
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Essays on Energy Economics and Agricultural R&amp;D

Permalink
https://escholarship.org/uc/item/3r10d1z8

Author
Wang, Shanchao

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3r10d1z8
https://escholarship.org
http://www.cdlib.org/


 
 

Essays on Energy Economics and Agricultural R&D    
 

By 
 

SHANCHAO WANG 
DISSERTATION 

 
Submitted in partial satisfaction of the requirements for the degree of 

 
DOCTOR OF PHILOSOPHY 

 
in 
 

Agricultural and Resource Economics 
 

in the 
 

OFFICE OF GRADUATE STUDIES 
 

of the 
 

UNIVERSITY OF CALIFORNIA 
 

DAVIS 
 

Approved: 
 

         
Aaron Smith, Chair 

 
         

Kevin Novan 
 

         
Julian Alston 

 
Committee in Charge 

 
2022 

 

 

i 



Abstract

This thesis consists of three chapters. In the first two chapters, I study rebound effects

in solar adoption and an energy efficiency program (air-conditioning units (AC) upgrading

program). Both solar adoption and AC upgrades reduce households’ energy bills and lower

their average electricity prices. Households might adjust their energy consumption behavior

which results in the actual reduction in energy use lower than the anticipated reduction.

In chapter 1, I use novel data which contain the detailed household-level hourly purchase,

sale, and solar generation in the Sacramento area. Contrary to existing literature, results

do not show significant rebound effects. Using fixed effects models, I find a statistically

insignificant rebound effect of 0.96%, which translates to a 0.0096 kWh increase in solar

homes’ total electricity consumption when the solar generation increases by 1 kWh. This

effect is also economically negligible. Results from chapter 1 enrich the current literature on

solar adoption rebound effects.

In contrast to chapter 1, significant rebound effects from the AC Energy Efficiency rebate

program in the Sacramento Municipal Utility District (SMUD) serving area are identified in

chapter 2. Household-level daily electricity consumption data and daily temperature data in

the Sacramento area are utilized in this analysis. Regression mixture models are estimated

by an expectation-maximization algorithm to recover premise-level temperature response

functions and AC usage behavior functions. These functions are then used to calculate

direct savings, total savings, and rebound effects from AC upgrades through a difference-in-

difference design. On average, the AC energy efficiency rebate program reduces energy uses
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in cooling by 347.10 kWh per household in one summer. The rebound effects are estimated

at 20.61%. When a household saves 1 kWh in cooling from AC upgrading, its total daily

electricity consumption will increase by around 0.21 kWh. The increases in consumption are

mainly caused by turning on AC units more often after AC upgrades.

In chapter 3, I and coauthors study R&D lag structure in agriculture. Quite diverse

models of R&D lag structures have been used by economists studying economic growth com-

pared with those estimating returns to investments in industrial R&D or agricultural R&D.

In this paper, we and coauthors empirically compare and contrast these alternative models

and their implications for R&D knowledge stocks using data on multifactor productivity

(MFP) in U.S. agriculture and U.S. public agricultural R&D investments. We employ a

model selection procedure based on a combination of time-series properties of data, econo-

metric estimation performance, and consistency of estimates with strongly held economic

priors. We reject the models used in studies of economic growth and industrial R&D both

on prior grounds and using statistical tests. The preferred model is a 50-year gamma lag

distribution model similar in shape to Huffman and Evenson’s (1993) trapezoidal lag model.

In this gamma lag model the effects of an investment in agricultural R&D on the R&D

knowledge stock rise to a peak after 13 years and are mostly dissipated after 35 years. The

estimated elasticity of MFP with respect to the knowledge stock is 0.28 and the implied

marginal benefit-cost ratio is 23:1.

Key words: rebound effects, solar adoption, energy efficiency programs, agricultural pro-

ductivity, R&D lags, model selection, rate of return

JEL Codes: D12, D24, E23, O31, 047, Q16, Q40, Q42
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Essay 1

Does electricity consumption respond to

solar adoption? New evidence from

smart meter data

1.1 Introduction
With concern about climate change and fears of depleting fossil fuels, governments and pri-

vate institutions have been actively investing in renewable energy. Solar power, as a promis-

ing type of renewable energy, has rapidly expanded in the United States. In recent years,

due to the decreasing installation costs and significant subsidies, rooftop solar generation

grew at a rate of roughly 22% per year from 2017 through 2019 (US EIA, 2020a). From 2016

to 2019, California added 5.3 GW of new rooftop solar photovoltaic (PV) capacity, more

than any other states in the US (US EIA, 2020b). Experts in the US Energy Information

Administration (EIA) expect California to continue to be the leading state in rooftop solar

production, especially under the regulation that the majority of newly built houses must

install a solar PV system. This new building code has been effective since January 1st, 2020.

Solar panel adoption is advertised as an effective way to reduce family energy bills. For

a household, if the total consumption is fixed, then the electricity generated from solar

1



panels will simply substitute for purchases from electric utilities and hence save the expen-

diture. However, this calculation is likely to overstate the reduction in electricity purchase.

Households substitute solar generated electricity for purchased electricity, and as purchases

decrease, the average price that households pay for purchased electricity also decreases. The

implications of a lower average price are twofold. First, from a consumer’s perspective, the

economic theory predicts that a lower price increase electricity consumption. This induced

increase in consumption is documented as the “rebound effects” in the energy economics

literature.1 Second, for electric utilities, the decrease in electricity purchases induces them

to raise per kWh rates to cover their costs. This adversely affects all households that pur-

chase electricity from the electric utility, including those who do not consume solar energy,

and these households are generally associated with lower socio-income status than solar

consumers (Liang et al., 2018; Rohan, Paul and Shuhei, 2019).

Recent literature has found significant increases in households’ electricity consumption

post solar adoption. Qiu, Kahn and Xing (2019) use household level hourly solar generation

and daily electricity consumption data in Phoenix Arizona to quantify the rebound effect.

They conclude that an increase of 1 kWh in solar electricity generation could significantly

increase the households total consumption by 0.18 kWh (the rebound effects are hence esti-

mated at 18%). Two earlier studies (Deng and Newton, 2017; Havas et al., 2015) attempt to

estimate rebound effects utilizing household level data in Australia. The estimated effects in

these two studies are 20% and 15% respectively. More recent work done by Beppler, Matisoff

and Oliver (2021) also uses household-level data and finds a 28% rebound effect. This is the

largest rebound effect that has been found so far in the solar energy literature.

Various mechanisms may explain the significantly positive rebound effects post PV unit

adoption apart from the price effects that we mentioned above. For example, households

may act exceptionally rationally after PV installation so they are moving to the lower price
1In the energy economics, rebound effects refer to the situation in which the marginal cost of an energy
service decreases, and the consumption of that service increases. Since we are not directly examining the
consumption in solar energy uses, the rebound effects in this study are actually indirect.

2



tier. With a lower marginal cost of consuming energy services, they increase their electricity

consumption; households bump up their electricity consumption (e.g., turning on AC units

more often) but do not see dramatic increases in their monthly bills due to solar generation.

Therefore, they increase electricity consumption even more; households might consume more

electricity post PV unit adoption if they purchase or co-adopt other devices (e.g., electric

vehicles) will result in increases in the households’ electricity consumption. However, these

hypotheses are generally untestable due to data limitation (e.g., we do not have data on

co-adoption for solar adopters). Moreover, price and income effects alone are not convincing

enough to explain the magnitude of rebound effects found in previous studies given how

insensitive households electricity consumption has typically been found to be in response to

price and income (Zhu et al., 2018). Therefore, we cast doubt on and reexamine the large

rebound effects documented in the current literature.

Our study focuses on understanding the size of rebound effects after the adoption of

solar panels using new household-level data in the Sacramento Municipal electricity District

(SMUD). In contrast to previous results, we find the rebound effect is neither economically

nor statistically significant. Several distinctive features of the new data make our results

more convincing than those in previous studies.

Compared to Deng and Newton (2017) and Havas et al. (2015), in which the authors

study adoption of solar panels in Australia, we focus on the Sacramento energy market, and

our results may be easier to generalize to other areas in the US. There are two main types

of solar feed-in tariffs, namely gross feed-in tariff and net feed-in tariff (also known as Net

Energy Metering (NEM) or Net Metering (NM)). Some areas in Australia (including areas

studied by Deng and Newton (2017) and Havas et al. (2015)) implement a gross feed-in

tariff where households sell all the solar energy they generate to the grid and purchase all

the electricity they consume from utilities. In the US, where a net feed-in tariff is applied,

households can purchase, generate and sell electricity all at the same time. The difference

between the two tariffs — comparing the United States and Australia — can give rise to

3



different behaviors in energy use (Beppler, Matisoff and Oliver, 2021). The dominant cause

of rebound for the gross feed-in tariff is households’ perceived increase in “income” from

selling generated electricity at a flat rate while for net feed-in tariff users, the main cause is

that households consume electricity at a lower perceived marginal price. Although theory

suggests consumers react to marginal prices, empirical studies find that customers tend to

respond to the lump sum bills instead of current marginal prices (Ito, 2014). Therefore, we

might see lagged or smaller rebound effects when studying NM systems.

Qiu, Kahn and Xing (2019), selected a set of solar adopters (277 households) to compare

with around 4000 non-solar households, while our data contain early adopters, adopters,

and non-adopters in the SMUD area (more than 12,000 households) during 2017 and 2018.

Moreover, in their main specification, Qiu, Kahn and Xing (2019) regress daily consumption

on daily solar generation and other fixed effects, which reflects marginal daily consumption

changes with respect to changes in solar generation resulting from changes in solar irradiation.

In our analysis, we explore the changes at the margin (in the robustness check section) as

well as total changes in daily consumption pre- and post- solar panel adoption. In this sense,

our study is more comprehensive.

Finally, Beppler, Matisoff and Oliver (2021) imputed solar generation data from each

household’s installed solar system size instead of directly observing it. If solar generation is

overestimated, the rebound effect will be overstated as increases in daily consumption are

inflated by high solar generation estimates. For example, suppose a household consumes

25 kWh per day before solar panel adoption. After installation, the household purchases

20 kWh from the utility, and the solar panel generates 5 kWh, all of which is consumed.

Then the real total change in daily consumption is 0 kWh. Now if solar generation is

overestimated as 7 kWh per day. The total consumption post-adoption is estimated at 27

kWh, so the estimated daily consumption goes up by 2 kWh. Dividing this estimated increase

by the estimated generation of 7 kWh, we get an estimated rebound effect of around 28.57%.

Our analysis avoids this potential pitfall by directly observing hourly purchase, sale, and
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generation, hence providing more accurate results.

In what follows, we first give a detailed description of our data including the data cleaning

process and some graphical evidence. In section 1.3, we present our identification strategies

followed by results from our novel data. We also perform several robustness checks in section

1.5. We conclude in section 1.6.

1.2 Data
This paper combines household-level hourly electricity purchasing, selling, and solar pro-

duction data in the Sacramento Municipal electricity District (SMUD) service area for the

period January 1, 2017 – December 31, 2018. We also utilize daily average weather data

(e.g. dry-bulb temperature and visibility) from a National Oceanic and Atmospheric Ad-

ministration (NOAA) station at the Sacramento International Airport to examine whether

households responded to outdoor temperature differently before and after the installation of

solar panels.

The SMUD electricity data encompasses both commercial and residential premises. In

Figure 1.1, we plot the average hourly purchase, sale, and generation across premises by

different premises types. Although commercial and residential premises have similar hourly

average distributions in solar generation and sale, the distribution of electricity purchases

by commercial premises across a day is much smoother than that of non-commercial house-

holds. Moreover, compared with residential premises, commercial premises use much more

electricity. To avoid confounding the consumption differences before and after solar panel

installation with the consumption differences between commercial and residential premises,

we focus exclusively on non-commercial single-family households.

Households without solar panels were randomly chosen from the SMUD service area. For

households with solar panels, the following procedure was applied: at the end of each year

(December 31 in 2017 and 2018), households with solar panels installed were selected and

their daily usage data in that year were extracted. For example, if a household adopted PV

units in June 2017, then we will have its daily electricity data in 2017 and 2018. However,
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if a household install solar panels in June 2018, we do not observe its data for 2017. We

will only observe its data for 2018. Therefore, we decided to focus on premises that installed

solar panels in 2017 and have full-year data in 2018 so that the same days in a year pre- and

post-adoption are included.

In Figure 1.2, we plot the average daily usage across households (defined as electricity

purchase from utility plus solar generation minus generated electricity sold back to the grid)

in weeks pre- and post-installation. The grey bar indicates 2.5% and 97.5% percentiles

of average daily usage in a week across all households. We defined the first date when a

household’s solar generation turns from 0 to a positive number as the installation date. The

installation date and the trailing 6 days are defined as week 1 post-installation, the next

7 days are defined as week 2 post-installation, and so on. Similarly, 7 days prior to the

installation date are defined as week -1 (pre-installation week 1), and so on.

We see a clear difference in terms of the average daily usage and quantiles pre- and

post-adoption. The post-installation daily average usage is continuous, and the quantiles

are fairly similar across weeks, while the pre-adoption average daily usage is scattered and

shows a high variation in quantiles.

One caveat of our data is that the SMUD provided the premises-specific data on electricity

purchase, sale, and generation in three separate datasets. When we combine these three

datasets, purchase and sale are merged perfectly. However, there is a large number of

null values in the solar generation when we combine the generation data with the merged

purchase-sale data. We infer these null values as 0 since all corresponding hourly sales are

also 0. After this data cleaning process, we recreated Figure 1.2 and the results are shown

in Figure 1.3.2

As shown in Figure 1.3, we now see the means of daily average usage are continuous pre-

and post-installation. Moreover, the quantiles look more reasonable than before converting

null values to 0s in the solar generation. All households in our sample have full-year data, i.e.,
2In Figure 1.2, we do not include premises-date entries when there are null values in solar generation. The
procedure described above expands our data panel by adding more entries to pre-installation dates.
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data for 730 days. We further exclude households that have a pre-adoption period of fewer

than 30 days and households with more than 10 days with 0 solar generation post-adoption.

This ensures we have enough pre-adoption data for each premises and exclude “dropouts”.

We categorize households with solar panel into two groups: adopters and early adopters.

Early adopters are defined as households that installed solar panels before January 1, 2017,

while adopters are defined as households that installed solar during 2017. As described

earlier, we also acquire data on a random sample of households in the SMUD service area

that did not have solar panels during 2017 or 2018.

Summary statistics of different groups are listed in Table 1.1. As before, we define daily

consumption as daily electricity purchases from SMUD plus solar generation minus sell-backs.

From panel A, it is clear that early adopters had the highest average daily consumption while

non-adopters had the lowest. We also check the pre- and post- statistics for adopters. We

do not see obvious changes in the mean and median.

In Figure 1.4, we plot the average hourly consumption across premises for adopters before

and after solar panel installation. For a single hour, the difference is also insubstantial.

Notice that so far we have not controlled for temperatures and dates of installation. In the

next section, we use regressions to pin down the effects of solar installation on household

consumption, with temperatures controlled.

1.3 Identification Strategy

1.3.1 Baseline model

We start with the following baseline model to estimate the effect of solar panel installation

on household electricity consumption:

Coni,d = αi + βInsti,d + γ1 · Tempd + γ2 · Sd + εi,d (1.1)

where i indexes the premises and d indexes the dates. Coni,d is the total daily consump-

tion on date d. αi is the household fixed effect that captures the time-invariant household
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unobservables that may affect household electricity consumption. For example, this term

can encompass the location or size of a household which may affect its electricity consump-

tion (e.g. a house surrounded by trees may consume less energy during summer). In the

robustness checks section, we add alternative fixed effects and discuss the results. Insti,d

is a premises-specific solar panel installation status dummy variable. It switches from 0 to

1 on the date when the premises starts to generate solar electricity. Tempd is the average

daily air temperature on date d while Sd is a non-linear transformation of Tempd.3 εi,d is the

error term. Our main parameter of interest is β which accounts for the average consumption

difference between premises with and without solar panels.

As shown in Figure 1.5, daily consumption respond non-linearly to air temperature.

Following Novan, Smith and Zhou (2022), we choose a restricted cubic spline model with

three knots to reflect this non-linear relationship. Sd is constructed as:

Sd = (Tempd −Q1)
3
+ − Q3 −Q1

Q3 −Qmin

· (Tempd −Qmin)
3
+ +

Qmin −Q1

Q3 −Qmin

· (Tempd −Q3)
3
+ (1.2)

where Q1 and Q3 are the first and the third quartiles of observed air temperature in the

sample. Qmin is the temperature corresponds to the minimum average consumption. (x)+

is a function that gives x when x > 0 and 0 otherwise. In our sample, the Q1, Qmin, Q3 are

51, 61 and 70◦F respectively. 4

To ensure the estimation of β is unbiased, we assume that other non-temperature drivers

of demand for electricity are not systematically changing around the time PV units are

adopted. This is a strong assumption given that we do not observe whether there were

ongoing major home improvement projects when households adopted solar. However, the

assumption is plausible given that: our sample size for households that adopted solar panels

during 2017 is large (1659 premises). It is unlikely that all these households would conduct
3We obtain hourly dry bulb temperature data from NOAA and take averages of hourly temperature to get
daily averages. Daily average temperatures are rounded to the closest integers.

4While 61◦F is the temperature when minimum average electricity consumption occurs, 51◦F and 70◦F are
the 25% and 70% quantiles of the temperature distribution in 2017 to 2018.

8



major home improvement projects when they install PV units. In the case that a group

of households did make home improvements, our estimate of β can be either upward or

downward biased within a household. For example, a household could install other energy

efficiency appliances while its installed PV units. Then our β estimate for this kind of

household will be underestimated as we attribute the energy savings from appliances to

solar installation. On the contrary, if a household installed energy intense appliances, we

would overestimate β. It is impossible to determine the direction of bias without additional

information. Hence we assume the two cases mentioned above are rare and cancel out each

other when we run the baseline model on all households.

1.3.2 The role of temperature

In equation 1.1, we assume that all types of premises have the same temperature response

function (i.e., households do not change their cooling/heating behaviors after solar adoption).

