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Abstract

Experimental Considerations and Theoretical Treatment of Time Resolved Polarization
Spectroscopy

by

Richard Thurston

Doctor of Philosophy in Chemistry

University of California, Berkeley

Doctor Daniel S. Slaughter, Co-chair

Professor Richard J. Saykally, Co-chair

The decay dynamics in molecular systems are important to consider for a wide number of phe-
nomena and have implications across many fields of study. One common set of methods used to
study these dynamics involve measurements of the time evolution of the excited state enhance-
ment/suppression of nonlinear spectroscopic signals. Here we develop the novel technique of
ultrafast transient polarization spectroscopy which allows us to measure decay dynamics in molec-
ular systems using a polarization sensitive technique based on the optical Kerr effect. This is a
three pulse technique where an exciting-pump pulse brings a portion of a sample into an electronic
excited state and a pair of probing pulses measure changes in the sample’s intensity dependent re-
fractive index as a function of time delay. We then apply this technique to the study of neat liquid
nitrobenzene where we measure oscillations in the dephasing time that we associate with oscilla-
tory wave packet motion on the S1 excited state. We then develop a set of theoretical methods that
can be applied to study these polarization sensitive signals starting from a foundation in quantum
chemistry. We also introduce a formalism for the projected density matrix which allows for an
implicit transformation of lab frame signals into a molecular frame representation given a polar-
ization sensitive measurement. These methods are then used to simulate the electronic response
from a number of polarization sensitive signals with applications discussed.
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Chapter 1

Motivation

This work is focused on the development of a novel time resolved spectroscopic technique dubbed
ultrafast transient polarization spectroscopy (UTPS). The aim of this technique is to provide an
additional means by which the time evolution of electronic excited states in atomic and molecular
systems on femtosecond time scales can be studied. Our overarching goal is to develop a set
of tools to experimentally measure, analyze, and simulate nonlinear signals that are sensitive to
electronic relaxation dynamics of molecular systems. The technique is polarization sensitive, and
employs three pulses separated by variable time delays. Therefore, UTPS is a multidimensional
technique that is potentially sensitive to electronic structural dynamics that wouldn’t be accessible
through other methods.

1.1 A Brief Introduction to Decay Dynamics in Molecular
Systems

The study of decay dynamics after the electronic excitation is of fundamental interest in the field of
atomic and molecular physics and has impacts across a wide range of disciplines including materi-
als science, biochemistry, atmospheric chemistry, and others [1, 2, 3, 4]. As an illustrative example
of the importance of studying these decay dynamics, we can consider the stability of DNA/RNA
nucleobases after UV excitation. As measured through time-resolved photoelectron spectroscopy
[5] and photo-ionization spectroscopy [6], after a UV pulse populates the S2(ππ∗) excited state,
the DNA/RNA nucleobases of cytosine, thymine, and uracil show evidence for a rapid internal
conversion (<50 fs) [5] populating the S1(nπ∗) state which further decays to the ground state at
a time scale >100 fs [5, 6]. Additional experimental evidence [5] suggests that this decay pro-
cess dominates over a separate dissociative decay process in which the populated S2(ππ∗) state
relaxes via the dissociative S3(πσ∗) state. Furthermore, a detailed quantum chemical treatment
using the surface hopping method, which was further bounded by the previous experimental mea-
surements [7], suggests that the rapid internal conversion is mediated by a conical intersection (CI)
between the S2(ππ∗) state and the S1(nπ∗) state. Recently, proposals to measure the passage of
the S2 population through the S2/S1 conical intersection in uracil, have been given that may uti-



CHAPTER 1. MOTIVATION 2

lize x-ray transient absorption [8] and/or stimulated x-ray Raman measurements [9] of uracil to
measure these effects. Such measurements could be performed by potentially exploiting the few
to sub-femtosecond time resolution of the x-ray pulses generated at free electron lasers [10, 8].

This example demonstrates some general themes when studying the decay dynamics of molec-
ular systems. First is the importance of the interplay of both experimental and theoretical methods
in understanding these decay mechanisms. In the previous example, time-resolved photoelectron
and photo-ionization spectroscopic methods were used to measure the decay rates associated with
the relaxation process [5, 6]. However the interpretation and mechanism of the experiment was
enabled by developments in quantum chemistry that allowed for the detailed treatment of non-
adiabatic decay processes in molecular systems [3, 7].

Second is the role that conical intersections play in the decay processes in these molecular
systems. One way to understand conical intersections is as a generalization of avoided crossings
when there are 2 or more vibrational degrees of freedom [3, 4]. Under these conditions, two
electronic potential energy surfaces can have a point (or a seam) where the system experiences
energy degeneracy between these surfaces [3, 4, 11]. These conical intersections are generally
accepted as being the dominant mediator of non-adiabatic energy flow between electronic and
vibrational degrees of freedom [3, 4, 11]. Additionally, in a review by Schuurman and Stolow [3],
the authors suggests that these conical intersections can be interpreted in the lens of transition state
theory of chemical reactions, as the transition state in reactions mediated by electronic transitions.

From a theoretical perspective, conical intersections represent molecular configurations where
the Born-Oppenheimer approximation no longer applies [12, 11, 3, 4, 13]. In these regimes, the
contribution of nuclear kinetic energy to the molecular Hamiltonian is comparable to that of the
electronic motion and the Coulombic interactions [12] and can no longer be treated using pertur-
bation theory, which was allowed under the Born-Oppenheimer approximation [12, 11, 3]. This
has necessitated the development of a variety of ab initio theoretical methods capable of treating
the dynamics at conical intersections [3, 11].

While a full review of the ab initio methods used to treat the nonadiabatic dynamics that occur
near conical intersections in molecular systems is beyond the scope of this work, we acknowl-
edge some of the methods currently employed when treating these problems. In general there are
two broad classes of approaches used to treat these dynamics, full quantum dynamics approaches
that aim to solve the full molecular Schrödinger equation [3, 11, 13] and semi-classical meth-
ods that treat the nuclear wavepacket using an ensemble of classical trajectories but keeps some
quantum effects [11, 13]. Broadly speaking methods like multiconfigurational time-dependent
Hartree (MCTDH) [11, 14, 13] and multilayer multiconfigurational time-dependent Hartree (ML-
MCTDH) [13] methods are techniques capable of treating the full quantum dynamics of molecular
systems. These techniques allow for exact treatments of the quantum dynamics of a system of in-
terest but such exact treatments involve expensive calculations that may not be feasible for systems
with a large number of degrees of freedom [13]. Semiclassical methods, like the surface hopping
techniques of Tully’s fewest switching surface hopping (FSSH) algorithm and ab initio multiple
spawning (AIMS) [13, 4, 3] as well as the multiconfigurational Ehrenfest (MCE) dynamics method
[14, 13], allow for the treatment of a wider class of systems by considering the motion of the nuclei
to be primarily classically driven while explicitly treating the electronic portion quantum mechan-



CHAPTER 1. MOTIVATION 3

ically [13, 4].
From an experimental perspective, advances in experimental methods have allowed for greater

sensitivity to a wide range of dynamical processes. Pump-probe spectroscopy, which can trace a
history back to the birth of high speed photography in Eadweard Muybridge’s racetrack images of
a horse in gallop [1], is a technique where a dynamical process in a target of interest is initiated
by a pump pulse, and whose dynamics are sampled by a probing pulse [1, 15, 16]. By measuring
how the probe pulse is modified after interacting with the time evolving system as a function of the
time-delay between the pump and probe pulses, information about the time evolution of the system
of interest can be recovered [1, 15, 16]. The conceptual simplicity of this technique and it’s ap-
plicability over a wide range of frequencies have made this technique particularly productive with
dynamical information being recovered for a wide range of samples [1] including biomolecules,
nanostructures, and solids, with some results giving site-specific information[16] in the case of
XUV/X-ray probe schemes.

One common way to extend these types of measurements is by including a second pumping
pulse [1]. The inclusion of this additional pulse allows for a number of different spectroscopic
methods including 2D electronic spectroscopy (2DES) [17, 18], variants of Raman spectroscopy
like time-resolved coherent stokes Raman Spectroscopy (CSRS) and coherent anti-stokes Raman
spectroscopy (CARS) [19], and other spectroscopies based on four-wave mixing [20, 21]. The
techniques mentioned here are all third order spectroscopic methods that can be described using
a four wave mixing formalism [17, 19, 22]. In 2DES for example, three pulses interact with a
sample of interest with the first two pulses acting as a pair of pump pulses that prepare the state of
the sample, and the third pulse acts as a probing pulse that samples this time evolution [17, 1, 18].
Using this technique, the evolution of coherences in photochemical processes can be observed [17,
23]. Similar information can be obtained from other four wave mixing spectroscopic techniques
such as non-collinear four wave mixing [18] where, because of the additional control over the
excitation pathway, information about dark states [18, 24] can be measured, that would not be
accessible through 1-photon transitions.

For some atomic or molecular systems, especially dilute gas phase samples, traditional pump-
probe absorption spectroscopy might not be sensitive enough to recover the dynamics of interest
[25]. In these cases, the technique of time-resolved photoelectron spectroscopy, where in a prob-
ing pulse ionizes a sample of interest after excitation from a pump pulse and the kinetic energy
distribution of the ionized electrons are then recovered [26, 25], can be more be sensitive to some
of these dynamics. By effectively probing occupied orbital binding energies with femtosecond
time resolution one can obtain information on dynamics in atomic and molecular systems. Addi-
tionally, by measuring the angle-resolved photoelectron distribution and looking at the appropriate
asymmetry parameter [26], one can recover molecular frame information about the dynamics of
the system.

Analogously, some forms of polarization sensitive 2D spectroscopy have also been shown to
be sensitive to molecular frame quantities [27, 28, 29, 30, 31]. Utilizing asymmetry parameters
derived from the nth order orientational correlation function [29], 2D spectroscopic methods have
been able to determine the evolution of relative angles between coupled transition dipoles [31],
reorientation-induced spectral diffusion in deuterated methanol [32], and even map measured elec-
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tronic dynamics onto specific vibrational degrees of freedom [33].
All of this showcases an array of experimental methods that are sensitive to a variety of decay

dynamics mediated by conical intersections. Here, our aim is to develop the technique of Ultrafast
Transient Polarization spectroscopy (UTPS). This technique is based on the measurement tech-
nique of time-resolved Optical Kerr Effect (OKE) spectroscopy in which a Kerr gating pulse sets
up a transient birefringence in a sample and the polarization of the probing pulse is modified by
this birefringence. With the addition of an electronic excitation pulse prior to the Kerr gating pulse,
we may be sensitive to dynamics that haven’t been observed previously [34].

This thesis is laid out as follows. After providing a brief introduction, we first demonstrate
the experimental method while also providing a framework for the analysis of these experimental
signals. We then discuss some experimental UTPS measurements in neat liquid nitrobenzene. This
is followed by a description of novel methods to simulate these signals using a semi-empirical
approach with partial ab initio parameterization, to calculate a measured polarization signal. We
finally conclude by discussing some of the implications and potential future directions of this work.

1.2 A Brief Introduction to N-Wave Mixing
While a complete description of nonlinear spectroscopy using an n-wave mixing formalism is
beyond the scope of this text, in this section we aim to briefly go over some of the fundamentals of
classical n-wave mixing with an eye towards later discussions of optical Kerr effect spectroscopy
and ultrafast transient polarization spectroscopy using this formalism. Our goal is to provide a
general framework that we can use later on to understand some of our experimental and theoretical
results in the context of 3rd and 5th order perturbative signals. However for a more thorough
introduction to nonlinear spectroscopy and some additional implications/applications of the n-
wave mixing formalism, we encourage the reader to consider the following review articles from
Gelin et. al. [35] and Biswas et. al. [17] as well as the textbooks of Prof. Boyd [36], Prof.
Mukamel [37], and of professors Hamm and Zanni [38].

When studying spectroscopic signals from a macroscopic sample of interest, the measured
response from the sample can be described by considering how the polarization (P⃗) of a sample
varies as a function of the incident electric field (E⃗in) [36, 37]. This relationship between the
measured signal electric field (E⃗sig) and the polarization as derived from Maxwell’s equations [36]
can be expressed as follows

∇
2E⃗sig −

1
c2

∂ 2

∂ t2 E⃗sig =
1

ε0c2
∂ 2

∂ t2 P⃗(E⃗in) (1.1)

Here the sample’s varying polarization acts as a driving term in the second order wave equation
that results in a nonzero measurable signal field (E⃗sig). As the the form of the function describing
how the polarization varies as a function of the incident electric field depends on intrinsic properties
of the sample, such a spectroscopic measurement can provide insight into the chemical physics of
the sample under study.
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In the n-wave mixing formalism, one way to systematize the types of interactions that can
occur is to consider the series expansion of the polarization with respect to the incident field [36,
37] where each term (P⃗(n)) represents the resultant polarization from an nth order interaction with
the incident fields. We can write this formally as follows

P⃗(E⃗in) = P⃗(0)+ P⃗(1)(E⃗in)+ P⃗(2)(E⃗in, E⃗in)+ P⃗(3)(E⃗in, E⃗in, E⃗in)+ ...+ P⃗(n)(E⃗in, ..., E⃗in)+ ... (1.2)

In the frequency domain [36, 37], the nth order polarization can be expressed explicitly as an nth

order integral of a tensor product between the fields and a frequency dependent nth order suscep-
tibility (χ(n)). This nth order susceptibility is intrinsic to the sample of interest and is determined
in part by the fundamental quantum mechanics of the sample of interest [36, 37]. Thus if we can
measure information about the nth order susceptibility we can access intrinsic information about a
sample of interest. Using index notation, we can write the expression for the nth order polarization
as follows

P(n)
i (ωsig) =

∫
∞

−∞

...
∫

∞

−∞

dω1...dωn χ
(n)
i j1... jn(ωout;ω1, ...,ωn)E in

j1(ω1)...E in
jn(ωn) (1.3)

To represent the nth order polarization in the time domain, first we consider the result of equa-
tion 1.4 after taking the Fourier transform [36, 37]. In performing such a transformation we can
represent the frequency domain nth order susceptibility in terms of a time dependent nth order
intrinsic response function (R(n)), which are related to χ(n) through a Fourier transform. This
response function allows us to express the time dependent nth order polarization as convolutions
between the response function and the interacting time dependent incident fields. We can write
this relationship explicitly as

P(n)
i (t) =

∫
∞

−∞

...
∫

∞

−∞

dτ1...dτn R(n)
i j1... jn(τ1, ...,τn)E in

j1(t − τ1)...E in
jn(t − τ1...− τn) (1.4)

We note here that, due to phase matching considerations [36, 37], the output signal frequency
(ωsig) and output signal wave vector (⃗ksig) are related to the input frequencies (ωn) and input wave
vectors (⃗kn) by the following relations

ωsig = ω1 +ω2 + ...+ωn (1.5a)

k⃗sig = k⃗1 + k⃗2 + ...+ k⃗n (1.5b)

At this point we have outlined some of the key expressions describing classical n-wave mix-
ing. These expressions can be used to describe a number of nonlinear optical phenomena but of
particular interest in this work is that of the intensity dependent refractive index also known as the
optical Kerr effect [36, 39, 40]. This phenomenon can be represented by the third order suscepti-
bility (χ(3)), which is in general a rank 4 tensor with 81 separate elements. Later in chapter 2, we
will present a more complete discussion of the intensity dependent refractive index along with how
this n-wave mixing framework relates to optical Kerr effect measurements and the related UTPS
measurements.
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1.3 Excited state enhancements of Non-linear Optical Signals
For a number of reasons, nonlinear spectroscopic signals from molecular systems can be expected
to be enhanced after the molecule is brought into an excited electronic state. First, as population
moves from the ground state into the excited state, the energy gap between a large number of other
excited states gets reduced. This reduction in the transition frequencies between these states can
lead to an enhancement of a higher order response [41, 42]. Secondly, transition dipole moments
between excited states can be larger than those between the ground state and an excited state [41,
42], which can again lead to an enhancement.

The previous two points suggest that excited state enhancement of the third order signal is a
general phenomena but may depend on the specifics of the accessible dipole transition moments
from the excited state. These theoretical justifications help to explain the experimentally observed
excited state enhancement and suppression of nonlinear optical signals.

Pump-degenerate four-wave mixing experiments [43, 44, 45, 46] have a particularly rich his-
tory in both demonstrating and using excited state enhanced nonlinear signals to study nuclear and
electronic dynamics in atomic and molecular systems. In degenerate four-wave mixing experi-
ments, a target sample interacts with three photons of the same frequency such that the resulting
signal photon is the same frequency as the incident fields but with a separate k-vector [36]. The
interaction of the three incident fields that generates the resulting signal is well described through
the target’s third order susceptibility [36, 47]. As in other pumped methods, in pump-degenerate
four-wave mixing, an additional excitation pulse brings the target out of equilibrium wherein the
degenerate four-wave mixing process can track the dynamics of interest in the system by sampling
the third order susceptibility as a function of time-delay of the exciting pulse [43].

An early demonstration of the enhancement of nonlinear optical signals was in a degener-
ate four-wave mixing experiment studying organic linear conjugated molecules where the authors
noted an enhancement of 37 times as compared to the ground state response [48, 49]. Later studies
looking at a set of organic dyes also showed significant enhancement of excited state signals [50].
In atomic systems, this technique showed that while the absolute signal was lower without pump-
ing, the authors note a significant signal-to-noise enhancement in the pumped case when studying
flame atomized gold [20]. More recently, this technique has been used to study both the electronic
relaxation and the subsequent vibrational relaxation of β -carotene and lycopene [51] as well as in
several retinal derivatives [45].

Pumped optical Kerr effect measurements and multi-gate Kerr effect measurement have also
been shown to result in modified, delay dependent nonlinear optical signals. In optical Kerr effect
measurements, due to the 45◦ offset relative orientation of the polarization between a Kerr gate
and probing pulse, as well as the use of a crossed polarizer along the probe axis, these experi-
ments are able to probe the χ

(3)
yxxx, χ

(3)
yxxy, χ

(3)
yxyx, χ

(3)
yxyy, lab frame tensor elements of the third order

susceptibility [36, 39, 47]. Given an isotropic sample the nonzero tensor elements reduce to χ
(3)
yxxy,

χ
(3)
yxyx [36, 52, 39, 40]. In prior pumped OKE experiments, an additional excitation pulse was used

to measure an enhanced Kerr effect signal in several organic dyes given a fixed delay of the ex-
citation pulse relative to the probing pulse pair [50]. Kerr effect measurements utilizing multiple
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degenerate gating pulses with variable polarizations between the gating pulses, have demonstrated
either enhancement or suppression of Kerr signals [53, 54] in a variety of different liquid samples
by enhancing or suppressing various modes of nuclear motion by modifying the polarization of the
incident gating pulses.

In pumped third harmonic generation experiments an intense NIR pulse probes a sample that
has been brought into an excited state though an interaction with a resonant pumping pulse. The
probing pulse then generates a third harmonic signal that can be subsequently filtered for and
measured. As the polarization of the probing pulse is often the same as the polarization of the
signal (especially in the case of isotropic samples), these experiments are direct probes of the χ

(3)
xxxx

lab frame tensor element of the third order susceptibility [36, 47]. In these experiments, time delay
dependent excited state enhancement of the third harmonic signal has been observed in fishnet
metamaterials [55] (multilayered nanopatterned solid state matterials) as well as atmospheric air
samples [56].

Taken together, these experiments demonstrate the power of pumped nonlinear optical tech-
niques to observe nuclear and electronic dynamics in a wide range of time scales and sample
types. It’s for this reason that we might expect that UTPS may allow us to study dynamics that
would not be accessible through other means.
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Chapter 2

UTPS Experimental Technique

Ultrafast Transient Polarization Spectroscopy is a three pulse technique consisting of an excitation
pump pulse, a Kerr gate pulse, and a probing pulse (see Figure 2.1). Similar to optical Kerr
effect (OKE) measurements, the gate pulse initiates a transient birefringence in a sample and the
probing pulse samples this birefringence after excitation. This transient birefringence modifies
the polarization of the probing pulse (by rotating the polarization or by introducing ellipticity into
the pulse) which introduces a nonzero signal component to the polarization of the probing pulse
that is orthogonal to the input probe polarization. This signal can be measured using an analyzing
polarizer that is crossed relative to the incident probe pulse’s polarization [40, 57, 58, 59]. This
signal is maximized by setting the polarization of the gate pulse to 45◦ relative to the probe pulse
[40, 39]. These signals are sensitive to the sample’s effective third order susceptibility (χ(3)

eff )
which can be modified or even enhanced after a sufficient fraction of the targets within a sample
are brought into an electronic excited state [36, 48, 49, 41, 60]. For this reason we introduce an
excitation pulse that brings a fraction of our sample into an excited state whose modified third order
susceptibility is measured through an optical Kerr effect measurement [61, 34]. By scanning the
time delay between the excitation pulse and the OKE gate-probe pair, we can use the measurement
of χ

(3)
eff as a means to extract information about the time evolution of a system after electronic

excitation [34, 61].
One key assumption typically made in ultrafast transient polarization spectroscopy is that the

excitation process is independent from the probing mechanism. This assumption can be justified
when the time scale of the excitation is short relative to the probing mechanism, [34, 61, 60]. Given
this non-equilibrium state, 4WM techniques that target these states can be analyzed using the same
order of perturbation theory used when studying the same process that begins with the target near
it’s ground state equilibrium [60]. In essence this allows us to linearly separate the sample’s effec-
tive third order susceptibility into a ground state response and an excited state response weighted
by the fraction of the sample left in the non-equilibrium state after excitation. This simplifying as-
sumption allows us to leverage existing techniques of analysis developed for time-resolved optical
Kerr effect measurements. For this reason we will aim to provide a framework for analyzing of
UTPS by extending the techniques used to study OKE spectroscopy.
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This chapter is laid out as follows. After giving an overview of our experimental implementa-
tion of UTPS, we will then derive the expressions used when analyzing time resolved OKE spectra
by performing a Jones matrix analysis of the Kerr effect signal. After providing the relevant ex-
pressions for a correlation analysis of the homodyne and heterodyne OKE signals, we will then
extend these relations to the case of UTPS measurements. With the experimental and analysis
framework in place, in chapter 3 we will then apply this technique to study the excited state elec-
tronic dynamics of nitrobenzene. More specifically, with this technique we aim to demonstrate
excited state wave packet motion on the S1 state.

2.1 Ultrafast Transient Polarization Spectroscopy
Experimental Set-Up

In our implementation of a UTPS experiment we relied on a commercial KMlabs laser system as
our light source. This system was used to generate optical pulses with a FWHM of 40 fs and a
central wavelength at 780 nm with a repetition rate of 1 kHz. To generate the used optical pulses,
first, a Kerr-Lens mode locked Griffin oscillator by KMLabs, was used to supply a pulse train
with approximately 300 mW of average power at 88 MHz repetition rate. This oscillator utilized a
Titanium Sapphire gain medium pumped using a 532 nm CW laser with 4.5 W of power. This pulse
train was then sent to a KMLabs Wyvern regenerative amplifier that reduced the repetition rate but
increased the pulse energy. This was achieved using a Pockels cell to send the selected pulse into a
cryo cooled cavity, pumped using a coherent Evo-30 laser that supplied around 10 W of pulsed 527
nm light. The selected fundamental IR pulse was contained in this cavity until saturation which
typically resulted in per pulse energy of approximately 1 mJ at a repetition rate of to 1 kHz. We
further amplified the pulses using the KMLabs Komodo two stage multipass amplifier with each
stage of amplification using cryo cooled amplifiers pumped by a pair of coherent Evo-HE lasers
that supplied roughly 30 W of pulsed 527 nm light. After the two stages of amplification we could
achieve per pulse energies of > 20 mJ with a 1 kHz repetition rate however we would typically
operate the laser system so that it would supply < 5 mJ of per pulse energy in the fundamental
pulse train.

This pulse train was then split twice with a pair of beam splitters to generate an excitation pulse
and the OKE measurement pulse pair labeled pulse A and pulse B. In our experiments, the OKE
measuring pulses have the same intensity, duration, and central wavelength. Given the symmetry
of these pulses, this labeling is chosen since pulse A can exchange roles as a gate or probe pulse,
depending on the sign of the time delay between the two pulses, and whether the signal that is
colinear with pulse A or pulse B is the one being measured. Our samples were contained in a
Spectrosil quartz cuvette with a path length of 1 mm and a wall thickness of 1 mm.

The time delay between the excitation pulse and the OKE pulses (T) as well as the time delay
between the OKE measurement pulses (τ) was set using two optical delay stages. At positive
time (T), the excitation pulse arrives before pulse A, whereas for positive time τ pulse A arrives
before pulse B. The polarization and power of each of the beam lines was set using a half-wave
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plate followed by a polarizer for the excitation pulse and for pulse B. In the case of pulse A, the
polarization was set using a half-wave plate and the power was set using a variable neutral density
filter. These pulses were then focused onto our sample using 30 cm lenses and would intersect
the sample with a non-colinear geometry where the angles between each pulse would measure less
than 3◦. Spatial and temporal overlap at the sample was achieved before each experiment and
checked periodically during and after each experiment, by optimizing sum frequency generation
with each pulse pair in a beta-barium borate (BBO) crystal at the sample position. After the
pulses interact with the sample, separate polarization measurements along pulse A and pulse B
propagation directions were done using an analyzing polarizer that’s crossed relative to the incident
pulse polarization. The light that passes through the analyzer is detected using a photodiode. As
the polarization between pulse A and pulse B differ by 45◦, the pair of polarization measurements
let us measure differences in the signal due to polarization of the excitation pulse relative to the
probing pulses. Additionally, the transmission signal of pulse B was collected using a small portion
of the output beam and a photodiode [61].

The pump pulse train was modulated with a mechanical chopper at a frequency of 137 Hz,
with a duty cycle of 50%, for use with a lock-in amplifier. This frequency was chosen to avoid
harmonics of the line frequency noise at 60 Hz while still allowing for several pulses within the 1
kHz pulse train to be incident on the sample during each chopper duty cycle [62, 63]. By chopping
the pump beam line and using lock-in detection along the probe beamline, we ensure that the
detected signal included pump interaction with the probe. Specifically, the detected total signal
includes the pump-probe (2-pulse) interaction with the media and the pump-gate-probe (3-pulse)
interaction with the media. The 2-pulse signal is measured with the gate pulse blocked and the
3-pulse interaction is determined by subtracting the 2-pulse signal from the total signal.

In principle this lock-in detection scheme could be extended with the addition of a 2nd chopper
on the gate beam path and using a difference frequency reference to detect 3 pulse signal on detec-
tors along the probe beam path but there are challenges associated with this scheme. First, these
two choppers are inherently noisy where the true frequency and relative phases would need to be
measured for an accurate measurement. To do this would require a specialized nonlinear circuit
that can both mix the low frequency chopper pulse trains to generate a frequency difference pulse
train and then filter out the frequency difference pulse train into a usable reference for a lock-in.
Additionally, a correlation analysis of these UTPS signals suggests such a 3-pulse only interaction
measurement may not be desirable. In particular, we will show that the correlation analysis of
UTPS experimental signals in the homodyne and the heterodyne out-of-phase configurations can
be nonlinear with respect to the excited state response function. This correlation analysis suggests
that to properly deconvolve the response function from the measurement, that several two pulse
measurements may be needed.

With the use of a quarter-wave plate after the polarizer in the probe beam line, the apparatus
was configured to perform either a homodyne or heterodyne UTPS measurement. In the homodyne
configuration, the probe pulse is polarized in the y-direction before interacting with the sample and
the analyzer is aligned to the orthogonal x-direction. A heterodyne measurement can be made using
either an in-phase or out-of-phase local oscillator. For the in-phase heterodyne measurement, the
input polarization of the probe B pulse has no ellipticity and the analyzer is rotated by a small angle
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Figure 2.1: Schematic of a UTPS set-up. An amplified pulsed laser source is split into 3 pulses:
an excitation pump pulse, a Kerr gating pulse, and a probing pulse. Changes in polarization due
to the transient birefringence are measured using a pair of high contrast polarizers with the output
coupled onto sensitive photodiodes. The quarter-wave plate in the probe beam path allows for out-
of-phase heterodyne measurements to be performed by introducing a small amount of ellipticity.
For homodyne and in-phase heterodyne measurements the fast axis of the quarter-wave plate is
aligned parallel to the probe polarization.
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±ε to sample a portion of the probe pulse along the y-axis. This portion is the local oscillator
and it is in-phase with the signal along the x-axis. The out-of-phase heterodyne measurement
involves introducing a small amount of ellipticity into the probe pulse by rotating the polarizer
away from the y-axis by a small angle ±ε . A quarter-wave plate (fast axis aligned to the y-
direction) introduces a small ellipticity to the probe B polarization. This out-of-phase component
of the input polarization along the direction of the analyzer is the local oscillator.

As summarized in figure 2.2, in the case of the heterodyne experiment, a small in-phase or
out-of-phase local oscillator is introduced onto the detector. For the in-phase case, we can rotate
the analyzer polarizer by a small amount off axis to introduce the local oscillator. For the out-of-
phase case, we can use a polarizer in-line with a quarter-wave plate to introduce a small amount
of ellipticity into the probe before the sample interaction giving us a local oscillator that’s out-of-
phase with the generated signal [39, 52, 40].

Validation of Kerr Effect Probe
To check that our probing pulse pair accurately samples the intensity dependent refractive index,
we measured the ground state OKE spectra of neat liquid nitrobenzene in homodyne, heterodyne
in-phase, and heterodyne out-of-phase configurations. These measurements were made using the
same set-up in figure 2.1 with the excitation pulse blocked and the reference frequency of the lock-
in detector set to the laser repetition rate of 1 kHz. Nitrobenzene was chosen as a sample for its
large ground state third order susceptibility and its history as a target in published homodyne and
heterodyne OKE experiments [64, 65, 66, 36]. Additionally, later in chapter 3, we will use this
ground state information as a basis for analyzing and interpreting the excited state response of this
system.

For the homodyne measurement, as seen in figure 2.3, each lock-in measurement at a given
time delay was allowed integrate for 1500 ms before a value was recorded, with the lock-in time
constant being 100 ms. The delay stage was scanned from −453 fs of probe delay relative to the
gate, to +1881 fs of delay with time steps of 6.7 fs. Each time step was sampled in a random order
for each scan, with the resulting spectrum being an average of 6 scans.

In the heterodyne measurement, as seen in figure 2.4, a similar set of measurement parameters
was used as compared with the homodyne measurments. In this case the time allowed for the
lock-in to settle was 1500 ms, and the lock-in time constant was again 100 ms. For each of the
heterodyne measurements, the delay stage was scanned from −620 fs of probe delay relative to the
gate, to +1547 fs of delay with time steps of 6.7 fs. Each time step was again sampled in a random
order for each scan, with the resulting spectrum being an average of 7 to 9 scans.

For the in-phase measurement, a set of 8 scans were taken with the analyzing polarizer rotated
by +2◦ relative to the homodyne configuration, and a set of 9 scans were taken with the analyzing
polarizer rotated by −2◦. After averaging, these two raw heterodyne data sets were subtracted
against each other yielding the resulting heterodyne in-phase OKE spectrum for neat nitrobenzene.

For the out-of-phase measurement, a set of 8 scans were taken with the input probe polariza-
tion before the λ

4 waveplate, was rotated by +2◦ relative to the homodyne configuration which
corresponded to shift in the ellipticity of the probe of 3.4◦ as measured through a stokes vector
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Figure 2.2: This figure shows the three different probe polarization schemes that are used for
homodyne, in-phase heterodyne, and out-of-phase heterodyne OKE/UTPS experiments. In the
homodyne case, the first polarizer aligns the measured pulse along the lab-frame y-axis and the
quarter-wave plate doesn’t change the polarization of input pulse. The polarization of the measured
pulse is modified due to interaction with the sample and an analyzer is aligned to the x-axis to reject
light with polarization along the y-axis. In the in-phase heterodyne case, the analyzer is rotated
by ±ε so that a small in-phase component along the y axis is transmitted to the detector. For
the heterodyne out-of-phase measurement, the first polarizer is rotated by ±ε which introduces a
small off-axis component into the pulse. This off axis polarization in conjunction with the quarter-
wave plate, introduces ellipticity in the probe pulse. When performing a heterodyne measurement,
the resultant signal can be determined by taking the difference between +ε and−ε heterodyne
measurements.



CHAPTER 2. UTPS EXPERIMENTAL TECHNIQUE 14

Figure 2.3: Time resolved homodyne optical Kerr effect spectrum of neat liquid nitrobenzene.
Positive time delays represent the gating pulse arriving before the probing pulse.

measurement [67]. In the case where the input probe polarization was rotated by −2◦ before the
λ

4 waveplate, a set of 7 scans were averaged to give the raw −2◦ out-of-phase spectrum. After
averaging, these two raw heterodyne data sets were subtracted from each other yielding the net
heterodyne out-of-phase OKE spectrum for neat nitrobenzene.

Previous studies have used time resolved optical Kerr effect spectroscopy to make measure-
ments of nitrobenzene and other benzene derivatives as a means of studying ultrafast and ori-
entational dynamics in these systems [65, 64, 66, 68]. These studies have found evidence that
reorientational dynamics in nitrobenzene can be well described using two decay time constants
that range in time scale from 0.5 to 20 ps in addition to ultrafast dynamics that occur on the time
scale of 80 fs.

Lotshaw et al. [65], using pulses with autocorrelations of 100 fs centered at 633 nm, fit het-
erodyne detected OKE measurements of nitrobenzene using a sum of exponentials model for the
intrinsic response function using 3 time constants of 32 ps attributed to molecular reorientations,
0.51 ps attributed to some intermolecular interaction, and 80 fs attributed to ultrafast electronic
dynamics. The rise time of the electronic response was modeled as instantaneous at t=0. They
found that in order to properly fit the data, they needed to introduce an additional delay of 100 fs
to the non-electronic components which they attribute to inertial effects.

Smith and Meech [64] performed similar heterodyne OKE measurements on nitrobenzene us-
ing 50 fs pulses generated from a titanium sapphire oscillator. In these experiments, the researchers
measured the temperature and viscosity dependence of nitrobeznene and found that, over the range
of parameters tested, the two slowest relaxation components had a relaxation times between 16 - 35
ps and 1 - 2 ps. The researchers then modeled the temperature dependence of the slow picosecond
dynamics using a hydrodynamic Debye model that incorporated the effects of viscosity, molecu-
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Figure 2.4: Time resolved heterodyne optical Kerr effect spectra of neat liquid nitrobenzene. Raw
measurements represent the raw + or - ε spectra. The raw spectra are then subtracted against each
other to yield the net in-phase or net out-of-phase heterodyne OKE spectrum. Positive time delays
represent the gating pulse arriving before the probing pulse.

lar size, molecular shape, temperature, moments of inertia, and the polarizability of the molecule.
Using this model they were able to model the slower picosecond relaxation times previously as-
sociated with reorientational dynamics as well as the intermolecular interaction. They found that,
while a simple hydrodynamic model is able to qualitatively model the trends seen as a function of
temperature and viscosity, the model consistently underestimated the longest relaxation time and
overestimated the shorter relaxation time. The authors [66] suggest that, this discrepancy shows
that the picosecond relaxation dynamics can’t be ascribed to simple reoriational dynamics and that
a Brownian oscillator model might be better able to describe these dynamics.

Nikiforov et al. [66] using 45 fs pulses with a central wavelength of 790 nm, also performed
heterodyne OKE measurements of nitrobenzene, however in this case, they modeled the orienta-
tional response of the system using a pair of exponential rise terms coupled to their own exponen-
tial decay factors. Using this fit function and by assuming correlations between the librational and
orientational dynamics, they use the fit decay and rise time constants to extract a librational time
constant for nitrobenzene. They found decay time constants of 20 ps and 0.9 ps, rise time constants
of 54 fs and 180 fs, with the extracted librational time constant being 320 fs.
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a. b.

Fit Terms R1 A τ1 τ2 γ1 γ2 ∆

Fit Values R1 0.0395 arb. 1.93 ps 121 fs 79.0 fs 204 fs -24.6 fs
Fit Terms R2 B τ3 γ3 T φ

Fit Values R2 52.5 arb. 51.2 fs 32.5 ps 70.2 fs -0.679 rad.

Figure 2.5: Fits of the Out-of-phase time resolved heterodyne optical Kerr effect spectra of neat
liquid nitrobenzene with the fit parameters tabulated. Based on the fitting procedure used by Niki-
forov et. al. [66], we first fit our OKE data using the response function shown in equation 2.1a
which represented the sum of two decaying and rising exponentials. This fit resulted in rise con-
stants of 79 fs and 200 fs with the fit shown in panel a. After subtracting the fit from the data
we then fit the early time response using a cosine function multiplied by a rising and decaying
exponential to capture the apparent oscillatory behavior between 0 fs and 200 fs of time delay as
shown in in equation 2.1b. This resulted in a rise constant of 32 ps, a decay constant of 51 fs, and
a fit oscillatory period of 70 fs with the fit shown in panel b.

R1 = (1−A)e(t−∆)/τ1
(

1− e(t−∆)/γ1
)
+Ae(t−∆)/τ2

(
1− e(t−∆)/γ2

)
(2.1a)

R2 = Be(t−∆)/τ3
(

1− e(t−∆)/γ3
)

cos
(

2π
t
T
+φ

)
(2.1b)

Overall, our measurements give reasonably good agreement with the OKE nitrobenzene spectra
reported in the literature. As depicted in figure 2.5, we used a fitting approach based on the ap-
proach from Nikiforov et. al. [66]. We recovered decay rate constants of 1.9 ps and 120 fs which
according to the previously discussed literature [66, 64, 65] may correspond to reorientational and
electronic dynamics respectively. Additionally, after fitting the early time component to a cosine
function multiplied by rising and decaying exponentials, we recovered rise and decay constants
of 32 ps and 51 fs respectively, with an oscillatory period of 70 fs. While this behavior has not
been reported in previous OKE measurements of nitrobenzene, such structures have been seen in
OKE measurements of CS2 [69, 70]. In reporting those measurements, the authors attributed those
structures to competing ultrafast electronic and/or librational phenomena. In addition to validating
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Figure 2.6: Piecewise least-squares fit of two photon absorption of 780 nm light of neat nitroben-
zene on a log-log scale. The optimal fit parameters were found by scanning the break point and
optimizing the least-squares loss function.

our ability to measure third order optical responses, measurements from a sample of neat nitroben-
zene these measurements of the ground state OKE signal will allow us to distinguish between the
excited state signal given three pulse polarization sensitive measurements.

Validation of excited state preparation
As the first step in a UTPS measurement is preparing a system in an excited state, we utilized a
two-photon absorption scheme using a 780 nm excitation pulse to bring nitrobenzene into the S1
state. Theoretical studies of nitrobenzene using both time dependent density functional theory as
well as wavefunction methods suggest that the S0 to S1 transition is of nπ∗ character and has a
resonant energy separation between 3.32 eV - 3.73 eV [71, 72, 73]. Experimentally, this transition
has been observed to be relatively weak with the absorption band associated with this transition
occurring between 3.1 eV - 4.1 eV [74].

To ensure our excitation pulse was in the two-photon regime, we performed an absorption
measurement where we compared the transmitted energy of the excitation pulse through a sample
of nitrobenzene to a blank empty cuvette. As seen in figure 2.6 we then plotted the resultant
absorption vs incident energy on a log-log scale and fit the graph to a piecewise linear fit. This
allowed us to prepare a sample of nitrobenzene in a non-equilibrium electronic state prior to the
Kerr effect measurement [61, 34].
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2.2 Analysis of Optical Kerr Effect Experimental Signals
In an OKE experiment, information about a sample of interest is accessed through a measurement
that is dependent on the intensity dependent refractive index of the sample as well as the character-
istics of the incident pulses where intrinsic information about a sample is contained in the intensity
dependent refractive index [39, 40]. When considering the experiment in the time domain, this
intensity dependent refractive index can be represented by considering the sample’s intrinsic re-
sponse function R(t). Under this framework, extracting information about about a sample of
interest requires accounting for how the pulse characteristic of the gate and probe pulses impact
the measured signal [39, 52, 57, 70, 75, 76].

In the case of the homodyne experiment, a typical correlation analysis results in the following
nonlinear relationship between the response function and the measured signal [39, 52, 57, 70]

Vhomo(T ) ∝

∫
∞

−∞

dt Iprobe(T − t)
∣∣∣∣∫ ∞

−∞

dτ R(t − τ)Igate(τ)

∣∣∣∣2 (2.2)

In the heterodyne OKE experiment, a standard correlation analysis shows that the relationship
between the response function and the signal is a linear correlation between the intensity cross
correlation of the gate and probe pulses and either the real or imaginary components of the response
function given an out-of-phase or in-phase local-oscillator respectively [39, 52, 57, 70, 75].

F
[
Vin-phase / out-of-phase

]
F [G]

∝ F
[
Rimaginary / real

]
(2.3)

A typical argument when deriving the relationship between the heterodyne in-phase/out-of-
phase signals to the intrinsic response function is based off of the introduction of a small local
oscillator with a polarization that’s orthogonal to the polarization of the signal. In this analysis, the
measured signal given a specific phase of the local oscillator is decomposed as follows [39, 52, 57,
70, 75, 59]

Idet = Isignal + ILO + Ibackground +
nc
8π

(E∗
LOEsignal +ELOE∗

signal) (2.4)

In this analysis, the resulting contribution of the local oscillator can be removed by considering
two separate in-phase/out-of-phase measurements where the phase of the local oscillator has been
shifted by 180◦, which is denoted with a + or − depending on the convention being used [39, 52,
57, 70, 75, 76].

Experimentally, these local oscillators are derived from the probe pulse by either rotating the
analyzing polarizer by a small amount or by introducing a small amount of ellipticity into the probe.
As the effects of these changes in the experimental set up primarily impact the net polarization of
the fields, the resulting signal can be modeled using a Jones calculus. By following Jones vector
analysis we can more directly represent the heterodyne OKE signal without explicitly invoking a
local oscillator that is treated separately from the probing field.

In the following sections, we will present a Jones vector analysis of the homodyne and het-
erodyne OKE signals using a minimal set of assumptions. To the best of our knowledge such an
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analysis has not been presented before in the OKE literature. With this analysis, we will recover
the typical OKE correlation expressions as shown in equations 2.3 and 2.2 and show the conditions
under which those expressions are valid. Furthermore, we will provide a more general expression
in the case where the typical heterodyne expression is not complete. Lastly, in deriving these
expressions we will show that the heterodyne signal is maximized when using purely circularly
polarized light in the case of the out-of-phase experiment, or by rotating the analyzing polarizer
such that it is 45◦ off axis relative to the input probe pulse’s polarization in the case of the in-phase
experiment.

Jones Matrix Analysis of Homodyne and Heterodyne Optical Kerr Effect
Measurements
Time resolved optical Kerr effect spectroscopy is a technique that is based on the observation that
for many materials the refractive index can be described with the following expression [36, 39,
40].

n = n0 +n2Igate (2.5)

Due to the polarization of an optical pulse, the refractive index of the medium along the po-
larization axis of the field can be significantly different than that of the off axis refractive index
leading to a transient birefringence that can be sampled by a separate probing pulse. For a bire-
fringent sample whose fast and slow axes are orthogonal to each other and aligned perpendicular
to propagation axis of the sampling optical pulse, the Jones matrix of that sample can be described
as

Bsample =

(
exp
(
−i2π

d
λ

n∥
)

0
0 exp

(
−i2π

d
λ

n⊥
)) (2.6)

with the parameters n∥, n⊥, d, λ , and θprobe representing the refractive index of the medium
along the axis parallel to the polarization of a Kerr gating pulse, the refractive index of the medium
perpendicular to the polarization of that same Kerr gating pulse (and is thus not being modified
through the intensity dependent refractive index), and the interaction length between the pulse and
the sample, the center frequency of the pulse, respectively [77].

OKE Homodyne Jones Matrix Analysis

In typical homodyne optical Kerr effect measurements, a separate linearly polarized probing pulse
samples the transient birefringence that was initiated through the initial Kerr effect pulse. This
transient birefringence modifies the polarization of the probing pulse, which can be detected by
introducing an analyzing polarizer whose transmission axis is set orthogonal to the polarization
of the linearly polarized probe [67, 40, 78]. This allows us to represent the Jones vector for the
resultant probe field E⃗sample after the linearly polarized probe interacts with the sample as
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E⃗sample = |E⃗(t)|

exp
(
−i2π

d
λ

n∥
)

cosθprobe

exp
(
−i2π

d
λ

n⊥
)

sinθprobe

 (2.7)

as well as the Jones matrix for the analyzing polarizer in terms of the polarization axis of the
probe [67, 77].

P =

(
sin2(θprobe) −sin(θprobe)cos(θprobe)

−sin(θprobe)cos(θprobe) cos2(θprobe)

)
(2.8)

We can then combine expressions 2.9 and 2.8 to solve for the resulting signal field.

PE⃗sample = |E⃗probe(t)|e−i(a+b)
(
−
(
eia − eib)sin2 (

θprobe
)

cos
(
θprobe

)(
eia − eib)sin

(
θprobe

)
cos2 (θprobe

) ) (2.9)

where the phase factors a and b have been defined as

a = 2π
d
λ

n∥ (2.10a)

b = 2π
d
λ

n⊥ (2.10b)

Furthermore we can solve for the resulting signal, by taking the magnitude of expression 2.9
and integrating over the time representing a time averaging detector. This gives us an expression
for the measured voltage up to a proportionality yielding

Vhomo ∝

∫
∞

−∞

dt |E⃗probe(t)|2
1− cos

(
4θprobe

)
8

∣∣∣eia − eib
∣∣∣2 (2.11)

Note that, since the factor 1 − cos
(
4θprobe

)
is maximal at θprobe = π/4, this provides one

justification for the common choice of the probe polarization being 45◦ offset from the polarization
of the Kerr gating pulse.

