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Abstract
Blood pressure variability is an emerging risk factor for dementia but relationships with markers of neurodegeneration and 
Alzheimer’s disease risk are understudied. We investigated blood pressure variability over one year and follow-up medial 
temporal brain volume change in apolipoprotein ϵ4 carriers and non-carriers, and in those with and without Alzheimer’s 
disease biomarker abnormality. 1051 Alzheimer’s Disease Neuroimaging Initiative participants without history of dementia 
or stroke underwent 3–4 blood pressure measurements over 12 months and ≥ 1 MRI thereafter. A subset (n = 252) underwent 
lumbar puncture to determine Alzheimer’s disease cerebral spinal fluid amyloid-beta and phosphorylated tau biomarker 
abnormality. Blood pressure variability over 12 months was calculated as variability independent of mean. Longitudinal 
hippocampal and entorhinal cortex volume data were extracted from serial brain MRI scans obtained after the final blood 
pressure measurement. Apolipoprotein ϵ4 carrier status was defined as at least one ϵ4 allele. Bayesian growth modelling 
revealed a significant interaction of blood pressure variability by ϵ4 by time on hippocampal (ß: -2.61 [95% credible interval 
-3.02, -2.12]) and entorhinal cortex (ß: -1.47 [95% credible interval -1.71, -1.17]) volume decline. A similar pattern emerged 
in subsets with Alzheimer’s disease pathophysiology (i.e., abnormal levels of both amyloid-beta and phosphorylated tau). 
Findings suggest that elevated blood pressure variability is related to medial temporal volume loss specifically in ϵ4 carriers, 
and in those with Alzheimer’s disease biomarker abnormality. Findings could implicate blood pressure variability in medial 
temporal neurodegeneration observed in older ϵ4 carriers and those with prodromal Alzheimer’s disease.

Keywords Blood pressure variability; Medial temporal lobes; Apolipoprotein ϵ4; Alzheimer’s disease; Biomarkers

Introduction

Blood pressure (BP) is among the most studied vascular risk 
factors linked to cognitive impairment, neuropathological 
change, and dementia (Lane et al., 2019; Zlokovic, 2011). 
There has been substantial work to determine the relation-
ships between both high and low BP and brain pathology 
and cognitive outcomes, as well as the aggregate impact of 
dysregulated BP on later brain health (Lane et al., 2019). 
A recent randomized controlled trial found that aggressive 
BP lowering was related to a decreased incidence of cogni-
tive impairment (Wright et al., 2015), suggesting a causal 
association between average BP levels and cognitive decline 
(Yaffe, 2019).

Beyond average levels, BP variability (BPV) over months 
and years represents an understudied aspect of BP as it 
relates to brain health (Yoo et al., 2020). Given the sub-
stantial overlap between vascular and Alzheimer’s disease 
(AD) pathologies in the brains of individuals diagnosed with 
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dementia (Schneider et al., 2007), there is growing interest 
to study BPV in the context of cognitive aging and AD risk. 
Recent work suggests that elevated BPV is associated with 
cerebrovascular disease (Ma, et al., 2020a) and predictive 
of cognitive impairment and dementia, including AD and 
vascular dementia (Ma et al., 2020b; Rouch et al., 2020; 
Yoo et al., 2020), even in healthy older adults with well-
controlled average BP (Cho et al., 2018). Chronic large fluc-
tuations in BP may stress arterial walls and promote micro-
vascular injury and arterial remodeling (Nagai et al., 2017). 
These vascular changes may convey vulnerability to cerebral 
hypoperfusion injury (Sible et al., 2021b) and subsequent 
neuronal injury, especially in regions highly sensitive to BP-
related hypoxic-ischemic injury, such as the hippocampus 
(Iadecola, 2004; Ma et al,. 2020b; Vikner et al., 2021).

