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Abstract

The framework of cognitively bounded rationality treats prob-
lem solving as fundamentally rational, but emphasises that it
is constrained by cognitive architecture and the task environ-
ment. This paper investigates a simple decision making heuris-
tic, Take The Best (TTB), within that framework. We formu-
late TTB as a likelihood-based probabilistic model, where the
decision strategy arises by probabilistic inference based on the
training data and the model constraints. The strengths of the
probabilistic formulation, in addition to providing a bounded
rational account of the learning of the heuristic, include natural
extensibility with additional cognitively plausible constraints
and prior information, and the possibility to embed the heuris-
tic as a subpart of a larger probabilistic model. We extend the
model to learn cue discrimination thresholds for continuous-
valued cues and experiment with using the model to account
for biased preference feedback from a bounded rational agent
in a simulated interactive machine learning task.
Keywords: Bayesian models; bounded rationality; heuristics;
Take The Best

Introduction
Natural environments require agents to make decisions with
incomplete information and in limited time. This, combined
with the agent’s limited information processing capacity, re-
sults in use of heuristic ‘good enough’, or ‘satisficing’, algo-
rithms, that do not necessarily consider all possible alterna-
tives (Simon, 1956). One such algorithm is Take The Best
(TTB), which uses subjectively ranked informative cues to
discriminate between alternatives (Gigerenzer & Goldstein,
1996). It searches through the ranked list of cues, until it
finds a cue that discriminates between two choices. At this
point, the search is stopped and decision made solely based on
the last cue. This type of decision-making behaviour can be
analysed under the concept of bounded rationality or compu-
tational rationality, where agents aim to maximise expected
utility of their actions, given their architectural bounds as
well as those of the task environment (Gershman et al., 2015;
Howes et al., 2009; Simon, 1956). The power of this approach
is that rational behaviour arises from the structure of the en-
vironment and the task.

TTB has been shown to approximate one of the core strate-
gies in human-level decision-making (Bröder, 2000). Schulz
et al. (2016) showed how the heuristic decision strategy
arises from its components, using an approximate Bayesian

computation inspired algorithm (ABC-TTB) to fit probabil-
ity distributions on the parameters. We build on this idea
and formalize a Probabilistic Take The Best model. Com-
pared to ABC-TTB, the probabilistic TTB formulated here
uses a proper likelihood-based model, with a noise model
included in the model specification. With the proper like-
lihood model, we can use standard Bayesian computational
tools for posterior inference, and the decision strategy arises
from the posited model structure by conditioning on the train-
ing dataset. When used with non-informative (uniform) pri-
ors, the model has no tunable parameters. Informative prior
distributions could be used to include prior knowledge.

The benefits of this approach are: (1) It lays out explicitly
the assumptions in the TTB heuristic, and separates compu-
tation and model. (2) It provides a principled approach to
learning the parameters of the model and their uncertainty,
and suggests a possibility to extend the model without need-
ing to change the computational framework. (3) It suggests
a possibility of including prior information (or biases) in the
prior distributions. (4) The TTB heuristic can be used as a
component in a larger probabilistic model, such that the un-
certainty of parameters in one component propagates in a nat-
ural way to other components.

Probabilistic extensions of TTB has also been considered
by others. For example, Lee (2016) introduces a similar error
model to ours, but focuses on model selection among multi-
ple heuristics. Heck et al. (2017) considers a more elaborate
error model, assuming higher rates of errors the more steps a
decision takes. Neither, however, learns the cue search order
and directions probabilistically. Our model could be naturally
extended with more complex error models and used in model
selection contexts.

In the next sections, we specify the model and give com-
putational details. We then demonstrate the benefits of the
formulation by proposing an extension for learning of cue
discrimination thresholds, that is, the minimum differences
in the cues for continuous or ordinal-valued cues required
for discrimination. After comparing the performance to clas-
sic TTB, ABC-TTB, and logistic regression on benchmark
datasets, we use the probabilistic TTB model as a component
of a larger probabilistic model and, in particular, simulate a
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function learning case. In the case study, a boundedly rational
(using TTB) agent is assumed, giving us pairwise preferences
on the function evaluated at pairs of points. We show how to
accommodate this bias in the function learning.

