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Hybrid Two-Component Sensors for Identification of Bacterial
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Juanito V. Parales,a Yu-Jing Wang,c Yu-Wen Huo,c Shuang-Jiang Liu,c Jayna L. Ditty,b Valley Stewart,a Rebecca E. Paralesa

aDepartment of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, California, USA
bDepartment of Biology, College of Arts and Sciences, University of St. Thomas, St. Paul, Minnesota, USA
cState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

ABSTRACT Soil bacteria adapt to diverse and rapidly changing environmental condi-
tions by sensing and responding to environmental cues using a variety of sensory sys-
tems. Two-component systems are a widespread type of signal transduction system
present in all three domains of life and typically are comprised of a sensor kinase and a
response regulator. Many two-component systems function by regulating gene expres-
sion in response to environmental stimuli. The bacterial chemotaxis system is a modified
two-component system with additional protein components and a response that, rather
than regulating gene expression, involves behavioral adaptation and results in net
movement toward or away from a chemical stimulus. Soil bacteria generally have 20 to
40 or more chemoreceptors encoded in their genomes. To simplify the identification of
chemoeffectors (ligands) sensed by bacterial chemoreceptors, we constructed hybrid
sensor proteins by fusing the sensor domains of Pseudomonas putida chemoreceptors to
the signaling domains of the Escherichia coli NarX/NarQ nitrate sensors. Responses to po-
tential attractants were monitored by �-galactosidase assays using an E. coli reporter
strain in which the nitrate-responsive narG promoter was fused to lacZ. Hybrid receptors
constructed from PcaY, McfR, and NahY, which are chemoreceptors for aromatic acids,
tricarboxylic acid cycle intermediates, and naphthalene, respectively, were sensitive and
specific for detecting known attractants, and the �-galactosidase activities measured in
E. coli correlated well with results of chemotaxis assays in the native P. putida strain. In
addition, a screen of the hybrid receptors successfully identified new ligands for chemo-
receptor proteins and resulted in the identification of six receptors that detect propi-
onate.

IMPORTANCE Relatively few of the thousands of chemoreceptors encoded in bacterial
genomes have been functionally characterized. More importantly, although methyl-
accepting chemotaxis proteins, the major type of chemoreceptors present in bacteria,
are easily identified bioinformatically, it is not currently possible to predict what chemi-
cals will bind to a particular chemoreceptor. Chemotaxis is known to play roles in bio-
degradation as well as in host-pathogen and host-symbiont interactions, but many stud-
ies are currently limited by the inability to identify relevant chemoreceptor ligands. The
use of hybrid receptors and this simple E. coli reporter system allowed rapid and sensi-
tive screening for potential chemoeffectors. The fusion site chosen for this study resulted
in a high percentage of functional hybrids, indicating that it could be used to broadly
test chemoreceptor responses from phylogenetically diverse samples. Considering the
wide range of chemical attractants detected by soil bacteria, hybrid receptors may also
be useful as sensitive biosensors.

KEYWORDS Pseudomonas putida, biosensor, methyl-accepting chemotaxis protein,
receptor, two-component system
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Signal transduction pathways play an essential role in the survival and adaptation of
bacteria in response to environmental changes. Two-component regulatory sys-

tems, which in their simplest form are composed of a sensor protein and a response
regulator, are integral in sensing environmental stimuli and relaying the information to
the cell (reviewed in reference 1). Two well-characterized two-component systems in
Escherichia coli are the nitrate-responsive sensory proteins NarX/NarQ and their corre-
sponding response regulators NarL/NarP (reviewed in reference 2). Under anoxic
conditions, nitrate respiration is energetically more favorable than other anaerobic
respiratory or fermentative pathways, and the NarX/L and NarQ/P two-component
systems are used by E. coli to detect the presence of nitrate and turn on the genes for
nitrate respiration. NarX and NarQ are transmembrane sensory histidine kinases that
autophosphorylate when bound to nitrate and nitrite and then donate phosphoryl
groups to NarL and NarP. The phosphorylated forms of NarL and NarP are transcrip-
tional activators that bind to nitrate-responsive promoters to activate the transcription
of genes encoding the nitrate respiration enzymes, such as nitrate reductase. NarX/
NarQ hybrid sensors have been constructed to elucidate the structural elements
important for sensing and signaling in two-component systems (3, 4). Many of these
studies involved the use of a strain in which the NarL-responsive narG promoter was
fused to a lacZ reporter gene (5) so that NarX/NarQ kinase activity resulting from nitrate
binding can be easily measured as increased �-galactosidase activity.

Methyl-accepting chemotaxis proteins (MCPs) represent another important group of
signal transduction proteins that share sensory domain architecture similar to that
found in two-component systems (6, 7). MCPs are transmembrane chemoreceptors that
detect chemical attractants and repellents and transmit the chemotaxis signal to the
flagellar motor(s) via a phosphorylation cascade (reviewed in references 8 and 9).
However, MCPs do not have a histidine kinase function like other two-component
sensory proteins but rather rely on the adaptor protein CheW to link the MCP to a
histidine kinase called CheA. In the absence of an attractant or in response to increasing
repellent concentrations, CheA autophosphorylates a conserved histidine residue, and
the phosphoryl group is donated to the response regulator CheY. Phosphorylated CheY
binds to the flagellar motor, causing a switch in the direction of flagellar rotation and
a random change in swimming direction. In contrast, increasing concentrations of an
attractant inhibit CheA autophosphorylation, and as a consequence, CheY remains
unphosphorylated, which reduces the rate of motor switching and results in longer
periods of smooth swimming up the gradient of the attractant. MCPs share a signaling
motif called HAMP (histidine kinase, adenylyl cyclase, MCP, and phosphatase) with
other membrane-associated sensory systems, such as NarX/Q (reviewed in reference
10). The HAMP domain connects the periplasmic ligand-binding domain (LBD) of the
MCP to the cytoplasmic signaling domain and is essential for transmitting the sensory
signal.

Bacteria are faced with constant environmental changes in pH, nutrients, and
oxygen, and chemotaxis allows them to sense these changes and move toward niches
that are optimal for their survival and growth. The number of MCPs varies between
microbial species and often reflects their metabolic diversity and lifestyle (11). For
example, Escherichia coli, which has four MCPs and one MCP-like energy taxis receptor,
mainly senses nutrients such as simple sugars and amino acids and also signaling
molecules like AI-2 and indole (12–14). In contrast, the more metabolically versatile
Pseudomonas putida strains have at least 25 MCPs or MCP-like proteins. In addition to
sugars and amino acids, P. putida is known to sense a wide range of naturally occurring
and xenobiotic aromatic compounds (14, 15).

To date, relatively few MCPs and MCP-like proteins from soil bacteria have been
characterized, but ligands for several MCPs from various pseudomonads and rhizobia
have been characterized in recent years (14, 16). Although there are numerous known
attractants and repellents for various soil bacteria, the relevant chemoreceptors often
remain unidentified due to various technical constraints in current methods (16).
Previous studies have utilized the construction of hybrid receptors to help elucidate the
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protein function of E. coli MCPs (17, 18), E. coli Nar proteins (3), and Nar-MCP chimeras
(19, 20). In this study, we constructed MCP-Nar hybrid receptors and expressed them in
an E. coli reporter strain (i) to test if their readout is an accurate proxy for chemotactic
responses, (ii) to test whether hybrid receptors have the potential to be used as
sensitive biosensors, and (iii) to develop a rapid and quantitative method to identify the
ligands of MCPs of unknown function.

