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ARTICLE

Van Krevelen diagrams based on machine learning
visualize feedstock-product relationships in thermal
conversion processes
Shule Wang 1,2,14, Yiying Wang3,14, Ziyi Shi4,14, Kang Sun1,2,14, Yuming Wen 3✉, Lukasz Niedzwiecki 5,6,

Ruming Pan 7,8, Yongdong Xu9, Ilman Nuran Zaini4, Katarzyna Jagodzińska4, Christian Aragon-Briceno10,

Chuchu Tang11, Thossaporn Onsree12, Nakorn Tippayawong13, Halina Pawlak-Kruczek5, Pär Göran Jönsson4,

Weihong Yang4, Jianchun Jiang 1,2✉, Sibudjing Kawi 3✉ & Chi-Hwa Wang3✉

Feedstock properties play a crucial role in thermal conversion processes, where under-

standing the influence of these properties on treatment performance is essential for opti-

mizing both feedstock selection and the overall process. In this study, a series of van Krevelen

diagrams were generated to illustrate the impact of H/C and O/C ratios of feedstock on the

products obtained from six commonly used thermal conversion techniques: torrefaction,

hydrothermal carbonization, hydrothermal liquefaction, hydrothermal gasification, pyrolysis,

and gasification. Machine learning methods were employed, utilizing data, methods, and

results from corresponding studies in this field. Furthermore, the reliability of the constructed

van Krevelen diagrams was analyzed to assess their dependability. The van Krevelen dia-

grams developed in this work systematically provide visual representations of the relation-

ships between feedstock and products in thermal conversion processes, thereby aiding in

optimizing the selection of feedstock and the choice of thermal conversion technique.
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The thermal conversion process, also known as the ther-
mochemical process, has been widely developed and uti-
lized for treating waste/biomass during recent decades1,2.

These thermal conversion techniques offer options for power
generation, fuel production, and chemical synthesis from differ-
ent feedstocks3. Combustion, as a prevalent thermal conversion
process, has been extensively studied and well-understood in
terms of energy production and resulting by-products4. Emerging
techniques such as torrefaction, pyrolysis, gasification, and
hydrothermal liquefaction (HTL) have received more attention
and present more complex performance dynamics5,6.

The feedstock properties used in thermal conversion processes
play a critical role in their performance. As a result, numerous
studies have been conducted to investigate the performance of
different thermal conversion processes using various raw
materials7, requiring significant research resources. The com-
plexity of feedstock composition hinders researchers from iden-
tifying general principles through experimental studies. Having a
simple model or guidance tool that can provide a preliminary
estimation of thermal conversion process behavior based on
feedstock properties would facilitate and accelerate the research
and decision-making processes. Such a tool could indicate the
relationship between the feedstock properties and the quantity
and quality of products obtained from thermal conversion pro-
cesses. Additionally, it could serve two practical objectives:
guiding the selection of a suitable thermal conversion technique
for a specific feedstock and assisting in determining the optimal
feedstock or blend for a particular thermal conversion technique.

The van Krevelen diagram, introduced by Dirk Willem van
Krevelen in 19508, displays the atomic ratios of H/C and O/C and
was originally used to illustrate humification and coal formation
processes visually9. Over time, it has been recognized as a useful
tool for estimating main compound categories and reflecting their
calorific values10. Consequently, its application has expanded
beyond coal, denoting relevant properties of diverse materials,
including biomass, biodegradable waste, and various chemicals,
both pre- and post-reactions11–19.

In the field of thermal conversion, the van Krevelen diagram
has been widely used to intuitively indicate differences in H/C
and O/C ratios among feedstocks and products in processes such
as torrefaction20, hydrothermal carbonization21, pyrolysis22, and
gasification23. This application provides a unique way to visually
illustrate the directions of not only thermal conversions but also
other chemical reactions24–28. However, real feedstocks, such as
biomass and biodegradable waste, are typically mixtures, imply-
ing that numerous reactions can occur during the thermal con-
version process. Consequently, previous investigations using the
van Krevelen diagram to understand the directions of several
specific reactions can be challenging to apply to the analysis of
mixtures. On the other hand, although there have been studies
using the van Krevelen diagram to illustrate the thermal con-
version reactions of real biomass and biodegradable wastes such
as algae29, lignocellulosic biomass30, and digestate31, typically
only single or a few cases are reported in each study. Therefore,
there is interest in addressing these gaps and creating van Kre-
velen diagrams that better reflect the real-world applications of
different thermal conversion techniques.

