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Abstract of the Dissertation

Combinatorics of Finitely Generated Groups

by

Anton Sergeevich Malyshev

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2014

Professor Igor Pak, Chair

We present some combinatorial results about finitely generated groups, particu-

larly groups acting on rooted trees.

Given a finitely generated group G and a positive integer k, the product re-

placement graph Γk(G) is the graph whose vertices are generating k-tuples of G,

and whose edges are Nielsen transformations between these generating k-tuples.

We prove that if G has polynomial growth or G has exponential growth, then

Γk(G) has exponential growth for sufficiently large k. We also prove with a direct

combinatorial argument that Γk(Gω) has exponential growth for k ≥ 5, where Gω

is the generalized Grigorchuk group.

We prove that Γk(G) is non-amenable for sufficiently large k in either of the

following two cases: G is uniformly non-amenable, or G is virtually indicable. It

follows that Γk(G) is non-amenable whenever G is a linear group, or a hyperbolic

group, or an elementary amenable group.

We describe two Mealy automata, the Aleshin automaton and the Bellaterra

automaton, whose Schreier graphs are conjectured to be expanders. We verify

that these Schreier graphs have polylogarithmic diameter. We describe a class of

Mealy automata for which the same is true. However, some members of this class

do not give rise to expander graphs.
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CHAPTER 1

Introduction

We present some results in combinatorial group theory, relating to growth and

expansion. There are two main problems we’re concerned with. One is growth and

expansion in the product replacement graph of a group. The other is constructing

sequences of expander graphs via groups acting on rooted trees.

We are particularly concerned with self-similar groups, and more generally

groups acting on rooted trees. This is partly because they are the only known

way to construct groups of intermediate growth, which is the interesting case for

some of the problems we’re interested in. Additionally, the Schreier graphs of self-

similar group actions on a rooted tree also have a natural description in terms of

graph lifts. Random graph lifts give rise to expander graphs, and Schreier graphs

of some self-similar groups are a good candidate for a derandomization of such a

construction.

1.1 Product replacement graphs

Chapters 2 and 3 are concerned with product replacement graphs of finitely gener-

ated groups. The k-th product replacement graph of a finitely generated group G is

the graph Γk(G) whose vertices are k-tuples (g1, . . . , gk) such thatG = 〈g1, . . . , gk〉.
The edges of this graph correspond to Nielsen transformations: for every pair of
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indices i, j, we have edges

(g1, . . . , gi, . . . , gj, . . . , gk) — (g1, . . . , gi, . . . , g
±1
i gj, . . . , gk)

(g1, . . . , gi, . . . , gj, . . . , gk) — (g1, . . . , gi, . . . , gjg
±1
i , . . . , gk).

A practical reason to be concerned with these graphs is that they give a fast

way to sample random elements in a finite group given a generating set of that

group. A naive way to make such a sample is to take a random walk on the

Cayley graph of the group G, but the mixing time of this random walk may be

large compared to log |G|. A more efficient algorithm makes use of a random

walk on Γk(G), which can have a much shorter mixing time. For a survey on

the product replacement algorithm, see [P1]. We restate some results here for

motivation.

In most cases, the product replacement graphs of finite groups appear to be

expander graphs. In the case that of abelian groups, this is known to be true,

and follows from the fact that SLk(Z) has Kazhdan’s property (T ) for k ≥ 3,

and property (τ) for k = 2. For non-abelian groups, the corresponding question

is whether Aut(Fk), the automorphism group of the free group Fk, has property

(T ). This is known to be false for k = 2, 3, and the question is open for k ≥ 4.

We are interested in the case of infinite groups. If Aut(Fk) does have property

(T ), then for any infinite finitely generated group G, any component of Γk(G) is

non-amenable. That is, there is a constant h such that any finite set S ⊆ Γk(G)

has a boundary of size at least h |S|. In particular, Γk(G) has exponential growth,

i.e. balls grow exponentially with respect to their radius.

In Chapter 2, we consider which groups G have exponentially growing product

replacement graphs. Group of polynomial growth have enough structure to guar-

antee that their product replacement graphs have exponential growth. On the

other hand, groups of exponential growth also have product replacement graphs

of exponential growth. The unresolved case, then, is that of groups with growth

2



intermediate between polynomial and exponential. The first and best known ex-

ample of such a group is the Grigorchuk group G. This group is a self-similar

group, defined via its action on a rooted binary tree.1 Using this action, we

provide a direct counting argument that Γk(G) also has exponential growth, for

k ≥ 5. The same argument applies to the generalized Grigorchuk groups Gω.

This technique is built around the action of the group G on a rooted tree. The

only known way to construct groups of intermediate growth is via such an action.

However there is little reason to expect that all groups of intermediate growth

arise this way, so our methods cannot be applied to the fully general case.

We continue the investigation of product replacement graphs in Chapter 3,

which is concerned with non-amenability of product replacement graphs. We

establish similar results. If a group is “small enough” or “large enough”, then

its product replacement graphs are non-amenable. In this case “small enough”

includes all elementary amenable groups, and “large enough” means the group is

uniformly non-amenable. These two categories cover many well-known types of

groups, e.g. linear groups and hyperbolic groups.

1.2 Expanding Mealy automata

In Chapter 4, we describe two group actions on a rooted binary tree, whose

Schreier graphs we conjecture to be expanders. These graphs can be thought

of as a derandomization of a construction of expanders via random 2-lifts [BL].

The n-th graph has size 2n, so if they are expanders then their diameter grows lin-

early with respect to n. By a direct construction, we establish that their diameter

grows at most quadratically.

Additionally, we describe a large class of similar actions on rooted trees whose

1Because it is a reprint, the text of Chapter 2 indicates that a more general statement about
splitter-mixer groups will be proven in this dissertation. Unfortunately, this is not the case.
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Schreier graphs also have polynomially growing diameter. However, we demon-

strate that some members of this class do not have expanding Schreier graphs.
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Growth in product replacement graphs of

Grigorchuk groups
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GROWTH IN PRODUCT REPLACEMENT GRAPHS OF GRIGORCHUK

GROUPS

ANTON MALYSHEV? AND IGOR PAK?

Abstract. The product replacement graph Γk(G) is the graph on the generating k-tuples of a

group G, with edges corresponding to Nielsen moves. We prove the exponential growth of product
replacement graphs Γk(Gω) of Grigorchuk groups, for k ≥ 5.

1. Introduction

The product replacement graphs Γk(G) are the graphs on generating k-tuples of a group G, with
edges corresponding to multiplications of one generator by another (see below). These graphs play
an important role in computational group theory (see e.g. [BL, NP, P1]), and are related to the
Andrews–Curtis conjecture in algebraic topology (see e.g. [BKM, BLM, Met]). For infinite groups,
proving non-amenability of graphs Γk(G) is a major open problem, closely related to Kazhdan’s
property (T) of Aut(Fk). In this paper we establish a weaker property, the exponential growth of
product replacement graphs, for the Grigorchuk group G and its generalizations Gω.

Let us begin by stating the main conjecture we address in this paper.

Conjecture 1.1 (Main Conjecture). Let G be an infinite group generated by d elements. Then the
product replacement graphs Γk(G) have exponential growth, for all k ≥ d+ 1.

Formally speaking, graphs Γk(G) can be disconnected, in which case we conjecture that at least one
connected component has exponential growth.

The motivation behind our Main Conjecture is rather interesting, which makes the conjecture
both natural and speculative. First, recall that Γk(G) are Schreier graphs of Aut(Fk), generated by

Nielsen transformations [LP] (see also [LŻ, P1]). A well known conjecture states that Aut(Fk) has
Kazhdan’s property (T ) for k > 3. If true, this would imply the following conjecture:

Conjecture 1.2. For every infinite group G, product replacement graphs Γk(G) are non-amenable,
for k large enough.

In particular, this conjecture implies that all connected components of Γk(G) are infinite and
have exponential growth, for all G and k large enough. We should mention that Aut(Fk) does not
have (T ) for k = 2 and 3 (see [GL, Lub]). On the other hand, the non-amenability of Γn(G) follows

from a weaker property (τ) for an appropriate family of subgroups (see [LŻ]).

We approach the Main Conjecture by looking at the growth of groups. The conjecture is straight-
forward for groups of exponential growth. It can be shown that the conjecture holds for virtually
nilpotent groups (see Section 3). By Gromov’s theorem, this implies the conjecture for all groups of
polynomial growth.

Unfortunately, groups of intermediate growth lack the rigid structure of nilpotent groups, so much
that even explicit examples are difficult to construct and analyze (see e.g. [dlH1, G3]). Even now,
much remains open for the classical Grigorchuk group G, the first example of a group of intermediate
growth discovered by Grigorchuk (see [G1, G2]).

We present a new combinatorial technique which allows us to establish the conjecture for a large
class of Grigorchuk groups Gω. This is the main result of this paper:

?Department of Mathematics, UCLA, Los Angeles, CA, 90095. Email: {amalyshev,pak}@math.ucla.edu.
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2 ANTON MALYSHEV AND IGOR PAK

Theorem 1.3. Let Gω be a generalized Grigorchuk group. Then Γn(Gω) is connected for each
n ≥ 4, and has exponential growth for each n ≥ 5.

The techniques in this paper generalize fairly easily to several other groups of intermediate growth,
such as the Gupta–Sidki p-groups [GS], as well as large families of Grigorchuk p-groups. Many
groups of intermediate growth, such as the groups of oscillating growth defined in [KP], have, by
construction, some Gω as a subgroup or a factor group. Such groups, then, also have exponential
Nielsen growth (see Proposition 3.7).

In fact, the techniques in this paper apply to a general class of branch groups defined in [Bar]
called splitter-mixer groups. Many known group of intermediate growth appears to be based on a
splitter-mixer group. (An example that does not fall into this class is given in [Nek] and analyzed
in [BP], but our techniques should apply there as well). The proofs will appear in [M2].

In summary, although we have yet to find proofs in all cases, we believe the Main Conjecture
holds for all known constructions of groups of intermediate growth. In that sense the situation is
similar to the “pc < 1” conjecture by Benjamini and Schramm [BS] for groups of superlinear growth.
The conjecture is known to hold for groups of exponential and polynomial growth, and by an ad hoc
argument for Grigorchuk groups and general self-similar groups [MP]. It remains open for general
groups of intermediate growth (see [Pete]).

Let us mention that in a followup paper [M1], the first author establishes Conjecture 1.2 for
several classes of groups of exponential growth, which include virtually solvable groups, linear groups,
random finitely presented groups (in Gromov sense), and hyperbolic groups. He uses a technical
extension of uniform exponential growth and uniform non-amenability (see [A+, BG, dlH2, Wil]).

Unfortunately, the explicit combinatorial approach in this paper, does not seem to be strong
enough to establish Conjecture 1.2 for the Grigorchuk group, which we state as a separate conjecture
of independent interest.

Conjecture 1.4. Product replacement graphs Γk(G) are non-amenable, for all k ≥ 5.

The rest of this paper is structured as follows. We begin with basic definitions of growth of groups
and the product replacement graphs (Section 2). In Section 3 we present basic results on the growth
and connectivity of graphs Γk(G); we also present general tools for establishing the exponential
growth results. In a technical Section 4 we describe general tools and techniques for working with
subgroups G ⊂ Aut(T2) and their product replacement graphs. In the next two sections 5 and 6
we establish the main result. First, we prove the exponential growth of Γk(G) for k ≥ 5; in this
case the (technical) argument is the most lucid. We then generalize this approach to all Grigorchuk
groups Gω. We conclude with final remarks and open problems (Section 7).

2. Background and definitions

2.1. Notation. Let X be a finite set. We write #X or |X| to denote the size of X. Throughout
the paper we use Zn to denote the cyclic group Z/nZ.

Let Γ be a directed graph, which may have loops and repeated edges. We define v ∈ Γ to mean
that v is a vertex of Γ. Let v, w be vertices of Γ. We write v → w when there is an edge in Γ
from v to w, and v  w when there is a path in Γ from v to w. We say Γ is symmetric if for
every edge v → w of Γ there is an inverse edge w → v. Every graph considered in this paper is
a symmetric directed graph, unless otherwise specified. When convenient, we think of a symmetric
directed graph as an undirected graph by identifying every edge with its inverse.

Let G be a group, which may be finite or infinite. A generating n-tuple of G is an element
(g1, . . . , gn) ∈ Gn, such that G = 〈g1, . . . , gn〉. Let S = (g1, . . . , gn) be such an n-tuple. Consider
a left action of G on a set X. The Schreier graph SchrS(G,X) of this action with respect to S, is
the directed graph whose vertices are the elements of X, with edges x → gix and x → g−1

i x for
each x ∈ X, and each 0 ≤ i ≤ n. Note that each vertex in SchrS(G,X) has 2n edges leaving it, and

8



GROWTH IN PRODUCT REPLACEMENT GRAPHS OF GRIGORCHUK GROUPS 3

each edge v → w in such a graph has an inverse edge w → v. Thus, SchrS(G,X) is a 2n-regular
symmetric directed graph.

The Cayley graph CayS(G) is the Schreier graph SchrS(G,G) with respect to the left action of
G on itself by multiplication. Clearly, the Cayley graph CayS(G) is connected. Given g ∈ G, we
define `S(g) to be the length of the shortest path from 1 to g in the Cayley graph of G.

When the context makes it clear what the generating n-tuple S is, we drop the subscript, and
simply write Cay(G), Schr(G,X), and `(g). We write Aut(G) for the group of automorphisms of G.
We write H < G when H is a subgroup of G, and H � G when H is a proper subgroup of G. For
an element g ∈ G, denote by ord(g) the order of g. For g1, . . . , gn ∈ G, denote

−→∏

i=1...n

gi = g1 · · · gn.

2.2. Growth in graphs. Let Γ be a symmetric directed graph, and let v ∈ Γ. The ball of radius
r centered at v, denoted BΓ(v, r), is the set of vertices w ∈ Γ such that there is a path of length
at most r between v and w. For example, suppose Γ = CayS(G). Then BΓ(1, r) consists of the
elements g ∈ G for which `S(g) ≤ r.

We say Γ has exponential growth from v, if there is a constant α > 1, such that |BΓ(v, r)| ≥ αr

for all r (equivalently, for sufficiently large r). Suppose Γ has exponential growth from w, and there
is a path v  w in Γ. Then Γ also has exponential growth from v. Thus, if Γ is connected and has
exponential growth from some v ∈ Γ, it also has exponential growth from any w ∈ Γ. In this case,
we say that Γ has exponential growth.

2.3. Growth in groups. Let G be a group, Let S be a generating n-tuple of G. Define BG,S(r) =
BΓ(1, r), where Γ = CayS(G). When it is clear what S is, we simply write BG(r) instead. It is easy
to verify that the following definitions are independent of the choice of generators S.

We say G has exponential growth if Γ has exponential growth. In other words, G has exponential
growth if there is a constant α > 1 such that |BG(r)| ≥ αr for sufficiently large r. Equivalently G
has exponential growth if and only if

lim inf
r→∞

log
∣∣BG(r)

∣∣
r

> 0.

Similarly, we say G has polynomial growth if there is a constant d with |BG(r)| ≤ rd for sufficiently
large r. In other words, G has polynomial growth if

lim sup
r→∞

log
∣∣BG(r)

∣∣
log r

<∞.

Example 2.1. The group Z has polynomial growth. With respect to the generating 1-tuple S = (1),
we have BZ(r) = [−r, r], and hence |BZ(r)| = 2r + 1.

Example 2.2. The free group with two generators, G = F2 = 〈a, b〉 has exponential growth. With
respect to the generators S = (a, b), we have |BG(r)| = 1 + 4 · 3r−1 for r ≥ 1.

We say G has intermediate growth if it has neither exponential nor polynomial growth. The first
known example of a group of intermediate growth is the Grigorchuk group G, which will be defined
later, in Section 5. We refer to [dlH1, §VI] and [GP] for more on the growth of groups.

2.4. Product replacement graphs. Given a generating n-tuple of S a group G, we can take an
element of S and multiply it, either on the left or the right, by another element or another element’s
inverse. Such an operation is called a Nielsen move. Formally, for each 1 ≤ i, j ≤ n with i 6= j, we
define the Nielsen moves R±1

ij , L±1
ij by

R±1
ij (g1, . . . , gi, . . . , gj , . . . gn) = (g1, . . . , gi, . . . , gjg

±1
i , . . . , gn),

and L±1
ij (g1, . . . , gi, . . . , gj , . . . gn) = (g1, . . . , gi, . . . , g

±1
i gj , . . . , gn).

9



4 ANTON MALYSHEV AND IGOR PAK

Clearly, if S is a generating n-tuple of G, then RijS, R−1
ij S, LijS, and L−1

ij S are also generating
n-tuples of G.

We define the product replacement graph Γn(G) to be the directed graph whose vertices are the
generating n-tuples of G, where there is an edge from S to RijS, R−1

ij S, LijS, and L−1
ij S, for each

generating n-tuple S and each pair of integers i 6= j satisfying 1 ≤ i, j ≤ n. This is a 4n(n−1)-regular
symmetric directed graph.

Observe that

RijL
−1
ji Lij(g1, . . . , gi, . . . , gj , . . . , gn) = RijL

−1
ji (g1, . . . , gi, . . . , gigj , . . . , gn)

= Rij(g1, . . . , g
−1
j , . . . , gigj , . . . , gn) = (g1, . . . , g

−1
j , . . . , gi, . . . , gn).