In the limit of small phase shifts, we can make the assumption that eia − eib ≈ i(a− b). Sub-
tracting the phase terms as defined in 2.10 and by expressing the difference between the parallel
and perpendicular refractive indices in terms of the intensity dependent refractive index lets us
write the following

∆φ = a−b = 2π
d
λ

n2Igate (2.12)

By factoring out the terms that don’t depend on time in equation 2.11, we arrive at the ho-
modyne signal expression for a time integrated detector as expressed in terms of phase shifts [39,
79].

Vhomo(T ) ∝

∫
∞

−∞

dt Iprobe(T − t) |∆φ |2 (2.13)
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At this point it’s important to note that the refractive index is in general a complex quantity
and thus the phase shifts a, b, ∆φ are themselves complex [37, 67]. We therefore represent those
quantities as follows

a = a′+ ia′′ (2.14a)
b = b′+ ib′′ (2.14b)

∆φ = ∆φ
′+ i∆φ

′′ (2.14c)

While the contribution to the real and imaginary components of the phase shifts are combined
in the typical homodyne optical Kerr effect measurement, the heterodyned experiment gives us a
way of disentangling that information using modified experimental parameters.

OKE Heterodyne In-Phase Jones Matrix Analysis

We will now consider the Jones matrix analysis of the heterodyne in-phase experiment. In this
case, the only modification required to represent the heterodyne in-phase experiment as compared
to the homodyne case would be to add an additional rotation term ±εθ onto the Jones matrix
of the analyzing polarizer. This allows us to easily represent the positive/negative rotation of the
transmission axis of the analyzer symmetrically about the crossed orientation. With the assumption
that the probe polarization is orientated at a 45◦ angle relative to the Kerr gate polarization, we can
represent the analyzing polarizer used in the heterodyne in-phase experiment with the following
Jones matrix.

P(±)
in-phase =

(
sin2(π

4 ± εθ ) −1
2cos(±2εθ )

−1
2cos(±2εθ ) cos2(π

4 ± εθ )

)
(2.15)

Combining equations 2.7 and 2.15 gives us the resulting detectable field. By then taking the
square magnitude of that resultant field we can compute the detected in-phase homodyne signal
for the positive and negative in-phase experiment. Following this procedure yields the following
expression for the in-phase signals

V(±)
in-phase ∝

∫
∞

−∞

dt
|E⃗probe(t)|2

4

[
(e2a′′ + e2b′′)

+ ea′′+b′′(ei∆φ ′
− e−i∆φ ′

)cos(2εθ )

± (e2a′′ − e2b′′)sin(2εθ )
] (2.16)

Taking the difference between the positive and negative in-phase signals to remove the contri-
bution of the local oscillator terms and simplifying the resulting expression allows us to express
the heterodyne in-phase signal as follows
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V(+)
in-phase −V(−)

in-phase =

Vin-phase ∝

∫
∞

−∞

dt
|E⃗probe(t)|2

2
e2b′′sin(2εθ )

[
sinh(2∆φ

′′)+ cosh(2∆φ
′′)−1

] (2.17)

in the limit of small ∆φ equation 2.17 simplifies even further to give us the following

Vin-phase ∝ e2b′′sin(2εθ )
∫

∞

−∞

dtIprobe(t)∆φ
′′ (2.18)

Expression 2.18 allows us to make the following observations. First is that by introducing an
in-phase local oscillator, we can obtain a signal that is linear with respect to the imaginary com-
ponent of the Kerr phase shift greatly simplifying the analysis, which is consistent with previous
analysis on these signals [39, 40, 52]. Second is that this linearity is preserved regardless of the
magnitude chosen for the perturbing angle εθ . Whatsmore this analysis suggests that the in-phase
OKE signal will peak when the perturbing angle of the analyzer is chosen to be ±45◦ off axis from
the homodyne condition. Physically, equation 2.18 also implies that the dynamics of the in-phase
signal are encoded in the imaginary component of the Kerr phase shift and thus the absorption of
the probing pulse due to the intensity dependent refractive index.

OKE Heterodyne Out-of-Phase Jones Matrix Analysis

We will now consider the heterodyne out-of-phase case, which in comparison to the homodyne
case, the probing pulse is modified by adding a small amount of either right or left handed ellipticity
to add an out-of-phase local oscillator onto the detected signal. Taking the difference between the
two out of phase signals allows us to removed the contribution of the local oscillator and recover
the out-of-phase heterodyned Kerr effect signal. To represent a Jones vector of the out-of-phase
probing pulse we can add a phase factor ±δE onto the y-component of the incident pulse allowing
us to add or subtract a given amount of ellipticity from the pulse [?, 67]. The resulting Jones vector
for the probing pulse is thus

E⃗(±)
probe = |E⃗(t)|

(
cosθprobe

e∓iδE sinθprobe

)
(2.19)

We can then combine the matrix representations of the out-of-phase probe in equation 2.19
with the representations of the transient birefringent sample and the polarizer in equations 2.6 and
2.8 to represent the signal field. Following the previous analysis we can again take the square
magnitude of this resulting field to give us expressions representing the out-of-phase signal given
a positive or negative elliptical phase shift. Under the assumption of a probe polarization oriented
45◦ relative to the Kerr effect pulse, We obtain the following expression for the positive or negative
out-of-phase signal

V(±)
out-of-phase ∝

∫
∞

−∞

dt
|E⃗probe(t)|2

4

[
(e2a′′ + e2b′′)− e2b′′eδφ ′′

(
e−i∆φ ′

e±iδE + ei∆φ ′
e∓iδE

)]
(2.20)
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Taking the difference between the positively and negatively shifted out-of-phase signals and
simplifying, gives us the following expression for the resulting out-of-phase heterodyne signal

V(+)
out-of-phase −V(−)

out-of-phase =

Vout-of-phase ∝

∫
∞

−∞

dt|E⃗probe(t)|2e2b′′eδφ ′′
sin(δE)sin(∆φ

′)
(2.21)

and again, under the limit of small ∆φ expression 2.21 simplifies even further to

Vout-of-phase ∝ sin(δE)e2b′′
∫

∞

−∞

dtIprobe(t)e∆φ ′′
∆φ

′ (2.22)

For the case of purely real phase shifts, expressions 2.21 and 2.22 recover previously derived
expressions for the out-of-phase heterodyne signal and the Kerr effect signal difference from right
and left handed circularly polarized light [80, 40, 39]. This analysis also suggests that, given
expression 2.22, this signal both doesn’t depend on the ellipticity of the probe and that the signal
is maximized when δE obtains a value of π

2 . This suggests that the peak signal for the out-of-phase
heterodyne signal would be obtained when using purely right and left circularly polarized light.
Additionally, equation 2.22 allows us to interpret the out-of-phase signal as being approximately
linear with respect to the real component of the Kerr phase shift and but exponentially dependent
on the Kerr absorption.

Correlation Analysis of Homodyne and Heterodyne Optical Kerr Effect
Measurements
Thus far we have derived expressions relating the phase shifts from a Kerr medium to the expected
signals from a time resolved homodyne and heterodyne optical Kerr effect experimental mea-
surement. We will now use these expressions to extract information about the intrinsic response
function of the medium using a general model describing these phase shifts and Fourier analysis
of the time resolved OKE spectrum, dubbed the correlation analysis [39, 40].

The model for these phase shifts as described in equation 2.12, that we’ll be using is as follows

∆φ(t) =
∫

∞

−∞

dτ R(t − τ)Igate(τ) (2.23)

Additionally, since the intensity of the gate pulse is a real quantity any imaginary component
in the phase shift ∆φ must come from the intrinsic response function R. Thus we can break up
equation 2.23 into real and imaginary components allowing us to identify the following expressions
for ∆φ ′ and ∆φ ′′

∆φ
′(t) =

∫
∞

−∞

dτ R ′(t − τ)Igate(τ) (2.24a)

∆φ
′′(t) =

∫
∞

−∞

dτ R ′′(t − τ)Igate(τ) (2.24b)
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One interpretation for equations 2.23 and 2.24 is that it is the Fourier transform of the frequency
domain expression in equation 2.12. This interpretation allows us to directly map the measured
response function onto the intensity dependent refractive index as show in equation 2.5 through
Fourier analysis. This allows us to write the following

F−1 [∆φ(ω)] ∝ F−1 [
ωn2(ω)Igate(ω)

]
(2.25)

∝

(
−i

d
dt

F−1 [n2] (t)
)
∗ Igate(t) (2.26)

By comparing equations 2.23 and 2.25, we can therefore identify the general response function
(R) as the following

R ∝ −i
d
dt

F−1 [n2] (t) (2.27)

Given information about the intensity profile of the incident probe and gating pulses, the model
as written in equation 2.23 has been successfully used to recover the intrinsic response functions
from many liquid systems including a variety of benzene derivatives, water, CS2, among many
others [65, 64, 66, 40, 52, 78, 81, 68, 69]. This analysis has been used to study nuclear dynamics
such as reorientational effects and molecular librations which tend to occur on picosecond time
scales, as well as electronic dynamics which tend to occur on femtosecond time scales [??, 65].

When considering the homodyne OKE experiment, expression 2.23 in combination with equa-
tion 2.13, allows us to write the following standard expression for the signal of the homodyne
experimental configuration given a time averaging detector [39, 78].

Vhomo(T ) ∝

∫
∞

−∞

dt Iprobe(T − t)
∣∣∣∣∫ ∞

−∞

dτ R(t − τ)Igate(τ)

∣∣∣∣2 (2.28)

Using equations 2.24, 2.18, and 2.22 we can similarly write expressions relating the heterodyne
signals to the intrinsic response function of the sample. For the heterodyne in-phase case, the
resulting expression is

Vin-phase(T ) ∝

∫
∞

−∞

∫
∞

−∞

dt dτ Iprobe(T − t)Igate(τ)R
′′(t − τ) (2.29)

and for the heterodyne out-of-phase case

Vout-of-phase(T ) ∝

∫
∞

−∞

∫
∞

−∞

dτ1 dt Iprobe(T − t)Igate(τ1)R
′(t − τ1)e

∫
∞

−∞
dτ2 R′′(t−τ2)Igate(τ2) (2.30)

Equation 2.29 can be simplified even further through the use of the cross-correlation function
G which represents the intensity cross-correlation between the Kerr gate and probing pulses. Given
the distributive property of convolutions, Equation 2.29 can be rewritten as [39, 52]
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Vin-phase(T ) ∝

∫
∞

−∞

dt dτ G (T − t)R ′′(t) (2.31)

This allows us to directly recover the imaginary component of the intrinsic response func-
tion R ′′ through an in-phase heterodyne experiment and a measurement of the intensity cross-
correlation function of the incident fields [39, 40, 52]. We can thus re-write expression 2.31 into
the following simple expression.

F
[
Vin-phase

]
F [G]

∝ F
[
R ′′] (2.32)

For the case of the out-of-phase measurement, in the limit of constant R ′′, the term eR′′∗Igate ,
reduces to a constant. This allows us to use the same analysis as was used for the in-phase case
yielding the standard out-of-phase heterodyne expression [39, 52]

F
[
Vconst-R′′

out-of-phase

]
F [G]

∝ F
[
R ′] (2.33)

However in the more general case, Fourier analysis of equation 2.30 yields the following ex-
pression

F

F−1
[

F [Vout-of-phase]
F [Iprobe]

]
eR′′∗Igate

 ∝ F
[
R ′]F [

Igate
]

(2.34)

Equation 2.34 implies that the intensity profile of the incident pulses and a measurement of
the convolution between R ′′ and Igate through an in-phase measurement, are needed recover the
real component of intrinsic response function R ′. Using ultrafast pulse measurement techniques
(like Frequency Resolved Optical Gating, spectral phase interferometry for direct electric-field
reconstruction, or many others) one can obtain the intensity profile of an ultrashort pulse of interest
[82, 83, 84, 85, 86]. Thus, through a set of pulse measurements of the probe and gate fields and
results from an in-phase heterodyne OKE measurement, one can recover the real component of
intrinsic response function R ′ through equation 2.34.

Thus far we have used the model of a sample being described by the intensity dependent refrac-
tive index in conjunction with an imperially driven response function to derive signal expressions
that can be expressed as convolutions of experimentally measurable pulse characteristics and an
imperially motivated sample response function. In the next section we will relate this response
function to the effective third order susceptibility allowing us to connect a measurement of R(t) to
fundamental properties of a system (ie. relaxation rates of a system) through the system’s effective
third order susceptibility.
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4WM Analysis of Time Resolved Optical Kerr Effect Measurements
In the last section we were able to relate the intrinsic response function R as measured from an
OKE experiment, to the intensity dependent refractive index n2 through equation 2.27. Here we
present a derivation of the relationship between n2 and effective third order susceptibility χ

(3)
eff in

the context of the full tensor nature of χ(3) [36]. Through this context we will then derive χ
(3)
eff in

terms of specific tensor elements of χ(3).
The general expression for the third order polarization is as follows

P⃗(3)
i (ωout) = ε0χ

(3)
i jkl(ωout;ω1,ω2,ω3)E⃗ j(ω1)E⃗k(ω2)E⃗l(ω3)

= ε0

(
χ
(3)
i jkl⃗ei⃗ei⃗ei

)
E(ω1)E(ω2)E(ω3)

= ε0χ
(3)
eff E(ω1)E(ω2)E(ω3)

(2.35)

where in the second step, we factored out the unit polarization vector of the incident field terms
and associated them with the χ(3) tensor. This step gives us a path to deriving χ

(3)
eff with respect

to the tensor elements of χ(3) given the field orientations and the polarization axis by which the
signal is measured. In the case of the intensity dependent refractive index, in order for χ(3) to
act as a refractive index, the input field frequency must be the same as the output field frequency.
We therefore make the following simplifying assumption that ω1 and ω2 are equal in magnitude
but opposite in sign and which implies that ωout must equal ω3. Thus allowing us to write the
following

P⃗(3)(ω) = ε0χ
(3)
eff E(ω1)E(−ω1)E(ω)

= ε0χ
(3)
eff |E(ω1)|2 E(ω)

(2.36)

Under fairly general circumstances, the first electric field driven nonliterary for isotropic media
is P(3) [87, 36]. We can then write the following approximation for the total polarization of an
isotropic media as

P⃗(tot)(ω) = ε0χ
(1)E(ω)+ ε0χ

(3)
eff |E(ω1)|2 E(ω)

= ε0

(
χ
(1)+χ

(3)
eff |E(ω1)|2

)
E(ω)

= ε0χE(ω)

(2.37)

where in the last step we identified the term
(

χ(1)+χ
(3)
eff |E(ω1)|2

)
as the total susceptibility

χ . Using the following general expression relating the refractive index to the susceptibility

n2 = 1+χ (2.38)
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allows us to relate the intensity dependent refractive index of equation 2.5 to the total suscepti-
bility as identified in equation 2.37 [36]. After noting the following relationship between intensity
and field strength

I = 2cn0ε0 |E|2 (2.39)

and in combination with equation 2.5 we can expand equation 2.40 up to first order in intensity
into the following form

n2
0 +2n0n2I = 1+χ

(1)+
χ
(3)
eff

2cn0ε0
I (2.40)

By equating terms equal in their order of intensity, we can solve for n2 yielding

n2 =
χ
(3)
eff

4cε0n2
0

(2.41)

which is a typical expression relating n2 to χ
(3)
eff [36]. Thus a measurement of the Kerr effect

response function R can be related to χ(3) through equations 2.41 and 2.27.
As mentioned previously, equation 2.35 hints at a way relating χ

(3)
eff to specific tensor elements

of χ(3) given an OKE experiment. Before we proceed with the derivation, we note some relevant
experimental conditions for the homodyne OKE case. First, the presence of the analyzing polarizer
orthogonal to the probing pulse. Second, a typical homodyne experiment consists of two pulses a
probing pulse (Eprobe) and a Kerr gating pulse (Egate) that are oriented 45◦ relative to each other.
Taking the probe to be x̂ aligned and the analyzing polarizer to be ŷ aligned, we can write the third
order polarization that contributes to the signal as follows

P(3)
y = ε0χ

(3)
y jkl(ω j,ωk,ωl)

(
E⃗(probe)

j + E⃗(gate)
j

)(
E⃗(probe)

k + E⃗(gate)
k

)(
E⃗(probe)

l + E⃗(gate)
l

)
(2.42)

Since the gate pulse drives the intensity dependent refractive index and since the signal propa-
gates along the probe, after expanding equation 2.42, phase matching conditions allow us to ignore
terms that don’t include two factors of the gating pulse and 1 factor of the probing pulse. Addi-
tionally, phase matching conditions require that the two input gate frequencies must be equal and
opposite from one another. These conditions allow us to rewrite equation 2.42 into the following
form
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P(3)
y = ε0χ

(3)
y jkl(ω j,ωk,ωl)

(
E⃗(probe)

j (ωp)E⃗
(gate)
k (+ωg)E⃗

(gate)
l (−ωg)+

E⃗(probe)
j (ωp)E⃗

(gate)
k (−ωg)E⃗

(gate)
l (+ωg)+

E⃗(gate)
j (+ωg)E⃗

(probe)
k (ωp)E⃗

(gate)
l (−ωg)+

E⃗(gate)
j (−ωg)E⃗

(probe)
k (ωp)E⃗

(gate)
l (+ωg)+

E⃗(gate)
j (+ωg)E⃗

(gate)
k (−ωg)E⃗

(probe)
l (ωp)+

E⃗(gate)
j (−ωg)E⃗

(gate)
k (+ωg)E⃗

(probe)
l (ωp)

)
(2.43)

After noting that the gate field can be written in the following form

E⃗(gate)(ωg) = E(gate)(ωg)

(
1√
2

x̂+
1√
2

ŷ
)

(2.44)

and that the probe field has the following form

E⃗(probe)(ωp) = E(probe)(ωp)x̂ (2.45)

we can rewrite equation 2.43 into the follow expression

P(3)
y =

1
2

ε0χ
(3)
y jkl(ω j,ωk,ωl)

(
E(probe)(ωp)E(gate)(+ωg)E(gate)(−ωg)x̂ j (x̂k + ŷk)(x̂l + ŷl)

+E(probe)(ωp)E(gate)(−ωg)E(gate)(+ωg)x̂ j (x̂k + ŷk)(x̂l + ŷl)

+E(gate)(+ωg)E(probe)(ωp)E(gate)(−ωg)
(
x̂ j + ŷ j

)
x̂k (x̂l + ŷl)

+E(gate)(−ωg)E(probe)(ωp)E(gate)(+ωg)
(
x̂ j + ŷ j

)
x̂k (x̂l + ŷl)

+E(gate)(+ωg)E(gate)(−ωg)E(probe)(ωp)
(
x̂ j + ŷ j

)
(x̂k + ŷk) x̂l

+E(gate)(−ωg)E(gate)(+ωg)E(probe)(ωp)
(
x̂ j + ŷ j

)
(x̂k + ŷk) x̂l

)
(2.46)

evaluating the tensor contractions in equation 2.46 yields the following expression
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P(3)
y =

1
2

ε0

([
χ
(3)
yxxx(+ωg,−ωg,ωp)+χ

(3)
yyxx(+ωg,−ωg,ωp)+χ

(3)
yxyx(+ωg,−ωg,ωp)+

χ
(3)
yyyx(+ωg,−ωg,ωp)+χ

(3)
yxxx(−ωg,+ωg,ωp)+χ

(3)
yyxx(−ωg,+ωg,ωp)+

χ
(3)
yxyx(−ωg,+ωg,ωp)+χ

(3)
yyyx(−ωg,+ωg,ωp)

]
+[

χ
(3)
yxxx(+ωg,ωp,−ωg)+χ

(3)
yyxx(+ωg,ωp,−ωg)+χ

(3)
yxxy(+ωg,ωp,−ωg)+

χ
(3)
yyxy(+ωg,ωp,−ωg)+χ

(3)
yxxx(−ωg,ωp,+ωg)+χ

(3)
yyxx(−ωg,ωp,+ωg)+

χ
(3)
yxxy(−ωg,ωp,+ωg)+χ

(3)
yyxy(−ωg,ωp,+ωg)

]
+[

χ
(3)
yxxx(ωp,+ωg,−ωg)+χ

(3)
yxyx(ωp,+ωg,−ωg)+χ

(3)
yxxy(ωp,+ωg,−ωg)+

χ
(3)
yxyy(ωp,+ωg,−ωg)+χ

(3)
yxxx(ωp,−ωg,+ωg)+χ

(3)
yxyx(ωp,−ωg,+ωg)+

χ
(3)
yxxy(ωp,−ωg,+ωg)+χ

(3)
yxyy(ωp,−ωg,+ωg)

])
E(gate)E(gate)E(probe)

(2.47)

At this point invoking the intrinsic permutation symmetry of χ(3) allows us to greatly sim-
plify equation 2.48. By preferencing the arbitrary ordering of (+ωg,−ωg,ωp) we can reexpress
equation 2.48 into the following form [39, 36]

P(3)
y = 3ε0

(
χ
(3)
yxxx(+ωg,−ωg,ωp)+χ

(3)
yyxx(+ωg,−ωg,ωp)+

χ
(3)
yxyx(+ωg,−ωg,ωp)+χ

(3)
yyyx(+ωg,−ωg,ωp)

)
E(gate)E(gate)E(probe)

(2.48)

in the case of an isotropic material, this simplifies even further to the following [36, 39, 47, 70]

P(3)
y = 3ε0

(
χ
(3)
yxyx(+ωg,−ωg,ωp)+χ

(3)
yyxx(+ωg,−ωg,ωp)

)
E(gate)E(gate)E(probe) (2.49)

Thus for a homodyne OKE experiment of an isotropic system, we identify the following as
χ
(3)
eff

χ
(3)
eff/homo = 3

(
χ
(3)
yxyx(+ωg,−ωg,ωp)+χ

(3)
yyxx(+ωg,−ωg,ωp)

)
(2.50)

We now have written an explicit relation (as seen in expression 2.50) from the tensor elements
of χ

(3)
iso to the χ

(3)
eff . Also, as seen in expression 2.41, we derived an expression for the intensity
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dependent refractive index in terms of this same χ
(3)
eff . Lastly, when reviewing the correlation

analysis of optical Kerr effect measurements, we related the intrinsic response function (R) of
an optical Kerr effect measurement, to the intensity dependent refractive index, using expression
2.27. Combining these relationships allows us to rewrite the expression for the intrinsic response
function as follows

R ∝ − i
4cε0

d
dt

F−1

[
χ
(3)
eff

n2
0

]
(t)

∝ −i
d
dt

(
χ̂
(3)
eff ∗ n̂−2

0

) (2.51)

If the linear refractive index has a constant frequency response over the bandwidth of the pulse
envelope, the 1

n2
0

term becomes a constant that can be factored out of equation 2.51. This lets us
further simplify expression 2.51 and relate the real and imaginary terms of the intrinsic response
(R) function to their corresponding real and imaginary terms of the effective third order response
function (χ(3)

eff ) as follows

Rn0 ∝ −i
d
dt

(
χ̂
(3)
eff (t)

)
(2.52a)

Re(Rn0) ∝ − d
dt

Im
(

χ̂
(3)
eff (t)

)
(2.52b)

Im(Rn0) ∝
d
dt

Re
(

χ̂
(3)
eff (t)

)
(2.52c)

Physically, equation 2.52 suggests the following interpretation. As implied by equations 2.6,
2.7, 2.11 and 2.12, real Kerr effect phase shifts result in changes in the resultant polarization and
imaginary Kerr phase shifts result in shifts in the absorption of the signal. By equations 2.23 and
2.24, the Kerr phase shift is directly proportional to the intrinsic response function in the time
domain. In the context of equation 2.52, this suggests that absorption effects in a Kerr effect
experiment are due to the first derivative of the real component of χ̂

(3)
eff (t) whereas phase shifts in

the polarization are due to first derivative of the imaginary component of χ̂
(3)
eff (t).

When considering the heterodyne experiments, since those measurements involve subtraction
of a pair of signals, the approach of only looking at the resulting polarization through 4WM is not
as straight forward as compared to the homodyne configuration. However, by using the results of
the correlation analysis given the assumption that the sample can be described using equation 2.5,
we can generalize the current results to the heterodyne case. Importantly, because the response
function as written in equation 2.23 describes both the homodyne and the heterodyne experiments,
a derivation of the response function in the homodyne case must also relate back to the heterodyne
configuration. Thus by using the result in equation 2.52 we find that we can identify the out-of-
phase heterodyne OKE signal as being a function of equation 2.52b and the in-phase heterodyne
signal is a function of equation 2.52c.
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2.3 Analysis of UTPS Signals
One simplifying assumption that’s often made when analyzing UTPS signals is that the excitation
process is sufficiently decoupled from the signal generation process [61]. This allows us to repre-
sent total response function as a weighted sum of the ground state response function (ROKE) and
an excited state response function (Rexcited) due to the excited state response [34] with a scalar (α)
representing the excited state fraction of the sample being observed. Note that the ground state
UTPS response function is the response function typically measured in OKE spectroscopy [61].
As α depends on the evolution of the excited state which is initiated by the pump and in principle
can be modified by interaction with the gate, α must be a function of both pump-probe delay (T )
and gate-probe delay (τ). This is in contrast to the ground state response function, which can only
depend on the time delay between the gate and probe pulses. In principle, dynamics on the excited
state can change the electronic structure as well as transition moments of a molecule, this suggests
that the excited state response function in general should be a function of both pump-probe and
gate-probe delays. With these considerations we can express the total response function Rtot as

If the only dynamics on the excited state only impact how the system decays from an excited
state , we can consider

Rtot(τ,T ) = (1−α(τ,T ))ROKE(τ)+α(τ,T )Rexcited(τ,T )
= ROKE +α(τ,T )(Rexcited(τ,T )−ROKE(τ))

(2.53)

Experimentally, it can often be more convenient to represent the total response function as a
change relative to the ground state due to the excitation pulse (∆Rexcited) which is both a function
of pump-probe delay and gate-probe delay. This allows us to separate the components of the signal
that depend only on gate-probe delay from the components that also depend on pump-probe delay.
This gives the following alternative expression for the total response function

Rtot(τ,T ) = ROKE(τ)+∆Rexcited(τ,T ) (2.54)

Briefly, we note that comparing equations 2.53 and 2.54 allows us to identify ∆Rexcited in terms
of the underlying ground state and excited state response functions as seen in equation 2.55.

∆Rexcited = α (Rexcited −ROKE) (2.55)

We note that the transformations relating R to χ
(3)
eff as shown in equations 2.51 and 2.52a, are

linear. Since equation 2.54 represents the total OKE response function as a sum of the excited
and ground state response functions, the linear relationship between χ

(3)
eff and R suggests that we

can also represent χ
(3)
eff as a sum of the ground state susceptibility (χ(3)

eff/OKE) and a change in the

susceptibility due the excited state (∆χ
(3)
eff/Excite). Whatsmore, by inserting expression 2.54 into the

previously derived homodyne signal expression of equation 2.28 allows us to express the measured
UTPS signal as a function of convolutions of the total response function, the incident gate, and
probe pulse, as shown below
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V UTPS-homo
3-pulse (τ,T ) ∝ Iprobe ∗

∣∣Igate ∗ (ROKE +∆Rexcited)
∣∣2 + Iprobe ∗ |Iexcite ∗ROKE|2 (2.56)

Note that in equation 2.56 we have included the effect of the excitation pulse in two sepa-
rate ways. First, as expressed in equation 2.54, we have represented the effect of the excitation
pulse bringing some population into an excited state and thus modifying the measured OKE sig-
nal through the addition of the ∆Rexcited term. Second we have included the ground state OKE
response which can result in a separate ground state Kerr effect signal through interaction between
the excitation pulse and the probing pulse. To further simplify equation 2.56, first we break-up the
ground state and excited state response functions in terms of their real (R ′) and imaginary (R ′′)
components, yielding

V UTPS-homo
3-pulse (τ,T ) ∝Iprobe ∗

∣∣Igate ∗ROKE
∣∣2+

Iprobe ∗
∣∣Igate ∗∆Rexcited

∣∣2+
2Iprobe ∗ (Igate ∗R ′

OKE)(Igate ∗∆R ′
excited)+

2Iprobe ∗ (Igate ∗R ′′
OKE)(Igate ∗∆R ′′

excited)+

Iprobe ∗ |Iexcite ∗ROKE|2

(2.57)

Subtracting the ground state 2-pulse terms between the probe and gate or the probe and excita-
tion pulses leaves us with the resulting expression for the UTPS homodyne signal

V UTPS
homo (τ,T ) ∝Iprobe ∗

∣∣Igate ∗∆Rexcited
∣∣2+

2Iprobe ∗ (Igate ∗R ′
OKE)(Igate ∗∆R ′

excited)+

2Iprobe ∗ (Igate ∗R ′′
OKE)(Igate ∗∆R ′′

excited)

(2.58)

Unlike the OKE case (as seen in expression 2.28), there is no guarantee that the signals from
a homodyne UTPS measurement are purely positive. This has to do with the nonlinear interac-
tion between the ground state and excited state response functions in this measurement scheme in
combination with the subtraction of the ground state interactions that are encoded in the 2 pulse
datasets. Additionally, equation 2.58 further suggests that extracting information from the excited
state response function in a UTPS homodyne experiment could be difficult without knowledge of
the real (R ′

OKE)) and imaginary (R ′′
OKE)) components of the ground state OKE response function

which are most directly accessed through a pair of OKE heterodyne measurements [39, 40, 58].
For a heterodyne UTPS in-phase case, we can again perform a similar procedure as in the

homodyne case by substituting equation 2.54 into expression 2.29 for the in-phase OKE signal
giving us the following expression for the 3-pulse in-phase UTPS signal

V UTPS-3pulse
in-phase (τ,T ) = Iprobe∗ Igate∗R ′′

OKE+ Iprobe∗ Igate∗∆R ′′
excited+ Iprobe∗ Iexcitation∗R ′′

OKE (2.59)
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After subtracting the two-pulse components, the resulting UTPS in-phase signal can be cleanly
expressed as

V UTPS
in-phase(τ,T ) = Iprobe ∗ Igate ∗∆R ′′

excited (2.60)

Allowing for the extraction of the imaginary component of the sample’s excited state response
function by deconvolving the signal with respect to the probe and gate pulses. Furthermore, as in
the case of the in-phase OKE measurement, equation 2.60 suggests that the UTPS in-phase signal
is linear with respect to excited state contribution to the Kerr effect absorption.

For the UTPS out-of-phase case, following the same procedure as in the homodyne and het-
erodyne in-phase examples but starting from the OKE out-of-phase signal expression of equation
2.30 yields

V UTPS-3pulse
out-of-phase =Iprobe ∗

(
eIgate∗R′′

OKE+Igate∗∆R′′
excited

[
Igate ∗R ′

OKE + Igate ∗∆R ′
excited

])
+

Iprobe ∗ eIexcitation∗R′′
OKE
(
Iexcitation ∗R ′

OKE
) (2.61)

and subtracting the two-pulse ground state OKE signal from the excitation and probing pulses
gives

V UTPS-subtracted
out-of-phase =V UTPS-3pulse

out-of-phase −V OKE-excite-probe
out-of-phase

= Iprobe ∗
(

eIgate∗R′′
OKE+Igate∗∆R′′

excited
[
Igate ∗R ′

OKE + Igate ∗∆R ′
excited

]) (2.62)

Equation 2.62 gives us an opportunity to interpret the out-of-phase UTPS signal in reference
to the real and imaginary phase shifts of the OKE out-of-phase signal. In the case where the Kerr
effect absorption is negligible, the imaginary component of the response function can be ignored.
In this case, we can simplify equation 2.62 by both ignoring the contribution of the imaginary
component of the response function as well as subtracting the ground state OKE signal, which
yields the following simplified expression for the out-of-phase UTPS signal.

V UTPS-no-absorption
out-of-phase =V UTPS-3pulse

out-of-phase −V OKE-excite-probe
out-of-phase −V OKE-gate-probe

out-of-phase

= Iprobe ∗ Igate ∗∆R ′
excited

(2.63)

Equations 2.62 and 2.63 suggest that, like the OKE heterodyne signal, the out-of-phase UTPS
signal is roughly linear with respect to the real component of the excited state response function.
Also like the OKE heterodyne signal, equation 2.62 suggests that the UTPS out-of-phase signal is
impacted by both the effects of absorption and refraction. However, equation 2.62 further suggests
that in general, information about the Kerr effect absorption from both the ground state and excited
state response function is needed in order to extract the real component of the excited state Kerr ef-
fect response function. Performing Fourier analysis on equation 2.62 allows us to solve for the real
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component of the excited state OKE response function in terms of the following experimentally
measurable quantities

F

F
[
V UTPS-subtracted

out-of-phase

]
F
[
Iprobe

]
/eV UTPS-3pulse

in-phase −V OKE-excite-gate
in-phase = Igate ∗∆R ′

excited (2.64)

These expressions provide a framework for modeling the responses from a UTPS experiment.
Additionally these expressions give us a means to extract information from the 2D excited state
response function through a set of 3 pulse and 2 pulse measurements.

2.4 Sample UTPS Measurements of Neat Nitrobenzene
In the previous sections, we have discussed how we can collect homodyne and heterodyne UTPS
data and how we can analyze the UTPS experimental data in the context of the theory of time
resolved OKE spectroscopy. In this section we will present the typical steps taken to collect and
process UTPS data in both heterodyne and homodyne configurations. In the following examples
of UTPS measurements, we will be considering the case of a sample of neat nitrobenzene being
excited by a pump pulse with center frequency at 780 nm, a pulse duration of 40 fs, and an incident
intensity of 5 · 1011W/cm2. This sample was then probed using a pair of gate and probe pulses
again with a center frequency at 780 nm and a pulse duration of 40 fs but, with intensities of
2 · 1011W/cm2 for both the gate and probe pulses. In these cases, the exciting pump, gate, and
probe pulses had unperturbed polarizations of 45◦, 45◦, and 0◦ respectively.

As suggested by equation 2.57, a typical UTPS measurement in the homodyne configuration
where the pulse trains aren’t modulated, could consist of three separate measurements. A raw 3
pulse measurement, a pump-probe only measurement (no gate), and a gate-probe only measure-
ment (no-pump). Examples of these measurements can be seen in figure 2.7. Because of the
modulated pump pulse train and the use of lock-in amplification to select for pump modulated
signal along the probe axis, this had the effect of effectively subtracting the gate-probe only signal
from the UTPS homodyne during the three pulse measurement. It’s for this reason that we don’t
see a vertical stripe in the three pulse signal as seen in the no-pump case that would be represen-
tative of the ground state signal coming from gate-probe interaction. However, ground state signal
from pump-probe only interaction is still present in the three pulse measurement which can be seen
as a diagonal stripe along constant pump-probe delay.

Subtracting the no-gate UTPS measurement from three pulse UTPS measurements results in
the following homodyne UTPS measurement as seen in figure 2.8. Here we note a few features
of these measurements. First, as suggested by equation 2.62 we note that the homodyne UTPS
experimental measurements results in both positive and negative signals which we attribute to
direct contributions to the signal from the real and imaginary components of the ground and excited
state response function of the sample. We also note here that since the diagonal stripe that intersects
the peak signal at the temporal overlap occurs with the condition of pump-probe delay being near 0
fs. This means at positive gate-probe delays, signal along the diagonal occurs with the gate arriving
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a. b. c.

Figure 2.7: Here we show raw three pulse and two pulse polarization sensitive homodyne measure-
ments of neat nitrobenzene that can be further processed into a homodyne UTPS measurement. The
three pulse (a.) and the pump-probe only (b.) measurements were made with the pump pulse train
being modulated by a mechanical chopper (operating at 137 Hz) and with lock-in amplification
being used to amplify the polarization signal along the probe axis that contains the pump modula-
tion. The gate-probe only measurement (c.) was made by feeding the repetition rate of the laser as
the lock-in reference frequency so that gate-probe interactions would be detected. In practice only
measurements from the pump-probe interaction (b.) and three pulse interaction (c.) are required in
order to form a figure representing the UTPS homodyne measurement.

before the pump and probe pulses whereas at negative gate-probe delays, the gate arrives after the
pump and probe pulses. Given the ground state OKE heterodyne measurements of nitrobenzene
as shown in figure 2.4, this suggests that under the conditions of the gate pulse arriving early, that
some component of the excited state response function is strongly negative suggesting that the
time derivative of χ̂

(3)
eff (t) undergoes a sign change as a result of excitation. The result of this is a

suppression of the 3 pulse signal relative to pump-probe only signal.
We now consider the in-phase heterodyne UTPS measurement. To perform such a measure-

ment with the UTPS set-up, as depicted in figure 2.1, consists of four separate measurements. As
suggested by equation 2.59, when combined with lock-in amplification, the heterodyne three pulse
UTPS in-phase measurement is sensitive to two terms. The term representing the pump-probe
interaction with the ground state response function and the term representing the gate-probe inter-
action with the excited state response function. To subtract out the pump-probe interaction with
the ground state response function term, we must make a separate pump-probe only OKE in-phase
measurement that allows us to subtract out this term. As one in-phase measurement involves two
separate polarization measurements with a positive and negative perturbation of the analyzing po-
larizer, to remove the ground state interaction in the three pulse UTPS measurement will require
four distinct measurements.

An example of a realization of a complete set of heterodyne in-phase UTPS measurements is
shown in figure 2.9. In this case the analyzing polarizer was perturbed by ±2◦. After perform-
ing the appropriate subtractions we obtain the resulting heterodyne in-phase UTPS measurement.



CHAPTER 2. UTPS EXPERIMENTAL TECHNIQUE 36

Figure 2.8: A homodyne UTPS measurement of neat nitrobenzene with the pump pulse polariza-
tion parallel to the gate pulse. This measurement was formed from the subtraction of the two pulse
pump-probe only measurement from the three pulse UTPS measurement. In contrast to homodyne
OKE measurements that are purely positive, homodyne UTPS signals can have both positive and
negative components to the measurement due to the nonlinear interaction between the excited Kerr
effect state response function and the ground state Kerr effect response function.

Importantly, as shown in equation 2.60, since this signal is linear with respect to the imaginary
component of the response function, the resultant in-phase heterodyne UTPS measurement gives
us a direct probe of this response function.

The out-of-phase heterodyne UTPS measurement has a lot of similarities to the in-phase mea-
surement. One substantial difference is that, according to equation 2.61, due to the effect of Kerr
absorption, the real component of the excited state response function is not linear with respect
to the measured out-of-phase UTPS signal. In particular, this means that regardless of whether
lock-in amplification is performed by modulating the excitation pump pulse train or not, the three
pulse signal will still be sensitive to all the terms as shown in equation 2.61. However, under
the conditions where the imaginary component of the excited state response function is zero, the
out-of-phase UTPS signal reduces to a linear response with respect to the real component of the
response function. Under those conditions and while using a lock-in on a pump modulated out-
of-phase UTPS signal, the ground state OKE response between the gate and probe pulses will be
rejected by the lock-in. This offers an explanation for why, in figure 2.11, the expected vertical
stripe representing the UTPS signal that’s constant with respect to pump-gate delay doesn’t show
up in the three pulse out-of-phase UTPS measurements.

After performing the appropriate subtractions given the raw out-of-phase UTPS measurements
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a. b.

c. d.

Figure 2.9: Here we show the raw heterodyne in-phase polarization sensitive measurements repre-
senting the data needed to form a heterodyne in-phase UTPS measurement of neat liquid nitroben-
zene. In these examples, the positive (+) in-phase measurement corresponds to a perturbation of
the analyzing-polarizer off from the homodyne condition by +2◦ and the negative (-) in-phase
measurement corresponds to a −2◦ rotation. Due to the use of lock-in amplification the gate-
probe interaction term is suppressed meaning only 4 measurements are needed instead of 6. The
difference between panels a and b represent the three pulse in-phase heterodyne measurement as
expressed in equation 2.59, whereas the difference between panels b and d represent an in-phase
OKE measurement using the pump and probe pulses. The difference between the in-phase three
pulse measurement and the pump-probe OKE measurement results in a final UTPS measurement
that can be used to extract information about the imaginary component of the excited state Kerr
effect response function.
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Figure 2.10: This figure gives an example of an in-phase UTPS measurement that is formed after
the subtraction of the two pulse pump-gate only in-phase OKE measurement from the three pulse
UTPS in-phase measurement. This final in-phase UTPS measurement is linearly related to the
imaginary component of the excited state Kerr response function as seen in equation 2.60 and thus
gives information about Kerr absorption effects.

we obtain the resultant out-of-phase UTPS signal as shown in figure 2.12. As mentioned previ-
ously, in the case of a non-zero imaginary component of the excited state Kerr effect response
function, the out-of-phase UTPS signal must be analyzed in the context of the in-phase UTPS
measurement.

At this point we’ve outlined the experimental and analytical tools needed to both take and
analyze UTPS measurements. We have also demonstrated the ability for us to prepare a fraction
of a sample in a nonequilibrium state and then to sample the dynamics of those systems using
methods based on Kerr effect spectroscopy. In chapter 3 we will consider these methods as applied
to the analysis of UTPS measurements of neat nitrobenzene. These measurement combined with
information about the quantum chemistry of nitrobenzene will allow us to interpret the observed
UTPS signal as evidence for wavepacket motion on the S1 excited state.
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a. b.

c. d.

Figure 2.11: Here we show the raw heterodyne out-of-phase polarization sensitive measurements
representing the data needed to form a heterodyne out-of-phase UTPS measurement of neat liquid
nitrobenzene. In these examples, the positive(+)/negative (-) in-phase measurement corresponds to
a perturbation of the ellipticity of the probing pulse prior to interaction with the sample by ±3.4◦

as measured through stokes vector measurements of these pulses. The difference between panels
a and b represent the three pulse out-of-phase heterodyne measurement as expressed in equation
2.61, whereas the difference between panels b and d represent an out-of-phase OKE measurement
using the pump and probe pulses. The difference between the out-of-phase three pulse measure-
ment and the pump-probe out-of-phase OKE measurement results in a final out-of-phase UTPS
measurement which can be used to extract information about the real component of the excited
state Kerr effect response function in the context of the associated in-phase measurement.
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Figure 2.12: This figure gives an example of an out-of-phase UTPS measurement that is formed
after the subtraction of the two pulse pump-gate only out-of-phase OKE measurement from the
three pulse UTPS in-phase measurement. This final out-of-phase UTPS measurement in general
has a nonlinear relationship to the excited state Kerr response function as shown in equation 2.62.
This expression suggests that one can extract information about the real component of the excited
state Kerr effect response function but only after accounting for the effects of Kerr effect absorption
as measured though a set of in-phase UTPS and in-phase OKE measurements.
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Chapter 3

A Study of Nitrobenzene in the Context of
Nonlinear Spectroscopy and Quantum
Chemistry

In the previous chapter we provided the framework for taking and analyzing UTPS signals. In this
chapter we will apply this technique toward the analysis of the ultrafast dynamics of nitrobenzene.

From a basic science perspective there are several reasons why nitrobenzene is a good target
for a polarization sensitive excited state spectroscopic method. First, nitrobenzene has a large and
well studied ground state third order response the yields a strong optical Kerr effect signal [36, 65,
88, 89, 90]. This allows us to benchmark our measured ground state response against literature
values to ensure we are measuring the third order response of the system.

More specifically, for optical pulses ranging from 1.5 eV to 4 eV, there are effectively two
regimes that give rise to distinct dynamics in nitrobenzene as measured with Kerr effect spec-
troscopy. The first regime occurs with pulses between 1.5 eV and 2.5 eV. At these energies, one
photon interaction with nitrobenzene is unable to resonantly interact with the lowest lying singlet
excited states which have an energy gap of 3 eV - 4 eV from the ground state as calculated with
MCSCF [71] and density functional theory methods [72]. In this energy regime four characteristic
decay constants have been measured which have been attributed to the following mechanisms in
liquid nitrobenzene. First, a fast electronic component that decays on the 80 fs time scale [65], li-
brational dynamics which occur between 310 fs and 510 fs [65, 66], and reorientational dynamics
with the slower rate constant occurring at a time scale between 20 ps - 32 ps [65, 66, 64], with the
exact time scale of the dynamics depending on temperature, excitation frequency, solvent viscos-
ity, molecular volume, and molecular shape [64]. A shorter time scale between 0.9 ps and 4 ps has
also been observed and attributed to a separate reorientational process [66] or internal structural
dynamics in the molecule [64].

Above 3 eV, single photon interactions are able to access the lowest lying electronic states of
nitrobenzene [71, 72]. Under these conditions nitrobenzene can break down to form NO and NO2
photo-products [91, 92] or it can relax back down to the ground state [93, 94]. When nitrobenzne
relaxes down to the ground state after excitation to the first accessible singlet, three distinct decay
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constants have been measured, a fast component < 100 fs, a 6 ps component, and a slow 420 ps
componet [93]. With the aid of MCSCF calculations, these components have been interpreted
as a fast relaxation from the excited singlet state to the ground state, a triplet to triplet internal
conversion, and a slow relaxation of the T1 state back down to the ground state [71]. These, purely
electronic mechanisms for the observed dynamics are mediated by conical intersections between
the relevant states [71].