Probabilistic Take The Best Model
Let xi ∈ RM and x j ∈ RM be feature vectors of items i and
j. Let δi j = xi− x j ∈ RM be their difference. Take The Best
(TTB) looks at the features, called cues, one by one in a spe-
cific order to select which item is preferred. When it finds
the first cue that discriminates between the items (that is,
δ
(m)
i j 6= 0), it chooses one of the items as a winner depend-

ing on which direction is preferred for this cue. For example,
assume the mth cue discriminates and δ

(m)
i j > 0, and a large

value is preferred for the mth cue. The winner is then item
i and the output for the comparison is yi j = 1, whereas if a
smaller value would be preferred, then yi j = 0.

The parameters of the TTB model are the cue order and di-
rections. These are classically learned by looking at the cor-
relations of the cues with the criterion quantity in a training
set (Gigerenzer & Goldstein, 1996).

To formulate the probabilistic model, let g denote the cue
order (takes a value of a permutation of the M cues) and
d ∈ {−1,1}M the directions. For the probabilistic model to
tolerate noise, we allow the outcome of the comparison to
randomly flip (a flip noise likelihood), which brings in a third
parameter, the flip probability ε ∈ (0, 1

2 ). The probabilistic
model with uniform priors on g and d and a beta distribution
prior on ε (restricted to (0, 1

2 )) with parameters 1,1 (uniform)
is

p(g) =
1

M!
,

p(dm) =
1
2
, m = 1, . . . ,M,

p(ε) = 2I(0 < ε <
1
2
),

where the indicator function I(C) = 1 if the condition C holds
and 0 otherwise.

Let Tg,d(xi,x j) give the prediction of the non-probabilistic
TTB given the cue order g and directions d. Given g, d, and ε,
the observation model (implied by the flip noise assumption)
for yi j in the probabilistic model we introduce is

p(yi j | xi,x j,ε,g,d) =I(Tg,d(xi,x j) = 1)Ber(yi j | 1− ε)

+I(Tg,d(xi,x j) = 0)Ber(yi j | ε)

+I(Tg,d(xi,x j) =∅)Ber(yi j |
1
2
).

(1)

The Bernoulli (Ber) distributions model the flip noise. The
last branch, Tg,d(xi,x j) =∅ corresponds to the case of no dis-
criminating cues between i and j, with the outcome chosen
randomly with probability 1

2 .
The number of configurations of cue order and directions

is M!×2M . For a small number of cues, to compute the pos-
terior distribution p(g,d,ε | D) given a dataset D , one can

enumerate all the possibilities. For larger numbers, Markov
chain Monte Carlo sampling can be used. Computational de-
tails are given in the next section.

Computational Details
Computational details of the posterior distribution, parameter
inference, and predictive distribution are given in this section.
We first discuss how to simplify the likelihood and integrate
out the flip noise parameter ε analytically, allowing posterior
computation to focus on the cue search order and directions.
We give a Markov chain Monte Carlo algorithm for parameter
inference for cases where exhaustive computation over the
cue orders and directions is infeasible.

Marginalizing ε and Posterior Distribution
The likelihood given g, d, and ε is given by Equation 1.
This simplifies to ε for the pairs (yi j = 0,Tg,d(xi,x j) = 1)
and (yi j = 1,Tg,d(xi,x j) = 0), that is, when the observed
value and predicted value are different (called “wrong pre-
dictions” below), and to 1− ε for (yi j = 1,Tg,d(xi,x j) = 1)
and (yi j = 0,Tg,d(xi,x j) = 0), that is, when observed and pre-
dicted value are the same (called “correct predictions” be-
low). When Tg,d(xi,x j) = ∅ (called “undecided predictions”
below), the likelihood of either outcome is 1

