearranging the terms in the first two block rows of the above system after substituting k:+1 = k: + ? (k):
and

_:+1 = _: + ? (_):
, we can show that the solution from this system is same as the solution from the FS KKT system (8),

i.e., ? (G)
:

, ? (H)
:

, ? (k)
:

, and ? (_)
:

are identical for both the systems.
Now considering the reduced-space problem (1) with only equality constraints, the QP subproblem at the (: + 1)st

iteration takes the form

min
G
∇� (G:)) (G − G:) + (G − G:))�: (G − G:) where �: is the Lagrangian Hessian at G: , _:

s.t. 2(G:) + 2G (G:) (G − G:) = 0
(15)

The solution to the QP subproblem 15 is then equivalent to the solution of the following linear system:[
;GG 2G

)

2G 0

] [
?
(G)
:

_:+1

]
=

[
−∇G� (G:)
−2(G: , H:)

]
(16)

By rearranging the terms in the first block row of the above system after substituting _:+1 = _: + ? (_):
, we can show that

the solution from this system is same as the solution from the RS KKT system (5), i.e., ? (G)
:

, and ? (_)
:

are identical for
both the systems.

The aforementioned two observations show the equivalence between the method of Newton-Lagrange and sequential
quadratic programming for equality-constrained problems formulated using a full-space or reduced-space approach.
Now modifying the QP subproblem in a way similar to the MFS method, we get

min
E
∇F (E′

:
)) (E − E′

:
) + (E − E′

:
))� ′

:
(E − E′

:
) E = [G, H]) , E′

:
= [G: , H′:]

) ,

s.t. C(E′
:
) + CE (E′:) (E − E

′
:
) = 0 where CE = [CG , CH], RE = [RG ,RH], and

RE (E′:) (E − E
′
:
) = 0 � ′

:
is the Lagrangian Hessian at E′

:
, k ′

:
, _:

(17)

The solution to the modified QP subproblem 17 is then equivalent to the solution of the following linear system:
<GG <GH RG

) CG)

<HG <HH RH
) CH)

RG RH 0 0
CG CH 0 0



?
(G)
:

?
(H)
:

k:+1
_:+1


=


−∇GF (G: , H′:)
−∇HF (G: , H′:)

0
−C(G: , H′:)


(18)

Again, by rearranging the terms in the first two block rows of the above system by making substitutions as before, we
can show that the solution from this system is same as the solution from the MFS KKT system (9) i.e., ? (G)

:
, ? (H)

:
, ? (k)

:
,

and ? (_)
:

are identical for both the systems.
The above observation is essentially the mathematical proof that an SQP algorithm with a modified QP subproblem

17 in each iteration generates the same sequence of iterates as the MFS algorithm. This proof along with the original
equivalence between MFS and RS methods proved in [42] imply that the modified SQP algorithm is in fact equivalent
to the RS method. Based on this result, we can extend the SURF algorithm to an SQP method for equality-constrained
problems. The detailed algorithm for SURF with sequential quadratic programming is shown in Algorithm. 5. We see
that the new algorithm follows the original SURF algorithm very closely. One advantageous exception is that there is no
requirement to compute the preconditioning matrices as in the original SURF algorithm for solving the KKT system.
This is because we now solve the QP subproblem iteratively using a QP solver instead of solving the linear KKT system.

This SURF algorithm for SQP has all the benefits of the original SURF algorithm. In addition, this unification extends
the applicability of SURF to any equality-constrained optimization problem whether small- or large-scale. The new
algorithm also opens up an avenue for extending the theoretical unification provided by SURF to an inequality-constrained
setting using the SQP method. This stems from the fact that SQP methods for equality- and inequality-constrained
problems are very similar in theory. In the next subsection, we propose a SURF algorithm for inequality-constrained
problems based on Algorithm. 5.

9

Algorithm 5 SURF with SQP (sequential quadratic programming)
SURF unifies the reduced- and full-space methods for an equality-constrained optimization setting.
1: loop
2: Run the model at (G: , H:) inexactly solving R(G: , H′:) = 0
3: Compute k′

:
by inexactly solving R)H k′: = −F)

H − C)H _:
4: Update the approximation to the Lagrangian Hessian, �: , at [G: , H′: , k

′
:
, _:])

5: Solve the modified QP subproblem (17)
6: Compute U: via a line search

7: Update
[
G:+1, H:+1, k:+1, _:+1

])
=

[
G: , H

′
:
, k′

:
, _:

])
+ U: ?:

8: end loop

Note: �: =


<GG <GH

<HG <HH

 is the Hessian of the Lagrangian, ?: is the search direction and U: is the step size.