Additionally, there several reasons for us to expect that the excited state third order signal of
nitrobenzene will be larger than the ground state third order signal. As discussed previously, there
are general arguments based on the reduction in the energy gap and the increasing transition dipole
moments when a system is in an excited state, that tend to occur across a variety of systems [41,
42]. Later we will show ab initio wavefunction calculations of the third order susceptibility of
nitrobenzene using response theory using the dalton quantum chemistry package. In line with
the previous points, these calculations will predict excited state enhancement of these third order
signals for a range of probe pulse frequencies given a fixed gate frequency. Additionally, a similar
set of calculations at the same level of theory as the third order susceptibility calculation will
show increased transition dipole moments between excited states as compared to the ground state
transition moments for a number of excited states.

In the following experimental study, we aim to further explore the electronic dynamics of
nitrobenzene to a low lying excited state using UTPS. To do this we aim to excite nitrobenzene
to the first accessible excited state using a multiphoton excitation. We will then probe the time
evolution of this excitation using the optical Kerr effect.

3.1 Ultrafast Transient Polarization Spectroscopy of
Nitrobenzene

Here we present a treatment of UTPS measurements of nitrobenzene. In particular we will focus
on homodyne UTPS measurements of neat nitrobenzene using three separate IR pulses. These
measurements were performed with liquid samples of nitrobenzene purchased from Sigma-Aldrich
(>99% purity). These samples were loaded into a 1 mm path length Spectrosil quartz cuvette with a
wall thicknesses of 1 mm. While in principle we can vary the polarization of the incident pumping
pulse, for the following set of measurements we will consider the case of the excitation pulse
parallel to the Kerr gating pulse.

Homodyne UTPS Measurement of Nitrobenzene with IR Excitation having
Parallel Polarization to the Gate
A schematic of the detection scheme used to collect the homodyne UTPS measurements is shown
in figure 3.1. In this detection scheme, the pump pulse train was modulated by a mechanical chop-
per, allowing us to reduce the number of datasets required in order to process the raw polarization
measurements into a 2D map representing the UTPS signal. In the following experiments we set
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a.

b.

Figure 3.1: Schematic of the homodyne UTPS measurement set-up (a.) used to make the homo-
dyne UTPS measurements of nitrobenzene. Here we also show the polarizations of the incident
pulses and time-delay convention (b.) used for the datasets shown in section 3.1. In particular we
also note that the polarizations of the pump and gate pulses are aligned, where as the probing pulse
is rotated −45◦ relative to the pump axis.

the pump polarization to be parallel with the gating pulse with the probing pulse set to be −45◦

offset relative to the probe polarization axis.
To initiate the excited state evolution of nitrobenzene we used a 780 nm pump pulse with

an intensity of 5× 1011 W/cm2. This excitation was then sampled by a pair of 780 nm gate
and probe pulse each with an intensity of 2× 1011 W/cm2. As seen in figure 2.6, nitrobenzene
is transparent to 780 nm optical pulses unless they are intense enough to excite a multiphoton
transition. The pump pulse energy was chosen to be within the quadratic absorption regime which
is consistent with the 2-photon absorption regime [74]. The gate and probe pulses where chosen
to be bellow this threshold. From these measurements we estimate that between 1 - 10% of the
sample within the interaction region was brought into the S1 excited electronic state through a
multiphoton excitation [34].

As shown in figure 3.2, the intensity cross-correlations of the gate-probe and pump-probe
pulses are measured to have a standard deviation of 78 fs and 59 fs respectively. These mea-
surements were made by measuring the second harmonic signal when the pulsed of interest were
incident on a BBO crystal [61]. By selecting for the appropriate k-vector we measured the 3-wave
mixing signal due to the pair of incident pulses. The cross-correlation measurements give us a
means to roughly estimate the time scale of the instrument response function especially in the
typical framework of heterodyne time resolved OKE spectroscopy were (as seen in equation 2.3)



CHAPTER 3. A STUDY OF NITROBENZENE IN THE CONTEXT OF NONLINEAR
SPECTROSCOPY AND QUANTUM CHEMISTRY 44

Figure 3.2: Here we show measurements of the cross-correlations of the gate and probe pulses as
well as the pump and probe pulses as measured through second harmonic generation using a BBO
crystal. These intensity cross correlation fits show a standard deviation of 78 fs and 59 fs for the
gate-probe and pump-probe measurements respectively. These measurements give us a means to
estimate the instrument response function that convolves the intrinsic response of the sample [61].

the linearity of the final signal allows us to represent the role of the pulses enters the final signal
expression as a cross-correlation of the gate and probe pulses [40, 52, 39]. We note here again
that this assumption can breakdown under certain conditions when analyzing out-of-phase signals
given a non-constant in-phase heterodyne signal as shown in the general expressions 2.30 and 2.34.

The raw polarization sensitive measurements are shown in figure 3.3. For each dataset, one
data point represents the lock-in signal acquired over 1500 laser shots at a particular pair of time-
delays. Each pair of time-delays were scanned in a randomized sequence until each pair of time
delays was sampled once. This process was repeated 24 times with each complete scan being
averaged together for this dataset.

We note here a couple of features in the 3-pulse and no-probe datasets that are somewhat
atypical for an ideal UTPS measurment. Namely, the diagonal stripe in the 3-pulse and no-probe
datasets. In principle, the no-probe dataset, should be exactly zero since there is no probing pulse
to sample the transient birefringence of the sample. In practice a small amount of leakage from
the gating pulse can make it onto the detector on the probe beamline due to the relatively small
incident angles between the pulses and the relatively large divergences from the fairly tight focus
of the lenses used [61]. Additionally due to the 45◦ offset polarization of the drive relative to
the probe, small amounts of leakage can result in large signals because the analyzing-polarizer
is unable to reject all the stray light. The additional 2-pulse contribution from the pump-probe
interaction can also be subtracted out in addition to the usual subtraction of the pump-probe two
pulse interaction to give the net UTPS homodyne signal.

The resultant homodyne UTPS measurement is shown in figure 3.4. In this figure the amount
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a. b.

c.

Figure 3.3: Here we show raw three pulse (a.), two pulse no gate (b.), and two pulse no probe (c.)
polarization sensitive homodyne measurements of neat nitrobenzene. In principle, the no probe
measurement should be exactly zero however due to a small amount of leakage of the gate onto the
probe beamline detector, some signal from the gate is detected. As such the additional two-pulse
contribution can be subtracted from the 3 pulse in addition to the no-gate two pulse contribution.
This pair of subtractions from the three pulse signal gives us the net Homodyne UTPS signal.
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Figure 3.4: A homodyne UTPS measurement of neat nitrobenzene given the gate and pump pulses
having parallel polarization relative to each other. This measurement was formed from the subtrac-
tion of the two pulse pump-probe only measurement from the three pulse UTPS measurement as
well as an additional subtraction from the no-probe measurment as referenced in figure 3.3. Here
we note the enhancement of the polarization response near the overlap region.

of positive (negative) signal represents the amount of enhancement (suppression) of the polariza-
tion signal as compared to a ground state OKE measurement. In this figure we can clearly see
enhancement of the polarization signal near three-pulse overlap. This is consistent with prior stud-
ies suggesting that multiple aligned gating pulses can result in the enhancement of a polarization
signal due to the additional molecular alignment [53, 54].

To further interpret the UTPS signal we used equation 3.1 as an ansatz to represent the UTPS
time delay signal. To justify this ansatz we make the following assumptions. First, we assume
that the time delay dependent Signal trace can be thought of as being parameterized by the pump-
probe time delay (T ) and only directly depends on the gate-probe (τ) time delay axis. Next we
assume that this parameterized signal can be represented by a convolution between an intrinsic
response function and an instrument response function. Here we represent the instrument response
function by a Gaussian function (g(τ;σ)) which approximates the cross-correlation of a pair of
optical pulses [34]. Furthermore, given our short time delay window we make the additional
approximation that the intrinsic response function along the gate-probe axis consists of a pair of
decay dynamics, a short time scale decay that can be approximated by an exponential (exp(− τ−t0

γ
))

and a long time scale decay whose decay rate would not be measurable given the short time window
we have to observe the dynamics and can thus be approximated by a constant function. With the
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Figure 3.5: This figure shows the reconstruction of the measured homodyne UTPS signal (a.)
along with the difference between the reconstructed plot and the measured homodyne signal (b.).
We note that the hard edge toward the negative gate-probe side of the signal which we attribute to
the sudden approximation as applied to the fitting of this homodyne dataset.

additional use of the sudden approximation we approximate the effective change in the baseline
with the Heaviside step function (Θ(τ − t0)) with all the scaling factors folded into the amplitude
(A). As the onset time (t0(T )), scaling amplitude (A(T )), and the signal decay rate (γ(T )), which
we interpret as the system’s dephasing rate [34], can very depending on the pump-probe time delay
scans, we allow these fit parameters to vary between each pump-probe delay step. We note here
that in these fits the standard deviation of the Gaussian function that approximated the instrument
response was fixed at 30 fs.

V UTPS Homo
Ansatz Fit (τ;T ) = A(T )

[
Θ(τ − t0(T ))exp

(
−τ − t0(T )

γ(T )

)]
∗g(τ : σ) (3.1)

Fitting the homodyne data in figure 3.4 using equation 3.1 for each pump-probe time delay
step allows us to map the fit parameters as a function of pump-probe delay. Whats more, we can
use these fit parameters to reconstruct the homodyne data and compute the net difference of this
reconstruction as compared to the measured data as one assessment of the quality of the fit in ad-
dition to the computed standard deviations of the fit parameters. The results of this reconstruction
procedure are seen in figure 3.5. As seen in this figure, there some artifacts in the fit reconstruc-
tion that are the result of the choice of fitting function. In particular we note the hard edge along
the -47 fs gate-probe delay axis which we attribute to the use of the sudden approximation when
approximating the rise of the signal. Further discussion on the limitations of this approach will be
discussed in a future section.

The resulting recovered amplitude and signal dephasing rates as parameterized by the pump-
probe delay are shown in figure 3.6a. In this case, we interpret γ as a measure of the dephasing
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Figure 3.6: Here we show both the fit amplitudes (A(T )) and the fit dephasing times (γ(T )) pa-
rameterized by pump-probe delay (panel a.) and a sinusoidal fit of the dephasing time (panel b.).
The fit parameters (as shown in a.) were recovered by using equation 3.1 to fit the UTPS signal, as
shown in figure 3.4, along the gate-probe time delay axis for each pump-probe delay. Fit parame-
ters from pump-probe time delays bellow -100 fs have particularly large error bars due to the very
small signal amplitudes in that region and are not shown. Error bars here represent one standard
deviation. A sinusoidal fit of the dephasing time (as shown in panel b.) suggests that γ oscilates
with a period of 177±9.6 fs. We interpret this plot of γ as showing oscillations in the dephasing
time of vibrational coherences on the S1 excited state [34].

time of the excited state vibrational coherences [34]. This interpretation combined with the fits of
γ suggest that we see the dephasing time of the excited state vibrational coherences oscillating with
a period of 177±9.6 fs, as seen in figure 3.6b. Here we note that the amplitude of the oscillation
is significantly larger than the observed error bars of the dephasing time, with the error bars here
representing one standard deviation of error for the fit parameter.

As established in equations 2.53 and 2.58, a homodyne UTPS signal can be interpreted as
being sensitive to a change in the response function relative to the ground state response due to
excitation in addition to having components directly related to the ground state response. This
means that the net UTPS signal must contain contributions from dynamics on both the excited
state and ground state. This hinders our ability to cleanly interpret the decay dynamics in the fit
amplitudes (A(T )) as dynamics on multiple states contribute to its lifetime [34] and thus the decay
rate of the amplitude doesn’t necessarily correspond to the excited state lifetime. However the fit
amplitudes do suggest the presence of a weak oscillatory component on top of the amplitude that
is approximately π

2 phase shifted relative to the dephasing time oscillation and likely corresponds
to excited state dynamics [34].
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Interpretation of the Homodyne UTPS signal with excitation pulse parallel
to the gating pulse
As discussed previously, in nitrobenzene, for pulses bellow 3 eV there are three main mechanisms
attributed to the time resolved signals associated with Kerr effect measurements. A fast electronic
component [65], librational dynamics [65, 66], and relatively slow reorientational dynamics [65,
66, 64]. A fourth process that occurs at a faster time scale then the know reorientational dynamics
but slower then the librational dynamics has also been observed which has been attributed to either
internal structural dynamics [64] or separate reorientational processes [66]. For excitations above
3 eV, when nitrobenzene relaxes to the ground state, it has separate signals associated with a fast
relaxation of the S1 exited state to the ground state mediated by a conical intersection [71], a triplet-
triplet internal conversion [71], and a slow relaxation of the T1 state back down to the S0 state [71].
We propose that the oscillatory behavior as observed in figure 3.6, can’t be completely explained
by the dynamics associated with nuclear motion and that these dynamics are best explained by
electronically driven wavepacket dynamics on the S1 excited state [34].

Most of the nuclear dynamics that could contribute to nitrobenzene signals observed in prior
studies can be ruled out based on arguments regarding the time scale and the energy scale associ-
ated with those mechanisms as discussed in literature. Processes associated with the reorientational
dynamics of nitrobenzene have been observed in Kerr effect measurements occurring on the time
scale of 20 ps - 32 ps [65, 66, 64], where as mechanisms that can be associated with other nuclear
motion in nitrobenzene occur between 0.9 ps - 4 ps [66, 64] which are well beyond the observed
time scale of the oscillation of 177 fs. Similarly, librational dynamics in nitrobenzene typically
occur on the time scale >300 fs [65, 66], because of this discrepancy we propose that librational
dynamics do not play a significant role in this measurement [34].

In principle, raman active modes could compete with the two-photon absorption process how-
ever these given our pulse bandwidth of 80 meV, many raman active modes would not be accessible
or are particularly weak to the point where they would not be expected to contribute [34, 95]. The
modes that could contribute have frequencies of 76 meV, 49 meV, and 22 meV with each mode
being expected to contribute to the signal with comparable intensity [34, 95]. We expect that any
observed oscillations due to these modes would be due to beating between them, however none
of these beating frequencies correspond to the observed oscillation period [34]. For these reasons
we suspect that dynamics driven by nuclear motion do not play a significant role in our observed
signal.

Prior electronic structure calculations of nitrobenzene [71, 72], in conjunction with experimen-
tal measurements of the ground state relaxation mechanisms after a higher energy excitation [91,
72] allow us to suggest the following mechanism for the observed dynamics in the UTPS mea-
surement as schematically shown in figure 3.7. After excitation to the S1 excited state, a nuclear
wavepacket evolves by undergoing significant N-C bond distance shorting and O-N-O bond angle
shorting [34, 71]. As this wavepacket evolves, it encounters an intersystem crossing [71] that al-
lows a portion of the wavepacket to bifurcate onto the T2 state [34] while the rest of the wavepacket
evolves towards the conical intersection between the S1 and S0 states [34]. As the coupling between
the S1 and S0 states at the conical intersection is relatively weak [71] and since this intersection is
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Figure 3.7: A schematic representation of the proposed relaxation mechanism of nitrobenzene after
excitation to the S1 excited state. We suggest that after two-photon excitation to the S1 singlet state,
an excited state wavepacket evolves on the excited state potential energy surface and oscillates
between the ground state (gs) geometry, the S1/T2 intersystem crossing (ISC) geometry, and the
S1/S0 conical intersection (CI) [34]. This motion primarily involves N-C bond length shortening
which moves from 1.476 Å in the gs geometry, to 1.378 Å at the ISC geometry, to 1.241 Å at the
CI geometry, [71, 34] and involves O-N-O bond angle closing which start at an angle of 124.94◦

in the gs geometry, to 113.72◦ at the ISC geometry, to 94.77◦ at the CI geometry [71, 34].

Geometry S0 S1 T2
S0 minimum 5.7 123.9 14.3
S1(nπ∗) minimum 4.5 8.4 7.5
T2(ππ∗) minimum 3.7 9.9 8.3
S1/S0 CI 7.5 9.0 7.9
S1/T2 ISC 4.5 8.3 7.2

Table 3.1: Geometry dependence of χ
(3)
eff in arbitrary units, for the S0, S1, and T2 electronic states.

Values for χ
(3)
eff were calculated using the Sum-Over-States method combined with density func-

tional theory that used the B3LYP exchange correlation functional, norm-conserving psudeopoten-
tials, using the Quantum Espresso code [34]. All geometries are from Giussani and Worth [71].

elevated energetically by between 0.3 eV [71] to 0.6 eV [96] relative to the intersystem crossing
region, the portion of the remaining wavepacket on the S1 potential energy surface, evolves back
toward the intersystem crossing region where the wavepacket can again bifurcate into the triplet
manifold [34]. As suggested by the sinusoidal fit and the increasing error bars of the UTPS de-
phasing time, we propose that this process repeats for three cycles or approximately 530 fs, at
which point the remaining wavepacket has either decayed to the ground state or is undergoing an
evolution on the triplet state which is not detected in our measurement [34].
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We propose that this mechanism is supported by additional electronic structure calculations
that compute χ

(3)
eff for nitrobenzene at several different geometries when in either the S0, S1, or T2

states. Details on the specifics of this calculation are presented in the cited reference [34] but to
summarize, these χ

(3)
eff calculations were performed using the sum-over-states method with molec-

ular orbital energies and dipole matrix elements calculated using density functional theory using
the B3LYP exchange correlation functional, norm-conserving pseudopotentials, and the Quantum
Espresso code [34]. All geometries were taken from prior electronic structure calculations per-
formed by Giussani and Worth [71]. Here we assume the sample is under isotropic conditions and
we can take χ

(3)
eff to be equal to χ

(3)
xyyx +χ

(3)
xyxy [39, 34].

We summarize the results of the electronic structure calculation in table 3.1. Here we see that
χ
(3)
eff is dominated by the S1 excited state in the ground state geometry as compared to the sampled

geometries in either the S0 or T2 states which are all at least an order of magnitude smaller [34].
This suggests that the expected UTPS signal should be dominated by signal from the S1 excited
state near the Frank-Condon region and not by wavepacket evolution on the T2 or on S0 states
[34]. This is consistent with the proposed relaxation mechanism in that the oscillations on the S1
potential energy surface between configurations near the ground state geometry and configurations
near the S1/S0 conical intersection, can result in large oscillations in χ

(3)
eff and thus the UTPS signal.

Limitations of Current Analysis in the Context of UTPS Correlation
Analysis
There are several limitations with the current analysis as presented. First, the main fitting equation
used (as shown in equation 3.1) is inconsistent with the UTPS homodyne signal as derived through
a correlation analysis 2.58. In particular we have assumed that the homodyne signal is a linear
convolution between the instrument response function and the intrinsic response of the excited
state fraction of the sample. Unfortunately none of the three terms are that simple to deconvolve
and either involve significant mixing from the real or imaginary component of the ground state
response function or transformation by a nonlinear function that isn’t one to one. This means that
such homodyne UTPS signals shouldn’t be interpreted without also taking into account the real
and imaginary components of the ground state Kerr effect response which can be obtained from
heterodyne OKE measurements.

Additionally, as the first term in the correlation analysis derived UTPS signal expression in-
volves taking the modulus squared of the convolution of the gating pulse with the change in the
response function due to excitation, it would also be helpful to involve measurements of the tempo-
ral intensity profile of each incident pulse in the analysis. Such single pulse measurements can be
obtained with a range of techniques including frequency resolved optical gating in which a single
pulse is split and incident on a reference nonlinear medium to obtain a spectrogram which can be
used to reconstruct the incident field [82], Spectral Phase Interferometry for Direct Electric-field
Reconstruction where the phase of the field is directly measured through by interfering the test
pulse with two separate quasi-monochromatic fields in a reference nonlinear crystal and using the
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differing spectra to make a phase measurement and thus allowing one to reconstruct the test pulse
[83], among other methods [85, 97, 98].

Another limitation stems from the assumption that, in a UTPS measurement, the excitation
pulse doesn’t significantly contribute to the Kerr effect signal except by bringing the sample into an
excited state. This is the assumption that is used to justify splitting the intrinsic response function
of an OKE measurement into a ground state response and an excited state response function as
shown in equation 2.54 and substituting the resulting expression into the results of the ground state
Kerr effect correlation analysis as seen in equations 2.56, 2.59, and 2.61. While there are many
conditions in which this assumption is valid (such as for a long lived excited state) [60], near three-
pulse overlap the fields have an opportunity to interfere and mix with each other to produce signals
that cannot be as easily decoupled.

This is especially evident when considering the plot of the difference between the reconstruc-
tion of the UTPS signal and measured response in figure 3.5. In this plot, the largest differences
are seen in a window centered around three pulse overlap with a width of approximately ± 100
fs. This is consistent with the cross-correlation measurements in figure 3.2 of the gate-probe and
pump-probe pulses which show a two-standard-deviation-width of 156 fs and 118 fs respectively.

All of this suggests that in order to properly interpret these nonlinear UTPS signals near time
overlap, a more sophisticated approach is needed. In particular an approach is needed that can
allow for a larger degree of mixing between all the pulses that occur between the three-pulses. In
the following chapter we will discuss one such approach.
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Chapter 4

A Semi-Empirical Approach to the
Interpretation of Polarization Sensitive
Signals with Ab Initio Parameterization

Thus far, the technique of Ultrafast Transient Polarization Spectroscopy has been presented with
methods of analysis that build off of the techniques used to interpret optical Kerr effect measure-
ments. These methods are best applied when the process of excitation is sufficiently decoupled
from the measurement of the third order optical response of the sample. The aim of this chapter
is to provide the necessary tools to simulate polarization sensitive signals in the time domain, like
those detected in UTPS, starting from a foundation in computational quantum chemistry.

There are several reasons why we are particularly interested in simulating these signals in the
time domain as apposed to using frequency domain simulations. Recent computational and ana-
lytical treatments of 2D electronic spectra [99, 100, 101] have shown that depending on the phase
matching conditions, the finite pulse duration and pulse shape can significantly impact the mea-
sured response. In particular, these finite pulse duration effects have been shown to alter double
quantum signals to the point where the phase and amplitude of vibrational motions could be in-
correctly described from these spectra [99], be dependent on the specific double sided Feynman
diagram describing the signal [100], and some of these effects may not be completely captured
through a perturbative treatment [101]. All of this suggests that incorporating a description of the
incident pulses can be important in describing a measured optical signal.

Several simulation methods are commonly employed when simulating nonlinear spectroscopic
signals. One method commonly employed is the equation-of-motion (EOM) approach [35], where
one directly solves the equations of motion governing the time evolution of a quantum system
while also including the effects of a radiation field. Another formalism, dubbed the nonlinear-
response-function (NRF) approach [35], involves solving for the effects of an incident field on a
system of interest by means of a perturbative treatment taken to lowest order using wavefunctions
or the density matrix to represent the quantum system. This approach has been particularly suc-
cessful especially when considering the applicability of the four-wave mixing and n-wave mixing
formalism to a wide variety of optical phenomena [35, 37, 36] with new methods being developed
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that can be applied toward predicting nonlinear signals due to nonadiabatic dynamics in molecular
systems in the XUV and X-Ray regimes [4].

Recently, Rose and Krich [102] have implemented an efficient means of simulating time do-
main nonlinear spectra utilizing their UF2 Fourier-based method and a Runge–Kutta–Euler direct
propagation method to estimate the spectroscopic signals from the Liouville equation. With these
methods as implemented in their open source Ultrafast Spectroscopy Suite, the authors demonstrate
the ability to automatically compute signals from all Feynman diagrams up to 5th order [103] and
treat the case of an open quantum system [104]. As general as these methods are, no specific cases
of polarization sensitive measurements are directly considered by these methods.

This chapter is structured as follows. First, computational quantum chemistry methods of
modeling the electronic wave function of a molecule are reviewed as a prelude into a discussion
of how one can compute dipole moments for electronic transitions between the ground state and
excited states, as well as transitions between pairs of excited states, in the molecular frame. After
discussing methods of computing an appropriate set of dipole transitions, we will discuss a method
of using those dipole transition moments to compute the expected linear and nonlinear corrections
to electronic polarization in the context of perturbation theory, in which we treat the interaction of
an external electric field with the molecular dipole operator as a perturbation on top of an exactly
solvable expression for the time evolution of the system. By applying the results of perturbation
theory to a parameterized N-level model of the system of interest, we will be able to compute
the time evolution of the nth order polarization responses and the corresponding corrections to
the density matrix at the appropriate level of perturbation theory. This gives us a framework for
computing molecular frame polarization responses in the time domain that’s rooted in ab initio
computational quantum chemistry.

Given these nonlinear corrections to the molecular frame time dependent polarizations we will
also present techniques to translate these molecular frame responses into the lab frame for the
case of an isotropic sample. We will also consider the implications of these transformation meth-
ods as applied to the time dependent corrections to the density matrix that correspond to specific
components in the total polarization response. We then discuss how to convert these lab frame
polarizations to measurable electric fields, thus giving us a way to directly compute measurable
transient polarization spectroscopy signals as a function of the time delay between pulses, while
allowing for a variety of nonlinear interactions between the sample of interest and the set of inci-
dent ultrashort optical pulses.

With this framework, we will apply the model to the 2-level case and validate our time-
dependent solutions against exact solutions of the time independent response of a 2-level model.
We will also consider the time-dependent response of a 2-level model given an incident time de-
pendent pulse. By appropriately parameterizing the N-level model to represent the polarization
response of nitrobenzene, we will compare the simulated electronic responses of nitrobenzene to
polarization sensitive measurements of nitrobenzene.
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4.1 Application of Electronic Structure Methods to the
Calculation of Selected Optical Properties of Nitrobenzene

The Electronic Eigenvalue Problem in the Born-Oppenheimer
Approximation
In general, the goal of a wave-function method is to find approximate eigenfunction solutions, |Φ⟩,
of energy eigenvalue equation of a molecule. Such a wavefunction must then depend explicitly
on both nuclear and electronic coordinates which are denoted here as ri for the coordinates of the
ith electron and RA for the coordinates of the Ath nucleus. This energy eigenvalue equation for an
isolated molecule can then be written as:

Hmol|Φ(r0, ...,R0, ...)⟩= εmol|Φ(r0, ...,R0, ...)⟩ (4.1)

Where the hamiltonian of an isolated molecule, in atomic units, has the following explicit form:

Hmol = ∑
electrons

1
2

P2
i + ∑

nuclei

1
2MA

P2
A + ∑

electron pairs

1∣∣ri − r j
∣∣+

∑
nuclei pairs

ZAZB

|RA −RB|
+ ∑

electron nuclei pairs

−ZA

|ri −RA|

(4.2)

Where the first two terms represent the kinetic energy of the electrons and nuclei respectively,
the third and fourth terms represent the coulomb repulsion of the electrons, and the fifth term
expresses the coulomb attraction between the nuclei and the electrons [105].

In the Born-Oppenheimer approximation, it’s assumed that the part of the molecular wave-
function describing the electrons is independent of nuclear motion [105]. Under this assumption,
electronic motion is parameterized by but does not explicitly depend on nuclear coordinates. This
allows us to decompose the molecular wavefunction into a nuclear component and an electronic
component:

|Φ(r0, ...,R0, ...)⟩= |Φelec(r0, ...|R0, ...)⟩|Φnuc(R0, ...)⟩ (4.3)

Where the electronic component is parameterized by but does not explicitly depend on the nu-
clear degrees of freedom. Furthermore, under the Born-Oppenheimer approximation the electronic
wavefunction can be thought of as a solution to equation 4.1 that depends explicitly on electronic
degrees of freedom and therefore only depends on the 1st, 3rd, and 5th terms in equation 4.2.
Collecting these terms allows us to write the electronic hamiltonian as:

Helec = ∑
electrons

1
2

P2
i + ∑

electron pairs

1∣∣ri − r j
∣∣ + ∑

electron nuclei pairs

−ZA

|ri −RA| (4.4)

Where the electronic wavefunction |Φelec(r0, ...|R0, ...)⟩ solves the electronic eigenvalue equa-
tion:
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Helec|Φelec(r0, ...|R0, ...)⟩= εelec|Φelec(r0, ...|R0, ...)⟩ (4.5)

After approximating wavefunction solutions to the electronic eigenequation, we will then use
them to compute various properties of interest including the energy and dipole transitions between
the estimated electronic states.

At this point it’s useful to discuss some of the limitations of using the Born-Oppenheimer
approximation when describing the dynamics of molecular systems as initiated by optical pulses.
The Born-Oppenheimer approximation is typically justified by considering the relative mass of
the electrons (me) as compared to the mass of the atoms (Ml) and considering solutions of the
molecular wave equation that are parameterized by κ where κ = 4

√
me/M and where M is a kind

of average over the mass of the nuclei [12, 106]. In this formulation, the kinetic energy operator of
the nuclei is treated as a perturbation of the electronic hamiltonian with the perturbing factor being
κ4 [12, 106]. The results of this treatment show that the first, third, and fifth order corrections are
exactly 0, with the 2nd order term corresponding to the vibrational energy correction, and the 4th
order term corresponding to the rotational energy correction [12]. Together with evidence from
numerical simulation, this suggests that the error in the Born-Oppenheimer approximation scales
as (me/M)3/2 [12].

The previous result suggests two regimes were we might expect breakdown of the Born-
Oppenheimer approximation. First is when the mass of the negative charge carrier is sufficiently
large compared to that of the positive charge carrier which can be achieved when studying exotic
molecules where the electron is replaced by the muon or anti-proton [12]. Second, is when the
kinetic energy of the nuclei is large relative to the electronic contribution to the energy [12, 11, 3].
This second case where we can expect a breakdown of the Born-Oppenheimer approximation is
well known to occur around conical intersections in molecular systems due to the strong coupling
of nuclear and electronic dynamics in those regions [107, 11, 12, 3]. With that said, as seen in
the electronic structure calculations of nitrobenzene in table 3.1, there are cases where, while the
decay dynamics do not abide by the Born-Oppenheimer approximation, the measured signal is
generated in configurations where the Born-Oppenheimer approximation does apply [34, 71]. In
the following sections we will use results of wave-function calculations in the Born-Oppenheimer
approximation to parameterize an N-level model of our system of interest using the Liouville equa-
tion [37]. By expressing the time evolution of the system of interest in Liouville space, the decay
dynamics can then be added with the addition of a decay matrix [37] which allows us to capture
some of these dynamics with an appropriate choice of these decay parameters.

Applying Multiconfiguration Self Consistent Field Method to Model the
Electronic Structure of Nitrobenzene
While a full description of molecular wave function theory in the context of Multiconfiguration
Self Consistent Field (MCSCF) methods is beyond the scope of this work, here we present a rough
outline of these methods as they haven been applied to the modeling of molecular wave functions
of nitrobenzene. In particular we discuss how these methods can be used to construct molecular
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wavefunctions that describe ground state and excited singlet states of nitrobenzene as well as triplet
state molecular wave functions. With access to these wave functions, we will be able to compute
various optical properties given the specified wave function.

Generally speaking, molecular wavefunctions are constructed from single electron molecular
spin orbitals that describe the spatial and spin state of a single occupying electron [105, 108].
The spatial component of these molecular orbitals are in turn, constructed from a linear combina-
tion of atomic orbitals that are combined in such a way to form an orthonormal basis of spatial
orbitals [105, 108, 109]. In order for these multi-electron molecular states to be physical, they
must obey the Pauli-exclusion principle, which states that a multi-electron wave function must be
anti-symmetric with respect to the interchange of the orbital and spin state of any two electrons
[105, 110]. While there are several means of constructing multi-electron wavefunctions that obey
the Pauli-exclusion principle from a set of occupied spin orbitals, one common method is to use
Slater determinants in which the determinant of a matrix of selected spin orbitals is calculated
which results in anti-symmetric determinants that can be used as a basis to construct molecular
wavefunctions [105, 110]. A linear combination of determinants used to represent a molecular
wavefunction is known as the configuration interaction (CI) [105, 108].

In an MCSCF approach to building these molecular wavefunctions, the determinants and their
mixing coefficients are parameterized in such a way that allows for variational optimization of a
factor representing the energy of the molecule [105, 108, 111]. In the Dalton quantum chemistry
software package, MCSCF wavefunctions are constructed using quadratic optimization techniques
which optimize the parameterized wavefunction against the Hessian of the Hamiltonian [112, 109,
113]. While a traditional variational approach that minimizes energy is excellent at producing
ground state wavefunctions [105, 108], this procedure allows one to also compute optimized ex-
cited state molecular wavefunctions [108] by optimizing the parameter space given the desired
number of negative eigenvalues values of the Hessian [112, 109].

In the following sections we will use MCSCF wavefunctions, as implemented in the Dalton
quantum chemistry code [114], to model a selected number of states of nitrobenzene. In the fol-
lowing calculations we used an augmented Dunning correlation-consistent basis at the double zeta
level of theory. For our active space, we chose to have 14 active electrons distributed among 11
active orbitals. This active space was chosen based on recent electronic structure calculations that
studied nondissociative relaxation mechanisms in nitrobenzene after excitation [71]. It was found
that this active space is able to to account for the π nature of nitrobenzene as well as the lone
pairs on the oxygen atoms [71]. This work includes calculations from a number of geometries of
nitrobenzene including some ground state optimized geometries as well as geometries from the
referenced text [71] with specific geometries being discussed with their associated result.

Using Response Theory to Compute Nonlinear Molecular Properties of
Nitrobenzene
In the following sections we will be using various orders of response theory as applied to a refer-
ence multi-electron wavefunction as implemented in the Dalton quantum chemistry package [114,
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115, 116]. A full derivation of this technique is beyond the scope of this work however we pro-
vide an outline of this computational method to aid in understanding how response theory can
give access to information about various molecular properties of interest using the language of
perturbation theory.

Start by considering the time evolution of a reference state |ψ0(t)⟩ under the influence of a
perturbing operator V (t). In this framework, we consider the solution of |ψ0(t)⟩ to be represented
by the Fourier transform of the perturbative series expansion of |ψ0(ω)⟩ which solves time inde-
pendent Schödinger equation [115, 116]. This lets us express |ψ0(t)⟩ in terms of V (ω) as shown

|ψ0(t)⟩= |φ0⟩+
∫

∞

−∞

dω1 e(−iω1+ε)t |φ (1)
0 (ω1)⟩

+
∫

∞

−∞

∫
∞

−∞

dω1dω2 e(−iω1−iω2+2ε)t |φ (2)
0 (ω1,ω2) ⟩+ ...

(4.6)

When considering the time evolution of an observable ⟨A(t)⟩ in the Schödenger picture, in
which we consider the operator static and the time evolution to be completely contained in the
wavefunction, a perturbative solution of this observable can be found in terms of the frequency
domain solution for |ψ0(t)⟩ as seen in equation 4.7. This gives us a series expression for an
observable ⟨A(t)⟩ in terms of nth order response functions of the form ⟨⟨A;V ω1 , ...⟩⟩ω1,... [115,
116] which can be written as follows

⟨ψ0(t)|A|ψ0(t)⟩= ⟨φ0|A|φ0⟩+
∫

∞

−∞

dω1 e(−iω1+ε)t ⟨⟨A;V ω1⟩⟩ω1

+
1
2

∫
∞

−∞

∫
∞

−∞

dω1dω2 e(−iω1−iω2+2ε)t ⟨⟨A;V ω1,V ω2⟩⟩ω1,ω2

+ ...

(4.7)

As the explicit time evolution of the observable must obey Ehrenfest’s theorem [117], this
theorem can be used as an additional constraint that allows us to explicitly solve for the nth or-
der response functions [115, 116]. By using Ehrenfest’s theorem to derive a set of differential
equations describing these response functions, solving these differential equations gives explicit
solutions in the frequency domain [115, 116] for the desired response function. Moreover, these
response functions are in general complex functions with poles that correspond to resonant transi-
tions at particular frequencies [115, 116]. By solving for the residues of these response functions,
information about the resonant transitions corresponding to each order of perturbation theory, can
be obtained [115, 116]. This allows for the computation of transition dipole moments between
the reference and excited sates as well as between excited states depending on the order of the
response function computed [115, 116]. Additionally, the response functions themselves can be
use to directly represent the nth order polarizabilities of the molecule of interest [118, 116].
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Calculating Lab Frame Third Order Susceptibilities from Second Order
Hyperpolarizabilities
Using response theory as implemented in the Dalton quantum chemistry package, we are able to
compute molecular frame polarizabilities of a single molecule up to the second order hyperpolar-
izability (γ) of a target molecule [114, 115]. As shown in equation 4.8, to compare these results to
experimental measurements of the bulk electronic component of the third order susceptibility, we
need to account for three separate factors, the number density of the target molecules in the sample
media (N) [36, 119, 47], a local field correction (L) that provides a transformation of an incident
field E⃗ to the field felt by the target molecule F⃗ after interaction with the bulk media [36, 119, 47],
and the orientation of the target chromophore [47, 119, 120, 121, 122].

χ
(3)
IJKLE⃗E⃗E⃗ = N⟨γi jkl⟩L(E⃗)L(E⃗)L(E⃗) (4.8)

The local field correction accounts for shifts in the incident fields due to interaction with a sur-
rounding dielectric environment [36, 119, 47]. Two common methods for accounting for this effect
are to use either a Lorentz-Lorenz correction and the and the Onsager reaction field model. For a
Lorentz-Lorenz correction [36, 119], the effect of the media on the incident field is treated under
the assumption that a linearly induced dipole of the media is all that will impact the field. This
approximation, while valid for isotropic media, is expected to break down for anisotropic media,
and other corrections will need to be considered [119]. The Onsager model is one such correction
[119] that also includes the effect of a reaction field which is induced when the induced target
molecular dipole interacts with the polarization and polarizability of the embedding media produc-
ing the Onsager field correction. For the following calculations, as we are primarily interested in
isotropic liquid samples, we accounted for these effects using a Lorentz-Lorenz correction.

The orientation of the target molecules must be treated on a case by case basis depending
on the sample of interest. For instance, crystalline samples have a well defined orientation and
thus experimental measurements can be compared to molecular frame calculations upon applying
a well defined rotation [122]. In experiments considering anisotropic media as in the case of a
photo active target attached to a surface [123] or inhomogeneous samples such as a chromophore
attached to the surface of suspended particles [124], multiple transformations may be needed to
translate the molecule frame nth order polarizability into a measured lab frame response [123, 124,
121]. In the case of an isotropic sample, as the molecule initially has no preferred orientation,
we can account for the orientational response of the molecule through orientational averaging [47,
119, 120]. Additional orientation effects including reorientation due to alignment of the induced
molecular dipole to the field can also be accounted for by considering a thermodynamic model
given the interaction energy from each term in the series expansion of the polarization in terms of
the electric field [47]. In the following calculations we consider only the electronic response of an
isotropic sample of target molecules.
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Effective Third Order Susceptibilities of Nitrobenzene as a Function of
Electronic State
Here we present the results of a calculation of the effective third order susceptibility (χ(3)

eff )of ni-
trobenzene as a function of frequency given a C2v symmetric ground state optimized geometry. We
note here that χ

(3)
eff is related to third order susceptibility tensor by selecting the specific tensor el-

ements from the full tensor that contribute to the signal being observed [119, 47, 39]. For the case
of an optical Kerr effect measurement of a isotropic sample, this simplifies to χ

(3)
eff = χ

(3)
yxxy + χ

(3)
yxyx

given a pulse ordering of probe, gate, gate being used when applying a tensor product of the third
order susceptibility with the incident fields [39, 58, 52]. We note that because of the intrinsic
permutation symmetry of the third order susceptibility, accounting for other variants of the pulse
order is as simple as multiplying by an appropriate factor that counts the different valid simultane-
ous permutations of the fields and indices [36].

In figure 4.1 we directly compare the results of the computed effective third order susceptibility
of nitrobenzene in the ground electronic state with that of literature OKE measurements of the
magnitude of nitrobenzene’s effective third order susceptibility. Both the experiments from Ho et
al. [90] and from Vigil and Kuzyk [88] take measurements of the effective third order susceptibility
of nitrobenzene using a probe pulse centered at 532 nm (2.33 eV) and a pump pulse centered
at 1064 nm (1.165 eV) with pulse durations around 6 ps in the experiments of Ho et al. and
roughly 30 ps pulse duration for Vigil’s and Kuzyk’s experiments. These experiments resulted in
measurements of the effective third order susceptibility of liquid nitrobenzene of 8.6× 10−22 SI
[88] and 3.9×10−20 SI [90]. This compares to our computed effective third order susceptibility at
the relevant gate and probe center frequencies of 7.7×10−21 SI.

Our computed effective third order susceptibility of nitrobenzene lies between the reported
measurements and as such, we take this as evidence that our purely electronic model of nitroben-
zene is accurate enough to recover some general nonlinear spectroscopic trends of nitrobenzene
within the limits of the model. Furthermore, since the first resonant transition occurs beyond 3 eV,
the predicted response given the incident frequencies is expected to be in the non-resonant regime.
This is evidenced in the purely electronic model of ground state nitrobenzene where the computed
frequency dependent |χ(3)

eff | is fairly consistent within the chosen probe frequency window of 1.51

eV to 2.71 eV with |χ(3)
eff | smoothly increasing from 6.7× 10−21 SI to 8.5× 10−21 SI over that

range. This suggests that the bandwidth differences between the two experiments in this region
of the predicted purely electronic response of nitrobenzene is not sufficient to explain the discrep-
ancy between the two experiments. Given that prior studies have suggested that nonlinear optical
responses can be quite sensitive to nuclear motion [125, 126], and that prior Kerr effect measure-
ments of nitrobenzene observed separate nuclear dynamics on the time scale of 1-2 ps and 16-35 ps
[64], coupled with the difference in pulse duration between these experiments, we suspect that the
deviation of the experimental measurements with respect to the computed electronic contribution
may be attributable to nuclear motion. One additional consideration is that our model does not
account for the electronic continuum above the ionization threshold of nitrobenzene around 9.7 eV
[127].
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Figure 4.1: This figure shows the predicted effective third order susceptibility on a log scale for ni-
trobenzene in the planar ground state minimum geometry as calculated using second order response
theory using a MCSCF optimized ground state wavefunction with 14 active electrons and 11 active
orbitals. The raw hyperpolarizabilities were used to compute effective third order susceptibilities
(χ(3)

eff ) assuming an OKE measurement, an isotropic sample with a number density equal to that of
neat liquid nitrobenzene at standard temperature and pressure, and using the Lorentz-Lorenz local
field correct to account for bulk effects on the third order response. Here the calculated response
increases from a value of 6.7×10−21 SI to 8.5×10−21 SI with a value of 7.7×10−21 SI when the
probe frequency is at 2.33 eV. This compares to prior measurements of nitrobenzene’s third order
susceptibility of 8.6×10−22 SI [88] and 3.9×10−20 SI [90] given a pump frequency of 1.165 eV
and probe frequency of 2.33 eV.

In a related calculation, figure 4.2 shows a calculation of the expected effective OKE response
as a function of probe frequency given a fixed gate pulse frequency at 780 nm (1.589 eV) for the
first four singlet states of nitrobenzene. The computed energy differences relative to the ground
state are shown in table A.1 with the first three nonzero energy differences being 4.078 eV, 4.403
eV, and 4.550 eV. The frequencies of the gate and probe pulses were chosen to be representative
our non-resonant Kerr effect measurement scheme as used in our previously discussed UTPS mea-
surements [34]. Figure 4.2 shows the following trends and features. First, over a majority of the
probe frequencies sampled, nitrobenzene exhibits excited state enhancement of the effective third
order susceptibility with the largest enhancements being nearly 3 orders of magnitude larger than
the ground state response. This is consistent with previous studies showing excited state enhance-
ments of third order spectroscopic signals in molecular systems [48, 49, 41, 42]. Of particular
interest is the predicted excited state depression of the effective third order susceptibility when
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Figure 4.2: This figure shows the predicted effective third order susceptibility on a log scale for
nitrobenzene in the planar ground state minimum geometry using MCSCF wavefunctions to repre-
sent each molecular state and second order response theory to compute the molecular frame second
order hyperpolarizabilities (γ). These raw hyperpolarizabilities were used to compute effective
third order susceptibilities (χ(3)

eff ) assuming an OKE measurement and assuming an isotropic sam-
ple with a number density equal to that of neat liquid nitrobenzene in standard conditions. Given a
fixed gate frequency of 1.589 eV (780 nm), we see excited state enhancement for all the computed
excited states over a wide range of probing frequencies. We note that the S2 and S3 excited states
do show suppression of the excited state signal for a probing frequency of 1.589 eV. However, these
calculations suggest that we could expect up to 2 orders of magnitude increase in OKE signal for
nitrobenzene in the S1 excited state at the probing frequency of 1.589 eV (780 nm).

compared against the ground state signal with the center frequencies of the gate and probe pulses
having same frequency of 1.589 eV. In particular, the S2 and S3 excited states show a slight excited
state depression with a χ

(3)
eff ’s of 2.77× 1021 S.I. and 5.18× 10−21 S.I. respectively, compared to

the ground state which shows a computed χ
(3)
eff of 7.17×10−21 S.I. given the gate and probe pulses

have the same sampling frequency of 1.589 eV. This is in contrast to the relatively large χ
(3)
eff of

the S1 state of 9.72×10−19 S.I. which shows a factor of 135 enhancement compared to the ground
state. This suggests that in our experimental conditions, any excited state enhancement of the Kerr
effect signal will come from population moving through the S1 excited state.