RESULTS
In vitro binding of the PcaY LBD to selected attractants. As a proof of concept

to validate the function, sensitivity, and specificity of MCP-Nar hybrid receptors, we first
generated hybrids of the aromatic acid receptor PcaY from P. putida F1. This MCP
detects a wide range of aromatic acids and hydroaromatic compounds as attractants
and mediates weak to very strong responses depending on the attractant (21). Two
lines of evidence suggested that these attractants bind directly to the receptor: the
finding that a catabolic mutant unable to catabolize vanillate still responded to
vanillate and the observation that the response to nonmetabolizable substituted
benzoates was mediated by PcaY (21). These findings, however, did not rule out the
possibility that a periplasmic binding protein could serve as the primary chemorecep-
tor. Here, binding of the PcaY LBD to ligands was verified in vitro by isothermal titration
calorimetry (ITC). As shown in Fig. 1, the PcaY LBD bound to 4-hydroxybenzoate
(4-HBA), quinate, vanillate, and shikimate with Kd (dissociation constant) values of 5.5,
7.7, 10, and 37 �M, respectively (Table 1). The ΔH values for 4-HBA, quinate, vanillate,
and shikimate were calculated to be �161, �177, �67.4, and �177 kJ/mol, respec-
tively. Binding was driven by very favorable enthalpy changes (ΔH) and counterbal-
anced by large unfavorable entropy changes (TΔS), which were �131, �148, �59.6,
and �149 kJ/mol for 4-HBA, quinate, vanillate, and shikimate, respectively. As a con-
sequence, for all of these reactions, the Gibbs free energy (ΔG � ΔH � TΔS) values were
negative. Benzoate, a good growth substrate and attractant, and 4-nitrobenzoate
(4-NBA), a nonmetabolizable aromatic acid that serves as a weak attractant for P. putida
F1 (21), were found to bind to the PcaY LBD (Fig. 1) but with higher Kd values (96 �M
and 60 �M, respectively). In contrast, 2-chlorobenzoate (2-CBA), which elicited a barely
detectable chemotactic response in P. putida F1 (21), did not bind to the PcaY LBD at
the concentrations tested (see Fig. S1 in the supplemental material). Although vanillin
is a weak attractant for P. putida F1 (21), based on ITC, there was no binding between
vanillin and the PcaY LBD, even when the concentration of PcaY was increased from
100 to 258 �M or the concentration of vanillin was increased from 0.5 to 1 mM (Fig. S1).
Control experiments with citrate, which is known to be detected by a different MCP in
P. putida F1 (McfQ) (22), showed no binding to the PcaY LBD (Fig. S1). In addition,
according to the ITC results, there was no binding between the PcaY LBD and
p-coumarate (1 mM) (Fig. S1), a structurally related aromatic acid that we recently
showed is sensed via the energy taxis receptor Aer-2 in P. putida F1 (23). These results
provide direct evidence that the PcaY LBD binds specifically to chemicals that are
sensed by PcaY in P. putida F1 and are consistent with ITC results with the PcaY LBD
from P. putida KT2440 (Table 1) (24).

Construction of MCP-Nar hybrid sensors. To construct hybrid PcaY-Nar receptors,
we first aligned amino acid sequences of the HAMP domains of PcaY with those of the
Nar proteins NarQ and NarX (Fig. 2A) along with those of the E. coli MCP Tsr and the
Salmonella enterica MCP Tar for comparison. Based on these sequence alignments and
junction points of previously constructed functional hybrids of NarX and NarQ (3), four
PcaY-Nar hybrid receptors were generated with different junction points as described
in Materials and Methods and as shown in Fig. 2A and B. Two hybrids containing the
HAMP domains of the NarX and NarQ proteins, respectively, were generated. In one,
Pro217 of the LBD of PcaY was joined to NarX at Trp182 (designated PcaY-NarXHAMP)
or NarQ at Leu180 (PcaY-NarQHAMP), a junction point that had previously resulted in
functional hybrids between NarX and CpxA and between NarQ and NarX (3). Two
additional hybrids containing the HAMP domain of PcaY were constructed: in one,
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Ser258 of PcaY was joined to NarQ at Leu222 (PcaYHAMP-NarQ) (Fig. 2), as in the
previously reported NarX-NarQ-5 hybrid (3). According to sequence alignments, leucine
222, which is located at the end of the AS2 region of the HAMP domain, is conserved
in NarX, NarQ, and the MCPs Tar and Tsr (Fig. 2A), whereas in the PcaY HAMP domain,

FIG 1 Results of ITC experiments to measure binding of ligands to the PcaY LBD. Binding of the aromatic compounds 4-hydroxybenzoate (4-HBA), benzoate,
4-nitrobenzoate (4-NBA), and vanillate and the hydroaromatic compounds quinate and shikimate, which are sensed by P. putida F1 via PcaY, was tested.
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a glutamine residue is present at the corresponding position. Therefore, to determine
whether this specific amino acid is important for signaling, a construct with an L222Q
substitution was also made (PcaYHAMP-NarQL222Q).

The PcaY-NarQHAMP hybrid sensor is functional in E. coli. To test whether the
hybrid receptors are functional, each of the constructs was introduced into the E. coli
reporter strain VJS5054, in which the nitrate-responsive narG promoter is fused to lacZ
[�(narG-lacZ)], which allows rapid detection of NarX and NarQ signaling using
�-galactosidase assays (5) (Fig. S2). E. coli VJS5054 carrying each construct was grown
anaerobically in the presence and absence of 4-HBA, a known attractant for PcaY, and
the expression of lacZ was monitored using �-galactosidase assays. In bacterial che-

TABLE 1 PcaY binding constants determined by ITC and estimated from �-galactosidase
activitiesc

Ligand
Kd of PcaY
LBD (�M)

Kd of PcaY_PP
LBDa (�M)

Estimated binding
affinityb (�M)

4-HBA 5.5 7.2 15
Benzoate 96 90 316
Protocatechuate ND 6.4 15
Vanillate 10 10 112
Quinate 7.7 3.7 10
Shikimate 37 37 66
4-Nitrobenzoate 60 61 ND
aData for PcaY from P. putida KT2440 (24).
bEstimated from a plot of the relative �-galactosidase activity versus the ligand concentration using Prism
(see Materials and Methods and Fig. S3).

cND, not determined.

FIG 2 Design of PcaY-Nar hybrids. (A) Amino acid (aa) sequence alignments of the HAMP domains in Tar (from
Salmonella enterica); Tsr, NarX, and NarQ (from E. coli); PcaY (from P. putida F1); and the constructed PcaY-NarX/Q
hybrids. The HAMP domain consists of two amphipathic helices (AS1 and AS2) joined by an unstructured
connecting sequence (3, 70). Sequences from NarX, NarQ, and PcaY are highlighted in blue, yellow, and green,
respectively. (B) Schematic diagram displaying the elements of NarX, NarQ, and PcaY in the hybrid constructs.
Segments from NarX, NarQ, and PcaY are shown in yellow, blue, and green, respectively. The red star denotes the
approximate location of the L222Q amino acid substitution in PcaYHAMP-NarQL222Q.
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motaxis, the MCP is in the “off” state when the ligand is bound (Fig. S2). In this state,
the level of phosphorylation of the response regulator CheY is low, resulting in fewer
changes in the direction of flagellar rotation (i.e., fewer tumbles) and, consequently,
longer periods of smooth swimming toward the attractant (8). In contrast, nitrate
binding of NarQ or NarX produces an “on” state, resulting in greater phosphorylation
of the response regulator NarL and transcriptional activation of the nitrate-responsive
promoter (2). Since the PcaY sensing domain in the hybrid sensors is fused to the
NarX/Q signaling domain, binding of the attractant to the LBD of the hybrid receptor
would result in less phosphorylation of the response regulator NarL, which in turn
would reduce expression from the narG promoter (Fig. S2) and result in lower
�-galactosidase activity. Therefore, the default state of functional hybrid receptors
would be “on,” resulting in high levels of �-galactosidase activity; when the cognate
attractant is added, the receptor would shift to the “off” state, resulting in lower
�-galactosidase activity.