Machine learning (ML) has become widely used in various
fields32, including constructing models for thermal conversion
processes33,34. In most of the reported ML studies of thermal
processes, the constructed ML model can predict the output from
given input parameters with a coefficient of determination (R2)
higher than 0.833. One ML interpretation method, the partial
dependence plot, can be used to evaluate the marginal effects of
selected input variables on the output value35. By using the H/C
and O/C ratios of feedstocks as input parameters for an ML

model and plotting the two-way partial dependence of these input
variables on the output value, a three-dimensional van Krevelen
diagram can be created. It will be promising to use the ML
method to construct the van Krevelen diagram: using the data-
base yielded from experiments with mixture feedstock will give
insight into the corresponding thermal process to treat real
feedstock.

In this analysis, we create a series of van Krevelen diagrams to
illustrate the relationship between the feedstock and its thermal
conversion products through ML analysis of eight corresponding
ML studies (Fig. 1). We analyze the constructed van Krevelen
diagrams theoretically and propose suggestions for applying dif-
ferent thermal conversion processes to treat waste/biomass based
on the diagrams generated. The reliabilities of the constructed
diagrams are discussed. The study demonstrates that the con-
structed van Krevelen diagrams can effectively represent the
feedstock-product relationship of part of the thermal conversion
processes and can serve as an important reference for decision-
making in different applications.

Results and discussion
Construction of van Krevelen diagram. Figure 1 depicts the
process of constructing and analyzing a van Krevelen diagram,
using the yield of pyrolysis oil as an example. The database used
for constructing the diagram is sourced from a precious study36

and revised accordingly. Among the eight referenced studies, the
random forest method has been implemented most frequently,
with a testing R2 value greater than 0.75 (as shown in Fig. 1). To
establish a set of general diagrams for different thermal conver-
sion processes, we consistently employ the random forest method
verified its performance using the Leave One Out method (90%
train data and 10% test data). The model is constructed using the
scikit-learn 0.23.1 library in a Python 3 environment and details
are given in Supplementary Note 4.

To generate the van Krevelen diagram, a two-way partial
dependence analysis is performed based on the constructed
model, focusing on the H/C and O/C ratios. The reliability of the
produced diagram is highest within the ranges where the training
data is most abundant. The dataset was initially collected from
reported experimental works. In these experiments, researchers
often explored various thermal conversion process parameters for
a single feedstock. Therefore, plotting the H/C and O/C ranges for
the collected data cannot accurately represent the true density of
the dataset. To address this, we apply the kernel density of the
training data to determine the appropriate ranges for the van
Krevelen diagrams. The kernel density plots created for all
datasets are given in Supplementary Figs. 7–10.

During the analysis, all other input parameters are set to their
mean values from the training dataset. The resulting two-way
partial dependence plots represent the predicted outcomes under
specific input conditions. To obtain a van Krevelen diagram that
can represent the relationship between feedstock and product
more generally, smoothing is applied to the original two-way
partial dependence plots. The detailed setting of smoothing is
given in Supplementary Fig. 5.

The thermal conversion reaction models for individual feed-
stocks, such as cellulose, have been well developed. However, in
real-world scenarios, raw materials are typically mixtures. This
study demonstrates that machine learning methods can be
utilized to capture the complexities of reactions involving mixed
feedstocks (Supplementary Note 1). It’s important to note that
elements in the feedstock other than C, H, and O can significantly
influence the properties of the final product, such as its ash
content (Supplementary Note 2). However, this study focuses
solely on the C, H, and O contents, as they are the most abundant
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elements in organic feedstocks. Considering the intricate nature
of feedstocks, the complexity further intensifies when aiming to
produce chemical products (Supplementary Note 3). Therefore,
this study focuses on analyzing the fuel properties of thermal
conversion products.