Unfortunately, using these calculations to directly represent the electronic response of our ex-
perimentally measured signals is made more difficult by a few factors. First, these calculations
are purely in the frequency domain and our measurements are made with respect to a time delay
relative to a set of optical pulses that are most naturally defined in the time domain. This shift in
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time delay introduces phase factors in a frequency domain calculation that could be difficult to in-
corporate into the calculation as performed. Second, the calculations restrict us to only considering
the response from excited population states, a not more general nonequilibrium states which may
include contributions from coherences. Lastly, these calculations are inherently static and do not
include a description of decay processes which play a role in the relaxation mechanism governing
the decay of the Kerr effect signal as a function of time-delay.

For these reasons we use a related set of response theory calculations to compute dipole matrix
elements between a number of excited states. This will allow us to parameterize the dipole matrix
elements in an N-level model that we can explicitly evolve in time. Solving for polarization signal
to the appropriate order in perturbation theory, allow us to calculate responses that can be directly
compared to our measured signals.

Response Theory Calculation of the Dipole Transition Matrix Elements of
Nitrobenzene
The dipole transition matrix elements were computed using the following procedure. To calculate
the dipole matrix elements from the reference ground state wavefunction to a set of excited states,
a 1st order response function calculation was performed in which the residues of a set of poles
are computed [115]. We can interpret these poles as being directly associated with the resonant
transitions, under this interpretation the residues of those poles can be viewed as being related to
the transition dipole matrix element with the following expression [115, 116]

lim
ω→ω f

(ω −ω f )⟨⟨A;V ω⟩⟩ω = ⟨0|A|k⟩⟨k|V ω |0⟩ (4.9)

Similarly, we can follow up the 1st order calculation with a 2nd order response function calcula-
tion compute transition dipole moments between exited states [115, 116]. The expression relating
the residues of the second order response function to explicit dipole transitions can be written as
follows

lim
ωb→ω f ′′

[
lim

ωc→ω f ′
(ωc −ω f ′)⟨⟨A;V ωb,V ωc⟩⟩ωb,ωc

]
(ωb +ω f ′′) =

−⟨0|V ωb| f ′′⟩⟨ f ′′|(A−⟨0|A|0⟩) | f ′⟩⟨ f ′|V ωc|0⟩ (4.10)

After letting the A operator be the dipole operator in the equation 4.10, and after accounting
for a shift relative to the ground state dipole moment, we can compute excited state to excited state
dipole transition moments without explicitly computing excited state wavefunctions [115, 116].

The results of these calculations for two different geometries are shown in Appendix A. The
two geometries for which dipole matrix elements were computed are the ground state C2v sym-
metric geometry and a geometry with the NO2 group rotated around the CN bond forming a 13◦

dihedral angle between the plane defined by the benzene ring and the plane defined by the nitro
group. These geometries were chosen for the following reasons. First, if we consider the relaxation
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Figure 4.3: A schematic representation of the system under study. Here state populations may
non-radiatively decay from higher lying states to lower lying states at their own specified decay
rate (Γ). Coherences between states may also decay at their own decoherence rate (γ) which is
partially determined from the population decay rates [36, 37].

mechanisms of nitrobenzene after excitation to the S2 state, prior calculations sampling multiple
potentially relevant geometries [34] seem to suggest that the largest optical signals will primarily
be generated when nitrobenzene is in it’s ground state minimum C2v symmetric geometry. Ad-
ditionally, other calculations have shown that the transition between S0 and S2 states, which is
thought to be the primary target excited state involved given a resonant excitation above 3 eV [93,
94], is only accessible when the nitro group is twisted out of the plane of the ring [71]. Addition-
ally, gas phase measurements suggest that the nitro group in nitrobenzene naturally has an average
13◦ dihedral angle [128].

Using the results of these calculations, we can use the computed dipole matrix elements to
parameterize an N-level model to represent nitrobenzene. After parameterization, We can then use
this model to directly compute the polarization response, and thus an experimentally measurable
signal of nitrobenzene in the time-domain. In the following section we will discuss this model and
how we can use a Liouville space representation of the density matrix in the context of perturbation
theory, to compute signals associated with the third order susceptibility of nitrobenzene.

4.2 An N-Level Description of Non-linear Optical Signals
In it’s eigenbasis, the time evolution of the density matrix of an N-Level system can be described
in terms of the transition energies between each state (ωnm), decoherence rates (γ), population
relaxation rates (Γ), and a perturbation (V ) [36, 37].

ρ̇nn =− i
h̄
[V,ρ]nn + ∑

Em>En

Γnmρmm − ∑
Em<En

Γmnρnn (4.11a)
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ρ̇nm =−iωnmρnm − i
h̄
[V,ρ]nm − γnmρnm , n ̸= m (4.11b)

At this point we can transform equation 4.11 into Liouville space [37], in which we vectorize
the density matrix and operators that act on the density matrix are turned into super operators
that can be represented as matrix operations on the vectorized density matrix. Completing this
transformation, we obtain the following expression for the time evolution of the system where
Lmol is the energy operator, D is a decay operator describing the dephasing rates and decay rates,
and V is the perturbation, all in Liouville space [37].

|ρ̇⟩⟩=− i
h̄
Lmol|ρ⟩⟩+D |ρ⟩⟩− i

h̄
V |ρ⟩⟩ (4.12)

A first step in solving equation 4.12, would be to find an appropriate closed form time evo-
lution operator from which a Dyson series solution can be found. Here we consider a simplified
expression without the perturbation.

|ρ̇⟩⟩=− i
h̄
Lmol|ρ⟩⟩+D |ρ⟩⟩ (4.13)

Note that the addition of the population decay rates has the added effect of breaking the her-
miticity of this system which depending on how the hermiticity was broken, may prohibit closed
form solutions to this differential equation. However, since population can only decay from higher
lying states to lower lying states, the matrix Lmol + ih̄D is diagonalizable and thus, a closed form
solution U0 (t, t0) is guarantied to exist [129]. This solution can then be used as the basis for an
integral solution to equation 4.12.

U (t, t0) = U0 (t, t0)−
i
h̄

∫ t

t0
dτ U0 (t, t0)U −1

0 (τ, t0)V U (τ, t0) (4.14)

Iterating equation 4.14 allows for the generation of a Dyson series. Substituting in a stark
perturbation and combing the generated series with an initial density matrix |ρ0⟩⟩ and the dipole
operator ⟨⟨⃗µ| allows one to solve for the perturbation expansion of the polarization in the time
domain. Explicit solutions for the first few terms in the perturbed polarization expansion are as
follows.

P⃗(1) (r, t, t0) =− i
h̄

∫ t

t0
dτ1

⟨⟨⃗µ|U0 (t − τ1) µ⃗U0 (τ1 − t0) |ρ0⟩⟩
E⃗ (r,τ1 − t0)

(4.15a)

P⃗(2) (r, t, t0) =− 1
h̄2

∫ t

t0

∫
τ1

t0
dτ1dτ2

⟨⟨⃗µ|U0 (t − τ1) µ⃗U0 (τ1 − τ2) µ⃗U0 (τ2 − t0) |ρ0⟩⟩
E⃗ (r,τ1 − t0) E⃗ (r,τ2 − t0)

(4.15b)
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P⃗(3) (r, t, t0) =
i

h̄3

∫ t

t0

∫
τ1

t0

∫
τ2

t0
dτ1dτ2dτ3

⟨⟨⃗µ|U0 (t − τ1) µ⃗U0 (τ1 − τ2) µ⃗U0 (τ2 − τ3) µ⃗U0 (τ3 − t0) |ρ0⟩⟩
E⃗ (r,τ1 − t0) E⃗ (r,τ2 − t0) E⃗ (r,τ3 − t0)

(4.15c)

With the general expression for the nth order term being

P⃗(n) =

(
−i
h̄

)n

⟨⟨⃗µ|
∫ t

t0
dτ1...

∫
τn−1

t0
dτn

(
U0 (t − τ1)

n

∏
m=1

µ⃗U0 (∆τm)

)
|ρ0⟩⟩

n

∏
m=1

E⃗im (4.16)

Where the term ∆τm is equivalent to τm − τm+1 for m < n and with ∆τn being equal to τn −
t0. Note that the bra-ket terms in the integrals in equation 4.15 are the time domain form of the
polarizability, hyperpolarizability, and second order hyperpolarizability, respectively. Additionally,
from equation 4.16 we can identify the nth order correction term for the density matrix as

|ρ(n)⟩⟩=
(
−i
h̄

)n ∫ t

t0
dτ1...

∫
τn−1

t0
dτn

(
U0 (t − τ1)

n

∏
m=1

µ⃗U0 (∆τm)

)
|ρ0⟩⟩

n

∏
m=1

E⃗im (4.17)

These integrals can then be evaluated numerically to estimate the time dependent signal at
each order in the perturbation. While not explicitly required to compute a time-domain signal,
evaluating equation 4.17 allows us to track the evolution of the density matrix elements giving us
a means of interpreting the simulated signals in terms of the relevant dynamics of the populations
and coherences.

4.3 A Classical Wave Equation Description of Non-linear
Optical Signals

In the previous section we discussed methods to compute time domain non-linear polarizations
in response to a perturbing electric field for a single molecule. However, this polarization is not
directly observable. Instead, experimentally measurable signals are generated from the output lab
frame electric field that is generated from the ensemble average of the time dependent polarization
that results after the sample has interacted with the incident pulses. There are thus two details
that we need to consider when computing experimental measurements from first principles. We
first need to consider how to translate a molecular frame calculation of a resultant polarization into
the lab frame version of that signal. Second is the question of how to translate a time dependent
transient polarization into the propagating signal electric field and then into a measurable signal.
These are the two questions we aim to provide a treatment of in this section.
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Computing Lab Frame Polarizations from Molecular frame Calculations
Here we will discuss how one might in general compute a lab frame time dependent polarization
from an ostensibly molecular frame calculation given an arbitrary distribution of the orientation of
the ensemble molecular target. We will then focus on the case of an isotropic sample and derive
explicit formulae that can be used to compute lab frame time dependent polarizations.

First lets consider the case of formally transforming the relation between a molecule’s polar-
ization response to an electric field from a lab frame representation to the molecular frame repre-
sentation. Let µ⃗lab, E⃗ lab, and χ(n) be the lab frame representations of polarization, electric field,
and the nth order susceptibility of a single molecule. Conversely, let the quantities, µ⃗mol , E⃗mol , and
α(n), be the molecular frame representations of polarization, electric field, and the nth order po-
larizability/hyperpolarizability of a single molecule. These quantities are related by the following
expressions:

µ⃗lab = χ
(n)
I0...In

n

∏
m=1

E⃗ lab
Im

(4.18a)

µ⃗mol = α
(n)
i0...in

n

∏
m=1

E⃗mol
im (4.18b)

Next, there must be some rotation operator R that maps the lab frame axes onto the molecular
frame axes such that the following expressions hold.

µ⃗mol = Rµ⃗lab (4.19a)

E⃗mol = RE⃗lab (4.19b)

These expressions imply that the molecular polarization response of a single molecule in the
molecular frame can be rewritten in terms of rotations of their lab frame counter parts which can
be expressed as follows:

Rµ⃗lab = α
(n)
i0...in

(
n

∏
m=1

RimImE⃗ lab
Im

)
(4.20)

Or rewritten yields

µ⃗lab =

(
R−1

I0i0α
(n)
i0...in

n

∏
m=1

RimIm

)
n

∏
m=1

E⃗ lab
Im

(4.21)

Comparing equations 4.18a and 4.21 allows us to see that the lab frame nth order susceptibility
of a single molecule is related to the molecular frame polarizability through the following relation.

χ
(n)
I0...In

= R−1
I0i0α

(n)
i0...in

n

∏
m=1

RimIm (4.22)
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In the context of the previous sections expressions 4.22 and 4.21 can be very useful since in an
experiment, the electric field is defined in the lab frame and the signal generated from a sample is
measured in the lab frame. However, the current expressions are only valid for a single molecule, to
connect the polarization response of a single molecule to the ensemble average of orientations that
are sampled in experiment. While we consider here the case of an isotropic sample, in principle
the results here can be generalized to any anisotropic distribution. To accomplish this, we can
modify equation 4.22 by including an appropriate probability density function (ρ(Ω)) to represent
the chance that an ensemble of molecules is in a specific lab frame orientation. Integrating the
resulting expression over all molecular orientations would then allow us to represent the resultant
nth order susceptibility for a sample with some degree of anisotropy.

For the case of an isotropic sample, ρ(Ω) is independent of orientation. As such we can simply
average µ⃗lab over all possible rotations to yield a polarization response that is proportional to the
resultant lab frame polarization, yielding the following expressions.

χ
(n)

∝ ⟨R−1
I0i0α

(n)
i0...in

n

∏
m=1

RimIm⟩ (4.23a)

P⃗lab ∝

(∫
R−1

I0i0α
(n)
i0...in

n

∏
m=1

RimIm dΩ

)
n

∏
m=1

E⃗ lab
Im

(4.23b)

Importantly α(n) in equation 4.23 is a calculable quantity in the context of frequency dependent
perturbation theory. More specifically, using a wide variety of theoretical methods, electronic
structure software packages are able to compute the polarizability, the hyperpolarizability, the
second order hyperpolarizability in the molecular frame [130, 118, 131, 132]. Expression 4.23,
then gives us a way to map, these molecular frame responses to lab frame measurements in the
context of a measurement of an isotropic ensemble.

A very similar approach can be used when considering the case of time dependent perturbation
theory. Here, instead of considering the transformation of the frequency dependent polarizabilities
or hyperpolarizablities α(n), we consider the time dependent molecular response functions, here
denoted as µ⃗

(n)
mol .

One fairly straight forward approach to adapt equation 4.23 to the time domain is to first rec-
ognize that, much like the frequency domain quantity α(n), a molecule’s nth order polarization re-
sponse function µ⃗

(n)
mol(t0, t,τ1, ...,τn) is a calculable quantity using the methods discussed in section

4.2. When the τi integration variables are integrated over at the appropriate level of perturbation
theory, the polarization response function yields a final polarization as a function of time allowing
for a more direct comparison with time domain measurements[37, 36]. In Liouville space, these
expressions take the following form:

µ⃗
(n)
mol = ⟨⟨⃗µi0 |U0

(
∆Tf
)[ n

∏
m=1

µ⃗imU0 (∆τm)

]
|ρ0⟩⟩

(
n

∏
m=1

E⃗mol
im

)
(4.24)

Where the amount of time evolution between each interaction in perturbation theory, denoted
as ∆τm and ∆Tf , have the following definitions
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∆Tf = t − τ1

∆τm =

{
τm − τm+1, if m < n
τn − t0, m = n

To simplify equation 4.24, we denote the bra-ket contraction as follows

⟨⟨⃗µ|ρ(n) (
∆Tf ,∆τ1, ...,∆τn

)
⟩⟩i0...in = ⟨⟨⃗µi0|U0

(
∆Tf
)[ n

∏
m=1

µ⃗imU0 (∆τm)

]
|ρ0⟩⟩ (4.26)

Thus by substituting equation 4.26 into equation 4.24 and by using the same logic that allowed
us to transform equation 4.18b into equation 4.21, we write a lab frame expression for the perturbed
time domain response function as follows

µ⃗
(n)
lab =

(
R−1

I0i0⟨⟨⃗µ|ρ
(n)⟩⟩i0...in

n

∏
m=1

RimIm

)
n

∏
m=1

E⃗Lab
Im

(4.27)

And again, by applying orientational averaging we can obtain a lab frame expression for the
ensemble average of a given single molecule response, giving

⟨⃗µ(n)
lab(t0, t,τ1, ...τn)⟩=

∫ (
R−1

I0i0⟨⟨⃗µ|ρ
(n)⟩⟩i0...in

n

∏
m=1

RimIm

)
dΩ

n

∏
m=1

E⃗Lab
Im

(4.28)

Given the proportionality of µ⃗lab to P⃗lab, a final expression for the resultant lab frame polariza-
tion of a sample that’s derived from time domain perturbation theory, can be written whose form
is similar to those in equations 4.23.

P⃗(n)
lab (t0, t) ∝

∫ t

t0
dτ1...

∫
τn−1

t0
dτn∫ (

R−1
I0i0 (Ω)⟨⟨⃗µ|ρ(n) (

∆Tf ,∆τ1, ...,∆τn
)
⟩⟩i0...in

n

∏
m=1

RimIm (Ω)

)
dΩ

n

∏
m=1

E⃗Lab
Im

(τm − t0)

(4.29)

Importantly, as the term ⟨⟨⃗µ|ρ(n)⟩⟩i0...in is a molecular frame quantity, it must be independent
of the coordinates used to describe the rotation mapping the lab frame to the molecular frame. As
such it can be treated as a constant with respect to the Euler angles that describe this rotation for the
purpose of evaluating the orientational averaging integrals. This allows us to explicitly evaluate
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these integrals by applying cosine matrix integration formulae as tabulated by Kwak and other
authors [47, 120].

In summary, we have shown that by using the framework of time dependent perturbation the-
ory, we can computationally evaluate lab frame polarization responses under the assumption of
sampling an isotropic system by leveraging isotropic averaging and molecular frame electronic
structure calculations for the dipole transition moments. These isotropic averages can be evaluated
using cosine matrix integration formulae and, after performing time ordered integration of the aver-
aged quantity, we can compute the time dependent response of the nth order polarization response.
In the next section we will discuss how to translate the resultant time dependent polarization into
a measurable signal that can be directly compared with a time delay dependent experiment.

Computing Experimental Observables from a Driving Non-linear
Polarization
Here we will discuss how to compute experimental observables given a driving lab frame polariza-
tion. In particular our aim will be to show how to derive relevant expressions for the driven signal
electric field starting from Maxwell’s equations. Furthermore, we aim to show how one could use
this computed signal electric field to further calculate a typical homodyne intensity measurement
of the resultant signal.

Maxwell’s driven wave equation can be written as

∇×∇×E+
1
c2

∂ 2

∂ t2 E =− 1
ε0c2

∂ 2

∂ t2 P (4.30)

or by separating the Linear and non-linear components of the driving polarization [36] we can
obtain:

∇×∇×E+
ε(1)

c2
∂ 2

∂ t2 E =− 1
ε0c2

∂ 2

∂ t2 PNL (4.31)

where E is the resultant electric field from the driving polarization P.
At this point a typical analysis will invoke the unidirectional approximation and the slowly

varying envelope approximation and further transform this expression into the frequency domain
allowing for the consideration of only plane wave electric fields with the justification that any
pulse can be described by a sum of plain-wave fields [36, 39]. Using this analysis we can obtain
the following expression for the signal electric field in the frequency domain.

Esig =
i2πω

nc
eikL

∫ L

0
dz e−ikzPNL (z,ω) (4.32)

While this expression does give us a means of computing the resultant signal field in given a
nonlinear driving polarization, This expression requires knowledge of the nonlinear driving polar-
ization in the frequency domain. This presents a drawback when performing time domain simu-
lations of the resultant polarization, namely that the driving polarization is computed in the time
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domain. For this reason, we would like an expression that relates the signal field to the driving
polarization purely in the time domain. What’s more, this expression relies on the previously dis-
cussed unidirectional and slowly varying envelope approximations that aren’t strictly required to
solve this expression given free space conditions [37, 133, 134].

To derive more general expressions for the signal field given a driving polarization, we start
by considering Maxwell’s equations in the Lorentz gauge in vacuum conditions. Maxwell’s equa-
tions can then be written in terms of a vector potential (A⃗) and a scalar potential (Φ) which are
determined by solving the following set of inhomogeneous wave equations [134, 133]

∇
2A⃗− 1

c2
∂ 2

∂ t2 A⃗ =−µ0J⃗ (4.33a)

∇
2
Φ− 1

c2
∂ 2

∂ t2 Φ =−ρ/ε0 (4.33b)

Where ρ is the charge density, J⃗ is the current density. The fields can be recovered from the
potentials using the following expressions

E⃗ =−∇Φ− ∂ 2

∂ t2 A⃗ (4.34a)

B⃗ = ∇×A (4.34b)

For free space conditions, these equations can solved using the retarded Green’s function which
allows us to encode a causal relationship between a source and the output field [134, 133]. Using
this procedure we arrive at the following classic solution for the electric field at an observation
point (⃗x) in terms of the source charge density and the source current density [134].

E⃗ (⃗x, t) =
1

4πε0

∫
d3xsr

(
R̂
R2

[
ρ (⃗xsr, t ′)

]
ret +

R̂
cR

[
∂

∂ t ′
ρ (⃗xsr, t ′)

]
ret
− 1

c2R

[
∂

∂ t ′
J⃗(⃗xsr, t ′)

]
ret

)
(4.35)

where we denote the distance vector between a source point (⃗xsr) and the observation point (⃗x)
as R⃗, the magnitude of the distance as R, and the unit vector representing the direction as R̂. We
also note that a function of the retarded time t ′ is related to normal time t through the following
transformation, [ f (⃗xsr, t ′)]ret = f (⃗xsr, t −R/c), which is used to explicitly enforce causality [134].

To explicitly solve for the electric field given a driving polarization we use the following ex-
pressions to relate that quantity to the charge and current densities [37].

ρ = ρ0 −∇ · P⃗ (4.36a)

J⃗ =
∂

∂ t
P⃗+∇×M (4.36b)
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Here we make the following simplifying assumptions. First we assume that, all fluctuations of
the charge density are contained in the polarization and we can consider the initial charge distri-
bution (ρ0) as a static quantity and can be ignored. Next, we assume that the contribution of the
magnetization density (M ) can be ignored. This allows us to rewrite equation 4.36 in the following
simplified form.

ρ =−∇ · P⃗ (4.37a)

J⃗ =
∂

∂ t
P⃗ (4.37b)

Lastly, we use the common point dipole approximation [37] where we express the polarization
in terms of a point dipole source (⃗µ(t ′)) centered at the origin. Note that µ⃗(t ′) only contains
information about the time dependence of the dipole source, whereas the spatial dependence can
be expressed in terms of a delta function (δ (⃗xsr)). Under these assumptions, we can re-express the
source terms in equation 4.37 as

ρ =−
2

∑
i=0

µiδ
′(xi%3)δ (xi+1%3)δ (xi+2%3) (4.38a)

J⃗ =
∂ µ⃗

∂ t
δ (⃗xsr) (4.38b)

where δ ′(xi) is the spatial derivative of the delta function along the xi th Cartesian coordinate
[135, 136]. Substituting equation 4.38 into equation 4.35 and evaluating the integrals yields the
following expression for the time dependence of the detected field

E⃗ (⃗x, t) =
1

4πε0

(
3
(
[⃗µ]ret · R̂

)
R̂− [⃗µ]ret

R3

+
3
([

∂

∂ t ′ µ⃗
]

ret
· R̂
)

R̂−
[

∂

∂ t ′ µ⃗
]

ret
cR2

+

([
∂ 2

∂ t ′2
µ⃗

]
ret
· R̂
)

R̂−
[

∂ 2

∂ t ′2
µ⃗

]
ret

c2R

) (4.39)

To simplify equation 4.39, we make the following set of assumptions. First we assume that
the detector is placed along some particular axis (here the ẑ axis), and that this detector is placed
far from the source. As the spatial dependence of the first two terms in equation 4.39 decay more
rapidly then the last term, this assumption allows us to consider the net field to only depend on the
last term in expression as shown.

E⃗(z, t) =
1

4πε0

([ ∂ 2

∂ t ′2
µz

]
ret

ẑ−
[

∂ 2

∂ t ′2
µ⃗

]
ret

c2R

)
(4.40)
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Next we assume that we are detecting signals from a sample whose polarization is primarily
orthogonal to the propagation direction. Essentially this allows us to ignore factors dependent on
µ⃗z. This assumption is justified for a wide class of signals, but as we are particularly interested in
third order signals of isotropic samples we focus on this case. If we assume that the incident fields
have some polarization in the x̂ and ŷ axes due to the intrinsic symmetries of isotropic systems, the
only resulting polarizations can be in the x̂ and ŷ directions [36, 137]. Together with the addition
of a polarizer in front of the detector that is orientated along the ŷ axis allows us to express the field
at a detector as

Ey(z, t) =
1

4πε0

(−
[

∂ 2

∂ t ′2
µy

]
ret

c2R

)
(4.41)

Since what’s measured is the time-averaged square magnitude of the signal electric field in
equation 4.41, by performing this operation we can compute a signal proportional to an experi-
mentally measured polarization sensitive signal.

Vsignal ∝

∫
∞

−∞

dt
∣∣∣∣[ ∂ 2

∂ t ′2
µy

]
ret
(t)
∣∣∣∣2 (4.42)

Equation 4.42 shows final expression that we use to compute the simulated UTPS signal given
a computation of the time dependent driving third order polarization.

4.4 Orientational Averaging and the Perturbed Density
Matrix - An Introduction to the Projected Density Matrix

To compute a orientationally averaged density matrix in the context of perturbation theory, we start
by following a similar procedure as used in section 4.3. Namely, we apply the rotation operator that
transforms a lab frame vector into a molecular frame vector as implicitly defined in equation 4.19
to the expression for the nth order correction term of the density matrix as expressed in equation
4.17. Doing this gives the following general expression for a density matrix of a molecule with a
given orientation under rotation

|ρ(n)⟩⟩ ∝

∫ t

t0
dτ1...

∫
τn−1

t0
dτn

[(
U0
(
∆Tf
) n

∏
m=1

µ⃗U0 (∆τm) |ρ0⟩⟩

)
n

∏
m=1

RimIm

]
n

∏
m=1

E⃗ lab
Im

(4.43)

where we use the following convention for ∆Tf and ∆τm

∆Tf = t − τ1

∆τm =

{
τm − τm+1, if m < n
τn − t0, n = 0
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We point out here that in equation 4.43 the term in the parentheses is nearly identical to the
term ⟨⟨⃗µ|ρ(n)⟩⟩i0...in as defined in equation 4.26 save for the removal of the final contracting dipole
operator ⟨⟨⃗µ|. Given this identification we make the following definition

|ρ(n)⟩⟩i1...in = U0
(
∆Tf
) n

∏
m=1

µ⃗imU0 (∆τm) |ρ0⟩⟩ (4.45)

Which allows us to rewrite equation 4.43 as

|ρ(n)⟩⟩=
(
−i
h̄

)n ∫ t

t0
dτ1...

∫
τn−1

t0
dτn

[
|ρ(n)⟩⟩i1...in

n

∏
m=1

RimIm

]
n

∏
m=1

E⃗ lab
Im

(4.46)

Orientationally averaging the result in equation 4.46 under the assumption of an isotropic sys-
tem gives us

|ρ(n)⟩⟩ave =

(
−i
h̄

)n ∫ t

t0
dτ1...

∫
τn−1

t0
dτn

∫ [
|ρ(n)⟩⟩i1...in

n

∏
m=1

RimIm

]
dΩ

n

∏
m=1

E⃗ lab
Im

(4.47)

Comparing this equation to equation 4.28 we note a number of similarities but one particularly
notable difference. Much like ⟨⟨⃗µ|ρ(n)⟩⟩i0...in , the term |ρ(n)⟩⟩i1...in is independent of the orientation
of the system in the lab frame. This means that we can use the same cosine matrix formulae to solve
the orientational averaging component of the integral as was used when rotationally averaging the
signals as shown in equation 4.29 [47, 120]. However, in terms of the effect under orientational
averaging, equation 4.47 differs from equation 4.28 by a factor of R−1. This difference implies
that the perturbed correction to the density matrix has different transformation properties then that
of the signal that is generated at that the same level of perturbation theory [47, 120]. Under several
circumstances, this implies that the orientationally averaged nth order correction to the density
matrix can be exactly zero even when the signal is nonzero.

As a worked example we consider the case of first order perturbation theory. As per equa-
tions 4.29 and 4.47, the expression representing a orientationally averaged 1st order polarization
response is

P⃗(1)
lab (t0, t) ∝

∫ t

t0
dτ1

[∫
R−1

I0i0⟨⟨⃗µ|ρ
(n)⟩⟩i0i1Ri1I1 dΩ

]
E⃗ lab

I1
(4.48)

whereas the orientationally averaged 1st order correction of the density matrix can be written
as

|ρ(1)⟩⟩ave =

(
−i
h̄

)n ∫ t

t0
dτ1

[∫
|ρ(n)⟩⟩i1Ri1I1dΩ

]
E⃗ lab

I1
(4.49)

In general, the bracketed term in equation 4.48 is nonzero [36, 47, 120] and the integral of these
terms over the integration constant τ1 allows this term to represent the linear polarization in the time
domain. However, the bracketed term in equation 4.49 is exactly zero, since the rotational average
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of a vector that samples all orientations must be zero. This forces |ρ(1)⟩⟩ave = 0 and illustrates
some of the challenges when trying to perform an orientational average of the density matrix while
still preserving information about the evolution of the relevant density matrix elements.

One approach to address this concern in the context of polarization sensitive measurements, is
to invoke the fact that in polarization spectroscopy, there is a preferred lab frame axis of measure-
ment defined by the analyzing polarizer. By associating this preferred lab frame defined axis with
the density matrix we reintroduce this missing rotation operator and create an object related to the
density matrix that transforms like the signal it represents. We denote this object the polarization
projected density matrix.

Derivation of the Projected Density Matrix
In general, the Liouville space representation of the relation between the molecular frame dipole
and the lab frame dipole, as seen in equation 4.19a, can be written as

⟨⟨⃗µlab|ρ⟩⟩= R−1⟨⟨⃗µmol|ρ⟩⟩ (4.50)

The addition of a polarizer with it’s major axis along êpol means that we are only sensitive to
the component of the dipole projected along this lab frame defined axis. In essence, the lab frame
defined analyzing polarizer axis defines a preferred measurement axis in the molecular frame,
where only the component of the dipole signal along this preferred measurement axis contributes
to the measured response. Here we can explicitly add the effect of this preferred measurement axis
to equation 4.50 in the following manner

êpol · ⟨⟨⃗µlab|ρ⟩⟩= êpol ·R−1⟨⟨⃗µmol|ρ⟩⟩ (4.51)

Expanding the right hand side of equation 4.51 in terms of it’s components and collecting terms
under the trace allows us to write

êpol · ⟨⟨⃗µlab|ρ⟩⟩= ⟨⟨µmol
x |ρ⟩⟩êpol ·R−1êmol

x + ⟨⟨µmol
y |ρ⟩⟩êpol ·R−1êmol

y + ⟨⟨µmol
z |ρ⟩⟩êpol ·R−1êmol

z

= Tr
(

µ
mol
x ρ

)
sx +Tr

(
µ

mol
y ρ

)
sy +Tr

(
µ

mol
z ρ

)
sz

= Tr
(

µ
mol
x sxρ +µ

mol
y syρ +µ

mol
z szρ

)
= Tr

((
µ

mol
x ,µmol

y ,µmol
z

)
· (sxρ,syρ,szρ)

)
(4.52)

where we have defined the components sx, sy, sz, to be the components of the preferred po-
larization axis after rotation into the molecular frame. Equation 4.52 then suggests the following
definition for the polarization projected density matrix

|⃗ρpro j⟩⟩=

êpol ·R−1êmol
x |ρ⟩⟩

êpol ·R−1êmol
y |ρ⟩⟩

êpol ·R−1êmol
z |ρ⟩⟩

=

sx|ρ⟩⟩
sy|ρ⟩⟩
sz|ρ⟩⟩

= s⊗|ρ⟩⟩ (4.53)
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With this definition we can rewrite equation 4.51 as

êpol · ⟨⟨⃗µlab|ρ⟩⟩= ⟨⟨⃗µmol |⃗ρpro j⟩⟩ (4.54)

Under orientational averaging, the projected density matrix can be written as

|⃗ρpro j⟩⟩ave =
∫

s(Ω)⊗|ρ(Ω)⟩⟩dΩ =

∫ êpol ·R−1(Ω)êmol
x |ρ(Ω)⟩⟩dΩ∫

êpol ·R−1(Ω)êmol
y |ρ(Ω)⟩⟩dΩ∫

êpol ·R−1(Ω)êmol
z |ρ(Ω)⟩⟩dΩ

 (4.55)

Applying the results of perturbation theory to equation 4.55 lets us write the nth order correction
to the density matrix as

|⃗ρ(n)
pro j⟩⟩ave =

∫
s(Ω)⊗|ρ(n)(Ω)⟩⟩dΩ

=êpol ·

∫ R−1(Ω)êmol
x |ρ(n)(Ω)⟩⟩dΩ∫

R−1(Ω)êmol
y |ρ(n)(Ω)⟩⟩dΩ∫

R−1(Ω)êmol
z |ρ(n)(Ω)⟩⟩dΩ

 (4.56)

Where the term |ρ(n)⟩⟩ is the nth order correction to the density matrix given lab frame perturb-
ing fields being rotated into the molecular frame as expressed in equation 4.46.

Given the definition of the projected density matrix, there are several useful implications that
we wish to discuss. One effect of the projected density matrix is to provide an implicit transforma-
tion of a the molecular frame density matrix into the lab frame. As a consequence, and as explicitly
shown in equation 4.53, the components of the projected density matrix include the rotation that
translates molecular frame quantities into their lab frame counter parts that was missing when we
considered the orientationally averaged density matrix in equation 4.47. This means means that
the components of the projected density matrix transform like the signal they represent. In con-
junction with equation 4.54, this suggests that we can interpret the |⃗ρ⟩⟩x, |⃗ρ⟩⟩y, or |⃗ρ⟩⟩z elements of
the projected density matrix as the relative proportion of the density matrix that contributes to the
selected polarization signal through a molecular frame defined µmol

x , µmol
y , or µmol

z respectively.
In essence, the implicit transformation from the molecular frame to lab frame provided by the

projected density matrix gives us access to relevant molecular frame quantities through lab frame
defined signals. In future sections we will exploit this property of the projected density matrix to
aid in the interpretation of orientationally averaged signals.

Using the Orientationally Averaged Projected Density Matrix to Estimate a
Preferred Sampling Orientation of a Molecular System
In the previous section we derived the projected density matrix and showed that it transforms like
the signal measured through a preferred measurement axis. Therefore, it can retain information
about the relevant quantum state of a system of interest. In this section we will discuss a set
of approximations that can be used to recover preferred lab frame orientations of a molecule.
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Importantly, the following approximations allow us to recover an explicit transformation into the
most relevant molecular frame orientation that provide dominant contributions to the measured lab
frame signal.

The core assumption that we will make in this section is that the we can approximate the
orientationally averaged projected density matrix as the the projected density matrix for a sin-
gle molecular orientation. Effectively, we assume that there is a single dominant orientation of
the molecule that contributes to a measured polarization selective signal. This can be justified as
follows. For a signal that can be described through a finite sequence of transition dipole matrix
elements, each transition will be maximized in isolation if the perturbing field is aligned along the
transition dipole axis. This suggests that, for any given sequence of transitions, there should be
some molecular orientation that maximizes the projection of the perturbing fields with the mediat-
ing transition dipoles and thus the resulting signal. While many such sequences of transitions can
and do exist, the pathways that have major contributions to the net signal may go through a similar
sequence of dipole transitions. If this is the case, the orientation that maximizes all of these contri-
butions could be representative of the net orientationally averaged signal. This approximation can
be seen in the following equation

|⃗ρpro j⟩⟩ave =
∫

s(Ω)⊗|ρ(Ω)⟩⟩dΩ ≈ s̃⊗|ρapprox⟩⟩ (4.57)

We note here that by definition, the vector s̃ is the unit vector representing the rotation of
the preferred measurement axis into the molecular frame. This means that s̃ is a 3-vector with real
components of unit magnitude as shown in equation 4.58. By solving for s̃ and given knowledge of
the preferred measurement axis in the lab frame, we aim to determine the rotation matrix describing
this transformation of the preferred measurement axis into the molecular frame.

||s̃||real =

√
(s̃x)

2 +(s̃y)
2 +(s̃z)

2 = 1 (4.58)

Consider the following relationship between the density matrix elements of the orientationally
averaged projected density matrix and the single orientation approximation.

⟨⟨i j|⃗ρpro j⟩⟩ave ≈ s̃i j⟨⟨i j|ρapprox⟩⟩ (4.59)

Since we are only selecting for one density matrix element in equation 4.59, this equation
represents a complex three component vector. Additionally we note that because s̃i j is a real 3
vector of unit length, the term s̃i j⟨⟨i j|ρapprox⟩⟩ contains only one complex scalar quantity in the
density matrix element ⟨⟨i j|ρapprox⟩⟩. This suggests that we can use equation 4.59 to solve for s̃i j
using the complex vector quantity ⟨⟨i j|⃗ρpro j⟩⟩ave with the following procedure.

First we separate equation 4.59 into it’s real and imaginary components, giving us two separate
expressions for s̃i j. Since s̃i j is of unit length, by taking the magnitude of the vectors derived from
the real component and the imaginary component of equation 4.59, we can solve for s̃i j up to a
sign. Here we show the resulting expression where we denote the raw unit vectors derived from
the real and imaginary components of equation 4.59 as s̃real

i j and s̃imag
i j respectively. The result from

this procedure is shown as follows



CHAPTER 4. A SEMI-EMPIRICAL APPROACH TO THE INTERPRETATION OF
POLARIZATION SENSITIVE SIGNALS WITH AB INITIO PARAMETERIZATION 78

R
[
⟨⟨i j|⃗ρpro j⟩⟩ave

]∣∣∣∣R [⟨⟨i j|⃗ρpro j⟩⟩ave
]∣∣∣∣

real
≡±s̃real

i j ≈±s̃i j (4.60a)

I
[
⟨⟨i j|⃗ρpro j⟩⟩ave

]∣∣∣∣I [
⟨⟨i j|⃗ρpro j⟩⟩ave

]∣∣∣∣
real

≡±s̃imag
i j ≈±s̃i j (4.60b)

In principle, based on the approximation in equation 4.59, the terms s̃real
i j and s̃imag

i j should be
equal. However, in the exact equation, the real and imaginary component of each matrix element
can be associated with their own unique preferred orientation. We can interpret this orientation
as being reflective of the set of dipole transitions that maximizes the contribution of the given
density matrix element. To arrive at a single s̃ from the set of s̃real

i j ’s and s̃imag
i j ’s, after assuming the

positive sign convention for the vectors, we simply take the average of all s̃real
i j ’s and s̃imag

i j ’s that
are associated with nonzero components of their associated density matrix elements as shown in
equation 4.61.

⟨s̃imag⟩+ ⟨s̃real⟩
2

= s̃ (4.61)

This procedure allows us to compute the direction of the preferred measurement axis (ê1) in
the molecular frame (s̃1) from an orientationally averaged projected density matrix calculation.
Unfortunately, one unit vector is insufficient to completely define the molecular frame basis in the
lab frame. However, two unique unit vectors can be used to determine this molecular frame basis.
If s̃1 and s̃2 are orthogonal, taking the cross product will give the unit vector s̃3 which would be
orthogonal to both, giving us a complete basis.

To find this s̃2, we repeat the same procedure to compute s̃ using an analyzer-polarizer axis (ê2)
that’s orthogonal to the original axis (ê1). Under the assumption that the preferred orientation of
the molecule is the same for a signal measured along ê2 as compared to a signal measured along ê1,
the second resulting molecular frame preferred axis vector (s̃2) should be orthogonal to the first one
(s̃1). By taking the cross-product, this allows us to determine the basis representing the molecular
frame coordinates in the lab frame and thus the rotation matrix. However, a polarization signal
along ê1 is not guaranteed to occur through the same transitions as a separate orthogonal axis ê2.
When we consider the case of third order signals from an isotropic system, these two analyzing
polarizers can be sensitive to independent tensor elements whose signals can be preferred through
a separate set of transitions.

To estimate the orientation of the molecule whose lab frame signal is measured along ê1 we
perform the following procedure. First, we assume that the plane defining s̃1 and s̃2 is the same
as the plane defined by ê1 and ê2. By taking the cross-product of s̃1 and s̃2 we can solve for s̃′3
which is orthonormal to the prior two s-vectors. By taking a second cross-product between s̃1 and
s̃′3 we can define a vector s̃′2 which is orthonormal to s̃1 and s̃′3. Thus the vectors s̃1, s̃′2, and s̃′3 form
an orthonormal basis which we interpret as defining the preferred molecular orientation describing
the measured signal.
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At this point it’s useful to contrast this result with other techniques of determining molecular
orientations, particularity that of alignment. Thus far, as described in expression 4.57, we have
shown how we can use orientationally averaged projected density matrix calculations to find pre-
ferred molecular frame orientations that describe the electronic response of an isotropic ensemble
of molecules. We can interpret this result as the orientation of the molecule that dominates the
signal generation given an isotropic distribution of orientations. This is in contrast to alignment
techniques where, after interaction with an aligning field, rotational dynamics shift the orienta-
tional distribution of the sampled molecules changing the signal being generated in some manner
[138]. Additionally, in the case of isotropic samples, all orientations are present and in principle
there can be situations where more than one molecular orientation has dominant contributions to
the measured signal. In these situations, the approximation in expression 4.57 would breakdown
and to more appropriately approximate the signal one would need to consider a larger number of
orientations.

In this work we will only consider the case of a single molecular orientation approximating
the result of an orientationally averaged calculation. In future sections we use this procedure to
compute these preferred orientations of signal generation and compare the signal generated from
them as compared to that from the signal computed from explicit orientational averaging. While
these orientationally averaged calculations can be expensive, by performing these calculations over
a relatively short time window to obtain an approximate lab frame molecular orientation, we can
use this preferred orientation in a much less expensive molecular frame calculation in which the
incident fields are rotated into the molecular frame and the output polarization is rotated out of the
molecular frame using the explicit rotation matrix as derived in this section.

4.5 Perturbative Simulations Of Polarization Sensitive Signals

In the previous sections we outlined the theoretical basis with which we can use ab initio calcu-
lations to parameterize an N-level system, compute polarization sensitive signals associated with
their response to incident fields, and interpret the resulting the electronic response with the aid
of the projected density matrix. Here we aim to detail our software implementation of these tech-
niques and to apply this method to study the responses from an arbitrary two level system and to an
n-level model we parameterize in such a way to represent the isotropic response of nitrobenzene.

In the following calculations we performed either a molecular frame calculation where we
directly estimate the integrals of section 4.2 for a specific orientation of the input system or a
lab frame calculation where we employ orientational averaging of the projected density matrix
to compute the resultant signal as shown in section 4.4. In our implementation, we estimate the
integrals as discussed in the previous sections using left handed Riemann sums over a truncated
time window. This allows us to compute the electronic polarization as a function of simulation
time. Given this response as a function of simulation time, we then use equation ?? to compute
the signal reported by a time averaging detector when considering the response from a sequence of
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Gaussian pulses, or we use the fast Fourier transform to compute the amplitude of the frequency
response when considering the case of an incident continuous wave field.

For the case of a sequence of Gaussian pulses, we compute the time averaged signal as param-
eterized by the time delay between these pulses. To reduce the effects of clipping when the desired
time delay window can risk temporal clipping of either the one of the incident pulses or of the
raw polarization response, we set the simulation time window to include at least an extra standard
deviation of pulse width on both the positive and negative ends of the simulation time window.
Additionally in these simulations, we assume the incident fields are all co-propagating along the
z-axis and we only simulate the response from a molecule centered at the origin. The effect of
these approximations is that we neglect any spatial effects and do not have k-vector selectivity.

In the following sections, we will first validate our methods against an analytical description of
the nonlinear steady state response of an arbitrary 2-level system. We will then consider the case
of a 2-level system under the influence of a Gaussian pulse and compare these results against the
signals obtained from direct iteration of the Liouville equation. Lastly, we will then compute non-
linear polarization sensitive signals from an n-level model parameterized to represent the electronic
response from nitrobenzene.

The Steady State Response of a 2-Level System
To validate the time domain model we consider the case of a 2 level system, described in equation
4.11, with a level spacing ωab, a population decay time of T1, a characteristic dephasing time of T2,
a transition dipole moment of µba, and an unsaturated line-center absorption coefficient of α0(0).
This two level system is influenced by a continuous wave (CW) beam with a frequency of ω which
is modeled as a Stark perturbation (V = µ⃗ · E⃗). Analytical solutions for the steady state signal
have been derived for this case as shown in equation 4.62, note that only the first and third order
susceptibilities are are shown since, in the case of a 2 level atom, all other orders are zero [36]. By
estimating the steady state solutions using the time domain method described in section 4.2 and
comparing against the analytical solution, we can validate our time domain model.

χ
(1) =

−α0(0)
ωab/c

(ω −ωab)T2 − i
1+(ω −ωab)2T 2

2
(4.62a)

χ
(3) =

−α0(0)
3ωab/c

(ω −ωab)T2 − i(
1+(ω −ωab)

2T 2
2

)2
4|µba|2T1T2

h̄2 (4.62b)

To convert our time domain signals into the frequency dependent steady state signals we per-
form the following procedure, first we numerically evaluate the time ordered integrals of equation
4.29 over a length of time. Next we take the time domain polarization signal and convert it into
the frequency domain. In the steady state case, the frequency of the incident field will be the same
as the output polarization signal and this will be the main source of signal [36]. Thus to compute
an estimated steady state signal we perform a FFT on the computed time domain data and pick
out the maximal frequency domain signal. The amplitude of this signal is what’s used to compare
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Figure 4.4: This figure compares the analytical solution of χ(1) to a time dependent numerical
estimate of P(1) for a 2-level system with a level spacing of 5 a.u. given a CW incident beam of
variable frequency and variable decay and dephasing rates. In both the case of variable dephasing
rates and variable decay rates, the numerical estimates peak heights show very good quantitative
agreement as compared to the analytical solution. Additionally the line shapes also show good
quatitative agreement with the steady state solution. There is some deviation from these plots but
we attribute these errors to a combination of finite spacing and boundary cut off effects associated
with the FFT. Note that the analytical solution for χ(1) for this system is independent of decay rate
and this behaviour is observed in the numerical estimate.

against the expected amplitudes from the analytical steady state values. As a further verification
we compared the frequencies of the input and output fields to ensure that they match. Note that
since the estimate computes a value proportional to P(n) and the analytical solution computes χ(n),
the numerical estimates and analytical values can only be qualitatively compared.