However, as indicated by literature (Deng and Newton (2017), Qiu, Kahn and Xing (2019),

and Beppler, Matisoff and Oliver (2021)), households may change their behavior because of

income effects (i.e., they consider the solar generation and sell-backs as a form of income,

and consequently turn on cooling and heating systems more often). To test this, we add

interaction terms between solar panel installation and temperature. Specifically, we are

interested in estimating the following model:

Coni,d = αi + β1Insti,d + γ1Tempd + γ2Sd + β2Insti,d · Tempd + β3Insti,d · Sd + εi,d (1.3)

If the installation of solar panels changes consumer behavior in using cooling and heating

systems, we would expect the coefficients β̂2 and β̂3 to be significant.

1.3.3 Hourly model

One distinctive feature of our data is the observation of hourly consumption enables us

to observe how changes in consumption are distributed throughout a day. To do this, we

reestimate equation (1.1) by replacing the dependent variable with hourly consumption.
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That is:

Conh
i,d = αh

i + βhInsti,d + γh
1 · Tempd + γh

2 · Sd + εhi,d (1.4)

Notation is the same as in equation (1.1), except for the left-hand side variable. Conh
i,d is

hourly electricity consumption for household i, on date d hour h, where h ∈ [1..24]. εhi,d is the

corresponding error term. We estimate 24 versions of equation (1.4), so the coefficients (e.g.

βh) are hour specific. Notice that we use the average daily temperature instead of hourly

temperature in the hourly consumption regressions. This is because hourly temperature and

average daily temperature are highly correlated in the Sacramento area. Using the hourly

temperature will not affect our results and insights. Our parameter of interest is still Insti,d

which captures the difference in household electricity consumption pre- and post-adoption.

1.4 Results
In this section, we present results from the models described in the previous section. We

start with our baseline model in equation (1.1). In Table 1.2, we run the model on the full

sample (column (1)) and the adopter-only sample (column (2)).

The coefficients on the installation dummies are 0.175 and 0.214 for the full sample

and adopter-only sample, respectively. We can interpret these estimates as: on average,

solar adoption increases a household’s daily consumption by 0.175 kWh for all adopters and

0.214 kWh for early adopters who installed solar panels during 2017. Both estimates are

statistically insignificant even at a 10% level of significance. Standard errors are clustered

at the household level and the week-year level to adjust for autocorrelation of the same

household across different weeks, and the correlation among households in the same week.

Once we obtain an estimate of the change in consumption associated with solar adoption,

we can calculate rebound effects by dividing the change by median solar generation in the full

sample and the adopter-only sample.5 The rebound effects are estimated at 0.96% and 1.17%

for the full sample and adopter-only sample. These results differ from previously published
5We use the median solar generation instead of the mean solar generation since the generation data are skewed
right. The median is less sensitive to extremely high solar generation.
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estimates. As described, our data are unique in the way that it includes observations of

hourly purchases, sale, and generation which enables us to estimate the rebound effects

precisely.

We also calculate two versions of treatment effect on treated based on different samples.

The consumption change estimates are divided by the median daily consumption of all house-

holds without solar panels (non-adopters and adopters pre-adoption, denoted as TOT1) and

the median daily consumption for solar adopters before solar installation (denoted as TOT2).

The TOT1 and TOT2 are the same for the adopters-only sample as the denominators are

the same (both are median daily consumption across households in pre-adoption days). The

TOT1 and TOT2 for the full sample are 0.84% and 0.73%. This means after solar panel

installation, adopters on average increase their daily consumption by 0.84%, and households

who installed solar panels during 2017 increase their daily consumption by 0.73%.

In Table 1.3, we present results from running equation (1.3) on the adopter-only samples.

The interaction terms and the installation dummy jointly estimate the differences in the

temperature response function pre- and post- solar adoption. We do not run the equation

on the full sample since the interaction terms would then also capture the differences in

temperature response functions between non-solar adopters and early adopters (more on

this later).

As discussed earlier, if solar-adoption changes the household’s cooling and heating behav-

ior, we would expect the coefficients on the interaction terms (i.e., Inst×Temp, and Inst×S)

to be significant. However, neither of these two estimates is significant at the 10% significance

level.

Since we used a non-linear transformation of temperature in our model, it is not straight-

forward to see the differences in temperature response functions under various tempera-

tures from the estimates shown in Table 1.3. We visualize differences in the temper-

ature response function conditional on the average daily temperature. Given equation

(1.3), for each premises i on date d we have predicted consumption with solar panels,
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Ĉoni,d|Insti,d=1 = α̂i + β̂1 + γ̂1Tempd + γ̂2St + β̂2Tempt + β̂3St and without solar panels,

Ĉoni,d|Insti,d=0 = α̂i+ γ̂1Tempd+ γ̂2Sd. The predicted difference in consumption with versus

without solar panels is then β̂1 + β̂2Tempt + β̂3St. Notice that since we do not consider

heterogeneous responses (i.e., all terms do not interacted with household fixed effects), the

differences are the same across households, conditional on temperature.

Results are plotted in Figure 1.6. The solid black line plot β̂1 + β̂2Tempd + β̂3Sd against

daily average temperature. Coefficients estimates are from fixed effects models in Table 1.3.

The grey areas around the solid line are 1.96 times the standard deviation from the solid

lines.6

The differences in daily consumption are slightly negative for temperatures above 60◦F,

suggesting that solar adoption reduces a household’s cooling behavior on average. For tem-

peratures below 60◦F, the differences are positive. However, differences under various tem-

peratures are all insignificant at the 5% significance level. We would interpret results below

45◦F with caution since there were only 19 and 15 days in 2017 and 2018 when the daily

average temperature fell below 45◦F.7

To further confirm that the temperature response functions are not affected by solar

adoption, we run the following regression for each household in our sample:

Coni,d = γ1,i · Tempd + γ2,i · Sd + εi,d (1.5)

This is the household-level temperature response function. For adopters, we divide their data

into two parts: dates before and dates after the solar panel installation, and run equation

(1.5). Denote the two parts of the data as adopter-pre and adopter-post. After running

regressions for each household, point estimates γ̂1,i, and γ̂2,i are averaged by household

6The standard deviation is calculated as the square root of var(β̂1 + β̂2Tempd + β̂3Sd) = var(β̂1) + Temp2d ·
var(β̂2) + S2

d · var(β̂3) + 2 · Tempd · cov(β1, β2) + 2 · Sd · cov(β1, β3) + 2 · Tempd · Sd · cov(β2, β3). The
variance-covariance matrices are adjusted by considering correlations within households and week by year.

7The same is true for extremely high temperatures such as above 85◦F. There were 23 and 2 such days in
2017 and 2018, respectively.
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types (i.e., adopters, non-adopters, adopter-pre, and adopter-post) to provide the average

temperature response function.

Results are plotted in Figure 1.7. The colored areas are 95% confidence intervals of tem-

perature response functions. The first thing to notice is that early adopters have the highest

predicted daily consumption regardless of temperatures. This aligns with the summary

statistics in Table 1.1. It is also the reason why when we run the model with installation-

temperature interaction terms (equation (1.3)), we exclude early adopters and non-adopters

to avoid confounding effects of solar installation with differences in temperature response

functions across household types. Comparing the adopter-pre and adopter-post temperature

response functions, the two functions diverge after 65◦F, which contradicts what we find in

Figure 1.6, where we observe no differences between pre- and post-adoption periods.

The reason behind seemingly contradictory results is the structure of our data. As

described in the data section, we observe adopter households that installed solar panels

during 2017 and keep tracking their daily utility profiles in 2018. Adopters installed solar

panels on different dates in 2017, and some adopters have shorter pre-adoption periods than

others. If a household installed solar panels in April 2017, it is very likely the temperature

response function will be downward sloping and nearly flat when the temperature is beyond

65◦F since the temperatures in the first four months of 2017 were all below 65◦F. To get

predicted daily consumption, the model will make extrapolation and hence flatten the curve

beyond 65◦F. We plot the temperature distribution of our data by household groups in Figure

1.8. Indeed, the adopter pre sample has higher density in lower temperatures while the other

groups share a similar distribution. This fact is not considered in Figure 1.7.

To take into account the effects of installation dates, we restrict adopters to those who

adopted solar on or after July 1, 2017. The cutoff date is chosen since the pre-adoption

period (January 1, 2017 to June 30, 2017) of these adopters has a full set of temperatures

ranging from 39◦F to 90◦F (see Figure 1.9 in which we plot the daily average temperature

in 2017).

13



In Figure 1.10, we recreate temperature response functions as in Figure 1.7 but ex-

clude adopters who installed solar panels before July 1, 2017. Now the two functions of

adopter-pre and adopter-post almost overlap each other. At average daily temperatures

below 60◦F, adopter-post has higher daily consumption than adopter-pre, but when tem-

perature increases, adopter-post has slightly lower consumption than adopter-pre, although

these differences are insignificant at a 5% significance level. This is the same result that

we obtained earlier from Figure 1.6. We confirm that there is no change in the household’s

cooling and heating behavior after solar adoption.

We also check the rebound effects of solar adoption on hourly consumption across all hours

of the day. After running 24 versions of equation (1.4) on the full sample, we saved point

estimates of βh’s and the corresponding 95% confidence intervals. Results are visualized in

Figure 1.11. The changes in consumption are also not statistically significant at any hour,

although we see the point estimate reaches its peak at 6 pm.

1.5 Robustness Checks
In this section, we alter some of the specifications in our settings with alternative methods/-

parameterizations. This section serves as a complement to our main results and checks their

robustness.

1.5.1 Fixed effects

In our main specification, we allow for individual fixed effects which capture the average

effects of time-invariant unobserved variables such as household characteristics (e.g. areas).

Here we include additional fixed effects in our baseline model. The year fixed effects absorb

any annual common shock that is universal to all households in the SMUD service area.

When year fixed effects interact with premises fixed effects, the interaction terms will capture

household-year specific common trends, and these trends are different across premises. For

example, this could be the number of days of home occupancy that we do not observe.

Finally, we include a set of time-related terms as described by Qiu, Kahn and Xing (2019),

which include a federal holiday indicator (a dummy variable indicating if a date is a federal
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holiday or not), day of week, day of month, and month of year fixed effects. The time-

related fixed effects control for time-varying factors that are common across households. For

example, promotions by SMUD or change of energy policy in California.

Results from alternative fixed effects are presented in Table 1.4 and Table 1.5 for the

full sample and the adopter-only sample. For comparison, we also include the main results

in column (1) of both tables. For the full sample, the largest rebound effect occurs when

household and year fixed effects are included. However, the rebound effect is still statistically

insignificant at the 10% significance level. Comparing the results in columns (3) and (4) of

Table 1.4 and Table 1.5, the change in our main parameter of interest is inconsequential.

For the adopter-only sample, we also find similar results. Across both samples with various

alternative fixed effects, the coefficients on the temperature-related terms are all significant

as temperature is the main factor that affects daily electricity consumption.

1.5.2 Choice of knots

Different knots are chosen to transform temperatures in the baseline model (i.e. equation

(1.1)). Instead of picking the corresponding temperature for minimum average consumption,

25% and 75% percentiles, we run two additional specifications. Column (2) in Table 1.6 and

Table 1.7 uses the 10%, 50% and 90% quantiles of temperature distribution in two years

(i.e., 2017 and 2018), while Column (3) uses five knots located at the 10%, 30%, 50%, 70%,

and 90% quantiles of the distribution. Column (1) in both tables present results from our

baseline model.

From the point estimates of columns (2) and (3), regardless of whether the full or the

adopter-only sample, when we include more knots, rebound effects increase. For the full

sample, the rebound effect increases from 0.175 to 0.614, and from 0.214 to 0.64 for the

adopter-only sample. Although we see increases in the point estimates, these rebound effects

do not significantly differ from 0.
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1.5.3 Linear spline transformation

We chose the restricted cubic spline transformation to capture the non-linear relationship be-

tween temperatures and the daily average electricity consumption. Novan and Smith (2018)

use piece-wise linear splines to model the temperature-consumption relationship. Contrary

to the restricted cubic spline, piece-wise linear splines are less flexible. However, highly flexi-

ble functions may absorb too much of the variation in the consumption and leave little room

for the baseline model to capture the rebound effects.

Therefore, in this section we replace restricted cubic spline transformation with piece-

wise linear transformation. In particular, we estimate the following regression on the full

sample and the adopter-only sample:

Coni,d = αi + β1 · Insti,d + γ ·W + εi,d (1.6)

As in equation (1.1), Insti,d is the installation dummy turns from 0 to 1 when a premise

first starts to generate solar electricity. W is a column vector of transformations of temper-

ature Tempd, and γ is a row vector of parameters. Suppose we have m knots (denoted as

ki, i ∈ {1, ...,m}) for the piece-wise linear function. Then W contains m+ 1 elements.

W =



min(Tempd, k1)

...

min(max(Tempd − ki−1, 0), ki − ki−1)

...

max(Tempd − km, 0)


We set knots at 51, 61, and 70◦F as we did for the restricted cubic spline. Three knots will

introduce four linear segments in the temperature response function. Below are examples of
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the first two segments. Other segments are analogues of these two.

Tempd ≤ 51 Coni,d = αi + β1 · Insti,d + γ1,1 · Td

51 < Tempd ≤ 61 Coni,d = αi + β1 · Insti,t + γ1,1 · 51 + γ1,2 · (Td − 51)

Notice that we do not include temperature itself in equation (1.6). Including temperature

Tempd will result in multicollinearity given the linear transformation nature of the piece-wise

linear splines.

Regression results are presented in Table 1.8 for the full sample (column (1)) and the

adopter-only sample (column (2)). All of the coefficients of linear spline variables are statis-

tically significant at the 1% significance level, while the rebound effects are insignificant in

both samples.

1.5.4 Overall and marginal effects

Although the time-invariant characteristics are captured by household fixed effects, one draw-

back of our data is that we do not observe the sizes of households’ solar panels. Another

limitation of our baseline model (equation (1.1)) is that we only investigate the overall

rebound effects on consumption after solar adoption. Qiu, Kahn and Xing (2019) study con-

sumption responses at the margin — that is, how daily consumption responds to marginal

increases in solar generation. In this section, we incorporate marginal rebound effects into

our baseline model while controlling for solar system sizes. Specifically, we run the following

model on the full sample and the adopter-only sample:

Coni,d = αi + β1Insti,d + γ1 · Tempd + γ2 · Sd + γ3Sizei,d + γ4Geni,d + εi,d (1.7)

Notation is the same as in equation (1.1) except that we include two additional variables:

Sizei,d and Geni,d.

Measures of Sizei,d are constructed from observations of the average solar generation for

household i in the post-adoption period. This variable is a constant for early adopters, 0 for
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non-adopters, and all 0 in the pre-adoption period and a constant in the post-adoption period

for adopters. In other words, we use average solar generation as a proxy for solar system size.

The coefficient of this variable captures the effect of solar system size on rebound effects.

Geni,d created by subtracting Sizei,d from the solar generation of household i on date d. For

early adopters and adopters in the post-adoption periods, this variable is the demeaned solar

generation. For non-adopters and adopters in the pre-adoption periods, this variable is all

0. The coefficient on Geni,d can be interpreted as the marginal effect of rebound effects.

Table 1.9 summarizes results from estimating equation (1.7). Regardless of samples, the

coefficients before the installation dummy, the solar system size proxy, and the demeaned

solar generation are all insignificant at the 10% significance level. This means there are

no overall or marginal rebound effects. Although the point estimates of the consumption

changes in response to solar adoption (i.e., coefficients of Insti,d) increase to 0.687 for the

full sample and 0.742 for the adopter-only sample, the clustered standard errors for these

estimates also grow dramatically.

1.6 Conclusion
We investigate the impact of solar adoption on household electricity consumption in the

SMUD service area. This study uses a novel dataset which contains the detailed observations

of household-level purchase, sale, and generation. In contrast to previous studies, we do not

find significant changes in household electricity consumption before and after the adoption

of solar panels. Our findings are robust to various alternative specifications.

Contributions of our study are twofold. First, our sample not only contains a large number

of early adopters, non-adopters, and adopters but also complete electricity profiles, especially

in solar generation. Previous studies either rely on small and selected solar adopters or

on estimated solar generation. Our data fill the gap and our analysis better reveals the

households’ actual responses to solar adoption. Second, while rebound effects are important

when considering energy policy, we do not find sizable or statistically significant rebound

effects for solar adoption.
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We also realize our analysis has some limitations. First, we do not observe households’

billing information. Empirical studies have shown that customers tend to respond to lump

sum bills, or lagged average prices (Ito, 2014). Average prices varies across both households

and time, which cannot be captured by the fixed effects that we specified in the robustness

check section.8 Second, we observe a relatively short panel compared to previous literature.

Qiu, Kahn and Xing (2019) use data from 2013 to 2017, while Beppler, Matisoff and Oliver

(2021) use data trimmed to December 2010 through June 2018. It might take more than one

year for rebound effects to become noticeable (which we are unable to detect from our data),

although Beppler, Matisoff and Oliver (2021) find significant rebound effects just one month

post solar installation. However, given the size of our sample and various robustness checks

that we conducted, these limitations do not undermine our conclusion that, in our case study,

there were no rebound effects for solar adoption in the one to two years post-adoption.

Another interesting finding in our analysis is the differences in consumption levels for

early adopters, non-adopters, and adopters (see Table 1.1 and Figure 1.7). This seems to

confirm that solar adoption is associated with higher socio-income status as noted by Liang

et al. (2018). Even though we do not find rebound effects, subsidies paid to solar adopters

may harm lower socio-income households as utilities need to increase electricity retail prices

in order to compensate for losses from reduced purchases by solar adopters.

8Although the marginal prices (retail prices set by the utility companies) are the same for some households in
given period, solar adopters also sell their solar generation back to grids which brings down the average prices
faced by households. Moreover, each household can have a different average price due to the heterogeneity
in solar generation and consumption.
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1.7 Figures

Figure 1.1: Purchase, sale and generation for commercial and non-commercial premises
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Notes: Points show the average daily usage (in kWh) across households while the grey bars

indicate 2.5% and 97.5% percentiles of average daily usage in a week across all households. We

see the average daily usage is discontinuous on the week pre- and post- solar adoption. The

95% quantiles also vary dramatically in the pre-adoption weeks.