B. Extension of the SURF algorithm to inequality-constrained problems
The SQP algorithm for an inequality-constrained optimization problem solves a sequence of inequality-constrained

quadratic programming (QP) subproblems to find the search direction toward the next iterate. The QP subproblems are
formulated using the approximations as mentioned in previous subsection for equality-constrained problems.

For the reduced-space problem (1), the QP subproblem at the (: + 1)st iteration takes the form

min
G
∇� (G:)) (G − G:) + (G − G:))�: (G − G:) where �: is the Lagrangian Hessian at G: , _:

s.t. � (G:) + �G (G:) (G − G:) ≥ 0
(19)

For the full-space problem (2), the QP subproblem at the (: + 1)st iteration takes the form

min
E
∇F (E:)) (E − E:) + (E − E:))�: (E − E:) E = [G, H]) , E: = [G: , H:]) ,

s.t. C(E:) + CE (E:) (E − E:) ≥ 0 where CE = [CG , CH], RE = [RG ,RH], and
R(E:) + RE (E:) (E − E:) = 0 �: is the Lagrangian Hessian at E: , k: , _:

(20)

Our hypothesis is that the modified QP subproblem of the form

min
E
∇F (E′

:
)) (E − E′

:
) + (E − E′

:
))� ′

:
(E − E′

:
) E = [G, H]) , E′

:
= [G: , H′:]

) ,

s.t. C(E′
:
) + CE (E′:) (E − E

′
:
) ≥ 0 where CE = [CG , CH], RE = [RG ,RH], and

RE (E′:) (E − E
′
:
) = 0 � ′

:
is the Lagrangian Hessian at E′

:
, k ′

:
, _:

(21)

yields the same results as its reduced-space counterpart, i.e., ? (G)
:

and ? (_)
:

are identical for both the methods. This
means that the iterates generated by the reduced-space SQP method and the modified full-space SQP method are the
same in the context of inequality-constrained optimization. The SURF algorithm for inequality-constrained SQP will
then be the same as Algorithm. 5 that was presented earlier for the equality-constrained SQP method.

However, we do not have a proven theoretical equivalence for this hypothesis but our intuition suggests that the
hypothesis must be true based on the result from the previous subsection. To prove the equivalence of reduced-space and
full-space in the case of equality-constrained SQP, we used the original equivalence for the method of Newton-Lagrange.
However, the absence of an intermediate method such as the Newton-Lagrange in the case of inequality-constrained
SQP suggests that a promising approach to proving the equivalence would be to leverage the equivalence in the case of
SQP-based SURF for equality-constrained problems to naturally extend SURF to inequality-constrained problems. In the
next section, we perform investigations to verify this hypothesis by applying Algorithm. 5 on an inequality-constrained
topology optimization problem.

10

IV. Numerical results

A. Topology optimization problem
We perform topology optimization on a hyperelastic cantilever beam whose domain is modeled using uniform

quadrilateral elements. The problem uses a Saint–Venant Kirchhoff model whose elastic energy density is given by

k(u) = 1
2
(: � , (22)

where D is the deformation vector, � = 1
2 (� − I) is the Green–Lagrange strain, (is the stress tensor defined as

(= 2`� + _tr(�)I , (23)

where � = �>� is the Right Cauchy–Green tensor, _ and ` are Lamé parameters, � is the deformation gradient
expressed as � = I + ∇D; and I is the identity matrix.

We model the beam in FEniCS [44]. The DOLFIN library in FEniCS solves the FEA problem for displacements
under a traction load on the right face of the beam. The goal of the optimization is to minimize the compliance of the
beam subject to the constraint of an upper bound on the average density. The design variables G are the densities of the
elements inside the discretized mesh and the implicit state variables D are the displacements. The optimization problem
is formulated mathematically as

min
0≤G≤dmax

�) D

s.t. davg (G) ≤ 0.4dmax
with (G, D)D − � = 0, (24)

where G is the density distribution, D is the displacement vector, � is the force vector, davg (·) is the average density
function for the domain, dmax is the maximum density of the material, and is the function that computes the nonlinear
stiffness matrix.

