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LIOUVILLE'S THEOREM AND PHASE· SPACE COOLING* 

ABSTRACT 

Robert L. Mills 
Ohio State University 
Columbus, OH 43210 

and 
Andrew M. Sessler 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, CA 94720 

September 28,1993 

A discussion is presented of Liouville's theorem and its consequences for 
conservative dynamical systems. A formal proof of Liouville's theorem is 
given. The Boltzmann equation is derived, and the collisionless 
Boltzmann equation is shown to be rigorously true for a continuous 
medium. The Fokker-Planck equation is derived. Discussion is given as to 
when the various equations are applicable and, in particular, under what 
circumstances phase space cooling may occur. 

1. INTRODUCTION 

LBL-34667 
CBP Note-039 

This workshop is devoted to cooling, so why start with a paper on Liouville's theorem [1], a 
theorem well-known to be "against cooling"? For very good reason, really, for it is only with a deep 
understanding of when one can Mt cool, that one can design-and properly analyze-cooling systems. 

Back in the "old days", starting in 1955, the MURA (Midwestern Universities Research Assoc.) 
physicists were well aware of the limits imposed by Liouville's theorem [2]. They tried, in fact, to 
produce damping with tapered foils (a scheme which works in principle, but is not practical) and 
slaunched cavities (wrong in principle). Most of this work-for good reason-was unpublished, 
although publication might have prevented others from wasting many hours [3]. 

Besides Liouville's theorem there are other Invariants, enumerated systematically by Poincare, 
which any dynamical system must observe [4]. In this paper we shall only consider the first Poincare 
invariant, i.e., Liouville's theorem. This invariant concerns over-all preservation of phase space 
volume and, therefore, is of relevance to the subject of cooling. 

Starting in 1958 attention at MURA turned to evaluating space charge, or collective, effects; 
first static effects and then dynamic effects [5,6]. It seemed proper to base this analysis upon the 
collisionless Boltzmann equation, or Vlasov equation, but it was rather unclear, in those old days, 
just when that equation was a valid approximation. The present authors made a study of that 
matter, but never published their work [7]. 

It seems appropriate to re-visit the subject and now-some 35 years later-to publish the work. 
At the same time, it seems useful to present-in one review paper-derivations of Liouville's 
theorem, the Vlasov equation, and the Fokker-Planck equation. It is hoped that this will provide 
useful background for a proper understanding of phase space damping, i.e., cooling. 

*Tbis work was supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear 
Physics, of the U.S. Department of Energy under contract no. DE-AC03-76SF00098. 



2. LIOUVILLE'S THEOREM 

This dynamical theorem applies in a conservative Hamiltonian system such as a single particle 
in external magnetic and electric fields. In this case the phase density of many non-interacting 
systems (having slightly different initial conditions) is preserved as one follows the motion of the 
system. 

Thus, this theorem is applicable to a beam of particles when the interaction between particles is 
negligible and can be ignored, which is often true-but not' always true-for high energy beams. ' 

Even within the restrictions of Liouville's theorem it is possible to t.rrange to interchange phase 
space (between. say, longitudinal and transverse degrees of freedom) or, equally interestingly. not 
even to exchange phase space, but to introduce correlations between the degrees of freedom, i.e .• 
"push phase space around". A device that does just this. to distinct advantage for free-electron lasers. 
has recently been proposed [8]. 

A proof of Liouville's theorem can be found in many text books [9,10] .. A simple way of looking 
at this theorem is to think of it as equivalent to the condition of incompressible flow in the phase 
space of a given system. Let the system be described by the N coordinates qa and the N conjugate 
nomenta Pa, a=1.2 •...• N. The phase space is just the 2N-dimensional space with coordinates qa and 
Pat and the development in time of the state of the system is represented by the trajectory of a single 
point in phase space. Just as with fluid flow. there is a well-dermed velocity field at each instant of 
time, which assigns to each point in phase space a definite velocity, with components lJa and Pa given 
as functions of the q's and p's by Hamilton's equations. For fluid flow in any number of dimensions 
the coridition that volumes are preserved by the flow is equivalent to the vanishing of the divergence 
of the velocity field: 

v· v(x)=o . 

