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M I N I - R E V I E W

Obesity, Neuroinflammation, and
Reproductive FunctionQ:1; 2; 3; 4

Nancy M. Lainez1 and Djurdjica Coss1

1Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
92521

ORCiD numbers: 0000-0003-0692-1612 (D. Coss).

The increasing occurrence of obesity has become a significant public health concern. Individuals
with obesity have higher prevalence of heart disease, stroke, osteoarthritis, diabetes, and re-
productive disorders. Reproductive problems include menstrual irregularities, pregnancy compli-
cations, and infertility due to anovulation, in women, and lower testosterone and diminished sperm
count, in men. In particular, women with obesity have reduced levels of both gonadotropin
hormones, and, in obese men, lower testosterone is accompanied by diminished LH. Taken to-
gether, these findings indicate central dysregulation of the hypothalamic–pituitary–gonadal axis,
specifically at the level of the GnRH neuron function, which is the final brain output for the
regulation of reproduction. Obesity is a state of hyperinsulinemia, hyperlipidemia, hyper-
leptinemia, and chronic inflammation. Herein, we review recent advances in our understanding of
how these metabolic and immune changes affect hypothalamic function and regulation of GnRH
neurons. In the latter part, we focus on neuroinflammation as a major consequence of obesity and
discuss findings that reveal that GnRH neurons are uniquely positioned to respond to inflammatory
changes. (Endocrinology 160: 1–18, 2019)

Hypothalamus Regulates Reproduction
and Metabolism

Proper integration of metabolic stimuli with the
hypothalamic–pituitary–gonadal (HPG) axis is crit-

ical for normal pubertal development and maintenance
of reproductive function in adults. GnRH from the hy-
pothalamus is the final brain signal that regulates re-
production (1). GnRH is secreted by a unique population
of ;1000 to 2000 neurons that are scattered in the
preoptic area, septum, and anterior hypothalamus in
rodents, or periventricular area and mediobasal hypo-
thalamus in primates (2, 3). They are unipolar or bipolar
neurons that send long processes to the median eminence
(ME). Because GnRH neurons are scattered, pubertal
onset and synchronization of GnRH release in adulthood
are regulated by upstream neurons, most notably those

that produce kisspeptin (encoded by Kiss1) (4–7). GnRH
is secreted in the pulsatile manner into the hypophyseal
portal circulation in the ME. Upon binding to its re-
ceptor, GnRH stimulates gonadotrope cells in the an-
terior pituitary to synthesize and secrete LH and FSH (8,
9). LH and FSH regulate steroidogenesis and gameto-
genesis in the gonads, and gonadal steroids in turn
provide feedback to the hypothalamus via kisspeptin.

Both extremes of body weight are not conducive for
optimal HPG axis function. A minimum ratio of fat to
lean mass is necessary for menarche and for the main-
tenance of female reproductive ability (10). Food intake
and energy expenditure are regulated by several brain
areas, primarily brain stem and hypothalamus, which
receive short-term signals from the gastrointestinal tract
and long-term signals from body energy stores, mainly
adipose tissue (11). Hypothalamic neurons involved in
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feeding and their interaction with reproductive circuitry
are discussed below. Adipose tissue serves as an endo-
crine organ, and it is thought that increased secretion of
leptin with increased adiposity is necessary for the ini-
tiation of puberty (12). Malnutrition or limited adipose
tissue in athletes causes lower levels of both gonado-
tropin hormones and reduced frequency of LH secretion,
implying central regulation of the reproductive axis by
metabolic signals (13). Because metabolic influences on
pubertal development have been extensively reviewed
(14–19), in this review we concentrate on the negative
effects of obesity on reproduction in adults.

Negative Effects of Obesity on
Reproductive Function

During the past 30 years the prevalence of obesity
has increased steadily worldwide (20). Currently in the
United States,.30% of men and women are classified as
obese, with a bodymass index (BMI) of$30 kg/m2 (21).
In recent years, rates of obesity have disproportionally
escalated in children and young individuals, which may
lead to long-term consequences in a number of homeostatic
processes, including reproductive function. According to
the World Health Organization, obesity is linked to an
increased risk of cardiovascular disease, cerebral ischemia,
type 2 diabetes, and reproductive disorders for both men
and women (22, 23).

Men with obesity exhibit reduced levels of LH (24),
testosterone, and SHBG (25, 26). Obesity-associated re-
duction in testosterone is accompanied by reduced levels of
LH, whereas age-related reduction in testosterone is cor-
related with increased LH (25), indicating central rather
than gonadal dysregulation in obesity. Sperm number and
quality are negatively impacted by increased adiposity as
well (23, 27, 28). Moreover, increased BMI is associated
with lower sperm concentration and fewer total sperma-
tozoa (29).Meta-analysis of 21 reports and a total of 13,000
men associated obesity with increased prevalence of azoo-
spermia and oligozoospermia (23). Fertilization rates during
in vitro fertilization are reduced when the male partner is
obese (30). Studies in animal models correlate with clinical
findings in humans. Obese Zucker rats and C57BL/6 mice
demonstrated decreased sperm production and increased
sperm DNA fragmentation (28, 31). Our recent study
demonstrated lower LH, testosterone, and sperm count in
obese C57BL/6J mice (Fig. 1) (32). Decreased testosterone,
accompanied by a reduction in LH, implicates central
regulatory mechanisms at the neuroendocrine levels.

