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Abstract

Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time 

building 3D deformation maps. This technique has been applied for tracking brain degeneration in 

Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we 

applied TBM to quantify changes in brain structure after completing a challenging adaptive 

cognitive training program based on the n-back task. Twenty-six young women completed twenty-

four training sessions across twelve weeks and they showed, on average, large cognitive 

improvements. High-resolution MRI scans were obtained before and after training. The computed 

longitudinal deformation maps were analyzed for answering three questions: (a) Are there 

differential brain structural changes in the training group as compared with a matched control 

group? (b) Are these changes related to performance differences in the training program? (c) Are 

standardized changes in a set of psychological factors (fluid and crystallized intelligence, working 

memory, and attention control) measured before and after training, related to structural changes in 

the brain? Results showed (a) greater structural changes for the training group in the temporal 

lobe, (b) a negative correlation between these changes and performance across training sessions 

(the greater the structural change, the lower the cognitive performance improvements), and (c) 

negligible effects regarding the psychological factors measured before and after training.
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1. Introduction

Animal studies have demonstrated plasticity-induced modifications in the brain (see 

Buonomano and Merzenich, 1998 for an early review of the evidence). In this regard, 

studying rodents Matzel and Kolata (2010) showed that working memory training changes 

brain features, reinforcing the sensitivity of dopamine receptors in the frontal lobes, which, 

in turn, influences far-transfer to performance on general cognitive ability tasks.

Research with humans is mainly based on neuroimaging techniques, which allow observing 

changes in brain structure resulting from a variety of behavioral interventions. After their 

review of the published research, Zatorre et al. (2012) noted that behaviorally evoked 

changes in the brain might involve increases or decreases in the considered biological 

properties, mainly because the interaction between structural and functional changes in the 

brain is complex. In addition, neuroimaging data and their underlying biological substrate 

are not easily related: gray matter changes may involve neuronal morphology, 

synaptogenesis, or neurogenesis, while white matter changes may implicate fiber density, 

axon diameter, or myelination. Regarding gray matter, Zatorre et al. suggest that 

neuroimaging data might be insensitive to neurogenesis, but gliogenesis and synaptogenesis 

would be proper candidates to explain macroanatomical brain changes. With respect to white 

matter, these authors suggest that modifications in fibers’ paths (tracts geometry) may 

influence neuroimaging data.

Regardless of which specific microstructural changes take place in response to behavioral 

interventions, it is assumed that those changes may have an impact on macroscopic brain 

morphology. Nevertheless, Thomas and Baker (2012a,b) pointed out that methodological 

flaws are common among structural neuroimaging studies analyzing gray and white matter 

changes after behavioral training. Studies’ designs, methods, and artifacts raise reservations 

with respect to conclusions derived from training-dependent structural changes in the human 

brain. Indeed, the changes evidenced by a given training program should analyze the 

interaction between groups (training versus control) and times (before versus after training). 

Also, clear hypotheses with respect to brain regions sensitive to training must be stated in 

advance. These points are frequently overlooked in current research.

The majority of published structural studies have relied on voxel-based morphometry 

(VBM), but in the present study a related technique, namely, tensor-based morphometry 

(TBM) will be applied. This technique builds three-dimensional maps of volumetric changes 

(Jacobian determinants) by matching brain scans acquired at two time points. Thus, TBM is 

well suited for the automated mapping of brain changes across time (Leow et al., 2009) and 

it has been successfully applied to track brain diseases (Hua et al., 2011). However, it has 

been very rarely considered for analyzing short-term longitudinal changes after experimental 

cognitive training regimes completed by healthy young individuals. In this regard, Ceccarelli 

et al. (2009) used a TBM approach for analyzing images of one small group of university 

students following a regular course of anatomy, biology, and physiology during two weeks. 

Hoekzema et al. (2011) proposed that TBM-based volumetric changes could be detected in a 

small group of ADHD children that completed a complex cognitive training program 

Colom et al. Page 2

Neuropsychologia. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(targeting planning, working memory, attention, cognitive flexibility, and problem solving) 

across two weeks.

