
UC San Diego
UC San Diego Previously Published Works

Title
On the widths of Stokes lines in Raman scattering from molecules adsorbed at metal 
surfaces and in molecular conduction junctions

Permalink
https://escholarship.org/uc/item/3qz1p16k

Journal
The Journal of Chemical Physics, 144(24)

ISSN
0021-9606

Authors
Gao, Yi
Galperin, Michael
Nitzan, Abraham

Publication Date
2016-06-28

DOI
10.1063/1.4954912
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3qz1p16k
https://escholarship.org
http://www.cdlib.org/


On the widths of Stokes lines in Raman scattering from molecules

adsorbed at metal surfaces and in molecular conduction junctions
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Abraham Nitzan‡

Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA and

School of Chemistry, Tel Aviv University, Tel Aviv, 69978, Israel

Abstract

Within a generic model we analyze the Stokes linewidth in surface enhanced Raman scatter-

ing (SERS) from molecules embedded as bridges in molecular junctions. We identify four main

contributions to the off-resonant Stokes signal and show that under zero voltage bias (a situation

pertaining also to standard SERS experiments) and at low bias junctions only one of these contri-

butions is pronounced. The linewidth of this component is determined by the molecular vibrational

relaxation rate, which is dominated by interactions with the essentially bosonic thermal environ-

ment when the relevant molecular electronic energy is far from the metal(s) Fermi energy(ies). It

increases when the molecular electronic level is close to the metal Fermi level so that an additional

vibrational relaxation channel due to electron-hole (eh) exciton in the molecule opens. Other con-

tributions to the Raman signal, of considerably broader linewidths, can become important at larger

junction bias.
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I. INTRODUCTION

Molecular optoelectronics is an active field of research made possible by advances in laser

technology and nanofabrication.[1] The possibility to conduct optical measurements in open

non-equilibrium nano-systems resulted in the appearance of new diagnostic tools, and of-

fers a route to optical control schemes such as switching in molecular electronics devices.

Standard observables of optical spectroscopy can yield new information when monitored in

open current-carrying molecular junctions. For example, current-induced fluorescence[2, 3]

yields information on molecular resonances in the non-equilibrium system and makes imag-

ing at submolecular resolution feasible, while the intensity of the emitted light corresponds

to charge current noise at optical frequencies[4, 5] and can yield information on fast voltage

transients at the tunnel junction.[6] Raman spectroscopy of current-carrying junctions can

serve as a diagnostic tool similar to inelastic tunneling spectroscopy, and as an indicator for

current-induced heating of electronic and vibrational degrees of freedom.[7–9] (Possible pit-

falls of such characterization were discussed theoretically [10, 11]). Recently, measurements

of dc current and/or noise in response to laser pulse pair sequence was suggested as a vari-

ant of pump-probe spectroscopy for molecular junctions capable of providing information

on intra-molecular dynamics at sub-picosecond timescale.[12, 13]

As noted above, the ability to characterize vibrational structure of a molecular device

makes Raman scattering similar to inelastic electron tunneling spectroscopy (IETS). The

corresponding spectra are characterized by their peak positions and heights, as well as line-

shapes and linewidths. In addition to standard peaks, rich IETS lineshape features caused

by interference between elastic and inelastic scattering channels are known.[14, 15] Simi-

lar interference features in Raman scattering were recently discussed.[16] The dependence of

(resonant) IETS spectra on gate and source-drain biases was measured and discussed.[17–19]

It appears to primarily manifest the sensitivity of molecular normal modes to the molecule

charging state.[20, 21] Similarly, a shift in the frequencies of Stokes lines with bias was

observed[9, 22] and was shown to result at least partly from the voltage dependence of the

charge on the molecule.[23–26] Finally, the linewidths of IETS signals where studied both

experimentally[27] and theoretically[28] and were shown to be dominated by the strength

of electron-phonon interactions. No such study has been done so far for Raman scattering

from molecular junctions.
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The present paper focuses on the latter issue: we identify the main contribution to the

observed Raman intensity and analyze, using a generic model, the non-monotonic depen-

dence of the Stokes linewidth on the gate and bias potentials. In Section II we introduce our

model for an illuminated molecular junction as well as our calculation methodology for off-

resonant Raman scattering from this system. Section III presents our results and Section IV

concludes.