Similarly, women with obesity are more likely to have
reduced fertility characterized by reduced levels of LH
(22, 33–35). Obesity-related problems in women in-
clude early onset of puberty, menstrual irregularities, in

particular a longer follicular phase indicating ovulatory
problems, pregnancy complications, infertility, and spon-
taneous abortions (36–38). Studies in animal models also
corroborate these findings. Female rhesusmacaques placed
on a high-fat diet (HFD) presented with reduced LH pulse
amplitude (39). Female mice fed an HFD exhibit longer
estrous cycles (32, 40, 41). Because women with obesity
have lower levels of gonadotropin hormones (42), hypo-
thalamus and pituitary are likely primary sites of obesity-
mediated impairment of the reproductive axis.

Differences in Animal Models and Sex

Significant strain differences in response to an HFD were
observed in laboratory mice. A/J, FVB/NJ, and BALB/cJ
strains are resistant to diet-induced obesity (DIO), whereas
DBA/2J and C57BL/6J strains gain weight (43–45). The
C57BL/6J mouse is a particularly faithful model of the
human metabolic syndrome because it develops obesity,

Figure 1. Ovarian hormones are protective from diet-induced
obesity but not necessary for protection from hormonal changes in
females. (A and B) Ten C57BL/6J mice per group were placed on
control (ctr, 10 kcal % fat, Research Diet) or a high-fat diet (hfd,
60 kcal % fat, Research Diet) with the same sucrose levels, at 4 wk
of age. Their weights were recorded twice a week (A, males; B,
females). (C) Female mice were ovariectomized (OVX) at weaning
and 1 wk later, at 4 wk of age, were placed on experimental diets.
After 12 wk on their respective diets, males and OVX females were
euthanized, whereas unmodified females were euthanized after 20
wk on diets, when the females on an hfd reached the same weight
gain as males and OVX females, because the 12-wk diet showed
lack of any differences. Serum LH was measured using ultrasensitive
assay by UVA Ligand Core and GnRH mRNA in the hypothalami by
quantitative RT-PCR. *P , 0.05, between control and hfd. Reported
in Lainez et al. (32).
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hyperinsulinemia, hyperglycemia, and hypertension when
allowed ad libitum access to an HFD (46, 47), and it is used
most often for these studies. Owing to the mutation in the
nicotinamide nucleotide transhydrogenase (Nnt) gene, the
C57BL/6J mouse also exhibits slightly worse metabolic
parameters in response to longHFD exposure than does the
related C57BL/6N substrain (48–50). Similar differences,
albeit less pronounced, exist between rat strains,withWistar
rats having a larger pathophysiological response to obesity
than do Sprague-Dawley or Fischer 344 strains (51–54).
Keeping these differences in mind is critical when evaluating
and comparing studies in the literature. Owing to avail-
ability of genetic modifications, mice were used in a larger
number of studies in recent years. It is also important to
critically assess studies in mice containing single gene al-
terations, because obesity is a polygenic trait, with 244 genes
cited so far for obesity-related phenotypes in mice and 253
quantitative trait loci in humans (55).

Sex differences in response toDIO are also profound (56).
Based on the studies in animal models and observations in
women who are menopausal, it was hypothesized that a
lack of estrogen increased adiposity, whereas estrogen re-
placement diminished it. In accordance, estrogen receptor a
knockout mice (57) and aromatase knockout mice (58)
exhibit increased obesity. Women treated with aromatase
inhibitors have higher adiposity (59). An increase in adi-
posity following ovariectomy and removal of ovarian es-
trogen was observed in rodents (60, 61) and in monkeys
(62).However, inDBAandC57BL/6Jmouse strains, both of
which are prone to DIO, sex differences vary. Females of the
DBA strain are prone to DIO, although they have estrogen
(45). Alternatively, C57BL/6J females are resistant to DIO,
whereas males are susceptible. A recent study from our
laboratory concurred that ovarian estrogen is protective
from DIO in C57BL/6J mice (Fig. 1). However, we further
demonstrated that ovarian estrogen is not necessary for fe-
male protection from hormonal and immunological changes
that obese males exhibit (32). Because it was assumed that
hormonal changes would followweight gain in females after
ovariectomy, obesity-mediated endocrine changes had not
been compared in unmodified and ovariectomized females
before. We demonstrated that obese females are protected
from hormonal and immune changes regardless of the go-
nadal status (32). Whether protection in females is provided
by extraovarian estrogen (63, 64) or by other sex differences
in neuroendocrine axes, metabolic rates, immune system, or
fat deposition (61, 65, 66) remains to be determined.