Torrefaction. During torrefaction, partial devolatilization occurs,
leading to a decrease in volatile matter content20,37. This process
makes the torrefied material more similar to coal compared to
unprocessed biomass. Figure 2 demonstrates a generally negative
correlation between the H/C and O/C ratios of the feedstock and
the solid yield from biomass torrefaction, with a stronger corre-
lation observed for the H/C ratio. The trend aligns with findings
in the literature37,38 and can be attributed to the composition of
lignocellulosic biomass, particularly the hemicellulose content.
Hemicellulose and cellulose have higher H/C and O/C ratios
compared to lignin37. Thus, as the hemicellulose content
increases in the raw biomass, the H/C and O/C ratios of the
biomass also increase. The main mechanisms involved in biomass
torrefaction are dehydration and decarboxylation39. Hemi-
cellulose, which contains abundant hydroxyl groups, undergoes
degradation during torrefaction through dehydration and the
breaking of weak linkages between small substituents and the
main polymer chains40. Generally, due to its lower thermal sta-
bility compared to cellulose and lignin41, hemicellulose decom-
position prevails at lower temperatures, such as in torrefaction.
Therefore, a higher hemicellulose content results in more intense
devolatilization and, ultimately, a lower solid yield from the
process for the same severity of the torrefaction process42.

Hydrothermal processes
Hydrothermal carbonization (HTC). The reactions during HTC
involve hydrolysis, dehydration, decarboxylation, condensation,

polymerization, aromatization, and condensation, among
others43. Dehydration and decarboxylation are the primary
mechanisms in HTC44. Consequently, higher H/C and O/C ratios
in the feedstock result in higher H/C and O/C ratios in the
produced hydrochar, as shown in the HTC H/C and H/O dia-
grams (Fig. 3).

Fig. 1 Schematic of the construction and analysis of van Krevelen diagrams. Using the yield of pyrolysis oil as an example. a Pearson correlation of the
raw dataset36. b Kernel density diagram for determination of the range of the predicting area. c The ML methods used in collected literature. d The fitting
diagram of trained model. e Plot smoothing of the 2D-partial dependence plot which used H/C and O/C as axis. f The ascended 3D van Krevelen diagram.

Fig. 2 Van Krevelen diagram for torrefaction product. The diagram is
constructed based on previous work by Onsree et al.70. The feedstock
investigated is lignocellulosic biomass, including agricultural and forestry
residues, as well as energy crops. The x-axis and y-axis represent the O/C
and H/C of feedstock, respectively, while the z-axis indicates the yield of
the product.
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The training data for HTC includes various types of
biodegradable wastes. For food waste, different intermediates
are produced during hydrolysis, with amino acids being the main
intermediate after protein hydrolysis44. These intermediates serve
as substrates for producing heterocyclic compounds45, particu-
larly N-containing ring compounds46, through Maillard
reactions45,46. This explains why using feedstocks located in
regions with relatively high O/C ratios and relatively low H/C
ratios results in the production of hydrochar with a higher N/C
ratio. Additionally, sewage sludge typically contains significant

amounts of undigested proteins and extracellular polymeric
substances from microbial aggregates47,48.

In most empirical formulas, the HHV value is primarily
determined by the C, H, and O contents. The C and H contents
positively correlate with HHV value, while the O content has a
negative correlation49. The HTC HHV diagram aligns with these
trends. The results in the HTC C diagram exhibit a similar trend
to the results in the HTC HHV diagram, possibly due to the
higher carbonization degree of hydrochar, which increases the
influence of the C content on the HHV value. Consequently, the

Fig. 3 Van Krevelen diagrams for hydrothermal carbonization (HTC), hydrothermal liquefaction (HTL), and hydrothermal gasification (HTG)
processes. The HTC diagrams are established based on previous work by Li et al.71 using biodegradable waste such as sewage sludge, food waste, and
manure as the investigated feedstock. The HTL diagrams are established based on previous work by Li et al.55 using biomass and biodegradable waste,
including algae, sludge, food waste, and manure as the investigated feedstock. The HTG diagrams are established based on previous work by Liu et al.72

using coal as the investigated feedstock. HHV higher heating value, ER energy recovery, CR carbon recovery.
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HTC HHV diagram and the HTC C diagram share similarities. C
content is important in predicting energy yields, as evidenced by
the pattern observed in the HTC ER diagram, which mirrors the
pattern in the HTC CR diagram. This similarity is not surprising,
as the equations for calculating ER (Eq. 2) and CR (Eq. 3) depend
linearly on the mass yield Eq. 1.