We build the model of the problem in Python using the code from the ATOMiCS [45] (automated topology
optimization using OpenMDAO and FEniCS) package, which contains a suite of topology optimization problems. As
the models in the ATOMiCS package are written in the OpenMDAO framework, which only supports a conventional
optimization paradigm, we remove the dependency on OpenMDAO by constructing a similar software framework
that replaces OpenMDAO and interfaced with ATOMiCS to facilitate an intrusive paradigm for the SQP-based SURF
optimizer.

Using the theory from SNOPT [46] optimizer, we develop a basic SQP optimizer for solving general inequality-
constrained problems. SNOPT is one of the most successful and widely-used general-purpose optimizers for solving
large-scale design optimization problems. In order to solve the intermediate QP subproblems, we use an open-source
QP solver called OSQP [47]; OSQP stands for operator splitting solver for quadratic programs.

We now apply the SQP-based reduced space, modified full-space and SURF algorithms for solving this optimization
problem. We again note that the MFS and SURF algorithms proposed in Sec. III.B and used here are not theoretically
validated, and the goal of this study is to investigate and gain insights into the proposed architecture. In the next
subsection, we compare and study the numerical results from the application of different optimization algorithms on this
problem.

B. Numerical study
We begin this subsection by referring back to Algorithm. 5 for SURF based on SQP. We see that running this

algorithm without performing the inexact solutions in lines 2 and 3 is identical to a full-space SQP algorithm. An
equivalence of SURF and FS follows directly from this observation. The first goal of this subsection is to verify that
SURF performed with exact solutions in lines 2 and 3 is similar (not equivalent) to the reduced-space method. We
specifically mention that our goal is not to see identical solutions from SURF and RS even if there is a theoretical
equivalence exists between both. This is because the approximations of Hessians using the BFGS updates and the
inaccuracies in the line search algorithms lead to significant deviations from the theory and can affect both algorithms
differently.

We first run the reduced-space algorithm and the SURF algorithm on the optimization problem. SURF algorithm is
run with a very tight tolerance of 1e-16 on the absolute norm of the residual. SURF is now equivalent to the MFS
algorithm for SQP. Our goal is to observe the solutions and verify that we get a similar solution from both algorithms.

11

(a) (b)

Fig. 6 Optimized structures. (a) RS. (b) MFS.

Fig. 6 shows the solutions when we run both the algorithms for 25 major iterations, the point where both the
algorithms were sufficiently converged. We acknowledge here that we do not have a good metric to assess the optimality
and feasibility for the SURF algorithm. The results for convergence shown in Fig. 7 is based on using the same
optimality and feasibility criteria for SURF as in conventional reduced space. However, this plot suggests that the
feasibility criteria favor the SURF algorithm, while the optimality criteria are disadvantageous for SURF. The reason for
such a discrepancy can be attributed to the addition of a large number of residuals as constraints to the SURF algorithm
and solving it to higher tolerances than other constraints in the problem. This affects the optimality and feasibility
computed using the conventional approach.

0 5 10 15 20 25
Major iterations

10−4

10−3

10−2

10−1

100

O
p

ti
m

al
it

y

RS

MFS

SURF

(a)

0 5 10 15 20 25
Major iterations

10−10

10−8

10−6

10−4

10−2

100

F
ea

si
b

ili
ty

RS

MFS

SURF

(b)

Fig. 7 Optimization convergence for RS, MFS and SURF. (a) Optimality. (b) Feasibility.

0 100 200 300 400 500 600 700

Cumulative linear solver iterations

10−15

10−11

10−7

10−3

100

R
es

id
u

al
n

or
m

RS

MFS

Fig. 8 Convergence with linear solver iterations for RS and MFS.

12

Fig. 8 shows the convergence of the nonlinear solvers with linear solver iterations till the solution is sufficiently
converged. We observe from Fig. 6 and Fig. 8 that both RS and MFS converged to the same solution in roughly the
same number of linear iterations, which is approximately 700. We also note here that both RS and MFS converged
sufficiently at the 25th iteration from observing the optimized structures during optimization. As mentioned earlier, this
is not captured accurately by the optimality and feasibility figures seen from Fig. 7. Altogether, these results point in the
direction that our proposed SQP-based SURF algorithm is equivalent to the reduced-space SQP algorithm when we set
the highest tolerances on the nonlinear solvers.

Fig. 9 Optimized structure using SURF.