II. MODEL AND METHOD

We consider junction comprised of a molecule coupled to two metallic contacts, L and R,

each at its own equilibrium. The molecule is represented by two electronic levels (ground,

εg, and excited, εx, states) [29] and a molecular vibration, taken harmonic of frequency

ωv, linearly coupled to the levels populations (an Holstein-type model). The junction is

subjected to an external radiation field, represented by a set of quantum harmonic modes

{να} (see sketch in Fig. 1). One of these modes, of frequency νi represent the incident mode

that pumps the system. All other modes, {νf}, are taken to be vacant. The Hamiltonian is

Ĥ = Ĥ0 + Ĥrad + V̂ (1)

g

x

Dgx(Qv)
L

R
i f

FIG. 1. (Color online) A sketch of the model for off-resonant Raman scattering in a junction.

The junctions consists of a molecule (modeled by two-level system - εg and εx) coupled to two

metallic contacts each characterized by its own electrochemical potential µL and µR. Off-resonant

Raman signal originates from the dependence of the transition dipole moment ~Dgx on vibrational

coordinate Qv. νi and νf are incoming and outgoing photon frequencies.
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where Ĥ0 represents the dark junction, Ĥrad is Hamiltonian of the radiation field, and V̂ is

the molecule-field coupling. Explicitly

Ĥ0 =
∑
m=g,x

εmn̂m + ωvv̂
†v̂ +

∑
k

εkn̂k +
∑
β

ωβ b̂
†
β b̂β

+
∑
k,m

(
Vkmĉ

†
kd̂m +H.c.

)
+
∑
m=g,x

MmQ̂vn̂m (2)

+
∑
β

V th
β Q̂βQ̂v

Ĥrad =
∑
α∈i{f}

ναâ
†
αâα (3)

V̂ =
∑
α

(
UαD(Q̂v) â

†
αD̂ +H.c.

)
(4)

Here d̂†m (d̂m) and ĉ†k (ĉk) create (annihilate) electrons in the molecular level m and state

k of the metal contacts, respectively. n̂m = d̂†md̂m and n̂k = ĉ†kĉk are the corresponding

electron number operators for states m ( = g, x) of the molecule and k of the contacts.

D̂† = d̂†xd̂g and D̂ = d̂†gd̂x are molecular excitation and de-excitation operators. v̂† (v̂) and

b̂†β (b̂β) create (annihilate) vibrational quanta in the molecule and mode β of the thermal

bath, respectively. Q̂v = v̂+ v̂† and Q̂v = b̂β + b̂†β are the oscillators position operators. The

thermal bath accounts for energy dissipation due to coupling of the primary vibrational mode

to other vibrational modes of the molecule and environment, i.e. other molecules, phonons

in contacts, etc. â†α (âα) creates (destroys) photon in the mode α of radiation field. Note that

this model contains two interactions that can cause inelastic light scattering. First is the

dependence of the molecule-field coupling U on the vibrational coordinate. The other is the

polaronic coupling term in Eq.(2) whose importance is measured by the electron-vibration

coupling M .

Following Refs. [30, 31] and focusing on the low voltage bias regime, we consider only

‘normal Raman’ scattering, i.e. a process where the initial molecular state is its ground

state.[32] Raman scattering is a coherent process of fourth order in the matter-radiation field

coupling (two orders correspond to the outgoing photon, blue line in Fig. 1, and two orders

correspond to the incoming photon, red line in Fig. 1). Explicit steady-state expression for

the ‘normal Raman’ scattering from the initial mode i to a final mode f of the radiation
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field is (see Ref. [31] for details)

Ji→f =

∫ +∞

−∞
d(t′ − t)

∫ 0

−∞
d(t1 − t)

∫ 0

−∞
d(t2 − t′)

e−iνf (t
′−t) e−iνi(t1−t2)× (5)〈

ÛiD(t2)D̂(t2) ÛDf (t
′)D̂†(t′) ÛfD(t)D̂(t) ÛDi(t1)D̂

†(t1)
〉

where ÛαD ≡ UαD(Q̂v). Here νi and νf are frequencies of incoming and outgoing photons, op-

erators are written in the Heisenberg picture and 〈. . .〉 ≡ Tr[. . . ρ̂0] is a quantum-mechanical

and statistical average with the initial (t → −∞) density operator of the model. As in

standard treatments, we expand the molecule-field coupling to linear term in Taylor series

in the molecular vibrational displacement

UαD(Q̂v) ≈ U
(0)
αD + U

(1)
αD Q̂v (6)

Depending on combination of molecule-field coupling terms (U
(0)
αD or U

(1)
αD Q̂v) in the expres-

sion (5) one gets contributions to vibrational and electronic Raman (Rayleigh) scatterings.