Consistent with this hypothesis, higher BPV has been 
linked to lower hippocampal volume in both cross-sectional 
(Sabayan et al., 2013) and longitudinal (Ma, et al. 2020b) 
studies of older adults without dementia. However, less is 
known about the relationship between BPV and brain vol-
umes in other key regions of AD, such as the entorhinal 
cortex. It is also unclear how BPV may be related to medial 
temporal atrophy rates in those at risk for AD due to the 
presence of the apolipoprotein ϵ4 (APOE ϵ4) gene, which 
has been associated with neurodegeneration and neurovas-
cular deficits in the hippocampus and parahippocampal cor-
tex (Burggren et al., 2008; Palop & Mucke, 2011). Finally, 
while most studies of BPV in aging have drawn from sam-
ples clinically determined to be without history of dementia, 
a recent study found that BPV was increased in individuals 
with mild cognitive impairment (MCI) and AD biomarker 
abnormality (Sible et al., 2020). How these relationships 
may appear in samples with abnormal AD biomarkers is 
less known, and could have implications for neurodegenera-
tion in AD. The aims of the present study were to investi-
gate the interactive relationship between BPV and APOE 
ϵ4 carrier status in relation to hippocampal and entorhinal 
cortex volumetric change in older adults at risk for AD, and 
to determine whether these relationships remained evident in 
those with ongoing AD pathophysiology (i.e., AD biomarker 
abnormality).

Methods

Study design

Participants

Data were obtained from the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI) database. The ADNI is a multisite 
natural history study that has collected clinical, biomarker, 
and neuropsychological data since 2003 to measure the 

progression of typical aging, MCI, and AD. Adults aged 
55–91 were enrolled if they met the following criteria: few 
depressive symptoms (Geriatric Depression Scale < 6), free 
of history of neurological disease (other than suspected AD), 
no greater than mild dementia symptoms (Clinical Dementia 
Rating scale ≤ 1), and low vascular risk (Hachinski Ischemic 
Score ≤ 4). Ethical approval was obtained for each institu-
tion involved and all participants provided written informed 
consent. Further study details can be found online (https:// 
adni. loni. usc. edu).

The present study included participants who underwent 
clinical evaluation at study baseline and BP measurement 
at study screening, baseline, and 6- and 12- months follow-
up. Participants also underwent ≥ 1 structural MRI after the 
12-month follow-up BP collection. A subset underwent lum-
bar puncture to determine cerebral spinal fluid (CSF) AD 
biomarker levels.

Measures

Clinical assessment

Baseline clinical evaluation identified participants to be 
cognitively normal (CN) or MCI. All participants were 
without history of dementia or stroke. MCI diagnostic cri-
teria included (Petersen et al., 2010): subjective memory 
complaint; Mini Mental State Exam scores between 24 and 
30 (inclusive); global Clinical Dementia Rating scale score 
of 0.5; scores on delayed recall of Story A of the Wechsler 
Memory Scale Revised Logical Memory II subtest that are 
below expected performance based on years of education; 
general presentation that would disqualify for a diagnosis of 
AD. Participants were categorized as CN if diagnostic cri-
teria for MCI were not met. CN and MCI participants were 
then collapsed into one category of older adults without his-
tory of dementia or stoke and were used in all analyses.

CSF AD biomarker assessment

Baseline lumbar puncture and CSF analysis in a subset of 
participants determined amyloid-beta (Aβ) and phospho-
rylated tau (Ptau) levels as described elsewhere (Bittner 
et al., 2016; Hansson et al., 2018; Seibyl et al., 2017; Shaw 
et al., 2016). Using established guidelines, CSF Aβ lev-
els ≤ 980 pg/mL and CSF Ptau levels ≥ 21.8 pg/mL were 
considered abnormal (Hansson et al., 2018; Shaw et al., 
2018).