Crosstalk Between Reproductive and
Feeding Circuitry in the Hypothalamus

Metabolic cues from the periphery are integratedprimarily by
anorexigenic proopiomelanocortin (POMC) neurons and

orexigenic neuropeptide Y (NPY) neurons located in the
arcuate nucleus (ARC) of themediobasal hypothalamus, and
by neurons that synthesize orexin in the lateral hypothalamus
(67). These neurons regulate food intake by sensing levels of
leptin and insulin, and it is proposed that they convey met-
abolic status to neurons involved in reproduction, namely
GnRH and/or kisspeptin neurons that regulate GnRH neu-
ron pulsatility. Although studies have examined the in-
volvement of neuropeptides produced by POMC, NPY, and
orexin neurons in communicating metabolic status to the
reproductive axis, results remain inconclusive. The role of
these neurons have been reviewed in more detail elsewhere
(68–73), and we will briefly summarize the findings.

POMC
POMC is an anorexigenic precursor expressed in neurons

in the ARC that coexpress cocaine and amphetamine-
regulated transcript (CART). Activation of POMC neu-
rons by leptin reduces food intake and increases energy
expenditure (67). Processing of POMC precursor creates
anorexigenic a-melanocyte-stimulating hormone (a-MSH)
melanocortin and orexigenic b-endorphin (b-END) opioid
peptide. The receptors for melanocortins have been classified
into five subtypes, MC1R, MC2R, MC3R, MC4R, and
MC5R, whereas b-END acts on m- and k-receptors (74). Of
the five melanocortin receptors, MC3R and MC4R are
expressed in the brain, regulating energy expenditure and
satiety, respectively (75). Although POMC neurons are
considered primary brain targets of metabolic signals from
the periphery via leptin, mice lacking leptin receptor spe-
cifically in POMC neurons are only mildly obese, compared
with the whole-body leptin receptor knockouts (76). POMC
neurons make direct contact with GnRH neurons in the rat
brain (77), and POMC products, a-MSH, and b-END have
differential effects on reproduction. Whereas a-MSH acti-
vates most GnRH neurons (78) and stimulates LH secretion
(12), b-END inhibits a small percentage of GnRH neurons
(78) and reduces LH secretion (79). Single-cell RT-PCR
demonstrated that most GnRH neurons express MC4R
and that treatment with an agonist, MTII, activates GnRH
neurons (80). Because kisspeptin neurons express MC4R as
well (81), kisspeptin neurons may convey an a-MSH re-
sponse and activate GnRH neurons, in particular during
initiation of puberty (12). However, regulation of either
GnRH or kisspeptin neurons by POMC in adults remains to
be explored in detail, and it is unknown whether normal
interaction is altered in obesity.

Neuropeptide Y
Neuropeptide Y (NPY), an orexigenic neuropeptide that

signals through G-protein–coupled receptors Y1 to Y6 is
synthesized by neurons in the ARC that are activated during
states of low energy, such as lactation or starvation. Ghrelin,
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secreted by the stomach and intestine, activatesNPYneurons
to promote food intake. NPY neurons, which also synthesize
g-aminobutyric acid (GABA) (82), in turn inhibit POMC
neurons (83, 84) through the Y1 receptor, as well as via
GABA neurotransmission (83). Surprisingly, NPY knockout
mice maintain body weight and exhibit similar food con-
sumption as do control mice (85), as do genetically modified
mice that overexpress NPY (Npytet/tet) (86). Agouti-related
protein (AgRP) that is coexpressed in NPY neurons is also
not required for the regulation of energy expenditure or body
weight (87). Ablation of NPY/AgRP neurons, alternatively,
causes rapid starvation, showing that the neurons, if not
neuropeptides themselves, are necessary for weight mainte-
nance and energy homeostasis (88). This may point to the
necessary role for GABA neurotransmission. It is still not
clear whether and how NPY neurons regulate reproductive
circuitry. NPY/AgRP neurons from the ARC make con-
tacts with most GnRH neurons (89–91). In a study using
ovariectomized rhesus macaques, intracerebroventricular
(ICV) administration of NPY inhibited LH pulses, whereas
local administration ofNPY in theME stimulated the release
of GnRH (92). In C57BL/6 mice and rats, chronic NPY
treatment resulted in diminished LH and hypogonadism,
whereas acute NPY administration into the ventricle stim-
ulated LH release in steroid-primed ovariectomized rats (93,
94). In a recent elegant study using optogenetics and che-
mogenetics, acute stimulation of ARC GABA fibers,;30%
of which express NPY (82), in the proximity to GnRH
neurons resulted in increased LH secretion in male and fe-
male mice, whereas chronic activation elevated LH pulse
frequency, increased estrous cycle length, decreased corpora
lutea number, and raised testosterone concentration in fe-
males (95). Central infusion of AgRP into the third ventricle
resulted in reduction of LH pulse frequency in ovariecto-
mized rhesus monkeys (96). Brain slices from adult female
GnRH–green fluorescent protein (GFP) mice used in loose
patch recording experiments and treatedwith AgRP resulted
in reduced activity of 10% of GnRH neurons and stimu-
lation of 25% of GnRH neurons (78). Use of NPY receptor
agonists also had varying effects, including an increased
firing rate of 50% GnRH neurons and a reduced firing of
46% GnRH neurons (78). Specifically, only receptors Y1
and Y5 are expressed on GnRH terminals and cell bodies,
respectively (90, 91). However, in one study, a Y5 receptor
agonist, hPP, had no effect on GnRH neuron excitability
(78), although others have reported that infusions of a dif-
ferent Y5 agonist, PYY3–36, in the lateral ventricle of male
Sprague-Dawley rats and male C57BL/6J mice results in
reduced levels of LH, testosterone, and reduced testicular
weight (93, 97). Integration of the GABA signal, which is
excitatory for GnRH neurons (98), with NPY neuropeptide
in regulation of GnRH neuron excitability has also been
reported (99). GABA transmission may have a critical role