For example, substituting only U
(0)
αD in place of all molecule-field couplings in Eq.(5) yields

the pure electronic Raman contribution discussed in Refs. [10, 11]. Here we focus on the

vibrational Raman scattering, whose lowest order contribution comes from terms that are

second order in the coupling to the molecular vibration. Such terms will be of order
(
U (1)

)2
.

After collecting all such contributions to the vibrational Raman we (a) separate vibrational

and electronic degrees of freedom (i.e. neglecting vibration-induced electronic correlations)

and (b) neglect electronic correlation between ground and excited states of the molecule

assuming that the energy gap between them is much larger than the widths associated with

their coupling to the contacts. We focus on off-resonant Raman scattering and restrict our

consideration to gate voltages that keep the upper electronic level above the leads chem-

ical potentials (so it is essentially unpopulated), Under these approximations the explicit

expression becomes

Jνi→νf = ρ(νi)∆νi ρ(νf )∆νfRe

∫
dEg1
2π

∫
dEg2
2π

∫
dEx1
2π

∫
dEx2
2π

{
iD>(νif )G

<
g (Eg1)G

<
g (Eg2)G

>
x (Ex1)G

>
x (Ex2)

2U
(0)
iD U

(1)
DfU

(0)
fDU

(1)
Di + U

(1)
iD U

(0)
DfU

(0)
fDU

(1)
Di + U

(0)
iD U

(1)
DfU

(1)
fDU

(0)
Di

(νf − Ex2 + Eg2 + iδ)(νi − Ex1 + Eg1 − iδ)
(7a)
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− iD>(νif − Eg21)G<
g (Eg1)G

>
g (Eg2)G

>
x (Ex1)G

>
x (Ex2)

(
2U

(0)
iD U

(1)
DfU

(0)
fDU

(1)
Di

(νf − Ex2 + Eg2 + iδ)(νi − Ex1 + Eg1 − iδ)
(7b)

+
U

(1)
iD U

(0)
DfU

(0)
fDU

(1)
Di

(νf − Ex2 + Eg2 + iδ)(νf − Ex1 + Eg2 − iδ)
+

U
(0)
iD U

(1)
DfU

(1)
fDU

(0)
Di

(νi − Ex2 + Eg1 + iδ)(νi − Ex1 + Eg1 − iδ)

)

− iD>(νif − Ex21)G<
g (Eg1)G

<
g (Eg2)G

<
x (Ex1)G

>
x (Ex2)

(
2U

(0)
iD U

(1)
DfU

(0)
fDU

(1)
Di

(νf − Ex1 + Eg2 + iδ)(νi − Ex2 + Eg1 − iδ)
(7c)

+
U

(1)
iD U

(0)
DfU

(0)
fDU

(1)
Di

(νf − Ex1 + Eg2 + iδ)(νf − Ex1 + Eg1 − iδ)
+

U
(0)
iD U

(1)
DfU

(1)
fDU

(0)
Di

(νi − Ex2 + Eg2 + iδ)(νi − Ex2 + Eg1 − iδ)

)

− iD>(νif − Ex21 − Eg21)G<
g (Eg1)G

>
g (Eg2)G

<
x (Ex1)G

>
x (Ex2)

(
2U

(0)
iD U

(1)
DfU

(0)
fDU

(1)
Di

(νf − Ex1 + Eg2 + iδ)(νi − Ex2 + Eg1 − iδ)
(7d)