0 100 200 300 400 500 600 700

Cumulative linear solver iterations

10−15

10−11

10−7

10−3

100

R
es

id
u

al
n

or
m

RS

SURF

Tolerance for SURF

Fig. 10 Convergence with linear solver iterations for RS and SURF.

The other goal of this study was to measure the improvement in the total number of linear iterations needed for
the convergence of the nonlinear solvers. To observe this, we need to relax the tolerances on the nonlinear solvers
when using the proposed SQP algorithm. Therefore, we now perform line 1 in Algorithm. 5 inexactly to see if we
can get any benefit from using a hybrid algorithm. For this study, we set a fixed tolerance of 1e-7 on the nonlinear
solvers and run the hybrid SURF algorithm. The algorithm converged to the solution in Fig. 9 in again 25 iterations, the
convergence of optimization is shown in Fig. 7. However, from Fig. 10, we see approximately 30 percent reduction,
compared to reduced-space, in the total linear iterations required for solving the nonlinear systems. This can be seen as
empirical evidence for the hypothesis that the proposed algorithm is not only a hybrid algorithm in a general-constrained
optimization setting but also can provide practical benefits when applied to optimization problems that contain implicit
state variables that are expensive to compute.

We conclude by noting that we applied a pure full-space SQP algorithm on this problem, and it was unsuccessful in
converging to a reasonable solution which again strengthens the reason why FS is not widely used in the optimization
of large and complex systems. We also note that there was no improvement in the overall optimization time with
SURF since the optimization problem becomes larger and more complex with the addition of new design variables and
constraints, and the basic optimizer developed for this study did not scale well with the number of design variables.
However, we expect to see an improvement in the optimization times with a good quality optimizer like SNOPT (sparse
nonlinear optimizer) or IPOPT (interior point optimizer) when implemented with the proposed SURF algorithm.

13

V. Conclusion
In this paper, we proposed and investigated a new hybrid architecture that extends the existing SURF architecture

to make it compatible with general inequality-constrained problems. We first proved the theoretical equivalence
between SURF and RS for SQP methods in an equality-constrained setting. Leveraging this, we proposed that the
same algorithm could work for inequality-constrained problems. We then investigated the equivalence of the proposed
hybrid algorithm with its parent algorithm using a topology optmization problem. The results strongly suggest that the
proposed SURF algorithm is hybrid of reduced-space and full-space algorithms for an SQP method. It also shows that a
hybrid architecture can be highly beneficial in case of optimization problems with large number of implicitly computed
state variables.

Acknowledgments
This material is based upon work supported by the National Science Foundation under Grant No. 1917142.

References
[1] Hwang, J. T., and Martins, J. R., “A computational architecture for coupling heterogeneous numerical models and

computing coupled derivatives,” ACM Transactions on Mathematical Software (TOMS), Vol. 44, No. 4, 2018, p. 37.
doi:https://doi.org/10.1145/3182393.

[2] Gray, J. S., Hwang, J. T., Martins, J. R., Moore, K. T., and Naylor, B. A., “OpenMDAO: An open-source framework for
multidisciplinary design, analysis, and optimization,” Structural and Multidisciplinary Optimization, Vol. 59, No. 4, 2019, pp.
1075–1104. doi:https://doi.org/10.1007/s00158-019-02211-z.

[3] Jasa, J. P., Hwang, J. T., and Martins, J. R. R. A., “Open-source coupled aerostructural optimization using Python,”
Structural and Multidisciplinary Optimization, Vol. 57, No. 4, 2018, pp. 1815–1827. doi:10.1007/s00158-018-1912-8, URL
https://doi.org/10.1007/s00158-018-1912-8.

[4] Jasa, J. P., Hwang, J. T., and Martins, J., “Design and Trajectory Optimization of a Morphing Wing Aircraft,” 2018
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018. doi:10.2514/6.2018-1382.

[5] Jasa, J. P., Mader, C. A., and Martins, J. R. R. A., “Trajectory Optimization of Supersonic Air Vehicle with Thermal
Fuel Management System,” AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, 2018.
doi:10.2514/6.2018-3884.

[6] Friedman, S., Ghoreishi, S. F., and Allaire, D. L., “Quantifying the impact of different model discrepancy formulations in coupled
multidisciplinary systems,” 19th AIAA non-deterministic approaches conference, 2017, p. 1950. doi:10.2514/6.2017-1950.