Hence, a series of Nielsen moves can swap two elements in a generating n-tuple, inverting one of
them. Doing this twice simply inverts both elements. This implies that Nielsen moves permit us
to rearrange generators in an n-tuple, except that we may need to invert one element (see [P1]).
Moreover, if gi = 1 for some i, then we can use Nielsen moves invert any one element, and therefore
we can rearrange the generators freely.

Example 2.3. The graph Γ2(Z) has a vertex for each pair of relatively prime integers (a, b), with
two edges from (a, b) to each of (a, b+ a), (a, b− a), (a+ b, b) and (a− b, b). It is easy to check that
this graph has exponential growth: the subgraph induced by

{
(a, b) ∈ Z2

∣∣ a, b > 0, gcd(a, b) = 1
}

is
a rooted binary tree.

Example 2.4. Let G = Znp , with p prime. Then Γn(G) is the set of bases of Znp as a vector
space over Zp. These bases are in one-to-one correspondence with matrices in GLn(Zp), and Nielsen
moves correspond to elementary row operations. Row operations do not change the determinant of
a matrix. It follows that there is one connected component for every value of the determinant. This
implies that Γn(Znp ) has p− 1 connected components (see [DG]).

2.5. Growth of Γn(G). Let S = (g1, . . . , gn) ∈ Γn(G). We write

S(m) := (g1, . . . , gn, 1, . . . , 1) ∈ Γn+m(G),

and define Γn+m(G,S) to be the connected component of Γn+m(G) containing S(m).
We say G has exponential Nielsen growth if Γn(G,S) has exponential growth for some n and

some generating n-tuple S of G. It is easy to show that a finitely generated group G has exponential
Nielsen growth if G is either an infinite group of polynomial growth, or a group of exponential growth
(see Proposition 3.10). This suggests that every infinite finitely generated group has exponential
Nielsen growth:

Conjecture 2.5. For every infinite finitely generated group G, there is an generating n-tuple S ∈
Γn(G) such that Γn(G,S) has exponential growth.

Note that this conjecture is a weaker version of Conjecture 1.2. Here we accounted for the
possibility that there can be many connected components, and are working with only one of them.
Our Main Conjecture 1.1 is also stronger; implicit in it is a reference to a conjecture that every
generating k-tuple is connected to a redundant generating k-tuple in Γk(G). For this and stronger
conjectures on connectivity of Γk(G), see [P1] (see also [BKM]).

3. Basic results

3.1. Growth of graphs. We do not need to prove that BΓ(v, r) is large for every single r to
conclude that Γ has exponential growth from v. As the following lemma shows, it suffices to prove
it for a relatively sparse set of numbers r.

A sequence of positive integers r1, r2, . . . is called log-dense if it is increasing, and there is a
constant β such that ri+1 ≤ βri for every i ≥ 1. In other words, an increasing integer sequence (ri)
is log-dense if the gaps in the sequence (log ri) are bounded above.

10



GROWTH IN PRODUCT REPLACEMENT GRAPHS OF GRIGORCHUK GROUPS 5

Lemma 3.1. Let Γ be a symmetric directed graph, and let v be a vertex of Γ. Suppose that for some
constant α > 1, there is a log-dense sequence r1, r2, . . . such that |B(v, ri)| ≥ αri for every i ≥ 1.
Then Γ has exponential growth from v.

Proof. Since ri is an increasing sequence of positive integers, we can conclude that for sufficiently
large r, there is an i with ri ≤ r ≤ ri+1. Since ri+1 ≤ βri, we have ri ≥ r/β. Thus,

|B(v, r)| ≥ |B(v, ri)| ≥ αri ≥ αr/β ,
which implies the result. �

If a graph Γ is a covering of another graph Γ′, and Γ′ has exponential growth, then so does Γ.

Proposition 3.2. Let Γ′ and Γ be symmetric directed graphs, and suppose φ : Γ′ → Γ maps the set
of neighbors of each vertex v ∈ Γ′ surjectively onto the neighbors of φ(v). Suppose Γ has exponential
growth from φ(w). Then Γ′ has exponential growth from w.

Proof. It suffices to show that φ maps BΓ′(w, r) onto BΓ(φ(w), r) for all r ≥ 0, since in that case

|BΓ′(w, r)| ≥ |BΓ(φ(w), r)| .
We prove this by induction on r. The base case r = 0 is trivial. Suppose

φ
(
BΓ′(w, r)

)
⊇ BΓ

(
φ(w), r

)
,

and consider v ∈ BΓ(φ(w), r + 1). We know that v has a neighbor u ∈ BΓ(φ(w), r), which has a
preimage u′ ∈ BΓ′(w, r). Since v is a neighbor of u, we know that some neighbor of u′ is mapped
to v. Therefore, v ∈ φ

(
BΓ′(w, r + 1)

)
, as desired. �

It is easy to see that if a graph Γ is a subgraph of Γ′, and Γ has exponential growth, so does Γ′.
Moreover, we have the following stronger result:

Proposition 3.3. Let Γ and Γ′ be symmetric directed graphs, and suppose φ : Γ → Γ′ sends
neighbors to neighbors. Suppose that there is a constant C such that #φ−1(v′) ≤ C for every
vertex v′ ∈ Γ′. Suppose that Γ has exponential growth from w. Then Γ′ has exponential growth
from φ(w).

Proof. It suffices to show that φ maps BΓ(w, r) into BΓ′(φ(w), r) for all r ≥ 0, since in that case

|BΓ′(φ(w), r)| ≥ |BΓ(w, r)| /C.
We prove this by induction or r. The base case r = 0 is trivial. Suppose

φ
(
BΓ(w, r)

)
⊆ BΓ′

(
φ(w), r

)
,

and consider v ∈ BΓ(w, r+1). We know that v has a neighbor u ∈ BΓ(w, r), and φ(u) ∈ BΓ′(φ(w), r).
Since u and v are neighbors, and φ sends neighbors to neighbors, we see that φ(v) is a neighbor
of φ(u). It follows that φ(v) ∈ BΓ′(φ(w), r + 1), as desired. �

3.2. Growth of product replacement graphs. Observe that if m ≥ n then Γn(G,S) embeds
into Γm(G,S). Therefore, by Lemma 3.3 if Γn(G,S) has exponential growth, so does Γm(G,S).

Moreover, if H is a finitely generated subgroup of G, then every product replacement graph of
H embeds in some product replacement graph of G. We can conclude that if a subgroup of G has
a product replacement graph of exponential growth, so does G. Formally:

Proposition 3.4. Let H and G be finitely generated groups with H < G. Suppose some connected
component of Γm(H) has exponential growth, and let S ∈ Γn(G). Then Γn+m(G,S) has exponential
growth. In particular, if H < G and H has exponential Nielsen growth, then G also has exponential
Nielsen growth.
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Proof. Let S = (g1, . . . , gn) ∈ Γn(G). We know that Γm(H) has exponential growth from some
T ∈ Γm(H). Let T = (h1, . . . , hm). There is a graph embedding φ : Γm(H)→ Γn+m(G) given by

φ(h′1, . . . , h
′
m) = (g1, . . . , gn, h

′
1, . . . , h

′
m).

Hence, Γn+m(G) has exponential growth from φ(T ). Since the gi’s generate G, we know that each
hi is a product of gi’s and their inverses. Thus, there is a sequence of Nielsen moves S(m)  φ(T ),
where

S(m) = (g1, . . . , gn, 1, . . . , 1), and φ(T ) = (g1, . . . , gn, h1, . . . , hm).

Therefore, Γn+m(G,S) = Γn+m

(
G,φ(T )

)
, which implies that Γn+m(G,S) has exponential growth.

�
Similarly, we can show that if a group quotient of G has a product replacement graph of expo-

nential growth, then so does G.

Proposition 3.5. Let G and H be finitely generated groups, and let f : G → H be a surjective
group homomorphism. Let S ∈ Γn(G). Then the following hold.

(1) Suppose Γn
(
H, f(S)

)
has exponential growth. Then Γn(G,S) has exponential growth.

(2) Suppose some connected component of Γm(H) has exponential growth. Then Γn+m(G,S) has
exponential growth.

(3) Suppose H has exponential Nielsen growth. Then G also has exponential Nielsen growth.

Proof. For (1), we extend f to a map Γn(G)→ Γn(H) by making the following definition.

f(g1, . . . , gn) =
(
f(g1), . . . , f(gh)

)
.

This map f sends the neighbors of every T ∈ Γn(G) surjectively onto the neighbors of f(T ). Thus,
since Γn(H) has exponential growth from f(S), we can apply Proposition 3.2, and conclude that
Γn(G) has exponential growth from S.

For (2), let S = (g1, . . . , gn) ∈ Γn(G), and choose

T = (h1, . . . , hm) =
(
f(h̃1), . . . , f(h̃m)

)
∈ Γm(H)

such that Γm(H,T ) has exponential growth. Then

Γn+m

(
H, (f(g1), . . . , f(gn), h1, . . . , hm)

)

also has exponential growth. Thus, by (1),

Γn+m

(
G, (g1, . . . , gn, h̃1, . . . , h̃m)

)

has exponential growth. Since the gi’s generate G, we know that there is a path in Γn+m(G)

(g1, . . . , gn, h̃1, . . . , h̃m)  (g1, . . . , gn, 1, . . . , 1) = S(m).

Hence, Γn+m(G) also has exponential growth from S(m), i.e. Γn+m(G,S) has exponential growth.
Finally, part (3) follows immediately from (2). �

In a different direction, if G has a product replacement graph of exponential growth, so does every
quotient of H by a finite subgroup.

Proposition 3.6. Let G and H be finitely generated groups, and let f : G → H be a surjective
group homomorphism with finite kernel. For every S ∈ Γn(G), if Γn(G,S) has exponential growth,
then Γn

(
H, f(S)

)
has exponential growth. In particular, if G has exponential Nielsen growth, then

H also has exponential Nielsen growth.

Proof. We extend the map f : G→ H, to the map f : Γn(G)→ Γn(H), given by

f(g1, . . . , gn) =
(
f(g1), . . . , f(gh)

)
.

This map sends neighbors to neighbors, and the preimage of each vertex has bounded size. The
graph Γn(G) has exponential growth from S. Hence, by Proposition 3.3, Γn(H) has exponential
growth from f(S). �

12
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We summarize the previous three results in the following proposition.

Proposition 3.7. Let G and G′ be finitely generated groups, and suppose G is a subgroup, quotient,
or extension by a finite group of G′. If G has exponential Nielsen growth, then G′ also has exponential
Nielsen growth.

Remark 3.8. Proposition 3.7 relates the Nielsen growth of a subgroup H of G to the Nielsen growth
of G. We conjecture that for any finite index subgroup H of G, if Γn(G) has exponential growth,
then so does Γk(H) of G, for sufficiently large k. This would imply that the property of having
exponential Nielsen growth respects virtual isomorphism. More generally, it would be interesting to
see if this property is an invariant under quasi-isometry.

The proposition gives us an easy way to prove that a fairly large class of groups have exponential
Nielsen growth.

Lemma 3.9. Let G be a finitely generated group. Suppose G contains an element of infinite order.
For every S ∈ Γn(G) and every m ≥ n+ 2, we have that Γm(G,S) has exponential growth.

Proof. By assumption, the group G contains a subgroup isomorphic to Z. It is easy to see that
Γ2(Z) has exponential growth (see Example 2.3). By Proposition 3.4, it follows that Γn+2(G,S) has
exponential growth, and hence so does Γm(G,S) for every m ≥ n+ 2. �

In particular, we can prove that groups of polynomial or exponential growth all have exponential
Nielsen growth, which leaves Conjecture 2.5 open only for groups of intermediate growth.

Proposition 3.10. Let G be an infinite finitely generated group. Suppose that either G has polyno-
mial or exponential growth. Then G has exponential Nielsen growth.

Proof. Suppose G has polynomial growth. By Gromov’s theorem, G is virtually nilpotent [Gro]. It
follows that some subgroup of G has infinite abelianization. Thus, G has an element of infinite order
and, by Lemma 3.9, G has exponential Nielsen growth.

Now suppose G has exponential growth. Let S = (g1, . . . , gn) be a generating n-tuple of G and
denote Γ = Γn+1(G,S). Let r be any positive integer. For any g ∈ BG,S(r), the distance between

S(1) = (g1, . . . , gn, 1) and (g1, . . . , gn, g) in Γ is at most r, i.e. (g1, . . . , gn, g) ∈ BΓ(S, r). Thus,

|BΓ(S, r)| ≥ |BG,S(r)| .
But |BG,S(r)| grows exponentially in r, and thus so does |BΓ(S, r)|. That is, Γ = Γn+1(G,S) has
exponential growth, and therefore G has exponential Nielsen growth. �
Remark 3.11. The Grigorchuk group G does not have an element of infinite order, so Lemma 3.9 is
not enough to show that its product replacement graphs have exponential growth. It can be shown
that Γn(G) has exponential growth for sufficiently large n as long as there are elements of G whose
order is exponential in their word length (see [M2]). The Grigorchuk group G does not satisfy this
condition either, but some of the generalized Grigochuk groups Gω do.

3.3. Effective results. The Grigorchuk group has no elements of infinite order, so Lemma 3.9 is
not strong enough to prove it has exponential Nielsen growth. We use a different approach. It is
enough to find large cubes in G, as follows.

Let G be any group, and let (g1, . . . , gk) ∈ Gk, we say the cube spanned by (g1, . . . , gk) is

C(g1, . . . , gn) :=
{
gε11 · · · gεnn

∣∣ εi ∈ {0, 1}
}
.

Observe that # C(g1, . . . , gn) ≤ 2n. We say (g1, . . . , gk) is a cubic k-tuple if

# C(g1, . . . , gk) = 2k.

Lemma 3.12. Let G be a finitely generated group, and fix S ∈ Γn(G). Let α > 1 be a constant,
and (ki) be a log-dense sequence. Suppose for each i ≥ 1, there is a path γ of length at most αki in
Γn(G), such that γ starts at S and visits some S1, . . . , Ski ∈ Γn(G) in that order. Suppose further
that there is a cubic ki-tuple (g1, . . . , gki), where gj ∈ Sj for each 1 ≤ j ≤ ki. Then Γm(G,S) has
exponential growth for every m ≥ n+ 1.

13
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Proof. It is enough to show that Γn+1(G,S) has exponential growth. Let Γ = Γn+1(G), and k = ki.
By Lemma 3.1, it suffices to show that∣∣∣BΓ(S(1), (α+ 1)k)

∣∣∣ ≥ 2k.

Given (ε1, . . . , εk) ∈ {0, 1}k, we traverse the path γ in the first n coordinates of Γn+1(G), but when
we reach Sj , if εj = 1 we also apply a Nielsen transformation to multiply the last entry by gj . This
gives us a path γ′ in Γn+1(G) of length at most αk+ k. The path γ′ ends at an element of Γn+1(G)
whose last entry is gε11 . . . gεnn . Since (g1, . . . , gk) is cubic, there are 2k distinct such elements. Thus,

we have constructed 2k distinct elements of BΓ(S(1), αk + k), as desired. �
3.4. Connectivity of product replacement graphs. Recall the Frattini subgroup Φ(G),

Φ(G) =
{
g ∈ G

∣∣ if H � G, then 〈H, g〉 � G
}
.

(see e.g. [Hall, §10.4]). It is easy to see that Φ(G) is a normal subgroup of G. We need the following
connectivity result by Evans (see [Eva, Theorem 4.3]).

Theorem 3.13 (Evans). Suppose G is generated by some n-tuple. Let m ≥ n + 1, and suppose
Γm
(
G/Φ(G)

)
is connected. Then Γm(G) is connected.

It is known that for any finite abelian group G with n generators, the product replacement graph
Γm(G) is connected for every m > n [DG] (see also [P1]). We use only the following special case,
which is easy to verify by hand.

Lemma 3.14. The product replacement graph Γm(Zn2 ) is connected for every m ≥ n.

In particular, suppose G/Φ(G) ∼= Zn2 . Then Γm(G) is connected for every m > n.

Remark 3.15. Theorem 3.13 is an analogue for infinite groups of the following result in [LP] (see
also [P1]). Let G and H be finite groups with k generators, and f : G → H is a surjective group
homomorphism, then the extension f : Γk(G) → Γk(H) is surjective. That is, every generating k-
tuple of H lifts to a generating k-tuple of G. As a corollary, if Γk(G) is connected, then so is Γk(H).
This claim is not true for infinite groups.

4. Automorphisms of the rooted binary tree

In this section, we introduce and discuss properties of the group Aut(T) of automorphisms of a
binary tree.

4.1. Definitions. Let T = {0, 1}∗ denote the rooted binary tree consisting of finite strings over the
alphabet {0, 1}, whose root is the empty string, where the children of the string s are s0 and s1.
Define Aut(T) to the group of automorphisms of this tree. Formally, Aut(T) consists of length
preserving bijections g of T such that for any s, t ∈ T, g(st) begins with g(s). To avoid confusion
with the bit 1, we let i ∈ Aut(T) denote the identity element. Let g↓s denote the action of g on
tails of strings beginning with s. In other words, we define it to satisfy g(st) = g(s)g↓s(t).

Define a ∈ Aut(T) to be the automorphism which flips the first bit of s. Formally, a(0s) = 1s
and a(1s) = 0s for all s ∈ T. Clearly, every element of Aut(T) either fixes 0 and 1 or swaps them.
Let g be an element that fixes them. Then g(0s) = 0g↓0(s) and g(1s) = 1g↓1(s). In this case, we
write g in one of the following two forms, depending on which is more convenient:

g = (g↓0, g↓1) or g =

(
g↓0
g↓1

)
.