E. coli VJS5054 cultures carrying the various PcaY-NarX/Q hybrid constructs were
tested for responses to 0.5 mM and 1 mM 4-HBA (Fig. 3). Of the four hybrids, only
PcaY-NarQHAMP showed high �(narG-lacZ) expression levels in the absence of a
ligand and a significant decrease in �(narG-lacZ) expression in response to 0.5 mM
and 1 mM 4-HBA (�15- and 27-fold reductions, respectively). Although VJS5054
carrying PcaYHAMP-NarQ had low �(narG-lacZ) expression levels, it showed a weak
concentration-independent response (�2-fold reduction in �-galactosidase activity in
response to either 0.5 mM or 1 mM 4-HBA). In contrast, strains carrying PcaY-NarXHAMP
and PcaYHAMP-NarQL222Q had low �-galactosidase activity and showed no response to
the presence of the attractant (Fig. 3). Therefore, PcaY-NarQHAMP (the hybrid in which

FIG 3 �(narG-lacZ) expression in E. coli VJS5054 carrying the four PcaY-Nar hybrid constructs. Responses
to 0.5 mM and 1 mM 4-HBA were tested. A schematic model of the four hybrids is shown, with elements
from NarX, NarQ, and PcaY denoted in yellow, blue, and green, respectively. �-Galactosidase activity is
reported in Miller units, and results are the averages from at least three independent experiments, with
error bars representing standard deviations.
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PcaY is fused to NarQ via the native NarQ HAMP domain) was selected for further
characterization. For simplicity, we refer to this functional construct as PcaY-NarQ.

The hybrid PcaY-NarQ sensor responds only to compounds that are sensed as
chemoattractants by PcaY in P. putida F1. To demonstrate that the responses seen
with the PcaY-NarQ hybrid receptor were specific to the LBD of PcaY and not to an
artifact of NarQ signaling, the wild-type NarQ construct was tested for responses to
nitrate and 4-HBA. As expected, given the sensing mechanism of wild-type NarQ, the
�(narG-lacZ) expression level was low in the absence of the ligand, and it increased
�15-fold in the presence of 40 mM nitrate (Fig. 4). �-Galactosidase activity remained
low in the presence of 1 mM 4-HBA, indicating that NarQ itself cannot detect the
aromatic attractant 4-HBA. Additionally, we tested the response of the strain carrying
PcaY-NarQ to nitrate and failed to see a response (Fig. 4). Together, these results
demonstrate that the changes in �(narG-lacZ) expression are due solely to binding of
the ligand to the PcaY LBD.

Next, we tested a range of aromatic and hydroaromatic compounds to evaluate
whether PcaY-NarQ can differentiate between chemicals that are known attractants
sensed by PcaY in the native host and structurally similar compounds that are not
sensed via PcaY. As shown in previous studies (21), quinate, 3-nitrobenzoate, and
2-chlorobenzoate are considered strong, moderate, and weak attractants sensed by
PcaY, respectively, and although p-coumarate is an attractant for P. putida F1, the
response is mediated by the energy taxis receptor Aer-2 but not PcaY (23). VJS5054
cells expressing PcaY-NarQ were grown in the absence (control) and presence of
equimolar amounts (1 mM) of each of these compounds as well as 4-HBA, and
expression of the �(narG-lacZ) operon fusion was monitored. As shown in Fig. 4,
4-HBA and quinate elicited the strongest responses (�10-fold decrease in activity),
followed by 3-nitrobenzoate (5-fold decrease), and the weakest response was from
2-chlorobenzoate (2-fold decrease). These results correlate with the strength of the
chemotactic responses to these compounds by P. putida F1 (21). Importantly, there was
no response to p-coumarate even though this compound is similar in structure to the
attractants sensed by PcaY (Fig. 4). These results demonstrate that the hybrid receptor
specifically binds chemicals that are sensed as attractants via PcaY.

The chimeric receptor is sensitive to changes in attractant concentrations. We
next examined the sensitivity of the hybrid receptor by varying the concentrations of

FIG 4 �(narG-lacZ) expression in E. coli VJS5054 carrying the native NarQ and PcaY-NarQ hybrid
receptors. �-Galactosidase activity in response to the presence of 40 mM nitrate or 1 mM 4-HBA, quinate,
3-nitrobenzoate (3-NBA), 2-chlorobenzoate (2-CBA), or p-coumarate was monitored. �-Galactosidase
activity is reported in Miller units, and the results are the averages from at least three independent
experiments, with error bars representing standard deviations.
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attractants sensed by PcaY to determine whether the response was concentration
dependent. The E. coli reporter strain carrying the hybrid receptor PcaY-NarQ was
grown anaerobically in the presence of 0.01, 0.1, 1.0, and 10 mM 4-HBA, benzoate,
protocatechuate (PCA), vanillate, vanillin, quinate, or shikimate, and �(narG-lacZ) ex-
pression was monitored. The responses to all compounds were concentration depen-
dent (Fig. 5A). Binding affinities were estimated from plots of the ligand concentration
versus the ratio of LacZ activity in response to each chemical relative to that in the
absence of an added ligand (Fig. S3); these values were remarkably similar to those
determined in vitro by ITC (Table 1), especially since the estimations were made using
only three or four ligand concentrations. In general, these results are also comparable

FIG 5 Comparison of the sensitivity of the hybrid PcaY-NarQ receptor in E. coli VJS5054 with that of the
native chemoreceptor PcaY in P. putida F1. (A) Responses of the E. coli reporter strain carrying PcaY-NarQ
to 4-HBA, benzoate, PCA, vanillate, vanillin, quinate, and shikimate measured using �-galactosidase
assays. Colored triangles below the results indicate increasing concentrations of the ligand (0, 0.01, 0.1,
1.0, and 10 mM, respectively). Results are averages from at least three independent experiments, with
error bars representing standard deviations. (B) Responses of wild-type P. putida F1 to 4-HBA, benzoate,
PCA, vanillate, vanillin, quinate, and shikimate measured using quantitative capillary assays. The average
number of cells in capillaries containing buffer only (170 � 54 CFU/ml) was subtracted from each data
set. Results shown are the averages from at least three independent experiments, and error bars
represent the standard errors of the means. Results shown for quinate and 4-HBA were reported
previously (21).
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to those for the PcaY-mediated chemotactic responses of P. putida F1. Results of
quantitative capillary assays indicated that quinate and shikimate were the strongest
attractants and were sensed at the lowest concentrations (Fig. 5B). The peak chemot-
actic response of P. putida F1 to all attractants except vanillin was at 1 mM, and the
minimum concentrations detected were below 100 �M (Fig. 5B). Although there was no
binding detected between vanillin and the PcaY LBD in ITC experiments (Table 1), the
PcaY-NarQ reporter responded to vanillin at a high concentration (10 mM), suggesting
very weak binding of this attractant.

Analysis of 17 additional MCP-NarQHAMP hybrids. The P. putida F1 genome
encodes 20 putative MCPs with the same general structure as that of E. coli MCPs: an
N-terminal periplasmic LBD flanked by two transmembrane domains and a cytoplasmic
signaling domain. Similar to the MCPs in P. putida KT2440 (25), the LBDs in P. putida F1
fall into both cluster I (120 to 210 amino acids) and cluster II (220 to 300 amino acids)
and represent several different predicted domain types: 4-helix bundle (4HB), helical
bimodular (HMB), three Cache variations (single Cache [sCache], double Cache
[dCache], and SMP_2), and small unknown (Table 2) (14). To test whether additional
hybrids with the same HAMP junction point would be functional, 17 hybrid receptors
representing 6 different LBD types were constructed with junction points identical to
that of the responsive PcaY-NarQ receptor. The ability of these hybrid receptors to
autophosphorylate and transfer the phosphoryl group to NarL was tested by monitor-
ing �(narG-lacZ) expression in E. coli VJS5054 in the absence of any added chemical
ligands. �-Galactosidase activity was detected for VJS5054 carrying each of the hybrid
receptors, and activities for most of them were comparable to or higher than that seen
with the unstimulated PcaY-NarQ hybrid (Table 2). However, the �(narG-lacZ) expres-
sion level was unexpectedly low in VJS5054 carrying five of the hybrid receptors
(McpC-NarQ, Pput_2217-NarQ, Pput_3621-NarQ, Pput_4234-NarQ, and Pput_4895-
NarQ); �-galactosidase activities were comparable to those of unstimulated wild-type
NarQ and 4-HBA-stimulated PcaY-NarQ (Table 2). One of these hybrid receptors (McpC)
appeared to have a weak inverted response to the known ligand nicotinic acid (Table 2).