in conveying energy homeostasis to reproductive func-
tion, because knockdown of leptin receptors specifically in
GABAergic neurons, but not glutamatergic neurons, delayed
puberty onset and decreased fecundity in adults of both sexes
(100). These variable effects ofNPYandAgRPonGnRHare
thought to be a result of the complex interplay of neuro-
peptides NPY and AgRP, GABA, and the variety of NPY
receptors.

Orexin
The hypothalamic neuropeptide orexin plays a role in

sleep and wakefulness and, as its name implies, in the
stimulation of feeding behavior (101). Orexin Q:5neurons are
located in the lateral hypothalamus and send projections
throughout the brain, including the preoptic area, where
GnRH cell bodies are located, and to the mediobasal hy-
pothalamus andME, where GnRH terminals project (102).
There are two forms of orexin, orexin A and orexin B, with
orexin A being more physiologically potent due to its re-
sistance to degradation (103). Rodent and primate orexin
neurons express leptin receptors and NPY receptors Y1 and
Y4 (104, 105). Orexin neurons were also shown to make
synaptic contact with NPY neurons in the ARC and vice
versa (106). Similar to NPY, orexin has both stimulat-
ing and inhibiting effects on GnRH/LH secretion. GnRH
neurons express orexin 1 receptors, and orexin neurons
appose toGnRHneurons (107). Both orexinA andorexin B
stimulate LH secretion in steroid-primed ovariectomized
rats, but they inhibit LH release in steroid-deficient rats
(108). Tissue explants from male and female rats in pro-
estrus show that orexin A stimulates GnRH release from the
hypothalamus, although in diestrus or low-estrogen states
orexin A is inhibitory (107). Similarly, orexin inhibited
activity of GnRH neurons from ovariectomized mice (109).
Expression of orexin receptor 1 was also observed in GT1-7
cells, an immortalized cell model of GnRH neurons, and
orexin treatment resulted in increased GnRH mRNA ex-
pression andGnRH release (110). In summary, these studies
describe a complex neuronal network linking metabolism
and reproductive function, whereby POMC, NPY, and
orexin neurons mediate effects of metabolic cues on GnRH
neurons. However, none of these studies sufficiently ex-
plains the negative effects of obesity.

Metabolic Signals

Insulin
Insulin is the main anabolic hormone that regulates cell

metabolism via glucose uptake. Brain-specific knockdown
of insulin receptor using nestin-CRE, which is expressed
early in brain development and affects most cell types,
causes infertility due to low LH levels. Because pituitary
responsiveness was intact, the effect on LH levels was
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likely due to hypothalamic dysregulation (111). Infusion
of insulin into the lateral ventricle increased LH pulsatility
in insulin-deficient, diabetic sheep (112) and in diabetic
rats (113). Although most GnRH neurons express insulin
receptor, there is no evidence that insulin treatment ac-
tivates them (114). Insulin receptor knockdown in GnRH
neurons does not alter pubertal development, litter size, or
estrous cyclicity (115). Only a limited number of kiss-
peptin neurons express insulin receptor and, consequently,
kisspeptin neuron-specific knockdown of insulin receptor
has a minor delay in vaginal opening, an external sign of
puberty in one model (116) but not in the other (114), and
no effect on estrous cyclicity or litter size in either model.
Insulin may exert its function on pituitary gonadotrope by
interacting with GnRH signaling pathway in a gonado-
trope cell model (117, 118). Hyperinsulinemia in obesity,
however, may affect reproductive function. Knockdown
of insulin receptor specifically in pituitary gonadotrope or
GnRH neurons partially improves fertility of obese, mixed
background, mice fed an HFD (40, 119). Therefore, al-
terations in the normal insulin levels, or other metabolic
signals, in obesity may elicit changes in the HPG axis.

Adipose tissue
Adipose tissue is an endocrine organ that regulates

systemic nutrient and energy homeostasis via secretion
of adipokines, most notably leptin and adiponectin. In
addition to adipocytes, adipose tissue contains tissue
macrophages, other immune cells, endothelial cells,
preadipocytes, and fibroblasts. Fat is deposited in two
main depots, visceral and subcutaneous. Subcutaneous
fat accounts for 80% of all body fat. Although visceral
fats account for 10% to 20% of total body fat in men and
5% to 8% in women, visceral deposits produce more
adipokines than do subcutaneous deposits and their
enlargement in obesity is more highly associated with
negative outcomes, such as insulin resistance and met-
abolic syndrome (120, 121).