Participants were then further categorized based on 
abnormal levels of both Aβ and Ptau (Aβ + Ptau +), thus rep-
resenting a group of older adults without a history of demen-
tia or stroke confirmed to have AD pathophysiology (Jack 
et al., 2018). To examine associations in subsets not meet-
ing biomarker criteria for AD (e.g., Aβ + Ptau +), remaining 
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participants with available CSF biomarker data were then 
categorized as those with 1) one abnormal biomarker and 
one normal biomarker (Aβ + Ptau- or Aβ-Ptau +); or 2) two 
normal biomarkers (Aβ-Ptau-) (see Supplementary Table 1).

BP assessment

Seated BP measurements were obtained from participants 
3–4 times between study screening and 12-months follow-
up using a calibrated mercury sphygmomanometer, as 
described elsewhere (Sible et al., 2020, 2021b). Intraindi-
vidual BPV was calculated for each participant using the 
3–4 BP measurements collected over the 12 month period 
as variation independent of mean (VIM), a commonly used 
index of visit-to-visit BPV that is uncorrelated with aver-
age BP levels across visits (de Heus et al., 2019; Rothwell 
et al., 2010; Rouch et al., 2020; Sible et al., 2020, 2021a, 
2021b). VIM was calculated as: VIM = SD/meanx, where 
the power x was derived from non-linear curve fitting of BP 
SD against average BP using the nls package in R (R Core 
Team, 2018), as described elsewhere (Rothwell et al., 2010; 
Yano, 2017). Baseline hypertension was determined from 
the total sample average systolic BP taken at study baseline. 
Given that systolic BPV and diastolic BPV were correlated 
and primary findings were similar, main findings focused 
on systolic BPV and diastolic BPV findings are reported in 
Supplementary Materials.

Volumetric MRI change assessment

Participants underwent ≥ 1 1.5 T or 3 T MRI after the final 
BP collection at 12-months follow-up. Image acquisition 
and processing details can be found online (http:// adni. 
loni. usc. edu/ metho ds/ docum ents/ mri- proto cols/). Briefly, 
T1-weighted structural images were collected using either 
a 3D-MPRAGE or 3D IR-SPGR sequence. The following 
values from each of these MRI scans were extracted from 
the adnimerge dataset (Fischl, 2012; Reuter et al., 2012): 
total hippocampal volume, total entorhinal cortex volume, 
whole brain volume (sum of gray matter and white mat-
ter volumes), and total intracranial volume (TIV; sum of 
gray matter, white matter and CSF volumes). Volumes were 
determined using the FreeSurfer imaging suite as described 
elsewhere (http:// adni. loni. usc. edu/ metho ds/), a software 
with good test–retest reliability for volumetric segmentation 
within and across scanners (Brown et al., 2020).

Other measurements

Demographic and clinical information was determined 
from baseline clinical evaluation. Baseline body mass 
index (BMI) was calculated as weight (kg) / height (meters) 
squared. Determination of APOE ϵ4 carrier status was 

performed as previously described (Saykin et al., 2010) 
using blood samples from baseline venipuncture and par-
ticipants were categorized as those with at least one APOE 
ϵ4 allele versus those without. Vascular risk was determined 
from baseline clinical evaluation, as described elsewhere 
(D’Agostino et al., 1994; Nation et al., 2015; Sible et al., 
2020). Participants were categorized as having low (≤ 1 vas-
cular risk factor) or high (≥ 2 vascular risk factors) vascular 
risk (D’Agostino et al., 1994). History of smoking and dys-
lipidemia were also determined from clinical evaluation at 
baseline. Information about medication use was determined 
at study baseline. Participants were categorized as those tak-
ing antihypertensive medication (all classes) versus those 
who were not, and those taking antidementia agents versus 
those who were not.