+
U

(1)
iD U

(0)
DfU

(0)
fDU

(1)
Di

|νf − Ex1 + Eg2 + iδ|2
+

U
(0)
iD U

(1)
DfU

(1)
fDU

(0)
Di

|νi − Ex2 + Eg1 + iδ)|2

)}

Here νif = νi − νf , Em21 = Em2 − Em1 (m = g, x), G
>/</r
m (E) and D>(ω) are Fourier

transforms of the greater/lesser/retarded projections of the single electron Green function

and the greater projection of the phonon Green function, respectively (see Appendix A for

details)

Gm(τ, τ ′) =− i〈Tc d̂m(τ) d̂†m(τ ′)〉 (8)

D(τ, τ ′) =− i〈Tc Q̂v(τ) Q̂v(τ
′)〉 (9)

where Tc is the contour ordering operator. ρ(ν) ≡ ν2/π2c3 is the density of optical modes.

Next, some simplification can be made by invoking the reasonable assumption that the

molecule-contacts coupling is much larger than the molecule-radiation field coupling as well

as the electron-phonon interaction. Under this assumption we can disregard the latter

interactions in the expressions for the electronic Green functions, taking the forms that
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correspond to a molecule coupled to the two metal leads

Gr
m(E) =

[
E − εm + iΓm/2

]−1
(10)

G<
m(E) =i

ΓLmfL(E) + ΓRmfR(E)

(E − εm)2 + (Γm/2)2
(11)

G>
m(E) =− iΓ

L
m[1− fL(E)] + ΓRm[1− fR(E)]

(E − εm)2 + (Γm/2)2
(12)

Here ΓKm ≡ 2π
∑

k∈K |Vmk|
2 δ(E−εk) (m = g, x, K = L,R) is electron escape rate from level

m into contact K, Γm = ΓLm + ΓRm, fK(E) is the Fermi-Dirac thermal distribution in contact

K = L,R.

For the evaluation of the phonon Green functions we again disregard the molecule-

radiation field coupling, but keep the electron-phonon interaction. This leads to

Dr(ω) =

[
[Dr

0(ω)]−1 − Πr
th(ω)− Πr

el(ω)

]−1
(13)

D>/<(ω) = Dr(ω)

(
Π
>/<
th (ω) + Π

>/<
el (ω)

)
Da(ω) (14)

We will henceforth assume that ω > 0 and use D>/<(−ω) = D</>(ω) to access the ω < 0

region. In Eqs. (13) and (14) Da(ω) = [Dr(ω)]∗,

Dr
0(ω) =

1

ω − ωv + iδ
− 1

ω + ωv + iδ
(15)

is the retarded projection of free phonon Green function, and

Πr
th(ω) =− iγ(ω)

2
(16)

Π<
th(ω) =− iγ(ω)N(ω) (17)

Π>
th(ω) =− iγ(ω)[1 +N(ω)] (18)

are the projections of the self-energy of the molecular vibration due to its coupling to the

(bosonic) white thermal bath. Here N(ω) is the Bose-Einstein thermal distribution and

γ(ω) = 2π
∑

β

∣∣V th
β

∣∣2 δ(ω−ωβ) is the dissipation rate of molecular vibrational excitation due

to coupling to thermal bath. The self energy of the molecular phonon associated with the
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electron-vibration coupling is treated at the level of the Born approximation

Πr
el(ω) =− iM2

g

∫
dE

2π

(
G<
g (E)Ga

g(E − ω) (19)

+Gr
g(E)G<

g (E − ω)

)
Π<
el(ω) =− iM2

g

∫
dE

2π
G<
g (E)G>

g (E − ω) (20)

Π>
el(ω) =− iM2

g

∫
dE

2π
G>
g (E)G<

g (E − ω) (21)

Before describing our numerical results, it is important to note the different physical origins

of the four contributions, Eqs. (7a)-(7d), to the Raman signal, that can be inferred from

the different forms of the electronic Green functions appearing in them and the forms of

the corresponding energy denominators [33]. This is most readily recognized by considering

these terms in the absence of the vibrational Raman shift. The contribution (7a) with the

Green functions product G<
g G

<
g G

>
x G

>
x corresponds to the scattering amplitude involving

electronic excitation from occupied electronic level near Eg to empty electronic level near

Ex (in the absence of vibrational shift this corresponds to Rayleigh scattering). Similarly,

the contribution (7b) with G<
g G

>
g G

>
x G

>
x corresponds to electronic Raman scattering that

leaves behind an electronic excitation between two metal levels with energies close to Eg.