[7] Chaudhuri, A., Lam, R., and Willcox, K., “Multifidelity Uncertainty Propagation via Adaptive Surrogates in Coupled
Multidisciplinary Systems,” AIAA Journal, 2017, pp. 235–249. doi:10.2514/1.J055678.

[8] Palar, P. S., and Shimoyama, K., “Polynomial-chaos-kriging-assisted efficient global optimization,” Computational Intelligence
(SSCI), 2017 IEEE Symposium Series on, IEEE, 2017, pp. 1–8. doi:10.1109/SSCI.2017.8280831.

[9] Cook, L. W., Jarrett, J. P., and Willcox, K. E., “Extending Horsetail Matching for Optimization Under Probabilistic, Interval,
and Mixed Uncertainties,” AIAA Journal, 2017, pp. 849–861. doi:10.2514/1.J056371.

[10] Cook, L. W., Jarrett, J. P., and Willcox, K. E., “Horsetail matching for optimization under probabilistic, interval and mixed
uncertainties,” 19th AIAA non-deterministic approaches conference, 2017, p. 0590. doi:10.2514/6.2017-0590.

[11] Bons, N. P., He, X., Mader, C. A., and Martins, J. R. R. A., “Multimodality in Aerodynamic Wing Design Optimization,” 18th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Denver, CO, 2017. doi:10.2514/6.2017-3753.

[12] Lam, R., Poloczek, M., Frazier, P., and Willcox, K. E., “Advances in Bayesian Optimization with Applications in Aerospace
Engineering,” 2018 AIAA Non-Deterministic Approaches Conference, 2018, p. 1656. doi:10.2514/6.2018-1656.

[13] Tracey, B. D., and Wolpert, D., “Upgrading from Gaussian Processes to Student’s T Processes,” 2018 AIAA Non-Deterministic
Approaches Conference, 2018, p. 1659. doi:10.2514/6.2018-1659.

[14] Cook, L. W., “Effective Formulations of Optimization Under Uncertainty for Aerospace Design,” Ph.D. thesis, University of
Cambridge, 2018. doi:10.17863/CAM.23427.

14

https://doi.org/https://doi.org/10.1145/3182393
https://doi.org/https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-018-1912-8
https://doi.org/10.1007/s00158-018-1912-8
https://doi.org/10.2514/6.2018-1382
https://doi.org/10.2514/6.2018-3884
https://doi.org/10.2514/6.2017-1950
https://doi.org/10.2514/1.J055678
https://doi.org/10.1109/SSCI.2017.8280831
https://doi.org/10.2514/1.J056371
https://doi.org/10.2514/6.2017-0590
https://doi.org/10.2514/6.2017-3753
https://doi.org/10.2514/6.2018-1656
https://doi.org/10.2514/6.2018-1659
https://doi.org/10.17863/CAM.23427

[15] Baptista, R., and Poloczek, M., “Bayesian Optimization of Combinatorial Structures,” Proceedings of the 35th International
Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 80, edited by J. Dy and A. Krause, PMLR,
Stockholmsmässan, Stockholm Sweden, 2018, pp. 462–471. URL http://proceedings.mlr.press/v80/baptista18a.
html.

[16] Peherstorfer, B., Beran, P. S., and Willcox, K. E., “Multifidelity Monte Carlo estimation for large-scale uncertainty propagation,”
2018 AIAA Non-Deterministic Approaches Conference, 2018, p. 1660. doi:10.2514/6.2018-1660.

[17] Chauhan, S. S., and Martins, J. R. R. A., “Low-Fidelity Aerostructural Optimization of Aircraft Wings with a Simplified
Wingbox Model Using OpenAeroStruct,” Proceedings of the 6th International Conference on Engineering Optimization,
EngOpt 2018, Springer, Lisbon, Portugal, 2018, pp. 418–431. doi:10.1007/978-3-319-97773-7_38.

[18] Chaudhuri, A., Jasa, J., Martins, J. R. R. A., and Willcox, K., “Multifidelity Optimization Under Uncertainty for a Tailless
Aircraft,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; AIAA SciTech Forum,
Orlando, FL, 2018. doi:10.2514/6.2018-1658.

[19] Mader, C. A., Kenway, G. K., Yildirim, A., and Martins, J. R., “ADflow: An Open-Source Computational Fluid Dynamics
Solver for Aerodynamic and Multidisciplinary Optimization,” Journal of Aerospace Information Systems, 2020, pp. 1–20.