Figure 1.2: Consumption by installation weeks before data cleaning
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Notes: After data cleaning, the average daily usage (in kWh) across households is continuous

on the week pre- and post- solar adoption. The 95% quantiles in the pre-adoption weeks also

look more reasonable than before data cleaning.

Figure 1.3: Consumption by installation weeks after data cleaning

24



Figure 1.4: Hourly consumption for adopters pre and post solar panels installation
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Figure 1.5: Average daily consumption by temperature with 2.5% and 97.5% percentiles
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Figure 1.6: Predicted differences in daily consumption pre and post solar panel adoption
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Figure 1.7: Temperature response functions by groups
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Figure 1.8: Temperature distribution by groups
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Figure 1.9: Temperature by dates in 2017
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Figure 1.10: Temperature response functions by groups (with adopters install after July)
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Notes: We ran the hourly model (equation 1.4) for each hour of a day and saved point estimates
and 95% confidence intervals. Rebound effects in different hours are all statistically insignificant
at the 5% significance level.

Figure 1.11: Point estimates and 95% C.I. by hours
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1.8 Tables

Table 1.1: Summary statistics of electricity usage (in kWh) for households in SMUD area

group # of premises variable mean median sd
Panel A: All groups
Adopter 1659 purchase 22.54 18.06 16.91

sale 9.22 6.41 10.46
generation 15.99 13.17 15.71
consumption 29.31 24.14 20.03

Early adopter 8925 purchase 23.99 19.70 16.95
sale 10.82 8.44 9.89
generation 20.57 17.76 14.13
consumption 33.74 28.46 21.92

Non-adopter 2176 purchase 24.91 20.37 18.07
consumption 24.91 20.37 18.07

Panel B: Adopters
Adopter pre 1659 purchase 29.51 23.82 21.10

consumption 29.51 23.82 21.10
Adopter post 1659 purchase 20.22 16.52 14.55

sale 12.29 9.95 10.40
generation 21.31 18.20 14.68
consumption 29.25 24.24 19.67

Notes: For adopters pre-installation and non-adopters, the solar generation and
sale are all 0s.
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Table 1.2: Baseline model (equation 1.1) results

(1) (2)
Inst 0.175 0.214

(0.414) (0.403)
Temp -0.769 *** -0.775 ***

(0.0341) (0.0358)
Cubic spline (S) 0.00466 *** 0.00451 ***

(0.00014) (0.000139)
N obs 9,278,571 1,194,774
N premises 12,760 1,659
TOT1 0.84 % 0.9 %
TOT2 0.73 % 0.9 %
Rebound 0.96 % 1.17 %

Significance levels: ∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01.
Notes: Column (1) shows results when we run equation
1.1 on the full sample, while column (2) presents results
on the adopter-only sample.
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Table 1.3: Regression results with interaction terms (equation 1.3)

(1)
Inst 3.96

(2.70)
Temp -0.726 ***

(0.0467)
Cubic spline (S) 0.00442 ***

(0.000215)
Inst× Temp -0.0673

(0.0523)
Inst× S 0.000122

(0.000203)
N obs 1,194,774
N premises 1,659

Significance levels: ∗ p < 0.1 ∗∗ p <

0.05 ∗∗∗ p < 0.01
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Table 1.4: Full sample with alternative fixed effects

(1) (2) (3) (4)
Inst 0.175 0.526 -0.0429 -0.0436

(0.414) (0.333) (0.504) (0.303)
Temp -0.769 *** -0.767 *** -0.767 *** -0.492 ***

(0.0341) (0.0337) (0.0337) (0.0351)
Cubic spline (S) 0.00466 *** 0.00465 *** 0.00465 *** 0.00378 ***

(0.00014) (0.000136) (0.000136) (0.000189)
Holiday 1.43 **

(0.622)
TOT1 0.84% 2.52% -0.21% -0.21%
TOT2 0.73% 2.21% -0.18% -0.18%
Rebound 0.96% 2.89% -0.24% -0.24%
Fixed effects
Premise ✓ ✓
Year ✓
Premise × Year ✓ ✓
Day of week ✓
Day of month ✓
Month of year ✓

Significance levels: ∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

Notes: We run our baseline model (equation 1.1) on the full sample. Results in column
(1) is the same as the results from our main specification while column (2)–(4) include
results from various alternative fixed effects.
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Table 1.5: Adopter sample with alternative fixed effects

(1) (2) (3) (4)
Inst 0.214 0.241 0.128 0.092

(0.403) (0.421) (0.470) (0.366)
Temp -0.775 *** -0.775 *** -0.775 *** -0.497 ***

(0.0358) (0.036) (0.036) (0.0353)
Cubic spline (S) 0.00451 *** 0.00451 *** 0.0045 *** 0.00366 ***

(0.000139) (0.00014) (0.00014) (0.000181)
Holiday 1.26 **

(0.581)
TOT1 0.9% 1.01% 0.54% 0.39%
TOT2 0.9% 1.01% 0.54% 0.39%
Rebound 1.17% 1.32% 0.7% 0.51%
Fixed effects
Premise ✓ ✓
Year ✓
Premise × Year ✓ ✓
Day of week ✓
Day of month ✓
Month of year ✓

Significance levels: ∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

Notes: We run our baseline model (equation 1.1) on the adopter-only sample. Results
in column (1) is the same as the results from our main specification while column (2)–
(4) include results from various alternative fixed effects.
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Table 1.6: Full sample with alternative knots

(1) (2) (3)
Inst 0.175 0.37 0.614

(0.414) (0.403) (0.406)
Temp -0.769 *** -0.844 *** -0.637 ***

(0.0341) (0.036) (0.035)
Cubic spline (S) 0.00466 *** 0.00194 *** 0.00117 ***

(0.00014) (0.0000523) (0.0000333)
TOT1 0.84% 1.77% 2.94%
TOT2 0.73% 1.55% 2.58%
Rebound 0.96% 2.03% 3.37%

Significance levels: ∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

Notes: We run our baseline model (equation 1.1) on the full sample.
Results in column (1) are the same as that of our main specification
while column (2)–(3) show results from various alternative cubic spline
transformations. We use 10%, 50% and 90% quantiles of temperature
distribution in 2017 and 2018 for cubic spline knots in column (2) and
10%, 30%, 50%, 70%, and 90% quantiles for column (3).
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Table 1.7: Adopter sample with alternative knots

(1) (2) (3)
Inst 0.214 0.403 0.64

(0.403) (0.393) (0.396)
Temp -0.775 *** -0.848 *** -0.65 ***

(0.0358) (0.0378) (0.0363)
Cubic spline (S) 0.00451 *** 0.00187 *** 0.00113 ***

(0.000139) (0.0000532) (0.000034)
TOT1 0.9% 1.69% 2.69%
TOT2 0.9% 1.69% 2.69%
Rebound 1.17% 2.21% 3.52%

Significance levels: ∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

Notes: We run our baseline model (equation 1.1) on the adopter-only
sample. Results in column (1) are the same as that of our main specifi-
cation while column (2)–(3) show results from various alternative cubic
spline transformations. We use 10%, 50% and 90% quantiles of temper-
ature distribution in 2017 and 2018 for cubic spline knots in column (2)
and 10%, 30%, 50%, 70%, and 90% quantiles for column (3).

39



Table 1.8: Baseline models with piecewise linear spline

(1) (2)
Inst 0.303 0.333

(0.385) (0.378)
Linear spline (W)

W1 -0.405 *** -0.402 ***
(0.0556) (0.0551)

W2 -0.622 *** -0.65 ***
(0.0484) (0.0504)

W3 1.08 *** 1.01 ***
(0.0805) (0.078)

W4 1.95 *** 1.85 ***
(0.0841) (0.081)

TOT1 1.45% 1.4%
TOT2 1.27% 1.4%
Rebound 1.67% 1.83%

Significance levels: ∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

Notes: In addition to the cubic spline transforma-
tion, we include regression results from the linear
spline transformation. We run equation (1.6) on the
full sample (results shown in column (1)) and on the
adopter-only sample (results shown in column (2)).
The linear spline knots are set at 51, 61, and 70◦F.
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Table 1.9: Baseline models with solar panel sizes

(1) (2)
Inst 0.687 0.742

(0.808) (0.759)
Temp -0.776 *** -0.779 ***

(0.039) (0.0381)
Cubic spline (S) 0.00467 *** 0.00451 ***

(0.000144) (0.000141)
Size -0.0234 -0.0243

(0.0366) (0.0367)
Gen 0.0133 0.00713

(0.0201) (0.0216)
N obs 9,278,571 1,194,774
N premises 12,760 1,659
TOT1 3.29% 3.12%
TOT2 2.88% 3.12%
Rebound 3.78% 4.08%

Significance levels: ∗ p < 0.1 ∗∗ p < 0.05 ∗∗∗ p < 0.01

Notes: We run equation (1.7) on the full sample and
on the adopter-only sample. Results are shown in col-
umn (1) and (2), respectively. The solar system sizes
are estimated by the average solar generation for each
household in the post-adoption period.
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Essay 2

Cooler Summer with Lower Bills:

Rebound Effects From AC Upgrades

2.1 Introduction
Residential energy efficiency programs are popular policy instruments that promise to achieve

two goals. First, these programs facilitate reducing energy consumption, thus reducing the

associated negative externalities such as those from greenhouse gas emissions.1 Second,

these programs help a correct market failure known to the economists as the “energy ef-

ficiency gap”.2 However, realized energy savings achieved by residential energy efficiency

programs consistently fall short of the ex-ante estimates (Fowlie, Greenstone and Wolfram,

2015). There are several possible explanations. First, the engineering predictions might be

simply overinflated for various reasons. The models may fail to capture all real-life compli-

cations in heterogeneity among households; the models are made by agents with a stake in
1Although the economists agree on that the first-best solutions to address the negative externalities are
Pigouvian taxes, such price-based policies often remain politically infeasible. Therefore residential energy
efficiency programs are widely viewed as second-best alternative solutions

2Ex-ante engineering estimates, such as the well-known Mckinsey curves (McKinsey&Company, 2009), sug-
gest that in many cases consumers are missing out on obvious opportunities to investing in energy-saving
technologies that can yield the significant energy savings, sufficient to pay for themselves. A series of im-
portant papers address the existence and possible explanations for the energy efficiency gap (Allcott and
Greenstone, 2012; Gillingham and Palmer, 2013; Hausman, 1979; Metcalf and Hassett, 1999; Myers, 2020;
Rapson, 2014; Sallee, 2014).
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the prediction outcome; intentionally biased sample selections can also play a role in that

only projects expected to yield higher savings predictions will be carried out, thus causing

underperformance on average.

Second, consumers may respond to energy efficiency improvements by using the energy

service more intensively. This response, known as a “rebound effect”, is typically not included

in engineering models. When energy efficiency upgrades happen, the consumer faces lower

marginal costs to use the upgraded durables, leading to a series of re-optimizations that create

two types of rebound effects in energy use (Borenstein, 2013; Gillingham and Palmer, 2013).3

The main focus of this chapter is the “direct” rebound effects, which refers to increased energy

use from the upgraded durables. When there are increases in energy use resulting from

induced changes in consumption of other goods, the increases are called “indirect” rebound

effects, which are usually much smaller in magnitude.4

Uncovering evidence of a rebound effect, and quantifying how large it may be, typically

requires strong assumptions. For example, Dubin, Miedema and Chandran (1986) rely on

the assumption that the engineering estimates are correct (Fowlie, Greenstone and Wolfram,

2015).

Davis, Fuchs and Gertler (2014) show in a developing country setting that new AC units

can cause electricity consumption to increase. This is clear evidence of a rebound in cooling.

However, the researchers only observe the change in energy use. Decomposing this change

into energy efficiency improvement and behavioral responses typically requires assumptions.

Thus by examining how monthly energy consumption changes pre v.s. post energy efficiency

upgrades, the magnitude of the rebound effect (i.e., how much energy use increases because

of a behavioral response) cannot be determined without strong assumption.

This chapter estimates the change in the probability of using the AC unit jointly with
3We focus on the microeconomic effects. Gillingham, Rapson and Wagner (2016) define a “macroeconomic
rebound effect”, which is beyond the scope of this chapter.

4For example, when a consumer upgrades her AC unit, she might increase her use of her AC because it is less
costly to use it for a given effect, which is the direct rebound effect. She might also use the saved dollars
from a lower electricity bill on other things like traveling, and the associated increase in her energy use is an
indirect rebound effect.
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the change in the energy used when it is on. We find evidence of a rebound effect, and we

find a large effect. We capture an important rebound margin, which is due to consumers

increasing the probability of turning on AC. We do not capture some other rebound margins,

such as changes in thermostat settings.

We study the air-conditioning units (AC) Energy Efficiency rebate program implemented

by the Sacramento Municipal Utility District (SMUD). Smart meter data provide the op-

portunity for us to model household-level electricity use with high precision. We employ the

mixture of regressions model to uncover the measures of cooling capacity and cooling behav-

ior of households. The variation in the dates on which households received rebates allows us

to construct comparable treated and comparison groups, so we use a difference-in-differences

(DiD) design to estimate the sizes of the direct effects and the rebound effects in cooling

energy use. We have two primary findings. First, the AC Energy Efficiency rebate program

is effective in reducing cooling energy use. In the SMUD serving area during 2012–2013, par-

ticipating households reduced cooling energy use by a considerable amount, averaging 347.10

kWh per household in one summer (1.81 kWh per day in a high-temperature day). Second,

we find clear evidence of rebound effects, and the magnitudes of which are significant. The

estimated rebound effects from AC units upgrades are 20.61% of direct effects on average.

The chapter proceeds as follows. In section 2.2, we provide an overview of the data we use

and an introduction to the AC Energy Efficiency rebate program, followed by our empirical

strategy in section 2.3. Next, in section 2.4, we present findings of our main specifications

while in section 2.5, results from robustness checks are reported and the sizes and causes of

the direct rebound effects are discussed. We conclude in section 2.6.

2.2 Background and Data
To estimate the impact of AC upgrades, we combine household-level smart meter data with

information on the participants in SMUD’s residential energy efficiency rebate programs.

We also acquire temperature data in the Sacramento area, as high temperature is the main

cause of usage of AC units. We describe the various datasets in the following sections.
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2.2.1 Electricity Consumption

By the beginning of January 2012, each household in the SMUD service territory had a smart

meter installed. The smart meters record the hourly aggregate electricity consumed by each

household. For the period from January 1, 2012, through December 31, 2013, we observe

the hourly consumption data for nearly all of the residential premises in the SMUD service

region. In particular, we observe detailed electricity consumption for all these households

for two whole summers in 2012 and 2013. Our data encompass both participants and non-

participants in the SMUD’s AC Energy Efficiency rebate program (explained below). The

non-participants are households that did not participate in any energy efficiency programs

during our study period, and were randomly selected from the SMUD service area.

2.2.2 The AC Energy Efficiency Rebate Program

We exploit SMUD’s AC Energy Efficiency Rebate Program as a quasi-experiment setting

and deploy a difference-in-differences (DiD) design. To encourage investments in energy

efficiency, SMUD provides its customers with rebates for purchasing new, energy efficient

appliances as well as rebates for carrying out energy efficient upgrades for their homes.

This program provides residential customers rebates for installing new air-conditioning

(AC) units. To qualify for the rebates, the homeowners must have AC units that meet the

EPA’s Energy Star standards, and must verify their home’s air ducts are properly sealed and

that new AC units have the correct refrigerant charge, are properly sized and have adequate

air flow. During January 2012 and March 2014, 5,684 single family premises received a rebate

for installing a new, energy-efficient AC unit.5 The data we observe identifies each of these

participating households and the dates when rebates were mailed to the participants. While

in each instance the rebate mailing dates occurred after the AC or heat pump was installed,

the lag between installation and upgrade rebate (as identified by the rebate mailing date)

was typically less than one month.6 Therefore, in our empirical specifications, we treat the
5We exclude 130 multi-family premises in this analysis.
6To receive the rebate, a participating customer must submit their application for the rebate within 90 days
of installing the new unit.
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rebate mailing date as accurately representing the date when the upgrade was installed.

In our energy efficiency program data, we do not observe any information on the cost

or efficiency ratings of the newly installed AC units. In addition, we do not observe any

information on the units that were being replaced — nor whether the premises even had an

AC before participating in SMUD’s rebate program.7 While information on the units being

installed and replaced would certainly aid in explaining any heterogeneity in the impacts,

that information is not necessary for us to produce estimates of the changes in consumption

and expenditure.

2.2.3 House and Temperature Information

In addition to the SMUD electricity consumption data, we have linked County Assessor

data to each premises in our sample. The Assessor data provide detailed information on the

physical characteristics of the homes such as year built, square footage, and the number of

stories.

Table 2.1 summarizes selected characteristics of the households in our sample, which

include 5,684 participants in the SMUD’s AC Energy Efficiency Rebate Program and 3,143

non-participants. The median and mean of 2011 electricity consumption for non-participants

are lower than those of participants, perhaps because on average homes of participants have

larger homes than non-participants: a larger total number of rooms, and more square feet.

We use National Oceanic and Atmospheric Administration (NOAA) data from the Sacra-

mento International Airport to calculate the daily average temperature in Sacramento on the

days of our interest. The choice of an average daily temperature, instead of a specific hour

temperature (e.g. 5 pm), is due to the fact that these temperatures are highly correlated

(see Table A2 in Novan, Smith and Zhou (2020)). Using either one will yield similar results.
7We also do not observe this information for non-participants.
7The daily average temperature (in Fahrenheit) is simply the average of hourly temperatures in a day. Each
day we have 24 temperatures data for all hours.
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2.3 Empirical Strategy
In this section, we first lay out how we define different household groups in our sample. Next,

we fit household-level models to estimate the metrics of interest (the total effects on cooling

energy, the direct effects, and the rebound effects). Then, we use a differences-in-differences

(DiD) design to estimate the differences in these metrics of interest between households that

installed more efficient AC units (treated group) in summer 2013 and those that kept using

old AC units in the summer of 2013 (compare group). The key underlying assumption of

DiD design is that these metrics would have followed a common trend across the treated and

comparison groups in the absence of the treatment. We will discuss in detail about what

that means along with our econometrics specifications.