Statistical analysis

Bayesian linear growth modelling using the brms package in 
R (R Core Team, 2018) examined the role of BPV, APOE ϵ4 
carrier status, and the passage of time on volumetric change 
in hippocampus and entorhinal cortex. Compared to repeated 
measures ANOVA, Bayesian linear growth modelling han-
dles missing participant data and thus boosts statistical 
power, as well as accommodates varying time windows of 
measurement. All models specified random intercepts for 
participant, to account for individual variation in volumet-
ric change, and fixed effects for BPV and APOE ϵ4 carrier 
status to test for differences in volumetric change due to 
BPV and APOE ϵ4 carrier status, respectively. Only MRIs 
acquired after the final BP measurement at 12-months fol-
low-up were used in analyses to determine temporal order 
of any associations; therefore, passage of time for MRIs was 
calculated as months elapsed since BPV determination (e.g., 
after the last BP measurement was collected at 12-months 
follow-up) (range: 6 – 108 months) and then grand centered 
at 0. In an attempt to replicate a previous finding linking 
BPV to hippocampal volume decline (Ma et al., 2020c), we 
first ran models investigating a BPV by time interaction on 
volumetric change in the hippocampus and entorhinal cor-
tex. Next, because we expected volumetric change might 
have different trajectories based on both BPV (Ma et al., 
2020c) and APOE ϵ4 carrier status (Palop & Mucke, 2011), 
we additionally tested the interaction of BPV by APOE ϵ4 
carrier status by time. We also examined the three-way inter-
action of BPV by APOE ϵ4 carrier status by time on volu-
metric change in exploratory post-hoc analyses of subsets 
not meeting biomarker criteria for AD (see Supplementary 
Table 2). Potential confounding variables were included in 
all models: age at MRI, sex, years of education, APOE ϵ4 
carrier status (for main effect models), TIV at MRI, baseline 
hypertension, antihypertensive medication use and vascular 
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risk. Additional sensitivity analyses covaried for: 1) average 
BP, 2) history of smoking, 3) history of dyslipidemia, 4) 
use of antidementia agents, and 5) whole brain volume at 
MRI (instead of TIV). Supplementary analyses examined 
relationships between BPV and whole brain volume at MRI. 
All analyses were 2-tailed and effect estimates with credible 
intervals excluding 0 were considered significant.

Results

In primary analyses, 1051 participants without a history of 
dementia or stroke contributed to 2656 MRI scans (median 
3 scans) and the median time interval between BPV meas-
urement and MRI scan was 24 months (IQR: 30 months). 
In secondary analyses, 252 participants confirmed to have 
AD pathophysiology contributed to 595 MRI scans (median 
3 scans) and the median time interval between BPV meas-
urement and MRI scan was 12 months (IQR: 30 months). 
Table 1 and Supplementary Table 3 summarize baseline 
demographic and clinical information.

BPV and APOE ϵ4 related to medial temporal 
volumetric change in older adults

Primary analyses revealed a significant interaction of sys-
tolic BPV by time on hippocampal (ß: -0.51 [95% credible 
interval (CI) -0.63, -0.30]) and entorhinal cortex volume (ß: 
-0.28 [95% CI -0.34, -0.22]), indicating that participants 
with elevated systolic BPV were observed to have the fast-
est hippocampal and entorhinal cortex volume decline at 
follow-up (Fig. 1a). There was also a significant three-way 
interaction of systolic BPV by APOE ϵ4 carrier status by 
time on hippocampal (ß: -2.61 [95% CI -3.02, -2.12]) and 
entorhinal cortex volume (ß: -1.47 [95% CI -1.71, -1.17]), 
suggesting that hippocampal and entorhinal cortex volume 
at follow-up decreased the fastest for APOE ϵ4 carriers with 
elevated systolic BPV (Fig. 1b).