2 .
We can then compute the likelihood for multiple observa-

tions of comparisons from a set of pairs P , Y = {yi j;(i, j) ∈
P}, X = {(xi,x j);(i, j) ∈ P}, and marginalize out ε:

p(Y | X ,g,d) =
∫ 1

2

0
∏

(i, j)∈P
p(yi j | xi,x j,ε,g,d)p(ε)dε

=
1
Zε

(
1
2

)N∅ ∫ 1
2

0
ε

Ni+α−1(1− ε)Nc+β−1dε

=
1
Zε

(
1
2

)N∅

B 1
2
(Ni +α,Nc +β),

(2)

where N∅, Ni, and Nc are the numbers of undecided, incor-
rect, and correct predictions by the TTB model with the cue
order g and directions d. Here, Zε is the normalizing constant
of the beta prior with parameters α and β restricted to (0, 1

2 )
(where α = 1, β = 1 for the uniform prior), and B 1

2
is the

incomplete beta function1.
Let D = (Y,X) be the observed training set. The posterior

probabilities p(g,d |D) are proportional to Equation 2, with
the sum Z = ∑g,d p(g,d |D) being the normalizing constant.

The conditional posterior distribution of ε given g,d is

p(ε |D,g,d) =
εNi+α−1(1− ε)Nc+β−1

B 1
2
(Ni +α,Nc +β)

.

This is a beta distribution with parameters Ni +α and Nc +β

restricted to (0, 1
2 ).

1“Unregularized” incomplete beta function, as defined by the in-
tegral in the second-to-last line of Equation 2.
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Markov Chain Monte Carlo Sampling

A collapsed Gibbs sampling algorithm is used. We first in-
tegrate over the noise flip probability ε and only sample over
the cue order g and directions d using Algorithm 1.

Algorithm 1: Markov chain Monte Carlo sampler.
Data: D = (Y,X) and g and d priors.
Result: S samples from p(g,d |D).
Initialize g and d, e.g., randomly.;
for s← 1 to S do

for m← 1 to M in random order do
1. Form all cue orders such that the cue m takes

all positions and the other cues remain in the
same order, giving M different cue orders.;

2. With the cue orders above, form all TTB
models with those orders and with the cue m
taking either direction and the directions of the
other cues kept constant, giving 2M models
(configurations of g and d).;

3. Sample the next configuration from these with
probabilities proportional to their unnormalized
posterior probabilities, that is, ∝ p(g,d |D).;

end
Save the configuration of g and d as the sth sample.;

end

Predictive Distribution

Given a pair of new data points x̃1 and x̃2, the posterior pre-
dictive distribution of their comparison ỹ is

p(ỹ | x̃1, x̃2,D)

= ∑
g,d

∫ 1
2

0
p(ỹ | x̃1, x̃2,ε,g,d)p(ε,g,d |D)dε

= ∑
g,d

p(g,d |D)
∫ 1

2

0
p(ỹ | x̃1, x̃2,ε,g,d)p(ε | g,d,D)dε

≈ 1
S

S

∑
s=1

∫ 1
2

0
p(ỹ | x̃1, x̃2,ε,g(s),d(s))p(ε | g(s),d(s),D)dε,

where the last line applies in the case we have sampled S sam-
ples (g(s),d(s)) from the posterior p(g,d |D).

The integral over ε again gives incomplete beta functions

∫ 1
2

0
p(ỹ | x̃1, x̃2,ε,g,d)p(ε | g,d,D)dε

=

(
1
2

)I∅ B 1
2
(Ni +α+ Ii,Nc +β+ Ic)

B 1
2
(Ni +α,Nc +β)

,

where I∅ = I(Tg,d(x̃1, x̃2) = ∅), Ii = I(Tg,d(x̃1, x̃2) 6= ỹ), and
Ic = I(Tg,d(x̃1, x̃2) = ỹ).