To our knowledge, the study reported in the present article is the first applying TBM to a 

dataset comprising a group of young adult healthy participants completing a short-term 

(twelve weeks) challenging adaptive cognitive training program, based on the n-back task, 

under strict supervision in the laboratory. Note that three months have been suggested as a 

proper time interval for effectively evoking changes in brain structure, either neuronal 

dendritic arborization or dendritic spine length and synaptogenesis. In this respect, 

Cummings et al. (2005) showed that human stem cells do have the potential for building 

synapses within injured tissue related with locomotor functions in the very short-term. May 

et al. (2007) reported macroscopic gray matter changes after seven days of delivering 

transcranial magnetic stimulation towards the superior temporal cortex, concluding that 

structural plasticity in humans can be observed within very short periods of time.

It must be also noted that previous research has shown that cognitive training regimes based 

on the n-back task are associated with transfer effects (Au et al., 2014). Therefore, the 

sustained and adaptive training based on the n-back task is assumed to recruit cognitive 

processes that overlap those required for psychological factors such as fluid intelligence or 

working memory. Thus, their common neuroanatomical substrates might be sensitive to the 

adaptive training regime.

In the current investigation, brain changes (Jacobian determinants) in the training group will 

be compared to those computed for a matched control group. We expect neuroanatomical 

changes to be related to (1) variations in the performance level achieved across training 

sessions, and (2) the standardized change in related psychological factors measured before 

and after training. We hypothesize changes for the training group in brain regions thought to 

be involved in the training regime. From a general perspective, working memory tasks 

involve systematic activations in prefrontal, parietal, cingulate, occipital, and cerebellar 

areas. Specifically, the n-back task, requiring monitoring and inhibitory processes, usually 

evokes activations in (frontal) Brodmann areas (BAs) 6, 9, and 46, along with activations in 

(parietal) BAs 7 and 40. The anterior cingulate seems to be recruited at increased levels of 

difficulty, and occipital regions are involved in visuospatial working memory tasks (Cabeza 

and Nyberg, 2000). The meta-analysis on studies of working memory reported by Wager and 

Smith (2003) identified several regions frequently activated: the superior frontal cortex (BAs 

6, 8, and 9) was involved in updating and short-term memory for temporal order; right BAs 

10 and 47 were activated during manipulation and dual-task conditions; the posterior parietal 

cortex (BA 7) supported executive working memory processes; finally, BA 32 was recruited 

when selective attention was required for information storage in working memory. Yarkoni 

et al. (2011) reported consistent activations in anterior prefrontal and posterior parietal 

regions when completing tasks requiring cognitive control, such as the n-back task.

Nevertheless, these findings are based on functional correlates. As noted above, the 

interaction between structure and function is far from straightforward (Zatorre et al., 2012). 

The VBM study by Colom et al. (2007) analyzed the common neuroanatomic framework of 

the general factor of intelligence (g) and working memory span tasks, finding significant 
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overlaps in the right superior and left middle frontal gyri (BA 10), along with the right 

inferior parietal lobe (BA 40). These results were interpreted as suggesting that frontal 

regions support processes devoted to cognitive control, whereas parietal areas are 

responsible for the capacity limitations of the human brain (Cowan, 2005).

In short, considering the reviewed evidence, differential structural changes are expected 

mainly in parietal and frontal discrete regions (Burgess et al., 2011; Buschman et al., 2011; 

Colom et al., 2007; Klingberg, 2010; Rottschy et al., 2012). Furthermore, the cerebellum 

should also be involved because of the executive updating and skill acquisition requirements 

of the training program (Ferrucci et al., 2008; Habas et al., 2009; Hautzel et al., 2009; Owen 

et al., 2005). In this regard, Leggio et al. (2011) underscored the role of the cerebellum in the 

sequence and feedforward processing related with cognitive abilities. The cerebellum was 

seen as a booster supporting general processing.

2. Method

2.1. Participants

Two groups of twenty-six females each were recruited from a larger group of 169 university 

undergraduates. Members of each group were matched for their general intelligence, and the 

groups overlapped on and represented a range of scores (please see Colom et al. (2013) for 

details). All participants were right handed, as assessed by the Edinburgh Test (Oldfield, 

1971). They also completed a set of questions asking for medical or psychiatric disorders, as 

well as substance intake. The recruitment process followed the Helsinki guidelines (World 

Medical Association, 2008) and the local ethics committee approved the study. Colom et al. 