TABLE 2 Activity of hybrid P. putida F1 receptors

Hybrid receptora

P. putida KT2440 MCP
orthologa LBD typeb

Avg �-galactosidase
activity (� ligand) � SDc

Avg �-galactosidase
activity (� ligand) � SDc

Ligand tested
(reference[s])d

NarQ wild-type control NA 4HB 170 � 5 2,660 � 250 40 mM nitrate
PcaY-NarQ (Pput_2149) PP_2643 4HB 1,480 � 500 161 � 16 1 mM 4-HBA (21)
McfR-NarQ (Pput_0339) PP_0317 4HB 1,640 � 310 282 � 72 1 mM malate (22)
McfS-NarQ (Pput_4520) McpS (PP_4658) HBM 1,210 � 226 441 � 89 1 mM malate (22)
McfQ-NarQ (Pput_4894) McpQ (PP_5020) HBM 1,460 � 115 992 � 118 1 mM citrate (22)
Pput_0342-NarQ (McfH) McpH (PP_0320) dCache 1,573 � 186 778 � 97 2 mM xanthine (32)
Pput_3489-NarQ (McfA) McpA (PP_2249) dCache 1,831 � 153 664 � 48 5 mM asparagine (51, 52)
Pput_4352-NarQ (McfG) PctApp/McpG (PP_1371) dCache 1,468 � 224 323 � 172 2 mM tryptophan (52)
Pput_1257-NarQ (McfU) McpU (PP_1228) dCache 2,540 � 55 1,910 � 95 10 mM propionate

(this studye)
Pput_2828-NarQ (McfP) McpP (PP_2861) sCache 3,140 � 315 2,190 � 270 10 mM pyruvate (77)
Pput_3459-NarQ (McfO) PP_2310 Small unknown 970 � 296 220 � 20 10 mM propionate

(this studye)
Pput_2091-NarQ NA 4HB 3,230 � 1,240 NT
Pput_4764-NarQ PP_4888 SMP_2 1,120 � 540 NT
Pput_3892-NarQ PP_1819 dCache 1,420 � 230 NT
McpC-NarQ PP_0584 dCache 220 � 40 470 � 80 10 mM nicotinic acid (71)
Pput_2217-NarQ PP_3557 dCache 97 � 9 NT
Pput_3621-NarQ PP_2120 4HB 130 � 30 NT
Pput_4234-NarQ PP_1488 4HB 121 � 61 NT
Pput_4895-NarQ PP_5021 HBM 110 � 25 NT
aUnnamed MCPs are indicated by their Pput (strain F1) or PP (strain KT2440) locus tag numbers; Mcf names for P. putida F1 MCPs are now assigned based on the
corresponding Mcp designations for functionally characterized P. putida KT2440 MCPs. NA, not applicable.

b4HB, 4-helix bundle; HBM, helical bimodular; sCache, single Cache; dCache, double Cache; SMP_2, a type of Cache domain found in Proteobacteria (14, 25, 42).
cActivities are in arbitrary (Miller) units. Averages and standard deviations from at least three independent replicates are shown. NT, not tested/ligand(s) unknown.
dReferences reporting ligands for P. putida F1 MCPs if known or for the KT2440 ortholog. 4-HBA, 4-hydroxybenzoate.
eData are reported in “Functional screening of hybrid MCPs: identification of multiple receptors that sense propionate” in Results.
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The others may also have inverted responses, but additional work will be needed to test
this possibility, as there are currently no known ligands for these receptors. Neverthe-
less, representative hybrids with all six LBD types conferred �(narG-lacZ) expression at
levels similar to that with unstimulated PcaY-NarQ (Table 2), demonstrating that they
have kinase activity and can transphosphorylate NarL. In addition, ligand sensing and
signaling by several hybrids for which ligands are known or predicted based on P.
putida KT2440 MCP orthologs were demonstrated for one ligand each at a single
concentration (Table 2). The results show signaling by hybrid receptors with five
different LBD types.

Validation of concentration-dependent sensing and signaling by McfR-NarQ.
Previous work in our laboratory demonstrated that the receptor encoded by Pput_0339
(McfR) was responsible for chemotaxis to malate, fumarate, and succinate but not
citrate (22); however, direct binding to attractants by McfR had not been demonstrated.
To test the function and specificity of the McfR-NarQ receptor and to determine
whether McfR binds ligands directly, we examined �(narG-lacZ) expression after grow-
ing E. coli VJS5054 carrying the McfR-NarQ hybrid construct in the presence and
absence of organic acids. McfR-NarQ exhibited concentration-dependent responses to
malate, fumarate, and succinate and no response to citrate, even at a high concentra-
tion (Fig. 6). The limit of detection for each compound was between 100 and 500 �M
(Fig. 6). The sensitive and specific responses of the hybrid protein expressed in E. coli
provide strong evidence that succinate, fumarate, and malate all bind directly to McfR.

Construction of a sensitive hybrid naphthalene biosensor. Using the same
junction points as in the P. putida F1 MCP-NarQ hybrids, we constructed and tested a
NahY-NarQ hybrid receptor. NahY is the naphthalene chemoreceptor from P. putida G7
(26); it is a cluster I receptor with a 4HB domain type predicted using Pfam 32.0 (27). The
level of �(narG-lacZ) expression in the absence of the ligand suggested that the hybrid
was functional, and sensitive concentration-dependent signaling was demonstrated
when the reporter strain was grown in the presence of increasing concentrations of
naphthalene (0.25 to 250 �M) (Fig. 7). These results are consistent with the demon-
strated response to naphthalene concentrations of �25 to 250 �M by P. putida G7 in
quantitative capillary assays (28). The estimated binding affinity for naphthalene based
on these data (see the plot in Fig. S3) was 513 � 185 nM, which indicates that the
hybrid receptor is a very sensitive biosensor for naphthalene.

Functional screening of hybrid MCPs: identification of multiple receptors that
sense propionate. To test whether ligands could be identified for receptors of un-

FIG 6 �(narG-lacZ) expression in E. coli VJS5054 carrying McpR-NarQ. �-Galactosidase assays were
carried out on cultures grown with the indicated concentrations of succinate, fumarate, malate, and
citrate. Results are averages from at least three independent experiments, with error bars representing
standard deviations.
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known function by screening in E. coli, we carried out �-galactosidase assays with
VJS5054 carrying each of the functional hybrid receptors after growth in the presence
of propionate, which is a good carbon source and chemoattractant for P. putida F1.
Surprisingly, after a quick series of �-galactosidase assays following growth in the
presence and absence of 10 mM propionate, it appeared that six of the hybrid receptors
responded to propionate, including McfR-NarQ, Pput_1257-NarQ, Pput_2828-NarQ,
Pput_3459-NarQ, Pput_3489-NarQ, and Pput_4352-NarQ (data not shown). To confirm
the results of the screen, we tested a range of propionate concentrations (1, 5, and
10 mM) and found that the Pput_3459-NarQ and Pput_2828-NarQ hybrids were the
most sensitive, clearly responding to 1 mM propionate. Pput_1257-NarQ was the least
sensitive, responding only weakly to 10 mM propionate. McfR-NarQ, Pput_3489-NarQ,
and Pput_4352-NarQ showed intermediate responses, detecting 5 mM propionate (Fig.
8). As a negative control, we tested �(narG-lacZ) expression in VJS5054 carrying
PcaY-NarQ with and without 10 mM propionate. Results of LacZ assays were
1,690 � 240 and 1,620 � 320 Miller units in the absence and presence of 10 mM

FIG 7 �(narG-lacZ) expression in E. coli VJS5054 carrying the NahY-NarQ hybrid reporter. �-Galactosidase
assays were carried out on cultures grown with the indicated concentrations of naphthalene. Results are
averages from at least three independent experiments, with error bars representing standard deviations.