Extensions
Handling Correlation in the Comparisons
In the above, we have assumed that the yi j are independent
(conditional on the model parameters). This, however, would
often be expected to be violated. For example, we might often
assume (some degree of) transitivity: if i is preferred to j and
j to k, i could be assumed to be preferred to k.

In this work, we use a heuristic approach to account for
transitivity dependencies by downweighting the likelihood
terms of each yi j. When we observe the full set of pairwise
comparisons for N items, we assume that the ranking of the
items would be enough to decide all pairwise comparisons.
Since each pairwise comparison is 1 bit of information and
there are N! ways to rank N items (leading to log2 N! bits of
information), we assign a weight log2 N!

(N
2)

for each likelihood

term (the terms are raised to this power). More formal ways
of dealing with dependencies are left for future work.

Cue Discrimination Thresholds
For real-valued cues, practically all elements of δi j = xi− x j
will be non-zero and the first cue will always discriminate.
Yet, a small difference in a cue might be non-informative or
imperceptible for humans (especially, if the cues are not given
as precise numbers but, for example, visually), and large dif-
ferences are more salient. We can extend the model to in-
clude non-negative threshold parameters tm ∈ [0,∞) for each
cue, such that only differences |δ(m)

i j | > tm are considered to
discriminate between the items.

We have extended the MCMC sampling to allow sampling
over a discrete set of pre-specified thresholds for each cue
(assumed to have uniform prior). Extension to continuous-
valued thresholds would also be possible.

Results
We first establish that the probabilistic Take The Best model
is effective at learning from training data, and then demon-
strate the model as a part of a larger probabilistic model.

Performance on Benchmark Datasets
The accuracy of the probabilistic TTB (PTTB) model is com-
pared with the classic TTB, ABC-TTB, and logistic regres-
sion on four benchmark datasets. Heuristica R-package2 is
used for the classic TTB and logistic regression. ABC-TTB
code is from https://github.com/ericschulz/TTBABC3.
We used the same parameters for ABC-TTB as were used
for the city dataset by Schulz et al. (2016) and made no ef-
fort to tune them for the other datasets. The other mod-
els have no tuning parameters. MCMC computation with
1000 samples after burn-in of 100 was used for PTTB
models. The datasets homeless, profsalary, and city were
obtained from https://github.com/ericschulz/TTBABC

2https://cran.r-project.org/web/packages/heuristica/,
version 1.0.1.

3With minor bug fixes.
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Figure 1: Accuracy on homeless, profsalary, city, and mileage datasets as a function of training dataset size (fraction of full
data). Mileage data has a large number of samples and was run only up to 50% of full data (with fractions 0.01, 0.05 included).
TTB=Take The Best; ABC-TTB=Approximately Bayesian Computed Take The Best (Schulz et al., 2016); PTTB=Probabilistic
TTB; PTTB-CDT=PTTB with cue discrimination threshold learning.

and mileage dataset is from Matlab (“carbig.mat” with data
points containing missing data values removed).

Figure 1 shows the discrimination accuracies as a function
of training set size over 1000 replications of training and test
set splits. The PTTB performs comparably or better com-
pared to TTB and ABC-TTB methods. It also outperforms
logistic regression except in the mileage dataset, where logis-
tic regression is the best method expect in the smallest tested
training set size case. The cue discrimination threshold learn-
ing (PTTB-CDT) decreases performance modestly in home-
less and profsalary datasets, but increases performance con-
siderably in the mileage dataset.
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Figure 2: Scaled logarithm of the (unnormalized) posterior
probability for 50 first iterations of MCMC in each dataset,
starting from a random initial setting of parameters. For clear
visualization in one figure, each curve is scaled (over full
trace) such that its lowest value is 0 and highest is 1.