(2013) analyzed this same sample and reported the observed cognitive results. Further 

details can be found on this report. Nevertheless, Appendix 1 provides sociodemographic 

and cognitive data.

2.2. Basic design

169 participants completed a battery of tests and tasks tapping fluid intelligence –Gf, 

crystallized intelligence – Gc, working memory capacity – WMC, and attention control – 

ATT—before recruitment. Afterwards, 52 individuals were recruited for MRI scanning and 

half of these participants (training group) completed the cognitive program based on the n-

back task over the course of three months. At the end of the training period, participants 

from both the training and control groups were scanned and completed a second 

psychological assessment. The interval between MRI scans was, on average, 117 days (SD = 

8 days; range = 99–133) and there were no significant differences (t = 1.68; p = 0.10) 

between the training (115 days; SD = 6 days; range = 104–121) and control (119 days; SD = 

10 days; range = 99–133) groups in this regard.

2.3. Cognitive training program

The cognitive training program followed the guidelines provided by Jaeggi et al. (2008), but 

here the training began with four sessions (weeks 1 and 2) with a visual adaptive n-back 

version and four sessions (weeks 3 and 4) with an auditory adaptive n-back version, before 

completing the sixteen sessions of the adaptive n-back dual program (weeks 5–12). We 
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extended the training period from four weeks to three months (12 weeks). There were two 

training sessions per week lasting around 30 min each and they took place under strict 

supervision in the laboratory. Participants completed their training within individual cabins. 

Data were systematically analyzed weekly for checking progress and participants received 

feedback regarding their performance.

The control group was passive and these participants followed their habits as university 

students. Note that previous research has shown that there are not remarkable differences 

between active and passive control groups in this kind of research (Chooi and Thompson, 

2012; Redick et al., 2012). This observation is reinforced in the meta-analysis by Klauer and 

Phye (2008): no differences were found between no-contact and active control groups. The 

behavioral results reported by Colom et al. (2013) for the same participants analyzed here 

are fully consistent with this conclusion.

2.4. Psychological factors

Fluid intelligence was measured by screening versions of the Raven Advanced Progressive 

Matrices Test (RAPM), the abstract reasoning subtest from the Differential Aptitude Test 

(DAT-AR), and the inductive reasoning subtest from the Primary Mental Abilities Battery 

(PMA-R). Crystallized intelligence was measured by screening versions of the verbal 

reasoning subtest from the DAT (DAT-VR), the numerical reasoning subtest from the DAT 

(DAT-NR), and the vocabulary subtest from the PMA (PMA-V). Working memory capacity 

was measured by the reading span, the computation span, and the dot matrix tasks. Finally, 

attention control was tapped by cognitive tasks based on the quick management of conflict: 

verbal (vowel–consonant) and numerical (odd–even) flanker tasks, along with the spatial 

(right–left) Simon task. Colom et al. (2013) provide a full description of these intelligence 

tests and cognitive tasks.

2.5. MRI acquisition

Images were acquired in a General Electric Signa 3T MR Scanner (General Electric 

Healthcare, Farfield, CT) using a whole-body radiofrequency (RF) coil for signal excitation 

and quadrature 8-channel coil for reception. For the structural images analyzed here, a high-

resolution 3D T1-weighted Gradient Echo-SPGR was applied, with parameters: TE = 4.1 

ms, TR = 9.1 ms, TI = 450 ms, flip angle = 10°, 170 sagittal slices, acquisition matrix = 256 

mm × 256 mm, isotropic voxel size = 1 mm3.

2.6. Image preprocessing

When scan pairs were checked, a warping distortion between pre- and post-test scans from 

the same subject was observed. Specifically, we saw a stretch-expansion in the temporal lobe 

area and the opposite in the parietal area. This distortion was due to (a) the use of a high-

field scanner and (b) the offset of iso-center in the longitudinal scans. Note that the MR 

scanner software level used to acquire the data in this study only supports 2D distortion 

correction. In order to reduce the differences in residual distortion to do differences in 

participant positioning, we corrected all the images to have equivalent 3D distortion 

correction. Correction for B1-inhomogeneity (shading) artifacts is commonly done – 

whether it is explicitly stated as separate steps or included as a “bias correction” inside 
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processing schemes. These corrections were required as we expect subtle changes and any 

distortion might engulf the signal of interest.