Leptin
Leptin is a protein product of the obese (ob) gene,

secreted by adipocytes to function as a satiety factor and
regulate food intake by signaling to the brain. Leptin also
provides a link between metabolism and reproduction,
because both male and female mice that lack leptin
(ob/ob mice) are infertile, and leptin treatment restores
reproduction (122–124). Leptin receptor null mice also
experience delayed puberty and infertility in both sexes
(125). Deletion of leptin receptors from forebrain neu-
rons prevented the onset of puberty, resulted in infertility
in males and females, and blocked estradiol-induced LH
surge (126). In ovariectomized, fasted and fed Wistar
female rats using the push–pull perfusion technique,

leptin induced GnRH, LH, a-MSH, and prolactin se-
cretion in a dose-dependent manner (127). GnRH neu-
rons do not express leptin receptors themselves (126),
and leptin may exert its effects on GnRH by acting
through kisspeptin neurons (128). ICV leptin treatment
of lean hypogonadotropic ewes with reduced levels of
KISS1 gene expression partially restored KISS1 levels,
whereas ICV treatment with kisspeptin peptide reduced
POMC and increased NPY gene expression (129).
However, deletion of leptin receptor specifically in
kisspeptin neurons had no effect on puberty or fertility
(130), and reexpression of leptin receptor solely in
kisspeptin neurons did not alleviate lack of pubertal
development or infertility (131). Therefore, kisspeptin
neurons are not the direct target of leptin in the onset
of puberty. Leptin signal is likely relayed byNO-synthesizing
neurons in the ventral premammillary nucleus (130) and/or
the organum vasculosum laminae terminalis (OVLT) (132).
During obesity and altered nutritional status, increased levels
of leptin are likely communicated via alternations of NPY
and POMC neurons (133, 134). Alternatively, although
leptin levels are elevated in obesity, the brain in particular
exhibits cellular leptin resistance (135), and thus the bi-
ological effects of leptin in obesity may be limited.

Adiponectin
Adiponectin is secreted by adipose tissue and acts to

increase insulin sensitivity, fatty acid oxidation, energy
expenditure, and reduction of liver gluconeogenesis
(136, 137). Unlike leptin, adiponectin levels are nega-
tively correlated with BMI, specifically abdominal fat
accumulation (138). Serum adiponectin in normal
weight women and women with obesity is higher than
serum adiponectin in men (139, 140), which may
contribute to sex differences in the pathophysiology of
obesity. Female adiponectin null mice displayed im-
paired fertility, reduced retrieval of oocytes, disrupted
estrous cycle, elevated number of atretic follicles, and
impaired late folliculogenesis. They also have lower
estradiol and FSH, but elevated LH and testosterone at
proestrus (141). Twenty percent of the total GnRH
population responded to adiponectin, exhibiting hy-
perpolarization or decreased calcium oscillations (142,
143). Adiponectin also suppressed GnRH secretion in
the immortalized GnRH neuron cell line, GT1-7 (144).
In the female mouse, adiponectin decreased GnRH
neuron activity (142), whereas in male rats, adiponectin
inhibited testosterone secretion (145). Adiponectin
treatment of pituitary model cell lines inhibited LH re-
lease (146). However, it is not known how a change in
adiponectin due to increased obesity influences the HPG
axis.
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Obesity as a Chronic Inflammatory State

Adipose tissue macrophages
Chronic systemic inflammation is a consequence of in-

creased adiposity and exposure to anHFD (147, 148). Obese
adipose tissue is characterized by progressive infiltration by
macrophages causing inflammation (149–151). Although
other immune cells may also be present in the adipose
tissue, macrophages are functionally the most signifi-
cant (150). The number of macrophages in white adi-
pose tissue correlates with adiposity in both humans and
mice (149). Furthermore, functional activity is pro-
portional to the degree of obesity, as macrophages
become activated with increased adiposity and upre-
gulate the cytokine production (149, 152). Visceral
deposits contain a higher density of macrophages than
do subcutaneous deposits (56, 153). Following increase
in their size, adipocytes produce monocyte chemo-
attractant protein-1 (MCP-1, or CCL2 chemokine), a
ligand for CCR2, which recruits monocytes and leads to
macrophage activation (154, 155). Increased secretion
of leptinmay also contribute tomacrophage accumulation
by stimulating transport of macrophages to adipose tissue
and promoting adhesion of macrophages to endothelial
cells (152). In lean individuals, macrophages resemble an
M2 phenotype and secrete anti-inflammatory cytokines
(156). Development of obesity causes a change in adipose
tissue macrophage phenotype and elevated secretion of
proinflammatory cytokines, TNF-a, IL-6, and IL-1b,
which increases their concentration in the circulation
(152). Macrophage recruitment to the liver via CCR2 in
obese mice contributes to insulin resistance (157), in-
dicating that macrophages activated by increased adi-
posity infiltrate parenchyma of other tissues. Although the
brain is considered an immune-privileged site, recruitment
of peripheral immune cells to the brain in obesity has
been observed as well and may contribute to the local
inflammatory response (158, 159). Our study also
demonstrated that macrophages are recruited to the hy-
pothalamus of obese male mice (32). Others failed to
detect infiltration of peripheral immune cells (160). The
difference may be due to the approach, because a limited
number of macrophages that infiltrate the hypothalamus
may be insufficient for microscopic detection, whereas
the flow cytometry that we used may be more sensitive.
Macrophages, which we observed in the hypothalami of
male mice fed an HFD, but not in females, express
CCR2 and are recruited to specific areas of the hypo-
thalamus (32). That males deposit more fat in visceral
depots (32, 56, 61), which recruit and activate more
macrophages than do subcutaneous depots, combined
with findings that activated macrophages infiltrate
other tissues, including the hypothalamus, may explain