BPV and APOE ϵ4 related to medial temporal 
volumetric change in older adults with AD 
biomarker abnormalities

Secondary analyses of subsets with abnormal levels of both 
CSF Aβ and Ptau also revealed a significant interaction of 
systolic BPV by time on hippocampal (ß: -1.05 [95% CI 
-1.18, -0.36]) and entorhinal cortex volume (ß: -0.78 [95% 
CI -1.30, -0.56]), suggesting that hippocampal and entorhi-
nal cortex volume change at follow-up was related to ele-
vated systolic BPV in older adults confirmed to have AD 
pathophysiology (Fig. 2a). Additionally, there was a signifi-
cant three-way interaction of systolic BPV by APOE ϵ4 car-
rier status by time on hippocampal (ß: -1.89 [95% CI -2.44, 

-1.31]) and entorhinal cortex (ß: -1.36 [95% CI -2.04, -0.11]) 
volume, indicating that volumetric change at follow-up was 
related to elevated systolic BPV specifically in APOE ϵ4 
carriers with AD pathophysiology (Fig. 2b).

Exploratory post-hoc analyses of the three-way interac-
tion of BPV by APOE ϵ4 carrier status by time in subsets not 
meeting biomarker criteria for AD revealed no significant 
relationships with medial temporal volume change (see Sup-
plementary Table 2).

Findings were largely consistent in analyses of diastolic 
BPV (see Supplementary Results).

Primary findings in hippocampal and entorhinal cor-
tex volume change remained significant and essentially 
unchanged in sensitivity analyses controlling for aver-
age BP, history of smoking, history of dyslipidemia, use 

Table 1  Baseline clinical and demographic information

Means and SDs shown unless otherwise indicated
MMSE,  Mini Mental State Exam; BP, blood pressure; BMI, body 
mass index: VIM, variability independent of mean; APOE ϵ4,  apoli-
poprotein ϵ4; MCI, mild cognitive impairment; CDR-sb, Clinical 
Dementia Rating Scale sum of box score; Aβ, amyloid-beta; Ptau, 
phosphorylated tau; ACE inhibitors, angiotensin-converting enzyme 
inhibitors; ARBs, angiotensin II receptor blockers

Total sample (N = 1051)

Age (years) 73.7 (6.8)
Sex (n, % female) 455 (43.3%)
Education (years) 16.0 (2.8)
APOE ϵ4 carriers (n, %) 437 (41.6%)
MCI (n, %) 680 (64.7%)
Aβ (n, % abnormal) 438 (41.7%)
Ptau (n, % abnormal) 431 (41.0%)
MMSE score 28.1 (1.7)
CDR-sb score 0.96 (0.96)
BMI (kg/m2) 27.0 (4.5)
Vascular risk (n, % low) 978 (93.1%)
Medication use (n, %)
Antihypertensive agents 439 (41.8%)
   ACE inhibitors 181 (17.2%)
   ARBs 96 (9.1%)
   Alpha blockers 24 (2.3%)
   Calcium channel blockers 82 (7.8%)
   Diuretics 56 (5.3%)

Antidementia agents 398 (37.9%)
Systolic BP (mmHg)
   Baseline 134.6 (16.9)
   Average 133.2 (13.5)
   VIM 5.3 (3.6)

Diastolic BP (mmHg)
   Baseline 74.6 (9.8)
   Average 73.6 (7.8)
   VIM 5.9 (1.2)

795Brain Imaging and Behavior  (2022) 16:792–801

1 3



of antidementia agents, and whole brain volume at MRI 
(instead of TIV) (Data not shown).

Supplementary analyses revealed a significant interaction 
of BPV by time on whole brain volume, consistent with one 
study examining BPV and brain volume change (Ma et al., 
2020c). There were no significant interactions with APOE 
ϵ4 carrier status on whole brain volume (see Supplementary 
Results).

Discussion

Findings indicate increased BPV is related to medial tempo-
ral volume loss, particularly among APOE ϵ4 carriers, sug-
gesting a potential interplay between genetic susceptibility 
to medial temporal pathology and systemic hemodynamic 
dysregulation. The current investigation confirms prior work 
linking elevated BPV to hippocampal atrophy (Ma et al., 
2020c; Sabayan et al., 2013) and extends findings by identi-
fying the key role of APOE ϵ4 in determining the relation-
ship between BPV and both hippocampal and entorhinal 
cortical atrophy. Additionally, the present study identifies 
relationships between BPV and medial temporal atrophy in 
older adults with ongoing AD pathophysiology based on 

abnormal levels of both CSF Aβ and Ptau, indicating that 
links between BPV and medial temporal atrophy are impli-
cated in biomarker-confirmed AD. Study findings provide 
additional insights into the growing body of evidence that 
BPV is associated with AD and not other neurodegenerative 
diseases (Lattanzi et al. 2015, 2014a, 2014b).