To examine the computational burden of finding good con-
figurations of cue order and directions, Figure 2 shows the
logarithm of the posterior probability of the first 50 iterations
of a single chain of MCMC for each of the datasets, starting
from a random configuration. Already a single iteration of the
MCMC algorithm is enough to locate good models. Figure 3
shows the posterior uncertainty in the cue search order for
PTTB, comparing it to the TTB cue validities. Although they
have roughly similar trends, there are also clear differences.
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Figure 3: PTTB cue rank posterior probabilities (heatmap)
and TTB cue validities (red line; y-axis runs from 0.5 to 1)
learned from full datasets.
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TTB as a Part of a Larger Probabilistic Model:
Linear Regression with Pairwise Observations
We simulate a situation where we are interested in learning a
function and there is an agent which can give us preferences
over pairwise evaluations of the function, but the preferences
are generated through a biased mechanism, perhaps due to
the limited cognitive abilities of the agent. More specifically,
we consider learning a linear regression function f (x) = wTx,
with regression weights w, where we have a few direct (yi,xi)
observations of the regression and a set of pairwise observa-
tions of whether f (xi) is larger or smaller than f (x j), gener-
ated using the TTB heuristic.

The main task is to learn the posterior distribution of w,
p(w | D,H ), where D = {(yi,xi); i = 1, . . . ,N} and H =
{hi j = ( f ∗(xi)> f ∗(x j));(i, j)∈P}, where P is a set of pairs,
where pairwise preference observations are available, and the
superscript ∗ reminds us that the observations are biased. We
use a Gaussian linear regression with a Gaussian prior on w:

p(yi | xi,w) = N(yi | wTxi,σ
2), i = 1, . . . ,N,

p(w) = N(w | 0,τ2),

where we fix σ2 = 1 and τ2 = 1 and generate a simulated
dataset D by sampling from the true model. The posterior
distribution given D is p(w |D)∝ p(w)∏i p(yi | xi,w) (which
is a multivariate Gaussian distribution).

To simulate an agent generating the pairwise observations,
we first form a grid of points in the covariate space, denoting
the set of points XG. We then form all pairwise comparisons
between these points given the true function f (or equiva-
lently the true weights w) and use them as a training set to
learn a TTB model. The observations H are then predictions
from this TTB at a subset of the grid points. This simulates
an agent who knows the true function, but can only access
it through the heuristic TTB model. (We further included a
threshold such that two covariate values must be further apart
than it for them to discriminate in the TTB model.)

To use the pairwise observations to learn about w, we ex-
tend the model to include H through the probabilistic TTB
model, similar to what was used to generate the observations:

∏
(i, j)∈P

p(hi j | xi,x j,ε,g,d)p(ε,g,d | XG,w),

where the latter term is the posterior of a TTB model, where
all pairwise comparisons generated by using w to predict the
function values in the grid XG are used as the training data.
We further marginalize the TTB parameters to get the fac-
tor p(H | XH ,XG,w), where XH denotes the set of pairs of
points for which we have pairwise observations. That is, the
posterior of w is now

p(w |D,H ) ∝ p(w)∏
i

p(yi | xi,w)p(H | XH ,XG,w)

= p(w)∏
i

p(yi | xi,w)×

∑
g,d

∫ 1
2

0
∏

(i, j)∈P
p(hi j | xi,x j,ε,g,d)p(ε,g,d | XG,w)dε.

In other words, the likelihood term p(H | XH ,XG,w) mod-
els how well the observed pairwise preferences H are con-
cordant with a probabilistic TTB model induced by w on the
points XG. The regions with values of w with high concor-
dance will get higher posterior mass. Exact computation of
the probabilistic TTB model by enumeration is used in this
experiment.

For comparison, we also formulate a model that includes
the pairwise observations, but assumes them unbiased. For
this we use the flip-noise likelihood

p(hi j | xi,x j,w,κ) = I((xi− x j)
Tw > 0)Ber(hi j | 1−κ)

+ I((xi− x j)
Tw < 0)Ber(hi j | κ)

+ I((xi− x j)
Tw = 0)Ber(hi j |

1
2
)

with uniform prior on the flip-noise parameter κ∈ (0, 1
2 ). The

product of these terms over the observations in H is marginal-
ized over κ to get the factor p(H | XH ,w) for this alternative
model.