On the other hand, suppose g ∈ Aut(T) swaps 0 and 1. Then g = a(g↓0, g↓1) = (g↓1, g↓0)a.
Thus, we can write every element g ∈ Aut(T) in the form (h, k)aε, for some h, k ∈ Aut(T) and
some ε ∈ {0, 1}. Moreover (h, k)a = a(k, h) for all h, k ∈ Aut(T). In other words, we have
Aut(T) = (Aut(T) × Aut(T)) o Z2 where Z2 acts on Aut(T) × Aut(T) by swapping the two
coordinates.

14
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Let s ∈ T be a given binary string. We say the stabilizer of s is the subgroup of Aut(T) consisting
of those elements g ∈ Aut(T) which fix s:

Stab(s) :=
{
g ∈ Aut(T) s.t. g(s) = s

}
.

The n-th level stabilizer is the subgroup of Aut(T) consisting of those elements which fix the n-th
level of T:

Stabn :=
⋂

s∈{0,1}n
Stab(s).

Let g ∈ Stabn. The n-support of g is

suppn(g) =
{
s ∈ {0, 1}n s.t. g↓s 6= i

}
.

Finally, given s ∈ {0, 1}n, we define the rigid stabilizer of s to be the subgroup

Rist(s) :=
{
g ∈ Stabn s.t. suppn(g) ⊆ {s}

}
.

In other words, Rist(s) consists of those elements of Aut(T) which fix every string that does not
begin with s.

For a subgroup G of Aut(T), define

StabG(s) = G ∩ Stab(s) and RistG(s) = G ∩ Rist(s).

Note that

Rist(0s) = {(g, i) | g ∈ Rist(s)} = Rist(s)× {i},
and Rist(1s) = {(i, g) | g ∈ Rist(s)} = {i} × Rist(s).

4.2. Growth in subgroups of Aut(T). For distinct s, s′ ∈ {0, 1}m, elements of Rist(s) and Rist(s′)
have disjoint n-support. We use Nielsen transformations to reach many of these elements. This
implies we can find a large cubic set, which lets us construct many different generating n-tuples.

Lemma 4.1. Let G < Aut(T) be finitely generated, and fix a generating n-tuple S ∈ Γn(G). Suppose
G acts transitively on every level of T. Suppose there is a constant α such that for every m ≥ 1,
there is a string s ∈ {0, 1}m and a nontrivial element g ∈ RistG(s) with `(g) ≤ α2m. Then Γk(G,S)
has exponential growth for every k ≥ n+ 2

Proof. Given m, define L = {0, 1}m and N = 2m. Fix s ∈ L such that there is a nontrivial
g ∈ RistG(s), satisfying `(g) ≤ αN . Since G acts transitively on L, we have that the Schreier graph
SchrS(G,L) is connected. Therefore, SchrS(G,L) has a spanning tree T . Consider a depth-first
traversal of T with respect to the lexicographic order on L, starting at s. This is a path of length
2 |L|−2 < 2N which visits every element of L. Suppose it visits them in the order s1, . . . , sN . For each
1 ≤ i ≤ N , define hi to be the group element corresponding to the walk along this path from s to si,
so that (s1, . . . , sN ) = (h1(s), . . . , hN (s)). Then we have `(h2h

−1
1 ) + · · ·+ `(hNh

−1
N−1) ≤ 2N = 2m+1,

and
(
h1(s), . . . , hN (s)

)
is a permutation of the elements of L.

Since g ∈ RistG(s), we have high
−1
i ∈ RistG

(
hi(s)

)
, for all 1 ≤ i ≤ N . We claim that

(h1gh
−1
1 , . . . , hNgh

−1
N )

is a cubic N -tuple, i.e.

#

{ −→∏

i=1...N

(highi)
εi , where εi ∈ {0, 1}

}
= 2N .

Indeed, the surjection φ : {0, 1}N → C(h1gh
−1
1 , . . . hNgh

−1
N ) given by

φ(ε) :=
−→∏

i=1...N

(high
−1
i )εi

is also injective, since εi = 1 if and only if si ∈ suppn φ(ε). Hence # C(h1gh
−1
1 , . . . hNgh

−1
N ) = 2N ,

as desired.
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Since `(g) ≤ α2m, there is a path γ1 in Γn+1(G,S) of length at most α2m

S(1) = (g1, . . . , gn, 1)  (g1, . . . , gn, g) = (g1, . . . , gn, h1gh
−1
1 ).

Observe that the distance in Γn+1(G,S) between (g1, . . . , gn, high
−1
i ) and (g1, . . . , gn, hi+1gh

−1
i+1) is

at most 2`(hi+1h
−1
i ). Since `(h2h

−1
1 )+ · · ·+`(hNh

−1
N−1) ≤ 2m+1, there is a path γ2 in Γn+1 of length

at most 2m+2 which starts at (g1, . . . , gn, g) and visits each (g1, . . . , gn, high
−1
i ), in that order.

Composing γ1 and γ2, we see that there is a path in Γn+1(G,S) of length at most (α + 4)2m

which starts at S(1) and visits generating (n + 1)-tuples containing h1gh
−1
1 , . . . , hNgh

−1
N , in that

order. These elements of G form a cubic 2m-tuple. Applying Lemma 3.12 with km = 2m, then, tells
us that Γk(G,S) has exponential growth for all k ≥ n+ 2. �

Remark 4.2. We cannot replace `(g) ≤ α2n in the hypotheses of this lemma with `(g) ≤ αn with
some α > 2. Roughly speaking, that would only let us reach a cubic 2n-tuple in αn steps. Thus, we
can only generate an r1/d-cube in BΓ(S, r), where d = log2 α, which is not sufficient to guarantee
exponential growth. We can, however, replace the assumption that `(g) ≤ α2n with the assumption
that we can reach a generating (n+ 1)-tuple containing g in α2n Nielsen moves.

5. The Grigorchuk group

5.1. Definition. The Grigorchuk group G < Aut(T) is defined as G = 〈a, b, c, d〉, where a flips the
first bit of a string, and b, c, and d are defined recursively by the relations

b := (a, c)

c := (a, d)

d := (i, b).

It is easy to check that a2 = b2 = c2 = d2 = bcd = i. Thus, G is actually generated by just three
elements: G = 〈a, b, c〉.

Here is an explicit description of the action of these involutions on T.

d(1n) = 1n

d(1n0s) =

{
1n0s, n ≡ 0 (mod 3)

1n0a(s), n ≡ 1, 2 (mod 3)

In other words, d changes at most one bit in a string – the bit after the first 0. Specifically, d flips
that bit if and only if the number n of 1’s in the string up to that point is 1 or 2 (mod 3). Similarly,
c flips it when n ≡ 0, 2 (mod 3), and b flips it when n ≡ 0, 1 (mod 3).

Theorem 5.1 (Gigorchuk). The group G has intermediate growth.

The theorem was first proved by Grigorchuk in [G1] (see also [GP, dlH1]).

5.2. Connectivity of Γn(G). We prove the following result:

Proposition 5.2. For each n ≥ 4, the product replacement graph Γn(G) is connected (see also §7.1).1

Proof. Fix n ≥ 4. It is known that G/Φ(G) ∼= Z3
2 (see [Per] and [G2, §6]). The graph Γn(Z3

2) is
connected by Lemma 3.14. Thus, by Lemma 3.13, Γn(G) is connected. �

1After this paper was written, we learned that the proposition was independently derived in [Myr].
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5.3. Exponential growth in Γn(G). The goal of this section is to prove the following result:

Theorem 5.3. For each n ≥ 5, the product replacement graph Γn(G) of the Grigorchuk group has
exponential growth.

The proof is based on Lemma 4.1. Roughly, our strategy is to find an element g of RistG(1n)
with length O(2n). In O(2n) more steps, we conjugate g to reach an element of RistG(s) for each s
on the same level of T. Then we can construct every product of these conjugates in O(2n) steps.
There are 22n

such products, which gives us exponential growth.

Proof of Theorem 5.3. Fix n ≥ 5. It is easy to check that G acts transitively on the levels of T (see
e.g. [dlH1, §VIII] or Lemma 6.1, below). By Lemma 4.1, it suffices to show that for every m ≥ 0,
there is a nontrivial element of Rist(1m) of length at most 2m+4 with respect to the generating
3-tuple (a, b, c).

Define t0 = abab. Observe that t20(111) = 110, and therefore t20 6= i. We prove by induction on m
that there is a tm ∈ G of the form

tm =
−→∏

i=1...N

abaxi,(∗)

where N = 2m, xi ∈ {b, c, d} for each 1 ≤ i ≤ 2m, such that t2m ∈ RistG(1m) and tm↓1m = t0. The
base case m = 0 is trivial.

Given tm and (xi) related by (∗), for each 0 ≤ i ≤ N we define x′i ∈ {b, c, d} by x′i = (aεi , xi)
where εi ∈ {0, 1}. We define tm+1 by applying the rewriting rules a 7→ aba, b 7→ d, c 7→ b, d 7→ c
to tm. Then we have

tm+1 =

[ −→∏

i=1...N

(aba)d(aba)x′i

]
=

[ −→∏

i=1...N

(
c

a

)(
i

b

)(
c

a

)(
aεi

xi

)]
=

(
aε

tm

)
,

Thus,

t2m+1 = (i, t2m) ∈ {i} × Rist(1m) = Rist(1m+1),

and t2m+1↓1m+1 = t2m↓1m = t20.
Since t2m↓1m = t20 6= i, we can conclude that t2m 6= i. Hence, for every m ≥ 0, we have that t2m

is a nontrivial element of RistG(1m), with `〈a,b,c〉(t2m) ≤ 2`〈a,b,c,d〉(t2m) ≤ 2m+4, which concludes the
proof. �

6. The generalized Grigorchuk groups

In this section, we use the same approach to analyze growth in the product replacement graph of
Gω. The same techniques apply, but the technical details are more involved.

6.1. Definition. Let ω be an infinite string in the alphabet2 {b, c, d}. The generalized Grigorchuk
group Gω is the group of automorphisms of {0, 1}n given by Gω = 〈a, b0, c0, d0〉. Here, the element
a flips the first digit of a string, and for each x ∈ {b, c, d}, the elements xn are defined recursively by

xn := (aε, xn+1), where ε =

{
0, x = ωn

1, otherwise.

For convenience, we write b = b0, c = c0, and d = d0. As with G, we have a2 = b2 = c2 = d2 =
bcd = 1.

2The usual definition uses the alphabet {0, 1, 2} but for our purposes it is more convenient to use {b, c, d}.
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As before, we give a more explicit description of the action of Gω on T. Given x ∈ {b, c, d} and
s ∈ T,

x(1n) = 1n, and

x(1n0s) =

{
1n0s, ωn = x

1n0a(s), otherwise.

Taking ω = dcbdcbdcbdcb . . . gives the usual Grigorchuk group. The following fact is well-known,
but we include a proof here for completeness.

Lemma 6.1. The generalized Grigorchuk group Gω acts transitively on every level of T.

Proof. We prove that Gω acts transitively on the n-th level by induction on n. This is trivial
for n = 0, and true for n = 1 because a ∈ Gω. For n > 1, note that it suffices to show that
for each s ∈ {0, 1}n, there is a g ∈ Gω such that g(s) = 1n−200. Consider s ∈ {0, 1}n. We
know that s = s′d, for some s′ ∈ {0, 1}n−1 and d ∈ {0, 1}. By the induction hypothesis, Gω acts
transitively on {0, 1}n−1. Thus there is a g ∈ Gω with g(s′) = 1n−20. Then either g(s) = 1n−200
or g(s) = 1n−201. In the latter case, there is an x ∈ {b, c, d} such that ωn−2 6= x, and then
x(g(s)) = 1n−200. In both cases, there is an h ∈ Gω with h(s) = 1n−200. �

6.2. Exponential growth in Γn(Gω). To prove Theorem 1.3, we first need some lemmas about Gω.
A standard computation shows that, under some weak assumptions on ω, every element of Gω has
finite order. We will use the following more specialized result.

Lemma 6.2. Suppose ωn−1 = d. Then in Gω, we have (adk)2n−k+1

= i for every 0 ≤ k < n.

Proof. Since ωn−1 = d, we have dn−1 = (i, dn) and adn−1a = (dn, i). We prove the lemma by
induction on j = n− k. When j = 1, i.e. k = n− 1, we have

(adk)4 = [(adn−1a)dn−1]
2

=

[(
dn
i

)(
i

dn

)]2

=

(
d2
n

d2
n

)
= i.

When j > 1, i.e. k < n − 1, the induction hypothesis tells us (adk+1)2j

= i. Note that also

(dk+1)2j

= i, since dk+1 has order 2. Then, for some ε ∈ {0, 1}, we have

(adk)2j+1

= [(adka)dk]
2j

=

[(
dk+1

aε

)(
aε

dk+1

)]2j

=

(
(aεdk+1)−2j

(aεdk+1)2j

)
= i.

�

Lemma 6.3. Suppose ω ∈ {b, c, d}∗ is not eventually constant. Then for each n ≥ 0, there is a
nontrivial t ∈ RistGω

(1n) with `(t) ≤ 2n+2.

Proof. This is trivial if n = 0. If n > 1, then by relabeling b, c, and d if necessary, we may
assume ωn−1 = d.

By induction on j = n− k we show that for every 0 ≤ k ≤ n, there is a tk of the form

tk =
−→∏

i=1...2n−k

axi,

where xi ∈ {bk, dk} for each i, and there is an odd number of i’s with xi = dk, such that t2k ∈
Rist(1n−k), and t2k 6= i.

For j = 0, i.e. k = n, we define tn = adn. We know that dn = (aε, dn+1) for some ε ∈ {0, 1}, and
therefore we have

t2n = (adna)dn =

(
dn+1

aε

)(
aε

dn+1

)
=

(
dn+1a

ε

(dn+1aε)−1

)
.
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Since ω is not eventually constant, we know that there is an m ≥ n+ 1 with ωm 6= d. Therefore we
have

dn+1(1m−n−100) = 1m−n−1dm(00) = 1m−n−10a(0) = 1m−n−101.

Hence, dn+1 6= i. It follows that dn+1a
ε is nontrivial whether ε = 0 or ε = 1. Therefore, t2n 6= i.

For j = 1, i.e. k = n − 1, we define tk = abn−1adn−1. We have ωk = d, hence dk = (i, dk+1)
and bk = (a, bk+1). Therefore, we have:

t2n−1 = [(abn−1a)dn−1]
2

=

[(
bn
a

)(
i

dn

)]2

=

(
i

(adn)2

)
=

(
i

t2n

)
.

For j > 1, i.e. k < n− 1, let N = 2n−k−1. We have

tk+1 =
−→∏

i=1...N

axi

from the previous step. For each 1 ≤ i ≤ N , we know that xi = bk+1 or dk+1, and we define

x′i =

{
bk, xi = bk+1

dk, xi = dk+1.

Then x′i = (aεi , xi) for some εi ∈ {0, 1}. We have three possibilities:

Case (i): ωk = b. Then dk = (a, dk+1) and bk = (i, bk+1). Define

tk =
−→∏

i=1...N

adkax
′
i.

The product has an even number of terms, thus, we have not changed the parity of the
number of dk’s in the product, which implies it is still odd.

tk =
−→∏

i=1...N

(adka)x′i =
−→∏

i=1...N

(
dk+1

a

)(
aεi

xi

)
=

(−→∏
dk+1a

εi

tk+1

)
,

where the final product runs over i = 1 . . . N . Observe that εi = 1 if and only if xi = di.

There are an odd number of such i, therefore
−→∏
dk+1a

εi is a product containing an odd
number of a’s and an even number of dk+1’s. The elements dk+1 and a have order 2, so
the group 〈dk+1, a〉 is a dihedral group in which they are both reflections. Hence, the

product
−→∏
dk+1a

εi is also a reflection in that dihedral group, and thus it has order 2.
Therefore, t2k = (i, t2k+1).

Case (ii): ωk = d. Then dk = (i, dk+1) and bk = (a, bk+1). Define

tk =
−→∏

i=1...N

abkax
′
i,

and argue as in case (i).
Case (iii): ωk = c. Then dk = (a, dk+1) and bk = (a, bk+1). Hence x′i = (a, xi) for each 0 ≤ i ≤ N .

We can again define

tk =
−→∏

i=1...N

adkax
′
i.

Then

tk =
−→∏

i=1...N

(adka)x′i =
−→∏

i=1...N

(
dk+1

a

)(
a

xi

)
=

(
(dk+1a)N

tk+1

)
.

By Lemma 6.2, we have (dk+1a)2N = (dk+1a)2n−k

= i. Hence, t2k = (i, t2k+1).
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14 ANTON MALYSHEV AND IGOR PAK

In all three cases, t2k = (i, t2k+1). It follows that t2k is nontrivial and

t2k ∈ {i} × Rist(1n−k−1) = Rist(1n−k).

Thus, we have a nontrivial t20 ∈ Rist(1n) ∩Gω, with `(t20) ≤ 2n+2, as desired. �

Proof of Theorem 1.3. It is known that Gω/Φ(Gω) ∼= Zk2 for some k ≤ 3 [Per] (see also [G2, §6]).
Recall from Lemma 3.14 that Γn(Zk2) is connected. Lemma 3.13 tells us that Γn(Gω) is connected
for each n ≥ 4.