In the first order case, we evaluated the signal from 150a.u. of time to 2000 a.u. of time (see
Figure 4.4). This range was chosen in order to remove contributions from the initial transient
response as well as provide sufficient resolution to recover the oscilating signals. In the third order
case, signals were evaluated from 0 a.u. of time to 100 a.u. of time (see Figure 4.5). While this
range does include some of the initial response of the system before equilibrium is reached, this
range was chosen to limit the cost of the simulations. In each run of these simulations, the energy
separation was 5 a.u., the transition dipole moment was 0.1 a.u., and the frequency of the input
electric field was varied from 4.4 a.u. to 5.6 a.u.. To qualitatively compare the trends between
different runs, the decay rates were varied from 0.1 a.u. to 0.6 a.u. and the dephasing rates were
varied from 0.1 a.u. to 0.5 a.u.

As shown in figure 4.4 and figure 4.5, these calculations show fairly good qualitative agreement
between the calculated estimate and the analytical solutions with particularly good agreement of
the peak signal at the transition frequency. There is some error in tracking the line widths of the
various decays but those can be attributed to a combination of boundary cut off effects, finite time
spacing, and finite duration of the calculation.
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Figure 4.5: This figure compares the analytical solution of χ(3) to a time dependent numerical
estimate of P(3) for a 2-level system with a level spacing of 5 a.u. given a CW incident beam
of variable frequency and variable dephasing rates. In contrast with the solution of χ(1) which is
expected to be independent of the decay rate, χ(3) for this system is expected to be dependent on
both the dephasing rate and decay rate. This behaviour is recovered in the numerical estimate. We
additionally see good qualitative agreement between the numerical and analytical estimates partic-
ularly when comparing peak heights of the two sets of curves. Similar to the χ(1) calculation we
attribute the errors in the qualitative width of the curves to boundary cut off effects, the finite time
spacing, and the finite duration of the calculation, used to compute the estimated P(3). The finite
duration of the calculation plays a bigger role in third order calculations as they are substantially
more expensive then first order calculations.

The Transient Response of a 2-Level Isotropic System with Incident
Gaussian Pulses
In the previous section, we described the steady state response of a two level system using per-
turbative time domain representation of the polarization response. While useful when comparing
against analytical solutions, this computational technique is most capable at representing transient
time domain information. Here we explore some of the results of such a calculation in the context
of Gaussian pulses.

Comparison of the Polarization Response from Perturbative Lab frame Calculations and
Direct Iteration of the Liouville Equation

Here we present results comparing calculations of the transient polarization response of a two
level system performed using two different methods. The first method relying on a lab frame
perturbation theory framework as discussed in sections 4.2 and 4.3 and the second method [139]
being a molecular frame calculation using direct iterations of the quantum Liouville equation (as
expressed in equation 4.11) performed in collaboration with Dr. Liang Z. Tan. In this pair of
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calculations, the model parameterization used in these calculations is identical to that in table 4.1.

Parameter Value (atomic units)
µab 0.001
µaa 0
µbb 0
ωba 0.1
Γ 0.0002
γ 0.0001

Table 4.1: Model parameters of the two level model used in the following calculations. Here, µ

represents the dipole matrix elements along a specific axis with other matrices representing the
transitions along orthogonal axes being 0, ωba is the transition energy between the ground state (a)
and the excited state (b), γ is the dephasing rate of the coherence’s between the model states, and
Γ is the minimal spontaneous decay rate of the excited state population ignoring collisional effects
[36, 37].

The results from the lab frame perturbation calculation are shown in figure 4.6. Here the inci-
dent driving lab frame field is chosen to have an arbitrary amplitude of 0.1 (a.u.) with the output
polarization axis being the same as the chosen polarization of the driving field. We note that be-
cause this simulation includes the response of the system that samples all orientations, the relative
magnitude of the responses differs compared to a molecular frame calculation which was per-
formed in the alternative simulation method. However, because the shape of the signals computed
at the same order of perturbation theory doesn’t change when scaling all incident fields by the same
factor (as implied by equation 4.15c), these results can be normalized and directly compared to the
results from the alternative calculation method shown in figure 4.7.

Figure 4.7 shows the results of the total polarization response of this two level system and an
estimate for the 3rd order polarization along with the driving electric field. As illustrated in equation
4.63, this estimate was calculated by subtracting from the total polarization signal, a factor of 10
scaled up polarization signal that was computed using a factor of 10 scaled down electric field.

P(3)
est = P(E)−10P(0.1E) (4.63)

As the third order signal will scale up faster then the linear scaling, the result of this estimate
should remove the linear contribution of the polarization while leaving the nonlinear contributions
of which we expect the third order response should dominate.

We note here that while the center frequency and the width of the driving field is the same
as that used in the perturbative calculation, the amplitude of the field differs from that used in
the calculation of the perturbative response as shown in figure 4.6. While this along with the
difference in the lab vs molecular frame calculations makes comparison of the total polarization
signal somewhat more difficult, since the result of the perturbation calculation scales with respect to
the amplitude of the one incident pulse, comparison between the perturbative third order response
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a. b. c.

Figure 4.6: Results from a lab frame 2-level model when using a computing method relying on
a perturbative treatment of the Liouville equation as discussed in sections 4.2 and 4.3 where the
driving E-field and the selected polarization response have the same polarization. Here we show
the incident electric field whose center frequency was chosen to be resonant with the transition
energy of the system (Panel a.), the computed first order polarization response (Panel b.), and the
computed third order polarization response (Panel c.).

a. b. c.

Figure 4.7: Results from a 2-level model when using a simulation method [139] relying on direct
iteration of the Liouville equation with the resonant driving E-field and the selected polarization re-
sponse have the same polarization. Here we show the incident electric field whose center frequency
was chosen to be resonant with the transition energy of the system (Panel a.), the total computed
polarization response from the simulation (Panel b.), and an estimate for third order polarization
response (Panel c.) using equation 4.63. These calculations were performed in collaboration with
Dr. Liang Tan.
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Figure 4.8: A comparison of the computed normalized third order polarization response from a two
level system. This figure shows the result from a perturbative calculation in which the third order
correction is directly calculated, and the results from a simulation method that estimates the third
order polarization by directly propagating the Liouville equation. We note some small differences
within the window of the simulation between these calculation methods as seen in the subtraction
between the direct and perturbation calculations with a peak magnitude of the difference being
0.107. We attribute these differences to the potential contribution of higher order correction terms
in the direct simulation that aren’t present in the perturbative calculation.

with the estimated third order signal can be done using their normalized responses. The result of
this comparison can be seen in figure 4.8.

Figure 4.8, shows excellent agreement between the two methods of simulation. We do note
some small differences between the calculations, especially at the later simulation times, but we
attribute this to the method used to estimate the third order polarization. In principle, we may
expect some differences between the direct iteration approach and the response function approach
due to the different time stepping methods implemented in either method. In the direct iteration
method, a forward Euler method was used to compute the next result whereas in the response func-
tion approach, integrals were directly numerically estimated using left-handed Riemann sums. As
these two methods take fundamentally different approaches to estimating the same result, we ex-
pect that differences due to the method of time-stepping should result in noisy differences between
the two methods. However, we also note that the estimate (equation 4.63) is designed to remove
the linear contribution and is not guarantied to only include the third order response. As such
higher order correction terms in the polarization response may contribute to the P(3)

direct estimate
which show up as deviations from the polarization computed through perturbative methods. Such
a deviation from higher order contributions would have similar oscillatory behaviour and growth
behaviour of the peak amplitude as compared to a lower order contribution, however the higher or-
der contribution would be expected to be weaker and/or shifted. As this is similar to the behaviour
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Parameter Value (atomic units)
µab 0.001 - 0.01
µaa 0.0 - 1.0
µbb 0.0 - 2.0
ωba 0.1
Γ 0.0002
γ 0.0001

Table 4.2: Here we show a summary of the model parameters of the two level model used in of the
following calculations of the orientationally averaged density matrix, the orientationally averaged
projected density matrix, and their associated transient polarizations. The single incident pulse
frequency was chosen with center frequency resonant with the transition energy, a peak amplitude
of 1 a.u., and a pulse duration of 20 fs. In the following calculations the polarization of the incident
pulse and the selected signal polarization were set to the same axis.

of the difference between the two simulation results, we attribute the primary difference between
these methods as a result of additional higher order terms contributing to the direct simulation
estimate of P(3)

direct. These results, serve as an additional validation of the perturbative approach in
simulating the polarization response of the system.

The Polarization Response As a Function of Simulation Parameters

The following calculations show the result of simulations in which the we varied the dipole matrix
elements of a two level system while keeping the incident pulse parameters the same. A summary
of the model parameters sampled can be seen in table 4.2, with the incident pulse duration being
20 fs, with an amplitude of 1 a.u. and the peak of the pulse occurring at t = 0.

A summary of the resulting sampled signals can be seen in figure 4.9. We note here the fol-
lowing trends that can be seen when comparing the results of these simulations. First, when the
ground state dipole increases (as seen when comparing figures 4.9c and 4.9d), the magnitude of
the 3rd order polarization response decreases. This can be explained by the ground and excited
state dipole moments having the same orientation and thus, when population moves out of the
ground state population to the excited state, the contribution of the ground state dipole to the net
instantaneous response goes down in proportion to the population that has left the ground state.
This is further evidenced by comparing figures 4.9b and 4.9d which result in the same realization
of the net polarization response despite the lack of a strong ground state dipole moment in 4.9b.
Additionally, we note a big difference in the shape of the signal when the only contribution to
the polarization response is from the transition dipole moment (figure 4.9a) as compared to when
there is a nonzero population state dipole moment (4.9b). In figure 4.9a, we see a relatively slowly
growing but longer lived polarization, whereas in figure 4.9b we see the inclusion of a strong but
short lived but quickly decaying polarization response.
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a. µaa = 0,µbb = 0, b. µaa = 0,µbb = 1, c. µaa = 0,µbb = 2,
µab = 0.001 µab = 0.001 µab = 0.001

d. µaa = 1,µbb = 2,µab = 0.001 e. µaa = 1,µbb = 2,µab = 0.01

Figure 4.9: Transient polarization responses of a two level model with the model parameters as
in table 4.2. Here we show the orientationally averaged transient polarization responses and the
associated dipole matrix elements of the two level system corresponding to the simulation.

These results suggest, that the transition dipole matrix element and the corresponding coher-
ences are primarily responsible for a relatively small amplitude and slowly rising but longer lived
signal that could be associated with the decay of the off diagonal coherences, where as the strong
peak polarization that occurs within 10 fs of the peak amplitude of the driving field is due to
the effects of population state dipole moments and the associated population dynamics. Also as
the period of the oscillations after the 20 fs simulation time don’t change and they scale with
increasing excited state µbb, it’s possible that while the transition state dipole moment mediates
the transitions, it doesn’t directly contribute to the overall signal and that population dynamics
are the primary driver of these signals. Comparing panels d and e of figure 4.9, does not allow
us to conclude that coherences are playing a significant role in the net polarization response out-
side of mediating the population dynamics since, increasing the transition dipole by a factor of 10
increases the magnitude of the polarization by a factor of 10.

To further explore the orientationally averaged transient polarization responses of figure 4.9, we
explicitly compare calculations of the third order correction to density matrix under orientational
averaging (equation 4.47) as compared with the orientationally averaged third order correction of
the projected density matrix (equation 4.55). The µ parameters in table 4.2 are associated with the
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dipole transitions along the molecular frame z-axis, with the x and y dipole matrix elements being
set to zero. Thus only transitions that occur through the z dipole matrix are able to contribute to a
transient polarization signal. In the following examples, we have fixed the z dipole matrix elements
to be µaa = 1, µba = 2, and µab = 0.001. The resulting signal associated with these parameters
is shown in figure 4.9d, with the peak of the polarization occurring within the first 10 fs after the
peak of the incident pulse.

Due to the number of rotation matrices involved in the molecular frame to lab frame transforma-
tion, we can expect that the orientationally averaged |ρ(3)⟩⟩ will have the analogous transformation
properties as χ(2) under orientationally averaging. We note that χ(2) under these conditions has six
nonzero elements χ

(2)
zyx , χ

(2)
yxz , χ

(2)
xzy , χ

(2)
zxy , χ

(2)
yzx , and χ

(2)
xyz with these tensor elements being equal to

each other up to a sign [140]. When considering how these transformation properties of χ(2) would
apply to |ρ(3)⟩⟩, this means that in order for the orientationally averaged |ρ(3)⟩⟩ to be nonzero, the
perturbing fields must have polarization components along the x, y, and z axes. Since the per-
turbing fields all have polarizations in the x-y plane, these relations suggest we should expect the
orientationally averaged density matrix to be identically zero even though the orientationally aver-
aged signal that is represented at this order of perturbation theory is nonzero. This is in contrast to
the projected density matrix which, as discussed previously, has Cartesian elements that transform
like the signal they represent under orientational averaging.

Additionally, previously we discussed an interpretation of the Cartesian elements of the pro-
jected density matrix as representing a proportion of the density matrix that contributes to the lab
frame signal through the specific molecular molecular frame dipole transitions that occur through
that same Cartesian axis. Given that only µz has nonzero transitions, and the transformation prop-
erties previously discussed, this suggests that the z component of the projected density matrix will
be the only one to have nonzero components. Given this, we should expect ⟨ρ(3)⟩, ⟨⃗ρ(3)

x ⟩, and
⟨⃗ρ(3)

y ⟩ to be identically zero with only the term ⟨⃗ρ(3)
z ⟩ being nonzero.

Figure 4.10 shows the magnitude of the Cartesian elements of the third order correction to the
projected density matrix and the third order correction to the density matrix under orientational av-
eraging. As expected, the z component of the projected density matrix has a nonzero contribution,
with the other components are identically zero since only µz contains nonzero elements. These
results demonstrate the ability of the projected density matrix to provide access to a quantity re-
lated to the density matrix after orientational averaging. Given that the averaged projected density
matrix samples all orientations of a molecule, this provides us a means of sampling all orientations
of a molecule while still maintaining the ability to interpret which elements are contributing to a
specific signal.

In this example, because the model is so simple the interpretation is also relatively simple.
Given a resonant pulse with a given lab frame polarization and a polarizer oriented along the same
polarization axis, for a system parameterized as in table 4.2, only the z transitions are demonstrated
to contribute to the signal. Additionally, looking at the magnitude of the coherences relative to the
populations, despite the strong population dipole moments, the coherences seam to have a very
strong contribution to the output polarization. This is particularly evident when looking at the
magnitude of the |⃗ρz⟩⟩ in figure 4.10 at simulation times greater than 20 fs. When compared
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a. Element (0,0) b. Element (0,1)

c. Element (1,0) d. Element (1,1)

Figure 4.10: This figure shows the magnitude of the elements of the 3rd order density matrix and
the 3rd order correction to the projected density matrix, both as a function of simulation time after
orientaional averaging. Here, 0 refers to the ground state and 1 refers to the first excited state. Thus
(0,0) and (1,1) refer to the ground state and excited state populations respectively, whereas (0,1),
and (1,0) refer to the complex conjugates of the orientationally averaged coherence between these
states at the third order of perturbation theory. Here we see that ρ⃗

(3)
z is the only nonzero Cartesian

component of the orientationally averaged projected density matrix and ρ(3) is exactly zero under
orientationally averaging.
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against the computed third order polarization in figure 4.9d, this suggests that, while the peak
polarization, as seen within the first 10 fs of when the sample experiences the peak field, has
significant contributions from the dynamics of the population states, the coherences appear to
be driving the longer tail of the signal while also having a significant contribution to the peak
amplitude polarization. This is in contrast to the previously discussed interpretation of these signals
which suggested that these signals were primarily driven solely by population dynamics mediated
by coherences as apposed to the coherences having a major contribution to the signal.

This particular case is a little simple to fully demonstrate the full utility of the projected den-
sity matrix. Since the only major transition is along the molecular frame z-axis, it’s simple to
assume the sample is aligned along the lab frame z-axis when performing a calculation, this has
all the benefits of interpretability as orientational averaging is not required giving access to the
nth order corrections to the density matrix, while also avoiding the additional expense of explicit
orientational averaging.

In future calculations we will demonstrate how this explicit orientational averaging allows for
the determination of preferential molecular orientations that have dominant contributions to the
computed polarization when there are many potential transitions and decay pathways that can
modify and/or contribute to the net signal.

Simulating the Nonlinear Electronic Response of Nitrobenzene through
Perturbative Calculations of an N-Level Model
Parameterization of the N-Level Model to simulate the electronic response of Nitrobenzene

In this section we will discuss the procedure by which we parameterized the N-level model as
depicted in section 4.2 to best represent the electronic response from nitrobenzene. As shown in
equation 4.11 there are four matrices that need to be parameterized in order to represent the signal
from a specific molecule, the transition energies between each state (ωnm), decoherence rates (γ),
population relaxation rates (Γ), and a perturbation (V ), where we take the perturbation to be due to
the energy of external electric fields (E⃗) interacting with the dipole operator (⃗µ).

To determine the values to be used for the matrix elements of the dipole operator used in the
following calculations, we performed a set of response theory calculations as described in section
4.1. With these calculations we are able to determine the ground-to-excited state transition dipoles
as well as the excited-to-excited state dipole matrix elements. Together with a calculation of the
ground state dipole moment, we are able to determine the transition dipole moments between a
number of chosen excited states. In these response theory calculations, the transition energies are
also computed which further allows for the parameterization of the transition energies between
each state.

In the following sections we used the dipole moments from nitrobenzene with a 13◦ dihedral
angle between the plane of the benzene ring and by the plane defined by the NO2 functional group.
This geometry was chosen since prior calculations [71] suggest that this geometry helps facilitate
the dipole transitions between the ground state and the lower lying excited states. Additionally,
When comparing the transition dipoles given the current level of theory (as shown in appendix
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A) between the C2v planar geometry and the C1 13◦ twisted geometry, many of the ground to
excited state transitions in the C2v geometry are particularly weak with only excited state transition
moment bellow 4.7 eV with a magnitude of the transition dipole larger than 10−10 (a.u.) being the
S0 to S3 transition moment with a magnitude of 0.0564 a.u. and an energy difference of 4.55 eV.
In contrast, the 13◦ twisted geometry shows strong ground to S1 and S2 transitions with ground to
excited state transition moment magnitudes and energy differences of 0.0743 a.u. / 4.17 eV and
0.0346 a.u. / 4.56 eV respectively.

To determine the pulse parameters we started by approximating the incident pulses with a set of
Gaussian functions using the FROG measurements to determine the pulse width and pulse energy
measurements to set the field amplitude. Depending on the time scale of the simulation the width
of these fields were modified to reduce edge effects from clipping the edges of the fields in time.

The most difficult terms to parameterize through ab initio methods are the dephasing (γ) and
population decay terms (Γ) which are contained in the Liouville space decay matrix (D). The most
complete way to express the ability of molecules to dissipate energy into other degrees of freedom
is by explicitly solving for nonadiabatic dynamics especially those around conical intersections [3,
4]. Here, by including the decay matrix (D), we can approximate the effects of these nonradiative
decay processes. In general the dephasing and decay terms are related through the following
expression [37, 36]

γi j = Γi +Γ j + γc (4.64)

where Γi and Γ j are the population decay rates for the ith and jth states, γc is the collisional
contribution to the dephasing rate, and γi j is the dephasing rate of the coherence between the ith

and jth states. To approximate the decay terms Γi and Γ j, we started by including the decay rate
due to spontaneous emission [117] which lets us set a lower bound of the decay rates. These decay
rates were then scaled to be roughly the same order of magnitude as the measured electronic decay
rates of nitrobenzene [65, 93] around 10-100 fs or longer. Once these estimates for the population
decay rates were chosen, we then used expression 4.64 to estimate the associated dephasing rates
assuming negligible γc.

Comparison of N-Level Model simulation to OKE measurements of Nitrobenzene

Here we describe a series of calculations aimed at describing the electronic response of an optical
Kerr effect signal of nitrobenzene. To perform this calculation we used the parameterized N-level
model to simulate the third order response from nitrobenzene as described in section 4.2 using the
parameterization method as described in section 4.5. The aim of these calculations is to first find
an appropriate representative orientation of nitrobenzene by performing orientationally averaged
calculations over a short time delay window. After validating this preferred orientation, we will
then exploit the cost saving difference between the lab frame and molecular frame calculations
to compute longer lab frame calculations using this representative orientation. We then aim to
use this representative orientation to compute polarization signals that appropriately represent the
electronic response from an isotropic sample of nitrobenzene. With this response we then aim to
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compare this molecular frame calculation against recent measured optical Kerr effect signals of
nitrobenzene.

To start, we performed a series of orientationally averaged third order calculations of nitroben-
zene given a set number of included states and pulse durations included in the model. In these
calculations, both the probing pulse and the Kerr gating pulse were represented by Gaussian pulses
with equal amplitudes and equal pulse duration with the gate having a 45◦ relative polarization
as compared to the probe where we defined the probe polarization axis to be along the lab frame
x-axis and the lab frame z-axis was defined to be the propagation axis. The signal polarization was
taken along the lab frame y-axis. To aid in comparing these simulations to experimental measure-
ments, the amplitudes of the Gaussian pulses were determined from the pulse intensities used in
our recent observations of the optical Kerr effect signal in nitrobenzene [61] as shown in section
2.1.

Rmol→lab = Y (θ1)Z (θ2)Y (θ3) (4.65)

Included States Pulse Width (fs) θ1 (rad.) θ2 (rad.) θ3 (rad.)
S0, S1, S2 7.5 0.9669±0.0044 1.272±0.012 −0.22±0.23
S0, S1, S2 15 0.9573±0.0030 1.2706±0.0070 −0.21±0.25
S0, S1, S2 30 1.0042±0.0074 1.2778±0.0037 −0.25±0.20

S0, S1, S2, S8, S12 7.5 0.9764±0.0035 1.288±0.010 −0.176±0.099
S0, S1, S2, S8, S12 15 0.9887±0.0036 1.2666±0.0049 0.01±0.15
S0, S1, S2, S8, S12 30 0.9832±0.0040 1.2909±0.0040 −0.08±0.19

Table 4.3: Recovered Euler angles and standard errors from third order orientationally averaged
projected density matrix calculations using a pair of incident Gaussian pulses with a center fre-
quency at 780 nm. In these calculations the full width at half max pulse duration of the both the
Kerr gate and the probe were set to be equal to the pulse width in the table.

After performing these orientationally averaged calculation for a fixed set of model parameters,
we were able to extract representative orientations of nitrobenzene as a function of time-delay
between the Kerr gate and probe pulses. Here we represent the recovered orientation using a set
of extrinsic Euler angles using the Y-Z-Y convention as seen in equation 4.65. To settle on a final
value for the Euler angles, we averaged the recovered Euler angles over the sampled set of time
delays and computed the standard error for that mean value.

In table 4.3, we show the average Euler angles and associated standard errors for a variable set
of model parameters. We note that, as discussed in section 4.4, projecting one preferred axis into
the molecular frame is not enough to completely determine the preferred molecular orientation. In
essence this is because rotations about this axis can’t be distinguished from one another which leave
one additional degree of freedom. This means that using the orientationally averaged projected
density matrix calculation using the lab frame y-axis as the preferred axis we can determine the
two Euler angles θ1 and θ2. The third Euler angle θ3 on the other hand, must be determined by
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Figure 4.11: A sample comparison of the third order orientationally averaged polarization signal
against the third order polarization signal from an oriented molecular frame calculation. For the
molecular frame calculation, the orientation supplied was recovered from the orientationally av-
eraged projected density matrix calculation that was used to compute the orientationally averaged
signal. In the 3-level case, the included states were S0, S1, and S2. Whereas in the 5-level case, we
included S0, S1, S2, S8, and S12 in the model. In these calculations, the 780 nm IR fields had full
width half max pulse durations of 15 fs and equal amplitudes.

computing a second orientationally averaged projected density matrix with the x-axis being the
preferred axis. However, since this second preferred measurement axis can accept polarization
signals from different tensor elements of χ(3), we aren’t guarantied to sample the same preferred
orientation of nitrobenzene, as compared to the case where the y-axis is the preferred measurement
direction. These differences help to explain why our reported uncertainties in θ1 and θ2 is roughly
1-2 orders of magnitude smaller then the uncertainty in θ3.

Interestingly, as seen in table 4.3, regardless of the changes in the included states or the pulse
duration, the recovered orientations are all fairly close to one another. This suggests that for a wide
number of states, this orientation of nitrobenzene is particularly sensitive to this configuration of
incident IR fields regardless of pulse duration or the number of included states.

To validate these recovered orientations, within a set of fixed model parameters, we compared
the polarization signal calculated from a molecular frame calculation using the recovered orienta-
tion against the signal from the orientationally averaged calculation. An example of these compar-
isons for the 3-level (S0, S1, S2) and 5-level (S0, S1, S2, S8, S12) cases with 15 fs incident Gaussian
pulses are shown in figure 4.11. Here we note fairly good qualitative agreement even though the
magnitude of the signal between these two cases differs by a factor of 2 in the 5-level case, and
roughly a factor of 20 in the 3-level case. Since other weaker signals aren’t being averaged together
to result in the final signal in the oriented molecular frame case, it’s not unexpected that the ori-
entationally averaged signal will be weaker then the signal calculated from the oriented molecular
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Figure 4.12: Recovered lab frame orientation of nitrobenzene from a 3-level orientationally av-
eraged third order projected density matrix calculation of nitrobenzene. In this calculation the
included states were S0, S1, and S2 and the pulse duration was 15 fs. We note that here that to
define the lab frame axes, ẑlab is the pulse propagation axis, x̂lab is aligned along the probe polar-
ization axis, and ŷlab is the analysing polarizer axis. To define the molecular frame axes, ẑmol is
along the CN bond axis, ŷmol is normal to the plane of the ring, and x̂mol is in the plane of the ring.
The specific lab frame representation of the individual molecular axes are shown in table 4.4.

lab frame x̂mol lab frame ŷmol lab frame ẑmol
0.34 -0.55 0.76
0.93 0.30 -0.20
-0.12 0.78 0.61

Table 4.4: Here we show explicit representations of the molecular frame axes in the lab frame
given the recovered orientation from a 3-level (S0, S1, and S2) third order projected density matrix
calculation with the incident IR pulses having full width half max pulse durations of 15 fs. We
note that the definitions for the lab frame and molecular frame axes are the same as in figure 4.12.

frame calculation.
We note here that we observed a significant decrease in computational cost between the ori-

entationally averaged calculation and the molecular frame calculation in both the 3-level (factor
of 1000 decrease) and 5-level (factor of 500 decrease) cases. It’s possible that these efficiency
differences point to additional optimizations that can be made to the current iteration of the code,
however in general, we would always expect the orientationally averaged calculation to take signif-
icantly longer then a molecular frame calculation using the recovered orientation of the molecule.

Additionally, in figure 4.12, we present the representative orientation of nitrobenzene in lab
frame coordinates from the recovered orientation taken from of the 3-level model representation
of nitrobenzene with 15 fs incident IR Gaussian pulses. The specific lab frame representations of
the molecular frame axes of nitrobenzene are shown in table 4.4 where we define ẑmol to be along
the CN bond axis, ŷmol to be normal to the plane of the ring, and x̂mol to be in the plane of the
ring. One might expect that since the population states have polarizations primarily along ẑmol and
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Figure 4.13: Here we compare the simulated molecular frame signal after scanning the third Euler
angle θ3 to that of the orientationally averaged signal. We note here that the recovered θ3 from the
orientationally averaged calculation is −0.21± 0.25 radians. Additionally from these scans, the
sampled angles from −0.17 to 0.21 radians appear to have the greatest contribution to the signal
and most closely match the shape of the orientationally averaged signal. The other Euler angles
were fixed at 0.9573 radians and 1.2706 radians for θ1 and θ2 respectively.

since the preferred measurement axis is primarily along the lab frame y-axis, that the molecule
would prefer to have the ẑmol axis oriented along the y polarization axis. However, as can be seen
in table A.4 the transition dipole moments of the coherences can have strong transitions mediated
through the x̂mol and ŷmol axes. The contribution of these coherences to the measured polarizations
is what shifts the representative orientation away from the expected lab frame y-axis orientation to
the orientation depicted in figure 4.12.

To further validate the recovered orientation, we performed a scan of the third Euler angle θ3
from −π to π radians using the 3-level (S0, S1, and S2) model of nitrobenzene with 15 fs FWHM
incident IR pulses. The result of this scan can be seen in figure 4.13. As seen in this figure,
the sampled θ3 angles near 0.17 to −0.21 radians tend to both have larger net contributions to
the signal and they tend to qualitatively match the orientationally averaged signal better. Directly
comparing the peak signal magnitudes around θ3 being equal to 0.17 to −0.21 radians to signals
outside of the region, angles outside of that region have a factor of 2 to factor of 10 smaller peak
magnitude compared to peaks around 0.17 to −0.21 radians. Here we note that the recovered θ3
in this case, has a value of −0.21±0.25 radians which appears to roughly align with the identified
range.

To directly compare simulated 3rd order polarization sensitive measurements with experiment
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Figure 4.14: Comparison of a normalized homodyne OKE measurement of liquid nitrobenzene
to that of the predicted 3rd order polarization response given due to the electronic dynamics in
nitrobenzene. In this case, the simulated signal from the the recovered representative orientation
of nitrobenzene, has also been normalized and shifted by 60 fs to match the peak amplitudes.
We attribute this shift to potential errors in overlap measurement, but future work will needed to
confirm this as the source of the shift.

we performed the following calculations. First using the 5-level recovered orientation of nitroben-
zene in table 4.3, we computed the 3rd order polarization signal cross to the probe pulse orientation.
Using this selected orientation, we extended the simulation time window to 400 fs and the FWHM
pulse duration of the pair of IR pulses was extended from 30 fs to 40 fs to better match experimen-
tal conditions. To avoid clipping effects, we computed the signal from a set of time delays between
±150 fs. This was then compared to the experimentally measured OKE signal of neat liquid ni-
trobenzene as measured in figure 2.3. The comparison between the simulation and measurement
is shown in figure 4.14.

We additionally note the following regarding the third order simulation of the electronic com-
ponent of the OKE signal of nitrobenzene. The raw simulation has a signal that peaks when the
time delay is 0 and has a nonzero baseline, we additionally see periodic behaviour in the signal
amplitude as a function of time delay. Some of these effects are due to limitations of the simula-
tion method compared to experiment. In the experiment, the incident fields are not co-propagating
perfectly along the same axis as each other and due to phase matching, we can select for the signal
propagating along the probe axis. This is not implemented in the current code base and as such, we
are sensitive to signals generated solely from third order interaction with the gate or would result
from phase matching conditions that we would not be sensitive to experimentally. We would not
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expect to be sensitive to third order interactions solely from the probe since the resulting polariza-
tion would be aligned along the lab frame x-axis and the crossed polarizer axis would reject this
signal. However, since the gate polarization is 45◦ relative to the probe, the gate can result in a
nonlinear signal that is independent of time delay. To account for this we subtracted the baseline
from the simulated response when normalizing the computed signal. This is also a likely reason
for the observed oscillations in signal magnitude which could be caused by relatively slow beating
between the signals generated from different phase matching in the experiment all contributing to
the signal in the simulation.

We additionally note that the peak of the simulated response differs from the measured OKE
response by 60 fs. Potentially, this points to an experimental error in the determination of overlap
where type II phase matching conditions were used to find overlap as apposed to type I conditions,
given this difference, a 60 fs shift in time delay overlap could explained if the pulses meet 150
microns into the BBO sample. Additionally, this shift in time delay overlap is not reported in other
literature OKE measurements of liquid nitrobenzene [66, 65].

We additionally note that, while the width of the simulated electronic response is roughly 80
fs which is consistent with other OKE measurements of the electronic response, the peak itself is
highly symmetric about the peak. Given the conservative approach to setting the decay parameters
and no inclusion of collisional dephasing, the observed symmetry in the rise and fall of the simu-
lated peak could be due to these dephasing parameters being incorrect. Additionally, recent results
from Walz et al. suggest that asymmetric line shapes as a function of time delay can be attributed
to effects from phase matching [86].
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Chapter 5

Future Directions

Over the previous chapters, we have demonstrated an experimental realization of ultrafast transient
polarization spectroscopy and applied this technique to the study of excited state spectroscopic
signals of nitrobenzene. We then presented a systematic method to simulate lab frame signals from
the electronic component of the polarization using a parameterized n-level model of nitrobenzene.
In the context of the projected density matrix, we were able to recover representative orientations
of nitrobenzene that produce signals most closely representing the orientation-averaged signals
in the laboratory frame. Here we discuss some of the possible future directions that are enabled
by this work. First we discuss some of the future theoretical work such as potential avenues for
extending the current simulation methods and in potential development of the projected density
matrix formalism. Then we discuss some potential experimental directions including a proposed
measurement scheme of the projected density matrix, and potential avenues to extend UTPS into
XUV/x-ray energy regimes.

5.1 Future Theoretical Directions

Extending the Perturbative Simulations
In principle, when considering the phase matching conditions of UTPS, the lowest order interaction
that includes interactions with the resulting signal traveling along the probe direction is ksig =
kprobe + kgate − kgate + kpump − kpump. This suggests that the lowest order UTPS signal will be
in general represented by χ(5). However the current code base is only able to simulate up to
third order responses. There are several options that can be taken to extend the capability of the
current simulation methods to address this issue. One potential avenue to address this limitation
avenue could be the inclusion of non-equilibrium states through linear and nonlinear pumping
schemes. By including non-equilibrium states into the calculation, such a scheme may allow us
to more appropriately simulate UTPS signals by simulating the general higher order interaction
with a sequence of lower order interactions. This could allow for the efficient computation of
orientationally averaged signals given a specific electronic excitation scheme.
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One method to include these non-equilibrium states would be to follow the work of Agarwalla
et al. [60] where the authors use a lower order of perturbation theory to compute an initial state
of the density matrix after interaction with a number of fields. In effect, this allows the authors to
compute effects from a higher order in perturbation theory as a sequence of lower order calcula-
tions. The method utilized by Agarwalla et al. mainly relied on computing the appropriate order
correction to the density matrix in the molecular frame [60]. This suggests that by appropriately
adapting the projected density matrix formalism we may be able to compute orientationally aver-
aged signals from nonequilibrium states to more closely simulate the electronic response of UTPS
measurements.

Another approach to more closely simulate higher order UTPS signals could be to simply
extend the code base to compute higher orders of perturbation theory. While such a calculation
is straight forward to implement for the molecular frame calculation, the lab frame case poses
some difficulty. One barrier in implementation would be the need for exact solutions of static
molecular frame 5th order tensors under orientational averaging. Currently, solutions have been
tabulated for orientational averaging up to 3rd order [47, 137], so to treat the case of 5th order
signals from isotropic samples, one would need to derive these expressions for the orientationally
averaged 5th order tensor to avoid unnecessary orientational sampling. There is also a limitation in
computational cost. As currently implemented, the perturbative calculation of nth order nonlinear
signals is of order (t/δ )n where t is the length of the simulation and δ is the simulation step size.
For a single set of time delays representing the nonparallelized portion of a calculation, on current
hardware, the orientationally averaged third order signal can take over 24 hours to complete given
a time window on the order of 100 fs wide, depending on the resolution. This suggests that the
equivalent 5th order calculation given the same time window and resolution could take take nearly
a factor of 10 longer which on current hardware would take over 200 hours to complete. Even with
this extra cost it still might be useful to implement this method, due to the relative simplicity in
implementation and it’s ability to be used as a reference method to cross check more approximate
methods.

An additional factor that isn’t currently taken into account is the lack of k-vector selectiv-
ity. In the simulations presented in section 4.5, because the spatial effects aren’t explicitly taken
into account, these simulated signals are not k-vector selective. In both OKE and UTPS mea-
surements, the signal propagates along the probe propagation direction. However, since the field
order is arbitrary, there can be signals that propagate along other directions, such as the gate or
pump propagation directions. Such signals aren’t detected in the experiment, but are detected in
the simulation, because all of the propagation directions are degenerate in the simulation. To ac-
count for this we have a couple options. Firstly, in equation 4.32 we can follow the procedure
as suggested by Dickson [39], where we can explicitly compute the time dependent polarization
for a set of points in a sample volume. However, this fails to exploit the spatial periodicity of the
resulting signal. Another option would be to incorporate phase matching conditions, by selecting
for specific field interaction terms in the selected order in perturbation theory [36]. A third option
could be to select for signals propagating along a specific axis in phase space, by sampling the
incident output polarizations given spatial dependent phase shifts of the fields along the axis of
interest. By sampling these incident fields and selecting for the spatially coherent component of
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the sampled polarizations, we may be able to account for the phase matching conditions directly
from simulation while also taking advantage of the spatial periodicity of the signal[35].

Since this code calculates nonlinear optical signals through perturbation theory, a natural ex-
tension of this code could be to include Feynman diagram selectivity. It has been shown that some
2D spectroscopic signals show a Feynman diagram dependence [100]. Additionally, methods for
automatically calculating the nonlinear spectroscopic signals associated with the set of Feynman
diagrams that can contribute to a signal have been implemented [103]. Adapting this method into
the existing code base would allow for the calculation of polarization sensitive and Feynman dia-
gram dependent nonlinear spectroscopic signals.

Extending the Projected Density Matrix Formalism
In principle, the formalism of the projected density matrix can be extended in a couple of different
ways. One limitation of the current projected density matrix formalism is that, in order to com-
pletely recover a representative molecular orientation, two separate projected density matrices with
orthogonal preferred measurement axes need to be obtained. With these two projected density ma-
trices we then make the assumption that the preferred orientation of a molecule is approximately
the same for both preferred axes. However, given that the different output polarizations can re-
sult in the signal resulting from a different set of tensor elements of the nth order susceptibility,
the two different preferred measurement axes could produce different representative molecular
orientations. Mathematically, the reason a unique orientation is not completely determined from
one projected density matrix is that the 3D unit vector describing the preferred orientation can be
described with two degrees of freedom (essentially two different angles) whereas a rotation ma-
trix is described using 3 degrees of freedom (3 Euler angles). This suggests that a version of the
projected density matrix that represents a quadrupole sensitive measurement may include enough
information to fully describe a representative orientation of a molecule.

Such quadrupole selective measurements, can be difficult and for measurements of the electric
quadrupole moment typically involve the measurement of the sample’s response due to an applied
electric field gradient [141, 142]. Theoretically, the quadrupole field interaction contributes to a
variety of spectroscopic signals [37]. However, a theoretical treatment [143] of the quadrupole
contribution to 2D circularly polarized photon echo spectroscopy found that, for a set of peptides,
the quadrupole contribution can be an order of magnitude weaker then the magnetic dipole con-
tribution to the signal. A recent proposal [144] has suggested a scheme by which the magnetic
quadrupole moment of a simple heavy molecular system could be measured by considering the
response of a superposition of molecules to parallel incident electric and magnetic fields.

If such a quadrupole selective measurement scheme can be justified, this could potentially
provide a means of determining a preferred molecular orientation directly from a determination of
one projected density matrix where the preferred measurement axis is from a specific quadrupole
moment.

Another direction that could be useful in extending these projected density matrix calculations
would be to consider the case of anisotropic systems and how the addition of anisotropy could
change the measured response. In considering the case of anisotropic systems we can potentially
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connect this object to a wider set of measurements beyond solely the electronic response of a sys-
tem. In particular, we can consider the result from considering anisotropic samples which could
occur at surfaces [145] where the restricted degrees of freedom limit the possible orientations of
relevant moieties. Additionally, by considering the effects of time evolution of an orientationally
distribution through the lens of the projected density matrix, we can connect this object to the ef-
fects of induced anisotropy from molecular alignment in an electric field [47, 138] or librational
motion [146, 147]. Additionally, comparison of the projected density matrix from an orienta-
tionally averaged isotropic sample, to an oriented sample, may provide a means of recovering a
measure of anisotropy in such samples.

Future Calculations
As implemented, the current simulation software allows for computation of polarization sensitive,
time-delay dependent electronic signals with 3 separate pulses described by 2 sets of time-delays.
Thus far we have applied this software to simple two level systems and nitrobenzene with the NO2
group twisted 13◦ out of plane with the aim of computing polarization sensitive signals to OKE and
UTPS measurements. In principle, this software package can be applied to the simulation of any
polarization sensitive experiment that can be described with up to 3rd order in perturbation theory.
Additionally, while the current simulation software is unable to exactly account for phase matching
conditions, one potential way around this issue would be to consider the signals generated from
sets of signals with different colors for each of the incident pulses. This suggests some directions
for future calculations.

Initially, given the computed dipole transitions from planer C2v symmetric nitrobenzene, a good
next set of calculations would be to compute polarization sensitive signals from this geometry of
nitrobenzene. This could be particularly interesting given the symmetry of nitrobenzene in this
geometry which may imprint some symmetry on the polarization sensitive signals. There have
also been some calculations [71, 34] that suggest that the planer C2v symmetric geometry may
be primarily responsible for the electronic signal after resonant excitation to the S2 state. With
a related set of calculations one could consider the addition of a resonant UV excitation pulse.
Such pulses are readily accessible through the use of a tripler [148] and in our laboratory some
polarization sensitive data with a UV pulse and two IR pulses has been taken.

Currently, we have only considered the case of homodyne OKE/UTPS measurements however
changing the simulation configuration to consider the response from elliptically polarized pulses,
or to change the orientation of the lab frame polarizer relative to the probe polarization axis. By
performing a pair of simulations and subtracting the resulting signals, we could directly simulate
the of out-of-phase and in-phase heterodyne OKE/UTPS signals. We can also consider modifying
the chirp parameters of these input pulses which could allow for the computation of polarization
sensitive spectroscopic measurements like chirped heterodyne OKE spectroscopy [149].

Lastly, we can also consider simply applying this software package to a different system. So
long as the transitions from ground to excited state, and from excited state to excited state are
appropriately parameterized, this software package is able to compute responses given appropri-
ate parameterization. Currently, we parameterized this model by referencing electronic structure
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calculations of nitrobenzene, however by preforming a similar set of calculations, we can use this
model to represent the optical response from a number of molecules including systems like water
or other benzene derivatives. For instance, one system that could prove interesting to explore could
be a simpler system like N2 or H2. As these systems have simpler nuclear dynamics such a system
could be convenient for testing extensions of this simulation method that incorporate nuclear dy-
namics. In principle larger systems or few-molecule systems systems, like hydration shells around
a charged ion, could also be treated with this n-level model approach but appropriately parameter-
izing the dipole transitions between excited states could be expensive using the methods discussed
in chapter 4.

5.2 Future Experimental Directions

Measurement of the Projected Density Matrix
For all intents and purposes, the projected density matrix contains a representation of a density
matrix and thus like a density matrix, such an object should be measurable. One approach to mea-
sure the density matrix of a molecule, as implemented using time resolved fluorescence [150] and
ultrafast electron diffraction experiments [151] is to use time resolved experimental measurements
of a probability distribution and it’s derivative to determine a Wigner distribution which has a one-
to-one mapping to the density matrix. Another approach to density matrix measurement is to con-
sider it as a phase retrieval problem, in which an iterative algorithmic approach is use to recover
the phase of the wavefunction given the constraints of a valid density matrix and time resolved
electron diffraction measurements [152]. Additionally, if one is interested in the density matrix of
light, these measurements have been made by making quadrature-amplitude measurements [153,
154] that allow for the determination of a Wigner distribution and thus the density matrix. More re-
cently, measurements of a rotationally resolved lab frame density matrix of NH3 has been made by
recovering coefficients of molecular angular distribution moments given resonant enhanced multi-
photon ionization measurements [155]. Given these prior density matrix measurements, it should
be possible to find an analogous projected density matrix measurement method.

One approach that can be considered would be by using a determined set of dipole matrix
elements with the assumption that there is only one preferred orientation that dominates a measured
signal. From equation 4.57 the measured polarization signal will be proportional to the following
expression.

⟨⟨⃗µmol |⃗ρpro j⟩⟩ave = ⟨⟨⃗µmol| ·
∫

s(Ω)⊗|ρ(Ω)⟩⟩dΩ ≈ ⟨⟨⃗µmol| · s̃⊗|ρapprox⟩⟩ (5.1)

Note that for any lab frame defined preferred measurement axis êpol the projected density
matrix can be written as

|⃗ρpro j⟩⟩ ≈ s̃⊗|ρapprox⟩⟩= êpol ·

R−1êmol
x |ρ⟩⟩

R−1êmol
y |ρ⟩⟩

R−1êmol
z |ρ⟩⟩

= êpol · |⃗ρprepro j⟩⟩ (5.2)
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with the term |⃗ρprepro j⟩⟩ being independent of any given lab frame preferred measurement
axis. Since, this term represents the projected density matrix, prior to the polarization signal being
projected onto the preferred measurement axis, we call this factor the pre-projected density matrix.