For phase space the components of the velocity field are 

qa = vJq,p,t) = aWdpa ' 

Pa = Fa(q,p,t) = ~Wdqa ' 

The divergence condition (1) then becomes 

(1) 

(2) 

(3) 

(4) 

which is automatically satisfied as a consequence of Hamilton's equations. and thus demonstrates the 
validity of Liouville's theorem. It is important to note that the Hamiltonian may depend explicitly on 
the time t. 

Often a dynamical system is represented by an ensemble of possible states. with a distribution 
function f giving the number n(~ v) of particles systems in a small volume ~ V of phase space: 

n{~v}= f{q,P.t}~V . (5) 

If the Qi and Pi are Hamiltonian variables. then ~ V is conserved. and since the number of particles is 
clearly invariant. we deduce that moving with the particles (or set of systems) the density function f 
is constant: 

(6) 

It is interesting to write this out: 
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(7) 

From Hamilton's equations: 

(8) 

From this we can see tJ;lat a stationary distribution - one for which af/dt=0 - must satisfy the 
relationship 

(9) 
~-

The center expression here is the Poisson 'bracket of f with the Hamiltonian, and the vanishing of the 
Poisson bracket, for a function that doesn't depend explicitly on the time, is just the condition that 
the expression f{q,p) be a constant of ,the motion and therefore, normally, a function of the standard 
conserved quantities. For many systems the only such constant of the motion if the energy itself, in 
which case fmust be equal to a function of the Hamiltonian function H: 

f = fIH(q,p)]. (10) 

This result, applied to interacting particles, for which it is not strictly true, but is a very good 
approximation, as we shall see in the next section, was first used in beam physics in 1958 [5]. It has 
been widely used since that time. 

3. LIOUVILLE'S THEOREM FOR A CONTINUOUS MEDIUM WITH CONSERVATIVE 
INTERACTIONS 

The MURA Report, which the authors wrote 35 years ago, still reads very well. This section 
simply consists of the old report [7], somewhat streamlined. The formal proof, of that report, is 
presented in Appendix A 

The study of the motion of particles in an accelerator becomes a many-body problem when the 
interactions between particles are taken into account. It is thus important to investigate the 
possibility of establishing the validity-or approximate validity-of general dynamical theorems 
applicable to the n-body problem. Such a powerful theorem is the one proved here to be an extremely 
good approximate theorem for particles in an accelerator. -

Liouville's theorem asserts that in a 2fN dimensional space (f is the number of degrees of 
freedom of one particle), spanned by the coordinates and momenta of all particles (called "( space), the 
density in phase space is a constant as one moves along with any state point. It is thus a statement 
about the density of points, each point representing a dynamical system. The systems constitute an 
ensemble and of course do not interact. 

The theorem proven here refers to a system of many interacting particles, and asserts that in 
the 2f-dimensional space spanned by the coordinates and momenta of a single system (called a J.l. 
space), the density in phase is a constant as one moves along with any phase point. It is thus a 
statement about the behavior of interacting particles, and thus really quite different from Liouville's 
theorem. 

The validity of the theorem, as well as .the limits of its validity, may readily be seen by the 
following intuitive argument: 

Consider first a system of many particles, N. Suppose these particles are subject to external 
forces derivable from a Hamiltonian (which may even be time-dependent), but there are no 
interactions between the particles. Clearly density in phase in Jl space is a constant of the motion as 
one follows the motion of a phase point. This follows then immediately from Liouville's Theorem in r 
space, since with no interactions between particles Jl space for N particles is simply r space for a 
single particle. 

3 



Consider now a system of a great many particles N, with interactions between the particles. 
Imagine that the solution has been obtained so that we know the motion of all the particles as a 
function of time. Concentrate now on a "small" number of particles n, which initially are localized inJL 
space. We will derme what "small" means shortly. Let all the other particles move along the 
trajectories appropriate to the solution of the N-body problem. If the interactions among the n 
particles can be neglected compared to the interactions between the N-n particles and one of the n 
particles, then these particles are subject to "external forces" and by the first case the density in J.L 
space is a constant as one moves along with the sample group of n particles. This is clearly true for 
any sample, and hence the theorem is established. ( 

That is, the sample size must be small enough compared to N that the influence of the n sample 
particles on one of their number is negligible compared with the influence of the N-n remaining 
particles. At the same time, n must be large enough that fluctuations within the sample can be 
neglected. Both of these conditions can be met if N is sufficiently large, in which case the theorem is 
valid to a good approximation. In the argument given below, the limit of a continuous medium is 
taken so that fluctuation phenomena do not exist. For applications to particle accelerators where we 
consider a number of particles N = 1013 this approximation is very valid, corresponding to neglect of 
particle-particle collisions which throw a particle out of the accelerator, but not neglecting long range 
electromagnetic interactions which are responsible for space-charge limits, plasma oscillations, 
beam-beam interactions and possible two-stream amplification mechanisms. 