Assume that ω is eventually constant. Then it is not hard to check that Gω has polynomial
growth. In fact, Gω is virtually abelian [G2, §2]. It follows that Gω has an element of infinite order.
The group Gω is generated by three elements, Gω = 〈a, b, c〉. By Lemma 3.9, this implies that the
product replacement graph Γn(Gω) has exponential growth for each n ≥ 5.

Otherwise, if ω is not eventually constant, for every m ≥ 0, Lemma 6.3 gives a nontrival t ∈
RistGω

(1m) of length at most 2m+2. Since Gω acts transitively on the levels of T, we can apply
Lemma 4.1 to conclude that Γ6(Gω) has exponential growth from (a, b, c, d, 1, 1).

Moreover, note that the group Gω is generated by (a, b, c), and rewriting t as a word in these
generators at most doubles its length. Thus, we also have that Γ5(Gω) has exponential growth
from (a, b, c, 1, 1). It follows that Γn(Gω) has exponential growth for each n ≥ 5. �

7. Final remarks

7.1. There are several other directions in which our Theorem 5.3 can be extended. First, there is the
problem of smaller k: we believe that that Γ3(G) is connected (cf. Lemma 3.14 and Proposition 5.2).3

Moreover, it is conceivable that both Γ3(G) and Γ4(G) have exponential growth, the cases missing
from Theorem 5.3.

Similarly, in case Conjecture 1.4 proves too difficult, there is a weaker and perhaps more accessible
open problem.

Conjecture 7.1. The nearest neighbor random walk on Γk(G) has positive speed, for all k ≥ 5.

The speed of r.w. is defined as the limit of E[dist(t)/t] as t→∞, where dist(t) is the distance of
the r.w. after t steps, from the starting vertex. It is known that non-amenable graphs have positive
speed, but so do some amenable graphs, such as the standard Cayley graph of the lamplighter group
Z2 o Z3 (see e.g. [Pete, Woe]). We believe it might be possible to extend our approach to establish
the positive speed of r.w. on Γk(G), and we intend to return to this problem.

7.2. The connectivity of product replacement graphs is delicate already for finite groups. For
example, Dunwoody showed in [Dun], that if G is a finite solvable group with d generators, then
Γk(G) is connected, for every k > d (see also [P1]). This property is conjectured to hold for all finite
groups, but fails for infinite groups, even for metabelian groups (see [P1] and references therein).

As of now, is unknown whether for any finitely generated group G, graphs Γk(G) are connected
for all sufficiently large k. It is not even known that if Γk(G) is connected then Γk+1(G) is connected.
The difficulty arises from the possibility that Γk+1(G) has a connected component which consists
of non-redundant generating (k + 1)-tuples. However, it is not hard to check that in Γ2d(G) every
element of the form (g1, . . . , gd, 1, . . . , 1) lies in the same connected component, which we may call
Γ?2d(G). Then if we know that some connected component of Γd(G) has exponential growth, we
know that Γ?2d(G) has exponential growth.

3See also Corollary 1.2 and Question 1 in [Myr].
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7.3. Finally, let us mention that the notion of exponential Nielsen growth may be applicable to
sequences of finite groups, which stabilize in a certain sense. Proving such a result would be a step
towards proving expansion of product replacement graphs of general finite groups (see [P1, P2]). We
refer to [Bla] for the notion of growth of finite groups, and to [Ell] for a recent conceptual approach.

Acknowledgements. The authors are grateful to Tatiana Nagnibeda who brought to our attention
a question on connectivity and exponential growth of Γk(G), and help with the references. We are
also very thankful to Slava Grigorchuk and Martin Kassabov for interesting conversations on groups
of intermediate growth, and to Yehuda Shalom for helpful remarks on uniform growth. The second
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NON-AMENABILTY OF PRODUCT REPLACEMENT GRAPHS

ANTON MALYSHEV?

Abstract. We prove non-amenability of the product replacement graphs Γn(G) for uniformly

non-amenable groups. We also prove it for virtually indicable groups, when n is sufficiently large.

It follows that Γn(G) is non-amenable when n is sufficiently large for hyperbolic groups, linear
groups, and elementary amenable groups.

1. Introduction

The product replacement graph of a group G is the graph of generating n-tuples of G, connected by
Nielsen moves. These graphs play an important role in computational group theory (see e.g. [BL]),
and have been considered in connection with the Andrews-Curtis conjecture (see e.g. [BLM, Met]).
Relatively little is known about these graphs. Even their connectivity is a major open problem (see
e.g. [Eva, Myr]). In this paper, we continue the investigation in [MP].

The main subject of this paper is the non-amenability of product replacement graphs. This is
related to the well-known problem of whether the automorphism group Aut(Fn) of the free group has
Kazhdan property (T ) for n > 3, (see [LZ, LP], see also Subsection 7.2). If so, product replacement
graphs of infinite groups would be non-amenable. This motivates the following conjecture.

Conjecture 1.1. [MP] The product replacement graph Γn(G) of an infinite finitely generated group
G is non-amenable for sufficiently large n.

The purpose of this note is to prove that Conjecture 1.1 holds for several classes of groups. We
prove and use the following two theorems.

Theorem 1.2. If G is uniformly non-amenable, then the product replacement graph Γn(G) is non-
amenable for every n ≥ d(G).

We say G is virtually indicable if G has a finite index subgroup which has Z as a quotient.

Theorem 1.3. If G is virtually indicable, then the product replacement graph Γn(G) is non-amenable
for sufficiently large n.

We combine these theorems with the results on uniform non-amenability in [A+] to show that
several classes of infinite groups have non-amenable product replacement graphs. In particular,
hyperbolic groups, linear groups, elementary amenable groups, and free Burnside groups all satisfy
Conjecture 1.1. Note that elementary amenable groups include virtually solvable groups and virtually
amenable groups.

The paper is structured as follows. In Section 2, we define our terms and recall some basic facts
about non-amenability. In Sections 4 and 3, we prove our main theorems. In Section 5 we discuss
the consequences of these theorems to several general classes of groups. In Section 6, we prove the
lemmas we used in the previous sections. Finally, in Section 7 we discuss the relationship of this
problem to unsolved problems, and indicate further directions.

1
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2 ANTON MALYSHEV

2. Definitions

The product replacement graph Γn(G) of a finitely generated group G is the undirected graph
whose vertices are n-tuples S = (s1, . . . , sn) ∈ Gn with G = 〈s1, . . . , sn〉, and edges

(s1, . . . , si, . . . , sj , . . . sn)↔ (s1, . . . , si, . . . , sjs
±1
i , . . . , sn)

(s1, . . . , si, . . . , sj , . . . sn)↔ (s1, . . . , si, . . . , s
±1
i sj , . . . , sn)

for each pair 1 ≤ i, j ≤ n, with i 6= j. We call a step from a vertex in this graph to one of its
neighbors a Nielsen move. We denote the minimum number of generators of G with d(G), so Γn(G)
is nonempty only for n ≥ d(G).

Here and elsewhere, by a graph Γ = (V,E) we mean a possibly infinite undirected graph of
bounded degree, which may have loops and repeated edges. By an abuse of notation, we often write
Γ to mean the vertex set of Γ. The distance d(v, w) between two vertices v, w ∈ Γ is defined to be
the length of the shortest path connecting them (or∞ if there is no such path). We define d(v,X) to
be the distance from a vertex v ∈ Γ to a set of vertices X ⊂ Γ, i.e. d(v,X) = min{d(v, x) | x ∈ X}.
For any two sets of vertices X,Y ⊂ Γ, we write E(X,Y ) for the set of edges between X and Y .

Let G be a finitely generated group, and fix a generating tuple S = (s1, . . . , sn) ∈ Γn(G). The
Cayley graph Cay(G,S) = (V,E) is the graph with vertex set V = G, and edges g ↔ gs±1

i for
each 1 ≤ i ≤ n.

We define the Cheeger constant of a nonempty graph Γ = (V,E) by

h(Γ) := inf
X

|∂X|
|X| ,

where the infimum runs over all finite sets of vertices X ⊂ Γ, and ∂X = E(X,X) denotes the set
of edges leaving X. We say Γ is non-amenable1 if h(Γ) > 0. When Γ = Cay(G,S), we denote
the Cheeger constant h(Cay(G,S)) with h(G,S). It is easy to check that the property h(G,S) > 0
depends only on the group G and not on the choice of generators S. We say a finitely generated group
G is non-amenable if h(G,S) > 0, i.e. if Cay(G,S) is non-amenable. However, the Cheeger constant
h(G,S) itself may depend on S. We say G is uniformly non-amenable2 if for every n ≥ d(G), there
is a constant h(G,n) > 0 such that

inf
S∈Γn(G)

h(G,S) > h(G,n).

We say a map f : Γ′ → Γ between two graphs is a Lipschitz map if there is a constant C > 0
such that for every pair of neighbors v, w ∈ Γ′, we have d(f(v), f(w)) ≤ C. We say a subset W ⊂ Γ
is dense if there is a constant D > 0 such that for every v ∈ Γ we have d(v,W ) ≤ D.

3. Uniformly non-amenable groups

A natural special case of Conjecture 1.1 is the case where G is assumed to be a non-amenable
group. One obstacle to proving this is that the Cheeger constant of the Cayley graph may be
arbitrarily small, depending on the generating set of G (see e.g. [A+, O2]). Theorem 1.2 asserts that
if this is not the case, i.e. if the group is uniformly non-amenable, then Γn(G) is non-amenable.

3.1. Lemmas.

To prove this theorem, we need the following two lemmas. The first lemma is a variation on
the fact that quasi-isometry of graphs preserves non-amenability. For more on quasi-isometry, see
e.g. [Woe, §3,4], [dlH, §IV.B].

Lemma 3.1. Let Γ and Γ′ be infinite graphs, with Γ non-amenable. Let f : Γ→ Γ′ be an injective
Lipschitz map such that f(Γ) is dense in Γ′. Then Γ′ is also non-amenable.

1Many authors require a non-amenable graph to be connected, but we omit this requirement. Our definition still
forbids finite connected components in Γ.

2This is a weaker definition than usually appears in the literature. See remark 7.7.
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NON-AMENABILTY OF PRODUCT REPLACEMENT GRAPHS 3

The second lemma is related to the following standard fact: The class of amenable groups is
closed under the operation of group extensions. That is, if G is non-amenable, then for every normal
subgroup H of G, either H or G/H is non-amenable. In our argument, we only consider the case
where H is the center of G, but we need an explicit lower bound on the Cheeger constant of G/H:

Lemma 3.2. If G is a non-amenable group, then G/Z(G) is also non-amenable. Moreover, for
every S = (s1, . . . , sn) ∈ Γn(G), we have

h(G/Z(G), S̃) ≥ h(G,S),

where S̃ = (s1Z(G), . . . , snZ(G)) ∈ Γn(G/Z(G)).

We prove these lemmas in Section 6.

3.2. Proof of Theorem 1.2.

Let G be a uniformly non-amenable group. Given any S = (s1, . . . , sn) ∈ Γn(G), define a map
fS : G→ Γn(G) by

fS(g) = gSg−1 = (gs1g
−1, . . . , gsng

−1)

Observe that

fS(gs1) =
(
gs1s1s

−1
1 g−1, gs1s2s

−1
1 g−1, . . . , gs1sns

−1
1 g−1

)

=
(
gs1g

−1, (gs1g
−1)(gs2g

−1)(gs1g
−1)−1, . . . , (gs1g

−1)(gsng
−1)(gs1g

−1)−1
)

is within 2n− 2 Nielsen moves of fS(g). The same is true of fS(gsi) for every 1 ≤ i ≤ n, so fS is a
Lipschitz map from Cay(G,S) to Γn(G), with Lipschitz constant 2n− 2.

Let G̃ = G/Z(G), where Z(G) denotes the center of G. For each g ∈ G, denote by g̃ the projection

of g into G/Z(G). Let S̃ denote the corresponding generating n-tuple of G̃, i.e. S̃ = (s̃1, . . . , s̃n).
Observe that fS(g) = fS(h) if and only if gsig

−1 = hsih
−1 for every 1 ≤ i ≤ n. This occurs

precisely when g−1h commutes with every si, i.e. when hg−1 ∈ Z(G). Thus we have a well-defined

and injective induced map f̃S : G̃ → Γn(G) given by f̃S(g̃) = fS(g). We also have that f̃S is a

Lipschitz map from Cay(G̃, S̃) to Γn(G), with Lipschitz constant 2n− 2.

Now let S vary. Given S′ ∈ Γn(G), note that S′ ∈ image f̃S if and only if S′ = gSg−1 for

some g ∈ G. This is an equivalence relation, so the images of the maps f̃S form a partition of Γn(G)
into equivalence classes. Let S be a set of representatives of these equivalence classes, and consider
the disjoint union of graphs

∆ :=
∐

S∈S
Cay(G̃, S̃).

Using Lemma 3.2 and the fact that G is uniformly non-amenable, we can conclude that the graph
∆ is non-amenable, since

h(∆) ≥ inf
S∈S

h(G̃, S̃) ≥ inf
S∈S

h(G,S) > 0

The maps f̃S for S ∈ S combine into one map f̃ : ∆→ Γn(G). This map is injective, surjective, and
Lipschitz. Therefore, by Lemma 3.1, Γn(G) is also non-amenable. �

4. Virtually indicable groups

It was shown in [MP] that a group containing an element of infinite order must have exponentially
growing product replacement graphs Γn(G), for sufficiently large n. In order to guarantee non-
amenability, we require a stronger property: we say a group G is virtually indicable if it contains a
finite index subgroup which has Z as a quotient. Theorem 1.3 asserts that virtually indicable groups
have non-amenable product replacement graphs Γn(G), for sufficiently large n.

Note that in this case there may exist n ≥ d(G) for which Γn(G) fails to be non-amenable. For
example, the infinite dihedral group D∞ is virtually indicable, but Γ2(D∞) is an amenable infinite
graph. However, Γn(D∞) is non-amenable for every n ≥ 3.
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4 ANTON MALYSHEV

4.1. Lemmas.

To prove Theorem 1.3, we again use Lemma 3.1, as well as two additional lemmas. If H is a
quotient of G, then Γn(G) is a lift of Γn(H). A lift of a non-amenable graph is non-amenable, so we
have:

Lemma 4.1. Let G be a finitely generated group. If Γn(H) is non-amenable for some quotient H
of G, then Γn(G) is non-amenable.

The following fact is well-known. It is related to the fact that Γ2(Zk) is a Schreier graph of
SL(2,Z), which has property (τ) with respect to its congruence subgroups (see [LZ]).

Lemma 4.2. The product replacement graph Γ2(Zk) is non-amenable for every k > 0.

We refer the reader to Section 6 for the proofs.

4.2. Proof of Theorem 1.3.

Let G be a finitely generated virtually indicable group. Let H be a finite index subgroup of
G which has Z as a quotient. Then H is also finitely generated. Thus, the statement that H
has Z as a quotient is equivalent to the statement that [H : H ′] = ∞, where H ′ = [H,H] is the
commutator subgroup of H. This, in turn, is equivalent to the statement that [G : H ′] = ∞.
Let H◦ =

⋂
g∈G gHg

−1 be the normal core of H in G. Then we also have [G : H◦] < ∞ and

[G : (H◦)′] = ∞. That is, H◦ satisfies the same hypotheses as H, so by replacing H with H◦ if
necessary, we may assume that H is normal in G.

We have that H/H ′ ∼= Zr×A for some positive integer r and some finite abelian group A. Let N
be the kernel of the corresponding homomorphism H → Zr. Then N is a characteristic subgroup
of H, and therefore N is a normal subgroup of G.

By Lemma 4.1, it is enough to show that Γn(G/N) is non-amenable for sufficiently large n. Thus,
by replacing G with G/N and H with H/N , we may assume N is trivial, and hence H ∼= Zr.

Fix n ≥ log2 |G/H|. Consider a generating tuple S = (s1, . . . , sn+2) ∈ Γn+2(G), and the corre-

sponding tuple S̃ = (s̃1, . . . , s̃n+2) ∈ Γn(G/H). Every generating (n+ 1)-tuple of G/H is redundant
(see e.g. [P1, 2.2]), so a bounded number of Nielsen moves in Γn(G/H) sends

(s̃1, . . . , s̃n+2)  (t̃1, . . . , t̃n, 1, 1).

The same Nielsen moves in Γn(G), then, send

(s1, . . . , sn+2)  (t1, . . . , tn, h1, h2),

where h1, h2 ∈ H. If h1 and h2 are both trivial, then G = 〈t1, . . . , tn〉, so in at most [G : H] more
Nielsen moves, we can reach an element of that form with h1, h2 not both trivial.

For every nontrivial subgroup K < H and every T = (t1, . . . , tn) ∈ Gn with G = 〈T,K〉, there is
a graph embedding Γ2(K)→ Γn+2(G) given by

(h1, h2) 7→ (t1, . . . , tn, h1, h2),

and the images of these embedding are disjoint. Let ∆ denote the union of these embeddings. In
the previous paragraph, we showed that every vertex of Γn+2(G) is a bounded distance away from
∆. Since each K satisfies K ∼= Zk for some 1 ≤ k ≤ r, we have

h(∆) ≥ inf
T,K

h(Γ2(K)) ≥ min
1≤k≤r

h
(
Γ2(Zk)

)
> 0.