2.3.1 Household Groups Definition

We define summer as the period of 5 months in a year: May, June, July, August, September.

Figure 2.1 plots the daily average temperature in Sacramento during 2012–2013. The shaded

areas on the figure highlight the May–September time window in both years. With a few

exceptions, most of the days with daily average temperature above 60 degrees fall within

these summer months.

In our data, we observe households divided between AC rebate program participants and

non-participants. We further categorize program participants in our sample into five groups

according to the dates on which the households received their respective rebates from SMUD:

• Early Participants: households that received rebates before April 30, 2012.

• Summer 2012: households that received rebates between May 1, 2012, and September

30, 2012.

• Treated: households that received rebates between October 1, 2012, and April 30,

2013.

• Summer 2013: households that received rebates between May 1, 2013, and September
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30, 2013.

• Late Participants: households that received rebates on or after October 1, 2013.

Figure 2.2 plots the number of households in our data by rebate mailing dates. The

shaded areas are our defined summers in 2012 and 2013. We see variations in rebate mailing

dates.

In the “Treated” group, we include all the households who got rebated between the

two summers. In the “Late Participants” group, we include all the households who got

the rebates after the summer of 2013. By construction, it is reasonable to assume that

the households in the treated group used an old AC unit during the summer of 2012 and

switched to a more efficient model during the summer of 2013, and the households in the late

participants and non-participants groups used the same old AC unit through both summers,

while the early participants used new AC. Table 2.2 compares the 2011 consumption and

house characteristics of treated, early participants and late participants. All variables have

close mean and standard deviations for the three groups. We argue that the three participants

groups are comparable on observables.

To construct a counterfactual for the treated group, we include early participants, late

participants, non-participants as comparison groups in our DiD analysis. The early partic-

ipants group consists of households who received the rebates before the summer 2012 and

thus used new AC units in both summers, while we should expect late participants used the

same old AC units in the two summers. We would also expect the cooling functions and be-

haviors of the treated group converge to those of early participants and diverge from those of

late participants in the summer of 2013. Table 2.3 summarizes the numbers of observations

in each of the groups. The number of households in each of the buckets is large enough to

enable us to draw useful conclusions and insights.
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2.3.2 Household-level Model Specification

Assume the daily electricity consumption of household h is a function of the daily average

temperature:

kWhh(temp) =


αh + Ch(temp) + ε1h with probability Bh(temp)

αh + ε2h with probability 1−Bh(temp)

(2.1)

We call Bh(temp) the cooling behavior profile of a household and define it as the con-

ditional probability of the household turning on their AC condition on daily average tem-

perature. This function is bounded between 0 and 1 and presumably increases with daily

average temperature.

Bh(temp) = Pr(AC is on in household h|temp)

Each household is assumed to have baseline electricity consumption level αh and consumes

an additional amount of Ch(temp) when turning on AC. Ch(temp) is thus called the cooling

function of the household. It is a function of daily average temperature and is dictated by

the household’s physical characteristics, especially the efficiency of its AC unit.

This model is estimated separately for each household-year combination so that we not

only allow different households to have different baseline consumption, cooling curve, and

cooling behavior but also allow them to change from 2012 to 2013.

For all individual households, we assume they will not turn on their AC until the daily

average temperature exceeds 60 degrees. Moreover, we define days with average temperature

above 85 degrees as outliers.8 For each household-year, the sample we used to fit the model

included only the days with daily average temperature above 60 degrees and below 85. There

were 190 such days in 2012 and 191 such days in 2013.

Our first step is to determine the value of αh. Given daily temperature and daily con-
8The daily average temperature exceeded 85◦F on 2 days in 2012 and 8 days in 2013, respectively.
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sumption data, for each household-year, we regress consumption on temperature and predict

the household consumption at 60 degrees.9 This predicted consumption is our estimated

baseline consumption α̂h. We plug this estimated baseline consumption into Equation 2.1,

which yields

kWhh(temp) =


α̂h + Ch(temp) + ε1h with probability Bh(temp)

α̂h + ε2h with probability 1−Bh(temp)

(2.2)

Equation (2.2) is a constrained version of a mixture of regressions. In a mixture of

regressions model, we assume data come from two (or more) regression models with a mixing

probability. In this case, the two regression models are a constant line with the baseline

electricity consumption as its intercept and a cooling consumption function that varies with

temperature. The mixing probability is the probability of turning on the AC unit. The model

is fitted by maximizing a likelihood function of the mixture by an expectation-maximization

(EM) algorithm.

Follow Novan and Smith (2018) and Novan, Smith and Zhou (2020), we specify a linear

function Ch(temp) in our model.10 The value of Ch(temp) is fixed to be 0 at 60 degrees,

meaning that we assume the household does not use any cooling energy when the daily

temperature is 60 degrees. Moreover, we model the probability Bh(temp) to be a non-

parametric smooth function.11

Figure 2.3 shows results from fitting the model for one of sample premises (id 15508)

as an example to illustrate how our model works. On the top panel, dots represent our
9Compared with assuming a temperature range and taking the mean or median of the daily consumption to
estimate the baseline consumption, this method incorporates more information on the relationship between
temperature and consumption, and hence reduces noise introduced by small samples.

10We do not strictly follow these two papers by using a simple linear function rather than a piece-wide linear
functions. The later functional form is too flexible that would absorb rebound effects

11The posterior mixing probabilities are the outputs from each iteration of the algorithm that is used to
estimate the mixture of regressions. We then use a smoother that is the local average of the posterior
mixing probability. The smoothed function serves as the prior mixing probability for the next iteration and
is denoted as Bh(temp) until the algorithm converges.
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data points. We first estimate the baseline consumption by regressing daily consumption on

temperature and then predicted daily consumption at 60 degrees. This procedure results in

two horizontal lines for 2012 and 2013, which represent daily electricity consumption when

a household’s AC is off. We then use the EM algorithm for each year to find linear cooling

functions when AC is on which are two upward sloping lines. Another output from our model

is the cooling behaviors B2012
h (temp) and B2013

h (temp) which are depicted in panel (b). Dots

represent posteriors from the EM algorithm and the cooling behavior is the weighted average

of these posteriors which are non-parametric curves.

2.3.3 Difference in Differences (DiD) Regression

The household-level model also implies that the household’s conditional expectation of cool-

ing energy use conditional on temperature is the product of two components, the household’s

behavior and the cooling ability of the AC unit:

CEh(temp) = E(kWhh − α̂h | temp) = Bh(temp)× Ch(temp) (2.3)

Since we fit Equation (2.3) for both summers of 2012 and 2013 for all households, we

obtained the distinct cooling behavior profiles and cooling curves for each household-year.

We denote them as B2012
h , B2013

h , C2012
h , C2013

h for household h.

Total effects

Given a set of summer days with temperature temp1, ..., tempn, we predict that the total

expected amount of kWh household h uses for cooling is TCE2012
h in 2012, and is TCE2013

h

in 2013 as follows:12

TCE2012
h =

n∑
i=1

B2012
h (tempi)× C2012

h (tempi)

12In our empirical analysis, the vector of temperatures (tempi) that we use are from the 192 days in 2012 with
daily average temperature above 60 degrees.
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TCE2013
h =

n∑
i=1

B2013
h (tempi)× C2013

h (tempi)

Then the total change in cooling energy use is

TCh = TCE2013
h − TCE2012

h

=
n∑

i=1

[B2013
h (tempi)× C2013

h (tempi)−B2012
h (tempi)× C2012

h (tempi)]

and the total effects from the treatment are defined as

TSh = E(TCh|s = Treated)− E(TCh|s = Comparison)

where s is an indicator for treatment group assignment. Recall that we define the treated

group to be households that received rebates between October 1, 2012, and April 30, 2013.

The comparison groups consist of early participants, late participants and non-participants.

In our analysis, we contrast the treated group with different combinations of the three “non-

treated” groups.

To capture the total effects in a regression DD framework, we can employ the following

equation:

TCEt
hs = Y t

hs = β0 + β1 · 1{s = Treated}+ β2 · 1{t = 2013}

+ γ · (1{s = Treated} · 1{t = 2013}) + εths

where h is the household subscript, s is the treatment subscript, with value equal to “Treated”

or “Comparison,” t is the time subscript with value equals to “2012” or “2013.”

If εths have different variances for different t, we estimate the first difference form:

TChs = ∆Yhs = β2 + γ · 1{s = Treated}+∆εhs (2.4)
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where we define the left hand side (LHS) variable in Equation (2.4) as

∆Yhs = TChs =
n∑

i=1

B2013
h (tempi)× C2013

h (tempi)−
n∑

i=1

B2012
h (tempi)× C2012

h (tempi)

we have γ̂ as an estimator of the total effects

γ̂ =E{
n∑

i=1

[B2013
h (tempi)× C2013

h (tempi)−B2012
h (tempi)× C2012

h (tempi)]|s = Treated}

− E{
n∑

i=1

[B2013
h (tempi)× C2013

h (tempi)−B2012
h (tempi)× C2012

h (tempi)]|s = Comparison}

The underlying assumption of such a DiD regression specification is that the total cooling

electricity use (TCEhs) will have common trends in the treated households and the compar-

ison households, in the absence of the treatment. This assumption is reasonable because of

two facts: (1) treated households, late participants and non-participants would have used

the same old AC units in the absence of the treatment (i.e., AC upgrade) in both summers

while early participants used the same new AC units. Observables are comparable within

participants and the differences in characteristics between participants and non-participants

are not dramatic. (2) we expect that the cooling behaviors for all household do not change

in the absence of the treatment. This also aligns with our results in section 2.4.1.13

Direct effects

Conceptually, direct effects are the effects from only the efficiency improvement, assuming

no behavioral changes (i.e., no changes in turning off or on the AC units under the same

temperature across years). With our model, direct effects differ from the total effects in that

direct effects refer to changes in energy use presuming there are no changes in the probability
13One potential threat to the parallel trend assumption is how people chose whether and when to participate

may be correlated with their cooling functions or behaviors. However, in Figure 2.5 and Figure 2.7, regardless
of participation or not and when to participate, the early participants, the late participants and the non-
participants display similar trends in the changes in cooling and behavior functions.
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of turning on the AC. We can define direct effects as

DSh =E{
n∑

i=1

B2012
h (tempi)× [C2013

h (tempi)− C2012
h (tempi)]|s = Treated}

− E{
n∑

i=1

B2012
h (tempi)× [C2013

h (tempi)− C2012
h (tempi)]|s = Comparison}

=E{
n∑

i=1

[B2012
h (tempi)× C2013

h (tempi)−B2012
h (tempi)× C2012

h (tempi)]|s = Treated}

− E{
n∑

i=1

[B2012
h (tempi)× C2013

h (tempi)−B2012
h (tempi)× C2012

h (tempi)]|s = Comparison}

This definition relies on two key assumptions. First, we assume that unchanged household

behavior translates to unchanged Bh(temp). Accordingly, we use the estimates of the cooling

behavior response for 2012 (B2012
h (temp)) combined with cooling functions we estimated for

both 2012 and 2013 to estimate the direct effects. This identification assumption seems rea-

sonable in cases where average temperature explains cooling electricity use pretty well. Our

data also support this assumption. For comparison groups where we expect no behavioral

changes, estimated B2012
h (temp) and estimated B2013

h (temp) are quite close as we will show

in the results.

The second assumption is the common trends assumption on which the DD regression

relies. We assume that the cooling functions of the AC units will have common trends in the

treated households and the comparison households, in the absence of the treatment. This

assumption is reasonable because both treated households and comparison households will

use similar AC units in the absence of the treatment and the two groups of households are

comparable in other household characteristics.

Using this of direct effects, we can easily estimate direct effects using DiD regression by

modifying Equation (2.4) to

∆Y ∗
hs = β2 + γ · 1{s = Treated}+∆εhs (2.5)
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where we define

∆Y ∗
hs =

n∑
i=1

B2012
h (tempi)× C2013

h (tempi)−
n∑

i=1

B2012
h (tempi)× C2012

h (tempi)

Rebound effects

We define rebound effects as the differences between total effects and direct effects. Thus,

under our definition of direct effects above, the rebound effects are defined as

REh =TSh −DSh

=E{
n∑

i=1

[B2013
h (tempi)× C2013

h (tempi)−B2012
h (tempi)× C2013

h (tempi)]|s = Treated}

− E{
n∑

i=1

[B2013
h (tempi)× C2013

h (tempi)−B2012
h (tempi)× C2013

h (tempi)]|s = Comparison}

we estimate the rebound effect using DiD regression by modifying Equation (2.4) to

∆Y ∗∗
hs = β2 + γ · 1{s = Treated}+∆εhs (2.6)

with

∆Y ∗∗
hs =

n∑
i=1

B2013
h (tempi)× C2013

h (tempi)−
n∑

i=1

B2012
h (tempi)× C2013

h (tempi)

2.4 Results
In this section, we display our results as follows. First, we look at our predicted cooling

functions and cooling behaviors, which also give us insights on what was going on in the

households and what caused the rebound effects. Next, we discuss our DiD regression results

and the sizes and significance of the total effects, the direct effects, and the rebound effects.
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2.4.1 Cooling Functions and Behavioral Changes

Our estimated cooling functions and cooling behaviors are both functions of daily temper-

ature (Ch(temp) is linear in temperature while Bh(temp) is non-parametric). We average

these functions across households and plot them by household groups.

Figure 2.4 shows the average cooling curves in 2012 and 2013 for each of the household

groups. Across the groups, we see that the “Treated” and “Late Participants” groups had

similar average cooling lines (similar slopes for linear functions) in 2012, and the “Treated”

and “Early Participants” groups had similar average cooling lines in 2013. These findings

align with our perception that the “Treated” and “Late Participants” groups both used old

AC units in 2012 and the “Treated” and “Early Participants” groups both used new AC units

in 2013. Within groups, “Treated” households have lower average cooling curves in 2013

than in 2012, showing that the AC upgrades indeed improved cooling efficiency, while other

groups show little or no differences between the two years.

Figure 2.5 plots the differences (2013 predicted cooling energy use minus 2012 predicted

cooling energy use under every temperature) between the pairs of cooling lines, along with

pointwise 95% confidence intervals generated by the two-sample t-tests. These plots confirm

that AC upgrading significantly improves energy efficiency in both economic and statistical

sense.

Notice that the late participants have a significantly lower cooling function in 2013 than

that in 2012. This could reflect the fact that there were lags between the AC upgrade

installation date and the rebate date, although in our main analysis we assume these two

dates are the same. In order to test how the lags would affect our estimates of total effects,

direct effects and rebound effects, in Appendix 2.A.2, we put off the rebate dates for treated

group and late participants to October 15 and November 1. That is, we test two specifications

in which (1) the treated group are households who received rebates between October 15, 2012

and April 30, 2013, and late participants are households who received rebates on or after

October 15th, 2013; (2) the treated group received rebates between November 1, 2012 and
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April 30, 2013, while late participants received rebates on or after November 1st, 2013. The

results show no dramatic changes when we redefine groups.

Figure 2.6 shows the average cooling behaviors in 2012 and 2013 for each of the household

groups. In the “Treated” groups, average households have higher probabilities of turning on

their ACs in 2013 than in 2012, starting from around 67 degrees, showing behavioral evidence

of the rebound effects. In contrast, the gaps are much smaller between average cooling

behaviors in 2013 vs 2012, for households in the “Late Participants”, “Early Participants”

and “Non Participants” groups. Notice that, under around 67 degrees, the probabilities of

turning on ACs are higher in 2012 than 2013 for all groups. One potential explanation is

we restrict every household to potentially turn on its AC only for temperatures of 60◦F and

above. However, in the real world, households might choose to turn on their ACs on days

with average daily temperatures below 60◦F making it hard to separate cooling energy use

and non-cooling energy use when temperature is mild. As a result, our measures of cooling

behavior under 70 degrees are not well defined. When temperature increases, the difference

between cooling and non-cooling consumption becomes easier to detect by the EM algorithm.

Figure 2.7 plots the differences between the pairs of cooling behaviors showed in Figure

2.6, along with point-wise confidence intervals generated by the two-sample t-test. It sug-

gests that at daily average temperatures above 70 degrees, the behavioral changes are often

significant for the “Treated” groups, but not quite so for the other groups. The pattern of

the differences is also interesting. The probability increase for the “Treated” group takes off

from 67 degrees and then almost stabilizes after 75 degrees.

Figure 2.8 depicts estimates of total effects, direct effects, and rebound effects, using

the measures that were defined in Section 2.3.3, which are B13
h (temp) × C2013

h (temp) −

B2012
h (temp) × C2012

h (temp), B2012
h (temp) × C2013

h (temp) − B2012
h (temp) × C2012

h (temp), and

B2013
h (temp) × C2013

h (temp) − B2012
h (temp) × C2013

h (temp), respectively. We calculate these

metrics for each household and then calculate the means along with 95% confidence intervals

based on t-distributions. The plots show statistically significant total effects, direct effects,
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and rebound effects for the treated group. Moreover, the rebound effects increase when

temperature is high. This is a result from our linear cooling functions. As shown in Figure

2.5, the higher the daily average temperature is, the more cooling consumption is conserved

after upgrading AC units. Meanwhile, we observe no significant rebound effects from other

groups.

Notice that late participants exhibit significant and slightly negative total and direct

effects. Again, this is because some households who upgraded their AC units in 2013 summer

but apply for rebates after Oct 1st, 2013 were categorized as late participants. The early

participants and non-participants had no significant change in consumption across the two

years. In order to quantify total, direct and rebound effects, we move to DiD analysis in the

next section.