Lignin has a lower H/C ratio (1.14) compared to cellulose
(1.67) and hemicellulose (1.60)50. Therefore, a lower H/C ratio in
lignocellulosic biodegradable waste indicates a relatively higher

lignin content. Lignin exhibits better thermal stability than
cellulose and hemicellulose, which is reflected in the HTC Yield
diagram: the lower the H/C ratio, the lower the yield. Similarly,
the HTC C diagram illustrates that a lower H/C ratio results in
lower C content in the hydrochar. The hydrochar produced from
lignin has a relatively lower C content than that produced from
cellulose and hemicellulose51. Hence, feedstock with a higher
lignin content will have a lower H/C ratio and produce hydrochar
with lower C content.

Fig. 4 Van Krevelen diagrams for the products of char, bio-oil, and gas yielded from pyrolysis. The char diagrams are established based on the
previous work by Li et al.73. The investigated feedstock is lignocellulosic biomass, including corncob, rice husk, sawdust, wood, etc. The bio-oil diagrams
are established based on the previous work by Zhang et al.36. The investigated feedstock is biomass, including seed, rice husk, algae, etc. The pyro-gas
diagrams are established based on the previous work by Tang et al.74. The investigated feedstock is biomass, including agriculture and forest waste, algae,
etc. VM volatile matter, FC fix carbon.
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Hydrothermal liquefaction (HTL). The composition of the
feedstock elements and compounds, as well as the order of pro-
duct separation, play a crucial role in HTL52. Some small mole-
cular compounds are considered as being light biocrude oil and
can be extracted using organic solvents such as petroleum ether,
dichloromethane, acetone, and ethyl acetate53,54. In the original
work55, order 0 represents bio-oil extraction followed by phase
separation, while order 1 represents the reverse process. Conse-
quently, bio-oil obtained using order 1 mainly contains heavy
organics, whereas bio-oil obtained using order 0 contains both
light and heavy organics. As depicted in the HTL yield diagrams,
the bio-oil yield and ER values of order 1 are relatively higher
compared to those of order 0.

Both orders in HTL yield diagrams indicate that a low H/C in
the feedstock favors bio-oil yield. However, the HTL yield
diagram for order 0 shows that a low O/C contributes to a high
bio-oil yield, while the opposite trend is observed in the HTL
yield diagram for order 1. The main organics in biodegradable
waste are carbohydrates, lipids, and proteins. Lipids have the
relatively lowest O/C ratios56 and the highest HTL bio-oil yield
rates among these organics57. Furthermore, the HTL of lipids
produces more light organics than that of lignocelluloses and
proteins58,59. Consequently, a higher O/C ratio in the feedstock
leads to a higher yield of heavy organics and a lower yield of light
organics in the bio-oil.

Hydrothermal gasification (HTG). N2, CO2, H2, CH4, and CO are
the main gases generated from HTG60. HTG reactions are
complex61, but the diagrams can be explained through the main
reactions. The HTG diagrams for CO2 and H2 exhibit similar
patterns because both gases are products of the reaction
Cþ 2H2O"CO2 þ 2H2. Moreover, the H2 and CH4 diagrams
exhibit a reverse pattern, which can be attributed to the reaction
Cþ 2H2"CH4.

A lower H/C ratio of a feedstock tends to result in a higher
yield of CO, CO2, and CH4, as shown in the corresponding HTG
diagrams. This can be explained by the requirement of C for the
production of C-containing gases. Regarding the feedstock’s O/C
ratio, a lower O/C ratio increases the yields of CO and CH4 while
decreasing the yield of CO2. A lower O/C ratio in the feedstock
reduces the abundance of O and favors CH4 production, while
incomplete reactions produce CO instead of CO2.

Pyrolysis
Pyrolysis-char. The pyrolysis-char H diagram demonstrates an
apparent positive correlation between the H/C ratio of feedstock
and the H content of char, as shown in Fig. 4. This can be
attributed to feedstock’s higher initial hydrogen content, resulting
in more hydrogen residues in the solid products. However, the
patterns observed in the other seven pyrolysis-char diagrams are
challenging to explain. These results will be discussed in the
section on “Reliability analysis” in Supplementary Note 6.