Thus, ∆ is non-amenable. Lemma 3.1 implies that Γn+2(G) is also non-amenable. �

5. Examples

Theorems 1.2 and 1.3 combine to show that several nice classes of groups satisfy Conjecture 1.1.
First of all, there are classes of groups known to be uniformly non-amenable:

Theorem 5.1. The following classes of groups are uniformly non-amenable:
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(i) non-elementary word-hyperbolic groups [A+],
(ii) non-elementary relatively hyperbolic groups [Xia],

(iii) large groups (i.e. groups with a finite index subgroup which has F2 as a quotient) [A+],
(iv) groups which act acylindrically on a simplicial tree without fixed points, and are not virtually

cyclic [A+],
(v) free Burnside groups B(m,n) with m ≥ 2 and sufficiently large odd n [O1],
(vi) finitely generated groups with positive first `2-Betti number [LPV].

Combining this result with Theorem 1.2, we obtain:

Corollary 5.2. The product replacement graph Γn(G) is non-amenable for every n ≥ d(G), if G
belongs to one of the classes (i)-(vi) of Theorem 5.1.

Using Theorem 1.3, we can extend this result to a larger class of groups, at the cost of a somewhat
weaker conclusion. First, we make the following observation, which we prove in Section 6:

Lemma 5.3. Let G be an infinite finitely generated group. If G is elementary amenable, then G is
virtually indicable.

By Gromov’s Theorem [Gro], every infinite group of polynomial growth is virtually nilpotent, and
therefore elementary amenable. By definition, infinite elementary hyperbolic groups contain Z as a
finite index subgroup. Finally, every virtually solvable group is elementary amenable.

We also have the following theorem, which follows from a stronger version of the Tits alternative
proven in [BG].

Theorem 5.4 ([BG, Theorem 1.5]). If G is a linear group, then either G is virtually solvable, or G
is uniformly non-amenable.

Combining these observations with Corollary 5.2, we obtain:

Corollary 5.5. The product replacement graph Γn(G) is non-amenable for sufficiently large n, if
G is an infinite finitely generated group which belongs to one of the following classes:

(i) elementary amenable groups,
(ii) groups of polynomial growth,
(iii) word-hyperbolic groups,
(iv) relatively hyperbolic groups,
(v) linear groups.

6. Proofs of Lemmas

We now prove the lemmas used in the previous sections. The arguments in this section are
standard, but we need the results in a specific form.

6.1. Proof of Lemma 3.1.

Let Γ and Γ′ be any infinite graphs, where Γ is non-amenable. Let f : Γ → Γ′ be an injective
Lipschitz map with Lipschitz constant C. Suppose that d(x, f(Γ)) ≤ D for every x ∈ Γ′.

Given a finite set of vertices X ⊂ Γ′, define the r-neighborhood of X to be

X(r) = {v ∈ Γ′ | d(v,X) ≤ r}.
Let d ≥ 2 be an upper bound on the degrees of vertices in Γ′ and Γ. Suppose

∣∣X(r)
∣∣ ≥ α |X| for

some α > 1. Then there are at least (α−1) |X| paths of length r or less from X to X, each of which
contains at least one edge leaving X. Each such edge occurs in at most rdr−1 +(r−1)dr−2 + ...+1 ≤
r2dr−1 of these paths, so

|∂X| ≥ α− 1

r2dr−1
|X| .
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6 ANTON MALYSHEV

Thus, it is enough to show that there is positive integer r and a constant α > 1 such that
∣∣X(r)

∣∣ ≥
α |X| for every finite subset X ⊂ Γ′.

Let C and D be as above. Given a finite X ⊂ Γ′, every vertex of X is within D steps of some
v ∈ f(Γ), and for each v ∈ f(Γ) there are at most dD + dD−1 + · · · + 1 ≤ dD+1 vertices within D
steps of v. It follows that

∣∣∣f−1
(
X(D)

)∣∣∣ ≥
∣∣∣X(D) ∩ f(Γ)

∣∣∣ ≥ |X| /dD+1.

Since Γ is non-amenable, there are at least h(Γ) |X| /dD+1 edges leaving f−1(X(D)), and therefore
at least h(Γ) |X| /dD+2 vertices v ∈ Γ with d(v, f−1(X(D))) = 1. Each such v maps to a unique
v′ ∈ Γ′ with v′ /∈ X(D) and d(v′, X(D)) ≤ C. Hence,

∣∣∣X(D+C)
∣∣∣ ≥

∣∣∣X(D)
∣∣∣+ h(Γ) |X| /dD+2 ≥ (1 + h(Γ)/dD+2) |X| ,

as desired. �

6.2. Proof of Lemma 3.2.

LetG be a non-amenable group, and fix a generating n-tuple S = (s1, . . . , sn) ofG. LetH = Z(G).

Define G̃ = G/H, and S̃ = (s̃1, . . . , s̃n) = (s1H, . . . , snH). Let π : G → G̃ denote the usual
projection.

By picking representatives for each coset of H, we have a bijection between G and G̃×H. That

is, elements of G can be represented in the form (g, h) ∈ G̃×H, where group operation is given by
(g1, h1)(g2, h2) = (g1g2, ?). In fact, because elements of H commute with everything, we must have

(g1, h1)(g2, h2) = (g1g2, φ(g1, g2)h1h2),

for some function φ : G̃ × G̃ → H. Then we can write the original generators si in this form:
si = (s̃i, ti), for some ti ∈ H.

It is enough to show that for every finite subset X ⊂ Cay(G̃, S̃), we have |∂X| / |X| ≥ h(G,S).

Let X be a finite subset of Cay(G̃, S̃), and let Y = π−1(X). Let K be the subgroup of H generated
by

T =
(
φ(x, s̃i)ti

)
x∈X

1≤i≤n.
Then K is an abelian group, which implies it is amenable. Therefore, we have a sequence of finite
subsets B1, B2, · · · ⊆ Cay(K,T ) with |∂Bk| / |Bk| → 0 as k →∞. Let Ck = {(x, h) |x ∈ X,h ∈ Bk}.

Partition the set ∂Ck of edges leaving Ck into two sets:

∂outCk = E(Ck, G \ Y ) and ∂inCk = E(Ck, Y \ Ck).

We have that |∂out(Ck)| = |Bk| |∂X| and |∂in(Ck)| ≤ |X| |∂Bk|. Thus

h(G,S) ≤ |∂Ck|
|Ck|

=
|∂out(Ck)|+ |∂in(Ck)|

|Ck|
≤ |Bk| |∂X|+ |X| |∂Bk|

|X| |Bk|
=
|∂X|
|X| +

|∂Bk|
|Bk|

.

Since the second term goes to 0 as k →∞, we have h ≤ |∂X| /|X|, as desired.

6.3. Proof of Lemma 4.1.

There is a characterization of non-amenability in terms of recurrent walks. Let Γ = (V,E) be a

nonempty d-regular graph. Let p
(k)
Γ (v, v) denote the probability that the nearest neighbor random

walk on Γ starting at v returns to v at time k. That is, dkp
(k)
Γ (v, v) is the number of walks of length

k in Γ from v to v. We define the spectral radius of Γ to be

ρ(Γ) := sup
v∈V

lim sup
k→∞

(p
(k)
Γ (v, v))1/k.

Then Γ is non-amenable if and only if ρ(Γ) < 1 (see e.g. [Woe, §10]).
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Let π : G → H be a surjective group homomorphism, where G is some finitely generated group.
We extend π to a graph homomorphism π : Γn(G)→ Γn(H) given by

π(s1, . . . , sn) =
(
π(s1), . . . , π(sn)

)
.

This is a local graph isomorphism, in other words for each S ∈ Γn(G), the map π induces a bijection
between the edges leaving S and the edges leaving π(S). It follows that walks in Γn(H) starting at
π(S) lift uniquely to walks in Γn(G) starting at S. Thus,

p
(n)
Γn(G)

(
S, S

)
≤ p(n)

Γn(H)

(
π(S), π(S)

)
,

and therefore

ρ
(
Γn(G)

)
≤ ρ
(
Γn(H)

)
< 1.

�

6.4. Proof of Lemma 4.2.

The subgraph of Γ2(Z) induced by {(a, b) ∈ Γ2(Z) | a, b > 0} is a rooted binary tree, which has
positive Cheeger constant. The same holds for the other three quadrants, so Γ2(Z) has a subgraph ∆
which is a disjoint union of four binary rooted trees. The only vertices that don’t lie in ∆ are (±1, 0)
and (0,±1), and ∆ is non-amenable, so by Lemma 3.1, Γ2(Z) is non-amenable. By Lemma 4.1, it
follows that Γ2(Zk) is non-amenable for every k ≥ 1. �

6.5. Proof of Lemma 5.3.

Let L be the class of groups which are either virtually indicable, or finite, or not finitely generated.
We want to show that every elementary amenable group belongs to L. Clearly finite groups are in L.
Every finitely generated infinite abelian groups has Z as a quotient, so abelian groups are also in L.
Thus by the characterization of elementary amenable groups in [Chou] it is enough to show that L
is closed under direct unions and extensions.

If G is finite or G is not finitely generated, then G belongs to L, so we may suppose G is infinite
and finitely generated. Suppose G is a direct union of groups Gi ∈ L. Since G is finitely generated,
G = Gi for some i, so G ∈ L. Now suppose G is an extension of G′′ by G′ where G′, G′′ ∈ L. Let
π : G → G′′ be the projection with kernel G′. Since G is finitely generated, so is G′′. If G′′ is
infinite, then it must be virtually indicable, so there is a finite index subgroup H < G′′ which has
Z is a quotient. Then π−1(H) is a finite index subgroup of G which has Z as a quotient, so G is
virtually indicable. On the other hand, if G′′ is finite, then G′ is a finite index subgroup of G, so it
is infinite and finitely generated. Thus it is virtually indicable, and therefore so is G. �

7. Final remarks

7.1. Our arguments can be followed through to give explicit bounds on Cheeger constants of Γn(G),
and on how large n must be in order for Γn(G) to be non-amenable. To ease exposition, we did not
track these bounds, and we did not present the arguments that would result in tight bounds. More
detailed arguments with improved bounds will be presented in [Mal].

7.2. The elements of Γn(G) can be identified with epimorphisms Fn → G. The Nielsen moves then

correspond to precomposition by one of the Nielsen automorphisms R±1
ij , L

±1
ij of Fn = 〈x1, . . . , xn〉

given by

L±1
ij (xk) =

{
xk k 6= j

x±1
i xk k = j,

R±1
ij (xk) =

{
xk k 6= j

xkx
±1
i k = j

with i 6= j and 1 ≤ i, j ≤ n. These automorphisms generate an index 2 subgroup of Aut(Fn), which
we call Aut+(Fn) (see e.g. [P1, LP]). Thus, every product replacement graph is a Schreier graph
of Aut+(Fn).
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8 ANTON MALYSHEV

A well-known open question is whether Aut(Fn) with n ≥ 3 has Kazhdan property (T )3. If
Aut(Fn) has property (T ) for a particular value of n, then Γn(G) is non-amenable for every infinite
n-generated group G. In fact, there is a uniform lower bound on the Cheeger constants of these
graphs.

7.3. The product replacement algorithm is a well-known method for generating random elements
of a finite group G. It begins with a generating n-tuple S ∈ Γn(G), and takes a random walk on
Γn(G), outputting a random element of the resulting generating n-tuple. The running time of this
algorithm depends on the mixing time of the random walk on Γn(G) of G. The analysis of this
mixing time is also related to the question in Subsection 7.2: if Aut(Fn) has property (T ), then
the finite product replacement graphs Γn(G) form a family of expanders for any fixed n, and the
random walk on such a graph has mixing time O(log |G|). It is known that for an appropriate value
of n, the mixing time is polynomial in log |G| (see [P2]). For a survey on the product replacement
algorithm, see [P1].

7.4. For a finite group G and a fixed number n, there is a lower bound on the coefficient of expansion
of Γn(G) in terms of the coefficients of expansion of Cay(G,S), ranging over all generating n-tuples
S (see [GP]). Theorem 1.2 can be thought of as an analogue of this result for infinite groups, though
the proofs differ.

7.5. A simple consequence of Conjecture 1.1 is the following.

Conjecture 7.1. [MP] The product replacement graph Γn(G) of an infinite finitely generated group
G has exponential growth for sufficiently large n.

Some progress on this conjecture is made in [MP]. Specifically, it is shown that it holds for all
groups of polynomial growth, and all groups of exponential growth. It is also shown to hold for some
groups of intermediate growth, including the Grigorchuk group.

7.6. In [MP] it was shown that if G has exponential growth, then Γn(G) has exponential growth
for every n ≥ d(G) + 1. The proof of Theorem 1.2 is easily modified to prove a slight improvement
of this result: if G has exponential growth, then Γn(G) has exponential growth for every n ≥ d(G).
Moreover, if G has uniform exponential growth, then Γn(G) also has uniform exponential growth.

7.7. The reader should note that there are several definitions of uniform non-amenability in the
literature. A priori, our definition is weaker than the one in [A+], as we do not compare Cheeger
constants with respect to generating tuples of different lengths. In turn, the definition in [A+] is
weaker than the notion implicit in [O2] and called uniform non-amenability in [O1].

7.8. We have shown that both infinite elementary amenable groups and uniformly non-amenable
groups have non-amenable product replacement graphs. A natural next step is to look at Conjec-
ture 1.1 for groups in between those two classes. This includes every group of non-uniform exponen-
tial growth: such a group clearly cannot be uniformly non-amenable, and it has been shown that it
cannot be elementary amenable either [O3]. In particular, the groups of non-uniform exponential
growth constructed by Wilson in [W1, W2] fall between these two classes.

7.9. Groups which are neither elementary amenable nor uniformly non-amenable belong to one of
two types: amenable groups which are not elementary amenable, and non-amenable groups which
are not uniformly non-amenable.

An example of the first type is the Grigorchuk group G (see [Gri, dlH, GP]). It was shown in [MP]
that its product replacement graphs Γn(G) have exponential growth for n ≥ 5, but the techniques
do not appear to be strong enough to show non-amenability.

An example of the second type is the Baumslag-Solitar group B(p, q) where p and q are relatively
prime [O2, A+]. However, this group has Z as a quotient, so Γn(B(p, q)) is non-amenable for every

3The answer is known to be negative for n ≤ 3 [Mc, GL].
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n ≥ 2. A more interesting example is the torsion group Q constructed in [O2]. Neither Theorem 1.2
nor Theorem 1.3 is enough to show that Γn(Q) is non-amenable for some n.

7.10. Another example of interest is Thompson’s group F (see [CFP]). Whether F is amenable is
a well-known open problem, but it is known that it is not elementary amenable. Thompson’s group
F has Z2 as a quotient, and therefore Γn(F ) is non-amenable for every n ≥ 2. However, the related
groups T and V are both simple groups. Thus, they cannot be virtually indicable, and Theorem 1.3
does not apply. Note that T and V both have exponential growth, so by the results in [MP] they
satisfy Conjecture 7.1.
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CHAPTER 4

Lifts, derandomization, and diameters of

Schreier graphs

of Mealy automata
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LIFTS, DERANDOMIZATION, AND DIAMETERS OF SCHREIER

GRAPHS

OF MEALY AUTOMATA

ANTON MALYSHEV? AND IGOR PAK?

Abstract. It is known that random 2-lifts of graphs give rise to expander
graphs. We present a new conjectured derandomization of this construction

based on certain Mealy automata. We verify that these graphs have polyloga-

rithmic diameter, and present a class of automata for which the same is true.
However, we also show that some automata in this class do not give rise to

expander graphs.

1. Introduction

In [BL], Bilu and Linial showed that random 2-lifts of expanding graphs remain ex-
panding with high probability. This gives a probabilistic construction of expander
families. Several ways to derandomize this procedure are also given in [BL], but
none of them give a strongly explicit description of a family of expander graphs.
That is, a description in which the actual graph is much larger than working mem-
ory, but a computer can list neighbors of a vertex in polylogarithmic (in the size of
the graph) time.

We consider the following two families of 2-lifts of graphs. The Aleshin graphs
A0, A1, A2, . . . are a sequence of 3-regular edge-labeled directed graphs. The first
graph A0 is defined to be a single vertex with three self-loops labeled a, b, and c.
Given the graph An, the next graph An+1 is defined as a certain graph lift of An:
Each vertex v ∈ An lifts to two vertices v0, v1 ∈ An+1, and the edges transform as
follows:

v a w lifts to
v0 w0

v1 w1

c

c

v
b
w lifts to

v0 w0

v1 w1

a

b

v c w lifts to
v0 w0

v1 w1.

b

a

That is, e.g., if An has an edge labeled c from v to w, then An+1 has an edge labeled
b from v0 to w1, and an edge labeled a from v1 to w0.

1
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Figure 1. The Bellaterra graphs

Another family, the Bellaterra graphs B0, B1, B2, . . . is defined the same way,
except with transformation rules

v a w lifts to
v0 w0

v1 w1

c

c

v
b
w lifts to

v0 w0

v1 w1

a

b

v c w lifts to
v0 w0

v1 w1.

b

a

It is not hard to check that the reverse of every edge in Bn is also in Bn, so these
can be thought of as undirected graphs. The first few graphs in this family are
pictured in Figure 1.

The main result of this paper is the following theorem:

Theorem 1.1. The diameter of the Aleshin graphs {Ai}∞i=1 and Bellaterra graphs
{Bi}∞i=1 grows at most quadratically in n, i.e.,

diam(An) = O(n2) and diam(Bn) = O(n2) as n→∞.

Prior to this paper, there were no nontrivial bounds on the diameter of An; even
subexponential bounds remained out of reach. Note also that in principle we can
start with any 3-labeled graph in place of A0 = B0, and proceed making lifts as
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Figure 2. Eigenvalue gaps of the Bellaterra and Aleshin graphs.

above. We do not consider these in the paper, and our algebraic techniques do not
apply.