[20] Ning, A., and Petch, D., “Integrated Design of Downwind Land-Based Wind Turbines Using Analytic Gradients,”Wing Energy,
Vol. 19, No. 12, 2016, p. 2137–2152. doi:10.1002/we.1972.

[21] Barrett, R., and Ning, A., “Integrated Free-Form Method for Aerostructural Optimization of Wind Turbine Blades,” Wind
Energy, Vol. 21, No. 8, 2018, pp. 663–675. doi:10.1002/we.2186.

[22] Zahle, F., Tibaldi, C., Pavese, C., McWilliam, M. K., Blasques, J. P. A. A., and Hansen, M. H., “Design of an Aeroelastically
Tailored 10 MW Wind Turbine Rotor,” Journal of Physics: Conference Series, Vol. 753, No. 6, 2016, p. 062008. URL
http://stacks.iop.org/1742-6596/753/i=6/a=062008.

[23] Zahle, F., Sørensen, N. N., McWilliam, M. K., and Barlas, A., “Computational fluid dynamics-based surrogate optimization of
a wind turbine blade tip extension for maximising energy production,” Journal of Physics: Conference Series, Vol. 1037, The
Science of Making Torque from Wind, Milano, Italy, 2018. doi:10.1088/1742-6596/1037/4/042013.

[24] McWilliam, M. K., Zahle, F., Dicholkar, A., Verelst, D., and Kim, T., “Optimal Aero-Elastic Design of a Rotor with Bend-Twist
Coupling,” Journal of Physics: Conference Series, Vol. 1037, No. 4, 2018, p. 042009. URL http://stacks.iop.org/1742-
6596/1037/i=4/a=042009.

[25] Graf, P., Dykes, K., Damiani, R., Jonkman, J., and Veers, P., “Adaptive stratified importance sampling: hybridization of
extrapolation and importance sampling Monte Carlo methods for estimation of wind turbine extreme loads,” Wind Energy
Science (Online), Vol. 3, No. 2, 2018. doi:10.5194/wes-3-475-2018.

[26] Dykes, K., Damiani, R., Roberts, O., and Lantz, E., “Analysis of Ideal Towers for Tall Wind Applications,” 2018 Wind Energy
Symposium, AIAA, 2018. doi:10.2514/6.2018-0999.

[27] Stanley, A. P. J., and Ning, A., “Coupled Wind Turbine Design and Layout Optimization with Non-Homogeneous Wind
Turbines,”Wind Energy Science Discussions, Vol. 2018, 2018, pp. 1–24. doi:10.5194/wes-2018-54, URL https://www.wind-
energ-sci-discuss.net/wes-2018-54/.

[28] Thomas, J. J., Gebraad, P. M., and Ning, A., “Improving the FLORIS wind plant model for compatibility with gradient-based
optimization,” Wind Engineering, Vol. 41, No. 5, 2017, pp. 313–329.

[29] Barter, G. E., “Starting with WISDEM (TM): The Short Course,” Tech. rep., National Renewable Energy Lab.(NREL), Golden,
CO (United States), 2020.

[30] Hegseth, J. M., Bachynski, E. E., and Martins, J. R., “Integrated design optimization of spar floating wind turbines,”Marine
Structures, Vol. 72, 2020, p. 102771.

[31] Nandagopal, R. A., and Narasimalu, S., “Multi-objective optimization of hydrofoil geometry used in horizontal axis tidal turbine
blade designed for operation in tropical conditions of South East Asia,” Renewable Energy, Vol. 146, 2020, pp. 166–180.

[32] Stanley, A. P., Ning, A., and Dykes, K., “Optimization of turbine design in wind farms with multiple hub heights, using exact
analytic gradients and structural constraints,” Wind Energy, Vol. 22, No. 5, 2019, pp. 605–619.

[33] Herrema, A. J., Kiendl, J., and Hsu, M.-C., “A framework for isogeometric-analysis-based optimization of wind turbine blade
structures,” Wind Energy, Vol. 22, No. 2, 2019, pp. 153–170.