The link between BPV and volumetric decline was pre-
dominantly observed in APOE ϵ4 carriers, a population 
known to be at increased risk for medial temporal atrophy 
(Burggren et al., 2008; Palop & Mucke, 2011) and AD 
(Corder et al., 1993). Specifically, an increase of 1 SD in 
BPV was associated with a 0.27%—0.33% reduction in hip-
pocampal and entorhinal cortex volume per month (3.3% 
– 4.0% per year); in APOE ϵ4 carriers, volumes declined by 
0.67%—0.70% per month (8.0%—8.4% per year), consistent 
with prior studies on the association between APOE ϵ4 and 
hippocampal volume change (Cohen et al., 2001; Jak et al., 
2007; Moffat et al., 2000). APOE ϵ4 carriers also display 
breakdown of the blood–brain barrier (Nation et al., 2019) 
in the hippocampus and parahippocampal cortex before the 
onset of cognitive impairment and independent of Aβ and 
tau pathology (Montagne et al., 2020). It has been proposed 
that chronic high amplitude oscillations in BP may create a 
repeated “tsunamic effect” in the cerebral parenchyma (Yoo 

A

B

Fig. 1  BPV and medial temporal volumetric change in older 
adults. Conditional effects of the interaction of A) BPV by time 
and B) BPV by APOE ϵ4 carrier status by time on hippocampal and 

entorhinal cortex volume in older adults without history of dementia 
or stroke. Abbreviations: BPV = blood pressure variability
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et al., 2020), distending the arterial walls beyond repair and 
disrupting the tight junction of the blood–brain barrier. This 
effect may be especially pronounced in APOE ϵ4 carriers 
with genetic neurovascular vulnerability in smaller vascular 
compartments, where unsteady pulsatile forces may exacer-
bate a leaky blood–brain barrier (Vikner et al., 2021; Winder 
et al., 2021) and increase the risk for cerebral small ves-
sel disease. It is striking that the current observations were 
made in a study sample with limited cerebrovascular disease 
(Hachinski Ischemic score ≤ 4). More studies of individuals 
with varying levels of cerebrovascular disease burden will 
help further elucidate the role BPV may play in blood–brain 
barrier dysfunction and subsequent neurodegeneration. An 
alternative possibility is that neurodegeneration in APOE 
ϵ4 carriers may impact cerebral autonomic control of circu-
lation, potentially driving BP fluctuations (Kitamura et al., 
2020). Therefore, causal inference of the current investiga-
tion is limited, but the longitudinal design indicating BPV 
predicts future volumetric change after BPV measurement 
suggests BPV may play a causal role in brain volume loss 
in APOE ϵ4 carriers. Interestingly, BPV was also related to 
whole brain volume decline, but this was not significantly 
related to APOE ϵ4 carrier status. This further highlights 

the role of BPV in medial temporal atrophy in a population 
with known regional vulnerability. However, while sensitiv-
ity analyses controlling for whole brain volume (instead of 
TIV) revealed essentially the same pattern of findings, it is 
important to consider regional volume loss in the context of 
declining whole brain volume.

In addition to the potential contributions of BPV to cer-
ebrovascular dysfunction, elevated BPV may interfere with 
vascular clearance mechanisms important for elimination 
of toxic proteins from the brain (Lattanzi et al., 2018). The 
observed relationships between BPV and volumetric change 
were stronger in participant subsets with abnormal levels of 
CSF Aβ and Ptau and absent in participant subsets not meet-
ing biomarker criteria for AD, suggesting the link between 
BPV and medial temporal atrophy appears in the context of 
AD pathophysiology.