Observe that both families of graphs are very explicit in the following sense:
there is a polynomial time algorithm which, given a number n and v ∈ Γn, lists the
neighbors of n. “Polynomial time” here refers to a runtime which is polynomial in
the number of bits necessary to describe the input. It takes n bits to describe a
vertex of Bn or An, so the algorithm should run in time O(nd), for some d.

In particular, it follows that they are strongly explicit in the sense of [BL]: There
is a polynomial time (in the size of the inputs) algorithm which, given a number n,
and vertices v, w ∈ Γn, decides whether v and w are adjacent in Γn.

As we will see below, these graphs can be described in terms of invertible Mealy
automata. The associated automata are small: they act on binary strings and have
only 3 states. A detailed study of all such small automata was performed in [B+].
The Bellaterra and Aleshin automata are numbered 846 and 2240 in that article.
They are the only nontrivial bireversible ones. Spectra of the first few associated
graphs are also computed in [B+], and the data suggest that the Aleshin graphs
are a family of expanders with eigenvalue gap roughly 0.2.

Conjecture 1.2. The Aleshin graphs {Ai}∞i=1 are a family of two-sided expanders.

Here by two-sided we mean that both the second largest and the smallest eigen-
values of 3-regular graphs An are bounded away as follows: λ2 < 3 − ε and
λn > −3 + ε (see e.g. [Tao]).

Though it is less clear from the data in [B+], our own computations (see Figure 2)
suggest that the Bellaterra graphs are also expanders, with eigenvalue gap roughly
0.05, so we make the stronger conjecture:1

Conjecture 1.3. The Bellaterra graphs {Bi}∞i=1 are a family of two-sided ex-
panders.

If so, they are a strongly explicit derandomization of the probabilistic construc-
tion in [BL]. One consequence of being an expander family is logarithmic diame-
ter growth with respect to the size of the graph, so if Conjecture 1.2 holds then
diam(An) grows linearly in n, stronger claim than in the theorem.

Unfortunately, we are not near proving either conjectures and in fact our tools are
too weak to prove them. Later in the paper, we state and prove general conditions

1See Remark 2.
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on an automaton which guarantee polynomial diameter growth in the associated
graphs (Section 8). We then prove that for some automata which satisfy those
conditions, we do not get expanders (see Section 10). In other words, a different,
perhaps combinatorial technique is needed to prove the expansion.

2. Mealy automata

The Bellaterra graphs {Bn}∞n=1 are very explicit in the sense of [HLW].2 That is,
there is a polynomial time algorithm which, given a number n and a vertex v ∈ Bn,
lists the neighbors of v in Bn. It takes n bits to describe a vertex in Bn, so the
runtime of the algorithm should be polynomial in n.

In fact, there is a linear time algorithm. Even more strongly, the computation
can be implemented with a Mealy automaton, i.e., a finite state automaton which
outputs a letter each time it reads a letter.

Definition 2.1. A Mealy automaton M = (Q,A, τ, σ) is a pair of finite sets Q, A,
together with functions σ : Q×A→ A, and τ : Q×A→ Q.

The sets Q and A are called the states and alphabet, respectively. The functions
σ and τ are called the output and transition functions, respectively. When |Q| = q
and |A| = a, we call M a (q, a)-automaton. We adopt the following notations:

qx = σq(x) = σ(q, x)

qx = τx(q) = τ(q, x).

Let A∗ and A∞ denote the set of finite and infinite words in the alphabet A,
respectively, and let A∗,∞ = A∗ ∪ A∞ denote the set of all words in A. A Mealy
automaton in the state q ∈ Q acts in a length-preserving way on words in A∗,∞

by reading the first letter x, outputting the letter σ(q, x), and acting on the rest of
the word from the state τ(q, x). That is, each q ∈ Q has a corresponding length-
preserving map A∗,∞ → A∗,∞ defined recursively by

q
(x0x1 . . . xn) = y0

r
(x1 . . . xn),

and
q
(x0x1x2 . . . ) = y0

r
(x1x2 . . . ),

where y0 = σ(q, x0) and r = τ(q, x0). This extends to a left action of finite words
Q∗ on words in A∗,∞ via, e.g.,

qrs =
q
(rs).

So we’ve defined an extension of σ : Q×A→ A to a map σ : Q∗×A∗,∞ → A∗,∞

given by

σ(w, s) = σw(s) = ws.

A Mealy automaton can be depicted with a Moore diagram: a directed graph
with a vertex for each state q ∈ Q and a labeled edge

q
x : y

r

for every q ∈ Q and every x ∈ A, where y = σ(q, x) and r = τ(q, x). That is, an

edge q
x : y

r denotes that if the Mealy automaton is in state q and reads the letter
x, then it outputs the letter y and transitions to the state r. We will sometimes
simply write q x : y r to denote that y = σ(q, x) and r = τ(q, x).

2Sometimes, these are called fully explicit, see e.g. [Vad].
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c a

b

0 : 00 : 0

0 : 1

1 : 0

1 : 1

1 : 1

0

1

a : b b : c

c : a c : a

b : b a : c

Figure 3. The Bellaterra automaton B and its dual B

Example 2.2. Consider the Bellaterra automaton B pictured in Figure 3. More
formally, B = (Q,A, τ, σ) is defined by

A = {0, 1}, Q = {a, b, c}
σa = σb = (0)(1), σc = (0 1),

and τ0 = (a b c), τ1 = (a c)(b),

where we use the usual cycle notation for permutations, so e.g., τ0(a) = b, τ0(b) = c,
τ0(c) = a.

Then given a number n, the Bellaterra graph Bn can be described as the graph
whose vertices are length n binary strings, with an edge

s
q

(qs)

for each vertex s ∈ An and each state q ∈ Q. For example, we have

c
(0000) = 1

a
(000) = 10

b
(00) = 100

c
(0) = 1001,

so 0000 c 1001.

Some symmetry between states and letters of a Mealy automaton is already
apparent in the definition. The nature of this symmetry becomes more clear if we
consider computing compositions of maps associated to the states of an automaton,
we have, e.g.,

q1q0(x0x1 . . . xn) =
q1(y0

r0(x1 . . . xn)) = z0
r1r0(x1 . . . xn) = . . . ,

where q0
x0 : y0 r0, and q1

y0 : z0 r1. The computation proceeds by taking any
instance of

q
(x . . . ) in the expression, and replacing it with y

r
(. . . ), where q x : y r.

If we ignore parentheses, states in Q and letters in A play a symmetric role in
this process, except that letters in Q are written higher and disappear when they
are at the right side of the expression. Taking this symmetry into account, the
automaton also naturally defines an action of the letters in A on finite words in Q∗:

(qn . . . q1q0)x = (qn . . . q1)yr0,
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r i1 : 0
0 : 1 0 : 0

1 : 1

Figure 4. The binary adding machine

where q0
x : y r0. Letters in A also act on the set of left-infinite words in the

alphabet Q:

(. . . q2q1q0)x = (. . . q2q1)yr0.

We let Q−∞ denote this set of left-infinite words, and let Q−∞,∗ denote Q∗∪Q−∞,
so we have an action of A on Q−∞,∗. This naturally extends to a right action of
A∗ on Q−∞,∗, via, e.g.

wxy = (wx)y.

So we have defined a map τ : Q−∞,∗ ×A∗ → Q−∞,∗, given by

τ (w, s) = τs(w) = ws.

It is straightforward to check that for any s ∈ A∗, t ∈ A∗,∞, w ∈ Q∗, v ∈ Q−∞,∗,
the actions we have defined satisfy the following relations:

w
(st) = s̃

w̃
(t), and

(vw)s = (v)s̃ w̃,

where s̃ = ws and w̃ = ws.
If we need to specify the automaton, we will write σM = σ and σM,w = σw,

and similarly for τ .
With this symmetry in mind, it is sensible to define the dual of an automaton

M = (Q,A, τ, σ) to be the automatonM = (Q̂, Â, τ̂ , σ̂) given by interchanging the
roles of the states and alphabet. That is, we take

Â = Q, Q̂ = A, σ̂(a, q) = τ(q, a), and τ̂(a, q) = σ(q, a).

In other words, for q, r ∈ Q and x, y ∈ A, we have x q : r y in M if and only if
q x : y r in M.

Computations in the dual automaton are computations in the original automa-
ton, with each step written backwards. It follows that, e.g., for every s ∈ A∗ and
w ∈ Q∗ we have

σM(s, w) = τM(w, s),

where u denotes the reversal of u.

Example 2.3. The dual of the Bellaterra automaton is also pictured in Figure 3.

Example 2.4. Let A = {0, 1}. Consider the Mealy automaton pictured in Figure 4.
The map σr : {0, 1}∗ → {0, 1}∗ is simply addition of 1, where length n words in
A∗ are interpreted as binary representations of numbers modulo 2n, with the least
significant digit on the left.

We say a Mealy automaton is invertible if σq is invertible for every q ∈ Q.
This occurs if and only if the endomorphism σw : A∗ → A∗ is invertible for every
w ∈ Q∗. We are primarily interested in invertible automata, though our results can
be generalized to the non-invertible case.
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The inverse of an invertible automaton M = (Q,A, τ, σ) is the automaton
M−1 = (Q′, a, τ ′, σ′) given by

Q = {q′ | q ∈ Q} , σ′q′ = σ−1
q , τ ′(q′, a) = τ(q, σ−1

q (a)).

It is straightforward to check that σM−1,q′ = σ−1
M,q for every q ∈ Q.

Consider two automata M = (Q,A, τ, σ), M′ = (Q′, A, τ ′, σ′) acting on the
same alphabet, with Q,Q′ disjoint. Their union is the automaton M ∪M′ =
(Q ∪Q′, A, τ ′′, σ′′), where

τ ′′(q, a) =

{
τ(q, a) q ∈ Q
τ ′(q, a) q ∈ Q′ and σ′′(q, a) =

{
σ(q, a) q ∈ Q
σ′(q, a) q ∈ Q′

For example,M∪M−1 is an automaton with twice as many states as Q, in which
every state q has an inverse state q′ with σq′ = σ−1

q .
We say an automaton is reversible if its dual is invertible.
We say an automaton is bireversible if it is invertible, reversible, and its inverse

is reversible. Note that the last condition does not follow from the other two. For
example, the three-state automaton in Figure 8 is reversible and invertible, but not
bireversible.

3. Schreier graphs

For our purposes, graphs are locally finite, directed, and may have self-loops
and repeated edges. A graph is regular if the indegree and outdegree are the same
across all vertices.

Let Γ be a graph. Given vertices v, w ∈ Γ, we write v −→Γ w if there is an edge
in Γ from v to w. We write dΓ(v, w) for the distance between v and w, i.e. the
length of the shortest undirected path between v and w. When there is no such
path, we take dΓ(v, w) = ∞. Given a nonnegative integer r, the ball of radius r
centered at v is the set

BΓ(v, r) = {w ∈ Γ : d(v, w) ≤ r}.
The diameter of Γ is defined to be

diam(Γ) = max
v,w∈Γ

dΓ(v, w).

When it is clear from context what graph we are discussing, we will drop the
subscripts and simply write v −→ w, d(v, w), and B(v, r).

In Example 2.2 we described the Bellaterra graphs in terms of a Mealy au-
tomaton. In the same way, we can associate a sequence of graphs to any Mealy
automaton. Since we are primarily concerned with regular graphs, we require the
automaton to be invertible.

Definition 3.1. Let M = (Q,A, σ, τ) be an invertible Mealy automaton. Given
n ∈ {1, 2, . . . } ∪ {∞}, the Schreier graph ΓM,n is a directed graph, defined as
follows: The vertices of ΓM,n are length n words in A∗,∞, i.e. elements of An. For
each vertex s ∈ ΓM,n and each state q ∈ Q, the Schreier graph ΓM,n has an edge

s −→ qs.

Clearly, the number of edges leaving a vertex is |Q|. The Schreier graph of
the inverse automaton, ΓM−1,n, is simply ΓM,n with the edges reversed. So, the
number of edges entering a given vertex in ΓM−1,n is also |Q|, and ΓM,n is regular.

41



8 ANTON MALYSHEV AND IGOR PAK

c a

b

0 : 10 : 1

0 : 0

1 : 1

1 : 0

1 : 0

Figure 5. The Aleshin automaton A

Example 3.2. The n-th Bellaterra graph Bn is the Schreier graph ΓB,n, where B
is the Bellaterra automaton, pictured in Figure 3.

Example 3.3. The n-th Aleshin graph An is the Schreier graph ΓA,n, where A is
the Aleshin automaton, first considered in [A], pictured in Figure 5.

4. Automaton groups

Let M = (Q,A, τ, σ) be an invertible Mealy automaton. As seen in Section 2,
we have invertible maps σq : A∗,∞ → A∗,∞ for each q ∈ Q. This gives an action
of the free group FQ on A∗,∞. We can extend the definition of σ as follows: For
w ∈ FQ, we can define σw in the natural way, e.g.,

σqr−1 = σq σ
−1
r .

As usual, we will adopt the notational convention

σw(s) = σ(w, s) = ws.

The automaton group associated to M is the group GM generated by the auto-
morphisms σq.

For example, letting A denote the Aleshin automaton, it was shown in [VV] that
σA,a, σA,b, and σA,c satisfy no nontrivial relation, so GA is the free group F3.
However, it is straightforward to check that σ2

B,a = σ2
B,b = σ2

B,c = id, where B is

the Bellaterra automaton. It can be shown (see, e.g., [Nek, B+]) that the words
satisfy no other relation, so we say GB ∼=

〈
a, b, c | a2, b2, c2

〉
= C2 ∗ C2 ∗ C2.

Information about GM as an abstract group can be used to obtain information
about the Schreier graphs ΓM,n. See Remarks 7 and 6.

5. Trees and automorphisms

In this context it is natural to think of the set of finite words A∗ as vertices in
a regular rooted tree, where the empty word is the root and the children of the
word s are the words sx for x ∈ A. We will need to talk about rooted trees more
generally, so we make the following definitions.
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Definition 5.1. A rooted tree (or simply tree) is a graph T with a distinguished
root vertex r ∈ T such that for each v ∈ T there is exactly one directed path from
r to v. The level of v, denoted `(v) is the length of this path. The n-th level of T,
denoted Tn is the set of all vertices v ∈ T such that `(v) = n. A subtree of T is
a subgraph containing r which is itself a rooted tree. A tree isomorphism between
two trees S and T is a graph isomorphism which sends the root of S to the root of
T. An automorphism of T is an isomorphism from T to T. The automorphisms of
T form a group, and we denote it Aut(T).

Then, given a Mealy automaton M = (Q,A, σ, τ), for any q ∈ Q the map
σq : A∗ → A∗ is a tree automorphism. That is, σq is a bijection which fixes the
empty word, and sends children of x to children of σq(x). In other words, for every
s ∈ A∗ and x ∈ A there is some y ∈ A such that

σq(sx) = σq(s)y.

Of course, it follows that for any w ∈ Q∗, the map σw : A∗ → A∗ is a composition
of tree automorphisms and is itself a tree automorphism.

Infinite words, i.e., elements of A∞, can be thought of as rays in the tree A∗,
and σw acts on them in the natural way.

Note that in order to think of τa : Q∗ → Q∗ as a tree automorphism, we must
think of Q∗ as a tree in the reverse way, i.e. the children of w are of the form qw
for q ∈ Q, rather than of the form wq.

Given a tree automorphism g : A∗ → A∗ and a word s ∈ A∗, the section of g at
s, is the tree automorphism g|s : A∗ → A∗ defined by

g(st) = g(s)g|s(t).
Note that we are using a canonical identification between branches of the tree A∗.
There need not be such an identification in a general tree, so this definition of
sections is specific to trees of words.

We call a tree automorphism α : A∗ → A∗ automatic if it α = σM,q for state
q of some Mealy automaton M. Equivalently, α is automatic if and only if it
has finitely many sections. The set of automatic automorphisms forms a subgroup
FAut(A∗) < Aut(A∗).

An automorphism g : A∗ → A∗ is determined by its action on the first level,
(A∗)1 = A1 = A, and its sections g|x at all x ∈ A. If ρ : A → A is a permutation,
then for notational convenience we can extend ρ as an automorphism A∗ → A∗ via

ρ(xs) = ρ(x)s.

If A is equipped with an ordering of its elements, say, A = {x1, . . . , xk}, then we
write

(g1, . . . , gk)

for the automorphism g : A∗ → A∗ which acts trivially on A, and for which g|xi = gi
for all i. Then every automorphism can be uniquely decomposed into

g = ρ (g1, . . . , gk),

for some permutation ρ : A → A and some automorphisms gi : A∗ → A∗. Specif-
ically, ρ is the restriction of g to A, and gi = g|xi . Then, given an invertible

Mealy automatonM = (Q,A, τ, σ), the definition of the automorphisms σq can be
phrased recursively as

σq = σq (σq1 , . . . ,σqk),
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where qi = qxi . Such a recursive definition is called a wreath recursion. For example,
if B = (Q,A, τ, σ) is the Bellaterra automaton, then we have the wreath recursion

σa = (σb,σc)

σb = (σc,σb)

σc = ρ(σa,σa),

where ρ : {0, 1} → {0, 1} swaps 0 and 1.

Definition 5.2. Let T be a rooted tree. We say a tree automorphism g : T→ T
is spherically transitive (or just transitive) if its restriction to every level of T is a
transitive map.