15

http://proceedings.mlr.press/v80/baptista18a.html
http://proceedings.mlr.press/v80/baptista18a.html
https://doi.org/10.2514/6.2018-1660
https://doi.org/10.1007/978-3-319-97773-7_38
https://doi.org/10.2514/6.2018-1658
https://doi.org/10.1002/we.1972
https://doi.org/10.1002/we.2186
http://stacks.iop.org/1742-6596/753/i=6/a=062008
https://doi.org/10.1088/1742-6596/1037/4/042013
http://stacks.iop.org/1742-6596/1037/i=4/a=042009
http://stacks.iop.org/1742-6596/1037/i=4/a=042009
https://doi.org/10.5194/wes-3-475-2018
https://doi.org/10.2514/6.2018-0999
https://doi.org/10.5194/wes-2018-54
https://www.wind-energ-sci-discuss.net/wes-2018-54/
https://www.wind-energ-sci-discuss.net/wes-2018-54/

[34] Satkauskas, I., Gaertner, E., Bortolotti, P., Barter, G., and Graf, P. A., “Wind Turbine Rotor Design Optimization Using
Importance Sampling,” AIAA Scitech 2020 Forum, 2020, p. 1953.

[35] Hwang, J. T., Lee, D. Y., Cutler, J. W., and Martins, J. R., “Large-scale multidisciplinary optimization of a small satellite’s
design and operation,” Journal of Spacecraft and Rockets, Vol. 51, No. 5, 2014, pp. 1648–1663.

[36] Gray, J. S., Hearn, T. A., Moore, K. T., Hwang, J., Martins, J., and Ning, A., “Automatic evaluation of multidisciplinary
derivatives using a graph-based problem formulation in OpenMDAO,” 15th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, 2014, p. 2042.

[37] Ha, T. H., Lee, K., and Hwang, J. T., “Large-scale design-economics optimization of eVTOL concepts for urban air mobility,”
AIAA Scitech 2019 Forum, 2019, p. 1218.

[38] Ha, T. H., Lee, K., and Hwang, J. T., “Large-scale multidisciplinary optimization under uncertainty for electric vertical takeoff
and landing aircraft,” AIAA Scitech 2020 Forum, 2020, p. 0904.

[39] Ha, T., “System-level performance investigation of eVTOL concepts using large-scale DEP-focused design optimizations,”
Ph.D. thesis, UC San Diego, 2020.

[40] Chauhan, S. S., and Martins, J. R., “Tilt-wing eVTOL takeoff trajectory optimization,” Journal of Aircraft, Vol. 57, No. 1, 2020,
pp. 93–112.

[41] Joshy, A. J., and Hwang, J. T., “A new architecture for large-scale system design optimization,” AIAA AVIATION 2020 FORUM,
2020, p. 3125. doi:https://doi.org/10.2514/6.2020-3125.

[42] Joshy, A. J., and Hwang, J. T., “Unifying Monolithic Architectures for Large-Scale System Design Optimization,” AIAA Journal,
2021, pp. 1–11. doi:https://doi.org/10.2514/1.J059954.

[43] Hwang, J. T., Jain, A. V., and Ha, T. H., “Large-scale multidisciplinary design optimization–review and recommendations,”
AIAA Aviation 2019 Forum, 2019, p. 3106. doi:https://doi.org/10.2514/6.2019-3106.

[44] Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., andWells, G. N.,
“The FEniCS Project Version 1.5,” Archive of Numerical Software, Vol. 3, No. 100, 2015. doi:10.11588/ans.2015.100.20553.

[45] Yan, J., Xiang, R., Kamensky, D., Tolley, M. T., and Hwang, J. T., “Topology optimization with automated derivative
computation,” Structural and Multidisciplinary Optimization (Accepted), 2021.

[46] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP algorithm for large-scale constrained optimization,” SIAM
review, Vol. 47, No. 1, 2005, pp. 99–131. doi:https://doi.org/10.1137/S0036144504446096.

[47] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S., “OSQP: an operator splitting solver for quadratic programs,”
Mathematical Programming Computation, Vol. 12, No. 4, 2020, pp. 637–672. doi:10.1007/s12532-020-00179-2, URL
https://doi.org/10.1007/s12532-020-00179-2.

16

https://doi.org/https://doi.org/10.2514/6.2020-3125
https://doi.org/https://doi.org/10.2514/1.J059954
https://doi.org/https://doi.org/10.2514/6.2019-3106
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2

	Introduction
	Background
	Current approach in LSDO
	Optimization formulations
	SURF: strong unification of reduced-space and full-space
	Modified full-space formulation
	Strong unification of reduced-space and full-space

	Methodology
	Extension of the SURF algorithm to an equality-constrained SQP method
	Extension of the SURF algorithm to inequality-constrained problems

	Numerical results
	Topology optimization problem
	Numerical study

	Conclusion