The applied technique for correcting distortions was embedded in the “Grinder” toolbox. 

This corrects for geometric distortions due to non-uniformities in the magnetic field strength 

in the scanner. The applied image pre-processing steps for this correction involved Grinder + 

N3 + bias correction from SPM5 unified segmentation (Jack et al., 2008). The tool chain 

was identical to the one used to process the Alzheimer's Disease Neuroimaging Initiative 

T1-weighted MR images. Gradient distortion correction is done based on distortion 

parameters provided by the MR scanner manufacturers. The correctness of the distortion 

parameters for supported scanners has been validated using phantoms. For the limited scope 

of this study, a single scanner was used. B1 inhomogeneity and coil sensitivity shading 

artifacts are corrected with the “N3″ correction of Sled et al. (1998) and by bias correction 

in SPM5 unified segmentation. The N3 parameters are those outlined in Boyes et al. (2008) 

and SPM5 unified segmentation is used with a custom template as outlined in Vemuri et al. 

(2008). Structural analysis of the images did not use the segmentation outputs from SPM5, 

only the smoothly varying bias correction. These steps were successful for correcting the 

distortions.

2.7. Tensor-Based Morphometry (TBM)

The TBM protocol followed several standard steps that are detailed next. Firstly, we 

registered an individual brain to the ICBM space using 7P linear registration to create a 

registration target for the remaining brains. Secondly, to linearly align the scans to ICBM 

space, each follow-up scan was linearly registered to its baseline scan with 6-parameter (6p, 

mritoself function of minctools) and 9-parameter (9p) affine transformation, then both scans 

were registered to ICBM using the same 9-parameter (9p) transformation, with mutual 

information as a similarity measure. The mutually aligned baseline and follow-up scans 

were then linearly registered to the ICBM space, applying the same 9P transformation 

(baseline to ICBM) to both scans. Intermediate transformation matrices were concatenated 

into a single transformation file, so that both baseline and follow-up scans were resampled 

once during the linear registration, to ensure equivalent resampling (Yushkevich, et al., 

2010).

All the images were resampled to 220 × 220 × 220 in −x, −y, and −z dimensions, with a 

voxel size of 1 × 1 × 1, and a file format of unsigned short. Quality checks were conducted 

by generating a. png file to displace a 3 × 3 preview of linearly aligned baseline (9p) and 

follow-up (6p and 9p) scans in coronal, horizontal, and sagittal views. A trained RA visually 

inspected the preview images. We assumed minimal skull size changes and therefore we 

used pretest_icbm9p (pretest 9p registered to ICBM) and posttest_icbm6p (posttest 6p 

registered to pretest) for mapping the brain changes that might be attributed to the training 

program.

Thirdly, we created a customized brain template for the study. All the 52 pretest subjects 

were used to create the MDT. Steps for creating the MDT are described elsewhere (see Hua 

et al. (2009)). Briefly, an affine average image was created from all pretest images after 

nine-parameter affine registration to ICBM space. Each scan was nonlinearly registered to 
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the affine average template using a nonlinear inverse-consistent elastic intensity-based 

registration algorithm (see Leow et al. (2005)). The deformation field was determined by 

maximizing the mutual information of the image intensities and by minimizing the elastic 

energy of the deformation. A nonlinear average was computed by voxel-wise averaging the 

intensities of the images that had been nonlinearly registered to the affine average template. 

Finally, the MDT was created adjusting the nonlinear average with inverse geometric 

centering of the displacement fields. The MDT serves as an average brain template for the 

study.

The fourth step involved the use of ROBEX (Iglesias et al., 2011) to create brain masks that 

exclude non-brain tissue. Individual masks were created for each pretest and posttest scans 

in the ICBM space. After creating the masks, a Matlab program was used for generating 

displays of the brains with overlaying mask. The linear registration quality was checked, as 

well as the quality of ROBEX masking, during this step. Afterwards, we created a joint 

mask based on the union of Robex masks of pretest and posttest scans, and then dilated the 

union mask 2×. This created a uniform mask for both scans. The pipeline also applied the 

joint mask to skull strip the pretest-icbm9p and posttest-icbm6p images.