Pyrolysis-bio-oil. Pyrolysis-bio-oil Yield diagram shows that a
higher H/C ratio and lower O/C ratio lead to increased bio-oil
yields. Caprariis et al.62 observed that the use of oak wood with a
high H/C ratio could generate a higher oil yield compared to the
use of natural hay and walnut shell with low H/C ratios, which is
in agreement with the result in the diagram.

The H/C and O/C diagrams for Pyrolysis-bio-oil highlight that
the O/C ratio of the biomass predominantly influences the H/C
and O/C ratios in the bio-oil. Generally, an elevation in the
biomass’s O/C ratio correspondingly increases the H/C and O/C
ratios in the bio-oil. Cellulose and hemicellulose exhibit O/C
ratios of 0.83 and 0.80, respectively. These values are noticeably

higher than lignin’s O/C ratio, which stands at 0.3550. Notably,
bio-oil derived from the pyrolysis of cellulose and hemicellulose
(xylan) demonstrated a superior H/C ratio compared to that from
lignin pyrolysis63. As a consequence, a higher O/C ratio in
biomass, indicating a reduced lignin content, translates to a
heightened H/C ratio in the resultant bio-oil.

The Pyrolysis-bio-oil HHV diagram shows that the bio-oil
tends to have a relatively low HHV value when derived from
biomass with low H/C (0.90–1.25) and O/C (0.30–0.75) ratios.
However, the HHV of bio-oil reaches its maximum value for
biomass with medium H/C (1.30–1.50) and high O/C (0.75–1.00)
ratios. It should be noted that higher HHV values correspond to a
higher economic value of bio-oil, as its combustion can generate
more heat, providing meaningful guidance for the commercial
applications of bio-oils derived from different types of biomasses.

The viscosity of bio-oil is more sensitive to the O/C ratio in the
biomass, as is shown in the bio-oil Viscosity diagram. The bio-oil
derived from biomass with O/C ratios ranging from 0.60 to 0.65
has a high viscosity, suggesting that the bio-oil has a high average
molecular mass64. Hence, biomass with an O/C ratio in this range
is most recommended for producing bio-oil for lubricating oil
applications. The pyrolysis of biomass with high H/C and O/C
ratios can decrease the viscosity in the bio-oil, which agrees with
the experimental observations by Fahmi et al.64.

Pyrolysis-gas. Higher H/C and O/C values of feedstocks represent
a higher potential for carbonization, resulting in a higher yield of
pyro-gas, as shown by the Pyrolysis-gas Yield diagram. The main
gases produced from biomass pyrolysis are CO2, CO, H2, and
CH4

65. Except for CO2, the other three gases can be used as fuel.
Therefore, it is desirable to minimize the yield of CO2 when
considering the pyro-gas. The production of CO2 and CO is
highly correlated. The CO/CO2 ratio can be an important para-
meter for evaluating the fuel quality of a pyro-gas. The pyrolysis-
gas CO/CO2 diagram shows that the CO/CO2 ratio is mainly
determined by the feedstock’s H/C ratio: the yield of CO can be
higher than that of CO2 when the feedstock’s H/C is lower than
approximately 1.5. The HTG CO diagram also shows a trend that
a higher CO yield is correlated to a lower feedstock H/C, which
can be explained by the high C content supplied from the
feedstock.

Gasification. The Gasification Yield diagram suggests lower O/C
and higher H/C values lead to higher syngas yields, as illustrated
in Fig. 5. The diagram shows the highest syngas yield when
O/C < 0.35 and H/C > 1.70, which typically represents the fuel
compositions of plastic-rich waste materials66. Similar findings
have been reported in previous studies on biomass and waste
gasification. For example, Arena et al.67 studied the gasification of
five different types of waste using a pilot-scale bubbling fluidized
bed gasifier. They found that the waste fraction containing mostly
plastics generated a higher syngas yield compared to the gasifi-
cation of packaging waste, which had a lower plastic and higher
lignocellulosic fraction.