FIG 8 �(narG-lacZ) expression in E. coli VJS5054 carrying six different MCP-NarQ hybrid receptors in
response to propionate. �-Galactosidase assays were carried out on cultures grown with the indicated
concentrations of propionate. Results are averages from at least three independent experiments, with
error bars representing standard deviations.
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propionate, respectively. These results indicate that responses to propionate are spe-
cific to a subset of P. putida MCPs. When this study was initiated, no receptors for
propionate had been identified; however, an MCP for propionate from P. putida KT2440
(McpP) has since been reported (25). McpP corresponds to Pput_2828 in P. putida F1
(99% amino acid sequence identity; designated McfP here).

Chemotaxis assays with mutants verify a role for the six receptors in mediating
the response to propionate. To test whether each of the six MCPs identified in the
hybrid receptor screen contributes to the chemotactic response of P. putida F1 to
propionate, we carried out quantitative swim plate assays with strains each lacking one
of the putative propionate receptors in a Δaer-2 mutant background since energy taxis
has been shown to mask chemotaxis phenotypes in this assay (22, 29). As expected, the
Δaer-2 ΔmcfP double mutant showed a clear defect in the response to propionate (Fig.
9A, right), indicating that the McpP ortholog in P. putida F1 is capable of sensing
propionate. We also tested the chemotactic response of the Δaer-2 ΔPput_0342 mutant
of P. putida F1 to propionate. The Pput_0342-NarQ hybrid receptor from P. putida F1 did
not respond to 10 mM propionate in initial �-galactosidase screens (data not shown),
so the ΔPput_0342 mutant strain was used as a negative control. As expected, the
Δaer-2 ΔPput_0342 mutant did not have a defect in propionate chemotaxis compared
to the Δaer-2 control strain (Fig. 9A, right). Consistent with the Pput_3459-NarQ hybrid
reporter data, the Δaer-2 ΔPput_3459 mutant strain showed a significant defect in the
chemotaxis response to propionate, while the Δaer-2 ΔmcfR, Δaer-2 ΔPput_1257, Δaer-2
ΔPput_3489, and Δaer-2 ΔPput_4352 mutants behaved like the Δaer-2 control strain
(Fig. 9A, left).

Since four of the deletion mutants lacking single putative propionate MCP genes
(ΔmcfR, ΔPput_1257, ΔPput_3489, and ΔPput_4352) did not show obvious defects in
chemotaxis assays, we utilized a mutant strain in which 11 of the 20 putative genes
encoding canonical MCPs in P. putida F1 had been deleted (F1Δ11) (Table 3). Genes
encoding the six putative propionate MCPs identified in the MCP hybrid screen with

FIG 9 Chemotactic responses of P. putida mutants to 1 mM propionate in quantitative swim plate assays. (A) Responses of the
P. putida F1 Δaer-2 deletion mutant (black bar, control) were compared to those of double mutants lacking aer-2 and each of
the putative propionate receptor genes identified in the MCP-NarQ hybrid reporter screen (gray bars, strains listed in Table 3).
The Δaer-2 ΔmcfP mutant (light-gray bar on the far right) is the ortholog of the P. putida KT2440 propionate
chemoreceptor. The Δaer-2 ΔPput_0342 mutant (light-gray bar) was not expected to respond to propionate based on the
absence of a response of the E. coli reporter strain carrying the Pput_0342-NarQ hybrid to propionate. (B) Responses of the
P. putida F1Δ11 deletion mutant RPF018 harboring either the empty vector pRK415 or pRK415Km (black bars) were compared
to those of strains carrying the indicated wild-type MCP genes in the respective vectors (plasmid names listed in Table 4). The
gray bars represent complementation of propionate chemotaxis with the receptors identified in the hybrid receptor
propionate screen. The light-gray bars represent complementation with Pput_0342 (not expected to complement) and mcfP
(expected to complement). Results are averages from at least three independent experiments, with error bars representing
standard deviations. Means with the same letter are not significantly different (P � 0.05 by one-way analysis of variance
[ANOVA] with a Tukey multiple-comparison test).
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propionate as well as that encoding Pput_0342 were individually expressed in F1Δ11,
and the responses of these complemented strains were tested in swim plate assays. As
expected, the presence of Pput_0342 had no effect on the response to propionate,
whereas when complemented with mcfR, Pput_1257, Pput_3459, Pput_3489, or Pput_4352,
the F1Δ11 mutant showed significantly stronger responses to propionate than the control
strains carrying the vector only (Fig. 9B). In addition, even though the F1Δ11 mutant
carries an intact copy of mcfP, the presence of additional copies of mcfP on pRK415Km
increased the response to propionate. Together, these findings indicate that P. putida
F1 has six MCPs that participate in chemotaxis to propionate, although clearly, the
major contributors are Pput_2828 (McfP) and, to a lesser extent, Pput_3459 (designated
McfO here).

DISCUSSION
Strategies for functional characterization of MCPs. There has been a recent push

to develop higher-throughput methods for the characterization of MCPs of unknown
function, given that there are technical and functional limitations to traditional meth-
ods (30). Genetic approaches, such as the generation of chemoreceptor mutants, can
be difficult depending on the bacterial species and whether the strain of interest is
amenable to genetic manipulation. In many cases, MCPs are functionally redundant,
which can mask the phenotype of single mutants (16), which was the case with
propionate detection by P. putida F1 as shown here. Recently, a fluorescence-based

TABLE 3 Bacterial strains used in this study

Strain Relevant characteristic(s) Reference(s) or source

E. coli
BL21(DE3) Protein production strain 72
DH5� Cloning host Life Technologies,

Gaithersburg, MD
DH5� �pir Cloning host William W. Metcalf
HB101 Host for mobilization plasmid pRK2013 56
VJS5054 ��(narG-lacZ)250 Δ(argF-lac)U169 ΔnarX242 narQ251::Tn10d(Tc) pcnB1 zad-981::Tn10d(Km) 5

P. putida
F1 Wild-type toluene-degrading strain 73, 74
GC005 F1 Δaer-2 ΔPput_0342 (mcfH) This study
GC006 F1 Δaer-2 ΔpcaY 21
GC007 F1 Δaer-2 ΔPput_2828 (mcfP) This study
GC008 F1 Δaer-2 ΔPput_3459 (mcfO) This study
GC010 F1 Δaer-2 ΔPput_3489 (mcfA) This study
GC012 F1 Δaer-2 ΔPput_4352 (mcfG) This study
GC013 F1 Δaer-2 ΔPput_1257 (mcfU) This study
GC021 F1 Δaer-2 ΔmcfR 22
GC104 F1 ΔPput_3489 ΔPput_4352 ΔmcpC This study
GC105 F1 ΔPput_3489 ΔPput_4352 ΔmcpC ΔmcfR This study
G7 Wild-type naphthalene-degrading strain 75
RPF010 F1 ΔPput_3489 ΔPput_4352 ΔmcpC ΔmcfR ΔmcfQ This study
RPF011 F1 ΔPput_3489 ΔPput_4352 ΔmcpC ΔmcfR ΔmcfQ ΔmcfS This study
RPF014 F1 ΔPput_3489 ΔPput_4352 ΔmcpC ΔmcfR ΔmcfQ ΔmcfS ΔPput_0342 This study
RPF015 F1 ΔPput_3489 ΔPput_4352 ΔmcpC ΔmcfR ΔmcfQ ΔmcfS ΔPput_0342 ΔpcaY This study
RPF016 F1 ΔPput_3489 ΔPput_4352 ΔmcpC ΔmcfR ΔmcfQ ΔmcfS ΔPput_0342 ΔpcaY ΔPput_4234 This study
RPF017 F1 ΔPput_3489 ΔPput_4352 ΔmcpC ΔmcfR ΔmcfQ ΔmcfS ΔPput_0342 ΔpcaY ΔPput_4234

ΔPput_4764
This study

RPF018 (F1Δ11) F1 ΔPput_3489 ΔPput_4352 ΔmcpC ΔmcfR ΔmcfQ ΔmcfS ΔPput_0342 ΔpcaY ΔPput_4234
ΔPput_4764 ΔPput_3459