In principle, if we consider every term in the pre-projected density matrix density matrix to be
independent of every other term, this implies that there would be up to 9n(n+1)/2 pre-projected
density matrix elements that would need to be determined given that n states play a role in the
generation of the signal. Thus given 9n(n+ 1)/2 separate polarization sensitive measurements,
and accurate determinations of the appropriate µx, µy, and µz mediated transitions, one could po-
tentially reconstruct an approximate rotationally averaged projected density matrix by performing
a least squares fit of the pre-projected density matrix. Note that since this pre-projected density
matrix also contains the density matrix, the transitions that resulted in that density matrix are also
encoded in the pre-projected density matrix. Thus, any sufficiently angle resolved polarization
measurement method should be able to recover the projected density matrix.

There are some limitations with this approach however, depending on the recovered orientation,
and the symmetry of the transitions, there may be multiple mathematically valid reconstructions
of the pre-projected density matrix. Additionally, over a 90◦ arc, a 4 state system could require a
resolution of 1◦ or better in order to be determined. Thus, depending on the number of states in-
volved in the dynamics of interest, the required angular resolution of the polarization could make a
measurement infeasible. Additionally, since this approach assumes that there is only one dominant
orientation of a molecular system, this approach would not be expected to be effective for systems
with high degrees of molecular symmetry or for systems that rotate or align during the dynami-
cal process that produces the signal of interest. However, more work is needed to determine the
specific constraints of such a measurement.

Extension of UTPS to XUV Energy Regimes
The development of ultrafast table top coherent XUV and x-ray sources [156] as well as intense
coherent x-ray pulses at free electron lasers [157] has enabled the development of attosecond sci-
ence [158] which has given researchers access to core shell dynamics as well a direct probe of
charge transfer and charge migration processes in molecular systems. In the future, these sources
are even expected to be provide enough sensitivity to see nonlinear spectroscopic effects in a vari-
ety of targets [159, 160, 161, 162]. The continued development of x-ray polarization optics [163,
164], as well as increased control of polarization state of these x-ray sources [165, 166], suggests
several avenues of future research to extend UTPS into the XUV and x-ray regime. Here we dis-
cuss some of these future possibilities and some of the experimental challenges in realizing such
an experiment.

One such natural extension of the UTPS experimental scheme is to consider the case of an
XUV or x-ray pump pulse, and probing with a pair of optical pulses. This scheme presents itself
with several natural advantages. First, depending on the excited state of interest, many of the near
ionization threshold states and excited ionic states that can be generated from these pumping wave-
lengths, can be quite long lived. For instance, in N2, time resolved studies of the near ionization
states [167] measured lifetimes on the order of hundreds of picoseconds to nanoseconds. Related
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studies of excited ionic states of N2 [168] have measured excited state lifetimes on the order of tens
of nanoseconds. These relatively long excited states relative to the pulse duration of available fem-
tosecond/attosecond light sources suggest that the excitation process can be considered separately
from the probing process and that the assumptions required to apply the UTPS formalism would
be applicable for such states. Second, using a pair of optical probing pulses allows one to tap into
existing high quality off-the-shelf polarization optics including the ultra-high contrast polarizers
used in our first demonstration of the UTPS technique [61]. Such an experimental scheme would
be particularly applicable in a tabletop XUV/soft x-ray source where leakage from the IR pulse
that generated the XUV light through high harmonic generation [169], can be split and delayed
separately from the generated XUV pulse to act as a coherent pair of probing pulses. With that
said, there are proposals to integrate separate optical probes into free electron laser facilities [170,
171] which once implemented, could enable the application of UTPS as applied to states only
accessible through these light sources.

Another approach that can be considered is the case of optical pump and XUV/x-ray probe.
Because of the increased time resolution as well as the frequencies of the probing pulses, such
an experimental scheme could be sensitive to a number of optically driven dynamics that would
not be accessible through an optical probe scheme. One such example would be a direct probe of
charge transfer dynamics in the proteins involved in photosynthesis such as Photosystems I and II.
Previous studies of such dynamics in Photosystem II [172] used 2D electronic spectra to measure
decay rates of <200 fs and 1̃.5 ps which the authors associated with two separate electronic decay
pathways. Additionally, recent results of Photosystem II from experiments at free electron lasers
[173] have shown that there are two distinct protein confirmations in photosystem II. In principle,
monitoring nonlinear x-ray spectra as a function of time delay of the optical excitation pulse could
allow for the direct monitoring of these charge transfer dynamics.

However such a measurement scheme also presents itself with a number of technical chal-
lenges. One major limitation is the lack of many established nonlinear spectroscopic signals with
x-ray free electron laser light sources. That being said, nonlinear x-ray interactions have been
observed at x-ray free electron lasers with recent results [174] even demonstrating electronic state
population transfer through an impulsive stimulated x-ray Raman scattering process. With that
said, nonlinear x-ray spectroscopy methods like 2D coherent x-ray spectroscopy [162] and tran-
sient redistribution of ultrafast electronic coherences in attosecond Raman signals [159] have been
proposed as methods that can elucidate some of these signals, but are still under development at
this time.
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Appendix A

Computed Dipole and Energy Level
Transitions of Nitrobenzene

A.1 Nitrobenzene In C2v Symmetric Ground State Geometry

Table A.1: Calculated singlet energy levels of nitrobenzene in planer ground state C2v symmetric
geometry as calculated though 1st and 2nd order response theory calculations as implemented in
the Dalton quantum chemistry software package.

State Symmetry Energy (eV)
S0 A1 0.0
S1 A1 4.078125376
S2 A2 4.402586832
S3 B1 4.54990312
S4 B1 4.694980032
S5 B2 4.766720847999999
S6 B1 5.028521392
S7 B1 5.29077808
S8 A1 5.308655279999999
S9 A1 6.5275656159999995
S10 A1 7.454652319999999
S11 B1 7.475949920000001
S12 B1 7.535815759999999
S13 A1 7.615821567999999
S14 A1 7.79218936
S15 A2 7.7949273119999996
S16 B2 7.914057872
S17 B1 8.037114208
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State Symmetry Energy (eV)
S18 B1 8.043606303999999
S19 B1 8.122820864
S20 B2 8.367476432
S21 B1 8.546321872
S22 A1 8.580052319999998
S23 A2 8.62920544
S24 B2 8.708331328
S25 A2 8.88608768
S26 A1 8.894325744
S27 A2 8.970613584
S28 A1 9.152767359999999
S29 B1 9.157682672
S30 B2 9.230290624
S31 A1 9.291999808
S32 A2 9.306558063999999
S33 B2 9.448690304
S34 B2 9.5963096
S35 A2 9.597904336
S36 B2 9.716337216
S37 A2 9.834712976
S38 B2 9.866701264
S39 A1 9.978627904
S40 A2 10.037657344
S41 A2 10.166617984
S42 A2 10.412013936000001
S43 B2 10.615077984
S44 B2 10.681055936

Table A.2: Singlet to Singlet dipole transitions of nitrobenzene from in planer ground state C2v
symmetric geometry as calculated though 1st and 2nd order response theory calculations as im-
plemented in the Dalton quantum chemistry software package. Here Sinit and Sfinal are used to
represent the initial and final states of a dipole mediated transition, and µx, µy, µz represent the
strength of the dipole transition in atomic units.

Sinit Sfinal µx µy µz

S0 S0 0.0 0.0 -1.65568481
S0 S1 0.0 0.0 8.79e-14
S0 S2 0.0 0.0 0.0
S0 S3 -0.056396416 0.0 0.0
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Sinit Sfinal µx µy µz

S0 S4 -2.31e-14 0.0 0.0
S0 S5 0.0 -0.05474994 0.0
S0 S6 1.0340975 0.0 0.0
S0 S7 2.24e-13 0.0 0.0
S0 S8 0.0 0.0 1.59e-13
S0 S9 0.0 0.0 -1.1507304
S0 S10 0.0 0.0 -1.08e-13
S0 S11 -3.31e-13 0.0 0.0
S0 S12 -1.4312231 0.0 0.0
S0 S13 0.0 0.0 -1.6951899
S0 S14 0.0 0.0 0.3543636
S0 S15 0.0 0.0 0.0
S0 S16 0.0 0.33398909 0.0
S0 S17 -5.56e-13 0.0 0.0
S0 S18 0.26802037 0.0 0.0
S0 S19 1.0014635 0.0 0.0
S0 S20 0.0 -0.40811402 0.0
S0 S21 -1.36e-14 0.0 0.0
S0 S22 0.0 0.0 0.42989645
S0 S23 0.0 0.0 0.0
S0 S24 0.0 0.11297427 0.0
S0 S25 0.0 0.0 0.0
S0 S26 0.0 0.0 0.35816647
S0 S27 0.0 0.0 0.0
S0 S28 0.0 0.0 9.11e-06
S0 S29 0.12135457 0.0 0.0
S0 S30 0.0 -0.12430957 0.0
S0 S31 0.0 0.0 0.1551809
S0 S32 0.0 0.0 0.0
S0 S33 0.0 0.089432572 0.0
S0 S34 0.0 0.14071966 0.0
S0 S35 0.0 0.0 0.0
S0 S36 0.0 -0.15787347 0.0
S0 S37 0.0 0.0 0.0
S0 S38 0.0 -0.099872701 0.0
S0 S39 0.0 0.0 -0.014518617
S0 S40 0.0 0.0 0.0
S0 S41 0.0 0.0 0.0
S0 S42 0.0 0.0 0.0
S0 S43 0.0 0.48888005 0.0
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Sinit Sfinal µx µy µz

S0 S44 0.0 0.6128152 0.0
S1 S0 0.0 0.0 8.79e-14
S1 S1 0.0 0.0 -1.66438708
S1 S2 0.0 0.0 0.0
S1 S3 6.06e-05 0.0 0.0
S1 S4 -0.20545412 0.0 0.0
S1 S5 0.0 -1e-08 0.0
S1 S6 -0.00044792 0.0 0.0
S1 S7 0.16000613 0.0 0.0
S1 S8 0.0 0.0 0.10028309
S1 S9 0.0 0.0 -7e-08
S1 S10 0.0 0.0 0.09722287
S1 S11 -0.06732052 0.0 0.0
S1 S12 -9.54e-05 0.0 0.0
S1 S13 0.0 0.0 4e-08
S1 S14 0.0 0.0 -1e-07
S1 S15 0.0 0.0 0.0
S1 S16 0.0 0.0 0.0
S1 S17 0.02173414 0.0 0.0
S1 S18 0.00021788 0.0 0.0
S1 S19 -1.05e-06 0.0 0.0
S1 S20 0.0 1e-08 0.0
S1 S21 -1.07684047 0.0 0.0
S1 S22 0.0 0.0 -1.2e-07
S1 S23 0.0 0.0 0.0
S1 S24 0.0 -4e-08 0.0
S1 S25 0.0 0.0 0.0
S1 S26 0.0 0.0 1.13e-06
S1 S27 0.0 0.0 0.0
S1 S28 0.0 0.0 0.0
S1 S29 0.00045583 0.0 0.0
S1 S30 0.0 0.0 0.0
S1 S31 0.0 0.0 -9.7e-07
S1 S32 0.0 0.0 0.0
S1 S33 0.0 2e-08 0.0
S1 S34 0.0 0.0 0.0
S1 S35 0.0 0.0 0.0
S1 S36 0.0 -4e-08 0.0
S1 S37 0.0 0.0 0.0
S1 S38 0.0 5e-08 0.0
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Sinit Sfinal µx µy µz

S1 S39 0.0 0.0 1.8e-07
S1 S40 0.0 0.0 0.0
S1 S41 0.0 0.0 0.0
S1 S42 0.0 0.0 0.0
S1 S43 0.0 -2e-08 0.0
S1 S44 0.0 -1.1e-07 0.0
S2 S0 0.0 0.0 0.0
S2 S1 0.0 0.0 0.0
S2 S2 0.0 0.0 -2.2806388
S2 S3 0.0 0.00075088 0.0
S2 S4 0.0 8e-08 0.0
S2 S5 1.15884729 0.0 0.0
S2 S6 0.0 -0.02334204 0.0
S2 S7 0.0 -1e-08 0.0
S2 S8 0.0 0.0 0.0
S2 S9 0.0 0.0 0.0
S2 S10 0.0 0.0 0.0
S2 S11 0.0 3e-08 0.0
S2 S12 0.0 -0.01048305 0.0
S2 S13 0.0 0.0 0.0
S2 S14 0.0 0.0 0.0
S2 S15 0.0 0.0 0.00341002
S2 S16 0.0032621 0.0 0.0
S2 S17 0.0 0.0 0.0
S2 S18 0.0 0.00111904 0.0
S2 S19 0.0 0.00435573 0.0
S2 S20 -0.0041803 0.0 0.0
S2 S21 0.0 -1.8e-07 0.0
S2 S22 0.0 0.0 0.0
S2 S23 0.0 0.0 -0.00641344
S2 S24 -0.00112696 0.0 0.0
S2 S25 0.0 0.0 0.00326279
S2 S26 0.0 0.0 0.0
S2 S27 0.0 0.0 -0.00563205
S2 S28 0.0 0.0 0.0
S2 S29 0.0 0.00788064 0.0
S2 S30 0.2102812 0.0 0.0
S2 S31 0.0 0.0 0.0
S2 S32 0.0 0.0 -0.10914128
S2 S33 -3.63905489 0.0 0.0
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Sinit Sfinal µx µy µz

S2 S34 -0.75972659 0.0 0.0
S2 S35 0.0 0.0 -0.00223599
S2 S36 -0.34139901 0.0 0.0
S2 S37 0.0 0.0 0.0163813
S2 S38 0.18134976 0.0 0.0
S2 S39 0.0 0.0 0.0
S2 S40 0.0 0.0 0.12977326
S2 S41 0.0 0.0 -0.45434527
S2 S42 0.0 0.0 -0.27125127
S2 S43 0.00453275 0.0 0.0
S2 S44 -0.03161371 0.0 0.0
S3 S0 -0.056396416 0.0 0.0
S3 S1 6.06e-05 0.0 0.0
S3 S2 0.0 0.00075088 0.0
S3 S3 0.0 0.0 -1.505958
S3 S4 0.0 0.0 1.2e-07
S3 S5 0.0 0.0 0.0
S3 S6 0.0 0.0 -0.14913614
S3 S7 0.0 0.0 5.4e-07
S3 S8 -2.45e-05 0.0 0.0
S3 S9 -0.07859916 0.0 0.0
S3 S10 1.07e-05 0.0 0.0
S3 S11 0.0 0.0 8.5e-07
S3 S12 0.0 0.0 0.52041003
S3 S13 -0.00728764 0.0 0.0
S3 S14 -0.11844719 0.0 0.0
S3 S15 0.0 -0.109404 0.0
S3 S16 0.0 0.0 0.0
S3 S17 0.0 0.0 1.42e-06
S3 S18 0.0 0.0 0.17104704
S3 S19 0.0 0.0 -0.200965
S3 S20 0.0 0.0 0.0
S3 S21 0.0 0.0 -9.9e-07
S3 S22 0.82506097 0.0 0.0
S3 S23 0.0 0.22850685 0.0
S3 S24 0.0 0.0 0.0
S3 S25 0.0 -0.08125627 0.0
S3 S26 0.40269755 0.0 0.0
S3 S27 0.0 0.13465421 0.0
S3 S28 -0.00101797 0.0 0.0
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Sinit Sfinal µx µy µz

S3 S29 0.0 0.0 -0.09795714
S3 S30 0.0 0.0 0.0
S3 S31 0.069526 0.0 0.0
S3 S32 0.0 -0.27046693 0.0
S3 S33 0.0 0.0 0.0
S3 S34 0.0 0.0 0.0
S3 S35 0.0 0.21976406 0.0
S3 S36 0.0 0.0 0.0
S3 S37 0.0 0.01408031 0.0
S3 S38 0.0 0.0 0.0
S3 S39 0.36096969 0.0 0.0
S3 S40 0.0 0.00687869 0.0
S3 S41 0.0 -0.00328068 0.0
S3 S42 0.0 -0.06112969 0.0
S3 S43 0.0 0.0 0.0
S3 S44 0.0 0.0 0.0
S4 S0 -2.31e-14 0.0 0.0
S4 S1 -0.20545412 0.0 0.0
S4 S2 0.0 8e-08 0.0
S4 S3 0.0 0.0 1.2e-07
S4 S4 0.0 0.0 -2.86744137
S4 S5 0.0 0.0 0.0
S4 S6 0.0 0.0 -2.2e-07
S4 S7 0.0 0.0 0.14835982
S4 S8 -0.19282368 0.0 0.0
S4 S9 0.00018906 0.0 0.0
S4 S10 0.46023443 0.0 0.0
S4 S11 0.0 0.0 0.08766735
S4 S12 0.0 0.0 1.9e-07
S4 S13 -0.00011341 0.0 0.0
S4 S14 -2.88e-05 0.0 0.0
S4 S15 0.0 -1e-08 0.0
S4 S16 0.0 0.0 0.0
S4 S17 0.0 0.0 -0.08532609
S4 S18 0.0 0.0 -8e-07
S4 S19 0.0 0.0 -3.4e-07
S4 S20 0.0 0.0 0.0
S4 S21 0.0 0.0 -0.03341141
S4 S22 -7.15e-05 0.0 0.0
S4 S23 0.0 1e-08 0.0
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Sinit Sfinal µx µy µz

S4 S24 0.0 0.0 0.0
S4 S25 0.0 0.0 0.0
S4 S26 0.00026817 0.0 0.0
S4 S27 0.0 0.0 0.0
S4 S28 2e-08 0.0 0.0
S4 S29 0.0 0.0 0.0
S4 S30 0.0 0.0 0.0
S4 S31 -0.00037081 0.0 0.0
S4 S32 0.0 -1.3e-07 0.0
S4 S33 0.0 0.0 0.0
S4 S34 0.0 0.0 0.0
S4 S35 0.0 1e-08 0.0
S4 S36 0.0 0.0 0.0
S4 S37 0.0 2e-08 0.0
S4 S38 0.0 0.0 0.0
S4 S39 -0.00030318 0.0 0.0
S4 S40 0.0 -3e-08 0.0
S4 S41 0.0 1.1e-07 0.0
S4 S42 0.0 -8e-08 0.0
S4 S43 0.0 0.0 0.0
S4 S44 0.0 0.0 0.0
S5 S0 0.0 -0.05474994 0.0
S5 S1 0.0 -1e-08 0.0
S5 S2 1.15884729 0.0 0.0
S5 S3 0.0 0.0 0.0
S5 S4 0.0 0.0 0.0
S5 S5 0.0 0.0 -2.22515025
S5 S6 0.0 0.0 0.0
S5 S7 0.0 0.0 0.0
S5 S8 0.0 1e-08 0.0
S5 S9 0.0 -0.00230065 0.0
S5 S10 0.0 -8e-08 0.0
S5 S11 0.0 0.0 0.0
S5 S12 0.0 0.0 0.0
S5 S13 0.0 -0.00138134 0.0
S5 S14 0.0 0.00522468 0.0
S5 S15 -0.00673943 0.0 0.0
S5 S16 0.0 0.0 0.00498287
S5 S17 0.0 0.0 0.0
S5 S18 0.0 0.0 0.0
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Sinit Sfinal µx µy µz

S5 S19 0.0 0.0 0.0
S5 S20 0.0 0.0 0.00313974
S5 S21 0.0 0.0 0.0
S5 S22 0.0 0.00446851 0.0
S5 S23 -0.00310139 0.0 0.0
S5 S24 0.0 0.0 -0.00732068
S5 S25 0.00101141 0.0 0.0
S5 S26 0.0 -0.00259816 0.0
S5 S27 0.02133952 0.0 0.0
S5 S28 0.0 -1.53e-05 0.0
S5 S29 0.0 0.0 0.0
S5 S30 0.0 0.0 -0.02782557
S5 S31 0.0 -0.01245941 0.0
S5 S32 0.02560625 0.0 0.0
S5 S33 0.0 0.0 0.00728102
S5 S34 0.0 0.0 -0.08067379
S5 S35 -0.00640241 0.0 0.0
S5 S36 0.0 0.0 -0.06249239
S5 S37 -0.29662635 0.0 0.0
S5 S38 0.0 0.0 0.06806973
S5 S39 0.0 -0.00073808 0.0
S5 S40 -0.5216897 0.0 0.0
S5 S41 0.11998352 0.0 0.0
S5 S42 0.01663566 0.0 0.0
S5 S43 0.0 0.0 0.01683917
S5 S44 0.0 0.0 -0.36756218
S6 S0 1.0340975 0.0 0.0
S6 S1 -0.00044792 0.0 0.0
S6 S2 0.0 -0.02334204 0.0
S6 S3 0.0 0.0 -0.14913614
S6 S4 0.0 0.0 -2.2e-07
S6 S5 0.0 0.0 0.0
S6 S6 0.0 0.0 -0.98594977
S6 S7 0.0 0.0 -1.1e-07
S6 S8 -0.00013785 0.0 0.0
S6 S9 0.98060848 0.0 0.0
S6 S10 -9.72e-05 0.0 0.0
S6 S11 0.0 0.0 -1.45e-06
S6 S12 0.0 0.0 0.04214257
S6 S13 -0.73603536 0.0 0.0
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Sinit Sfinal µx µy µz

S6 S14 -0.3327061 0.0 0.0
S6 S15 0.0 0.04459811 0.0
S6 S16 0.0 0.0 0.0
S6 S17 0.0 0.0 -5.71e-06
S6 S18 0.0 0.0 -0.78432778
S6 S19 0.0 0.0 -0.09765134
S6 S20 0.0 0.0 0.0
S6 S21 0.0 0.0 -7.92e-06
S6 S22 -0.95001385 0.0 0.0
S6 S23 0.0 -0.03502104 0.0
S6 S24 0.0 0.0 0.0
S6 S25 0.0 0.03215045 0.0
S6 S26 2.67227019 0.0 0.0
S6 S27 0.0 0.00838117 0.0
S6 S28 0.00417707 0.0 0.0
S6 S29 0.0 0.0 0.03100295
S6 S30 0.0 0.0 0.0
S6 S31 -1.3971058 0.0 0.0
S6 S32 0.0 0.04787316 0.0
S6 S33 0.0 0.0 0.0
S6 S34 0.0 0.0 0.0
S6 S35 0.0 0.11869513 0.0
S6 S36 0.0 0.0 0.0
S6 S37 0.0 -0.05298093 0.0
S6 S38 0.0 0.0 0.0
S6 S39 5.71798923 0.0 0.0
S6 S40 0.0 -0.0406418 0.0
S6 S41 0.0 0.08012559 0.0
S6 S42 0.0 0.46330796 0.0
S6 S43 0.0 0.0 0.0
S6 S44 0.0 0.0 0.0
S7 S0 2.24e-13 0.0 0.0
S7 S1 0.16000613 0.0 0.0
S7 S2 0.0 -1e-08 0.0
S7 S3 0.0 0.0 5.4e-07
S7 S4 0.0 0.0 0.14835982
S7 S5 0.0 0.0 0.0
S7 S6 0.0 0.0 -1.1e-07
S7 S7 0.0 0.0 -1.55004782
S7 S8 0.01338481 0.0 0.0
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Sinit Sfinal µx µy µz

S7 S9 -4.7e-05 0.0 0.0
S7 S10 0.21866795 0.0 0.0
S7 S11 0.0 0.0 0.11116286
S7 S12 0.0 0.0 1.9e-07
S7 S13 1.26e-05 0.0 0.0
S7 S14 4.73e-06 0.0 0.0
S7 S15 0.0 1e-08 0.0
S7 S16 0.0 0.0 0.0
S7 S17 0.0 0.0 -0.44296353
S7 S18 0.0 0.0 2e-08
S7 S19 0.0 0.0 -1e-08
S7 S20 0.0 0.0 0.0
S7 S21 0.0 0.0 -0.0428357
S7 S22 6.31e-05 0.0 0.0
S7 S23 0.0 -1e-08 0.0
S7 S24 0.0 0.0 0.0
S7 S25 0.0 0.0 0.0
S7 S26 -9.18e-05 0.0 0.0
S7 S27 0.0 -1e-08 0.0
S7 S28 -4e-08 0.0 0.0
S7 S29 0.0 0.0 4.2e-07
S7 S30 0.0 0.0 0.0
S7 S31 2.01e-05 0.0 0.0
S7 S32 0.0 1e-08 0.0
S7 S33 0.0 0.0 0.0
S7 S34 0.0 0.0 0.0
S7 S35 0.0 0.0 0.0
S7 S36 0.0 0.0 0.0
S7 S37 0.0 -1e-08 0.0
S7 S38 0.0 0.0 0.0
S7 S39 2.74e-05 0.0 0.0
S7 S40 0.0 -2.8e-07 0.0
S7 S41 0.0 -1e-08 0.0
S7 S42 0.0 3e-08 0.0
S7 S43 0.0 0.0 0.0
S7 S44 0.0 0.0 0.0
S8 S0 0.0 0.0 1.59e-13
S8 S1 0.0 0.0 0.10028309
S8 S2 0.0 0.0 0.0
S8 S3 -2.45e-05 0.0 0.0
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Sinit Sfinal µx µy µz

S8 S4 -0.19282368 0.0 0.0
S8 S5 0.0 1e-08 0.0
S8 S6 -0.00013785 0.0 0.0
S8 S7 0.01338481 0.0 0.0
S8 S8 0.0 0.0 -1.55867957
S8 S9 0.0 0.0 -1e-07
S8 S10 0.0 0.0 0.17095642
S8 S11 0.08339075 0.0 0.0
S8 S12 -5.15e-06 0.0 0.0
S8 S13 0.0 0.0 1.5e-07
S8 S14 0.0 0.0 -1.9e-07
S8 S15 0.0 0.0 0.0
S8 S16 0.0 -1e-08 0.0
S8 S17 0.04947754 0.0 0.0
S8 S18 1.04e-05 0.0 0.0
S8 S19 1.26e-05 0.0 0.0
S8 S20 0.0 -1e-08 0.0
S8 S21 -0.40688586 0.0 0.0
S8 S22 0.0 0.0 6.1e-07
S8 S23 0.0 0.0 0.0
S8 S24 0.0 0.0 0.0
S8 S25 0.0 0.0 0.0
S8 S26 0.0 0.0 -1.18e-06
S8 S27 0.0 0.0 0.0
S8 S28 0.0 0.0 0.0
S8 S29 1.47e-05 0.0 0.0
S8 S30 0.0 -2e-08 0.0
S8 S31 0.0 0.0 3.7e-07
S8 S32 0.0 0.0 0.0
S8 S33 0.0 0.0 0.0
S8 S34 0.0 -2e-08 0.0
S8 S35 0.0 0.0 0.0
S8 S36 0.0 0.0 0.0
S8 S37 0.0 0.0 0.0
S8 S38 0.0 -5e-08 0.0
S8 S39 0.0 0.0 -4.6e-07
S8 S40 0.0 0.0 0.0
S8 S41 0.0 0.0 0.0
S8 S42 0.0 0.0 0.0
S8 S43 0.0 1e-08 0.0



APPENDIX A. COMPUTED DIPOLE AND ENERGY LEVEL TRANSITIONS OF
NITROBENZENE 117

Sinit Sfinal µx µy µz

S8 S44 0.0 -4e-08 0.0
S9 S0 0.0 0.0 -1.1507304
S9 S1 0.0 0.0 -7e-08
S9 S2 0.0 0.0 0.0
S9 S3 -0.07859916 0.0 0.0
S9 S4 0.00018906 0.0 0.0
S9 S5 0.0 -0.00230065 0.0
S9 S6 0.98060848 0.0 0.0
S9 S7 -4.7e-05 0.0 0.0
S9 S8 0.0 0.0 -1e-07
S9 S9 0.0 0.0 -0.47978844
S9 S10 0.0 0.0 -9.5e-07
S9 S11 1.25e-06 0.0 0.0
S9 S12 -0.04598203 0.0 0.0
S9 S13 0.0 0.0 -0.55569674
S9 S14 0.0 0.0 0.4968288
S9 S15 0.0 0.0 0.0
S9 S16 0.0 -0.07359199 0.0
S9 S17 -6.49e-05 0.0 0.0
S9 S18 -0.12210857 0.0 0.0
S9 S19 -0.09315332 0.0 0.0
S9 S20 0.0 -0.09963052 0.0
S9 S21 -4.23e-05 0.0 0.0
S9 S22 0.0 0.0 -0.04440032
S9 S23 0.0 0.0 0.0
S9 S24 0.0 0.37540006 0.0
S9 S25 0.0 0.0 0.0
S9 S26 0.0 0.0 0.741929
S9 S27 0.0 0.0 0.0
S9 S28 0.0 0.0 -0.00035467
S9 S29 0.03515388 0.0 0.0
S9 S30 0.0 -0.22430954 0.0
S9 S31 0.0 0.0 0.1766759
S9 S32 0.0 0.0 0.0
S9 S33 0.0 -0.02699422 0.0
S9 S34 0.0 0.05094284 0.0
S9 S35 0.0 0.0 0.0
S9 S36 0.0 0.09332107 0.0
S9 S37 0.0 0.0 0.0
S9 S38 0.0 0.10241905 0.0
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Sinit Sfinal µx µy µz

S9 S39 0.0 0.0 -0.0233868
S9 S40 0.0 0.0 0.0
S9 S41 0.0 0.0 0.0
S9 S42 0.0 0.0 0.0
S9 S43 0.0 0.11717236 0.0
S9 S44 0.0 0.07798317 0.0
S10 S0 0.0 0.0 -1.08e-13
S10 S1 0.0 0.0 0.09722287
S10 S2 0.0 0.0 0.0
S10 S3 1.07e-05 0.0 0.0
S10 S4 0.46023443 0.0 0.0
S10 S5 0.0 -8e-08 0.0
S10 S6 -9.72e-05 0.0 0.0
S10 S7 0.21866795 0.0 0.0
S10 S8 0.0 0.0 0.17095642
S10 S9 0.0 0.0 -9.5e-07
S10 S10 0.0 0.0 -1.55053621
S10 S11 0.13936823 0.0 0.0
S10 S12 2.78e-05 0.0 0.0
S10 S13 0.0 0.0 -6e-08
S10 S14 0.0 0.0 7.6e-07
S10 S15 0.0 0.0 0.0
S10 S16 0.0 0.0 0.0
S10 S17 -0.4903393 0.0 0.0
S10 S18 2.41e-05 0.0 0.0
S10 S19 -9.72e-06 0.0 0.0
S10 S20 0.0 0.0 0.0
S10 S21 0.20367732 0.0 0.0
S10 S22 0.0 0.0 -2.3e-07
S10 S23 0.0 0.0 0.0
S10 S24 0.0 1e-08 0.0
S10 S25 0.0 0.0 0.0
S10 S26 0.0 0.0 1.8e-07
S10 S27 0.0 0.0 0.0
S10 S28 0.0 0.0 0.0
S10 S29 -5.72e-06 0.0 0.0
S10 S30 0.0 0.0 0.0
S10 S31 0.0 0.0 -2.8e-07
S10 S32 0.0 0.0 0.0
S10 S33 0.0 1e-08 0.0
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Sinit Sfinal µx µy µz

S10 S34 0.0 1e-08 0.0
S10 S35 0.0 0.0 0.0
S10 S36 0.0 3e-08 0.0
S10 S37 0.0 0.0 0.0
S10 S38 0.0 1e-08 0.0
S10 S39 0.0 0.0 -4e-07
S10 S40 0.0 0.0 0.0
S10 S41 0.0 0.0 0.0
S10 S42 0.0 0.0 0.0
S10 S43 0.0 0.0 0.0
S10 S44 0.0 2e-08 0.0
S11 S0 -3.31e-13 0.0 0.0
S11 S1 -0.06732052 0.0 0.0
S11 S2 0.0 3e-08 0.0
S11 S3 0.0 0.0 8.5e-07
S11 S4 0.0 0.0 0.08766735
S11 S5 0.0 0.0 0.0
S11 S6 0.0 0.0 -1.45e-06
S11 S7 0.0 0.0 0.11116286
S11 S8 0.08339075 0.0 0.0
S11 S9 1.25e-06 0.0 0.0
S11 S10 0.13936823 0.0 0.0
S11 S11 0.0 0.0 -1.04445506
S11 S12 0.0 0.0 -1.9e-07
S11 S13 -1.81e-05 0.0 0.0
S11 S14 -3.5e-07 0.0 0.0
S11 S15 0.0 2e-08 0.0
S11 S16 0.0 0.0 0.0
S11 S17 0.0 0.0 -0.66163373
S11 S18 0.0 0.0 1.1e-07
S11 S19 0.0 0.0 -1.6e-07
S11 S20 0.0 0.0 0.0
S11 S21 0.0 0.0 0.05005918
S11 S22 -2.31e-05 0.0 0.0
S11 S23 0.0 -1e-08 0.0
S11 S24 0.0 0.0 0.0
S11 S25 0.0 1e-08 0.0
S11 S26 4.58e-05 0.0 0.0
S11 S27 0.0 -1e-08 0.0
S11 S28 0.0 0.0 0.0
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Sinit Sfinal µx µy µz

S11 S29 0.0 0.0 -4e-08
S11 S30 0.0 0.0 0.0
S11 S31 -4.05e-05 0.0 0.0
S11 S32 0.0 -1e-08 0.0
S11 S33 0.0 0.0 0.0
S11 S34 0.0 0.0 0.0
S11 S35 0.0 0.0 0.0
S11 S36 0.0 0.0 0.0
S11 S37 0.0 -3e-08 0.0
S11 S38 0.0 0.0 0.0
S11 S39 -8.05e-06 0.0 0.0
S11 S40 0.0 1e-08 0.0
S11 S41 0.0 -4e-08 0.0
S11 S42 0.0 0.0 0.0
S11 S43 0.0 0.0 0.0
S11 S44 0.0 0.0 0.0
S12 S0 -1.4312231 0.0 0.0
S12 S1 -9.54e-05 0.0 0.0
S12 S2 0.0 -0.01048305 0.0
S12 S3 0.0 0.0 0.52041003
S12 S4 0.0 0.0 1.9e-07
S12 S5 0.0 0.0 0.0
S12 S6 0.0 0.0 0.04214257
S12 S7 0.0 0.0 1.9e-07
S12 S8 -5.15e-06 0.0 0.0
S12 S9 -0.04598203 0.0 0.0
S12 S10 2.78e-05 0.0 0.0
S12 S11 0.0 0.0 -1.9e-07
S12 S12 0.0 0.0 -0.62575167
S12 S13 -0.32874555 0.0 0.0
S12 S14 -0.40957006 0.0 0.0
S12 S15 0.0 -0.51231349 0.0
S12 S16 0.0 0.0 0.0
S12 S17 0.0 0.0 -5.9e-07
S12 S18 0.0 0.0 0.11250891
S12 S19 0.0 0.0 0.10899779
S12 S20 0.0 0.0 0.0
S12 S21 0.0 0.0 -4.8e-07
S12 S22 0.0701525 0.0 0.0
S12 S23 0.0 0.23606345 0.0
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Sinit Sfinal µx µy µz

S12 S24 0.0 0.0 0.0
S12 S25 0.0 -0.35096681 0.0
S12 S26 -0.0025709 0.0 0.0
S12 S27 0.0 -0.0977081 0.0
S12 S28 0.00016949 0.0 0.0
S12 S29 0.0 0.0 -0.17949751
S12 S30 0.0 0.0 0.0
S12 S31 0.18070589 0.0 0.0
S12 S32 0.0 0.02381181 0.0
S12 S33 0.0 0.0 0.0
S12 S34 0.0 0.0 0.0
S12 S35 0.0 -0.2782631 0.0
S12 S36 0.0 0.0 0.0
S12 S37 0.0 -0.02977205 0.0
S12 S38 0.0 0.0 0.0
S12 S39 0.83403812 0.0 0.0
S12 S40 0.0 -0.02463636 0.0
S12 S41 0.0 -0.01920126 0.0
S12 S42 0.0 0.05821775 0.0
S12 S43 0.0 0.0 0.0
S12 S44 0.0 0.0 0.0
S13 S0 0.0 0.0 -1.6951899
S13 S1 0.0 0.0 4e-08
S13 S2 0.0 0.0 0.0
S13 S3 -0.00728764 0.0 0.0
S13 S4 -0.00011341 0.0 0.0
S13 S5 0.0 -0.00138134 0.0
S13 S6 -0.73603536 0.0 0.0
S13 S7 1.26e-05 0.0 0.0
S13 S8 0.0 0.0 1.5e-07
S13 S9 0.0 0.0 -0.55569674
S13 S10 0.0 0.0 -6e-08
S13 S11 -1.81e-05 0.0 0.0
S13 S12 -0.32874555 0.0 0.0
S13 S13 0.0 0.0 -1.40398691
S13 S14 0.0 0.0 -0.05128066
S13 S15 0.0 0.0 0.0
S13 S16 0.0 -0.19453049 0.0
S13 S17 8.44e-05 0.0 0.0
S13 S18 -0.02171607 0.0 0.0
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Sinit Sfinal µx µy µz

S13 S19 -0.37607242 0.0 0.0
S13 S20 0.0 0.16202334 0.0
S13 S21 3.95e-05 0.0 0.0
S13 S22 0.0 0.0 0.19598621
S13 S23 0.0 0.0 0.0
S13 S24 0.0 -0.04163952 0.0
S13 S25 0.0 0.0 0.0
S13 S26 0.0 0.0 -0.21378941
S13 S27 0.0 0.0 0.0
S13 S28 0.0 0.0 -0.00035587
S13 S29 0.17701141 0.0 0.0
S13 S30 0.0 -0.1759825 0.0
S13 S31 0.0 0.0 -0.16453133
S13 S32 0.0 0.0 0.0
S13 S33 0.0 -0.4014728 0.0
S13 S34 0.0 0.0133298 0.0
S13 S35 0.0 0.0 0.0
S13 S36 0.0 -0.0966466 0.0
S13 S37 0.0 0.0 0.0
S13 S38 0.0 -0.19623435 0.0
S13 S39 0.0 0.0 -0.81683341
S13 S40 0.0 0.0 0.0
S13 S41 0.0 0.0 0.0
S13 S42 0.0 0.0 0.0
S13 S43 0.0 -0.12668579 0.0
S13 S44 0.0 -0.03527538 0.0
S14 S0 0.0 0.0 0.3543636
S14 S1 0.0 0.0 -1e-07
S14 S2 0.0 0.0 0.0
S14 S3 -0.11844719 0.0 0.0
S14 S4 -2.88e-05 0.0 0.0
S14 S5 0.0 0.00522468 0.0
S14 S6 -0.3327061 0.0 0.0
S14 S7 4.73e-06 0.0 0.0
S14 S8 0.0 0.0 -1.9e-07
S14 S9 0.0 0.0 0.4968288
S14 S10 0.0 0.0 7.6e-07
S14 S11 -3.5e-07 0.0 0.0
S14 S12 -0.40957006 0.0 0.0
S14 S13 0.0 0.0 -0.05128066
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Sinit Sfinal µx µy µz

S14 S14 0.0 0.0 -1.48055988
S14 S15 0.0 0.0 0.0
S14 S16 0.0 -0.0283167 0.0
S14 S17 1.97e-05 0.0 0.0
S14 S18 0.32878579 0.0 0.0
S14 S19 0.04960033 0.0 0.0
S14 S20 0.0 0.09844367 0.0
S14 S21 8.93e-05 0.0 0.0
S14 S22 0.0 0.0 0.15358366
S14 S23 0.0 0.0 0.0
S14 S24 0.0 0.0982201 0.0
S14 S25 0.0 0.0 0.0
S14 S26 0.0 0.0 -0.23538562
S14 S27 0.0 0.0 0.0
S14 S28 0.0 0.0 4.72e-05
S14 S29 0.1454049 0.0 0.0
S14 S30 0.0 0.08135873 0.0
S14 S31 0.0 0.0 0.11547155
S14 S32 0.0 0.0 0.0
S14 S33 0.0 -0.04625261 0.0
S14 S34 0.0 -0.01644056 0.0
S14 S35 0.0 0.0 0.0
S14 S36 0.0 0.05606147 0.0
S14 S37 0.0 0.0 0.0
S14 S38 0.0 0.13075132 0.0
S14 S39 0.0 0.0 -0.15600373
S14 S40 0.0 0.0 0.0
S14 S41 0.0 0.0 0.0
S14 S42 0.0 0.0 0.0
S14 S43 0.0 0.02188728 0.0
S14 S44 0.0 -0.00529488 0.0
S15 S0 0.0 0.0 0.0
S15 S1 0.0 0.0 0.0
S15 S2 0.0 0.0 0.00341002
S15 S3 0.0 -0.109404 0.0
S15 S4 0.0 -1e-08 0.0
S15 S5 -0.00673943 0.0 0.0
S15 S6 0.0 0.04459811 0.0
S15 S7 0.0 1e-08 0.0
S15 S8 0.0 0.0 0.0
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Sinit Sfinal µx µy µz

S15 S9 0.0 0.0 0.0
S15 S10 0.0 0.0 0.0
S15 S11 0.0 2e-08 0.0
S15 S12 0.0 -0.51231349 0.0
S15 S13 0.0 0.0 0.0
S15 S14 0.0 0.0 0.0
S15 S15 0.0 0.0 -3.29110192
S15 S16 1.00853941 0.0 0.0
S15 S17 0.0 -1e-08 0.0
S15 S18 0.0 -0.10097816 0.0
S15 S19 0.0 0.32029667 0.0
S15 S20 -3.80570339 0.0 0.0
S15 S21 0.0 0.0 0.0
S15 S22 0.0 0.0 0.0
S15 S23 0.0 0.0 -2.32138397
S15 S24 -0.94875204 0.0 0.0
S15 S25 0.0 0.0 2.04532817
S15 S26 0.0 0.0 0.0
S15 S27 0.0 0.0 -0.63366242
S15 S28 0.0 0.0 0.0
S15 S29 0.0 -2.91732357 0.0
S15 S30 0.04382184 0.0 0.0
S15 S31 0.0 0.0 0.0
S15 S32 0.0 0.0 0.09617966
S15 S33 -0.01653095 0.0 0.0
S15 S34 0.10610204 0.0 0.0
S15 S35 0.0 0.0 -0.008548
S15 S36 -0.16202175 0.0 0.0
S15 S37 0.0 0.0 -0.60818192
S15 S38 0.04094303 0.0 0.0
S15 S39 0.0 0.0 0.0
S15 S40 0.0 0.0 0.15983938
S15 S41 0.0 0.0 0.06666785
S15 S42 0.0 0.0 -0.17655561
S15 S43 0.28186078 0.0 0.0
S15 S44 -0.79247351 0.0 0.0
S16 S0 0.0 0.33398909 0.0
S16 S1 0.0 0.0 0.0
S16 S2 0.0032621 0.0 0.0
S16 S3 0.0 0.0 0.0
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Sinit Sfinal µx µy µz

S16 S4 0.0 0.0 0.0
S16 S5 0.0 0.0 0.00498287
S16 S6 0.0 0.0 0.0
S16 S7 0.0 0.0 0.0
S16 S8 0.0 -1e-08 0.0
S16 S9 0.0 -0.07359199 0.0
S16 S10 0.0 0.0 0.0
S16 S11 0.0 0.0 0.0
S16 S12 0.0 0.0 0.0
S16 S13 0.0 -0.19453049 0.0
S16 S14 0.0 -0.0283167 0.0
S16 S15 1.00853941 0.0 0.0
S16 S16 0.0 0.0 -4.72355912
S16 S17 0.0 0.0 0.0
S16 S18 0.0 0.0 0.0
S16 S19 0.0 0.0 0.0
S16 S20 0.0 0.0 0.42868013
S16 S21 0.0 0.0 0.0
S16 S22 0.0 0.1766467 0.0
S16 S23 2.353645 0.0 0.0
S16 S24 0.0 0.0 -2.83265618
S16 S25 2.52239017 0.0 0.0
S16 S26 0.0 -0.62481902 0.0
S16 S27 0.0432952 0.0 0.0
S16 S28 0.0 -1.03e-05 0.0
S16 S29 0.0 0.0 0.0
S16 S30 0.0 0.0 0.39690106
S16 S31 0.0 -2.75794913 0.0
S16 S32 -0.16940101 0.0 0.0
S16 S33 0.0 0.0 -0.58716726
S16 S34 0.0 0.0 -0.12099537
S16 S35 0.13511452 0.0 0.0
S16 S36 0.0 0.0 -0.3396049
S16 S37 0.16763394 0.0 0.0
S16 S38 0.0 0.0 -0.39857214
S16 S39 0.0 -0.34810622 0.0
S16 S40 -0.13258434 0.0 0.0
S16 S41 -0.0310257 0.0 0.0
S16 S42 0.25439561 0.0 0.0
S16 S43 0.0 0.0 -0.25302563
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Sinit Sfinal µx µy µz