The term (7c) with G<
g G

<
g G

<
x G

>
x is similar, except that the scattering involves electron

motion between two levels near Ex. Finally, the contribution (7d) with G<
g G

>
g G

<
x G

>
x , if

considered without the vibrational shift, corresponds to the Raman scattering by two elec-

tronic excitations between four metal levels with energies near Eg (two levels, one occupied

and the other empty) and Ex (the other two levels, again one occupied and the other empty).

Two observations follow, still on this qualitative level: First, in equilibrium and at low

bias, in the common situation where the lower and upper electronic orbitals are far below

and far above the metal(s) Fermi energy(ies) respectively, Eq. (7a) will be the dominant

contribution to the vibrational Raman signal. Second, the vibrational Raman lines asso-

ciated with this contribution will be narrow in the sense that their width will not reflect

the excitation of electron-hole pairs in the metal. The contributions (7b) and (7c) will be

important in situations where, respectively, Eg and Ex are close to the metals Fermi ener-

gies. Furthermore, these contributions will be considerable broader, reflecting the excitation

of electron-hole pairs in the metal alongside the vibrational excitation. Note that at low

temperatures this broadening will be asymmetric, corresponding to an electronic side-band
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of the vibrational Raman transition as recently discussed in Ref. [16]. Finally, we expect

that also the pure vibrational Raman spectrum associated with Eq. (7a) will be broader

when one of the the molecular electronic levels is close to the Fermi energy, because of the

increased importance of the electronic relaxation channel for the molecular vibration in this

situation.[23]

III. NUMERICAL RESULTS

Here we present numerical results for the Raman flux, Eq. (7), for the model (1)-(4).

Below we focus on the most prominent contributions, Eqs. (7a) and (7b). The following

parameters are used in these calculations: T = 100 K, εx − εg = 2 eV (the absolute level

positions are varied as described below), ΓLm = ΓRm = 0.05 eV (in Figs. 2 and 4) and

0.4 eV (in Figs. 3 and 5), (m = g, x), ωv = 0.2 eV, γ(ωv) = 10−3 eV, and Mg = 0.03 eV.

The Fermi energy is chosen as the origin, EF = 0, and the bias is applied symmetrically

µL = EF + |e|Vsd/2 and µR = EF − |e|Vsd/2. The incident frequency is taken as νi = 1 eV,

which corresponds for the present choice of molecular parameters to off-resonant Raman

scattering. The couplings to the radiation field are assumed to satisfy U
(0)
αD = U

(1)
αD = 0.01 eV.

The optical resolution windows of the incident energy and measuring device, ∆νi and ∆νf

in Eq. (7), are taken to be the same, 0.01eV . The calculations were performed on an energy

grid spanning the range from −5 to 5 eV with step size 5× 10−5 eV.

We envision an experiment in which the position of the molecular resonances can be

changed by a gate voltage. We start from the situation where level g is far below the Fermi

energy and level x is far above it, so that the lower level is occupied and upper one is

empty, and consider the effect on the Raman spectrum of applying a gate voltage to move

εg to the vicinity of, and then beyond, the chemical potentials. In this regime the two

main contributions to the Raman flux are given by Eqs. (7a) and (7b) with the first one

dominating the intensity of the Stokes line. (As explained above, the terms (7c) and (7d)

are potentially important only when the excited state is populated). The Raman linewidths

reported below are estimated using the standard deviation associated with the corresponding

Raman peak calculated on the employed energy grid.

Figures 2 and 3 show results of this calculation for the equilibrium case, µL = µR = EF ,

for weak ΓKm = 0.05 eV and strong ΓKm = 0.4 eV molecule-contacts coupling. Panels (a) and

9



Raman signal, Eq.(7)
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FIG. 2. (Color online) The Stokes component of the vibrational Raman scattering at equilibrium,

µL = µR = EF , for weak molecule-contacts coupling, ΓKm = 0.05 eV. See text for parameters.