This study

XLF002 F1 ΔPput_0342 (mcfH) This study
XLF006 F1 ΔPput_1257 (mcfU) This study
XLF010 F1 ΔPcaY 21
XLF014 F1 ΔPput_2828 (mcfP) This study
XLF015 F1 ΔPput_3459 (mcfO) This study
XLF017 F1 ΔPput_3489 (mcfA) This study
XLF019 F1 Δaer-2 65
XLF022 F1 ΔPput_4352 (mcfG) This study
XLF128 F1 ΔPput_3489 ΔPput_4352 This study
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thermal shift assay was developed to rapidly link the LBDs of MCPs to their ligands (31).
In this assay, the binding affinity of an attractant for a purified LBD can be measured
based on the fluorescence increase as a result of the binding of fluorescent dye to the
protein during thermal unfolding. Those researchers were able to survey up to 95
potential ligands at once using 96-well plates and in this way characterized the
ligand-binding profiles of three putative amino acid chemoreceptors in Pseudomonas
syringae. A similar assay resulted in the identification of the chemoreceptor McpH for
purines and its derivatives in P. putida KT2440 (32, 33). However, it is not always trivial
to purify stable, correctly folded LBDs for use in these types of screens (33), and in some
cases, inhibitors of chemotaxis have been shown to bind to LBDs (34). The use of hybrid
receptors provides an alternative strategy to screen for receptor-ligand binding that
circumvents these potential issues.

The construction of hybrid two-component receptors is not new, as previous studies
have reported hybrid E. coli MCPs (35–37), hybrid E. coli-Pseudomonas MCPs (38), and
hybrids between MCPs and other two-component sensors (19, 20), among others. A
variation of our strategy has been used to develop novel biosensors using fluorescence
resonance energy transfer (FRET) to monitor the phosphorylation-dependent interac-
tion of CheY with CheZ via their fluorescent fusion protein derivatives in response to
ligand sensing by hybrid MCPs (39). In that study, hybrid chemoreceptors with various
LBD types were also shown to be functional, and screening for new ligands was carried
out using a FRET-based microfluidic assay.

PcaY binds attractants directly. In this study, we used a chemotaxis-independent
�-galactosidase reporter system to demonstrate that the PcaY LBD binds directly to the
known attractants sensed by PcaY via P. putida F1. The hybrid receptor could differ-
entiate between structurally similar aromatic chemicals, and LacZ activity levels de-
creased in response to increasing ligand concentrations. In previous studies, we were
unable to rule out the possibility that PcaY could be sensing downstream metabolites
of some of the attractants in P. putida F1 (21), as was shown to be the case for aromatic
acid sensing by Comamonas testosteroni (34, 40). The results obtained using the
PcaY-NarQ hybrid clearly demonstrate that the hydroaromatic compounds quinate and
shikimate and the various substituted benzoates are directly bound by the LBD of PcaY,
and these results are consistent with the results of our ITC experiments as well as those
with the P. putida KT2440 ortholog of PcaY (24). In addition, binding affinities estimated
from the in vivo �-galactosidase data provide good approximations of the binding
constants obtained in ITC experiments (Table 1). Finally, our results suggest that the
PcaY-NarQ hybrid detected vanillin at a high concentration (10 mM), despite the lack of
binding in ITC experiments, which could indicate that vanillin, rather than a metabolite,
binds the PcaY LBD directly albeit with low affinity. This finding suggests that the use
of hybrid receptors may be more sensitive than in vitro binding assays.

A single junction point yields functional hybrids with a high success rate. The
inclusion of the native HAMP domain from NarQ was crucial to the functionality of the
hybrid receptor. HAMP domains have conserved motifs, including two predicted am-
phiphilic helices (AS1 and AS2) joined by a nonhelical connector. The hydrophobicity of
the amphiphilic helices is critical for the packing interactions of HAMP (10). Hybrids in
which AS1 from one protein was fused to AS2 from another protein were nonfunctional
(3). Moreover, studies showed that truncation or deletion of AS1 and AS2 of NarX and
NarQ caused significant changes in protein function and often had deleterious effects
(3). These studies also showed that constructs in which the entire HAMP region of NarX
was replaced also resulted in nonfunctional NarX hybrids, and similarly, a NarX-Tar
hybrid that contained the NarX HAMP domain was also functional (19). For these
reasons, we did not include a construct in which PcaY was linked to NarX via the PcaY
HAMP domain.

At this time, we do not fully understand the reasons why some of the constructed
hybrids appeared to be in a constitutively “off” state, but hybrid receptors with a range
of phenotypes have been reported previously. For example, construction of hybrids
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between the E. coli Tar chemoreceptor and the osmosensor histidine kinase EnvZ
resulted in functional hybrids that were responsive to aspartate, an attractant that
binds Tar directly, as well as hybrids that were constitutively “on” or constitutively “off”
(18). The packing stability of the HAMP domain is highly critical to signaling (10), so any
displacement of its structural integrity could have resulted in a nonfunctional sensory
protein. In addition, the region immediately upstream of the HAMP domain, termed the
control cable, is critical for proper signaling (41). However, inspection of the control
cable and the second transmembrane helix (TM2) sequences in the P. putida MCPs did
not reveal control cable (or TM2) features that explain the different signaling responses
of different hybrid receptors (see Fig. S4 in the supplemental material).

Extensive mutational analysis of various Tar-EnvZ hybrids demonstrated that a
single point mutation in the HAMP domain of a ligand-blind receptor hybrid Tar-EnvZ
receptor could convert it to one capable of sensing aspartate, and the insertion of two
amino acid residues near the junction of the transmembrane and HAMP domains could
convert a receptor from constitutively “on” to constitutively “off” (18). It is therefore
likely that random mutagenesis and screening for higher �-galactosidase activity on
MacConkey plates or plates containing X-Gal (5-bromo-4-chloro-3-indolyl-�-D-
galactopyranoside) as described in the Tar-EnvZ studies (18) would allow us to isolate
functional variants of our constitutively “off” hybrids. However, the 74% success rate for
constructing hybrids capable of signaling using a single set of junction points validates
the use of this strategy for characterizing LBD function.

Hybrids with diverse LBDs are functional. Genome analyses have revealed that

the LBD structures of MCPs are very diverse across bacterial and archaeal species. The
high level of sequence divergence between the LBDs makes predicting attractant
profiles based on sequence comparisons challenging. MCPs have been cataloged into
two clusters based on LBD size and domain structure similarities (11). The LBDs of MCPs
that fall into cluster I, such as PcaY, are typically between 120 and 210 amino acids in
size, and they form a 4-helix bundle (4HB), single CACHE (sCache), or a small unknown
structure, whereas those in cluster II are between 220 and 300 amino acids in size and
form a helical bimodular (HBM), double Cache (dCache), or SMP_2 (another Cache
variation) structure (11, 14, 42). Importantly, LBDs with completely different predicted
structures have been shown to bind the same or similar ligands. For example, the P.
putida receptors McfQ, McfS, and McfR all detect fumarate, yet their LBDs have little
sequence conservation, and although McfS and McfQ have HBM domain structures,
McfR is predicted to have a 4HB domain (22). Similarly, the P. putida receptors McpS and
McpP both bind acetate and have different predicted domain structures (25, 43).
Hybrids constructed from LBDs with all known types of Pseudomonas LBD structures
(4HB, HBM, sCache, dCache, SMP_2, and small unknown) were capable of signaling
(Table 2), and 10 of the functional receptors (representing five different LBD structures)
were shown to respond to one or more ligands. Based on these results, we anticipate
that the general design of our PcaY-NarQ hybrid can be utilized to identify the range
of ligands bound by any MCP from any bacterial species or even from metagenomic
sequence data.