The yield of CO in the syngas is directly proportional to the
O/C content of the feedstock and does not vary significantly with
different H/C values, as is shown in the Gasification CO diagram.
Gasification of feedstock containing oxygenated compounds
(with higher O/C ratios) produces more CO68. On the other
hand, the relationship between the CO2 yield and the H/C and
O/C ratios of the feedstock is more complex, as depicted in the
Gasification CO2 diagram. To minimize the generation of CO2 in
the syngas, feedstock with O/C ratios between approximately 0.35
and 0.45 should be used, while the production of CO2 is likely to
increase when the O/C value is outside that range.

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-023-01077-z

6 COMMUNICATIONS CHEMISTRY |           (2023) 6:273 | https://doi.org/10.1038/s42004-023-01077-z | www.nature.com/commschem

www.nature.com/commschem


In the Gasification H2 diagram, at O/C < 0.6, higher H/C values
in biomass result in higher H2 yields. However, at O/C > 0.6,
higher H/C values do not always correspond to higher H2 yield.
Instead, the value decreases significantly and remains relatively
constant at different H/C values. This observation aligns with
previous studies on fluidized bed gasification of biomass and
plastic waste, which have shown that increasing the H/C ratio by
increasing the plastic fraction in biomass-plastic fuel mixtures
generally leads to a higher H2 generation68.

The Gasification CH4 diagram follows a similar trend to the
gasification diagram of H2, reaching its higher level when the
feedstock has lower O/C values. The production of CH4 during
waste gasification is linked to the fundamental components of the
waste materials. Long-chain hydrocarbon compounds in plastics

undergo cracking and reforming reactions during gasification,
resulting in the formation of lighter hydrocarbon gases such as CH4

and C2H4
69. This process explains why the yield of CH4 is higher

during the gasification of high H/C feedstock, such as plastics.

Summary of biomass thermal conversions. A brief summary is
provided in this section, outlining recommendations for the
thermal conversion of biomass with varying H/C and O/C ratios
to achieve different target products. Notably, ML models for
torrefaction, HTL, pyrolysis-bio-oil, pyrolysis-gas, and gasifica-
tion were built using datasets from biomass feedstock. The
insights from these models can be succinctly represented on a van
Krevelen diagram, as depicted in Fig. 6.

Fig. 6 Summary of recommendations for the thermal conversion of biomass to achieve different targets, illustrated using a Van Krevelen diagram.
Only models created from datasets containing biomass feedstock are included.

Fig. 5 Van Krevelen diagrams for the gas products of gasification. The gasification diagrams are established based on the previous work by Serrano
et al.75. The investigated feedstock is lignocellulosic biomass and plastics.
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● When aiming for a high solid yield, lignocellulosic biomass
with an H/C ratio greater than 1.5 and biodegradable waste
with an H/C ratio greater than 1.4 are not recommended
for conversion via torrefaction and hydrothermal carboni-
zation, respectively. Additionally, biodegradable waste with
an O/C ratio lower than 0.4 is ideally treated using HTC to
yield hydrochar with a high HHV.

● Biodegradable waste and biomass possessing an O/C ratio
above 0.8 could be converted using HTL to achieve a
substantial yield of heavy organics.

● HTG processing of coal with an O/C ratio below
approximately 0.10 tends to favor the production of CO
and CH4. However, when the O/C ratio exceeds 0.1, the
production of H2 and CO2 is more prevalent.

● For biomass with an O/C ratio less than approximately 0.6,
pyrolysis is the recommended treatment to yield a high
quantity of bio-oil. Conversely, biomass with an O/C ratio
ranging from about 0.6 to 0.7 has the potential to produce
bio-oil with increased viscosity.

● Biomass exhibiting a H/C ratio of less than approximately
1.5 can undergo pyrolysis to produce superior-quality
pyro-gas, characterized by a high CO/CO2 ratio.

● The CH4 content in gases stemming from biomass
gasification can be augmented when the biomass’s O/C is
less than 0.4. Conversely, a higher CO content is achieved
when the biomass’s O/C exceeds 0.5.