some of the sex differences observed in obesity and why
males have a higher propensity for obesity-mediated
neuroinflammation.

Brain-resident immune cells
Systemic inflammation following exposure to an HFD

is accompanied with hypothalamic neuroinflammation
(147). Increased inflammation in the central nervous
system (CNS) of individuals with obesity may contribute
to neuropathologies, such as cerebral ischemia and de-
mentia (161, 162). Microglia are resident immune cells
that survey the parenchyma and maintain normal circuit
function and plasticity by pruning synapses during de-
velopment and neurogenesis (163). Neurons communi-
cate with microglia via expression of fractalkine, which
binds fractalkine receptor, CX3CR1, expressed specifi-
cally by microglia (163). In neuroinflammation, in re-
sponse to injury, infection, or disease, microglia engulf
damaged synapses and cause activity-dependent struc-
tural remodeling (164). Microglia also secrete cytokines,
which exert numerous functions, including recruitment
of peripheral immune cells (165). In obesity, hypotha-
lamic microglia change morphology and become acti-
vated (166, 167). Depletion of microglia or prevention of
their activation via targeted gene knockdown partially
reduces body weight, food intake, and macrophage in-
filtration (159). Initial reports identified morphological
changes specifically in the ARC (159, 168) and postu-
lated that activation of microglia occurs in response to
the stress and injury of POMC or NPY neurons in the
feeding circuit. Given that both fractalkine and CX3CR1
expression is altered in obesity (169, 170), this is one
possibility. Our study detected morphological changes in
microglia and an increase in their numbers aroundOVLT
and ME, in addition to the changes previously observed
in the ARC (32). In agreement with previous studies,
microglia in the cortex did not show any change. We
therefore posit that the activation of microglia in these
specific areas occurs due to their proximity to the leaky
blood–brain barrier (BBB; see below). Microglia in
obesity may be activated by an increase in saturated fatty
acids in the circulation (171), because an HFD rather
than obesity per se leads to inflammatory changes (172).
Sex differences in microglia activation in response to
obesity are dependent on CX3CR1, but independent of
ovarian estrogen, indicating that sex differences may arise
due to differences in the innate immune cells or in
neuron–glia communication (169). Our studies similarly
detected morphological changes specifically in the male
mice. As stated above, we postulate that this is due to
higher inflammation in males due to larger visceral fat
accumulation.
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BBB and GnRH neurons
The CNS has long been regarded as an immune-

privileged site due to the BBB, composed of the endo-
thelial cells that express tight junction proteins,
interspersed pericytes embedded in the basement mem-
brane, and perivascular space bordered by astrocytic
endfeet of the glia limitans (Fig. 2). Properties of the BBB
have been recently discussed (173–175). Some of the
CNS pathologies associated with obesity may occur due
to alteration in BBB, as several tight junction proteins are
downregulated (176–178). Alternatively, the hypothal-
amus is bordered by several areas that contain fenestrated
capillaries and a leaky BBB (179). These areas, but not
other brain regions, were stained by IV injected dyes.
Anteriorly, the preoptic area surrounds the OVLT, and

basally, the ARC is juxtaposed to theMEwhere secretion
of pituitary-regulating neuropeptides occurs from neu-
ronal terminals. Both the OVLT and ME contain fen-
estrated capillaries (180, 181). For example, the OVLT
and surrounding thermoregulatory neurons are involved
in changes in body temperature and febrile response
to systemic inflammation. Pyrogenic, proinflammatory
cytokines were previously thought to infiltrate the hy-
pothalamus from circulation via fenestrated capillaries in
the OVLT and stimulate thermoregulatory neurons.
However, for substances to reach the brain parenchyma,
permeability of the OVLT is limited to low molecular
mass, whereas tracers .10 kDa are retained in the
perivascular space (182). Retention is likely accom-
plished by the secondary barrier provided by astrocytes
or tanycytes (183). Recent studies indeed demonstrate
that cytokines, which are ;20 kDa, bind receptors on
endothelial cells in the OVLT, which synthesize prosta-
glandins and in turn increase local production of cyto-
kines in the hypothalamus that affect thermoregulatory
neurons (184–187). Because we identified microglia
activation around the OVLT following an HFD, we
envision that, similarly, systemic inflammation is con-
veyed via endothelial or glial cells to activate microglia in
the vicinity to fenestrated capillaries. This hypothalamic
area was recently implicated in energy homeostasis and
food intake as well (188). This may not be surprising,
because systemic inflammation, in addition to fever,
causes sickness behavior, which reduces energy expen-
diture and limits food intake (189, 190). Our un-
derstanding of interactions between the OVLT area and
ARC in regulation of food intake, however, is only be-
ginning to emerge.