(b) of these figures show two main contributions to the vibrational Raman signal Jνi→νf ,

Eqs. (7a) and (7b), vs. the Raman shift νi − νf for three different positions of electronic

level εg: below (εg −EF = −0.5 eV, solid line, blue), at (εg −EF = 0, dashed line, red) and

above (εg − EF = 0.5 eV, dotted line, black) the Fermi energy. Panel (c) presents map of

the total Raman signal vs. Raman shift νi − νf and the level position relative to the Fermi

energy εg − EF . Finally, panel (d) shows widths γ of the two main contributions to the

Stokes Raman scattering (Eq. (7a) - solid line, blue; Eq. (7b) - dashed line, red) as function

of the lower level position relative to the Fermi energy εg − EF . The widths are calculated

according to

γ =
√
ν2if − (νif )

2 (22)
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Raman signal, Eq.(7)
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FIG. 3. (Color online) The Stokes component of the vibrational Raman scattering at equilibrium,

µL = µR = EF , for strong molecule-contacts coupling, ΓKm = 0.4 eV. See text for parameters.

where

νnif =

∫ ∞
0

d(νi − νf )Jνi→νf (νi − νf )n (23)

Circles in panel (d) indicate the broadening of the molecular vibration due to coupling to

electron-hole excitations, calculated from −ImDr(νi− νf ), Eq.(13). Note that the intensity

of the Stokes line decreases with decrease of the population in the ground state (see Fig. 2c),

however the implication of this observation should be understood with respect to the 2-level

model used here. In reality, when εg goes up and above the metal Fermi energy, other lower

molecular levels will contribute to the Raman signal. Disregarding this issue, the following

additional observations can be made:

1. The dominant Raman feature is indeed that associated with contribution (7a) the
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electronically elastic/vibrationally inelastic signal. The contribution (7b) becomes

comparable when εg is near the metal Fermi energy. It should be kept in mind that

and additional broad feature, the electronically inelastic/vibrationally elastic (pure

electronic) is not displayed in these figures. In experimental spectra, the signal (7b)

may often become part of this broad electronic background.

2. The width of the contribution (7b) is far greater than that of the electronically elastic

term (7a), as long as εg is far from the metal Fermi energy. However, the width of

(7a) increases considerably when εg approaches EF .

3. The widths of the two contributions, (7a) and (7b), behave symmetrically about the

Fermi energy (see Figs. 2a and b). Such behavior is expected since in both cases the

width is defined by convolution of electron and hole populations, G<
g (Eg1)G

>
g (Eg2),

which at equilibrium is symmetric relative to the Fermi energy.

4. Comparing the results displayed in Figures 2 and 3 (small and large molecule-metal

coupling (Γ), respectively, we note that the dominant low bias feature, namely the

contribution (7a) is essentially the same in both cases. Interestingly, when εg is at the

Fermi energy (dashed red lines in Figs. 2a and 3a), this feature is broader in the smaller

Γ case. This is also seen in comparing Figs. 2d and 3d. This behavior reflects the fact

that when Γ > kBT , even when εg = EF , most of the electronic spectral density (of

width Γ) is outside the region of partial electronic occupation (f(1 − f) 6= 0 where f

is the Fermi distribution) in which the electronic channel for vibrational relaxation is

open. The fact that the spectra in Fig. 3 are smoother and less structured than in Fig. 2

similarly reflects the fact that for large Γ all behaviors associated with the position of

εg relative to EF and the width of the partially populated region are smoothened.

The width of the vibrational Raman lines reflects three types of contributions. First there

is the relaxation to the thermal bosonic environment that is not affected (in our model) by

the bias and gate potentials. Second is the additional relaxation channel due to electron-

vibration coupling, that can dominate the overall width when the molecular electronic level

approaches the metal Fermi level. The structure of this contribution suggests that the

width of the term (7a) (solid line in Fig. 2d) is dominated by the (renormalized) density of

molecular vibration (circles in Fig. 2d). Finally, as discussed above, there is the electron-hole
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Raman signal, Eq.(7)
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FIG. 4. (Color online) Stokes scattering from a biased junction, µL = 0.5 eV and µR = −0.5 eV

for weak molecule-contacts coupling, ΓKm = 0.05 eV. See text for parameters.

sideband that appears prominently in the term (7b) (as well as (7c) and (7d)). Note again

that in actual observations it will not be easy to distinguish between this sideband to the

vibrational transition and the underlying Raman continuum that originates primarily from

the pure electronic Raman scattering.[11]

We now turn to the nonequilibrium situation with µL = 0.5 eV and µR = −0.5 eV.