2.4.2 Difference in Differences (DiD) Regression Results

Figure 2.9 shows the distribution of the predicted total changes in cooling energy use (T̂Ch =

̂TCE2013
h − ̂TCE2012

h ). Negative total changes correspond to decreases in total cooling energy

use from 2012 to 2013. In the densities for each of the other groups, the total changes center

around 0 while the treated group’s density peaks at a negative value. The households in

the treated group are more likely to have decreased their cooling energy use, compared with

other groups.

In Table 2.4 we jointly present total effects, direct effects and rebound effects. These

estimates are γ̂ from Equation (2.4), (2.5), and (2.6). Detailed regression results for the

three equations can be found in Appendix 2.A.1. We run regression on four different sam-

ples in which the treated group is compared with combinations of Early Participants, Late

Participants, and Non-participants.

The total effects for different comparison groups are estimated to be 347.10, 383.62,

442.95, and 420.86 kWh, in one summer, respectively.14 The direct effects are estimated to
14To put these numbers into perspective, recall that we use 192 higher-than-60 days in 2012 as our temperature

vector in generating the predictions. Thus these total effects correspond to 1.81, 2.00, 2.31, and 2.19 kWh
per day. If we apply a flat rate of $0.128 per kWh (see Novan and Smith (2018)), households will save $6.95,
$7.68, $8.87, and $8.41 per month (30 days) during summer.
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be 437.21, 456.99, 497.02, and 482.12 kWh. It is not surprising to see that comparing non-

participants with the treated group yields the greatest estimate of total and direct effects,

as the non-participants on average have slightly smaller houses and historically consume less

electricity than AC rebate program participants.

On average, across the four comparison groups we would expect to see rebound effects

of 90.11, 73.38, 54.07, and 61.26 kWh over the 192 days of summer 2012. These numbers

correspond to 20.61%, 16.01%, 10.88%, and 12.71% of the direct effects when we contrast

the treated group with the various comparison groups.

2.4.3 Social cost savings and private gains

Gains from the SMUD AC rebate program are two-fold. On the one hand, AC upgrading

increases the households’ cooling efficiency during warm months. This could reduce the

cost of producing energy (i.e., private generation costs and external costs). On the other

hand, households gain welfare by paying less bills (decreases in total expected cooling energy

use. i.e., the total effects on average across households are negative) and by consuming more

electricity but enjoying cooler in-house temperatures (positive average rebound effects across

households).

Follow Novan and Smith (2018), we define the change in the social cost of household h

in day i as:

∆Social costh(tempi) = (ρi + µ) · [B2013
h (tempi)× C2013

h (tempi)−B2012
h (tempi)× C2012

h (tempi)]

(2.7)

where ρi and µ denote the marginal private cost of supplying electricity and the marginal

external cost of supplying electricity. For ρi, we use the average locational marginal price

(LMP) during 6 p.m. through 9 p.m. in day i, when the majority of the cooling savings

occur (see Figure 2 in Novan and Smith (2018)).15 Given that natural gas fired generators
15In addition to the savings from the marginal private cost of supplying electricity and the marginal external

cost of supplying electricity, the SMUD’s AC upgrading program may also provide avoided costs in generation
capacity. However, as estimated in Novan and Smith (2018), the avoided capacity costs from a typical
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are on the margin the vast majority of time (particularly during the period being studied),

it is sensible to focus on avoided costs in CO2 generation for the estimation of the external

pollution cost per kWh µ. The CO2 rate for a typical combined cycle natural gas generator

is roughly 0.44 tons CO2/MWh. If we assume that a ton of CO2 has an external cost

of $50/ton, then that would imply that each kWh of electricity avoided would reduce the

external costs from CO2 emissions by 2.2 cents per kWh:

$50/ton · 0.44tons/MWh · 1MWh/1000kWh = $0.022/kWh

Follow this method and results (i.e., total effects in equation 2.4) from our main spec-

ification, and summing up social cost changes over date i (recall that there were 192 such

days in 2012), the average social costs saving across households is estimated at $31.58 per

summer.

To measure private welfare gains, we first focus on the household’s savings in electricity

bills. For a household h, savings from upgrading AC units are the product of the tiered price

ph and the changes in total consumption across warm months (i.e., i = 1,...,n):

∆Private costh =
n∑

i=1

ph · [B2013
h (tempi)× C2013

h (tempi)−B2012
h (tempi)× C2012

h (tempi)]

(2.8)

SMUD provides two rate categories. For households which consume less than 700 kWh

per month during June 1st to September 30th, the rate is 9.89 ¢/kWh, and 18.03 ¢/kWh

otherwise. We determine a household’s rate tier ph by calculating their 2012 monthly average

electricity consumption during 2012. As shown in Figure 2.10, most households fall in the

second tier and pay 18.03 ¢/kWh during the 2012 summer season. On average, households

pay $94.90 less in one summer after upgrading their AC units. Another important channel for

household in the sample is on the order of $0.20 per month, which is almost negligible compared to other
social cost savings and private gains. Hence, we do not include the avoided generation capacity costs in our
calculation.
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private welfare gains is the rebound effects. Households sacrifice some of their direct effects

(DSh in the previous section) by turning on their AC more often during warm months to gain

cooler in-house temperatures. The welfare gains for household h from the rebound effects

can be estimated as:

∆Private gainh =
n∑

i=1

ph · [B2013
h (tempi)× C2013

h (tempi)−B2012
h (tempi)× C2013

h (tempi)]

(2.9)

notations are the same as in equation 2.8 except for we are now multiply tiered prices by

rebound effects REh. The estimated gains on average is $6.80 in a summer. Ignoring this

private welfare gain will understate the benefits of the SMUD AC energy efficiency rebate

program.

2.5 Robustness Checks

2.5.1 Negative predicted cooling energy use

In our results, not all households have positive predicted cooling energy use. That is, one

or more of the four estimates that are used to construct total effects, direct effects, and

rebound effects is negative.16 By construction, the coefficients representing cooling behavior

are positive numbers from 0 to 1. Therefore, the only possible reason for getting negative

cooling energy use is through cooling functions that are negative in tempi. This could happen

if households tend to leave their residence during hot degree days, resulting in a negative

relationship between temperature and electricity consumption.

Table 2.5 shows results after excluding households with negative predicted cooling energy

use. We do not see obvious changes in our estimates of total effects, direct effects and

rebound effects. Detailed regressions results for Equation (2.4), (2.5), and (2.6) are included
16Some households have negative estimated values for

∑n
i=1 B

2012
h (tempi)×C2012

h (tempi);
∑n

i=1 B
2012
h (tempi)×

C2013
h (tempi);

∑n
i=1 B

2013
h (tempi)×C2012

h (tempi);
∑n

i=1 B
2013
h (tempi)×C2013

h (tempi), where tempi are tem-
peratures above 60 degrees in 2012. This reflects negative estimated values for C2012

h (tempi) as discussed in
the text.
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in Appendix 2.A.3.

2.5.2 Parametric cooling behaviors

De Veaux (1989) introduced the EM algorithm to find solutions to mixture of regressions.

In the original EM algorithm, the mixing probability is a constant function (the mean of the

posterior probability after each iteration), which is not ideal for situations such as ours when

the probability of turning on the AC is expected to be an increasing function of temperature.

Nevertheless, the constant mixing probability is easy to understand and implement, and

provides useful insights.

Young and Hunter (2010) improved upon the classic EM algorithm by allowing the mixing

probability to be approximated nonparametrically in terms of the predictor. They used

local polynomial regressions to smooth the posterior probabilities in each iteration. Our

main specification is a special case of their method where the degree of the local polynomial

function is 0 (i.e., local weighted average). Here we consider another specification in which the

mixing probability is a linear function of temperatures. One caveat of using linear functions

is that the estimated probabilities are not guaranteed to be bounded in the interval [0, 1].

This, however, can be easily fixed by forcing all estimates to fall between 0 and 1.

Table 2.6 summarizes regression results, using different functions to estimate the mixing

probability. We include our main results from Table 2.4 for comparison. Overall, more

flexible functions give higher rebound effects. For example, in column (1) where we run DiD

regressions on treated and late participants, the local weighted average function produces

the highest rebound effects among the three methods, while if we use a constant function,

the rebound effect is no longer statistically significant.

Recall that the rebound effect is defined as
∑n

i=1 C
2013
h (tempi)[B

2013
h (tempi)−B2012

h (tempi)]

for each household h. The difference between cooling behaviors across the two summers is

critical for identifying the rebound effects. In Appendix Figure 2.B.4, we can clearly see

that for the treated group, the constant function smooths out the difference in cooling prob-

abilities across the 2013 summer and the 2012 summer, while the difference increases from
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negative to positive when we use the linear mixing probability. Additionally, the linear cool-

ing function C2013
h (tempi) is also increasing in temperatures. Therefore, mixing probability

functions that yield positive probability differences in higher temperatures tend to produce

higher rebound effects.

The linear mixing probability method also produces the highest estimates of total and

direct effects comparing with those estimated under constant and local weighted average

mixing probabilities. Given that the cooling functions are almost identical across all mixing

probability smoothing functions (Appendix Figure 2.B.1 and 2.B.2), it is not surprising that

smoother behavior functions such as constant and local weighted average mixing probabilities

would give lower total and direct effects.

These results confirm that the standard mixture regression algorithm with a constant

mixing probability may not be the appropriate method for our study. Nevertheless, the

constant mixing probability approach also finds that households in the treated group have

a significantly higher probability of turning on their ACs on after upgrading.

2.5.3 Span of local regression

In Section 2.3.2, we describe how we approximate the cooling behaviors using local averages

of the posterior mixing probability. One key parameter for such a procedure is the span,

which is the bandwidth that we use for local averages. In our setting, we apply the default

setting in the R loess package to set the span as 0.75, which means for each data point, the

nearest 75% data points are used to calculate the weighted local average. Here we present

regression results from two other specifications where the span is set to be 0.6 and 0.9.17

Table 2.7 presents results with alternative spans, we again include our main results (with

span equals 0.75) as a benchmark. Overall, conclusions from our main specification holds

when we switch span from 0.75 to 0.6 and 0.9, although the significance levels and magnitudes

of rebound effects increases as we narrowing bandwidths. The same intuition in the previous
17The optimal span for each household-year data can be found by cross-validations. However, cross-validations

are computationally expensive to implement given our sample size and will not necessarily produce a clearer
pattern in cooling behaviors than our current method when averaging across all households. Therefore, we
proceed with our current method and use the same span for every household-year.
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section also applies here. When we use a span of 0.9, we incorporate more data points to

approximate behaviors at every temperature. As a result, the cooling behavior functions

(B(temp)) become smoother than those estimated under a span of 0.6 or 0.75. Smoother

mixing probabilities yield smaller rebound effects. In Appendix 2.B.2, the cooling functions

for the different groups are almost identical under alternative spans. The span has more

observable impacts on the cooling behaviors.

2.6 Conclusion
In this chapter, we estimate the total, direct and, rebound effects of the AC Energy Efficiency

rebate program implemented in the SMUD serving area. The average participating household

saved 347.10 kWh in one summer (1.81 kWh per day when the temperature is above 60◦F).18

Average direct effects and rebound effects are estimated to be 437.21 kWh and 90.11 kWh

in one summer, which translate to a 20.81% direct rebound effect from the AC upgrades.

Cooling curve estimation shows that the AC upgrades program is effective in improving the

electricity efficiency. Cooling behavior estimation shows that households turn on their new

AC more often, which leads to the rebound effects. We examine alternative specifications

regarding our sample, functions of mixing probabilities, and local polynomial regression

spans. Our main conclusions do not change and are robust under various settings.

Our analysis is not intended to be a comprehensive evaluation of the SMUD’s AC Energy

Efficiency rebate program. For that purpose, we would need to also model program partic-

ipation. 19 Rather, it serves as an estimation of the treatment effects on treated and the

main goal is to shed light on the sizes of rebound effects in the context of energy efficiency

programs.

Our methodology has much potential in the future. As utilities more and more commonly

use smart meters, more future research can be done to validate our results. It also has the

potential to help target subgroups of households and increase the effectiveness of energy
18The average daily saving is calculated by diving 347.10 kWh by 192 days.
19See works of Hartman (1988); Mills and Schleich (2010); Train (1988)
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efficiency programs or other policies such as information provision.
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2.7 Figures

Note: We observe the hourly temperatures from a NOAA station at the Sacramento Interna-
tional Airport and calculate the daily temperatures by averaging hourly temperatures.

Figure 2.1: Average daily temperature (◦F) in Sacramento during 2012-2013
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Figure 2.2: Rebate mailing dates histogram
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(a) cooling function

(b) cooling behavior

Figure 2.3: An example fit of the household-level model
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Note: For each premise, we estimate its cooling functions in 2012 and 2013. These linear
functions are then aggregated by household types and averages are plotted.

Figure 2.4: Average cooling functions in 2012 and 2013
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Note: For each premise, we estimate its cooling functions in 2012 and 2013, and then calculate
the difference by subtracting the 2012 cooling function from the 2013 cooling function. Dif-
ferences across households are aggregated by household types and averages are plotted. The
shaded areas are 95% confidence intervals generated from two-sample t tests.

Figure 2.5: Difference between 2012 and 2013 cooling lines and two-sample t test C.I.
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Note: For each premise, we estimate its behavior functions in 2012 and 2013. These behavior
functions are then aggregated by household types and averages are plotted.

Figure 2.6: Average cooling behaviors in 2012 and 2013
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Note: For each premise, we estimate its behavior functions in 2012 and 2013, and then calculate
the difference by subtracting the 2012 behavior function from the 2013 behavior function.
Differences across households are aggregated by household types and averages are plotted. The
shaded areas are 95% confidence intervals generated from two-sample t tests.

Figure 2.7: Difference between 2012 and 2013 cooling behaviors and two-sample t test C.I.
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Figure 2.8: Total effects, direct effects and rebound effects by groups (mean and C.I.)
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Figure 2.9: Density of total changes prediction by groups
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Note: SMUD adopted two rates for its customers during the summer season (June 1 – Septem-
ber 30). For households with monthly consumption below 700 kWh, 9.89 ¢/kWh will be charged,
and 18.03 ¢/kWh otherwise. The red line in the plot shows the cutoff kWh, i.e., 700 kWh. Most
households consume more than 700 kWh in the 2012 summer season.

Figure 2.10: Number of households by average monthly consumption during June 1st and
September 30th, 2012
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2.8 Tables

Table 2.1: Mean and standard deviation of household characteristics

Characteristics Non-participants Participants
observations 3143 5684
2011 consumption (kWh) 9512.00 10167.46

(6363.83) (5016.86)
built in (year) 1976.25 1974.24

(21.46) (18.81)
number of bedrooms 3.25 3.36

(0.97) (0.75)
number of rooms (total) 6.46 6.61

(1.70) (1.37)
number of stories 1.25 1.24

(0.43) (0.42)
size (square feet) 1746.69 1794.35

(678.96) (642.99)

Source: Sacramento county assessor data
Note: Standard deviations in parentheses
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Table 2.2: Mean and standard deviation of household characteristics (participants)

Characteristics Early Participants Late Participants Treated
observations 703 1161 1300
2011 consumption (kWh) 10132.59 10233.51 10118.07

(5144.41) (5301.90) (4899.18)
built in (year) 1972.27 1973.83 1973.21

(19.15) (19.52) (18.85)
number of bedrooms 3.35 3.39 3.35

(0.78) (0.76) (0.74)
number of rooms (total) 6.58 6.69 6.57

(1.39) (1.42) (1.34)
number of stories 1.22 1.25 1.22

(0.41) (0.43) (0.41)
size (sqft) 1776.04 1842.50 1774.73

(645.57) (679.28) (620.61)

Notes: Standard deviations in parentheses
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Table 2.3: Number of premises by groups

Group Obs.
Early Participants 703
Late Participants 1161
Non-participants 3143
Summer 2012 1189
Summer 2013 1331
Treated 1300
Total 8827
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Table 2.4: DiD regression results with different comparison groups

(1) (2) (3) (4)
Total effects -347.10 *** -383.62 *** -442.95 *** -420.86 ***

(43.85) (37.02) (36.28) (32.91)
Direct effects -437.21 *** -456.99 *** -497.02 *** -482.12 ***

(39.02) (32.06) (29.70) (27.74)
Rebound effects 90.11 ** 73.38 ** 54.07 ** 61.26 **

(36.27) (30.50) (25.97) (26.20)
Observations 2461 3164 4442 6306
Comparison groups:
Late Participants ✓ ✓ ✓
Early Participants ✓ ✓
Non-participants ✓ ✓

Standard errors in parentheses;
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 2.5: DiD regression results with different comparison groups (exclude households with
negative predicted cooling energy use)

(1) (2) (3) (4)
Total effects -364.71 *** -401.97 *** -460.95 *** -438.46 ***

(43.84) (36.90) (35.28) (32.19)
Direct effects -449.87 *** -470.87 *** -514.80 *** -498.05 ***

(38.30) (31.35) (27.86) (26.40)
Rebound effects 85.16 ** 68.90 ** 53.85 ** 59.59 **

(36.78) (30.86) (26.53) (26.67)
Observations 2401 3095 4231 6058
Comparison groups:
Late Participants ✓ ✓ ✓
Early Participants ✓ ✓
Non-participants ✓ ✓

Standard errors in parentheses;
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 2.6: DiD regression results with different mixing probability functions

(1) (2) (3) (4)
constant
Total effects -362.17 *** -386.40 *** -443.78 *** -422.42 ***

(45.55) (38.57) (37.48) (34.16)
Direct effects -411.30 *** -433.16 *** -479.13 *** -462.01 ***

(34.18) (28.35) (29.02) (25.95)
Rebound effects 49.13 46.76 35.34 39.59

(33.85) (28.93) (26.74) (25.61)
linear
Total effects -373.11 *** -427.03 *** -519.00 *** -484.76 ***

(40.07) (33.59) (34.02) (30.33)
Direct effects -458.32 *** -489.42 *** -552.24 *** -528.85 ***

(35.99) (29.92) (31.13) (27.53)
Rebound effects 85.21 *** 62.39 *** 33.24 ** 44.10 ***

(15.48) (13.42) (16.08) (14.24)
local weighted average
(main results)
Total effects -347.10 *** -383.62 *** -442.95 *** -420.86 ***