The ME is a target for hypothalamic neuron terminals
that secrete hypophyseal-releasing hormones into the
portal vasculature via fenestrations. Permeability of the
ME is greater than that of OVLT (191, 192), and
tanycytes play a major role providing a barrier and
regulating transport to the parenchyma and third ven-
tricle (181, 183, 193–196). However, at times, tanycyte
endfeet retract and allow GnRH terminals to contact
the perivascular space (197). Our studies demonstrate
macrophage infiltration specifically in the areas sur-
rounding the OVLT and ME following an HFD (32).
Although surprising, because immune cell infiltration
into the CNS occurs only after injury or infection,
macrophage infiltration in obesity was demonstrated
previously (159). It may be facilitated by the increased
permeability of the BBB or elicited by active recruitment
from activated microglia. Immune cell infiltration may
impair neuronal function in these areas, because mac-
rophages phagocytose damaged cells and engulf synapses
(198, 199). We hypothesize that the impairment is more

Figure 2. BBB and circumventricular organs. Most of the brain
vasculature contains endothelial cells with tight junctions that
establish the BBB. Endothelial cells are surrounded by basement
membrane in which pericytes, vascular smooth muscle cells, are
embedded, and by astrocytic endfeet or glia limitans, which form
perivascular space and further regulate access to the brain
parenchyma. Depending on the molecule mass and charge,
molecules can access parenchyma by diffusion, via carrier transport
or specific receptors. Several areas in the brain, called
circumventricular organs, contain fenestrated capillaries and a leaky
BBB. Although access of small molecules to brain parenchyma in
these areas was demonstrated using dye or fluorescent labels,
recent studies suggest that access is also regulated and primarily
occurs via the above-mentioned mechanisms. Access into the brain
parenchyma is controlled by the astrocyte endfeet or tanycytes that
express tight junction proteins. Hypothalamus is bordered by several
circumventricular organs: the OVLT in the rostral part, and the ME
and posterior pituitary at the ventral side.
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highly associated with the location of the impacted
neurons rather than their function. POMC and NPY
neurons are located in the ARC, which is close to the
fenestrated capillaries of the ME. A population of kiss-
peptin neurons is also located in the ARC (200, 201) and
may be exposed to the metabolic changes as well. GnRH
neurons are uniquely positioned to sense these changes in
the circulation. A large number of GnRH neuron cells
bodies are located around the OVLT, and a portion of
these send processes beyond the BBB, where they may be
able to directly respond to circulating molecules, or to
cytokines and prostaglandins secreted by endothelial or
glial cells (202). GnRH neurons have long projections
that terminate in the ME and directly contact peri-
vascular space during times of high secretory activity
when tanycyte endfeet retract (197). Therefore, GnRH
neurons on both ends can be exposed to metabolic
changes during obesity. We recently demonstrated that
obese male mice have increased cFOS expression spe-
cifically in GnRH neurons andQ:6 in cells located close to the
OVLT, but not in cells located farther dorsally [Fig. 3
(203)]. Others reported increased cFOS following HFD
in specific areas and postulated that the location is
specific for the function of the neuronal population (204,
205). cFOS is similarly induced following lipopolysac-
charide (LPS) treatment in the hypothalamus (206), and
this induction is location specific (207).We postulate that
an increase in cFOS gene expression is dependent on
the proximity to the vasculature. We envision several
possible mechanisms that elicit this induction in obesity.
An increased level of circulatory cytokines from adi-
pose tissue activates gene expression in neurons and
glia specifically in the regions proximal to fenestrated
capillaries. Microglia, in response, become activated and

increase their own cytokine production that causes
synapse stripping and recruitment of peripheral or per-
ivascular macrophages. Another possibility is that
macrophages, activated by the increased adiposity, in-
filtrate the hypothalamus specifically through the cir-
cumventricular organs and increase local production of
cytokines that activate microglia and alter gene expres-
sion. Alternatively Q:7, metabolic changes, including in-
creased insulin, leptin, glucose, or free fatty acids, can be
sensed by the endothelial cells, astrocytes, or microglia
(196, 208), also specifically around the fenestrated
capillaries of the circumventricular organs, which in turn
activate stress signaling and increased cytokine pro-
duction in any of these cell types. As we demonstrated,
increased cytokines activate cFOS and other genes that
affect neuronal responses.