Each particle of a system moves under the influence of the force fields due to all the other 
particles of the system, in addition to the externally imposed fields that act equally on all the 
particles. That particle, then, moves according to a perfectly good single-particle Hamiltonian, and 
you might think that Liouville's theorem would be exact for each particle. The reason this doesn't 
work is that the single-particle Hamiltonians are all different, and the velocity fields in J.l. space 
determined by those Hamiltonians are different also. That is, the direction that the point moves iIi J.1 
space depends on which particle you are following, not on just the location in J.1 space, and this spoils 
the picture of incompressible flow that constitutes Liouville's theorem. . 

What makes Liouville's theorem valid to a very good approximation in J.1 space is that the 
individual single-particle Hamiltonians are so nearly similar, because the contribution of anyone 
particle to the force fields is so small. In the continuum limit that contribution is truly negligible, 
and Liouville's theorem for J.1 space becomes exactly valid. The proof is trivially equivalent to the 
proof given above for an entire system; the only approximation that needs to be made is that each 
particle moves in the same force field and is therefore described by the same time-dependent single­
particle Hamiltonian. 

The density p(r,p,t) of particles in J.1 space is logically equivalent to the distribution function 
f(q,p,t) defined for an entire system by Eq. 5, and in the continuum limit it remains constant along 
particle trajectories in exactly the same way. In section 4 we shall see for the explicit case of 
relativistic particles interacting electromagnetically how this approximation yeilds the relativistic 
version of the Vlasov equation, or collisionless Boltzmann equation.· In section 5 we shall discuss the 
additional collision term of the Fokker-Planck equation. 

4. THE VLASOV EQUATION 

For a single particle of mass m and charge e moving in an external field described by the 
potentials (A,cp) we have th.e well-known Hamiltonian [11] 

(11) 

with the momentum given in terms of the velocity v by: 

p=myv+eA (12) 

and 

(13) 
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The collision less Boltzmann equation is equivalent to Eq. 6, the statement that the phase-space 
density, now equal to p(r,v,t), the particle density in J.1 space, is constant as one follows a particle 
trajectory, with p expressed now in terms of velocity rather than momentum: 

(14) 

It is necessary only to find the acceleration v in terms of the electromagnetic force F: 

F=e(E+vx B) (15) 

=d(myv)/dt (16) 

(17) 

Solving for t yields 

v = (lImrXF - vvoF/c2) , (18) 

and substituting this result into Eq. 14 then gives the desired result: 

(19) 

In the non-relativistic limit 

(20) 

the well-known Vlasov, or collisionless Boltzmann, equation. 
Now the discussion of the last section allows us to extend this to many particles. In that case 

we must include collisions between particles which means we have on the RHS, t) 0 0 ,rather 
c:olhslons 

than zero. 
If, however, the particles only interact through the fields E andB then there are no collisions 

and we recover the Vlasov equation; but with E and B the total field (external field plus self-field) and 
p now the distribution function of interacting particles. Obviously Liouville's theorem is applicable. 

5. THE FOKKER-PLANCK EQUATION 

We would like to tum, now, to evaluation of the collision term ~t) 00 on.the RHS of the 
Ot COllISIOns 

Boltzmann equation. Clearly, evaluation depends upon the nature of the forces between particles. For 
hard scattering, such as molecules in a gas undergo, Boltzmann, himself, addressed the subject. 

For Coulomb forces the scattering is primarily into very sman angles (i.e., hardly any change in 
the direction of the particle). In this case we must consider the effect of multiple scattering, thus 
deriving the change in p from many, very small, collisions. The result is the Fokker-Planck equation, 
which has been employed widely in physics. In accelerator physics it has been employed, amongst 
other things, to study intra-beam scattering, the effect of noise on the applied radio frequency, and 
the turbulence in intense charge bunches [12]. 