Conclusions
We have constructed a series of van Krevelen diagrams to
visually illustrate the relationships between feedstocks and pro-
ducts in thermal conversion techniques including torrefaction,
hydrothermal carbonization, hydrothermal liquefaction, hydro-
thermal gasification, pyrolysis, and gasification. The reliability of
these diagrams is evaluated based on the model’s accuracy and
the significance of the H/C and O/C parameters. Interestingly,
the diagrams exhibit a peculiar pattern associated with low-
reliability performance, particularly in the case of pyrolysis-char
diagrams.

These diagrams contribute to a better understanding of the
respective thermal processes and provide valuable insights for
decision-making in practical scenarios. Specifically, they assist in
the selection of an appropriate thermal treatment method for a
specific feedstock, thereby optimizing the overall performance of
the thermal process by considering the blending of different
feedstocks to achieve optimal H/C and O/C ratios. By utilizing
these diagrams, stakeholders can make informed choices and
maximize the efficiency of thermal conversion processes.

In addition to the feedstock-product relationship, the
feedstock-reaction connection is also of great importance. The
same methodology can be applied to create diagrams that illus-
trate the relationship between the feedstock and pyrolytic acti-
vation energy (Supplementary Note 5). Therefore, further
investigation to establish a series of diagrams expressing the
feedstock-reaction relationship is of significant interest.

Methods
The present study builds upon the databases, methods, and
findings of eight previous works that specifically investigated ML
in the context of torrefaction70, hydrothermal carbonization
(HTC)71, hydrothermal liquefaction (HTL)55, hydrothermal
gasification (HTG)72, pyrolysis36,73,74, and gasification75. The
referred works and their input and output parameters are given in
Table 1. T
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Mass yield (Yield) is typically determined directly using a well-
established equation:

Yield ¼ mdry product

mdry feedstock
ð1Þ

The energy recovery (ER) is defined as follows44:

ER ¼ Yield � HHVproduct

HHVfeedstock
ð2Þ

The carbon recovery (CR) has been determined using the
following equation71:

CR ¼ Ym � Canbon contentproduct
Carbon contentfeedstock

ð3Þ

These previous works have demonstrated the feasibility and
reliability of utilizing the datasets they employed to develop
robust ML models for the respective thermal conversion pro-
cesses. By leveraging the insights and findings from these prior
studies, we have been able to enhance our understanding and
analysis of thermal conversion processes through the application
of ML techniques. Specifically in this study, we have engineered
some features and targets for a better conclusion. These changes
include:

1. Converting the contents of H and O to the atomic ratios of
H/C and O/C, respectively.

2. Some minor revisions of the datasets where the former
researchers made some mistakes.

3. For the pyrolysis-gas models, we investigate the outputs of
yield and the atomic ratio of CO/CO2.

The original datasets and their preliminary analysis can be
obtained from the sources cited in the respective papers or can be
requested from the authors directly. These datasets serve as a
foundation for our work and have been modified to improve the
consistency and accuracy of our analyses.

Among the eight referenced studies, the random forest method
has been implemented most frequently, with a testing R2 value
greater than 0.75 (as shown in Fig. 1). To establish a set of general
diagrams for different thermal conversion processes, we con-
sistently employ the random forest regressor for generation of the
3D van Krevelen diagrams.

To generate the van Krevelen diagram, a two-way partial
dependence analysis is performed based on the constructed
model, focusing on the H/C and O/C ratios. The reliability of the
produced diagram is highest within the ranges where the training
data is most abundant. Therefore, appropriate ranges for H/C and
O/C are determined by evaluating the kernel density of the
training data distribution (Supplementary Note 7).

During the analysis, all other input parameters are set to their
mean values from the training dataset. The resulting two-way
partial dependence plots represent the predicted outcomes under
specific input conditions. To obtain a van Krevelen diagram that
can represent the relationship between feedstock and product
more generally, smoothing is applied to the original two-way
partial dependence plots (Supplementary Fig. 5).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. The information on the dataset used for training
biomass torrefaction machine learning model is given in Supplementary Data 1.

Code availability
In the conduct of this study, we utilized the Random Forest algorithm as implemented in
the Scikit-Learn Python library, version 0.23.1. We would like to acknowledge the

developers of Scikit-Learn for providing this valuable resource openly. The algorithm was
used in its original form without any modifications, ensuring the reproducibility and
integrity of our research. For further reference, the library can be accessed at https://
scikit-learn.org/0.23/.
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