For example, if M is the adding automaton pictured in Figure 4, then σr :
{0, 1}∗ → {0, 1}∗ is spherically transitive, because its action on the n-th level is
addition of 1 modulo 2n.

6. The Bellaterra automaton

Consider the Bellaterra automaton B = (Q,A, σ, τ), pictured in Figure 3. We
want to show that the graphs Bn = ΓB,n have small diameter. Our approach is to
find short words in Q∗ which change only the last digit of the word 1n = 11 . . . 1.
So, we are looking for words which do not fix the infinite word 1∞ = 111 . . . , but
do preserve the first n of its letters. It turns out there are enough of these words
because τ1 acts “transitively enough” on Q∗, so that almost every orbit under its
action contains some word w ∈ Q∗ which swaps 0 and 1.

It is straightforward to check that a2, b2, and c2 act trivially on A∗, (i.e. σaa =
σbb = σcc = id) so we are primarily interested in reduced words in {a, b, c}, i.e. those
which do not repeat the same letter twice in a row. Note that these words form a
subtree of Q∗, which is nearly a binary tree: every vertex has two children, except
the root.

We will need a simple result on the transitivity of automorphisms of a binary
tree. A = {0, 1}. Define a group homomorphism χ : Aut(A∗)→ Z2[[t]], by

χ(g) =
∞∑

n=1

cnt
n−1,

where (−1)cn is the sign of the permutation given by the action of χ the n-th level
of A∗. Values of this homomorphism can be computed recursively via

χ(g) = c1 + t
(
χ(g|x) + χ(g|y)

)
,

where c1 is 0 if g fixes the two elements of A, and c1 = 1 if g swaps them. We call
χ(g) the characteristic function of g. Of course, this definition makes sense when
A is any two-element set, so we will state the lemma more generally:

Lemma 6.1. Let A = {x, y}. An automorphism g ∈ Aut(A∗) is spherically tran-
sitive if and only if χ(g) = 1/(1− t).
Proof. If g is spherically transitive, then its action on the n-th level of An is a
(2n)-cycle, which is an odd permutation for all n ≥ 1. Hence, cn = 1 for all n ≥ 1,
and

χ(g) =

∞∑

n=1

tn−1 =
1

1− t .
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In the other direction, suppose χ(g) = 1/(1−t), i.e. g acts as an odd permutation
on An for every n ≥ 1. We will show by induction on n that the action of g on An

is a (2n)-cycle for all n ≥ 0. This is trivial for n = 0.
For the inductive step, suppose g acts as a (2n)-cycle on An. Given a word

s ∈ An, we either have g2n(sx) = sx or g2n(sx) = sy. In the first case sx belongs
to a (2n)-cycle of g, in the second case, sx belongs to a (2n+1)-cycle. So, any word
in An+1 ending in x belongs to either a (2n)-cycle or a (2n+1)-cycle, and similarly
for wards ending in y. So, the action of g on An+1 decomposes into either two
(2n)-cycles or a single (2n+1)-cycle. But the former is an even permutation, so g
must act as a (2n+1)-cycle on An+1, as desired. �

Lemma 6.2. Let B = (Q,A, τ, σ) denote the Bellaterra automaton. Then for
every natural number n, the map τB,1 acts transitively on the set of reduced words
of length n ending with a or c.

Proof. We will write the argument down in terms of the dual automaton B =
(A,Q, τ , σ), pictured in Figure 3. Since taking the dual reverses words, we want
to show that σ1 = σB,1 acts transitively on the binary subtree T ⊂ Q∗ of reduced
words which begin with a or c.

It is convenient to put T into bijection with a binary tree of words R = {↑, ↓}∗.
We define the maps φa, φb, φc : R→ Q∗ recursively by

φa(↑ w) = b φb(w) φa(↓w) = c φc(w)
φb(↑ w) = c φc(w) φb(↓w) = aφa(w)
φc(↑ w) = aφa(w) φc(↓w) = b φb(w)

It is straightforward to check by induction on word length that for each x ∈ Q,
φx defines a tree isomorphism between R and the reduced words in Q∗ which do
not begin with x. In particular, φb is a bijection between R and T.

Now consider the dual B of the Bellaterra automaton, and in particular the
corresponding automorphisms σ0,σ1 ∈ Aut(Q∗). Given x, y ∈ Q, d ∈ A, define

σx,d,y = φ−1
x σdφy ∈ Aut(R).

Note that, a priori, the domain of φ−1
x may not coincide with the image of σdφy,

so σx,d,y may be ill-defined for some values of x, d, y. However, the computations
below give an explicit recursion for computing σ1,b,1, which also demonstrates that
it is well-defined.

We can compute that, e.g.,

σb,1,b(↑ w) = φ−1
b (σ1(φb(↑ w)))

= φ−1
b (σ1(c φc(w)))

= φ−1
b (aσ0(φc(w)))

= ↓φ−1
a (σ0(φc(w)))

= ↓σa,0,c

In particular, σb,1,b|↑ = σa,0,c.

Similar computations give the complete recursive description of σb,1,b, which we
write down using the usual wreath recursion notation g = ρε(g|↑, g|↓), where ρ
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swaps ↑ and ↓:
σb,1,b = ρ (σa,0,c,σc,1,a)

σa,0,c = (σb,0,a,σc,0,b)

σc,1,a = ρ (σb,1,b,σa,0,c)

σb,0,a = (σc,0,b,σa,1,c)

σc,0,b = (σa,1,c,σb,0,a)

σa,1,c = ρ (σc,1,a,σb,1,b)

Defining Fx,d,y = χ(σx,d,y), this gives us the following linear equations in the
ring Z2[[t]]:

Fb,1,b = 1 + t(Fa,0,c + Fc,1,a)

Fa,0,c = t(Fb,0,a + Fc,0,b)

Fc,1,a = 1 + t(Fb,1,b + Fa,0,c)

Fb,0,a = t(Fc,0,b + Fa,1,c)

Fc,0,b = t(Fa,1,c + Fb,0,a)

Fa,1,c = 1 + t(Fc,1,a + Fb,1,b)

Solving this system of equations yields

Fb,1,b = 1/(1− t)
Fa,0,c = 0

Fc,1,a = 1/(1− t)
Fb,0,a = t/(1− t)
Fc,0,b = t/(1− t)
Fa,1,c = 1,

So we have

χ(φ−1
b σB,1φb) = 1/(1− t).

By Lemma 6.1, the automorphism φ−1
b σ1φb acts transitively on R. Hence σ1

acts transitively on T, that is, for each n it acts transitively on the set of length
n reduced words in {a, b, c} which begin with a or c. Hence, in the unreversed
Bellaterra automaton B, we have that τB,1 acts transitively on the words of a given
length which end with a or c. �

Lemma 6.3. Let M = (Q,A, τ, σ) be a Mealy automaton, let x be a letter in A,
and let w be a word in Q∗. Then w stabilizes the infinite word xxx . . . = x∞ if and
only if every element of the orbit of w under τx stabilizes x. That is,

w
(xxx . . . ) = xxx . . . if and only if σ(τnx (w), x) = x for all n ≥ 0.

Proof. Say

w
(xxx . . . ) = y0y1y2 . . . .

Then yn is the last letter of
w
(xn+1). Letting X = xn, we have

w
(xn+1) =

w
(Xx) =

w
(X) τ(w,X)x,
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So,

yn = τ(w,X)x = σ(τ(w,X), x) = σ(τX(w), x) = σ(τnx (w), x),

and therefore wxxx . . . = xxx . . . if and only if σ(τnx (w), x) = x for every n ≥ 0, as
desired. �

Theorem 6.4. Let Bn denote the n-th Bellaterra graph. Then diam(Bn) = O(n2).

Proof. Let B = (Q,A, τ, σ) denote the Bellaterra automaton, so that Bn = ΓB,n.
It is enough to show that for some C the ball of radius Cn2 around the vertex
1n = 11 . . . 1 covers all of Bn. That is, we will show that for every number n, and
every v ∈ Bn,

d(1n, v) ≤ Cn2.

The only letter in Q = {a, b, c} which swaps the elements of A is c. The other
two letters fix 0 and 1. Hence, a word w ∈ Q∗ fixes 1 if and only if it has an even
number of c’s.

For each n > 0, there is a reduced word ending in a or c which contains an odd
number of c’s. We can take, e.g. abab...abc or baba...abc. By Lemma 6.2, if w is any
reduced word of length n ending in a or c, then its orbit under τ1 contains some
word which does not fix 1. Hence, by Lemma 6.3, w does not fix the infinite word
111 . . . = x∞.

Given a number n ≥ 1, we have |An| = 2n, and there are 2n+1−1 reduced words
of length n or less which end in a or c. By the pigeonhole principle, there must be
two such words, v, w with

v
(1n) =

w
(1n). We may assume `(v) ≤ `(w). Since a2,

b2, and c2 all act trivially on A∗, reversing a word inverts its action on A∗. Let u
be the reduced word formed by cancelling pairs of repeated letters in vw. Then,

u
(1n) =

vw
(1n) =

vv
(1n) = 1n,

and `(u) ≤ `(vw) = `(v) + `(w) ≤ 2n.

Since v 6= w, u is not the empty word. We assumed that `(v) ≤ `(w), so the last
letter of w is not cancelled. Hence u also ends in in a or c, and therefore

u
(111 . . . ) 6= 111 . . . .

Let k be the maximal integer such that
u
(1k) = 1k. We know k ≥ n and

u
(1k+1) = 1k0. So, letting s = 1k−n, t = 1n+1, and t′ = 1n0, we have

st′ =
u
(st) = us

u′
(t) = s

u′
(t),

where u′ = us. So we have
u′

(1n+1) = 1n0,

and `(u′) = `(u) ≤ 2n.

This construction works for all n ≥ 1. That is, for every n ≥ 1, there exists a
un ∈ Q∗ with `(un) ≤ 2n and

un(1n0) = 1n+1.
We now prove by induction on n that for every s ∈ An, there is a w ∈ Q∗ with

`(w) ≤ n2 such that ws = 1n. The base cases n = 0 and n = 1 are trivial. For the
inductive step, consider any n ≥ 1. Given s ∈ An+1, let s′ be s with the last digit
removed. By the induction hypothesis know there is a word w with `(w) ≤ n2 such
that

w
s′ = 1n. Then either ws = 1n+1 or ws = 1n0. In the first case, we are done.

In the second case, unws = 1n+1, and `(unw) ≤ 2n+n2 ≤ (n+ 1)2, so we are done.
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So, we have shown that in the graph Bn = ΓB,n, we have d(1n, s) ≤ n2 for every
s ∈ An. It follows that for any s, t ∈ Bn,

d(s, t) ≤ d(s, 1n) + d(1n, t) ≤ 2n2,

i.e. diam(Bn) ≤ 2n2. �

7. The Aleshin automaton

The Aleshin automaton A and the Bellaterra automaton B are closely related.
Indeed, let τd : {0, 1}∗ → {0, 1}∗ denote map which swaps every digit of a binary
word. Then it is straightforward to check by induction that

τA,a = τd τB,a,

τA,b = τd τB,c,

and τA,c = τd τB,c.

With this observation, Theorem 6.4 has the following corollary.

Corollary 7.1. Let An denote the n-th Aleshin graph. Then diam(An) = O(n2).

Proof. For every pair q, r ∈ {a, b, c}, we have

τ−1
A,q τA,r = τ−1

B,q τ
−1
d τd τB,r = τB,qτB,r.

So, if two words in {0, 1}n are separated by a path of length 2 in the Bellaterra
graph Bn, they are also separated by a path of length 2 in the Aleshin graph An.
It follows that two endpoints of an even-length path in Bn are endpoints of a path
in An of the same length.

For any word s ∈ {0, 1}n there is a path in Bn of length O(n2) from 1n to s. We
may assume that this path has even length since 1n has an edge in Bn from itself to
itself. This corresponds to a path in An of the same length, so for any s ∈ {0, 1}n,
there is a path in An of length O(n2) from 1n to s. Therefore, diam(ΓA,n) = O(n2),
as desired. �

8. Generalizations

The proof of Theorem 6.4 can be adapted to prove a more general result. In order
to generalize to automata with larger alphabets, we need to consider a restricted
type of automaton. We say an Mealy automaton M = (Q,A, τ, σ) is cyclic if it is
invertible, and 〈σq | q ∈ Q〉 = 〈(x1 x2 . . . xn)〉, where {x1, x2, . . . , xn} = A. That
is, if its action on A is a cyclic permutation group. In particular, any automaton
with |A| = 2 is cyclic. This will enable us to reach any word of the form xny from
xn+1 in a short time, as long as we can reach some such word.

We first state and prove the general result with the weakest assumptions under
which our argument guarantees polynomial growth of diam(ΓM,n).

Theorem 8.1. Let M = (Q,A, σ, τ) be a cyclic Mealy automaton with |A| prime,
and let Γ = ΓM,∞. Suppose there is a letter x ∈ A and constants α > 0, K > 1
such that, for sufficiently large r,

|BΓ(xxx . . . , r)| ≥ Krα .
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Then there is a constant C > 0, such that for all n,

diam(ΓM,n) ≤ Cn1+1/α.

Proof. Let p = |A|. By replacing M with M∪M−1 if necessary, we may assume
that for every q ∈ Q, there is a q′ ∈ Q with σq′ = σ−1

q . This replacement adds
edges to the Schreier graphs ΓM,n, but only reverses of edges which were already
there, so diam(ΓM,n) and BΓM,n

(s, r) are unaffected. Then for a word w ∈ Q∗, we

define w−1 to be w, reversed, with each letter q replaced by q′, so that σw−1 = σ−1
w .

Given sufficiently large n, pick r such that

((logK p)n)1/α < r < 2((logK p)n)1/α.

Then |BΓ(xxx . . . , r)| > pn. By the pigeonhole principle, some two elements of
BΓ(xxx . . . , r) have the same first n digits. That is, there are v, w ∈ (Q ∪ Q−1)∗

with

`(v), `(w) ≤ r, v
(xn) =

w
(xn), and

v
(xxx . . . ) 6= w

(xxx . . . ).

So, there is a u0 = v−1w ∈ (Q ∪Q−1)∗ with

`(u0) ≤ 2r,
u0(xn) = xn,

and
u0(xxx . . . ) 6= xxx . . . .

There is some smallest value of k ≥ n+1 such that
u0(xk) 6= xk. LetX0 = xk−n−1

and X = xn, so that xk = X0Xx and
u0

(xk) = X0Xy for some y ∈ A with y 6= x.

Let u = uX0
0 so in particular, `(u) = `(u0). Then,

X0Xy =
u0(X0Xx) = u0X0

u
(Xx) = X0

u
(Xx),

so

u
(Xx) = Xy.

Similarly, if u′ = uX , we have

u
(Xz) = X u′z

for any z ∈ A. Since u′x = y 6= x and M is cyclic, the action of u′ on A is a
nontrivial cyclic permutation. Since p = |A| is prime, u′ acts transitively on A, and
therefore u acts transitively on {Xz | z ∈ Aa}. It follows that for any z, z′ ∈ A,

d(Xz,Xz′) ≤ p `(u) ≤ 2pr ≤ 4p((logK p)n)1/α.

Thus, there is a constant C such that for sufficiently large n, we have

d(xnz, xn+1) ≤ Cn1/α, for all b ∈ A.

By increasing the constant if necessary, we can make this true for all n.
Now let us show by induction on n that for all s ∈ An, we have d(s, xn) <

Cn1+1/α. The base case n = 0 is trivial. For the inductive step, take any s ∈ An+1,
and let s′ be its first n letters. We know d(s′, xn) < Cn1+1/α. There is some word
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16 ANTON MALYSHEV AND IGOR PAK

w ∈ (Q ∪ Q−1)∗ with `(w) = d(s′, xn) and
w
(s′) = xn. Then ws = xnz for some

z ∈ B. Thus,

d(s, xn+1) ≤ d(s, xnz) + d(xnz, xn+1)

≤ Cn1+1/α + Cn1/α

≤ C(n+ 1)1+1/α,

which completes the induction.
It follows that for any s, t ∈ An, d(s, t) ≤ d(s, xn) + d(xn, t) ≤ 2Cn1+1/α, i.e.,

diam(ΓM,n) ≤ 2Cn1+1/α.

�
In all the cases where we apply this, |BΓ(xxx . . . , r)| will have exponential

growth, so we state that case separately.

Corollary 8.2. Let M = (Q,A, σ, τ) be a cyclic Mealy automaton with |A| prime.
Let Γ = ΓM,∞. If there is an x ∈ A and a constant K > 1 such that

|BΓ(xxx . . . , r)| ≥ Kr

for sufficiently large r, then there is a constant C > 0, such that

diam(ΓM,n) ≤ Cn2.

It is not always easy to guarantee that |BΓ(xxx . . . , r)| ≥ Kr grows quickly, so
we prove an additional result based on the size of orbits of τx in Qn. Loosely, if the
orbits grow quickly enough, it must be because there are enough distinct images of
words of the form xm.

Theorem 8.3. Let M = (Q,A, σ, τ) be a reversible3 cyclic Mealy automaton with
|A| prime. Suppose there is a letter x ∈ A and constants K > 1, α > 0 such that
for sufficiently large n, there is a w ∈ Qn with

∣∣{τ kx (w) | k ∈ Z}
∣∣ ≥ Knα .

Then there is a constant C > 0, such that for all n, we have

diam(ΓM,n) ≤ C n1+1/α.