Let W(v,Av) be the probability density for a particle changing its velocity from v to nAv in time 
At, and suppose for this discussion that the only changes in p are those due to collisions. Then 

p(r,v,t+.L\l}= f p(r,v-.L\,:,t}W(v-.L\v,.L\v)d{Av} . (21) 
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Since 

we can Taylor expand and get 

By definition 

Defining 

t) .. L\t=p(r,v,t+L\t}-p(r,v,t) , 
collISIOns 

p(r,v-L\v,I)W{v-L\vAv) = p(r,v,t)W{vAv) 

f Wd{L\V) = 1 . 

{Av}t L\t = f W L\v d (L\v) , 

(Avpvj}t L\t = f W L\Vj AVj d (L\v) , 

we have the Fokker-Planck collision term: 

The coefficients have been studied extensively in the literature. 

6. DISCUSSION 

(22) 

(23) 

(24) 

(25) 

. (26) 

(27) 

Let us, first of all, review the theorems discussed in this note. Liouville's theorem applies to any 
Hamiltonian dynamical system, that is, a system describable by a Hamiltonian, which. may be time­
dependent. Thus the theorem applies, for example, to a single particle subject to a conservative 
external force, and also to a collection of non-interacting particles, each subject to the same external 
conservative force. . • 

Does Liouville's theorem apply to highly nonlinear, stochastic motion of non-interacting 
particles? Clearly it does, since each particle still constitutes a Hamiltonian system governed by the 
same single-particle Hamiltonian. How then can we reconcile the theorem with the very non­
Liouvillean motion characterized by non-zero Liapunov exponents? From a fme-grained point of 
view, there is no change in phase space density; Liouville's theorem is quite valid. From a coarse­
grained point of view, however, the density in phase space changes significantly. The filaments of 
constant density become ever finer and lots of "air" mixes in, so the coarse-grained density is ever 
decreasing. Notice that the coarse-grained density becomes more and more relevant because, given 
any degree of precision with which density is observed, one only has to wait sufficiently long and the 
coarse-grained density will become appropriate. Notice also that the coarse-grained density can only 
decrease, that is, that only ''heating'', but not "cooling", can occur through this mechanism. 

The Vlasov equation, or collisionless Boltzmann equation as usually used, is only a 
nonrelativistic approximation. It is applicable to a collection of particles, each subject to the same 
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(possibly time-dependent) external forces described by a conservative Hamiltonian, where the strong 
collisional interactions between particles are negligible and the particles interact with each other 
only through their mutual electromagnetic interactions. This interaction may be very significant; the 
collective behavior of plasmas, for example, which is very complicated indeed, is accurately described 
by the Vlasov equation. 

The Fokker-Planck equation is valid when the interacting particles undergo many collisions, 
eah one of which only deflects the particle slightly (multiple scattering). [Is this right? The derivation 
doesn't seem to be limited to smail momentum-transfer collisions.] It is thus a natural extension of 
the Vlasov equation. The Fokker-Planck equation can be used to study, for example, the effect of 
intra-beam scattering. 

Seccindly, let us now discuss under what situations one can have "cooling", that is, damping of 
phase space. The simplest is to have a dissipative system, as, for example, a charged particle 
radiatively coupled to the electromagnetic field[13]. Actually, there are quantum fluctuations in 

. this coupling, which are usually studied by means of the Fokker-Planck equation. 
A second example of a dissipative system is a beam of particles interacting with a foi1[14]. This 

is called "ionization damping", and is very similar to radiation damping. It has been proposed for 
cooling a mu meson beam to make a muon collider. 

A third example is provided by interaction between the 'bot" beam one wishes to cool and a 
"cold" beam of electrons[15]. In this case, "hot" and "cold" refer to transverse temperature. Electron 
cooling has been employed in high-energy physics, though its most important applications have been 
in nuclear physics. 

A rather different approach to "circumventing Liouville" is to develop a system which probes 
the distribution of particles in mu space and to improve that distribution by decreasing the emittance 
of the beam. Stochastic cooling is of this nature and, as we all know, has been very effectively used in 
high-energy physics[16]. 

Finally, let us comment on the transition from the Vlasov equation, where there is no damping 
of phase space, to a damping situation, such as is provided by radiation damping. Clearly, in the 
latter case, if we include all the modes of the electromagnetic field (photons, if we think quantum 
mechanically) with the particles, then the whole system is described by a Hamiltonian and Liouville's 
theorem applies. Thus, from this 'big point of view" we only have transfer of phase volume among 
the various degrees of freedom and no damping of the total phase space. Nevertheless, there is 
damping of the particle phase space, spanned by all the particle coordinates and momenta, and 
"undamping" of the region spanned by electromagnetic inode coordinates and momenta. 