The fifth step corresponded to the cross-sectional nonlinear registration. Here we registered 

individual pretest scans to the MDT. The transformation matrix was later used to reslice the 

longitudinal maps in the next step, so that all change maps shared a common space defined 

by the MDT.

The longitudinal nonlinear registration was the final step. The individual posttest-icbm6p 

scans were registered to the pretest-icbm9p scans. The deformation field obtained from 

intrasubject scan pairs represents changes in an individual brain from the pretest to the 

posttest. The longitudinal Jacobian determinant map was resliced using the displacement 

field derived from the crosssectional registration to align the longitudinal Jacobian 

determinants maps into the common MDT space for voxel-wise analysis. Group 

comparisons and statistical analyses were based on the Jacobian determinant maps in the 

MDT space. The image processing steps were executed using the LONI Pipeline Processing 

Environment (Shattuck et al., 2001).

2.8. Statistical analyses

Firstly, we computed the improvements in the completed training program (achieved average 

n-back level in the last training session – achieved average n-back level at the first training 

session). Then, we examined the influence of pre-training cognitive level in the performance 

during the training program by correlating individual differences in baseline cognitive level 

(pre-training scores in the psychological factors) with the level of achievement in the 

training program (the achieved average n-back level in the last session).

Secondly, the Jacobian determinants obtained for the training and control groups were 

visualized for checking descriptive differences between groups. The computed Jacobian 

determinants were smoothed using a kernel of 8 mm and submitted to voxel-based 

independent samples t-tests for finding brain regions where the training group differed from 

controls in the level of changing after training. For ensuring that the interval between MRI 
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scans did not affect our main findings, we repeated the voxel-based independent samples t-
tests including this interval as covariate.

Next, the average change in regions distinguishing both groups was correlated with the 

improvements in the training program.

Finally, transfer effects were tested. These transfer effects were analyzed, at the cognitive 

level, by correlating improvements in the training program with changes in the 

psychological factors. At the brain level, the average change in regions distinguishing both 

the training and control groups was correlated with the standardized changes in fluid and 

crystallized intelligence, working memory capacity, and attention control.

3. Results

3.1. Cognitive results

The average cognitive performance across training sessions (visual, auditory, and dual), 

shown in Fig. 1, demonstrates that participants were engaged reaching the required levels at 

the end of the training sessions. Substantial average improvements were observed, varying 

from 2.4 in the first session to 5.2 in the last session. Nevertheless, there were remarkable 

individual differences. Thus, for instance, in the final session four participants performed at 

3-back, seven participants performed at 4-back, six participants performed at 5-back, three 

participants performed at 6-back, three participants performed at 7-back, two participants 

performed at 8-back, and one participant performed at 9-back.

Regarding the influence of pre-training cognitive level in the improvements due to the 

training, participants who achieved a higher n-back level in the last session of the training 

program also showed remarkably better cognitive level at baseline. The computed effect 

sizes (Pearson's r and Cohen's d) were: fluid intelligence (r = 0.53; d = 1.3), crystallized 

intelligence (r = 0.42; d = 0.92), working memory capacity (r = 0.48; d = 1.1), and attention 

control (r = 0.14; d = 0.29). Thus, high-achievers in the training program have higher 

cognitive resources from the beginning for dealing with the training requirements.

3.2. Imaging results

3.2.1. Training versus controls—The top panel of Fig. 2 displays maps representing the 

between groups mean differences (training – controls) in the Jacobian determinants. There 

was greater change for the training group in the right cerebellum, bilateral temporal, bilateral 

prefrontal, and bilateral inferior parietal regions (as denoted by white clusters). However, 

only a region located in the temporal lobe (red cluster in the bottom panel), survived cluster-

based FWE corrections (p = 0.05) after independent samples t-tests. After a within-group 

one sample t-test, we observed that changes for this temporal cluster correspond to volume 

reduction in the control group and volume preservation in the training group [(tcontrols = 

−4.98, p < 0.0005); (ttraining = 0.49, p = 0.63)]. Importantly, we did not find, any region 

where the control group showed greater changes compared with the training group. Note that 

similar results were found after controlling for the effect of the interval between MRI scans 

(please see Supplementary materials).
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Hereafter, mean changes computed for the temporal cluster significantly distinguishing both 

groups were considered in the remaining analyses.