S16 S44 0.0 0.0 1.28976177
S17 S0 -5.56e-13 0.0 0.0
S17 S1 0.02173414 0.0 0.0
S17 S2 0.0 0.0 0.0
S17 S3 0.0 0.0 1.42e-06
S17 S4 0.0 0.0 -0.08532609
S17 S5 0.0 0.0 0.0
S17 S6 0.0 0.0 -5.71e-06
S17 S7 0.0 0.0 -0.44296353
S17 S8 0.04947754 0.0 0.0
S17 S9 -6.49e-05 0.0 0.0
S17 S10 -0.4903393 0.0 0.0
S17 S11 0.0 0.0 -0.66163373
S17 S12 0.0 0.0 -5.9e-07
S17 S13 8.44e-05 0.0 0.0
S17 S14 1.97e-05 0.0 0.0
S17 S15 0.0 -1e-08 0.0
S17 S16 0.0 0.0 0.0
S17 S17 0.0 0.0 -1.83619928
S17 S18 0.0 0.0 1.8e-07
S17 S19 0.0 0.0 8e-08
S17 S20 0.0 0.0 0.0
S17 S21 0.0 0.0 -0.00281451
S17 S22 3.29e-05 0.0 0.0
S17 S23 0.0 1e-08 0.0
S17 S24 0.0 0.0 0.0
S17 S25 0.0 -1e-08 0.0
S17 S26 -1.25e-05 0.0 0.0
S17 S27 0.0 1e-08 0.0
S17 S28 -1e-08 0.0 0.0
S17 S29 0.0 0.0 -3.8e-07
S17 S30 0.0 0.0 0.0
S17 S31 7.04e-05 0.0 0.0
S17 S32 0.0 2e-08 0.0
S17 S33 0.0 0.0 0.0
S17 S34 0.0 0.0 0.0
S17 S35 0.0 -1e-08 0.0
S17 S36 0.0 0.0 0.0
S17 S37 0.0 2e-08 0.0
S17 S38 0.0 0.0 0.0
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Sinit Sfinal µx µy µz

S17 S39 -5.18e-05 0.0 0.0
S17 S40 0.0 -3e-08 0.0
S17 S41 0.0 8e-08 0.0
S17 S42 0.0 1e-08 0.0
S17 S43 0.0 0.0 0.0
S17 S44 0.0 0.0 0.0
S18 S0 0.26802037 0.0 0.0
S18 S1 0.00021788 0.0 0.0
S18 S2 0.0 0.00111904 0.0
S18 S3 0.0 0.0 0.17104704
S18 S4 0.0 0.0 -8e-07
S18 S5 0.0 0.0 0.0
S18 S6 0.0 0.0 -0.78432778
S18 S7 0.0 0.0 2e-08
S18 S8 1.04e-05 0.0 0.0
S18 S9 -0.12210857 0.0 0.0
S18 S10 2.41e-05 0.0 0.0
S18 S11 0.0 0.0 1.1e-07
S18 S12 0.0 0.0 0.11250891
S18 S13 -0.02171607 0.0 0.0
S18 S14 0.32878579 0.0 0.0
S18 S15 0.0 -0.10097816 0.0
S18 S16 0.0 0.0 0.0
S18 S17 0.0 0.0 1.8e-07
S18 S18 0.0 0.0 -2.95962391
S18 S19 0.0 0.0 0.05595836
S18 S20 0.0 0.0 0.0
S18 S21 0.0 0.0 2e-07
S18 S22 0.16638965 0.0 0.0
S18 S23 0.0 0.06933528 0.0
S18 S24 0.0 0.0 0.0
S18 S25 0.0 -0.06745455 0.0
S18 S26 -0.00491268 0.0 0.0
S18 S27 0.0 -0.0420427 0.0
S18 S28 0.00071758 0.0 0.0
S18 S29 0.0 0.0 0.07318101
S18 S30 0.0 0.0 0.0
S18 S31 0.09932671 0.0 0.0
S18 S32 0.0 0.00337075 0.0
S18 S33 0.0 0.0 0.0
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Sinit Sfinal µx µy µz

S18 S34 0.0 0.0 0.0
S18 S35 0.0 -0.03333661 0.0
S18 S36 0.0 0.0 0.0
S18 S37 0.0 0.03746665 0.0
S18 S38 0.0 0.0 0.0
S18 S39 -0.02749808 0.0 0.0
S18 S40 0.0 -0.01026132 0.0
S18 S41 0.0 0.02084872 0.0
S18 S42 0.0 -0.19969176 0.0
S18 S43 0.0 0.0 0.0
S18 S44 0.0 0.0 0.0
S19 S0 1.0014635 0.0 0.0
S19 S1 -1.05e-06 0.0 0.0
S19 S2 0.0 0.00435573 0.0
S19 S3 0.0 0.0 -0.200965
S19 S4 0.0 0.0 -3.4e-07
S19 S5 0.0 0.0 0.0
S19 S6 0.0 0.0 -0.09765134
S19 S7 0.0 0.0 -1e-08
S19 S8 1.26e-05 0.0 0.0
S19 S9 -0.09315332 0.0 0.0
S19 S10 -9.72e-06 0.0 0.0
S19 S11 0.0 0.0 -1.6e-07
S19 S12 0.0 0.0 0.10899779
S19 S13 -0.37607242 0.0 0.0
S19 S14 0.04960033 0.0 0.0
S19 S15 0.0 0.32029667 0.0
S19 S16 0.0 0.0 0.0
S19 S17 0.0 0.0 8e-08
S19 S18 0.0 0.0 0.05595836
S19 S19 0.0 0.0 -2.1622551
S19 S20 0.0 0.0 0.0
S19 S21 0.0 0.0 3.5e-07
S19 S22 0.13582691 0.0 0.0
S19 S23 0.0 -0.2012096 0.0
S19 S24 0.0 0.0 0.0
S19 S25 0.0 0.20874397 0.0
S19 S26 0.12028194 0.0 0.0
S19 S27 0.0 -0.06646385 0.0
S19 S28 -0.00106219 0.0 0.0
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Sinit Sfinal µx µy µz

S19 S29 0.0 0.0 -0.16706648
S19 S30 0.0 0.0 0.0
S19 S31 -0.0359892 0.0 0.0
S19 S32 0.0 0.02295032 0.0
S19 S33 0.0 0.0 0.0
S19 S34 0.0 0.0 0.0
S19 S35 0.0 0.14194528 0.0
S19 S36 0.0 0.0 0.0
S19 S37 0.0 0.23134195 0.0
S19 S38 0.0 0.0 0.0
S19 S39 -0.65328002 0.0 0.0
S19 S40 0.0 0.02226051 0.0
S19 S41 0.0 0.00239209 0.0
S19 S42 0.0 0.00999551 0.0
S19 S43 0.0 0.0 0.0
S19 S44 0.0 0.0 0.0
S20 S0 0.0 -0.40811402 0.0
S20 S1 0.0 1e-08 0.0
S20 S2 -0.0041803 0.0 0.0
S20 S3 0.0 0.0 0.0
S20 S4 0.0 0.0 0.0
S20 S5 0.0 0.0 0.00313974
S20 S6 0.0 0.0 0.0
S20 S7 0.0 0.0 0.0
S20 S8 0.0 -1e-08 0.0
S20 S9 0.0 -0.09963052 0.0
S20 S10 0.0 0.0 0.0
S20 S11 0.0 0.0 0.0
S20 S12 0.0 0.0 0.0
S20 S13 0.0 0.16202334 0.0
S20 S14 0.0 0.09844367 0.0
S20 S15 -3.80570339 0.0 0.0
S20 S16 0.0 0.0 0.42868013
S20 S17 0.0 0.0 0.0
S20 S18 0.0 0.0 0.0
S20 S19 0.0 0.0 0.0
S20 S20 0.0 0.0 -2.79192924
S20 S21 0.0 0.0 0.0
S20 S22 0.0 0.10728878 0.0
S20 S23 0.56085722 0.0 0.0
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Sinit Sfinal µx µy µz

S20 S24 0.0 0.0 -0.74744624
S20 S25 0.37478615 0.0 0.0
S20 S26 0.0 -0.37791542 0.0
S20 S27 2.99901163 0.0 0.0
S20 S28 0.0 -1.87e-05 0.0
S20 S29 0.0 0.0 0.0
S20 S30 0.0 0.0 1.56674918
S20 S31 0.0 -0.82587227 0.0
S20 S32 -0.2133184 0.0 0.0
S20 S33 0.0 0.0 2.49171549
S20 S34 0.0 0.0 -0.22794205
S20 S35 0.24125662 0.0 0.0
S20 S36 0.0 0.0 -0.18416303
S20 S37 -1.19670086 0.0 0.0
S20 S38 0.0 0.0 -0.25271534
S20 S39 0.0 2.33334705 0.0
S20 S40 0.25686337 0.0 0.0
S20 S41 -0.00597277 0.0 0.0
S20 S42 -0.42895554 0.0 0.0
S20 S43 0.0 0.0 -0.04338927
S20 S44 0.0 0.0 -0.39380595
S21 S0 -1.36e-14 0.0 0.0
S21 S1 -1.07684047 0.0 0.0
S21 S2 0.0 -1.8e-07 0.0
S21 S3 0.0 0.0 -9.9e-07
S21 S4 0.0 0.0 -0.03341141
S21 S5 0.0 0.0 0.0
S21 S6 0.0 0.0 -7.92e-06
S21 S7 0.0 0.0 -0.0428357
S21 S8 -0.40688586 0.0 0.0
S21 S9 -4.23e-05 0.0 0.0
S21 S10 0.20367732 0.0 0.0
S21 S11 0.0 0.0 0.05005918
S21 S12 0.0 0.0 -4.8e-07
S21 S13 3.95e-05 0.0 0.0
S21 S14 8.93e-05 0.0 0.0
S21 S15 0.0 0.0 0.0
S21 S16 0.0 0.0 0.0
S21 S17 0.0 0.0 -0.00281451
S21 S18 0.0 0.0 2e-07
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Sinit Sfinal µx µy µz

S21 S19 0.0 0.0 3.5e-07
S21 S20 0.0 0.0 0.0
S21 S21 0.0 0.0 -2.92845918
S21 S22 5.53e-05 0.0 0.0
S21 S23 0.0 1e-08 0.0
S21 S24 0.0 0.0 0.0
S21 S25 0.0 1e-08 0.0
S21 S26 -8.75e-05 0.0 0.0
S21 S27 0.0 1e-08 0.0
S21 S28 -1e-08 0.0 0.0
S21 S29 0.0 0.0 0.0
S21 S30 0.0 0.0 0.0
S21 S31 6.54e-06 0.0 0.0
S21 S32 0.0 -2e-08 0.0
S21 S33 0.0 0.0 0.0
S21 S34 0.0 0.0 0.0
S21 S35 0.0 -3e-08 0.0
S21 S36 0.0 0.0 0.0
S21 S37 0.0 -1e-08 0.0
S21 S38 0.0 0.0 0.0
S21 S39 -1.15e-05 0.0 0.0
S21 S40 0.0 2e-08 0.0
S21 S41 0.0 -6e-08 0.0
S21 S42 0.0 -2e-08 0.0
S21 S43 0.0 0.0 0.0
S21 S44 0.0 0.0 0.0
S22 S0 0.0 0.0 0.42989645
S22 S1 0.0 0.0 -1.2e-07
S22 S2 0.0 0.0 0.0
S22 S3 0.82506097 0.0 0.0
S22 S4 -7.15e-05 0.0 0.0
S22 S5 0.0 0.00446851 0.0
S22 S6 -0.95001385 0.0 0.0
S22 S7 6.31e-05 0.0 0.0
S22 S8 0.0 0.0 6.1e-07
S22 S9 0.0 0.0 -0.04440032
S22 S10 0.0 0.0 -2.3e-07
S22 S11 -2.31e-05 0.0 0.0
S22 S12 0.0701525 0.0 0.0
S22 S13 0.0 0.0 0.19598621
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Sinit Sfinal µx µy µz

S22 S14 0.0 0.0 0.15358366
S22 S15 0.0 0.0 0.0
S22 S16 0.0 0.1766467 0.0
S22 S17 3.29e-05 0.0 0.0
S22 S18 0.16638965 0.0 0.0
S22 S19 0.13582691 0.0 0.0
S22 S20 0.0 0.10728878 0.0
S22 S21 5.53e-05 0.0 0.0
S22 S22 0.0 0.0 -3.30205588
S22 S23 0.0 0.0 0.0
S22 S24 0.0 -0.01363048 0.0
S22 S25 0.0 0.0 0.0
S22 S26 0.0 0.0 -1.19058477
S22 S27 0.0 0.0 0.0
S22 S28 0.0 0.0 0.0008985
S22 S29 0.03423862 0.0 0.0
S22 S30 0.0 -0.17870505 0.0
S22 S31 0.0 0.0 0.30419901
S22 S32 0.0 0.0 0.0
S22 S33 0.0 0.24876836 0.0
S22 S34 0.0 -0.00779733 0.0
S22 S35 0.0 0.0 0.0
S22 S36 0.0 -0.02640432 0.0
S22 S37 0.0 0.0 0.0
S22 S38 0.0 -0.14380123 0.0
S22 S39 0.0 0.0 0.21736769
S22 S40 0.0 0.0 0.0
S22 S41 0.0 0.0 0.0
S22 S42 0.0 0.0 0.0
S22 S43 0.0 -0.05445384 0.0
S22 S44 0.0 -0.05063163 0.0
S23 S0 0.0 0.0 0.0
S23 S1 0.0 0.0 0.0
S23 S2 0.0 0.0 -0.00641344
S23 S3 0.0 0.22850685 0.0
S23 S4 0.0 1e-08 0.0
S23 S5 -0.00310139 0.0 0.0
S23 S6 0.0 -0.03502104 0.0
S23 S7 0.0 -1e-08 0.0
S23 S8 0.0 0.0 0.0



APPENDIX A. COMPUTED DIPOLE AND ENERGY LEVEL TRANSITIONS OF
NITROBENZENE 133

Sinit Sfinal µx µy µz

S23 S9 0.0 0.0 0.0
S23 S10 0.0 0.0 0.0
S23 S11 0.0 -1e-08 0.0
S23 S12 0.0 0.23606345 0.0
S23 S13 0.0 0.0 0.0
S23 S14 0.0 0.0 0.0
S23 S15 0.0 0.0 -2.32138397
S23 S16 2.353645 0.0 0.0
S23 S17 0.0 1e-08 0.0
S23 S18 0.0 0.06933528 0.0
S23 S19 0.0 -0.2012096 0.0
S23 S20 0.56085722 0.0 0.0
S23 S21 0.0 1e-08 0.0
S23 S22 0.0 0.0 0.0
S23 S23 0.0 0.0 -3.13711844
S23 S24 -0.45012152 0.0 0.0
S23 S25 0.0 0.0 0.04062429
S23 S26 0.0 0.0 0.0
S23 S27 0.0 0.0 -0.7357419
S23 S28 0.0 0.0 0.0
S23 S29 0.0 0.92765686 0.0
S23 S30 3.16341007 0.0 0.0
S23 S31 0.0 0.0 0.0
S23 S32 0.0 0.0 0.36413527
S23 S33 0.53579209 0.0 0.0
S23 S34 -0.23081812 0.0 0.0
S23 S35 0.0 0.0 -2.27555895
S23 S36 0.32625869 0.0 0.0
S23 S37 0.0 0.0 1.50465859
S23 S38 1.3435305 0.0 0.0
S23 S39 0.0 0.0 0.0
S23 S40 0.0 0.0 -0.17458642
S23 S41 0.0 0.0 -0.13969005
S23 S42 0.0 0.0 -0.28541972
S23 S43 -0.40796856 0.0 0.0
S23 S44 -1.12878757 0.0 0.0
S24 S0 0.0 0.11297427 0.0
S24 S1 0.0 -4e-08 0.0
S24 S2 -0.00112696 0.0 0.0
S24 S3 0.0 0.0 0.0
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Sinit Sfinal µx µy µz

S24 S4 0.0 0.0 0.0
S24 S5 0.0 0.0 -0.00732068
S24 S6 0.0 0.0 0.0
S24 S7 0.0 0.0 0.0
S24 S8 0.0 0.0 0.0
S24 S9 0.0 0.37540006 0.0
S24 S10 0.0 1e-08 0.0
S24 S11 0.0 0.0 0.0
S24 S12 0.0 0.0 0.0
S24 S13 0.0 -0.04163952 0.0
S24 S14 0.0 0.0982201 0.0
S24 S15 -0.94875204 0.0 0.0
S24 S16 0.0 0.0 -2.83265618
S24 S17 0.0 0.0 0.0
S24 S18 0.0 0.0 0.0
S24 S19 0.0 0.0 0.0
S24 S20 0.0 0.0 -0.74744624
S24 S21 0.0 0.0 0.0
S24 S22 0.0 -0.01363048 0.0
S24 S23 -0.45012152 0.0 0.0
S24 S24 0.0 0.0 -3.11970659
S24 S25 -0.65330736 0.0 0.0
S24 S26 0.0 0.31614445 0.0
S24 S27 0.29333195 0.0 0.0
S24 S28 0.0 2.61e-05 0.0
S24 S29 0.0 0.0 0.0
S24 S30 0.0 0.0 1.2183888
S24 S31 0.0 1.355854 0.0
S24 S32 -0.11035278 0.0 0.0
S24 S33 0.0 0.0 0.11721876
S24 S34 0.0 0.0 -0.11241332
S24 S35 3.00759483 0.0 0.0
S24 S36 0.0 0.0 0.78694926
S24 S37 0.67753381 0.0 0.0
S24 S38 0.0 0.0 2.45300293
S24 S39 0.0 0.02388821 0.0
S24 S40 0.02933747 0.0 0.0
S24 S41 0.14040019 0.0 0.0
S24 S42 -0.36480875 0.0 0.0
S24 S43 0.0 0.0 0.25675728
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Sinit Sfinal µx µy µz

S24 S44 0.0 0.0 1.53792337
S25 S0 0.0 0.0 0.0
S25 S1 0.0 0.0 0.0
S25 S2 0.0 0.0 0.00326279
S25 S3 0.0 -0.08125627 0.0
S25 S4 0.0 0.0 0.0
S25 S5 0.00101141 0.0 0.0
S25 S6 0.0 0.03215045 0.0
S25 S7 0.0 0.0 0.0
S25 S8 0.0 0.0 0.0
S25 S9 0.0 0.0 0.0
S25 S10 0.0 0.0 0.0
S25 S11 0.0 1e-08 0.0
S25 S12 0.0 -0.35096681 0.0
S25 S13 0.0 0.0 0.0
S25 S14 0.0 0.0 0.0
S25 S15 0.0 0.0 2.04532817
S25 S16 2.52239017 0.0 0.0
S25 S17 0.0 -1e-08 0.0
S25 S18 0.0 -0.06745455 0.0
S25 S19 0.0 0.20874397 0.0
S25 S20 0.37478615 0.0 0.0
S25 S21 0.0 1e-08 0.0
S25 S22 0.0 0.0 0.0
S25 S23 0.0 0.0 0.04062429
S25 S24 -0.65330736 0.0 0.0
S25 S25 0.0 0.0 -4.69717255
S25 S26 0.0 0.0 0.0
S25 S27 0.0 0.0 1.02957859
S25 S28 0.0 0.0 0.0
S25 S29 0.0 -0.23507329 0.0
S25 S30 0.88742679 0.0 0.0
S25 S31 0.0 0.0 0.0
S25 S32 0.0 0.0 -0.0731955
S25 S33 -3.86463316 0.0 0.0
S25 S34 0.18487407 0.0 0.0
S25 S35 0.0 0.0 -1.69387457
S25 S36 0.02857661 0.0 0.0
S25 S37 0.0 0.0 -2.74261219
S25 S38 0.88058418 0.0 0.0
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Sinit Sfinal µx µy µz

S25 S39 0.0 0.0 0.0
S25 S40 0.0 0.0 0.33106317
S25 S41 0.0 0.0 0.01053986
S25 S42 0.0 0.0 0.22486905
S25 S43 -0.33105435 0.0 0.0
S25 S44 -1.27526208 0.0 0.0
S26 S0 0.0 0.0 0.35816647
S26 S1 0.0 0.0 1.13e-06
S26 S2 0.0 0.0 0.0
S26 S3 0.40269755 0.0 0.0
S26 S4 0.00026817 0.0 0.0
S26 S5 0.0 -0.00259816 0.0
S26 S6 2.67227019 0.0 0.0
S26 S7 -9.18e-05 0.0 0.0
S26 S8 0.0 0.0 -1.18e-06
S26 S9 0.0 0.0 0.741929
S26 S10 0.0 0.0 1.8e-07
S26 S11 4.58e-05 0.0 0.0
S26 S12 -0.0025709 0.0 0.0
S26 S13 0.0 0.0 -0.21378941
S26 S14 0.0 0.0 -0.23538562
S26 S15 0.0 0.0 0.0
S26 S16 0.0 -0.62481902 0.0
S26 S17 -1.25e-05 0.0 0.0
S26 S18 -0.00491268 0.0 0.0
S26 S19 0.12028194 0.0 0.0
S26 S20 0.0 -0.37791542 0.0
S26 S21 -8.75e-05 0.0 0.0
S26 S22 0.0 0.0 -1.19058477
S26 S23 0.0 0.0 0.0
S26 S24 0.0 0.31614445 0.0
S26 S25 0.0 0.0 0.0
S26 S26 0.0 0.0 -1.76387152
S26 S27 0.0 0.0 0.0
S26 S28 0.0 0.0 0.00012529
S26 S29 -0.15966516 0.0 0.0
S26 S30 0.0 0.38257109 0.0
S26 S31 0.0 0.0 -0.29176772
S26 S32 0.0 0.0 0.0
S26 S33 0.0 -0.47770016 0.0
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Sinit Sfinal µx µy µz

S26 S34 0.0 0.02976766 0.0
S26 S35 0.0 0.0 0.0
S26 S36 0.0 0.04690854 0.0
S26 S37 0.0 0.0 0.0
S26 S38 0.0 0.23127148 0.0
S26 S39 0.0 0.0 -0.40459768
S26 S40 0.0 0.0 0.0
S26 S41 0.0 0.0 0.0
S26 S42 0.0 0.0 0.0
S26 S43 0.0 0.1066169 0.0
S26 S44 0.0 0.1428613 0.0
S27 S0 0.0 0.0 0.0
S27 S1 0.0 0.0 0.0
S27 S2 0.0 0.0 -0.00563205
S27 S3 0.0 0.13465421 0.0
S27 S4 0.0 0.0 0.0
S27 S5 0.02133952 0.0 0.0
S27 S6 0.0 0.00838117 0.0
S27 S7 0.0 -1e-08 0.0
S27 S8 0.0 0.0 0.0
S27 S9 0.0 0.0 0.0
S27 S10 0.0 0.0 0.0
S27 S11 0.0 -1e-08 0.0
S27 S12 0.0 -0.0977081 0.0
S27 S13 0.0 0.0 0.0
S27 S14 0.0 0.0 0.0
S27 S15 0.0 0.0 -0.63366242
S27 S16 0.0432952 0.0 0.0
S27 S17 0.0 1e-08 0.0
S27 S18 0.0 -0.0420427 0.0
S27 S19 0.0 -0.06646385 0.0
S27 S20 2.99901163 0.0 0.0
S27 S21 0.0 1e-08 0.0
S27 S22 0.0 0.0 0.0
S27 S23 0.0 0.0 -0.7357419
S27 S24 0.29333195 0.0 0.0
S27 S25 0.0 0.0 1.02957859
S27 S26 0.0 0.0 0.0
S27 S27 0.0 0.0 -2.36011534
S27 S28 0.0 0.0 0.0
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Sinit Sfinal µx µy µz

S27 S29 0.0 -1.52688311 0.0
S27 S30 1.36001343 0.0 0.0
S27 S31 0.0 0.0 0.0
S27 S32 0.0 0.0 0.32301934
S27 S33 0.3589172 0.0 0.0
S27 S34 -0.13846707 0.0 0.0
S27 S35 0.0 0.0 -0.86945332
S27 S36 0.02101643 0.0 0.0
S27 S37 0.0 0.0 1.48041238
S27 S38 0.26738953 0.0 0.0
S27 S39 0.0 0.0 0.0
S27 S40 0.0 0.0 0.13646126
S27 S41 0.0 0.0 -0.20383087
S27 S42 0.0 0.0 0.65779117
S27 S43 0.40273576 0.0 0.0
S27 S44 0.41284317 0.0 0.0
S28 S0 0.0 0.0 9.11e-06
S28 S1 0.0 0.0 0.0
S28 S2 0.0 0.0 0.0
S28 S3 -0.00101797 0.0 0.0
S28 S4 2e-08 0.0 0.0
S28 S5 0.0 -1.53e-05 0.0
S28 S6 0.00417707 0.0 0.0
S28 S7 -4e-08 0.0 0.0
S28 S8 0.0 0.0 0.0
S28 S9 0.0 0.0 -0.00035467
S28 S10 0.0 0.0 0.0
S28 S11 0.0 0.0 0.0
S28 S12 0.00016949 0.0 0.0
S28 S13 0.0 0.0 -0.00035587
S28 S14 0.0 0.0 4.72e-05
S28 S15 0.0 0.0 0.0
S28 S16 0.0 -1.03e-05 0.0
S28 S17 -1e-08 0.0 0.0
S28 S18 0.00071758 0.0 0.0
S28 S19 -0.00106219 0.0 0.0
S28 S20 0.0 -1.87e-05 0.0
S28 S21 -1e-08 0.0 0.0
S28 S22 0.0 0.0 0.0008985
S28 S23 0.0 0.0 0.0



APPENDIX A. COMPUTED DIPOLE AND ENERGY LEVEL TRANSITIONS OF
NITROBENZENE 139

Sinit Sfinal µx µy µz

S28 S24 0.0 2.61e-05 0.0
S28 S25 0.0 0.0 0.0
S28 S26 0.0 0.0 0.00012529
S28 S27 0.0 0.0 0.0
S28 S28 0.0 0.0 -1.5482213
S28 S29 0.00109863 0.0 0.0
S28 S30 0.0 -9.65e-06 0.0
S28 S31 0.0 0.0 -5.85e-05
S28 S32 0.0 0.0 0.0
S28 S33 0.0 -1.93e-05 0.0
S28 S34 0.0 -1.38e-05 0.0
S28 S35 0.0 0.0 0.0
S28 S36 0.0 2.15e-05 0.0
S28 S37 0.0 0.0 0.0
S28 S38 0.0 4.17e-05 0.0
S28 S39 0.0 0.0 8.45e-05
S28 S40 0.0 0.0 0.0
S28 S41 0.0 0.0 0.0
S28 S42 0.0 0.0 0.0
S28 S43 0.0 -8.96e-06 0.0
S28 S44 0.0 3.51e-06 0.0
S29 S0 0.12135457 0.0 0.0
S29 S1 0.00045583 0.0 0.0
S29 S2 0.0 0.00788064 0.0
S29 S3 0.0 0.0 -0.09795714
S29 S4 0.0 0.0 0.0
S29 S5 0.0 0.0 0.0
S29 S6 0.0 0.0 0.03100295
S29 S7 0.0 0.0 4.2e-07
S29 S8 1.47e-05 0.0 0.0
S29 S9 0.03515388 0.0 0.0
S29 S10 -5.72e-06 0.0 0.0
S29 S11 0.0 0.0 -4e-08
S29 S12 0.0 0.0 -0.17949751
S29 S13 0.17701141 0.0 0.0
S29 S14 0.1454049 0.0 0.0
S29 S15 0.0 -2.91732357 0.0
S29 S16 0.0 0.0 0.0
S29 S17 0.0 0.0 -3.8e-07
S29 S18 0.0 0.0 0.07318101
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Sinit Sfinal µx µy µz

S29 S19 0.0 0.0 -0.16706648
S29 S20 0.0 0.0 0.0
S29 S21 0.0 0.0 0.0
S29 S22 0.03423862 0.0 0.0
S29 S23 0.0 0.92765686 0.0
S29 S24 0.0 0.0 0.0
S29 S25 0.0 -0.23507329 0.0
S29 S26 -0.15966516 0.0 0.0
S29 S27 0.0 -1.52688311 0.0
S29 S28 0.00109863 0.0 0.0
S29 S29 0.0 0.0 -2.46751914
S29 S30 0.0 0.0 0.0
S29 S31 0.10123366 0.0 0.0
S29 S32 0.0 -0.01101952 0.0
S29 S33 0.0 0.0 0.0
S29 S34 0.0 0.0 0.0
S29 S35 0.0 0.20305962 0.0
S29 S36 0.0 0.0 0.0
S29 S37 0.0 -0.48915476 0.0
S29 S38 0.0 0.0 0.0
S29 S39 2.07701422 0.0 0.0
S29 S40 0.0 0.10858511 0.0
S29 S41 0.0 -0.0082569 0.0
S29 S42 0.0 0.11554395 0.0
S29 S43 0.0 0.0 0.0
S29 S44 0.0 0.0 0.0
S30 S0 0.0 -0.12430957 0.0
S30 S1 0.0 0.0 0.0
S30 S2 0.2102812 0.0 0.0
S30 S3 0.0 0.0 0.0
S30 S4 0.0 0.0 0.0
S30 S5 0.0 0.0 -0.02782557
S30 S6 0.0 0.0 0.0
S30 S7 0.0 0.0 0.0
S30 S8 0.0 -2e-08 0.0
S30 S9 0.0 -0.22430954 0.0
S30 S10 0.0 0.0 0.0
S30 S11 0.0 0.0 0.0
S30 S12 0.0 0.0 0.0
S30 S13 0.0 -0.1759825 0.0
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Sinit Sfinal µx µy µz

S30 S14 0.0 0.08135873 0.0
S30 S15 0.04382184 0.0 0.0
S30 S16 0.0 0.0 0.39690106
S30 S17 0.0 0.0 0.0
S30 S18 0.0 0.0 0.0
S30 S19 0.0 0.0 0.0
S30 S20 0.0 0.0 1.56674918
S30 S21 0.0 0.0 0.0
S30 S22 0.0 -0.17870505 0.0
S30 S23 3.16341007 0.0 0.0
S30 S24 0.0 0.0 1.2183888
S30 S25 0.88742679 0.0 0.0
S30 S26 0.0 0.38257109 0.0
S30 S27 1.36001343 0.0 0.0
S30 S28 0.0 -9.65e-06 0.0
S30 S29 0.0 0.0 0.0
S30 S30 0.0 0.0 -2.35920848
S30 S31 0.0 0.99411998 0.0
S30 S32 -0.03781458 0.0 0.0
S30 S33 0.0 0.0 0.2429992
S30 S34 0.0 0.0 0.0797226
S30 S35 -1.52543837 0.0 0.0
S30 S36 0.0 0.0 -0.19388086
S30 S37 0.95122715 0.0 0.0
S30 S38 0.0 0.0 -1.05444082
S30 S39 0.0 0.3028504 0.0
S30 S40 0.02665194 0.0 0.0
S30 S41 -0.28551412 0.0 0.0
S30 S42 0.77476974 0.0 0.0
S30 S43 0.0 0.0 1.23339905
S30 S44 0.0 0.0 -0.42025641
S31 S0 0.0 0.0 0.1551809
S31 S1 0.0 0.0 -9.7e-07
S31 S2 0.0 0.0 0.0
S31 S3 0.069526 0.0 0.0
S31 S4 -0.00037081 0.0 0.0
S31 S5 0.0 -0.01245941 0.0
S31 S6 -1.3971058 0.0 0.0
S31 S7 2.01e-05 0.0 0.0
S31 S8 0.0 0.0 3.7e-07
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Sinit Sfinal µx µy µz

S31 S9 0.0 0.0 0.1766759
S31 S10 0.0 0.0 -2.8e-07
S31 S11 -4.05e-05 0.0 0.0
S31 S12 0.18070589 0.0 0.0
S31 S13 0.0 0.0 -0.16453133
S31 S14 0.0 0.0 0.11547155
S31 S15 0.0 0.0 0.0
S31 S16 0.0 -2.75794913 0.0
S31 S17 7.04e-05 0.0 0.0
S31 S18 0.09932671 0.0 0.0
S31 S19 -0.0359892 0.0 0.0
S31 S20 0.0 -0.82587227 0.0
S31 S21 6.54e-06 0.0 0.0
S31 S22 0.0 0.0 0.30419901
S31 S23 0.0 0.0 0.0
S31 S24 0.0 1.355854 0.0
S31 S25 0.0 0.0 0.0
S31 S26 0.0 0.0 -0.29176772
S31 S27 0.0 0.0 0.0
S31 S28 0.0 0.0 -5.85e-05
S31 S29 0.10123366 0.0 0.0
S31 S30 0.0 0.99411998 0.0
S31 S31 0.0 0.0 -2.71813103
S31 S32 0.0 0.0 0.0
S31 S33 0.0 -0.24503197 0.0
S31 S34 0.0 -0.02724396 0.0
S31 S35 0.0 0.0 0.0
S31 S36 0.0 -0.34149335 0.0
S31 S37 0.0 0.0 0.0
S31 S38 0.0 -0.68418227 0.0
S31 S39 0.0 0.0 -0.25524489
S31 S40 0.0 0.0 0.0
S31 S41 0.0 0.0 0.0
S31 S42 0.0 0.0 0.0
S31 S43 0.0 -0.67348906 0.0
S31 S44 0.0 0.0478078 0.0
S32 S0 0.0 0.0 0.0
S32 S1 0.0 0.0 0.0
S32 S2 0.0 0.0 -0.10914128
S32 S3 0.0 -0.27046693 0.0
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Sinit Sfinal µx µy µz

S32 S4 0.0 -1.3e-07 0.0
S32 S5 0.02560625 0.0 0.0
S32 S6 0.0 0.04787316 0.0
S32 S7 0.0 1e-08 0.0
S32 S8 0.0 0.0 0.0
S32 S9 0.0 0.0 0.0
S32 S10 0.0 0.0 0.0
S32 S11 0.0 -1e-08 0.0
S32 S12 0.0 0.02381181 0.0
S32 S13 0.0 0.0 0.0
S32 S14 0.0 0.0 0.0
S32 S15 0.0 0.0 0.09617966
S32 S16 -0.16940101 0.0 0.0
S32 S17 0.0 2e-08 0.0
S32 S18 0.0 0.00337075 0.0
S32 S19 0.0 0.02295032 0.0
S32 S20 -0.2133184 0.0 0.0
S32 S21 0.0 -2e-08 0.0
S32 S22 0.0 0.0 0.0
S32 S23 0.0 0.0 0.36413527
S32 S24 -0.11035278 0.0 0.0
S32 S25 0.0 0.0 -0.0731955
S32 S26 0.0 0.0 0.0
S32 S27 0.0 0.0 0.32301934
S32 S28 0.0 0.0 0.0
S32 S29 0.0 -0.01101952 0.0
S32 S30 -0.03781458 0.0 0.0
S32 S31 0.0 0.0 0.0
S32 S32 0.0 0.0 -1.29106939
S32 S33 0.23875151 0.0 0.0
S32 S34 -0.0681219 0.0 0.0
S32 S35 0.0 0.0 0.3097347
S32 S36 -0.16379181 0.0 0.0
S32 S37 0.0 0.0 -0.28168723
S32 S38 -0.16453956 0.0 0.0
S32 S39 0.0 0.0 0.0
S32 S40 0.0 0.0 0.0314753
S32 S41 0.0 0.0 -0.1672382
S32 S42 0.0 0.0 -0.17908045
S32 S43 0.17099422 0.0 0.0
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Sinit Sfinal µx µy µz

S32 S44 -0.00491693 0.0 0.0
S33 S0 0.0 0.089432572 0.0
S33 S1 0.0 2e-08 0.0
S33 S2 -3.63905489 0.0 0.0
S33 S3 0.0 0.0 0.0
S33 S4 0.0 0.0 0.0
S33 S5 0.0 0.0 0.00728102
S33 S6 0.0 0.0 0.0
S33 S7 0.0 0.0 0.0
S33 S8 0.0 0.0 0.0
S33 S9 0.0 -0.02699422 0.0
S33 S10 0.0 1e-08 0.0
S33 S11 0.0 0.0 0.0
S33 S12 0.0 0.0 0.0
S33 S13 0.0 -0.4014728 0.0
S33 S14 0.0 -0.04625261 0.0
S33 S15 -0.01653095 0.0 0.0
S33 S16 0.0 0.0 -0.58716726
S33 S17 0.0 0.0 0.0
S33 S18 0.0 0.0 0.0
S33 S19 0.0 0.0 0.0
S33 S20 0.0 0.0 2.49171549
S33 S21 0.0 0.0 0.0
S33 S22 0.0 0.24876836 0.0
S33 S23 0.53579209 0.0 0.0
S33 S24 0.0 0.0 0.11721876
S33 S25 -3.86463316 0.0 0.0
S33 S26 0.0 -0.47770016 0.0
S33 S27 0.3589172 0.0 0.0
S33 S28 0.0 -1.93e-05 0.0
S33 S29 0.0 0.0 0.0
S33 S30 0.0 0.0 0.2429992
S33 S31 0.0 -0.24503197 0.0
S33 S32 0.23875151 0.0 0.0
S33 S33 0.0 0.0 -2.7795261
S33 S34 0.0 0.0 -0.02135719
S33 S35 -0.2236083 0.0 0.0
S33 S36 0.0 0.0 0.36034684
S33 S37 2.88642652 0.0 0.0
S33 S38 0.0 0.0 0.81623304
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Sinit Sfinal µx µy µz

S33 S39 0.0 0.29206351 0.0
S33 S40 -0.04005131 0.0 0.0
S33 S41 -0.26773563 0.0 0.0
S33 S42 0.81616565 0.0 0.0
S33 S43 0.0 0.0 -1.89146496
S33 S44 0.0 0.0 0.47228967
S34 S0 0.0 0.14071966 0.0
S34 S1 0.0 0.0 0.0
S34 S2 -0.75972659 0.0 0.0
S34 S3 0.0 0.0 0.0
S34 S4 0.0 0.0 0.0
S34 S5 0.0 0.0 -0.08067379
S34 S6 0.0 0.0 0.0
S34 S7 0.0 0.0 0.0
S34 S8 0.0 -2e-08 0.0
S34 S9 0.0 0.05094284 0.0
S34 S10 0.0 1e-08 0.0
S34 S11 0.0 0.0 0.0
S34 S12 0.0 0.0 0.0
S34 S13 0.0 0.0133298 0.0
S34 S14 0.0 -0.01644056 0.0
S34 S15 0.10610204 0.0 0.0
S34 S16 0.0 0.0 -0.12099537
S34 S17 0.0 0.0 0.0
S34 S18 0.0 0.0 0.0
S34 S19 0.0 0.0 0.0
S34 S20 0.0 0.0 -0.22794205
S34 S21 0.0 0.0 0.0
S34 S22 0.0 -0.00779733 0.0
S34 S23 -0.23081812 0.0 0.0
S34 S24 0.0 0.0 -0.11241332
S34 S25 0.18487407 0.0 0.0
S34 S26 0.0 0.02976766 0.0
S34 S27 -0.13846707 0.0 0.0
S34 S28 0.0 -1.38e-05 0.0
S34 S29 0.0 0.0 0.0
S34 S30 0.0 0.0 0.0797226
S34 S31 0.0 -0.02724396 0.0
S34 S32 -0.0681219 0.0 0.0
S34 S33 0.0 0.0 -0.02135719
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Sinit Sfinal µx µy µz

S34 S34 0.0 0.0 -1.24501866
S34 S35 0.14154775 0.0 0.0
S34 S36 0.0 0.0 0.2806624
S34 S37 -0.16072222 0.0 0.0
S34 S38 0.0 0.0 -0.03338928
S34 S39 0.0 -0.20744199 0.0
S34 S40 0.02255223 0.0 0.0
S34 S41 -0.01666352 0.0 0.0
S34 S42 -0.10882037 0.0 0.0
S34 S43 0.0 0.0 0.03897392
S34 S44 0.0 0.0 0.00529624
S35 S0 0.0 0.0 0.0
S35 S1 0.0 0.0 0.0
S35 S2 0.0 0.0 -0.00223599
S35 S3 0.0 0.21976406 0.0
S35 S4 0.0 1e-08 0.0
S35 S5 -0.00640241 0.0 0.0
S35 S6 0.0 0.11869513 0.0
S35 S7 0.0 0.0 0.0
S35 S8 0.0 0.0 0.0
S35 S9 0.0 0.0 0.0
S35 S10 0.0 0.0 0.0
S35 S11 0.0 0.0 0.0
S35 S12 0.0 -0.2782631 0.0
S35 S13 0.0 0.0 0.0
S35 S14 0.0 0.0 0.0
S35 S15 0.0 0.0 -0.008548
S35 S16 0.13511452 0.0 0.0
S35 S17 0.0 -1e-08 0.0
S35 S18 0.0 -0.03333661 0.0
S35 S19 0.0 0.14194528 0.0
S35 S20 0.24125662 0.0 0.0
S35 S21 0.0 -3e-08 0.0
S35 S22 0.0 0.0 0.0
S35 S23 0.0 0.0 -2.27555895
S35 S24 3.00759483 0.0 0.0
S35 S25 0.0 0.0 -1.69387457
S35 S26 0.0 0.0 0.0
S35 S27 0.0 0.0 -0.86945332
S35 S28 0.0 0.0 0.0
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Sinit Sfinal µx µy µz

S35 S29 0.0 0.20305962 0.0
S35 S30 -1.52543837 0.0 0.0
S35 S31 0.0 0.0 0.0
S35 S32 0.0 0.0 0.3097347
S35 S33 -0.2236083 0.0 0.0
S35 S34 0.14154775 0.0 0.0
S35 S35 0.0 0.0 -2.04701446
S35 S36 1.37834785 0.0 0.0
S35 S37 0.0 0.0 0.69086742
S35 S38 2.49062097 0.0 0.0
S35 S39 0.0 0.0 0.0
S35 S40 0.0 0.0 0.14380874
S35 S41 0.0 0.0 -0.16779504
S35 S42 0.0 0.0 0.57913384
S35 S43 -2.89674572 0.0 0.0
S35 S44 0.0458868 0.0 0.0
S36 S0 0.0 -0.15787347 0.0
S36 S1 0.0 -4e-08 0.0
S36 S2 -0.34139901 0.0 0.0
S36 S3 0.0 0.0 0.0
S36 S4 0.0 0.0 0.0
S36 S5 0.0 0.0 -0.06249239
S36 S6 0.0 0.0 0.0
S36 S7 0.0 0.0 0.0
S36 S8 0.0 0.0 0.0
S36 S9 0.0 0.09332107 0.0
S36 S10 0.0 3e-08 0.0
S36 S11 0.0 0.0 0.0
S36 S12 0.0 0.0 0.0
S36 S13 0.0 -0.0966466 0.0
S36 S14 0.0 0.05606147 0.0
S36 S15 -0.16202175 0.0 0.0
S36 S16 0.0 0.0 -0.3396049
S36 S17 0.0 0.0 0.0
S36 S18 0.0 0.0 0.0
S36 S19 0.0 0.0 0.0
S36 S20 0.0 0.0 -0.18416303
S36 S21 0.0 0.0 0.0
S36 S22 0.0 -0.02640432 0.0
S36 S23 0.32625869 0.0 0.0
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Sinit Sfinal µx µy µz

S36 S24 0.0 0.0 0.78694926
S36 S25 0.02857661 0.0 0.0
S36 S26 0.0 0.04690854 0.0
S36 S27 0.02101643 0.0 0.0
S36 S28 0.0 2.15e-05 0.0
S36 S29 0.0 0.0 0.0
S36 S30 0.0 0.0 -0.19388086
S36 S31 0.0 -0.34149335 0.0
S36 S32 -0.16379181 0.0 0.0
S36 S33 0.0 0.0 0.36034684
S36 S34 0.0 0.0 0.2806624
S36 S35 1.37834785 0.0 0.0
S36 S36 0.0 0.0 -1.33913548
S36 S37 0.35601843 0.0 0.0
S36 S38 0.0 0.0 -0.08549
S36 S39 0.0 0.18796158 0.0
S36 S40 -0.09888126 0.0 0.0
S36 S41 -0.03471872 0.0 0.0
S36 S42 -0.03450205 0.0 0.0
S36 S43 0.0 0.0 0.1722626
S36 S44 0.0 0.0 0.18721309
S37 S0 0.0 0.0 0.0
S37 S1 0.0 0.0 0.0
S37 S2 0.0 0.0 0.0163813
S37 S3 0.0 0.01408031 0.0
S37 S4 0.0 2e-08 0.0
S37 S5 -0.29662635 0.0 0.0
S37 S6 0.0 -0.05298093 0.0
S37 S7 0.0 -1e-08 0.0
S37 S8 0.0 0.0 0.0
S37 S9 0.0 0.0 0.0
S37 S10 0.0 0.0 0.0
S37 S11 0.0 -3e-08 0.0
S37 S12 0.0 -0.02977205 0.0
S37 S13 0.0 0.0 0.0
S37 S14 0.0 0.0 0.0
S37 S15 0.0 0.0 -0.60818192
S37 S16 0.16763394 0.0 0.0
S37 S17 0.0 2e-08 0.0
S37 S18 0.0 0.03746665 0.0
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Sinit Sfinal µx µy µz

S37 S19 0.0 0.23134195 0.0
S37 S20 -1.19670086 0.0 0.0
S37 S21 0.0 -1e-08 0.0
S37 S22 0.0 0.0 0.0
S37 S23 0.0 0.0 1.50465859
S37 S24 0.67753381 0.0 0.0
S37 S25 0.0 0.0 -2.74261219
S37 S26 0.0 0.0 0.0
S37 S27 0.0 0.0 1.48041238
S37 S28 0.0 0.0 0.0
S37 S29 0.0 -0.48915476 0.0
S37 S30 0.95122715 0.0 0.0
S37 S31 0.0 0.0 0.0
S37 S32 0.0 0.0 -0.28168723
S37 S33 2.88642652 0.0 0.0
S37 S34 -0.16072222 0.0 0.0
S37 S35 0.0 0.0 0.69086742
S37 S36 0.35601843 0.0 0.0
S37 S37 0.0 0.0 -2.8777204
S37 S38 0.86268367 0.0 0.0
S37 S39 0.0 0.0 0.0
S37 S40 0.0 0.0 -0.00276273
S37 S41 0.0 0.0 0.17799505
S37 S42 0.0 0.0 -0.75724803
S37 S43 -0.35497988 0.0 0.0
S37 S44 -1.14777498 0.0 0.0
S38 S0 0.0 -0.099872701 0.0
S38 S1 0.0 5e-08 0.0
S38 S2 0.18134976 0.0 0.0
S38 S3 0.0 0.0 0.0
S38 S4 0.0 0.0 0.0
S38 S5 0.0 0.0 0.06806973
S38 S6 0.0 0.0 0.0
S38 S7 0.0 0.0 0.0
S38 S8 0.0 -5e-08 0.0
S38 S9 0.0 0.10241905 0.0
S38 S10 0.0 1e-08 0.0
S38 S11 0.0 0.0 0.0
S38 S12 0.0 0.0 0.0
S38 S13 0.0 -0.19623435 0.0
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Sinit Sfinal µx µy µz