If we have a group of particles coupled without radiative damping to one or more modes of the 
electromagnetic field, then the motion of the particles is described by the yIasov equation and there 
is no damping iIi the particle phase space. In this situation of particles coupled dynamically to the 
electromagnetic field, one might think - erroneously - that Liouville's theorem refers only to the total 
phase space spanned by particle coordinates and momenta and field coordinates and momenta. 
Thus, especially in the case where the electromagnetic field is self-generated and growing in time (as 
in a free-electron laser), one might expect damping in the particle phase space and undamping in the 
electromagnetic field phase space, as described in the previous paragraph. The Vlasov equation 
shows, however, that this thinking is quite wrong. Provided the number of particles is large, as 
discussed in sec.3, each particle moves in the same well-determined electromagnetic field, described 
by a good single-particle Hamiltonian, and particle phase space is conserved. Notice that this is true 
whether or not the electromagnetic field is removed from the particle's surroundings (and, for 
example, used for some· purpose); i.e., phase space is conserved whether or not the system is 
dissipative of energy.· 

What, then, is needed to achieve a violation of Liouville's theorem? There are just two ways in 
which the mu-space Liouville's theorem is violated at the microscopic level: through. radiation 
damping, the dissipative self-force on the charged particles, and through the failure of the condition 
discussed above, that the contribution of anyone particle to the electromagnetic field distribution can 
be neglected. The effects of radiation damping are well understood, and are not under discussion 
here, while the number of particles in a typical accelerator beam is so great that the latter condition 
is satisfied to an excellent degree. For this discussion, then, Liouville's theorem holds for mu space. 
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How, then, do we achieve the apparent violations of Liouville's theorem in various methods of 
beam cooling? As always, Liouville's theorem breaks down as soon as you work with a coarse-grained 
average density in phase space. The usual effect of this, due to the normal filamenting of volumes in 
phase space, is a reduction of phase space density, but the game we are playing is to reverse ~is 
normal effect by playing Maxwell's demon. We probe the distribution in mu space, determine which 
parts are occupied and which are not, and then adjust the electromagnetic fields so that the occupied 
parts move closer together and the unoccupied parts go elsewhere. The time-dependent fields that 
we introduce do not alter the fact that the same single-particle Hamiltonian governs the motion of 
every particle, and thus do not destroy the validity of Liouville's theorem at the microscopic leve1. 
The coarse-grained average density, though, increases in the occupied regions of phase space and 
decreases, necessarily, for the unoccupied regions. For occupied and unoccupied, of course, you can 
substitute more densely and less densely occupied. 

What, then, are the limitations on how far you can play this game? The question is simply how 
precisely you can probe mu space, and how precisely you can dissect and manipulate it; i.e., what is 
the spacial resolution of the probe. In some cases a measure of this precision is the wavelength of the 
electromagnetic signals involved in the process; in other cases, such as in stochastic cooling, it is 
more the "effective wavelength", since the dipole mode sensed by the pickup has a very long 
wavelength, but its amplitude is measured with very great precision. If the spacial resolution is 
greater than the inter-particle spacing, then no further cooling is possible. Others have argued that 
the spacvial resolution should be compared with the final beam emittance. We believe that this 
question is unsettled, and note that 155 years after Liouville's work there are still interesting and 
unresolved aspects of his remarkable theorem. 

7. ACKNOWLEDGMENTS 

We wish to thank Swapan Chattopadhyay, Kwang-Je Kim, Hiromi Okamoto, George Schmidt, 
and Simon Yu for illuminating discussions. 

REFERENCES 

[1] J. Liouville, Journ. de Math.,a, 349 (1838). 
[2] K.R. Symon and A.M. Sessler, Methods of radio frequency acceleration in fixed field 

accelerators, Proc. of CERN Symp. on High Energy Accelerators, p. 44, CERN, Geneva (1956). 
[3] Members of the MURA Group (private communication). 
[4] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York (1978), 

p.238. 
[5] C.E. Nielsen and AM. Sessler, Rev. Sci. Inst.aQ, 80 (1959). 
[6] C.E. Nielsen, A.M. Sessler and K.R. Symon, Longitudinal instabilities in intense relativistic 

beams, Proc. of CERN Symp. on High Energy Accelerators, p. 239, CERN, Geneva (1959); AA 
Kolomenskij and AN. Lebedev, Certain beam-stacking effects in fxed-feld macr-et systems, ibid 
p.1l5. 