Analysis of hybrid sensors in the E. coli reporter strain VJS5054, in which the lacZ
operon is under the control of the nitrate-responsive narG promoter, provides a rapid
and simple assay that can be used to identify MCP function by screening for potential
attractants in E. coli. This design allowed sensitive and specific detection of the type and
amount of ligand present and could be used to estimate ligand binding affinity. In
previous studies, chemoreceptors with altered specificity were generated (20, 39,
44–47). Hybrid receptors could be used to rapidly screen for specificity changes
following targeted or random mutagenesis of the LBD-encoding DNA fragment. In
addition, hybrid receptors such as the NahY-NarQ receptor have the potential to be
useful as biosensors, and construction of modified MCPs should allow one to design
new biosensors and/or alter the chemosensory repertoire of any motile bacterial strain.
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One caveat to identifying ligands using either hybrid receptors or in vitro binding
assays is in the case of attractants that bind to periplasmic binding proteins. In this case,
the attractant/periplasmic binding protein complex interacts with a specific MCP, as is
the case with chemotaxis to sugars, dipeptides, and AI-2 by E. coli (13, 48, 49) and
sensing of inorganic phosphate in Pseudomonas aeruginosa by the MCP CtpL via the
periplasmic binding protein CtpS (50). However, it is possible that screening could be
carried out with a reporter strain in which the binding protein gene is expressed in
addition to the hybrid MCP gene.

Functions of the multiple propionate receptors. One surprising finding, especially
in light of the characterization of a single propionate chemoreceptor, McpP, in P. putida
KT2440, is the presence of six different chemoreceptors that contribute to the response
to propionate in P. putida F1. Homologs of all six receptors that are 97 to 99% identical
to the P. putida F1 chemoreceptors are present in strain KT2440, so they are likely to
have similar functions in both strains. The identification of six receptors capable of
binding propionate would have been difficult using standard mutant screening and
possibly even by in vitro binding assays with purified LBDs. This result highlights the
sensitivity of the use of hybrid receptors to identify the ligands.

McfP, the primary propionate receptor and the ortholog of McpP from strain KT2440
(25), also senses lactate, acetate, and pyruvate (Table 2) (77). Although the McfP-NarQ
hybrid detected propionate, it was not as sensitive to this ligand as would be expected
based on the obvious defect in the chemotaxis response to propionate by the P. putida
F1 McfP mutant (Fig. 9A) and the Kd of the McpP LBD from KT2440 (34 �M) (25). The
reason for the weak response of the McfP-NarQ hybrid to both propionate (Fig. 8) and
pyruvate (Table 2) is not known at this time, but the LacZ activity of the unstimulated
McfP-NarQ hybrid was significantly higher than those of the other hybrids. It is
therefore possible that the conformation of this hybrid is strongly poised to autophos-
phorylate and that the addition of the ligand only slightly affects its balance between
kinase and phosphatase activities.

Based on the results of chemotaxis assays with mutant strains (Fig. 9A), Pput_3459
(McfO) appears to make a significant contribution to the response to propionate.
Currently, there are no other known ligands for McfO, which is predicted to have a small
LBD of unknown structure. Although increased responses to propionate were detected
when the other four receptors were overexpressed in the Δ11 mutant (Fig. 9B), no
obvious defects were seen for single-deletion mutants (Fig. 9A). Therefore, the contri-
butions of these receptors may not be physiologically relevant in the wild-type strain,
which highlights the importance of directly testing chemotaxis responses in the
appropriate mutant backgrounds in addition to screening using hybrid receptors. Each
of these minor propionate receptors has been shown to be important for sensing other
attractants. McfR senses malate, succinate, and fumarate (22), and the receptor en-
coded by Pput_3489 (McfA) and its KT2440 ortholog sense amino acids (51–53). In
addition, the KT2440 orthologs of Pput_1257 (McpU) and Pput_4352 (PctApp/McpG)
sense polyamines (53) and amino acids and gamma-aminobutyrate (38, 54), respec-
tively. Binding to some of the known ligands for the other propionate receptors was
confirmed here using the hybrid receptors (Table 2).

In conclusion, the construction and analysis of hybrid MCPs provide an additional
strategy to identify chemoreceptor function that complements other currently available
methods. The detection method used, which is independent of the chemotaxis system,
provides an accurate measurement of ligand binding. Advantages include high sensi-
tivity and simplicity of analysis (i.e., no major equipment is needed), and the demon-
stration that functional hybrids can be generated with a wide range of LBD types
suggests that this method should be broadly applicable regardless of the source of the
MCP.

MATERIALS AND METHODS
Bacterial strains, plasmids, and primers. Bacterial strains and plasmids used in this study are listed

in Tables 3 and 4, respectively. Primers used in this study are shown in Table S1 in the supplemental
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material. E. coli strains DH5� and DH5� �pir were used for cloning and plasmid propagation. E. coli
BL21(DE3) was used for expression and purification of the PcaY LBD. E. coli VJS5054 (5), which has null
alleles of the narX and narQ genes and carries an Fnr- and NarL-responsive narG-lacZ operon fusion, was
used as the reporter strain for analyzing the output of the hybrid receptors. Anerobic growth permits Fnr
activation of expression from the narG promoter (2). Complementation with a plasmid-encoded nar
sensor (NarX, NarQ, or an MCP-NarQ hybrid) permits further NarL-dependent activation of expression
from the narG promoter under appropriate conditions. Strain VJS5054 also carries a pcnB mutation, which
decreases the copy number of ColE1 plasmids carrying the hybrid constructs, to approximately 1 per cell
(5, 55).

Culture media and growth conditions. E. coli strains were maintained on lysogeny broth agar at
37°C (56), and 200 �g ml�1 of ampicillin, 100 �g ml�1 of kanamycin, or 15 �g ml�1 of tetracycline was
added for plasmid selection and maintenance. E. coli VJS5054 cultures were grown for LacZ assays as
previously described (57, 58), with slight modifications. Briefly, strains were inoculated in phosphate-
buffered minimal medium (MSB) (59) containing 80 mM glucose and 50 �g ml�1 ampicillin and grown
aerobically overnight at 37°C. These cultures were used to inoculate 13-ml screw cap tubes filled to
capacity with the same medium, with and without attractant chemicals added, as indicated. Cultures
were grown anaerobically in a 37°C water bath until mid-exponential phase (optical density at 600 nm
[OD600] of between 0.3 and 0.4).

Cloning and DNA manipulations. P. putida F1 genomic DNA was isolated using the ArchivePure
DNA kit (5 PRIME, Inc., Gaithersburg, MD). PCR products and plasmids were purified using a gel extraction
kit (Bio Basic, Inc., Markham, Ontario, Canada) and a plasmid miniprep kit from Fermentas (Glen Burnie,
MD), respectively. Restriction endonucleases and DNA modification enzymes were purchased from New
England Biolabs (Beverly, MA). Standard procedures for E. coli transformation and the manipulation of
plasmids and DNA fragments were followed (56). Sequences of all cloned PCR products were verified at
the University of California, Davis, Sequencing Facility using fluorescence automated DNA sequencing
with an Applied Biosystems 3730 automated sequencer.

Construction of an expression plasmid for the PcaY LBD. The DNA fragment encoding the LBD
of PcaY (residues 35 to 184) was amplified by PCR using genomic DNA of P. putida F1 and primers
YLBD-NdeI-F and YLBD-HindIII-R. The resulting product was digested and cloned into pET28a (Table 4).
The insert and flanking regions of the resulting plasmid, pET28a-PcaY-LBD, were verified by DNA
sequencing.

Purification of the PcaY LBD. E. coli BL21(DE3)(pET28a-PcaY-LBD) was grown in three 3-liter flasks,
each containing 1 liter of LB medium supplemented with 50 �g/ml kanamycin, at 30°C. When the
cultures reached an OD600 of 0.5, the growth temperature was lowered to 18°C, and expression was
induced by the addition of 0.1 mM isopropyl-�-D-thiogalactopyranoside. Growth was continued at 18°C
overnight (�12 h) prior to harvesting of cells by centrifugation at 6,000 
 g. Cell pellets were resus-
pended in 50 ml of buffer A (20 mM Tris-HCl, 0.1 mM EDTA, 500 mM NaCl, 10 mM imidazole, 5% [vol/vol]
glycerol [pH 7.8]) and broken by ultrasonication (200 W). The resulting lysate was subjected to centrif-
ugation at 12,500 
 g for 30 min. The supernatant was passed through a 0.45-�m-cutoff filter (Minisart)
and loaded onto a 5-ml HisTrap HP column equilibrated with buffer A. Protein was eluted by applying
a gradient of 45 mM to 500 mM imidazole in buffer A. Fractions were examined by SDS-PAGE, and the
presence of the PcaY LBD was confirmed by determination of the molecular mass. Protein concentrations
were determined by the Bradford assay (60).