(43.85) (37.02) (36.28) (32.91)
Direct effects -437.21 *** -456.99 *** -497.02 *** -482.12 ***

(39.02) (32.06) (29.70) (27.74)
Rebound effects 90.11 ** 73.38 ** 54.07 ** 61.26 **

(36.27) (30.50) (25.97) (26.20)
Observations 2461 3164 4442 6306
Comparison groups:
Late Participants ✓ ✓ ✓
Early Participants ✓ ✓
Non-participants ✓ ✓

Standard errors in parentheses;
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 2.7: DiD regression results with different spans

(1) (2) (3) (4)
span = 0.6
Total effects -319.22 *** -363.76 *** -435.98 *** -409.09 ***

(42.32) (35.80) (35.89) (32.33)
Direct effects -439.44 *** -468.45 *** -502.32 *** -489.71 ***

(38.95) (32.53) (29.96) (28.19)
Rebound effects 120.22 *** 104.69 *** 66.34 *** 80.62 ***

(34.75) (29.79) (24.57) (25.17)
span = 0.75 (main results)
Total effects -347.10 *** -383.62 *** -442.95 *** -420.86 ***

(43.85) (37.02) (36.28) (32.91)
Direct effects -437.21 *** -456.99 *** -497.02 *** -482.12 ***

(39.02) (32.06) (29.70) (27.74)
Rebound effects 90.11 ** 73.38 ** 54.07 ** 61.26 **

(36.27) (30.50) (25.97) (26.20)
span = 0.9
Total effects -350.06 *** -379.05 *** -440.02 *** -417.32 ***

(45.00) (37.94) (37.15) (33.75)
Direct effects -433.40 *** -451.12 *** -487.85 *** -474.17 ***

(38.50) (31.70) (29.26) (27.47)
Rebound effects 83.34 ** 72.07 ** 47.83 * 56.86 **

(37.48) (31.53) (25.92) (26.45)
Observations 2461 3164 4442 6306
Comparison groups:
Late Participants ✓ ✓ ✓
Early Participants ✓ ✓
Non-participants ✓ ✓

Standard errors in parentheses;
* p < 0.1, ** p < 0.05, *** p < 0.01

85



2.A Additional Regression Tables

2.A.1 Main specification

Table 2.A.1: Details of DiD regression results

(1) (2) (3) (4)

Equation 2.4

Total cooling energy use change (β̂2) -113.21 *** -76.70 *** -17.36 -39.45 ***
(31.87) (23.73) (19.63) (14.94)

Total effects -347.10 *** -383.62 *** -442.95 *** -420.86 ***
(43.85) (37.02) (36.28) (32.91)

Equation 2.5

Cooling energy use change -66.49 ** -46.71 ** -6.68 -21.59 *
- due to cooling curves (β̂2) (28.36) (20.55) (16.06) (12.60)
Direct effects -437.21 *** -456.99 *** -497.02 *** -482.12 ***

(39.02) (32.06) (29.70) (27.74)

Equation 2.6

Cooling energy use change -46.72 * -29.98 -10.68 -17.86
- due to behavior changes (β̂2) (26.36) (19.55) (14.05) (11.90)
Rebound effects 90.11 ** 73.38 ** 54.07 ** 61.26 **

(36.27) (30.50) (25.97) (26.20)
Observations 2461 3164 4442 6306

Comparison groups:

Late Participants ✓ ✓ ✓

Early Participants ✓ ✓

Non-participants ✓ ✓

Standard errors in parentheses;
* p < 0.1, ** p < 0.05, *** p < 0.01
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2.A.2 Different rebate dates
In our main text, we define the treated group and late participants based on their rebates
mailing dates on or after October 1. In the table below, we report results with the cutoff
dates changed to October 15 and November 1. Total effects, direct effects, and rebound
effects are comparable (within 95% confidence intervals across specifications). Notice that
the significance levels of rebound effects decrease as we move the rebate dates to later dates.
This could result from sample sizes becoming smaller as we redefine groups.

Table 2.A.2: DiD regression results with rebate dates

(1) (2) (3) (4)
October 1st
Total effects -347.10 *** -383.62 *** -442.95 *** -420.86 ***

(43.85) (37.02) (36.28) (32.91)
Direct effects -437.21 *** -456.99 *** -497.02 *** -482.12 ***

(39.02) (32.06) (29.70) (27.74)
Rebound effects 90.11 ** 73.38 ** 54.07 ** 61.26 **

(36.27) (30.50) (25.97) (26.20)
Observations 2461 3164 4442 6306
October 15th
Total effects -371.69 *** -404.96 *** -452.55 *** -435.66 ***

(45.25) (37.46) (36.36) (33.07)
Direct effects -462.36 *** -475.62 *** -502.35 *** -492.87 ***

(40.89) (32.84) (29.79) (28.02)
Rebound effects 90.67 ** 70.67 ** 49.80 * 57.21 **

(37.78) (31.11) (26.07) (26.40)
Observations 2311 3014 4427 6156
November 1st
Total effects -413.94 *** -437.72 *** -467.19 *** -457.24 ***

(47.53) (38.68) (37.95) (34.56)
Direct effects -494.85 *** -498.39 *** -510.29 *** -506.27 ***

(43.73) (34.32) (31.10) (29.39)
Rebound effects 80.91 ** 60.67 * 43.09 49.03 *

(40.88) (32.94) (27.41) (27.86)
Observations 2039 2742 4281 5884
Compare groups:
Late Participants ✓ ✓ ✓
Early Participants ✓ ✓
Non-participants ✓ ✓

Standard errors in parentheses;
* p < 0.1, ** p < 0.05, *** p < 0.01
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2.A.3 Exclude negative predicted cooling energy use

Table 2.A.3: Details of DiD regression results (excluding negative cooling energy use)

(1) (2) (3) (4)

Equation 2.4

Total cooling energy use change (β̂2) -111.42 *** -74.16 *** -15.18 -37.68 **
(31.86) (23.62) (19.31) (14.73)

Total effects -364.71 *** -401.97 *** -460.95 *** -438.46 ***
(43.84) (36.90) (35.28) (32.19)

Equation 2.5

Cooling energy use change -71.77 *** -50.77 ** -6.84 -23.60 *
- due to cooling curves (β̂2) (27.84) (20.07) (15.25) (12.08)
Direct effects -449.87 *** -470.87 *** -514.80 *** -498.05 ***

(38.30) (31.35) (27.86) (26.40)

Equation 2.6

Cooling energy use change -39.65 -23.39 -8.34 -14.08
- due to behavior changes (β̂2) (26.73) (19.75) (14.53) (12.20)
Rebound effects 85.16 ** 68.90 ** 53.85 ** 59.59 **

(36.78) (30.86) (26.53) (26.67)
Observations 2401 3095 4231 6058

Comparison groups:

Late Participants ✓ ✓ ✓

Early Participants ✓ ✓

Non-participants ✓ ✓

Standard errors in parentheses;
* p < 0.1, ** p < 0.05, *** p < 0.01
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2.B Robustness Check Plots

2.B.1 Cooling behavior functions

(a) constant

(b) linear

Figure 2.B.1: Cooling functions by groups
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(a) constant

(b) linear

Figure 2.B.2: Differences in cooling functions and C.I.
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(a) constant

(b) linear 20

Figure 2.B.3: Cooling behaviors by groups

20For each household, we estimate their posterior mixing probability using a linear function in temperatures.
Since each household may have their predicted cooling probability greater than 1 at different temperatures,
the average of these functions becomes non-linear. Hence, we have concave functions shown above.
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(a) constant

(b) linear

Figure 2.B.4: Differences in cooling behaviors and C.I.
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2.B.2 Cooling functions and cooling behaviors for different spans

(a) span = 0.6

(b) span = 0.9

Figure 2.B.5: Cooling functions by groups
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(a) span = 0.6

(b) span = 0.9

Figure 2.B.6: Differences in cooling functions and C.I.
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(a) span = 0.6

(b) span = 0.9

Figure 2.B.7: Cooling behaviors by groups
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(a) span = 0.6

(b) span = 0.9

Figure 2.B.8: Differences in cooling behaviors and C.I.
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Essay 3

R&D Lags in Economic Models: Theory

and Assessment using Data for U.S.

Agriculture

3.1 Introduction
Innovation resulting from organized investments in R&D is at the center of contemporary

models of economic growth and is a focus of econometric models of research-induced in-

creases in productivity in agriculture and other industries. Although these branches of

applied economics share a common heritage-from work done decades ago by economists like

Zvi Griliches, Edwin Mansfield, Jora Minasian, Robert Solow, and Theodore Schultz-, nowa-

days they employ quite different conceptual and empirical models to represent the process

by which today’s investments in R&D influence the future time path of productivity and

economic growth. These substantial differences in models can be characterized, formally,

in terms of differences in the detail of the specification of the R&D lag structure, which

transforms measures of past and present investments in R&D into an R&D knowledge stock

that affects current productivity.

In a related paper, Alston et al. (2022) flesh out those differences and explore their ori-
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gins and implications, taking a broad perspective and drawing on a range of evidence about

particular technologies. In the present paper, we focus more narrowly on comparing these

alternative models empirically, using a particular data set for U.S. agriculture. These are

high-quality data in a comparatively long time-series, which is advantageous for drawing

comparisons among the alternative models that differ substantively in terms of their as-

sumptions regarding lag length and shape. Our findings using agricultural data are relevant

beyond agriculture; they are informative about comparable relationships for the economy

as a whole and the many other industries for which comparably useful data have not been

available.

3.2 Data
We compare the alternative models in an application to U.S. agriculture, drawing on long-run

data developed specifically for use in models like these by colleagues at the International Sci-

ence and Technology Practice and Policy (InSTePP) Center at the University of Minnesota.

The data used in our analysis include (1) an annual index of U.S. agricultural multifactor

productivity (MFP) for the period 1910–2007, obtained from InSTePP; (2) measures of ag-

gregate annual U.S. public agricultural R&D investments and the associated R&D deflator

for the period 1890–2007, also sourced from InSTePP; and (3) a purpose-built weather index,

which we compute based on crop yield data from the National Agricultural Statistics Service

(NASS) of the United States Department of Agriculture (USDA), USDA-NASS (2017).

3.2.1 Multifactor Productivity Index

The InSTePP multifactor productivity (MFP) indexes are Fisher ideal discrete approxima-

tions of Divisia indexes derived from detailed data on quantities and prices of inputs and

outputs in U.S. agriculture. Version 5 of the InSTePP data consists of annual observations

of state-specific prices and quantities of 74 categories of outputs and 58 categories of inputs

for the 48 contiguous U.S. states from 1949 to 2007, and a corresponding national aggre-

gate. To obtain a longer time series for the national aggregate, MFP is backcast to 1910

using year-to-year changes in the Laspeyres indexes of MFP for the period 1910–1949 from

98



USDA-ERS (1983). More details on the construction and backcasting of this MFP index

can be found in the book by Alston et al. (2010) and the online appendix of Pardey and

Alston (2021).

3.2.2 Public Agricultural R&d Investment

InSTePP also provides data on U.S. public agricultural research expenditures for the period

1890–2007, primarily reflecting funding from the federal government to support intramural

research undertaken by USDA, and from both federal and state governments to provide for

R&D undertaken by the State Agricultural Experiment Stations (SAESs), affiliated with

land grant universities.1 As well as funds from various federal and state government agen-

cies, SAESs obtain funding from industry grants and contracts and income earned from

sales, royalties, and various other sources. During the period 1903–1942, USDA intramural

research and SAES research contributed almost equally to total public agricultural research

spending in the United States. However, since WWII the paths have diverged, and SAES

research spending has increasingly exceeded federal intramural research spending, peaking

at 75 percent of total public agricultural R&D spending in 2002 (Pardey et al. 2013 and

2017).2

3.2.3 Agriculturally Relevant Weather Shocks

Year-to-year fluctuations in crop yields around trend are highly influenced by weather (Bed-

dow et al. 2014), making yield deviations from trend a useful proxy of the transient agri-

cultural productivity effects of weather. Our composite index of crop yield deviations from

trend is based on an area-weighted average yield for the years 1940–2007, calculated using

yield data for the top 10 crops (by harvested area) taken from USDA-NASS (2017). First,

we ranked all 44 field crops in the USDA-NASS (2017) listing according to their average

annual harvested areas for the period 1940–2007. Then we selected the top 10 field crops

by area (accounting for 78 percent of total harvested area), namely: corn, hay, wheat, soy-
1For our analysis in this paper, expenditures were converted to constant (2019-dollar) values using the In-
STePP R&D price deflator (unpublished series, updated from Pardey et al. 1989).

2More detail on these data and the history of U.S. agricultural R&D investments can be gleaned from Alston
et al. (2010, chapter 6) and Pardey et al. (2013).
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beans, oats, cotton, sorghum, barley, rice and flaxseed. Since yields vary considerably across

crops, we used standardized yields for each crop.3 These standardized annual crop yields

were aggregated by years using as weights each crop’s annual share of the total value of pro-

duction (also from USDA-NASS, 2017). The resulting series was then used in the following

time-trend regression:4

yieldt = α + Tt + T 3
t + εt (3.1)

where yieldt is aggregated standardized yield in year t, and Tt is the time trend created

by calendar year minus 1939. We constructed the agricultural weather index in year t as a

composite of yield deviations from trend: yieldt−ŷieldt, where: yieldt is the weighted average

of the observed yields, aggregated across crops, and ŷieldt is fitted yields from equation (1).

In Figure 3.3 the fitted aggregated yield, ŷieldt is plotted against the observed aggregated

yield, yieldt. U.S. agriculture suffered an extended drought in the 1950s (see, e.g., Nace and

Pluhowski 1965), and the year 1988 was a severe drought year (see, e.g., GAO 1989), as is

apparent in both the yield index and the plot of deviations around it.

3.3 Economic Models of Knowledge Stocks
Economic studies linking R&D to productivity implicitly or explicitly entail a model in which

multifactor productivity (MFPt) depends on flows of services from an R&D knowledge stock,

Kt, as well as other factors, Xt:

MFPt = f(Kt;Xt) (3.2)
3Standardized annual yields were computed by subtracting the mean of the series from each observation and
dividing by the standard deviation of the series to reduce the effects of differences in average yields among
crops.

4Alternative specifications were tried. In particular, we estimated models that included the following terms
on the right-hand side of equation (1) besides the constant coefficient α: (a) a linear time trend Tt; (b) a
linear time trend Tt and a quadratic time trend Tt

2; (c) a linear time trend Tt, a quadratic time trend Tt
2,

and a cubic time trend Tt
3. All these specifications, including the one in equation (1), are not statistically

significantly different from one another based on F tests. However, equation (1) results in a slightly higher
adjusted R2 and a slightly lower AIC, which indicates a better fit to our data. Detailed results are included
in Appendix Table (3.A.1)
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In the typical application, a double-log form is imposed in which the parameters are elastic-

ities:

lnMFPt = β0 + βK lnKt + βX lnXt + εt (3.2’)

Different assumptions about the processes of creation and utilization of knowledge can

be characterized as different parameterizations of the R&D lag structure whereby past and

present R&D investments contribute to the stock of knowledge in use today. Applying

notation from Alston et al. (2011), the knowledge stock in year t, Kt, can be characterized

as:

Kt =
∞∑
k=0

bkRt−k (3.3)

where bk is the weight assigned to lag period k, and Rt−k is the real (or inflation-adjusted)

public agricultural R&D investment in year t− k, and (in most cases) these weights sum to

one:
∞∑
k=0

bk = 1 (3.4)

We are interested in three main categories of models, allowing for some variation within

categories, namely: agricultural R&D models, industrial R&D models, and growth theory

models. We characterize the differences among these models in terms of differences in the

attributes of R&D lag distributions that are imposed implicitly or explicitly: (1) the total

lag length, (2) a gestation lag period before research investments begin to contribute to the

knowledge stock, (3) restrictions imposed on the functional form of the distribution, and (4)

parameters associated with the functional form. In what follows we compare stereotypical

examples of the lag structures used in agricultural R&D models, industrial R&D models, and

growth theory models both conceptually and in an empirical application using agricultural

data.

3.3.1 Agricultural R&D Models

As discussed by Alston et al. (2022a), in applications to U.S. agriculture over the past half

century (since Evenson 1967) it has been conventional to model agricultural productivity as
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a function of an R&D knowledge stock. The current knowledge stock in use, Kt in year t, is

represented by lagged investments in agricultural R&D, with rising and falling lag weights

reflecting successive phases of research, development, adoption, depreciation and disadoption

of the resulting innovations. Though some have tried free-form weights the great majority of

the hundreds of agricultural R&D studies have imposed a structure on the lag distribution so

it can be represented by just a few parameters (see, e.g., Alston et al. 2022).5 As discussed

by Pardey et al.(2010), from early beginnings with quite simple models and short lags the

models have evolved to allow for longer lags and more complex shapes.

The two predominant models in use nowadays are the 35-year trapezoidal lag distribution

model introduced by Huffman and Evenson (1993) thirty years ago, and the 50-year gamma

lag distribution model proposed more recently by Alston et al. (2010). Alston et al. (2011)

compared these two models applied to U.S. state-level MFP data for the period 1949–2007

from InSTePP, and found in favor of a gamma lag distribution model with a peak lag

considerably later than that for the trapezoidal lag model, though otherwise reasonably

similar in shape. Both of these models have initial periods of several years with negligible

or zero impact of R&D on productivity (a gestation lag or a pre-technology research and

development lag) followed successively by a period of rising impact (the adoption lag), and

eventually a period of declining impact (reflecting disadoption and depreciation of knowledge

in use), truncated to zero at 35 years (the trapezoidal lag distribution model) or 50 years

(the 50-year gamma distribution).

In this paper we take the 50-year gamma lag distribution model from Alston et al.

(2011) as our starting point—albeit here applied to the national aggregate data rather than

state-level data, excluding investments in extension to make for more direct comparability

to models applied to other sectors of the economy, and including an additional 10 years

of data.6 Given a 50-year lag, our first knowledge stock observation in 1940 is a weighted
5Alston et al. (2022b) report that 540 out of 2,963 estimates of rates of return to agricultural R&D were
derived from models using free-form lags.