Figures 4 and 5 are nonequilibrium analogs of Figures 2 and 3, respectively. Here panels

(a) and (b) present results for the two main contributions, Eqs. (7a) and (7b), at five

positions of level εg relative to electrochemical potentials of the contacts µL and µR: εg < µR

(εg = −1 eV, solid line, blue), εg = µR (solid line, green), µR < εg < µL (εg = 0, dotted

line, magenta), εg = µL (dashed line, red), and εg > µL (εg = 1 eV, dotted line, black). As

previously, panel (c) shows the total Stokes scattering, Eq. (5), as function of the Raman
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Raman signal, Eq.(7)
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FIG. 5. (Color online) Stokes scattering from a biased junction, µL = 0.5 eV and µR = −0.5 eV,

for strong molecule-constacts coupling, ΓKm = 0.4 eV. See text for parameters.

shift and level position; panel (d) presents Raman linewidths γ, Eq.(22) of the two main

contributions (Eq. (7a) - solid line, blue; Eq. (7b) - dashed line, red) as functions of the

level position. Circles in panel (d) indicate the broadening of the molecular vibration due

to coupling to electron-hole excitations, calculated from −ImDr(νi − νf ), Eq.(13).

Here the total Stokes intensity is affected by two factors: the population of the lower

level and the current induced heating of the molecular vibration. As a result, the decrease

in the Stokes intensity when εg approaches the lowest chemical potential due to depletion

of the level population changes to increase in the intensity when the level is in the bias

window (nonequilibrium feature) - see Fig. 4c. The width of the dominant contribution (7a)

shows similar behavior as in the equilibrium case, with increase of the width resulting from

opening the electronic relaxation channel when εg approaches the metal Fermi energies. This
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contribution to the width is again symmetric about each of the Fermi energies (see Figs. 4a

and 3d). In contrast, the nonequilibrium electronic distribution, in particular the existence

of two energy regions of partial populations of metal electronic states, causes drastic changes

and more structure in both lineshape (Fig. 4b) and linewidth (Fig. 3d) of the contribution

(7b) as compared to equilibrium case. This structure is again smoothened in the large Γ

case (Fig. 5). Still, since this peak is much lower and broader than that of (7a), it may be

considered as part of the electronic Raman background.

IV. CONCLUSION

Within a simple two-level model of a molecular junction we consider off-resonant Raman

scattering and discuss dependence of Stokes linewidth on gate and bias voltages. We focus

on low bias regime, where upper level is almost empty, and thus consider only ‘normal

Raman’ contribution to the total signal (i.e. Raman scattering which originates at the lower

molecular level). Employing realistic parameters we show that the linewidth changes non-

monotonically with gate voltage demonstrating maximum at resonance between molecular

level and chemical potential(s) of metallic contacts. Analysis shows that the effect is due to

opening of an electronic relaxation channel for molecular vibrations by which e-h excitations

are formed in metallic contacts. At low biases and for realistic parameters this mechanism

is the dominant contribution to the Stokes linewidth. Other mechanisms are relaxation of

molecular vibration due to coupling to the thermal environment and surface plasmons. The

latter was not included in the consideration due to mismatch between characteristic plasmons

and molecular vibrations frequencies. Note that the model also disregards inhomogeneous

broadening and pure dephasing contributions. Experimental verification of our theoretical

prediction seems to be a realistic possibility.
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Appendix A: Electron and phonon Green functions

General definitions of electron G and phonon D Green functions (GFs) on the Keldysh

contour are [34]

Gm1m2(τ1, τ2) =− i〈Tc d̂m1(τ1) d̂
†
m2

(τ2)〉 (A1)

Dv1v2(τ1, τ2) =− i〈Tc Q̂v1(τ1) Q̂
†
v2

(τ2)〉 (A2)

where τ1,2 are contour variables and Tc is contour ordering operator, operators are presented

in the Heisenberg picture and 〈. . .〉 = Tr[. . . ρ̂0] is quantum mechanical and statistical aver-

aging with respoect to original density operator ρ̂0 of the whole system. In our treatment we

retain only diagonal elements of the GFs due to assumption εx − εg � Γx,g for the electron

GF and only one vibrational mode considered in the model for the phonon GF. This leads

to definitions presented in Eqs. (8) and (9).