3.2.2. Relationship between brain structural changes and training 
performance—Fig. 3 shows the scatterplot regarding the correlation between mean 

changes (Jacobian determinants) computed for the temporal cluster and cognitive 

performance differences on the n-back task. A substantial negative value was observed, 

equivalent to a large effect size (Cohen's d = −1.01). Therefore, participants showing greater 

expansions improved less across the cognitive training sessions.

3.2.3. Transfer effects—Improvements in the completed training program were unrelated 

to changes in the psychological factors (rGf = −0.09; rGc = 0.01; rWMC = −0.09; rATT = 

0.25). Thus, there were not transfer effects at the cognitive level. There were not significant 

correlations between the average Jacobian determinants at the identified temporal cluster and 

the standardized changes in the psychological factors (see Fig. 4). The observed changes at 

the brain level were unrelated with changes at the cognitive level in the psychological factors 

where transfer effects were hypothesized.

4. Discussion

In the present study, we have analyzed brain structural changes in two groups of healthy 

young participants. The first group completed a challenging cognitive program based on the 

n-back task across twenty-four training sessions (three months), whereas the second 

(control) group did not. Both groups were carefully matched in socio-demographic and 

cognitive factors (please see Colom et al., 2013). High-resolution MRIs were submitted to a 

processing pipeline designed for computing standard tensor-based morphometric (TBM) 

analyses. We reported unique findings resulting from the application of this neuroimaging 

approach for answering three main questions. First, are there differential brain structural 

changes in the training and control groups? Second, are the observed brain structural 

changes related to cognitive performance differences in the training program? Third, are 

standardized changes in a set of psychological factors (fluid and crystallized intelligence, 

working memory capacity, and attention control) measured before and after training related 

to the computed brain structural changes?

The cognitive results observed across the completed training program revealed that 

participants were engaged in the task (Fig. 1). Improvements were large and equivalent to 

those appreciated in the study by Jaeggi et al. (2008). Also, there were substantial individual 

differences in training performance. The range in the dual version of the n-back program 

was between 3-back and 9-back, and therefore, not all participants improved to the same 

degree.

The applied TBM pipeline allowed computing the Jacobian determinants quantifying 

changes from the first to the second brain scan. As described above, TBM provides the 

Appendix A. Supporting information
Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.neuropsychologia.
2016.07.034.
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automated mapping of brain changes across time (Hua et al., 2013) and these changes can be 

used for comparing groups of participants. TBM has been successfully applied for 

comparing healthy subjects and patients, but it has not been considered for analyzing short-

term longitudinal changes after experimental cognitive training regimes completed by 

healthy young participants.

As noted at the introduction section, Ceccarelli et al. (2009) analyzed a group of 13 students 

from a medical school completing a two-week learning course and a passive control group 

comprised by 19 students from the same school. Uncorrected TBM results suggested 

increments of gray matter volume in the training group. Findings were circumscribed to the 

dorsomedial frontal cortex, orbitofrontal cortex, and precuneus. These researchers 

underscored that TBM maximizes within-subject registration, which contributes to 

overcome presumed biases related with longitudinal comparisons.

On the other hand, Hoekzema et al. (2011) also considered a 2-week program comprising 

daily 45-min training sessions. The program included printed exercises for stimulating high-

order mental processes related with working memory, flexibility, attention, planning, and 

problem solving. The 18 participants met diagnostic criteria for ADHD. Results showed 

differences (uncorrected for multiple comparisons) between the training and control groups 

in the frontal lobes and the cerebellum. The authors hypothesized that the observed 

structural effects reflect changes in neuronal morphology, especially synaptic remodeling in 

regions associated with the completed behavioral tasks.

As noted, to our knowledge there are not published reports applying TBM to young healthy 

individuals facing a challenging cognitive program completed across three months. As 

discussed above, this time period would suffice for observing macroscopic changes in the 

brain in response to cognitive training (Cummings et al., 2005; May et al., 2007). The 

reported results suggested expansions of brain tissue in frontal, parietal, and temporal 

regions, along with the cerebellum, in the training group (Fig. 2). All these regions have 

been related with the cognitive operations required by the training regime: monitoring and 

inhibitory processes, updating and short-term memory for temporal order, manipulation and 

dual-task requirements, executive working memory processes, cognitive control, sequence 

and feedforward processing (Cabeza and Nyberg, 2000, Hautzel et al., 2009, Leggio et al., 

2011, Wager and Smith, 2003, Yarkoni et al., 2011).