S38 S14 0.0 0.13075132 0.0
S38 S15 0.04094303 0.0 0.0
S38 S16 0.0 0.0 -0.39857214
S38 S17 0.0 0.0 0.0
S38 S18 0.0 0.0 0.0
S38 S19 0.0 0.0 0.0
S38 S20 0.0 0.0 -0.25271534
S38 S21 0.0 0.0 0.0
S38 S22 0.0 -0.14380123 0.0
S38 S23 1.3435305 0.0 0.0
S38 S24 0.0 0.0 2.45300293
S38 S25 0.88058418 0.0 0.0
S38 S26 0.0 0.23127148 0.0
S38 S27 0.26738953 0.0 0.0
S38 S28 0.0 4.17e-05 0.0
S38 S29 0.0 0.0 0.0
S38 S30 0.0 0.0 -1.05444082
S38 S31 0.0 -0.68418227 0.0
S38 S32 -0.16453956 0.0 0.0
S38 S33 0.0 0.0 0.81623304
S38 S34 0.0 0.0 -0.03338928
S38 S35 2.49062097 0.0 0.0
S38 S36 0.0 0.0 -0.08549
S38 S37 0.86268367 0.0 0.0
S38 S38 0.0 0.0 -1.90485474
S38 S39 0.0 -0.13616382 0.0
S38 S40 -0.15830419 0.0 0.0
S38 S41 0.09707873 0.0 0.0
S38 S42 0.19484324 0.0 0.0
S38 S43 0.0 0.0 0.96830195
S38 S44 0.0 0.0 0.31683771
S39 S0 0.0 0.0 -0.014518617
S39 S1 0.0 0.0 1.8e-07
S39 S2 0.0 0.0 0.0
S39 S3 0.36096969 0.0 0.0
S39 S4 -0.00030318 0.0 0.0
S39 S5 0.0 -0.00073808 0.0
S39 S6 5.71798923 0.0 0.0
S39 S7 2.74e-05 0.0 0.0
S39 S8 0.0 0.0 -4.6e-07
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Sinit Sfinal µx µy µz

S39 S9 0.0 0.0 -0.0233868
S39 S10 0.0 0.0 -4e-07
S39 S11 -8.05e-06 0.0 0.0
S39 S12 0.83403812 0.0 0.0
S39 S13 0.0 0.0 -0.81683341
S39 S14 0.0 0.0 -0.15600373
S39 S15 0.0 0.0 0.0
S39 S16 0.0 -0.34810622 0.0
S39 S17 -5.18e-05 0.0 0.0
S39 S18 -0.02749808 0.0 0.0
S39 S19 -0.65328002 0.0 0.0
S39 S20 0.0 2.33334705 0.0
S39 S21 -1.15e-05 0.0 0.0
S39 S22 0.0 0.0 0.21736769
S39 S23 0.0 0.0 0.0
S39 S24 0.0 0.02388821 0.0
S39 S25 0.0 0.0 0.0
S39 S26 0.0 0.0 -0.40459768
S39 S27 0.0 0.0 0.0
S39 S28 0.0 0.0 8.45e-05
S39 S29 2.07701422 0.0 0.0
S39 S30 0.0 0.3028504 0.0
S39 S31 0.0 0.0 -0.25524489
S39 S32 0.0 0.0 0.0
S39 S33 0.0 0.29206351 0.0
S39 S34 0.0 -0.20744199 0.0
S39 S35 0.0 0.0 0.0
S39 S36 0.0 0.18796158 0.0
S39 S37 0.0 0.0 0.0
S39 S38 0.0 -0.13616382 0.0
S39 S39 0.0 0.0 -2.09028161
S39 S40 0.0 0.0 0.0
S39 S41 0.0 0.0 0.0
S39 S42 0.0 0.0 0.0
S39 S43 0.0 -1.02379219 0.0
S39 S44 0.0 -0.51907338 0.0
S40 S0 0.0 0.0 0.0
S40 S1 0.0 0.0 0.0
S40 S2 0.0 0.0 0.12977326
S40 S3 0.0 0.00687869 0.0
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Sinit Sfinal µx µy µz

S40 S4 0.0 -3e-08 0.0
S40 S5 -0.5216897 0.0 0.0
S40 S6 0.0 -0.0406418 0.0
S40 S7 0.0 -2.8e-07 0.0
S40 S8 0.0 0.0 0.0
S40 S9 0.0 0.0 0.0
S40 S10 0.0 0.0 0.0
S40 S11 0.0 1e-08 0.0
S40 S12 0.0 -0.02463636 0.0
S40 S13 0.0 0.0 0.0
S40 S14 0.0 0.0 0.0
S40 S15 0.0 0.0 0.15983938
S40 S16 -0.13258434 0.0 0.0
S40 S17 0.0 -3e-08 0.0
S40 S18 0.0 -0.01026132 0.0
S40 S19 0.0 0.02226051 0.0
S40 S20 0.25686337 0.0 0.0
S40 S21 0.0 2e-08 0.0
S40 S22 0.0 0.0 0.0
S40 S23 0.0 0.0 -0.17458642
S40 S24 0.02933747 0.0 0.0
S40 S25 0.0 0.0 0.33106317
S40 S26 0.0 0.0 0.0
S40 S27 0.0 0.0 0.13646126
S40 S28 0.0 0.0 0.0
S40 S29 0.0 0.10858511 0.0
S40 S30 0.02665194 0.0 0.0
S40 S31 0.0 0.0 0.0
S40 S32 0.0 0.0 0.0314753
S40 S33 -0.04005131 0.0 0.0
S40 S34 0.02255223 0.0 0.0
S40 S35 0.0 0.0 0.14380874
S40 S36 -0.09888126 0.0 0.0
S40 S37 0.0 0.0 -0.00276273
S40 S38 -0.15830419 0.0 0.0
S40 S39 0.0 0.0 0.0
S40 S40 0.0 0.0 -1.63301329
S40 S41 0.0 0.0 0.14232114
S40 S42 0.0 0.0 0.25973309
S40 S43 0.02551873 0.0 0.0
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Sinit Sfinal µx µy µz

S40 S44 0.42868041 0.0 0.0
S41 S0 0.0 0.0 0.0
S41 S1 0.0 0.0 0.0
S41 S2 0.0 0.0 -0.45434527
S41 S3 0.0 -0.00328068 0.0
S41 S4 0.0 1.1e-07 0.0
S41 S5 0.11998352 0.0 0.0
S41 S6 0.0 0.08012559 0.0
S41 S7 0.0 -1e-08 0.0
S41 S8 0.0 0.0 0.0
S41 S9 0.0 0.0 0.0
S41 S10 0.0 0.0 0.0
S41 S11 0.0 -4e-08 0.0
S41 S12 0.0 -0.01920126 0.0
S41 S13 0.0 0.0 0.0
S41 S14 0.0 0.0 0.0
S41 S15 0.0 0.0 0.06666785
S41 S16 -0.0310257 0.0 0.0
S41 S17 0.0 8e-08 0.0
S41 S18 0.0 0.02084872 0.0
S41 S19 0.0 0.00239209 0.0
S41 S20 -0.00597277 0.0 0.0
S41 S21 0.0 -6e-08 0.0
S41 S22 0.0 0.0 0.0
S41 S23 0.0 0.0 -0.13969005
S41 S24 0.14040019 0.0 0.0
S41 S25 0.0 0.0 0.01053986
S41 S26 0.0 0.0 0.0
S41 S27 0.0 0.0 -0.20383087
S41 S28 0.0 0.0 0.0
S41 S29 0.0 -0.0082569 0.0
S41 S30 -0.28551412 0.0 0.0
S41 S31 0.0 0.0 0.0
S41 S32 0.0 0.0 -0.1672382
S41 S33 -0.26773563 0.0 0.0
S41 S34 -0.01666352 0.0 0.0
S41 S35 0.0 0.0 -0.16779504
S41 S36 -0.03471872 0.0 0.0
S41 S37 0.0 0.0 0.17799505
S41 S38 0.09707873 0.0 0.0
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Sinit Sfinal µx µy µz

S41 S39 0.0 0.0 0.0
S41 S40 0.0 0.0 0.14232114
S41 S41 0.0 0.0 -2.06923492
S41 S42 0.0 0.0 -0.37811686
S41 S43 -0.15559292 0.0 0.0
S41 S44 -0.11134196 0.0 0.0
S42 S0 0.0 0.0 0.0
S42 S1 0.0 0.0 0.0
S42 S2 0.0 0.0 -0.27125127
S42 S3 0.0 -0.06112969 0.0
S42 S4 0.0 -8e-08 0.0
S42 S5 0.01663566 0.0 0.0
S42 S6 0.0 0.46330796 0.0
S42 S7 0.0 3e-08 0.0
S42 S8 0.0 0.0 0.0
S42 S9 0.0 0.0 0.0
S42 S10 0.0 0.0 0.0
S42 S11 0.0 0.0 0.0
S42 S12 0.0 0.05821775 0.0
S42 S13 0.0 0.0 0.0
S42 S14 0.0 0.0 0.0
S42 S15 0.0 0.0 -0.17655561
S42 S16 0.25439561 0.0 0.0
S42 S17 0.0 1e-08 0.0
S42 S18 0.0 -0.19969176 0.0
S42 S19 0.0 0.00999551 0.0
S42 S20 -0.42895554 0.0 0.0
S42 S21 0.0 -2e-08 0.0
S42 S22 0.0 0.0 0.0
S42 S23 0.0 0.0 -0.28541972
S42 S24 -0.36480875 0.0 0.0
S42 S25 0.0 0.0 0.22486905
S42 S26 0.0 0.0 0.0
S42 S27 0.0 0.0 0.65779117
S42 S28 0.0 0.0 0.0
S42 S29 0.0 0.11554395 0.0
S42 S30 0.77476974 0.0 0.0
S42 S31 0.0 0.0 0.0
S42 S32 0.0 0.0 -0.17908045
S42 S33 0.81616565 0.0 0.0
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Sinit Sfinal µx µy µz

S42 S34 -0.10882037 0.0 0.0
S42 S35 0.0 0.0 0.57913384
S42 S36 -0.03450205 0.0 0.0
S42 S37 0.0 0.0 -0.75724803
S42 S38 0.19484324 0.0 0.0
S42 S39 0.0 0.0 0.0
S42 S40 0.0 0.0 0.25973309
S42 S41 0.0 0.0 -0.37811686
S42 S42 0.0 0.0 -1.2572146
S42 S43 0.5155542 0.0 0.0
S42 S44 -0.6285367 0.0 0.0
S43 S0 0.0 0.48888005 0.0
S43 S1 0.0 -2e-08 0.0
S43 S2 0.00453275 0.0 0.0
S43 S3 0.0 0.0 0.0
S43 S4 0.0 0.0 0.0
S43 S5 0.0 0.0 0.01683917
S43 S6 0.0 0.0 0.0
S43 S7 0.0 0.0 0.0
S43 S8 0.0 1e-08 0.0
S43 S9 0.0 0.11717236 0.0
S43 S10 0.0 0.0 0.0
S43 S11 0.0 0.0 0.0
S43 S12 0.0 0.0 0.0
S43 S13 0.0 -0.12668579 0.0
S43 S14 0.0 0.02188728 0.0
S43 S15 0.28186078 0.0 0.0
S43 S16 0.0 0.0 -0.25302563
S43 S17 0.0 0.0 0.0
S43 S18 0.0 0.0 0.0
S43 S19 0.0 0.0 0.0
S43 S20 0.0 0.0 -0.04338927
S43 S21 0.0 0.0 0.0
S43 S22 0.0 -0.05445384 0.0
S43 S23 -0.40796856 0.0 0.0
S43 S24 0.0 0.0 0.25675728
S43 S25 -0.33105435 0.0 0.0
S43 S26 0.0 0.1066169 0.0
S43 S27 0.40273576 0.0 0.0
S43 S28 0.0 -8.96e-06 0.0
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Sinit Sfinal µx µy µz

S43 S29 0.0 0.0 0.0
S43 S30 0.0 0.0 1.23339905
S43 S31 0.0 -0.67348906 0.0
S43 S32 0.17099422 0.0 0.0
S43 S33 0.0 0.0 -1.89146496
S43 S34 0.0 0.0 0.03897392
S43 S35 -2.89674572 0.0 0.0
S43 S36 0.0 0.0 0.1722626
S43 S37 -0.35497988 0.0 0.0
S43 S38 0.0 0.0 0.96830195
S43 S39 0.0 -1.02379219 0.0
S43 S40 0.02551873 0.0 0.0
S43 S41 -0.15559292 0.0 0.0
S43 S42 0.5155542 0.0 0.0
S43 S43 0.0 0.0 -2.02769353
S43 S44 0.0 0.0 0.97809453
S44 S0 0.0 0.6128152 0.0
S44 S1 0.0 -1.1e-07 0.0
S44 S2 -0.03161371 0.0 0.0
S44 S3 0.0 0.0 0.0
S44 S4 0.0 0.0 0.0
S44 S5 0.0 0.0 -0.36756218
S44 S6 0.0 0.0 0.0
S44 S7 0.0 0.0 0.0
S44 S8 0.0 -4e-08 0.0
S44 S9 0.0 0.07798317 0.0
S44 S10 0.0 2e-08 0.0
S44 S11 0.0 0.0 0.0
S44 S12 0.0 0.0 0.0
S44 S13 0.0 -0.03527538 0.0
S44 S14 0.0 -0.00529488 0.0
S44 S15 -0.79247351 0.0 0.0
S44 S16 0.0 0.0 1.28976177
S44 S17 0.0 0.0 0.0
S44 S18 0.0 0.0 0.0
S44 S19 0.0 0.0 0.0
S44 S20 0.0 0.0 -0.39380595
S44 S21 0.0 0.0 0.0
S44 S22 0.0 -0.05063163 0.0
S44 S23 -1.12878757 0.0 0.0
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Sinit Sfinal µx µy µz

S44 S24 0.0 0.0 1.53792337
S44 S25 -1.27526208 0.0 0.0
S44 S26 0.0 0.1428613 0.0
S44 S27 0.41284317 0.0 0.0
S44 S28 0.0 3.51e-06 0.0
S44 S29 0.0 0.0 0.0
S44 S30 0.0 0.0 -0.42025641
S44 S31 0.0 0.0478078 0.0
S44 S32 -0.00491693 0.0 0.0
S44 S33 0.0 0.0 0.47228967
S44 S34 0.0 0.0 0.00529624
S44 S35 0.0458868 0.0 0.0
S44 S36 0.0 0.0 0.18721309
S44 S37 -1.14777498 0.0 0.0
S44 S38 0.0 0.0 0.31683771
S44 S39 0.0 -0.51907338 0.0
S44 S40 0.42868041 0.0 0.0
S44 S41 -0.11134196 0.0 0.0
S44 S42 -0.6285367 0.0 0.0
S44 S43 0.0 0.0 0.97809453
S44 S44 0.0 0.0 -5.18552102
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A.2 Nitrobenzene with 13◦ Rotated Dihedral angle off from
Ground State Geometry

Table A.3: Calculated singlet energy levels of nitrobenzene with the NO2 group rotated to form
a 13◦ dihedral angle between the plane of the ring and the plane defined by the members of the
functional group. The bond angles and bond distances are the same as those for the ground state
optimized geometry.

State Symmetry Energy (eV)
S0 A1 0.0
S1 A1 4.173256832
S2 A1 4.563929072
S3 A1 4.582596704
S4 A1 4.957134992
S5 A1 5.8771388159999995
S6 A1 5.9669091519999995
S7 A1 5.975402895999999
S8 A1 6.29511632
S9 A1 6.370814192
S10 A1 7.339029472
S11 A1 7.54705616
S12 A1 7.581602063999999
S13 A1 8.6292136
S14 A1 8.84774656
S15 A1 8.913710367999998
S16 A1 9.222676256
S17 A1 9.251906192
S18 A1 9.275512527999998
S19 A1 9.360694768
S20 A1 9.43681424
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Table A.4: Calculated Singlet to Singlet dipole transitions of nitrobenzene with the NO2 group
rotated to form a 13◦ dihedral angle between the plane of the ring and the plane defined by the
members of the functional group. The bond angles and bond distances are the same as those
for the ground state optimized geometry. Dipole matrix elements were calculated though 1st and
2nd order response theory calculations as implemented in the Dalton quantum chemistry software
package. Here Sinit and Sfinal are used to represent the initial and final states of a dipole mediated
transition, and µx, µy, µz represent the strength of the dipole transition in atomic units.

Sinit Sfinal µx µy µz

S0 S0 0.0 0.0 -1.71817202
S0 S1 2.68e-10 -9.03e-11 0.074331482
S0 S2 0.009971888 -0.033220861 -5.96e-10
S0 S3 -1.07e-13 -2.68e-14 -3.43e-12
S0 S4 -1.08e-12 -4e-13 -2.42e-14
S0 S5 -6.25e-14 -1.89e-14 2.98e-12
S0 S6 6.56e-12 -1.03e-12 3.89e-14
S0 S7 0.022007786 -0.018304187 -2.33e-10
S0 S8 0.63082808 0.21451413 -3.18e-09
S0 S9 -1.47e-09 -6.47e-10 -0.89123235
S0 S10 -3.69e-13 -8.62e-15 -3.74e-11
S0 S11 -3.47e-09 -1.51e-10 -1.8793054
S0 S12 1.8183346 0.026092185 -3.26e-09
S0 S13 -5.07e-10 -9.16e-11 -0.32764627
S0 S14 -0.34033054 -0.1023732 -1.24e-10
S0 S15 -1.89e-09 -4.08e-10 0.13185306
S0 S16 -2.08e-11 -1.23e-10 -0.065582947
S0 S17 5.25e-10 -2.23e-09 0.032353253
S0 S18 0.003066984 0.25188953 4.18e-11
S0 S19 1.74e-14 8.51e-15 1.39e-12
S0 S20 -9.94e-10 3.41e-10 0.2229964
S1 S0 2.68e-10 -9.03e-11 0.074331482
S1 S1 4.9e-05 2.05e-06 -2.25491472
S1 S2 0.58018571 0.14445982 5.28e-06
S1 S3 7.6e-07 -1e-07 1e-08
S1 S4 -2.2e-07 -1e-08 -1e-08
S1 S5 -2.93e-06 5.7e-07 0.0
S1 S6 3.3e-07 1e-08 7e-08
S1 S7 0.01304391 0.00503539 -4e-08
S1 S8 0.01614673 -0.00703524 1.08e-06
S1 S9 3.51e-06 -2e-06 0.09618598
S1 S10 -2.87e-06 7e-08 -1e-08
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Sinit Sfinal µx µy µz

S1 S11 -1.18e-05 1.96e-06 -0.0705982
S1 S12 0.00100806 -0.00214225 1.04e-06
S1 S13 5.01e-06 -4.88e-06 0.04281955
S1 S14 -0.03611781 0.00277616 -2e-08
S1 S15 -5.7e-06 -7.93e-06 0.07781391
S1 S16 -4e-06 -8.32e-06 0.08085548
S1 S17 2.03e-06 -2e-07 -0.01157782
S1 S18 0.00800434 0.0040038 -8.2e-07
S1 S19 -8.6e-07 -1.6e-06 6e-08
S1 S20 1.34e-05 -3.79e-06 0.12394873
S2 S0 0.009971888 -0.033220861 -5.96e-10
S2 S1 0.58018571 0.14445982 5.28e-06
S2 S2 8.01e-05 6.35e-06 -2.18217425
S2 S3 -1.9e-07 -1e-08 -4e-08
S2 S4 4.03e-06 -7.2e-07 0.0
S2 S5 5.3e-07 6e-08 -1.1e-07
S2 S6 -2.82e-06 7.3e-07 -1e-08
S2 S7 -2.06e-05 1.5e-06 -0.02320817
S2 S8 -1e-08 -4.77e-06 -0.02125772
S2 S9 -0.05506959 -0.00231793 2.9e-07
S2 S10 -7e-08 0.0 1.7e-07
S2 S11 0.00077239 0.00273981 1.07e-06
S2 S12 -1.29e-06 2.25e-06 0.02803274
S2 S13 -0.02575671 -0.00063014 -9e-06
S2 S14 -6.68e-05 1.53e-05 -0.00844464
S2 S15 -0.01400232 0.00595011 1.47e-05
S2 S16 -0.02107763 -0.00298707 -1.34e-05
S2 S17 0.01714932 0.00277432 -6.3e-07
S2 S18 -4.62e-06 1.86e-06 -0.00584934
S2 S19 -6.1e-07 2e-08 1.67e-06
S2 S20 -0.02936287 0.00241162 2.95e-06
S3 S0 -1.07e-13 -2.68e-14 -3.43e-12
S3 S1 7.6e-07 -1e-07 1e-08
S3 S2 -1.9e-07 -1e-08 -4e-08
S3 S3 -8.02e-05 8.91e-06 -2.82622299
S3 S4 0.0667962 0.02217062 1.64e-06
S3 S5 -1.11e-05 1.89e-06 -0.06286559
S3 S6 -0.16864158 -0.03703783 -3.3e-07
S3 S7 1.8e-07 2e-08 -4.3e-07
S3 S8 1.7e-07 2e-08 -1e-08
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Sinit Sfinal µx µy µz

S3 S9 -1.55e-06 6.2e-07 0.0
S3 S10 6.3e-06 1.64e-06 -0.06868482
S3 S11 -4.6e-07 6e-07 0.0
S3 S12 -2.5e-07 0.0 -7e-08
S3 S13 -1.52e-06 -2.8e-07 -2.4e-07
S3 S14 -4.3e-07 -1e-08 3.92e-06
S3 S15 -9.3e-07 -3.1e-07 6.2e-07
S3 S16 1.29e-06 4e-08 1e-08
S3 S17 3.7e-07 6e-08 1e-08
S3 S18 -5e-08 -1e-08 -1.2e-07
S3 S19 0.00013443 -2.56e-05 -0.06980402
S3 S20 -6e-07 -2.09e-06 -3e-07
S4 S0 -1.08e-12 -4e-13 -2.42e-14
S4 S1 -2.2e-07 -1e-08 -1e-08
S4 S2 4.03e-06 -7.2e-07 0.0
S4 S3 0.0667962 0.02217062 1.64e-06
S4 S4 8.58e-05 -2.59e-06 -1.93446185
S4 S5 1.39513376 -0.01281112 -6.02e-05
S4 S6 -0.00021359 1.27e-05 0.02627293
S4 S7 -3.54e-05 7.67e-06 1.4e-07
S4 S8 6.3e-07 2.55e-06 -1e-08
S4 S9 -2.8e-07 0.0 0.0
S4 S10 -1.17147022 0.0112284 3.01e-05
S4 S11 -4.9e-07 5e-08 -4e-08
S4 S12 -3.69e-06 2.93e-06 -2e-08
S4 S13 -1e-06 1e-08 -1.8e-07
S4 S14 -5.9e-06 2.38e-06 -1.3e-07
S4 S15 -1.4e-06 2e-08 -1.2e-07
S4 S16 1.6e-07 0.0 -9e-08
S4 S17 1.6e-07 0.0 1.1e-07
S4 S18 8e-08 -7e-08 1e-08
S4 S19 0.24657757 0.0350243 -3.19e-05
S4 S20 -2.35e-06 7e-08 -7.9e-07
S5 S0 -6.25e-14 -1.89e-14 2.98e-12
S5 S1 -2.93e-06 5.7e-07 0.0
S5 S2 5.3e-07 6e-08 -1.1e-07
S5 S3 -1.11e-05 1.89e-06 -0.06286559
S5 S4 1.39513376 -0.01281112 -6.02e-05
S5 S5 0.00017859 -1.23e-05 -1.70813894
S5 S6 -0.32935515 0.00133433 1.57e-05
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Sinit Sfinal µx µy µz

S5 S7 -9.47e-06 -1.05e-06 3.2e-07
S5 S8 6.7e-07 1e-07 2.3e-07
S5 S9 2.82e-06 -6.2e-07 2e-08
S5 S10 0.00019943 -1.47e-05 0.40795097
S5 S11 -1.87e-06 -2.1e-07 -1e-08
S5 S12 -3e-07 -2.4e-07 -7e-08
S5 S13 -6.3e-07 -1.9e-07 -1e-08
S5 S14 -6e-08 -1e-08 9e-08
S5 S15 1.69e-06 6e-07 0.0
S5 S16 1.7e-07 -2e-08 -1e-08
S5 S17 2.8e-07 3e-08 0.0
S5 S18 1e-08 0.0 -1e-08
S5 S19 4.62e-06 -7.7e-07 0.08130132
S5 S20 -6.44e-06 2.3e-07 1.7e-07
S6 S0 6.56e-12 -1.03e-12 3.89e-14
S6 S1 3.3e-07 1e-08 7e-08
S6 S2 -2.82e-06 7.3e-07 -1e-08
S6 S3 -0.16864158 -0.03703783 -3.3e-07
S6 S4 -0.00021359 1.27e-05 0.02627293
S6 S5 -0.32935515 0.00133433 1.57e-05
S6 S6 0.00032037 -1.57e-05 -1.59442702
S6 S7 3.01e-05 -1.46e-05 1.2e-07
S6 S8 9.1e-06 -9.6e-07 0.0
S6 S9 1.33e-06 1.3e-07 0.0
S6 S10 0.44646315 -0.01226407 -1.59e-05
S6 S11 6e-08 -2e-08 -2e-08
S6 S12 7.41e-06 -3.16e-06 -2e-08
S6 S13 8.5e-07 -4e-08 4e-08
S6 S14 3.25e-06 -1.97e-06 0.0
S6 S15 4.5e-07 -2e-08 4e-08
S6 S16 -3.2e-07 1e-08 0.0
S6 S17 -3.2e-07 1e-08 0.0
S6 S18 -6e-08 2e-08 0.0
S6 S19 -0.18811072 -0.05488063 -7.72e-06
S6 S20 7.97e-06 -1.7e-07 -2.4e-07
S7 S0 0.022007786 -0.018304187 -2.33e-10
S7 S1 0.01304391 0.00503539 -4e-08
S7 S2 -2.06e-05 1.5e-06 -0.02320817
S7 S3 1.8e-07 2e-08 -4.3e-07
S7 S4 -3.54e-05 7.67e-06 1.4e-07
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Sinit Sfinal µx µy µz

S7 S5 -9.47e-06 -1.05e-06 3.2e-07
S7 S6 3.01e-05 -1.46e-05 1.2e-07
S7 S7 0.0006677 -4.81e-05 -1.68433501
S7 S8 -2.69e-05 7.1e-07 0.136212
S7 S9 0.87734821 -0.00598172 -3.14e-05
S7 S10 1.02e-05 7.7e-07 -2.4e-07
S7 S11 0.54175161 -0.01574501 -8.91e-06
S7 S12 -0.00015491 8.1e-07 -0.7641581
S7 S13 -0.03393907 0.0381633 6.09e-06
S7 S14 2.43e-05 1.91e-06 0.09079493
S7 S15 -0.35157369 -0.01900341 3.96e-06
S7 S16 0.03324073 -0.01015755 -1.05e-06
S7 S17 0.03283784 -0.05573303 -1.88e-06
S7 S18 -2.67e-06 -5.86e-06 -0.0666113
S7 S19 -3.5e-07 -1.3e-07 -2.2e-07
S7 S20 -0.38698502 0.00076337 4.72e-05
S8 S0 0.63082808 0.21451413 -3.18e-09
S8 S1 0.01614673 -0.00703524 1.08e-06
S8 S2 -1e-08 -4.77e-06 -0.02125772
S8 S3 1.7e-07 2e-08 -1e-08
S8 S4 6.3e-07 2.55e-06 -1e-08
S8 S5 6.7e-07 1e-07 2.3e-07
S8 S6 9.1e-06 -9.6e-07 0.0
S8 S7 -2.69e-05 7.1e-07 0.136212
S8 S8 -0.00017909 -2.15e-05 -2.18866342
S8 S9 0.02205881 0.00956621 2.06e-06
S8 S10 2.2e-07 1e-08 -3.3e-07
S8 S11 -0.0810751 -0.01171733 -1.66e-06
S8 S12 -2.91e-05 -4.86e-06 -0.12316439
S8 S13 0.37656406 0.01179711 -7.45e-06
S8 S14 9.82e-05 1.65e-05 0.54136118
S8 S15 0.05962157 0.04297644 1.81e-05
S8 S16 0.00326796 -0.0521216 1.36e-06
S8 S17 -0.00999954 -0.00630062 -4e-07
S8 S18 1.44e-05 1.25e-06 0.00154715
S8 S19 3.96e-06 2.1e-07 2.11e-06
S8 S20 0.18840992 0.01990897 4.4e-07
S9 S0 -1.47e-09 -6.47e-10 -0.89123235
S9 S1 3.51e-06 -2e-06 0.09618598
S9 S2 -0.05506959 -0.00231793 2.9e-07
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Sinit Sfinal µx µy µz

S9 S3 -1.55e-06 6.2e-07 0.0
S9 S4 -2.8e-07 0.0 0.0
S9 S5 2.82e-06 -6.2e-07 2e-08
S9 S6 1.33e-06 1.3e-07 0.0
S9 S7 0.87734821 -0.00598172 -3.14e-05
S9 S8 0.02205881 0.00956621 2.06e-06
S9 S9 0.00010439 -1.9e-06 -0.67203806
S9 S10 -4.32e-06 7.9e-07 0.0
S9 S11 -1.25e-05 -8.4e-07 -0.52186923
S9 S12 0.09906098 0.00029757 -6.96e-06
S9 S13 -4.14e-05 -3.07e-06 -0.05183272
S9 S14 -0.11272911 -0.01434768 4.95e-06
S9 S15 6.28e-05 -4.88e-06 0.17821949
S9 S16 -7.67e-06 7.67e-06 -0.11525705
S9 S17 1.57e-06 -4.81e-06 -0.03738266
S9 S18 0.02474744 -0.02401284 2.6e-07
S9 S19 7.58e-06 -2.92e-06 -2e-08
S9 S20 7.47e-05 4.75e-06 1.14806488
S10 S0 -3.69e-13 -8.62e-15 -3.74e-11
S10 S1 -2.87e-06 7e-08 -1e-08
S10 S2 -7e-08 0.0 1.7e-07
S10 S3 6.3e-06 1.64e-06 -0.06868482
S10 S4 -1.17147022 0.0112284 3.01e-05
S10 S5 0.00019943 -1.47e-05 0.40795097
S10 S6 0.44646315 -0.01226407 -1.59e-05
S10 S7 1.02e-05 7.7e-07 -2.4e-07
S10 S8 2.2e-07 1e-08 -3.3e-07
S10 S9 -4.32e-06 7.9e-07 0.0
S10 S10 1.09e-06 -6.6e-07 -0.7198112
S10 S11 3.04e-06 5e-07 4e-08
S10 S12 -3.42e-06 -3.3e-07 -1e-07
S10 S13 3.05e-06 -3.9e-07 -2e-08
S10 S14 5e-08 2e-08 -1.9e-07
S10 S15 -1.15e-06 -1.35e-06 -2e-08
S10 S16 -1.9e-07 -6e-08 1e-08
S10 S17 -1e-08 1.1e-07 0.0
S10 S18 1e-08 0.0 0.0
S10 S19 1.6e-06 -3.5e-07 -0.02490173
S10 S20 -1.01e-06 -8e-07 -5e-08
S11 S0 -3.47e-09 -1.51e-10 -1.8793054
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Sinit Sfinal µx µy µz

S11 S1 -1.18e-05 1.96e-06 -0.0705982
S11 S2 0.00077239 0.00273981 1.07e-06
S11 S3 -4.6e-07 6e-07 0.0
S11 S4 -4.9e-07 5e-08 -4e-08
S11 S5 -1.87e-06 -2.1e-07 -1e-08
S11 S6 6e-08 -2e-08 -2e-08
S11 S7 0.54175161 -0.01574501 -8.91e-06
S11 S8 -0.0810751 -0.01171733 -1.66e-06
S11 S9 -1.25e-05 -8.4e-07 -0.52186923
S11 S10 3.04e-06 5e-07 4e-08
S11 S11 0.00010719 -7e-06 -1.17995072
S11 S12 -0.26323495 -0.00011841 4.32e-06
S11 S13 -1.87e-05 2.88e-06 -0.17196151
S11 S14 0.11706717 0.01089557 -3.79e-06
S11 S15 -2.15e-05 4.81e-06 -0.20171318
S11 S16 2.86e-06 5.7e-07 0.07550888
S11 S17 3.45e-06 3.9e-07 0.02226655
S11 S18 -0.03271045 -0.01290471 8e-08
S11 S19 -1.22e-05 1.96e-06 0.0
S11 S20 -2.9e-07 -5.49e-06 -0.60895491
S12 S0 1.8183346 0.026092185 -3.26e-09
S12 S1 0.00100806 -0.00214225 1.04e-06
S12 S2 -1.29e-06 2.25e-06 0.02803274
S12 S3 -2.5e-07 0.0 -7e-08
S12 S4 -3.69e-06 2.93e-06 -2e-08
S12 S5 -3e-07 -2.4e-07 -7e-08
S12 S6 7.41e-06 -3.16e-06 -2e-08
S12 S7 -0.00015491 8.1e-07 -0.7641581
S12 S8 -2.91e-05 -4.86e-06 -0.12316439
S12 S9 0.09906098 0.00029757 -6.96e-06
S12 S10 -3.42e-06 -3.3e-07 -1e-07
S12 S11 -0.26323495 -0.00011841 4.32e-06
S12 S12 0.00010758 -2.82e-06 -1.34467896
S12 S13 -0.12778716 0.00952816 8.31e-06
S12 S14 -6.84e-06 5.75e-06 0.12526801
S12 S15 -0.24303732 0.00425744 1.15e-05
S12 S16 0.03930251 -0.00206084 -7.9e-07
S12 S17 0.00836749 0.04285395 -8e-07
S12 S18 -1.91e-06 -5.15e-06 0.03888172
S12 S19 7.2e-07 6e-08 -3.5e-07
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Sinit Sfinal µx µy µz

S12 S20 -0.6607976 0.01326818 1.09e-05
S13 S0 -5.07e-10 -9.16e-11 -0.32764627
S13 S1 5.01e-06 -4.88e-06 0.04281955
S13 S2 -0.02575671 -0.00063014 -9e-06
S13 S3 -1.52e-06 -2.8e-07 -2.4e-07
S13 S4 -1e-06 1e-08 -1.8e-07
S13 S5 -6.3e-07 -1.9e-07 -1e-08
S13 S6 8.5e-07 -4e-08 4e-08
S13 S7 -0.03393907 0.0381633 6.09e-06
S13 S8 0.37656406 0.01179711 -7.45e-06
S13 S9 -4.14e-05 -3.07e-06 -0.05183272
S13 S10 3.05e-06 -3.9e-07 -2e-08
S13 S11 -1.87e-05 2.88e-06 -0.17196151
S13 S12 -0.12778716 0.00952816 8.31e-06
S13 S13 -0.00042582 -2.04e-05 -3.13021741
S13 S14 -0.85889608 -0.00587774 4.08e-05
S13 S15 0.00032908 1.1e-05 1.48099344
S13 S16 -1.92e-05 -9.3e-07 -0.07583746
S13 S17 1.5e-05 9.3e-07 -0.01994969
S13 S18 0.01922809 0.00119296 4.9e-07
S13 S19 8.61e-06 -1.3e-07 -3e-08
S13 S20 1.61e-05 1.78e-06 0.26275133
S14 S0 -0.34033054 -0.1023732 -1.24e-10
S14 S1 -0.03611781 0.00277616 -2e-08
S14 S2 -6.68e-05 1.53e-05 -0.00844464
S14 S3 -4.3e-07 -1e-08 3.92e-06
S14 S4 -5.9e-06 2.38e-06 -1.3e-07
S14 S5 -6e-08 -1e-08 9e-08
S14 S6 3.25e-06 -1.97e-06 0.0
S14 S7 2.43e-05 1.91e-06 0.09079493
S14 S8 9.82e-05 1.65e-05 0.54136118
S14 S9 -0.11272911 -0.01434768 4.95e-06
S14 S10 5e-08 2e-08 -1.9e-07
S14 S11 0.11706717 0.01089557 -3.79e-06
S14 S12 -6.84e-06 5.75e-06 0.12526801
S14 S13 -0.85889608 -0.00587774 4.08e-05
S14 S14 -0.00023132 -2.48e-05 -3.15305014
S14 S15 0.48928467 -0.02428975 -2.83e-05
S14 S16 0.02351243 0.00240948 3.2e-07
S14 S17 0.00484549 -0.00014411 -2e-08
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Sinit Sfinal µx µy µz

S14 S18 -7.39e-06 9.4e-07 0.00841371
S14 S19 -1.46e-06 -3e-08 6e-08
S14 S20 -0.24713147 -0.0385675 1.96e-06
S15 S0 -1.89e-09 -4.08e-10 0.13185306
S15 S1 -5.7e-06 -7.93e-06 0.07781391
S15 S2 -0.01400232 0.00595011 1.47e-05
S15 S3 -9.3e-07 -3.1e-07 6.2e-07
S15 S4 -1.4e-06 2e-08 -1.2e-07
S15 S5 1.69e-06 6e-07 0.0
S15 S6 4.5e-07 -2e-08 4e-08
S15 S7 -0.35157369 -0.01900341 3.96e-06
S15 S8 0.05962157 0.04297644 1.81e-05
S15 S9 6.28e-05 -4.88e-06 0.17821949
S15 S10 -1.15e-06 -1.35e-06 -2e-08
S15 S11 -2.15e-05 4.81e-06 -0.20171318
S15 S12 -0.24303732 0.00425744 1.15e-05
S15 S13 0.00032908 1.1e-05 1.48099344
S15 S14 0.48928467 -0.02428975 -2.83e-05
S15 S15 -4.93e-05 -1.35e-05 -1.74674711
S15 S16 1.41e-05 6.63e-06 -0.04394848
S15 S17 1.25e-05 -3.08e-06 -0.02119869
S15 S18 0.03167193 0.00185779 4e-07
S15 S19 1.02e-05 -1.55e-06 2e-08
S15 S20 -0.00016372 4.99e-06 -0.02092554
S16 S0 -2.08e-11 -1.23e-10 -0.065582947
S16 S1 -4e-06 -8.32e-06 0.08085548
S16 S2 -0.02107763 -0.00298707 -1.34e-05
S16 S3 1.29e-06 4e-08 1e-08
S16 S4 1.6e-07 0.0 -9e-08
S16 S5 1.7e-07 -2e-08 -1e-08
S16 S6 -3.2e-07 1e-08 0.0
S16 S7 0.03324073 -0.01015755 -1.05e-06
S16 S8 0.00326796 -0.0521216 1.36e-06
S16 S9 -7.67e-06 7.67e-06 -0.11525705
S16 S10 -1.9e-07 -6e-08 1e-08
S16 S11 2.86e-06 5.7e-07 0.07550888
S16 S12 0.03930251 -0.00206084 -7.9e-07
S16 S13 -1.92e-05 -9.3e-07 -0.07583746
S16 S14 0.02351243 0.00240948 3.2e-07
S16 S15 1.41e-05 6.63e-06 -0.04394848
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S16 S16 0.00015216 -4.45e-06 -1.36125514
S16 S17 7.67e-06 -7.2e-07 -0.05851604
S16 S18 -0.07461609 -0.00060767 6.4e-07
S16 S19 2.96e-06 -3.2e-07 0.0
S16 S20 -5.74e-06 -1.05e-05 -0.00591966
S17 S0 5.25e-10 -2.23e-09 0.032353253
S17 S1 2.03e-06 -2e-07 -0.01157782
S17 S2 0.01714932 0.00277432 -6.3e-07
S17 S3 3.7e-07 6e-08 1e-08
S17 S4 1.6e-07 0.0 1.1e-07
S17 S5 2.8e-07 3e-08 0.0
S17 S6 -3.2e-07 1e-08 0.0
S17 S7 0.03283784 -0.05573303 -1.88e-06
S17 S8 -0.00999954 -0.00630062 -4e-07
S17 S9 1.57e-06 -4.81e-06 -0.03738266
S17 S10 -1e-08 1.1e-07 0.0
S17 S11 3.45e-06 3.9e-07 0.02226655
S17 S12 0.00836749 0.04285395 -8e-07
S17 S13 1.5e-05 9.3e-07 -0.01994969
S17 S14 0.00484549 -0.00014411 -2e-08
S17 S15 1.25e-05 -3.08e-06 -0.02119869
S17 S16 7.67e-06 -7.2e-07 -0.05851604
S17 S17 0.00031003 -1.71e-05 -2.9117312
S17 S18 -1.03302305 0.00512715 1.5e-05
S17 S19 4.8e-07 -2e-08 0.0
S17 S20 -9.49e-06 1.43e-05 -0.07000691
S18 S0 0.003066984 0.25188953 4.18e-11
S18 S1 0.00800434 0.0040038 -8.2e-07
S18 S2 -4.62e-06 1.86e-06 -0.00584934
S18 S3 -5e-08 -1e-08 -1.2e-07
S18 S4 8e-08 -7e-08 1e-08
S18 S5 1e-08 0.0 -1e-08
S18 S6 -6e-08 2e-08 0.0
S18 S7 -2.67e-06 -5.86e-06 -0.0666113
S18 S8 1.44e-05 1.25e-06 0.00154715
S18 S9 0.02474744 -0.02401284 2.6e-07
S18 S10 1e-08 0.0 0.0
S18 S11 -0.03271045 -0.01290471 8e-08
S18 S12 -1.91e-06 -5.15e-06 0.03888172
S18 S13 0.01922809 0.00119296 4.9e-07
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S18 S14 -7.39e-06 9.4e-07 0.00841371
S18 S15 0.03167193 0.00185779 4e-07
S18 S16 -0.07461609 -0.00060767 6.4e-07
S18 S17 -1.03302305 0.00512715 1.5e-05
S18 S18 0.00021871 -6.23e-06 -3.52528009
S18 S19 1e-08 0.0 0.0
S18 S20 0.06754775 0.00911442 -1.15e-06
S19 S0 1.74e-14 8.51e-15 1.39e-12
S19 S1 -8.6e-07 -1.6e-06 6e-08
S19 S2 -6.1e-07 2e-08 1.67e-06
S19 S3 0.00013443 -2.56e-05 -0.06980402
S19 S4 0.24657757 0.0350243 -3.19e-05
S19 S5 4.62e-06 -7.7e-07 0.08130132
S19 S6 -0.18811072 -0.05488063 -7.72e-06
S19 S7 -3.5e-07 -1.3e-07 -2.2e-07
S19 S8 3.96e-06 2.1e-07 2.11e-06
S19 S9 7.58e-06 -2.92e-06 -2e-08
S19 S10 1.6e-06 -3.5e-07 -0.02490173
S19 S11 -1.22e-05 1.96e-06 0.0
S19 S12 7.2e-07 6e-08 -3.5e-07
S19 S13 8.61e-06 -1.3e-07 -3e-08
S19 S14 -1.46e-06 -3e-08 6e-08
S19 S15 1.02e-05 -1.55e-06 2e-08
S19 S16 2.96e-06 -3.2e-07 0.0
S19 S17 4.8e-07 -2e-08 0.0
S19 S18 1e-08 0.0 0.0
S19 S19 2.2e-05 -2.66e-06 -3.05111504
S19 S20 -2.14e-05 9.3e-07 0.0
S20 S0 -9.94e-10 3.41e-10 0.2229964
S20 S1 1.34e-05 -3.79e-06 0.12394873
S20 S2 -0.02936287 0.00241162 2.95e-06
S20 S3 -6e-07 -2.09e-06 -3e-07
S20 S4 -2.35e-06 7e-08 -7.9e-07
S20 S5 -6.44e-06 2.3e-07 1.7e-07
S20 S6 7.97e-06 -1.7e-07 -2.4e-07
S20 S7 -0.38698502 0.00076337 4.72e-05
S20 S8 0.18840992 0.01990897 4.4e-07
S20 S9 7.47e-05 4.75e-06 1.14806488
S20 S10 -1.01e-06 -8e-07 -5e-08
S20 S11 -2.9e-07 -5.49e-06 -0.60895491
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Sinit Sfinal µx µy µz

S20 S12 -0.6607976 0.01326818 1.09e-05
S20 S13 1.61e-05 1.78e-06 0.26275133
S20 S14 -0.24713147 -0.0385675 1.96e-06
S20 S15 -0.00016372 4.99e-06 -0.02092554
S20 S16 -5.74e-06 -1.05e-05 -0.00591966
S20 S17 -9.49e-06 1.43e-05 -0.07000691
S20 S18 0.06754775 0.00911442 -1.15e-06
S20 S19 -2.14e-05 9.3e-07 0.0
S20 S20 0.00065806 -4.47e-05 -1.2216931
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