6With a maximum lag of 50 years, and R&D data for the period 1890–2007, we can potentially estimate
models for the period 1940–2007. However, Alston et al. (2011) had state-level MFP data beginning in 1949
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average of public R&D investments from 1890 to 1940, while the last observation in 2007

is a weighted average of investments from 1957 to 2007. With these measures of knowledge

stocks, we can estimate models of MFP using annual data for 1940 to 2007.

Some studies (e.g., Andersen and Song 2013; Khan and Salim 2015) have imposed the

specific gamma lag distribution model weights, as estimated by Alston et al. (2011) in other

contexts, whether using similar or totally different data. Here, we are using a somewhat

different model (i.e., including a different weather index, applied to a single time-series of

national aggregate data rather than in a panel of state-level data, and excluding extension

expenditures) to model changes in agricultural MFP over a different time period (1940–2007

rather than 1949–2007). Therefore, we opted to re-estimate the gamma lag distribution

parameters, using a grid search procedure as done by Alston et al. (2011) across 64 com-

binations given by 8 values each for the two gamma distribution coefficients. We also tried

the Huffman and Evenson (1993) trapezoidal lag model with its specific lag weight structure

applied to these different data.

3.3.2 Industrial R&D Models

In models applied to studies of returns to research in other industries, the predominant R&D

lag model in use is quite different: it is a perpetual inventory model (see, e.g., Hall 2010;

Li and Hall 2018; Serfas et al. 2022). In this model, a proportional declining balance or

geometric depreciation rule is used to represent changes in an aggregate stock of knowledge

(Griliches 1980, 1986). As described by Alston et al. (2022a), using δ to denote the de-

preciation rate, and allowing for a gestation lag of g years between research spending and

increments to knowledge such that the current gross increment to knowledge is equal to re-

search expenditure g years ago, the aggregate stock of knowledge evolves over time according

to:

Kt = (1− δ)Kt−1 +Rt−g =
∞∑
s=0

(1− δ)sRt−s−g (3.5)

Equation (3.5) can be seen as a special case of equation (3.3) in which the entire (infinitely

so they were constrained to estimating models for the period 1949–2007.
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long) distribution of lag weights, bk is represented by one parameter, δ (or two parameters if

a nonzero gestation lag is included): bs−g = (1− δ)s. While it is analytically and empirically

convenient, this model imposes strong restrictions on both the length and shape of the

R&D-productivity lag relationship.

As typically used, this model allows little or no time for the sequential processes of

research, knowledge creation, and the development, diffusion and adoption of technology.7

The assumed gestation lag is usually very short (if not absent) as is the effective overall

lag: in the benchmark case, as described by Li and Hall (2018), g ≤ 2 (and more often

zero) and δ = 0.15.8 Research has its maximum impact on productivity immediately or

almost immediately, and thereafter the lag weights decline rapidly given high assumed rates

of knowledge depreciation.

This model seems highly implausible. Why is it so popular? We speculate that the types

of firm- or sectoral-level data typically used in models of industrial R&D are not amenable to

estimating (and testing among) models with more plausible lag distribution models that have

more flexible shapes and longer effective lags. And the perpetual inventory-cum-geometric

lag distribution model is quite convenient for applications using data in a very short time-

series or a cross-section since the current R&D knowledge stock can be calculated using just

the current annual rate of spending, and measures of (or assumptions about) the growth

rate of that spending, and the rate of depreciation of the stock.9

3.3.3 Growth Models

As described by Jones (1995), the R&D-based models of economic growth associated with

Romer (1990), Grossman and Helpman (1991a, b, c), and Aghion and Howitt (1992) all

imply scale effects:“... an increase in the level of resources devoted to R&D should increase
7This remains so in almost all models of industrial R&D lags, even though some 30 years ago, Griliches (1992,
pp. S41–42) declared: “... the more or less contemporaneous timing of such effects is just not possible.”

8Serfas et al. (2022) compiled 1,464 estimates of rates of return from 128 studies of industrial R&D. Of those
1,464 estimates, 97.3% were based on a perpetual inventory model; 88.2%, did not allow for any gestation
lag; 64.4% used a knowledge depreciation rate of δ = 15% per year, and another 4.5% used a δ > 15% per
year.

9The knowledge stock in the base period, T , can be approximated as KT = RT /(δ − θ) where θ is the
applicable (often assumed) growth rate of spending on research.

104



the growth rate of the economy” (Jones 1995, p. 761, emphasis in original). Jones (1995,

p. 760) points out that the “... prediction of scale effects is clearly at odds with empirical

evidence” and attempts to revise the model to address that deficiency. Others also have

found fault with that model and its implausible empirical implications (see, e.g., Jones and

Summers 2020).

These issues notwithstanding, the same (unrevised) model from Romer (1990) was em-

ployed by Bloom et al. (2020) in recent work that included illustrative applications to several

industries, including U.S. agriculture. Specifically, Bloom et al. (2020) presume the current

rate of productivity growth is proportional to the current flow of research effort, represented

by the number of scientists, measured as research spending divided by an index of the wage

rate (which corresponds to R in our notation above). That is, in their equation (1):

Ȧt

At

= αSt (3.6)

In terms of our notation, the growth rate of productivity is measured by MFP, and equation

(3.6) can be written as:
∆MFP t

MFP t

= αRt ≈ d lnMFPt

or, equivalently:

lnMFP t = αRt + lnMFP t−1 (3.6’)

After repeated substitution for the lagged value of equation (3.6’), this can be rewritten as:

lnMFP t = α
∞∑
n=0

Rt−n = αKt (3.7)

where the knowledge stock in year t is equal to the accumulated sum of research spending

up to period t.

This model assumes research investments have their maximum impact on productivity

immediately (i.e., in the same year), without any gestation lag-like the majority of studies
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of industrial R&D but in contrast to almost all the studies of agricultural R&D.10 Further,

it assumes these effects that begin immediately continue undiminished, forever. This is

significantly different from both studies of industrial R&D (which imply typically rapidly,

geometrically declining lag weights) and typical recent studies of agricultural R&D (which

allow for rising and falling lag weights over a 35 to 50-year horizon).11 Also, equation (3.7)

is similar to equation (3.2’) except that the knowledge stock enters linearly rather than in

logarithmic form.

3.3.4 Synopsis of Models - Nested Structure

We have a total of four models to compare, namely: (1) the 50-year (truncated) gamma dis-

tribution model (associated with Alston et al. 2011) with its two parameters to be estimated

using a grid search, (2) the 35-year trapezoidal model with its specific parameterization (as-

sociated with Huffman and Evenson 1993), (3) the geometric model (associated with Hall

et al. 2010 among others) using depreciation rates of δ = 0.10 or 0.15, and (4) the Romer-

Bloom model (associated with Romer 1990 and Bloom et al. 2020 among others). For the

first three of these models (Table 3.1) we impose in common a two-year gestation lag and we

limit the maximum length of the R&D lag to 50 years—as was already imposed by Huffman

and Evenson (1993), by truncating at 35 years, and implicit as an approximation in the

geometric lag model with δ = 0.10 or 0.15 since 0.9050 = 0.005 and 0.8550 = 0.0003. Further,

we divide by the 50-year sum of the weights to obtain normalized weights that sum to 1.0.
10We are aware of just one study contemplating economic growth models and industrial R&D models together,

and ironically it entails an application to agriculture-in Italy. Specifically, Esposito and Pierani (2003) employ
a variant of the perpetual inventory model, with a lag distribution characterized by three parameters: (1)
the knowledge depreciation rate, (2) a parameter that defines the length of the “gestation period” (before
today’s R&D has its maximum impact on future productivity), and (3) a parameter that defines the shape of
the lag distribution during the gestation period. This lag distribution model seems less plausible than either
the gamma lag distribution model or the trapezoidal distribution model, for most cases, but in practice it
might yield similar results.

11Jones and Summers (2020) begin with a model in the same spirit as Romer (1990) and Bloom et al. (2020)
and examine several reasons why the implied benefit-cost ratio may be too high, including a mis-specified
R&D lag model. They say “The above baseline assumes that the payoff from R&D investments occurs
immediately. Yet there may be substantive delays in receiving the fruits of R&D investments” (Jones and
Summers p. 13). “Aggregating across the different types of research, a middle-of-the-road delay estimate
may be 6.5 years ...” (Jones and Summers p. 14). These comments refer to the initial R&D lag and adoption
processes, but do not address the issue of depreciation of knowledge in use.
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For the Romer-Bloom model we do not impose a gestation lag, we do not truncate the lags

at 50 years, and we do not impose the restriction that the lag weights sum to 1 (indeed, they

are all equal to 1).

Specifically, for each of the gamma, trapezoidal, and geometric lag distribution models

we envision the following linear regression model:

ln (MFPt) = β0 + β1 ln (Kt) + β2Wt + Tt + εt (3.8)

where MFPt, Kt, and Wt are, respectively, multifactor productivity, the knowledge stock,

and the agricultural weather index in year t, and Tt is a linear time trend (where 1940 is the

starting point with Tt = 1). In contrast, for the Romer-Bloom model, the knowledge stock

enters additively rather than in logarithms:12

ln (MFPt) = β0 + β1Kt + β2Wt + Tt + εt (3.8’)

In equation (3.8), the growth rate of productivity is proportional to the growth rate of the

knowledge stock, and we can interpret β1 as the elasticity of productivity with respect to

the knowledge stock. However, in equation (3.8’), representing the Romer-Bloom model, the

growth rate of productivity is simply proportional to the knowledge stock, and the elasticity

of productivity with respect to the knowledge stock is equal to β1Kt.13

3.4 Time-Series Properties and Lag Model Selection
Ultimately, we aim to estimate the elasticity of productivity with respect to the knowledge

stock and the implied benefit-cost ratio (BCR) for agricultural R&D, to see how those esti-
12In our regression analysis we try a variant of this model in which we include the Romer-Bloom R&D stock

in logarithms rather than levels, to check the importance of this aspect of the difference between this and
the other seven models. We thank Aaron Smith for prompting us to take this diagnostic step.

13Since the knowledge stock enters linearly and accumulates additively, the estimate of β1 in equation (3.8’)
does not depend on the size of the initial knowledge stock in 1939, or how it is estimated, prior to the first
observation of MFP, in 1940. Changes in the initial knowledge stock will be absorbed as changes in the
intercept without changing any of the slope coefficients. Indeed, for that reason it would be possible to fit
that model using data back to 1910—the first year for which we have data available on both MFP and R
(and hence, K).

107



mates compare among the models that differ in terms of the lag specification, and to make an

informed choice from among those alternatives. Drawing on Andersen and Song (2013), we

propose a systematic method for model selection, which begins with an examination of the

time-series properties of the knowledge stocks from each of our lag distribution models, (in-

cluding 64 gamma lag distribution models, as well as the trapezoidal lag distribution model,

two geometric lag distribution models, and the Romer-Bloom model), and the relationship

with other variables, namely MFP and the agricultural weather index.

Whether we are estimating (3.8) or (3.8’), we are primarily interested in the estimate

of the response of MFP to changes in the knowledge stock, represented by β1. But for

the estimate of β1 to be meaningful, either the sequences of ln (MFPt), ln (Kt) (or Kt for

the Romer-Bloom model), and Wt must be stationary or some linear combination of these

variables must be stationary. Otherwise, we will get what Granger and Newbold (1974)

call spurious regressions resulting in misleading estimates of β1. To address this aspect, we

first test the stationarity of ln (MFPt), its first difference, ∆ ln (MFPt), and Wt using the

GLS-ADF test (a modified version of the augmented Dickey-Fuller test) proposed by Elliott

et al. (1996). Elliott et al. (1996) show that the GLS-ADF test has better power than the

standard ADF test when a linear time trend is present in the data (in Figure 3.1 we can see

a clear trend in ln (MFPt).

The test results are summarized in Table 3.2. In the GLS-ADF test the null hypothesis

is that the time series is nonstationary. The results indicate that Wt is stationary. Although

ln (MFPt) is nonstationary, its first difference (i.e., ∆ln(MFPt)) is stationary, which in-

dicates ln (MFPt) is integrated of order one, I(1). Therefore, to avoid running spurious

regressions, requires that ln (Kt) (or Kt for the Romer-Bloom model) also is I(1) and coin-

tegrated with ln (MFPt).14 The stationarity criterion eliminates 46 of the 64 (i.e., 8 × 8)

parameterizations of the gamma lag model included in our grid search.

Our next step is to test whether ln (Kt) and ln (MFPt) are cointegrated. We opted to
14For the Romer-Bloom model, we perform all the time-series tests with respect to Kt instead of ln (Kt).

108



perform two cointegration tests: the Johansen (1998) test and the Phillips-Perron (1988)

test. The main results are summarized in Table 3.3.15 In brief, only three gamma lag

models (Models 1, 2, and 3 in Table 3.3) pass all the time-series tests. For purposes of

comparison, we also include results for another gamma model (Model 4, using parameters

from Alston et al. 2011), as well as the trapezoidal lag distribution model (Model 5), the

two geometric lag distribution models (Models 6 and 7), the Romer-Bloom model (Model 8),

and a logarithmic variant of the Romer-Bloom model (Model 9), none of which has entirely

satisfactory time-series properties.

In Table 3.3, columns (4) and (5) refer to the results from applying the same time-series

stationarity tests as in Table 3.2, but here with respect to the knowledge stock in order to

determine its order of integration. The numbers in columns (4) and (5) indicate we reject

the null hypothesis at the specific percentage significance levels shown (i.e., 1%, 5%, or 10%).

As discussed above, we require ln (Kt) to be I(1), which implies we should fail to reject the

hypothesis in column (4) but reject the nonstationary hypothesis in column (5). Models 1,

2, 3, 6, and 7 satisfy this criterion for I(1) knowledge stocks.

Next, for the cointegration test, we regress ln (MFPt) on ln (Kt) (or Kt for Model 8)

and run Phillips-Perron tests on the residuals. The null hypothesis is that a unit root is

present in the residuals. The results are shown in column (6) of Table 3.3. Models 1–5

pass this test but Models 6–8 fail. Finally, in Table 3.3, column (7) we denote that a model

passes the Johansen test if it both (1) rejects the hypothesis that there is no cointegrating

equation defined by linearly combining ln (MFPt) and ln (Kt) (or Kt for Model 8), and (2)

does not reject the hypothesis there is no more than one cointegrating equation defined by

the two variables. In other words, ln (MFPt) and ln (Kt) (or Kt for Model 8) form only a

single stationary time series. All of the models except the trapezoidal lag model (Model 5)

pass the Johansen test. Only the four gamma lag distribution models (Models 1–4) and the

logarithmic variant of the Romer-Bloom model (Model 9) pass both the Phillips-Perron and
15Further details regarding test statistics, optimal lags, and critical values are included in Appendix Tables

(3.A.2)–(3.A.4).
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Johansen tests.16

Based on this battery of statistical tests, and our strong priors regarding the general

structure of the R&D lag, our preferred model is a gamma model with γ = 0.75 and λ = 0.80,

designated as Model 1 in Table 3.3 and henceforth. In Figure 3.3, we depict the distribution

of lag weights assigned to past investments for this model and Models 2 through 7 (i.e., all

the models except for the Romer-Bloom model, Model 8). We calculate the peak and average

lag for each model and summarize the information in Table ??. Our preferred gamma model

has its peak at year 13, which implies R&D investments make their greatest contribution to

the useful knowledge stock 13 years later. Although the lag distribution from this model has

a potential lag length of 50 years, its shape is much more similar to that of the trapezoidal

model (Model 5, with an imposed lag length of 35 years) than that of Model 4 (with its

much longer effective lag length), which was preferred by Alston et al. (2010, 2011).

3.5 Correction for Autocorrelation and Heteroskedastic-

ity
As noted by Anderson and Song (2013) in a similar context, ordinary least-squares (OLS)

can provide consistent estimators given stationary relationships among the variables in our

specification. However, the estimators and inferences may be biased if the residuals are not

independent and identically distributed. The residuals from OLS estimates of equation (8)

for the three gamma lag distribution models that pass the time-series tests (Models 1–3) are

plotted in Figure 3.5. Although the knowledge stock differs across these models, the plots of

the residuals are similar. From 1940 to 1970, the models seem to suffer from autocorrelation,

and each of the three residual plots exhibits a wide apparent range of variance. Accordingly,

we conduct tests for heteroskedasticity and autocorrelation, and ultimately utilize estimates

from regression models with corrections for heteroskedasticity and autocorrelation.

Table 3.5 summarizes the results from formal tests for heteroskedasticity and autocorre-
16These cointegration tests are strictly relevant (only for the models that had satisfied the stationarity tests).
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lation for our preferred gamma lag distribution model (Model 1). Test results for the other

models can be found in Appendix Tables (3.A.5) and (3.A.6). To test for heteroskedasticity

we use the White test (for nonlinear forms of heteroskedasticity) and the Breusch-Pagan

test (for linear forms of heteroskedasticity). The null hypothesis is that the errors have a

constant variance. Since we do not have a large data set, we implemented Wooldridge’s

(2015) version of the White test to save degrees of freedom. The results indicate that we

might have a nonlinear heteroskedasticity problem in the error terms: we reject the null

hypothesis of constant error variance null under the White test at a 5% significance level,

though not at 1%. In our OLS and DOLS regressions, we use Newey-West heteroskedastic-

ity and autocorrelation consistent (HAC) standard errors.17 In the regressions that use the

Cochrane-Orcutt procedure or the Prais-Winsten procedure to correct for autocorrelation we

use Eicker-Huber-White standard errors to correct for heteroskedasticity. These corrections

will not affect the point estimates of β1. However, they will affect the confidence intervals.