Nevertheless, statistical analyses indicated that only findings for the temporal lobe survive to 

multiple comparisons. Therefore, the average change computed for this region was 

correlated with participants’ performance in the training regime. Specifically, we correlated 

the differences in rate of cognitive improvement across sessions with the observed brain 

structural changes in the temporal region. The obtained value was equivalent to one standard 

deviation (Cohen's d = −1.01). The correlation was negative, meaning that participants with 

lower rates of improvement across training sessions showed the largest structural expansions 

(Fig. 4). This finding might be tentatively interpreted from the brain efficiency hypothesis. 

Neubauer and Fink (2009) noted that this hypothesis is related with the processing resources 

required for successfully completing a cognitive task. Our finding suggests that participants 

with high rates of improvement across training sessions do have the required processing 

Colom et al. Page 10

Neuropsychologia. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resources, whereas participants with low rates of improvement do not. In the latter case, the 

sustained effortful processing across sessions might be behind the observed structural 

changes.

Poldrack (2014) published a critical comment regarding the efficiency hypothesis. The main 

conclusion was that, as commonly understood, efficiency is not a useful concept in cognitive 

neuroscience. However, efficiency would be conceptualized as the energy invested for 

information transmission within a given network in the brain. Also, individual differences in 

energy requirements for completing similar computations may be useful. This latter 

approach may help to explain the results reported here. Participants were required to 

complete one specific and well-defined cognitive task across a relatively large time interval. 

Systematic challenges were faced and difficulty levels were adaptively adjusted to 

individuals’ performance. Using Poldrack's analogy regarding the hybrid Toyota Prius and 

the gas-only Porsche Carrera, participants were required to ride their brains/cars from Los 

Angeles/1-back to Northern California/9-back during the same period of time (twelve 

weeks). However, some brains/cars traveled far away from the exit line at a low cost, 

whereas other brains/cars invested a lot of gas for traveling a short distance.

This perspective was substantiated after the analysis of the psychological measures 

completed by participants of the training group in the first psychological assessment. We 

computed their scores in fluid intelligence, crystallized intelligence, working memory 

capacity, and attention control. Afterwards, we tested if high-achievers and low achievers in 

the training program were different from the outset at the cognitive level. We found large 

effect sizes denoting that participants with large improvements across the training program 

showed better cognitive resources from the outset, and, therefore, the required processing 

would be least challenging for them. Low achievers showed worst processing resources from 

the outset, and, therefore, their brains might be particularly sensitive to the sustained effort.

The functional study reported by Bassett et al. (2015) is consistent with this interpretation. 

The recruitment and coordination of neural circuits were analyzed across the learning 

process associated with a motor task. Their main findings indicated that the sensorimotor 

brain regions involved were progressively disengaged with increased practice. Furthermore, 

the differential release of brain regions devoted to cognitive control processes (frontal and 

cingulate cortices) predicted individual variations in learning rates. Their results were 

interpreted based on the neural efficiency hypothesis: cognitive resources required in the first 

stages of learning become progressively less relevant with increased automation (“the 
cortical system will tend to economize resources and limit unnecessary communication and 
transmission to enable automaticity”, p. 5). This pattern was clearer for individuals showing 

better cognitive levels at baseline, before training. Negative relationships were found 

between visual-motor integration levels at baseline and release levels across training 

sessions.

Moreover, further support to this efficiency interpretation can be found, to a certain extent, 

in the nonhuman animal literature. Curlik and Shors (2011) noted that animals requiring 

more trials to learn a given conditioned response (CR) retain more new neurons than animals 

quickly acquiring the CR. The difficulty of the to be learned task and the learning rate 
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“determine how many newborn neurons survive” (p. 2168). Therefore, effort involved in 

learning is crucial for observing structural brain changes (Shors, 2014).