Proof. Let P = {p ∈ N | p prime, p ≤ |Q|}. It is easy to see by induction on length
that for each w ∈ Q∗, the sequence w, τx(w), τ2

x(w), . . . is periodic with period m,
where m is a product of some powers of primes in P . Define letters qi,k via

τkx (w) = q0,kq1,k . . . qn,k.

If mi is the period of the sequence qi,0, qi,1, . . . , then m = gcd(m0,m1, . . . ,mn).
Let M = maximi. Then each prime power in the prime factorization of m is a
factor of some mi, so it is at most M . The period m is the product of these prime
powers, so m ≤M |P |. That is, there is some i such that mi ≥ m1/|P |.

Fix that i for the rest of the proof, and let v be the first i letters of w. Consider
the infinite word s =

v
(xxx . . . ), and let xk be it’s k-th letter. Let l be the period

of the word s. Note that qi,k+1 = qxki,k and therefore

qi,k+l = qXi,k,

3The assumption that M is reversible may be lifted, if we replace
∣∣{τk

x (w) | k ∈ Z}
∣∣ with the

length of the (eventual) period of w, τx(w), τ2x(w), . . . .
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where

X = xkxk+1 . . . xk+l−1.

Since the xk repeat every l letters, we have qi,k+l = qXi,k, and qi,k+2l = qXi,k+l, and so

on. Let F = |Q|!. Then XF acts trivially on Q, and hence qi,k+Fl = qi,k+Fl. This
is true for each k, so the qi,k have period mi ≤ Fl. Thus, the word s =

v
(xxx . . .)

has period l ≥ m1/|P |/F .
Now let n be sufficiently large, so that there is a word w ∈ Qn whose orbit under

τx has size m ≥ Knα . Then, from the above, for some v ∈ Q∗ with `(v) ≤ n, the
word s = vxxx . . . has period

l ≥ 1

F
Knα/|P | ≥ K̃nα ,

where we fix some 1 < K̃ < K1/|P |, and the last inequality holds for sufficiently
large n.

Let vk = τkx (v). Then vkxxx . . . is a shift of s, and since s has period l there are
l distinct such shifts. So, since each vk satisfies `(vk) ≤ n, the set {wxxx · · · | w ∈
Q∗, `(w) ≤ n} has at least l ≥ K̃nα elements. It follows that |BΓ(xxx . . . , n)| ≥
K̃nα , where Γ = ΓM,∞

So Theorem 8.1 applies, and there is a constant C such that diam(ΓM,n) ≤
Cn1+1/α. �

We also state the following special case, which is a simple way to apply the
theorem.

Corollary 8.4. Let M = (Q,A, σ, τ) be a reversible cyclic Mealy automaton with
|A| prime. Suppose there is some a ∈ A, and some d ≥ 2, such that there is a
d-regular subtree T ⊆ Q∗ such that τa acts spherically transitively on T. Then
there is a constant C > 0, such that for all n, we have

diam(ΓM,n) ≤ Cn2.

9. Cotransitive cyclic automata

The simplest way for the conditions in Corollary 8.4 to be satisfied is when some
τa acts spherically transitively on the entire tree Q∗. With that in mind, we make
the following definitions.

We say an invertible Mealy automaton M = (Q,A, σ, τ) is q-transitive if the
tree automorphism σq : A∗ → A∗ is spherically transitive. We sayM is transitive4

if it is q-transitive for some q ∈ Q. We sayM is cotransitive if its dual is transitive.
Then, according to Corollary 8.4, we have

Corollary 9.1. Let M = (Q,A, σ, τ) be a reversible cyclic cotransitive Mealy au-
tomaton with |A| prime. Then diam(ΓM,n) = O(n2).

We do not know a general method for determining whether a tree automorphism
given by an automaton is transitive, but there are special cases where checking it is
easier. For example, [St] gives a generalization of Lemma 6.1 to all cyclic automata:

4A more natural definition of this term might be that the σq together act transitively on each

level of A∗, but that is too general for our purposes
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c a

b

1 : 0
0 : 11 : 0

1 : 1

0 : 1

0 : 0

(a) 2372

c a

b

1 : 01 : 0

1 : 1
0 : 1

0 : 1

0 : 0

(b) 956

c a

b

1 : 01 : 0

1 : 1
0 : 1

0 : 1

0 : 0

(c) 2396

c a

b

1 : 01 : 1

1 : 1

0 : 1

0 : 00 : 0

(d) 870

c a

b

1 : 01 : 0

1 : 1

0 : 1

0 : 10 : 0

(e) 2294

Figure 6. The five contransitive 3-state automata on a binary alphabet.

Lemma 9.2. Let M = (Q,A, τ, σ) be a cyclic automaton, with |A| = m. Then
there is a cyclic permutation ρ of A, such that for each q ∈ Q there is a kq s.t. σq =
ρk. Recursively define

χ(q) = kq + t
∑

x∈A
χ(τx(q)) ∈ Zm[[t]]

Then σq acts transitively on A∗ if and only if each coefficient of χ(q) is a generator
of Zm.

An automaton is called cocyclic if its dual is cyclic. Now observe that the power
series χ(q) for q ∈ Q satisfy a recursive linear relation, which can be solved to write
each χ(q) as a rational function. This implies:

Corollary 9.3. Given a (co)cyclic Mealy automaton M = (Q,A, τ, σ), there is an
algorithm to determine whether it is (co)transitive.

For example, it is straightforward to check that, there are 16 cocyclic invert-
ible (3, 2)-automata, and only four are cotransitive. These four are the automata
pictured in Figures 6b–6e, i.e., automata number 956, 2396, 870, and 2294 in [B+].5

5Note that [B+] does not distinguish between an automaton and its inverse. We do, so some

of our automata are actually inverses of the automata described there.
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a c b
x:x

x:x
y:xx:y

y:y y:y

Figure 7. An automaton to conjugate M2372 into a cocyclic au-
tomaton.

0 1 20 : 0

1 : 1

1 : 0

0 : 1

1 : 1

0 : 0

Figure 8

10. Further examples

Example 10.1. It can be verified that, except for the automata pictured in Fig-
ure 6, every invertible (3, 2)-automaton is not cotransitive: for each automaton,
simply find orbits of each τa which are proper subsets of An for some n. In this
case, it suffices to take n = 4.

The final automatonM pictured in Figure 6a, which is automaton number 2372
in [B+], is not cocyclic. So, we do not have a mechanical procedure to prove it is
cotransitive. It turns out, however, that there is an automorphism κ : {a, b, c}∗ →
{a, b, c}∗ such that κ−1τM,1κ can be computed by a cyclic automaton. Indeed, one
can take κ = τC,x, where C is the automaton in Figure 7. Then we can compute
the power series χ(κ−1τM,1κ), and see directly that its coefficients are nonzero. At
that point, Corollary 9.2 implies that κ−1τM,1κ acts transitively on Q∗, and hence
so does τM,1.

So, we have sketched a proof of the following:

Proposition 10.2. The cotransitive invertible (3, 2)-automata are precisely the five
automata pictured in Figure 6, up to relabeling of A and Q.

Example 10.3. Of course, there are automata which are not cotransitive, but still
satisfy the conditions of Corollary 8.4. As we saw, one example is the Bellaterra au-
tomaton. A natural and easy to analyze example is the automatonM = (Q,A, τ, σ)
that implements division by 3 modulo 2n. (This is automaton number 924 in [B+].
See [BŠ] for more on this construction and related ones.) We will also see that its
Schreier graphs do not form a family of expanders.

A quick way to define this automaton is that for a, b ∈ Q = {0, 1, 2} and x, y ∈
A = {0, 1}, we have a x : y b if and only if

a+ 3y = x+ 2b.

This automaton is pictured in Figure 8. Note that for convenience we abuse notation
slightly and call two of the states, 0 and 1, by the same name as the letters in the
alphabet.
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By assumption, if a x : y b, then for any x′ ∈ Z/2n−1Z, we have the following
equalities in Z/2nZ:

x+ 2b = a+ 3y

x+ 2x′ − a = 3y + 2x′ − 2b

(x+ 2x′)− a
3

= y + 2
x′ − b

3
.

That is, if x is the least significant binary digit of a number X ∈ Z/2nZ, and
x′ ∈ Z/2n−1Z is the number corresponding to the rest of its digits, then the least
significant digit of (X − a)/3 is y, and the rest of the digits are given by (x′− b)/3.
It follows that if we identify a number x ∈ Z/2nZ with its binary representation
in {0, 1}n (with the least significant digit on the left), then we have, for each
a ∈ {0, 1, 2},

σa(x) =
x− a

3
.

By a symmetric argument, the dual of this automaton implements division by
2 modulo 3. Phrasing this in terms of the original automaton M, we interpret a
length-m word in {0, 1, 2} as the representation of a number modulo 3m written in
ternary with the least significant digit on the right. Then for each x ∈ {0, 1},

τx(a) =
a− x

2
.

In particular, τ0 divides a number by 2. Since 2 generates the multiplicative
group (Z/3mZ)∗, that group is an orbit of τ0. So for every m, there is an orbit of
τ0 in Qm of size 2 · 3m−1. By Theorem 8.3, it follows that diam(ΓM,n) = O(n2). In
fact, it can be checked explicitly that diam(ΓM,n) = O(n). This can be seen from
the observation that the sequence of applications of σ1, σ2, and σ3 necessary to
send the binary number x to 00 . . . 0 is essentially the representation of x in base 3.

However, the group GM = 〈σ0,σ1,σ2〉 is generated by µ = σ−1
0 and α = σ−1

1 σ0,
which are multiplication by 3 and addition of 1, respectively. E.g., σ2 = µ−1α−2.
It follows that the group action factors through the group of upper-triangular 2 by
2 matrices via

µ 7→
(

3 0
0 1

)
α 7→

(
1 1
0 1

)

This group is solvable, and therefore amenable. It follows that its Schreier graphs
with respect to a fixed set of generators cannot be expanders [Lub, 3.3.7]. So, the
family {ΓM,n}∞n=1 is not a family of expanders.

So, there are automata to which our general results apply, but whose Schreier
graphs do not form a family of expanders. More work is necessary to find sufficient
conditions for when an automaton gives rise to a family of expanders.

Example 10.4. It can be checked by a computation that there are no cotransitive
invertible (4, 2)-automata. It turns out it is enough to check the actions of the τa
on Q4.

Example 10.5. There are seven (5, 2)-automata which are not cocyclic, but act
transitively on Q10. Of these, just one is bireversible, as the Aleshin and Bellaterra
automata are. It is pictured in Figure 9. Unlike the automaton in Figure 6a, it is
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a

b

c

d

e

0 : 1

0 : 00 : 0

0 : 0

0 : 1

1 : 1

1 : 0

1 : 1

1 : 0

Figure 9. The only candidate to be a cotransitive bireversible
(5, 2)-automaton.

unlikely that there is an automatic automorphism κ : Q∗ → Q∗ such that κ−1τ0κ
is implemented by a cocyclic automaton. We have checked that if there is such a
κ, the automaton implementing it would need to have at least 48668 states.

11. Remarks and further work

1. The results in Section 8 can be extended to non-invertible Mealy automata
as well. Since we are primarily interested only in regular graphs, we prove only
the simpler case. For example, to state Theorem 8.1 more generally, one needs
to consider the size of balls in ΓM,∞ defined in terms of directed paths, but the
result about the diameter of ΓM,n still needs diameter to be defined in terms of
undirected paths.

2. As noted in the proof of Corollary 7.1, any product of two generators of
the Bellaterra group GB = 〈σB,a,σB,b,σB,c〉 belongs to the Aleshin group GA =
〈σA,a,σA,b,σA,c〉. We used this fact to show that, since the Bellaterra graphs have
small diameter, so do the Aleshin graphs. In fact, it can also be used to show that if
the Bellaterra graphs form a (two-sided) expander family, so do the Aleshin graphs.
In other words, Conjecture 1.3 implies Conjecture 1.2.

3. A tree automorphism α : A∗ → A∗ is spherically transitive if and only if it
is conjugate in Aut(A∗) to the adding machine ρ, i.e., the automorphism which
interprets a word in An as the base-|A| representation of a number modulo |A|n,
and adds one to that number. The adding machine is an automatic automorphism,
e.g., the binary adding machine is pictured in Figure 4.

One might hope that whenever an automatic automorphism α ∈ FAut(A∗) is
conjugate to ρ in Aut(A∗), it is also conjugate to ρ in FAut(A∗). If so, we would
have an algorithm for determining whether a given automatic automorphism is
transitive. In fact, since we can enumerate the transitive cyclic automata, it would
be enough if every transitive α ∈ FAut(A∗) were conjugate in FAut(A∗) to some
cyclic automorphism.
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However, Example 10.5 suggests that, in the dual of the automaton in Figure 9,
σ0 is transitive but not conjugate in FAut(A∗) to any cyclic automaton, in partic-
ular to ρ. However, we prove that σ0 is not conjugate to a cyclic automaton, nor
prove that it is actually transitive.

Problem 11.1. Exhibit a transitive α ∈ FAut(A∗) which is not conjugate (in
FAut(A∗)) to a cyclic β ∈ FAut(A∗). (Or prove that there is no such α.)

Problem 11.2. Characterize the automorphisms in FAut(A∗) which are conjugate
in FAut(A∗) to a cyclic automorphism.

We can, however, exhibit a cyclic α ∈ FAut(A∗) which is not conjugate in
FAut(A∗) to the adding machine ρ:

Proposition 11.3. LetM = (Q,A, τ, σ) be the dual of the automaton in Figure 6b,
where Q = {0, 1} and A = {a, b, c}. Then σ1 acts transitively on A∗, but there is
no κ ∈ FAut(A∗) such that κ−1σ1κ = ρ

Sketch of proof: Given an eventually periodic word w ∈ A∗, we let h(w) denote the
smallest number n such that w is periodic after the first n letters.

Note that if ρ is the adding machine, then for any eventually periodic word
v ∈ A∞, we have

h(ρn(v)) = O(log n).

Moreover, after a finite number of steps, the periodic part of ρn(v) stabilizes. It
follows that for any κ ∈ FAut(A∗), we have

h(κρn(v)) = O(log n)

and since this applies to any v,

h(κρnκ−1(v)) = O(log n)

On the other hand, taking α = σ1, we can check that if we read w ∈ An as a
ternary number modulo 3n (with c = 0, a = 1, b = 2), we have

α(w) =
w + 1

−2
.

It follows that for w = ccc . . .,

h(α−n(w)) ∼ (log3 2)n

Thus α−1 and ρ are not conjugate in FAut(A∗). It is easy to check that ρ and
ρ−1 are conjugate, so α and ρ are not conjugate in FAut(A∗). �
4. More generally, an open problem is the classification of conjugacy classes in
FAut(A∗). The conjugacy classes of Aut(A∗) can be described in terms of orbit trees
[GNS]. This tree captures the information about the orbits of an automorphism
α ∈ Aut(A∗), e.g. a ray with few branches in the orbit tree corresponds to a
sequence of quickly growing orbits. Information about this tree can tell us whether
we can apply, e.g., Theorem 8.3.

Of course, not all orbit trees arise from elements of FAut(A∗), since there are
uncountably many. Moreover, not all automatic automorphisms with the same
orbit tree are conjugate in FAut(A∗), as seen in Proposition 11.3.

In [BBSZ], the problem is solved for bounded automorphisms, and more gener-
ally automorphisms with finite orbit-signalizer. Such “small” automorphisms are
unlikely to give expanders, so we are interested in the other end of the spectrum,
automorphisms with many nontrivial sections on every level.
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5. Automaton groups, i.e., groups of the form GM for some Mealy automatonM,

are of independent interest in group theory.6 A famous example is the Grigorchuk
group, which is the first known group whose growth function is intermediate between
polynomial and exponential (see [GP, G1]). For more on automaton groups, see
[BGŠ, GNS, Nek].

6. The structure of GM as an abstract group can give us information on whether
or not the graphs ΓM,n form a family of expanders. For example, if GM is amenable
then {ΓM,n}∞n=1 is not a family of expanders [Lub, 3.3.7]. We already used this
fact in Example 10.3 to show that the Schreier graphs of the automaton defined
there are not expanders.

7. On the other hand, sometimes the structure of GM is enough to guarantee
that {ΓM,n}∞n=1 is a family of expanders. Notably, if Γ1,Γ2, . . . are Schreier graphs
(with respect to a fixed generating set) of a group with Kazhdan property (T ), and
|Γi| → ∞, then these graphs must form a family of expanders [Lub, 3.3.4]. This
fact was used by Margulis to give the first explicit construction of expanders [Mar].

In [GM], it was shown that there are Mealy automata M for which GM has
property (T ), so Mealy automata can be used to construct expander families. The
groups GA and GB do not have property (T ), so this approach is not sufficient to
prove Conjectures 1.2 and 1.3.

8. In a recent preprint, [MSS], the ideas of [BL] were extended to construct families
of bipartite Ramanujan graphs (i.e., expander graphs with optimal spectral gap) of
arbitrary degree. The construction uses a new technique to pick a particular 2-lift
of a graph which does not introduce any new large eigenvalues. We should note
that this construction is not very explicit, in the sense given above.

9. In [G2, Section 10], Grigorchuk shows that in a certain formal sense, the Aleshin
and Bellaterra automata are examples of asymptotic expanders, thus giving further
evidence to Conjectures 1.2 and 1.3. He also states these conjectures as open
problems, and suggests that a sequence of Schreier graphs constructed by a finite
automaton cannot be Ramanujan.
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