Durbin-Watson (DW) and Breusch-Godfrey (BG) tests are considered to test for autocor-

relation in the error terms. The DW test can be used to test for a first-order autoregressive

structure in models where the error terms follow a normal distribution and the regressors

are strictly exogeneous. The BG test can be used to test for higher orders of autoregressive

structures, and it also does not require regressors to be strictly exogenous. From the test

results, we reject the null hypothesis that there is no autocorrelation in the error terms up

to the specified lags. The evidence strongly suggests that we should correct for at least first-

order autocorrelation in the error terms, and we consider three options for doing so: dynamic

OLS (Stock and Watson, 1993), the Cochrane-Orcutt procedure, and the Prais-Winsten pro-

cedure. The dynamic OLS method does not specify the order of autocorrelation while the

latter two procedures take care of AR(1) serial correlation in the errors. Compared with the

Cochrane-Orcutt procedure, the Prais-Winsten procedure has the advantage of preserving

the first observation in the data transformation step and, given a small sample size, it might
17We use Newey-West HAC estimators with pre-whitening and a finite sample adjustment. See the R manual

on the function NeweyWest for details.
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produce different results.

3.6 Regression Results, Elasticities and Benefit-Cost Ra-

tios
The dynamic OLS estimates are preferred because this procedure corrects for more general

autocorrelation problems. In Table 3.6, we report complete results for all nine lag dis-

tribution models estimated using dynamic OLS with Newey-West HAC standard errors.18

Corresponding results estimated with OLS, the Cochrane-Orcutt and the Prais-Winsten pro-

cedures are reported in Appendix Tables (3.A.7) – (3.A.9). In Table 3.6, the preferred model

is Model 1, and the other models are presented for purposes of comparison and to illustrate

the consequences of model specification choices.

Estimation methods procedures might also matter for findings. In Table 3.7, we focus

on the estimates of the elasticities of MFP with respect to the knowledge stock from those

same regressions across the nine lag distribution models and the four different estimation

procedures.

3.6.1 Elasticity Estimates

In the OLS estimates (Table 3.7, column (1)), all of the coefficients except one are estimated

quite precisely with small standard errors, they are all in keeping with prior expectations and

the relevant economic theory, and they are quite similar across all but one of the eight models.

The notable and sole exception is the coefficient on the knowledge stock in the Romer-Bloom

model (Model 8) for which the point estimate in column (3) is not statistically significantly
18Stock and Watson (1993) did not provide an empirical procedure for selecting the optimal lags and leads for

the first difference of the cointegrated regressors (i.e., ∆ ln (Kt) = ln (Kt)− ln (Kt−1) for equation (3.8) and
∆Kt = Kt − Kt−1 for equation (3.8’). We follow a data-driven procedure as used by Choi and Kurozumi
(2012) to select the optimal lags and leads. In particular, we first define the maximum numbers of lags and
leads using floor(4 × (T/100)1/4), where floor(x) is a floor function which gives the greatest integer less
than or equal to x, and T is the total number of years in our data. The resulting maximum number of lags
and leads in our sample is three. Next, we run dynamic OLS regressions with different combinations of lags
and leads (∆ ln (Kt±i) = ln (Kt±i)− ln (Kt±i−1)), where i ∈ {1, 2, 3} and compute the BIC for each model.
The model with the optimal lags and leads will produce the smallest BIC.
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different from zero at a 5% level of significance.19

Comparing the estimates across columns (1)–(4) of Table 3.7, we see that the correc-

tions for autocorrelation had mostly modest effects on the point estimates of the elasticities

productivity with respect to the knowledge stock. The notable exceptions are meaningful

increases, especially with dynamic OLS, in the point estimates of the elasticities for Models

3, 4, and 9-models with larger mean lags compared with the other methods. However, even

when they did not increase the point estimates, the corrections for autocorrelation affected

the standard errors on some of the estimates of elasticities of productivity with respect to

the knowledge stock, sufficiently to change the inferences in some cases—notably in Models

3 and 4.

When the Cochrane-Orcutt procedure is employed (column (2)) nothing changes very

much compared with OLS (column (1)), but more pronounced differences are observed when

the Prais-Winsten procedure is employed (column (3)), reflecting the combination of smaller

estimated standard errors and larger point estimates of elasticities. Now, compared with

the OLS estimates (column (1)), the elasticity of productivity with respect to the knowledge

stock in Model 2 is statistically significantly different from zero at the 1% level, rather than

5%; the elasticities in Models 3, 4, 6, 7 and 9 are statistically significantly different from zero

at the 5% level, but not 1%; and the elasticity from Model 8 is now statistically significant

at the 10% level but not 5%.

Compared with OLS, the dynamic OLS regressions result in a slightly less-precise and

less statistically significant estimate of the elasticity of productivity with respect to the

knowledge stock in the preferred model (from 1% to 5%) and significantly more precise

estimates of the elasticities from three other models: elasticities from Models 3, 4, and 9

that were not statistically significant are now all significantly different from zero at the 1%

level. This might be because the leads and lags of the first differences of the knowledge
19Recall, in the Romer-Bloom model, the elasticity of productivity with respect to the knowledge stock is

equal to β1Kt, where in the other models the elasticity of productivity with respect to the knowledge stock
is equal to β1.
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stock variables absorb short-term noise, resulting in more precise estimators of the long-run

cointegration relationships (i.e., elasticities).

In what follows we focus on the estimates obtained using the dynamic OLS regressions.

The elasticities reported in column (4) of Table 3.7 for lag distribution Models 1–7 and 9 range

from 0.201 to 0.386. This is a remarkably narrow range given the considerable differences in

the shapes of the lag distributions across the models. The largest value comes from Model

3. The point estimate of the elasticity for Model 1 is essentially the same across the different

estimation methods (0.290 for OLS, 0.306 for Cochrane-Orcutt, 0.307 for Prais-Winsten, and

0.277 for dynamic OLS).

3.6.2 Benefit-Cost Ratios

As first suggested by Griliches (1958) the gross annual benefits from productivity growth are

approximately equal to the product of the gross value of production, V, and the growth rate

of multifactor productivity, MFP:

Bt =
∆MFP t

MFP t

Vt ≈ d lnMFPtVt (3.9)

In equation (3.8), growth in multifactor productivity is linked to research spending

through the knowledge stock, K:

d lnMFP t = β1d lnKt where Kt =
∞∑
k=0

bkRt−k (3.10)

An increase in research spending in the current year, t, by ∆Rt will give rise to a stream of

benefits from its effects on the time path of the stock of knowledge and thus productivity:

∆MFP t+k

MFP t+k

∣∣∣∣
∆Rt

= β1
∆Kt+k

Kt+k

∣∣∣∣
∆Rt

= β1
bk∆Rt

Kt+k

(3.11)

Given a discount rate of 100 r percent per year, the discounted present value of benefits from

an increase in research spending in the current year, t, is therefore equal to:

114



PV Bt =
∞∑
k=0

∆MFP t+k

MFP t+k

∣∣∣∣
∆Rt

Vt+k (1 + r)−k =
∞∑
k=0

β1 bk ∆Rt
Vt+k

Kt+k

(1 + r)−k (3.12)

Hence, the benefit-cost ratio (BCR) for an increase in research spending in year t by ∆Rt

is:20

Table 3.8 presents the BCRs and 95% confidence intervals computed using a real discount

rate of 3 percent per year (i.e., r = 0.03) for the seven models that yielded sensible results

(Models 1–7). The BCRs were computed using equation (20) with the elasticities estimated

by OLS (column (1)), or with corrections for autocorrelation using either the Cochrane-

Orcutt procedure (column (2)) or the Prais-Winsten procedure (column (3)), the last of

which is the preferred estimation procedure.

The first row of Table 3.8 refers to results for our preferred lag distribution model (Model

1). In column (4), the dynamic OLS estimate of the BCR is 23.4, and it is statistically

significantly different from zero. In columns (1), (2) and (3), the alternative estimation

procedures yield very similar estimates (24.5, 25.9, and 26.0) for Model 1. The same is

true for the estimates of BCRs for Models 2–7: looking across columns in any specific row

the estimates are very similar. Reflecting the results with respect to elasticities, the OLS

estimates of BCRs are mostly statistically significantly different from zero. However only

four lag distribution models yield statistically significant BCR estimates across all estimation

procedures: the preferred gamma model (Model 1), the almost identical trapezoidal model

(Model 5), the somewhat similar gamma model (Model 2), and the geometric model with

10% depreciation (Model 6). Recall, of these four models, only Models 1 and 2 satisfy the
20Reflecting the difference between equations (3.8) and (3.8’), the benefit-cost ratio for the Romer-Bloom

model is different, specifically

BCRt =
PV Bt

Rt
= β1

∞∑
k=0

Vt+k(1 + r)
−k

However, given the negative value for the estimated coefficient, this equation is not applicable to our estimates
so we do not report any estimates for that model.
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time-series conditions required for robust estimates.

The preferred estimates of BCRs are those in column (4), based on the dynamic OLS

regressions. They are all statistically significantly different from zero across eight of the

nine lag distribution models, the exception being the Romer-Bloom Model. Looking down

column (4), among the eight lag distribution models the estimated BCRs range from 18.5

(Model 7) to 27.3 (Model 3), a surprisingly narrow range at first blush. These differences in

BCRs reflect the effects of differences in elasticities combined with different lag shapes and

discounting—a lag distribution with a greater mean lag, everything else equal, will have a

smaller BCR and more so if the discount rate is greater.

Compared with Model 1 (our preferred gamma lag model, with a BCR of 23.4), Model 5

(the trapezoidal lag model) has a a slightly larger BCR (25.2) reflecting its combination of a

slightly larger elasticity and a somewhat shorter lag—it peaks at years 9 to 15 compared with

year 13 for Model 1. In contrast, Model 2 has a smaller elasticity and a somewhat longer lag

resulting in a somewhat smaller BCR (20.5). The other two gamma lag distribution models

(Models 3 and 4) both have substantially longer lags. In spite of its relatively long lag, Model

3 has the highest BCR (27.3) reflecting its considerably larger elasticity, while Model 4 has

both a smaller elasticity and a long lag and a relatively small BCR (18.9). Finally, while

they too have smaller elasticities the two geometric lag distribution models (Models 6 and

7) also have much shorter lags, with offsetting effects on the estimated BCRs (21.0 and 18.5

respectively).

The results in Table 3.8 were obtained with a discount rate of 3 percent per year, which

we think is appropriate for this application. In Table 3.9 we show the consequences of

alternative discount rates applied to compute BCRs with the dynamic OLS estimates of the

elasticities. In every row of this table, as we increase the discount rate from a very low

(r = 0.001, 0.1 percent per year) to a very high (r = 0.10, 10 percent per year) the estimated

BCR falls—for our preferred model it falls from a high of 36.3 to a low of 9.8, still quite

impressive, bracketing the BCR in column (2) of 23.4. But this effect is more pronounced for

116



the models with the longer lags, with implications for the relative sizes of the BCRs across

models and even the ranking. In column (4), with a 10 percent discount rate the geometric

models (Models 6, and 7) now have BCRs greater than that for the preferred model (Model

1).

One of the striking features of these results is the strong similarity and substantial size

and statistical significance of the estimated BCRs regardless of whether the underlying lag

distribution model is fully consistent with priors (Models 1 through 5) or totally at odds

with them (Models 6, 7 and 9). That this is so can be partly understood by considering the

extensive discussion of “Plausibility of Estimates” in the book by Alston et al. (2010, pp.

423–435). As they show there, the annual value of agricultural productivity growth is many

times greater than annual public spending on agricultural R&D. Hence, if the productivity

growth is attributed entirely to that R&D spending, the BCR must be very large even if a

long R&D lag is imposed. This aspect of the problem is common across all the models and

the variants tried.21

3.7 Conclusion
The work in this paper was inspired by our observation of striking differences in the stereotyp-

ical R&D lag distribution models used by economists studying the economics of agricultural

R&D, compared with economists studying the economics of R&D in other industries or

modeling economic growth more broadly. Specifically, applications to agricultural R&D typ-

ically employ a 35- to 50-year R&D lag distribution model, with phases of rising and falling

lag weights as innovations are progressively created, introduced, adopted and eventually re-

placed. In contrast, stereotypical models of industrial R&D and popular economic growth

models entail much less likely assumptions of very short or nonexistent R&D lags and very
21A related consideration discussed by Alston et al. (2010) is the potential for attribution bias resulting from

the omission of potentially relevant explanatory variables such as agricultural extension knowledge stocks (as
included in the model used by Alston et al. 2010, 2011), private agricultural R&D knowledge stocks (as tried
but without any empirical success by Huffman and Evenson 2006) or other sources of technology spillovers
such as international agricultural R&D or other U.S. industrial R&D. These omissions might have resulted
in upward-biased estimates of the elasticities and, consequently, the BCRs from all the models. However, we
suspect these biases would be modest, for the reasons given by Alston et al. (2010).
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high (at one extreme) or zero (at the other extreme) rates of knowledge depreciation.

We set out to codify these differences into a nested structure and conduct a comparative

assessment of their empirical consequences using a comparatively rich data set in relatively

long time-series. Our data set for U.S. agriculture is similar to those used by others in several

recent studies (see, e.g., Alston et al. 2011; Andersen and Song 2013; Baldos et al. 2019), and

it is a context in which we have strong priors, based on detailed evidence of various forms,

about the credibility of models that entail assumptions of very short or nonexistent R&D

lags and extreme assumptions about the rate of knowledge depreciation (see, e.g., Pardey et

al., 2010 and Alston et al. 2010, 2011, and 2022).

The quantitative results are surprising in some ways. First, apart from the Romer-Bloom

model, which implied a negative effect of R&D on productivity, the other seven models all

yielded rather similar estimates of elasticities of productivity with respect to the R&D knowl-

edge stock and, in turn, quite comparable estimates of BCRs—all well within the range of

widely accepted status quo estimates (see, e.g., the review by Fuglie 2018). If someone had

naïvely estimated just one (any one) of these models by OLS, viewing the estimates uncrit-

ically they might have been well pleased by the seemingly strong and apparently credible

results.

But even if they work well as statistical models, two of these models (the geometric

lag distribution models, Models 6 and 7) are not at all plausible in the application to U.S.

agriculture, if anywhere (Alston et al 2022a). Further, four of the seven models (Models 4, 5,

6, and 7) fail to satisfy time-series (stationarity and cointegration) tests. Notably, we rejected

(Model 4) the specific gamma lag distribution model that was found to be best in the similar

application by Alston et al. (2010, 2011). Fortunately, we were able to estimate two models

(Models 1 and 2) that performed well as statistical models, that were not inconsistent with

our prior expectations regarding the likely length and shape of the R&D lag distribution,

and that yielded plausible and statistically significant results within the range of reasonable

expectations.
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Interestingly, our preferred gamma lag distribution model is quite different in its general

shape from the model preferred by Alston et al. (2010, 2011). Even though it allows for a

longer, 50-year, lag it has a very similar overall shape to the shorter (35-year) Huffman and

Evenson (1993) trapezoidal lag model. It also appears to be very similar in shape to the

preferred gamma lag model identified by Baldos et al. (2019), which also implies a similar

value for the BCR. Moreover, the estimate of the elasticity of productivity with respect to

the knowledge stock (0.28) from our preferred model is remarkably close to what Baldos et

al. (2019) estimated (0.29) using a Bayesian hierarchical approach.22

Most researchers are not in a position to estimate a flexible lag distribution model and

test among alternatives in the ways we have done here using data for U.S. agricultural R&D.

Instead, almost all studies linking R&D to productivity simply impose untested assumptions

about the length and shape of the R&D lag, which can potentially have profound implications

for the results. Some such assumptions are inevitable and indeed desirable. Forty years ago,

Zvi Griliches (1979, p. 106, emphasis in original) suggested “... it is probably best to

assume a functional form for the lag distribution on the basis of prior knowledge and general

considerations and not to expect the data to answer such fine questions.”

But Griliches does not tell us what to assume about the form for the R&D lag distribution,

and at least some groups of economists—in particular, those measuring returns to industrial

R&D or using R&D—based models of economic growth—have made a habit of imposing

assumptions in their lag distribution models that seem to be significantly at odds with

reality. It should be possible to make better judgments about this aspect of the model

specifications. Getting these ideas right matters. Even though they might seem superficially

similar—in terms of the estimated elasticities and BCRs—the alternative lag distribution

models can have profoundly different implications for our economic understanding of the

linkages between investments in R&D, productivity, and economic growth, and the temporal

structure of those linkages.

22Fuglie (2018, p. 437) reports an elasticity of MFP with respect to national public agricultural R&D equal
to 0.30 for North America, computed as the average of estimates across seven studies.
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3.8 Figures

Figure 3.1: Inputs, Outputs and Multifactor Productivity, Logarithms, 1940–2007
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Figure 3.2: U.S Public Agricultural R&D, USDA Intramural and SAESs, 1890–2007
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Figure 3.3: Fitted and Observed Composite Crop Yield Index, 1940–2007
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Figure 3.4: Lag Distribution Shapes for Models 1–7
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Figure 3.5: Residuals from the Models that Passed the Time-Series Tests (Models 1–3)
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3.9 Tables

Table 3.1: Parameterization of Knowledge Stocks for the Alternative Models
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Table 3.2: Tests for Nonstationary Time Series
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Table 3.3: Cointegration Tests with Alternative Lag Distribution Models
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Table 3.4: Peak Lag Year and Mean Lag for Models 1–7

Note: Derived from fitted models reported in Table 3.6
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Table 3.5: Tests for Properties of Residuals from OLS Estimates of Model 1
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Table 3.8: Benefit-Cost Ratios from Various Models
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3.A Additional Tables

Table 3.A.1: Regression Results for Alternative Time Trend Models

141



Table 3.A.2: Stationarity Tests for Knowledge Stocks from Alternative Models (Dickey-Fuller GLS Test)

142



Table 3.A.3: Cointegration Tests for Knowledge Stocks and MFP (Phillips-Perron Test)
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Table 3.A.4: Cointegration Tests for Knowledge Stocks and MFP (Johansen test)
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Table 3.A.5: Heteroskedasticity Test
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Table 3.A.6: Autocorrelation Test

146



Table 3.A.7: OLS Regressions of MFP against Knowledge Stocks with Alternative Lag
Models
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Table 3.A.8: Cochrane-Orcutt Regressions of MFP against Knowledge Stocks with Alterna-
tive Lag Models
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