Finally, the relationship between the observed brain structural changes and the standardized 

change in the transfer measures revealed negligible findings. Specifically, there were null 

correlations between the four psychological factors measured before and after training, 

namely, fluid intelligence, crystallized intelligence, working memory capacity and attention 

control. These results indicate that the structural change was not powerful enough to support 

any appreciable effect over the psychological covariates of interest. This was the case for 

working memory capacity (a near-transfer factor) and for fluid intelligence (a far-transfer 

factor). The failure to detect statistically significant changes at the hypothesized brain 

regions (mainly in frontal and parietal cortices) may account for the lack of results in this 

regard. Indeed, the large-scale lesion study reported by Barbey et al. (2014) might be 

consistent with this view. Analyzing the overlap between fluid intelligence (Gf) and four 

working memory distinguishable cognitive factors (verbal/numeric working memory, spatial 

working memory, working memory manipulation, and working memory monitoring) meager 

overlap was found for Gf and monitoring processes (as assessed by 1-back, 2-back, and 3-

back tasks): the overlap was circumscribed to a small region within the right inferior parietal 

cortex.

The type of cognitive training analyzed here may have applicability to clinical practice. In 

this regard, Klinberg's (2010) review discusses evidence showing that working memory 

training might help ADHD individuals and stroke patients by decreasing their cognitive 

symptoms. Subramaniam et al. (2012) demonstrated that cognitive training, based on 

neuroscience evidence, enhances schizophrenia patients’ brain function. Their training 

regime comprised working memory related cognitive processes. The benefits observed after 

training, mainly concentrated in reality monitoring, were reflected in better quality of life 

months after the end of the program itself. Recently, De Giglio et al. (2016) observed 

improvements in thalamic resting-state connectivity in multiple sclerosis patients after 

completing a cognitive training program based on video games. The completed cognitive 

training enhanced communication between the default mode network and the thalamus. 

Lövdén et al. (2013) extensive review underscores the relevance of improving our 

understanding of learning-related changes in the human brain; preventing decline in the 

elderly may be largely different from “eliciting structural plasticity” in old age.

In conclusion, the present TBM study revealed suggestive differences between a control and 

a training group that completed a challenging cognitive program based on the n-back task in 

frontal, parietal, and temporal regions, along with the cerebellum. However, only the 

temporal region survived to correction for multiple comparisons (see Colom et al., 2016, 

Román et al., 2016). Afterwards, the analyses were focused on this brain region. Structural 

changes in this area showed a substantial negative correlation with change scores in 

cognitive performance across training sessions. This was interpreted from the brain 

efficiency hypothesis, supported by the fact that high performers do have the required 

resources for successfully copying with the cognitive challenges comprised by the training, 

whereas low performers do not. We suggest that this lack of processing resources may evoke 

the greater changes observed in their brain structure in response to the sustained cognitive 
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challenge. Nevertheless, the observed brain changes were unrelated with changes in a set of 

cognitive factors assessed before and after training.
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Appendix

See Table A1.

Table A1

Sociodemographic and cognitive data.

Mean SD Min Max

Age 18.3 1.1 17 22

Height 1.6 0.06 1.5 1.8

Weight 57.07 7.1 44 75

Gf_Pretest 101.6 13.9 64.6 129

Gf_Postest 110.5 15.2 64.9 137.1

Gc_Pretest 101.5 14.5 69.9 134.9

Gc_Postest 100.9 13.8 70.3 131.1

WMC_Pretest 240.36 30.4 170 293

WMC_Postest 253.4 28.3 191 301

ATT_Pretest 44.27 22.75 −15 115

ATT_Postest 40.13 17.1 −7.7 98.3

Gf = Fluid intelligence, Gc = Crystallized intelligence, WMC = Working memory capacity, ATT = Attention control, SD = 
Standard deviation.
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Fig. 1. 
Average performance across training sessions in the visual, auditory, and dual cognitive 

programs.
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Fig. 2. 
Mean differences between Jacobian determinants in the training and control groups (Top 

panel) and the temporal cluster where this difference is statistically significant (FWE < 0.05; 

Bottom panel). White color in the mean map represents brain regions where the training 

group showed higher changes compared to the control group.
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Fig. 3. 
Scatterplot showing the correlation between brain structural changes in the temporal lobe 

and the rate of cognitive improvement in the training regime.
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Fig. 4. 
Scatterplots showing the correlation between brain structural changes in the temporal cluster 

and changes in the psychological factors: fluid intelligence (top left), crystallized 

intelligence (top right), working memory (bottom left), and attention control (bottom right).
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