Figure 4 shows the posterior densities for w computed over
a grid of points for a case with 2 training data points in D
and H containing all pairwise comparisons of a randomly se-
lected set of 10 points xi from a generated grid XG, with true
w being (1,0.8). The TTB-generated pairwise observations
help to concentrate the posterior density. However, if the bi-
ased nature of the observations is not accounted for, the main
bulk of posterior mass misses the true value. For comparison,
the figure also shows the result if we would have unbiased
pairwise observations.

No pairwise obs.
−2 −1 0 1 2

−2

−1

0

1

2

w2

w
1

lower higher

TTB obs.
& TTB model

Unbiased obs.
& TTB model

TTB obs.
& unbiased model

Unbiased obs.
& unbiased model

Figure 4: Posterior densities p(w | D,H ) computed over a
grid of (w1,w2) values and scaled such that the highest value
in each is 1 (that is, the subfigures are not on the same scale).
The true w is indicated by a red circle.

Discussion
We formulated a probabilistic, likelihood-based model of the
Take The Best (TTB) heuristic. The decision strategy, that
is, the cue search order, directions, and the decision uncer-
tainty (or noise), arises from the posited model structure by
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conditioning on the data and using probabilistic inference
(Bayes theorem). The learning performance of the model
compared favourably to classic TTB, ABC-TTB, and logistic
regression. This indicates, together with fast convergence of
the MCMC computation to good configurations of cue order
and directions, that the probabilistic TTB provides a compu-
tationally frugal formulation of the Take The Best decision
strategy (although this particular computational strategy is
not uniquely positioned; any that implements Bayesian in-
ference would suffice). We also presented an extension to
learning cue discrimination thresholds for continuous-valued
cues. This moves the TTB heuristic towards a compen-
satory model, similar to the evidence accumulation model
of Lee & Cummins (2004) that interpolates between non-
compensatory (single cue) and compensatory (multi-cue) de-
cision making by learning a stopping rule (evidence thresh-
old). Indeed, the extension considerably increased the deci-
sion accuracy in the mileage dataset, the only dataset where
the compensatory logistic regression outperformed the TTB
models.

Our model states that cue order results from rational adap-
tation, where the agent learns the optimal ordering of cues,
given the task environment (cues and choices). This means
that the principle of cue ordering is cognitively bounded, or
computational, rationality. Another principle that has been
suggested is fluency, where the memory retrieval time or vi-
sual saliency determines the cue order (Dimov & Link, 2017).
The principle of cognitively bounded rationality does not ex-
clude the latter possibility. In fact, its analysis of task be-
haviour that arises from the constraints of the environment
and the cognitive architecture readily accepts such constraints
as memory or vision. Above, we assumed perfect and imme-
diate recall of cues, but it is entirely possible to extend the
model to account for memory fluency. The resulting agent
would – again, using rational adaptation – adjust the cue or-
der based on how readily they are available for recall. Future
work should add such constraints to the model, and investi-
gate how the choice strategies change as their function.

We further demonstrated the benefit of formulating a prob-
abilistic heuristic model by including it as a component in a
function learning task to model preferential feedback from a
biased agent. We believe that formulating joint probabilistic
models of machine learning tasks and cognitive user mod-
els will be important, for example, in expert knowledge elic-
itation and interactive, human-in-the-loop machine learning
(Daee et al., 2017, 2018). Notably, the probabilistic formal-
ism allows naturally capturing our evolving uncertainty about
the user’s decision strategy (e.g., cue search order) in interac-
tion and propagate it to other parts of the system. This high-
lights a role for cognitive science in the next generation of
machine learning systems that interact and learn together with
human experts and end-users. Cognitive user models can be
used to increase the performance of the systems and allow for
more natural and efficient human–computer interaction. Im-
portant future work is to evaluate the presented approach with

human decision data and interaction.
Source code for the probabilistic TTB and the experiments

is available at https://github.com/to-mi/pttb.
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