Arterial stiffening may amplify BP fluctuations, poten-
tially driving elevated BPV in association with neuronal 
atrophy (Ma et al., 2020b). While the present investigation 
was not able to characterize arterial stiffness in the study 
sample, future work exploring relationships with arterial 
stiffening may better clarify the contribution of arterial 
health on brain volume decline. Relatedly, investigating the 

A

B

Fig. 2  BPV and medial temporal volumetric change in older 
adults with AD pathophysiology. Conditional effects of the inter-
action of A) BPV by time and B) BPV by APOE ϵ4 carrier status 
by time on hippocampal and entorhinal cortex volume in older 

adults with abnormal levels of both CSF Aβ and Ptau. Abbrevia-
tions: BPV = blood pressure variability; AD = Alzheimer’s disease; 
CSF = cerebral spinal fluid

797Brain Imaging and Behavior  (2022) 16:792–801

1 3



role of BPV in patterns of brain atrophy as a vascular mecha-
nism linking BPV to dementia risk may have therapeutic 
implications. Emerging evidence suggests that some classes 
of antihypertensive medication have differential effects on 
the variability of BP for risk of stroke, independent of aver-
age levels (Webb et al., 2010). Large studies adequately 
powered to investigate treatment effects on BPV, for antihy-
pertensive monotherapy as well as for combination therapy, 
may lead to additional therapeutic strategies beyond aggres-
sive BP control for the prevention of cognitive impairment. 
Importantly, BP is a highly modifiable risk factor for demen-
tia (Barnes & Yaffe, 2011) and even slight changes in BP 
control may have large public health implications for both 
cardiovascular and cognitive outcomes (Yaffe, 2019).

The present investigation has a number of strengths. First, 
by investigating volumetric change after the measurement of 
BPV, we were able to appreciate the temporal order of the 
role of BPV and the possibly synergetic effects of BPV and 
APOE ϵ4 on volumetric change in brain regions implicated 
in early AD pathology. Second, to further highlight the pos-
sibility of BPV as a vascular risk factor in the context of 
AD, we utilized participant subsets who were confirmed to 
have AD pathophysiology based on CSF measurement of 
AD biomarkers Aβ and Ptau.

The study has several noteworthy limitations. Some 
aspects of BP collection were not explicitly standardized 
across sites. Additionally, the ADNI database is largely 
comprised of non-Hispanic White older adults; thus, gen-
eralizability of findings to other racial and ethnic groups is 
limited. There is mixed evidence for whether the relationship 
between BPV and cerebrovascular disease may differ by race 
or ethnicity (Brickman et al., 2010; Tully et al., 2020). Stud-
ies involving more diverse samples will help to understand 
potential differences. As part of the inclusionary enroll-
ment criteria for ADNI, the current study did not include 
older adults with more extensive cerebrovascular disease. 
Increased BPV has been associated with cerebrovascular 
damage, which may act as a potential confounder of brain 
atrophy (Ma et al., 2020a; Sible et al., 2021a; Tully et al., 
2020) and contribute to biomarker evidence of AD, possibly 
independent of APOE ϵ4. Studies that include samples with 
varying levels of cerebrovascular disease severity will help 
clarify the relationship between BPV, cerebrovascular dam-
age, and neurodegeneration.

Conclusions

Elevated BPV in older adults was related to brain vol-
umetric change over time in regions implicated in AD 
dementia and pathology, independent of baseline hyper-
tension. APOE ϵ4 moderated this relationship, suggest-
ing a potentially synergetic effect of both elevated BPV 

and APOE ϵ4 on volumetric decline. Finally, patterns 
of decline were observed to be strongest in individuals 
with AD pathophysiology, which may implicate BPV 
as an understudied aspect of vascular contributions to 
dementia.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11682- 021- 00553-1.
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