Isothermal titration calorimetry. Isothermal titration calorimetry (ITC) measurements were con-
ducted at 25°C using a Nano ITC 2G instrument (TA Instruments, Newcastle, DE, USA) with a 1-ml sample
cell. The PcaY LBD was dialyzed twice against polybuffer [5 mM Tris-HCl, 5 mM piperazine-N,N=-bis(2-
ethanesulfonic acid) (PIPES), 5 mM morpholineethanesulfonic acid (MES), 5 mM NaCl (pH 7.8)]. Protein at
concentrations of 50 to �110 �M was titrated with 2.5-�l aliquots of the ligand (0.5 or 1 mM in
polybuffer) with stirring at 75 rpm. No precipitate was observed after titration was complete. Data were
analyzed with the NanoAnalyze software package (TA Instruments, Newcastle, DE, USA).

Construction of pcaY-nar gene hybrids. Each hybrid construct was made using a total of three
overlapping DNA fragments amplified using primers listed in Table S1 and then cloned into either
pVJS3353 or pVJS3354 using an In-Fusion HD cloning kit (Clontech, Mountain View, CA). To construct
PcaY-NarQHAMP, the DNA encoding the PcaY LBD region was amplified using primers 2149_narQ_For
and 2149_narQ_Rev. An approximately 570-bp fragment encompassing the NarQ HAMP region
and a portion of the C terminus was amplified using primers narQ_HAMP_For and narQ_ADAP_Rev.
A third fragment containing overlapping sequences with pVJS3354 was amplified using primers
pHG165_Eco_For and narQ_Eco_Rev. All three DNA fragments were gel purified using a commercially
available gel extraction kit (Bio Basic, Inc., Markham, Ontario, Canada). The vector pVJS3354, which
contains the full-length narQ gene, was digested with EcoRI and SacI to release a 1.8-kb DNA fragment
containing the LBD and HAMP region of NarQ. All three amplicons were then directionally cloned into
the EcoRI and SacI sites on digested pVJS3354. The hybrids PcaYHAMP-NarQ, PcaYHAMP-NarQL222Q, and
PcaY-NarXHAMP were constructed similarly using primers listed in Table S1, and the amplicons were
directionally cloned into pVJS3354, except for PcaY-NarXHAMP, which was cloned into pVJS3353. The
resulting plasmids were introduced into VJS5054 by transformation (61).

Construction of additional MCP-NarQHAMP hybrids. Eighteen additional MCP-NarQHAMP hybrids
with the same junction points as the PcaY-NarQHAMP hybrid were constructed using the In-Fusion HD
cloning kit with vector pVJS3354 (Table 4) and primers listed in Table S1. Seventeen of these were MCPs
from P. putida F1, and one was NahY from P. putida G7 (26).
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Construction of P. putida F1 MCP deletion mutants. MCP deletion mutants in F1 were constructed
using the suicide vector pAW19 (Table 4), which carries a kanamycin resistance gene and the sacB gene
that confers sucrose sensitivity (62). The 1-kb regions upstream and downstream of each MCP gene were
amplified by PCR using the primers listed in Table S1. The resulting PCR fragments were fused by either
overlap extension PCR (63) or blunt-end ligation. Each product was further amplified by PCR, resulting
in a 2-kb fragment with an in-frame deletion of the MCP gene. Each 2-kb DNA fragment was digested
with the appropriate restriction enzyme(s) and then inserted into the SpeI site (or the SpeI and SacI sites)
of pAW19. The resulting plasmids (Table 4) were used to transform E. coli DH5� �pir and introduced into
P. putida F1 by conjugation in the presence of E. coli HB101(pRK2013) as previously described (64).
Kanamycin-resistant F1 exconjugants were selected and grown in MSB containing 10 mM succinate. To
select for deletion mutants that arose from double-crossover events, cultures were grown in MSB
containing 10 mM succinate and 20% sucrose. Individual colonies were then screened for kanamycin
sensitivity to confirm the loss of the plasmid, and deletions were verified by PCR using external primers.
ΔMCPΔaer-2 double mutants were generated by deleting the aer-2 gene from each MCP single-deletion
mutant using the aer-2 deletion construct pXLF019 (65). The P. putida mutant lacking 11 MCP genes
(RPF018) was made in the same way by sequential deletion of each MCP gene using the same deletion
plasmids as the ones used to generate the single mutants (Table 3), starting with strain XLF017 and
sequentially generating GC014, GC105, RPF10, RPF11, RPF14, RPF15, RPF16, RPF17, and RPF18 (F1Δ11).
To complement the MCP deletion mutants, relevant MCP genes were PCR amplified using primers listed
in Table S1, cut with appropriate restriction enzymes, and cloned into pRK415 (66) or pRK415Km (65).
Inserts were verified by restriction digestion and sequencing. Each resulting plasmid was introduced into
the single mutant or the F1Δ11 MCP mutant strain (RPF018) by conjugation in the presence of E. coli
HB101(pRK2013).

�-Galactosidase assays. �-Galactosidase activity was measured at room temperature (approxi-
mately 21°C) in chloroform-sodium dodecyl sulfate-permeabilized cells as previously described, and
activity is expressed in arbitrary (Miller) units (67). Each culture was assayed in duplicate, and the reported
values are the averages from at least three independent experiments.

Method for estimating binding affinity. To estimate the binding affinities of the PcaY-NarQ and
NahY-NarQ hybrids, �-galactosidase activity was transformed to relative activity by calculating the
difference between the activities of unstimulated cells (no ligand) and stimulated cells (grown in the
presence of a specific concentration of the ligand). This transformation allowed relative activity to be
plotted against the ligand concentration to generate a nonlinear regression. Using Prism (version 6.0h)
software, these data were fit to a Michaelis-Menten kinetic model, Y � Vmax 
 [L]/(K 	 [L]). For this model,
Y is the relative activity, Vmax represents the maximum effect of the ligand, [L] is the concentration of the
ligand, and K is the estimated binding affinity.

Quantitative capillary assays. Quantitative capillary assays were carried out as described previously
by Liu et al. (68). Briefly, P. putida F1 was grown in MSB (59) containing 5 mM 4-hydroxybenzoate (4-HBA)
to an OD660 of approximately 0.4 and then harvested by centrifugation and resuspended in chemotaxis
buffer (CB) (50 mM potassium phosphate buffer [pH 7.0], 0.05% glycerol, 10 �M EDTA) to a final OD660

of approximately 0.15. Attractants were tested at concentrations of 0.01, 0.1, 1.0, and 10 mM. Responses
to 0.2% Casamino Acids and CB were tested as positive and negative controls, respectively.

Quantitative swim plate assays. Quantitative soft-agar swim plate assays were used to monitor
chemotactic responses to propionate (22). For these assays, P. putida strains were grown overnight in
2 ml of LB medium at 30°C with shaking. The cultures grown overnight were harvested by centrifugation
and resuspended in MSB to an OD660 of 0.39 to 0.41, and 2 �l of the suspensions was used to inoculate
15-mm petri plates containing MSB soft agar (0.25%) and 1 mM propionate. When appropriate, 50 �g/ml
kanamycin or 12.5 �g/ml tetracycline was included in the medium. Plates without antibiotics were
incubated at 30°C for 24 to 26 h, and those containing antibiotics were incubated for 32 to 35 h. Colony
images were taken using backlighting (69). Colony diameters were measured, and data are presented as
the means � standard deviations from at least three independent experiments with three technical
replicates each. All statistical analyses were conducted using JMP Pro version 14.0.
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