The GFs satisfy the Dyson equations

G(τ1, τ2) =G0(τ1, τ2) +

∫
c

dτ3

∫
c

dτ4G0(τ1, τ3) Σ(τ3, τ4)G(τ4, τ2) (A3)

D(τ1, τ2) =D0(τ1, τ2) +

∫
c

dτ3

∫
c

dτ4D0(τ1, τ3) Π(τ3, τ4)D(τ4, τ2) (A4)

where
∫
c
. . . is on-the-contour integration, GFs are assumed to be matrices (in electron and

phonon subspaces, respectively), Σ and Π are electron and phonon self-energies representing

effect of other system degrees of freedom on electrons and phonons, and G0 and D0 are

free GFs, i.e. GFs for isolated electrons and phonons. In our model this corresponds to

disregarding second and third rows of Eq.(2) and Eq.(4). In our treatment we need only

retarded projection of the free phonon GF, explicit form of its Fourier transform is given in

Eq.(15) [35]. Projections of the Dyson equation (A4) are presented in Eqs. (13) and (14).

In the model self-energy Σ consists of contributions due to molecule-contacts coupling

(fourth term in Eq.(2)), electron-phonon interaction (fifth term in Eq.(2)), and field-matter

interaction, Eq.(4). Assuming that molecule-contacts coupling is the strongest interaction,

we disregard the other two contributions in treating electron GFs. Self-energy for molecular

coupling to the contacts is known exactly [34]

ΣK
m3m4

(τ3, τ4) =
∑
k∈K

Vm3k gk(τ3, τ4)Vkm4 (A5)
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Here gk(τ3, τ4) is GF of free electron in state k of contact K (L or R). Fourier transform of

its retarded projection

ΣK r
m3m4

(E) =
∑
k∈K

Vm3k Vkm4

E − εk + iδ
≡ ΛK

m3m4
(E)− i

2
ΓKm3m4

(E) (A6)

account for the Lamb shift Λ and dissipation Γ of molecular levels due to coupling to contact

K. In the wide-band approximation [36] the former is disregarded, while the latter is assumed

to be energy independent. Its lesser and greater projections [34]

ΣK<
m3m4

(E) =iΓKm3m4
fK(E) (A7)

ΣK>
m3m4

(E) =− iΓKm3m4
[1− fK(E)] (A8)

yield information on occupied and empty states in the contact. Here fK(E) is the Fermi-

Dirac distribution.

In the model the two levels (εg and εx) represent HOMO and (effective) LUMO. In

molecules separation between these levels is of the order of several eV. Taking into account

that usual molecule-contacts coupling strength is of the order 0.01 to 0.1 eV, hybridization

between these levels (induced by the off-diagonal matrix elements of ΓKm3m4
) is negligible.

Utilizing diagonal terms of (A6)-(A8) in projections of the Dyson equation (A3) leads to

Eqs. (10)-(12). Retarded, lesser and greater projections of electron GFs yield information

on molecular subspace electron spectral density, its occupied and empty states, respectively.

Phonon self-energy Π has contributions from electron-phonon interaction and coupling to

the thermal bath, last two terms of Eq.(2) - Π = Πel + Πth. The latter is known exactly [14]

Pth(τ3, τ4) =
∑
β

|V th
β |2dβ(τ3, τ4) (A9)

where dβ(τ3, τ4) is GF of free phonons in the thermal bath. Fourier transforms of its retarded,

lesser, and greater projections are given in Eqs. (16)-(18).

Phoono self-energy due to electron-phonon interaction can be evaluated only approxi-

mately. Following standard diagrammatic procedure [14] and employing the lowest (second)

order in electron-phonon interaction yields

Πel(τ3, τ4) = −i
∑
m3,m4

Mm3 Gm3m4(τ3, τ4)Gm4m3(τ4, τ3)Mm4 (A10)

17



Fourier transforms of retarded, lesser, and greater projections of this expression are given in

Eqs. (19)-(21). Here we employed Eqs. 10)-(12) for the electron GFs.
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