[7] R.L. Mills and A.M. Sessler, Liouville's theorem for a continuous medium with conservative 
interactions, Midwestern Universities Research Association, MURA-433, Oct. 8, 1958 
(unpublished). 

[8] A.M. Sessler, D.H. Whittum and L.-H. Yu, Phys. Rev. Lett. £1, 309 (1992) .. 
[9] H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, MA (1980), p. 426; AJ. 

Lichtenberg, Phase Space Dynamics of Particles, Wiley, New York (1969). 
[10] K. Miyamoto, Plasma Physics for·Nuclear Fusion, The MIT Press, Cambridge, p. 102 ff(1976). 
[11] J.D. Jackson, Classical Electrodynamics, Wiley, New York (1975), p. 574. 

8 



[12] P.J. Channell and A.M. Sessler, Nucl. Instr. and Methods 1M.. 473 (1976); D. Boussard, G. 
Dome and C. Grazini, The influence of rf noise on the lifetime of bunched proton beams, 11th 
Inter. Conf. on High-Energy Accelerators, CERN, Birkhauser, Basel (1980), p. 620; A Piwinski, 
Intra-beam scattering, 14th Inter. Conf. on High Energy Accelerators, SLAC, Stanford (1974), p. 
405. . 

[13] K. Robinson, Phys. Rev. 111,373 (1958); M. Sands, Phys. Rev.~, 470 (1955). 
[14] Members of the MURA Group (private communication); D. Neufi'er, Particle Accelerators 14,75 

,1 (1983) . 
. [15] G.I. Budker, Status report of works on storage rings at Novosibirsk, Proc. Int. Symp. on Electron 

and Positron Storage Rings, Saclay (1966), p. II-1-1; W. n.ells, Electron cooling, Physics of High 
Energy Particle Accelerators, AlP Conf. Proc. 81, Al~, New York (1982),.p. 656. 

[16] S. van der Meer, Stochastic damping of betatron oscillations in the ISR, CERN Internal Report 
CERNIISR-POn2-31 (1972); S. van der Meer, An introduction to stochastic cooling. Physics of 
Particle Accelerators, AlP Conf. Proc.1M.. AlP, New York (1987), p. 1628. 

APPENDIX A: Formal Proof of Liouville's Theorem for a Continuous Media 

Let Ai (i = 1. ---, 2f,) be parameters labelling the particles of the medium (2f dimensional phase 
space; this is the J.L space); dn = o-dAl ... dA2f = number of particles in 'volume' element dA; 0- = constant 
'density' with respect to A. 

Let 1ta(A) = momentum density = o-px. qa(A) = position of particle A. 
The Hamiltonian is 

where h and v do not depend explicitly on A, and the equations of motion are 

Let us introduce a condensed notation: 

gs =qs. s=I •... ,/ 

=-1Cs , s=/+I, ... ,2/. 

The equations of motion may be written 

where 

Es./+s = 1. s = 1, .... / 
E/+s•s = -1. s= 1, ... ,/ 
Est = 0, otherwise. 

9 
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(A2) 

(A3) 

(A4) 

(AS) 

(A6) 



or 

Clearly Est is antisymmetric. Now the density p(q,1t) in phase space is given by 

pdqdn = Gd)' 

pdt; = Gd)' • 

I I . - = - x Jacobian p (J 

= 1. x detl at;s I 
(J a).j 

= ~fl, say. 

" 

(A7) 

(AS) 

(A9) 

The inverse matrix to d1;Jdlj is of course dAj/d1;s, and the adjoint to d1;JdAi is fl ~~~ .Thus we 

have for the rate of change of ~ along a trajectory O. = constant): 

d (I) I afll 
dt p = (J tji ,l=conslant 

=1. L(fl a).j) a2
t;s , 

(J . at;s ata).j 
I,S 

(AlO) 

but 

(All) 

= LEst ~~~ Mtr and Mtr is symmetric, 
r,t I 

so 
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.; 

(A12) 

since £ is anti symmetric and M is symmetric. So the density in Jl space does indeed remain constant 
along any trajectory . 
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