Cytokines
We and others reported that obesity causes increased

levels of proinflammatory cytokines TNF-a, IL-1b, and
IL-6 in the circulation (32, 152) and locally in the hy-
pothalamus (32, 209). These classical, proinflammatory
cytokines are involved in both the normal physiology of
the nervous system and in inflammatory processes dur-
ing infection (175). In the CNS, TNF-a and IL-1b reg-
ulate synaptic plasticity, neurodegeneration, learning and
memory, sleep, food and water intake, and astrocyte-
mediated synaptic strength (210–214). During infections,
TNF-a and IL-1b mediate the physiological changes,
resulting in “sickness behavior” such as fever, reduced
food intake, nausea, and fatigue (215–217). As discussed
above, in the proximity of the OVLT, these cytokines
cause alterations of neuron function and increase ther-
mogenesis, causing fever (184, 218). In several brain
diseases, microglia upregulate TNF-a expression, con-
tributing to excitotoxicity by inhibiting glutamate uptake
by astrocytes and by increasing localization of ionotropic
glutamate receptors to synapses (215). Elevated TNF-a
in obesity increases POMC neuron activity, mitochon-
drial respiration, and ATP production (219). Cytokines
may directly affect gene expression in GnRH neurons or
neuron function, because GnRH neurons express various
cytokine receptors (220). Previous studies have impli-
cated acute inflammation, elicited with an injection of
LPS or cytokines themselves, in the impairment of re-
productive function and reduced LH (221–228). In
particular, repression of GnRH mRNA expression is
specifically observed. LPS treatment, resulting in neu-
roinflammation, represses Gnrh mRNA in ewes (229),
birds (230) and rats (231). Infusion of the proin-
flammatory IL-1b cytokine into the rodent hypothalamus
also represses Gnrh expression (221). More recently, our
group determined that low-grade, chronic inflammation

Figure 3. More cells proximal to the OVLT express cFOS following
a high-fat diet (hfd). Coronal sections of the preoptic area in the
hypothalamus of GnRH-GFP mice following hfd, stained for GFP
(green) and cFOS (red). Numbered squares correspond to quantified
areas (presented by bar graphs). (1) GnRH neurons (green) that
express cFOS (red) were counted following control and an hfd. An
increase in the percentage of GnRH neurons with cFOS is observed
in obese mice compared with control (ctr); (2 and 3) quantification
of the cells, identified by DAPI stain (not shown) that express cFOS,
proximal to the OVLT delineated with the no. 2 square, and distal,
dorsally from the OVLT delineated with the no. 3 square, following
control and an hfd. *P , 0.05, reported in Lainez and Coss (203).
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caused by obesity affects GnRH neurons, resulting in
reduced levels of LH in circulation and repression of
GnRH mRNA in the hypothalamus, specifically in male
mice (32). LowerQ:8 Gnrh mRNA expression is consistently
observed in obese mice (45, 232). Interestingly, GnRH
mRNA is one of the most repressed genes in obesity,
detected by the genome-wide analysis of the whole
brain (233).

IL-6 plays a role in the regulation of immune reactions
and, in the brain, in naive states, IL-6 contributes to
normal neuronal function and neurogenesis (234, 235).
Of interest, IL-6 is involved in establishment and
maintenance of the BBB by increasing tight junction
formation (176). In models of brain injury, infection, LPS
injection, or diet-induced obesity, IL-6 is upregulated and
modulates inflammation, apoptosis, and oxidative stress.
Alternatively, IL-6 is also involved in dampening of the
immune responses to promote recovery and healing (236,
237), and it is induced by TNF-a and IL-1b as a sec-
ondary cytokine (238). Although LPS induces IL-6 in
both astrocytes and microglia, TNF-a and IL-1b induce
IL-6 production from astrocytes and not microglia (239).
Mice that overexpress IL-6 in the CNS exhibit more rapid
healing and recovery after traumatic brain injury (240).
IL-6 null mice showed increased oxidative stress and
impaired repair (241), suggesting a neuroprotective role
of IL-6 in brain injury. However, it is still not clear
whether IL-6 directly affects neurons involved in re-
productive function.

We demonstrated that leukemia inhibitory factor (LIF)
represses Gnrh gene directly and that LIF levels are in-
creased in the hypothalamus following an HFD (32, 203).
LIF is a member of IL-6 family that is induced during the
inflammatory response (242). However, its functions are
not limited to inflammation: LIF has been demonstrated to
play a crucial, nonredundant role in embryo implantation
in both mice and humans (243–245). LIF also maintains
stem cells and regulates differentiation of germ cells (246,
247). In the brain, LIF regulates neuronal function and
neuronal response to injury (248–250). With respect to
GnRH neurons, LIF regulates the migration of GN11
cells, a model of immature GnRH neurons, and the release
of GnRH in GT1-7 cells, a model of mature GnRH
neurons (251–253). LIF binds its specific receptor, which,
similarly to the other members of the IL-6 family, recruits
and signals through the gp130 signals transducer, acti-
vating the JAK-STAT and MAPK pathways (244). Our
recent report that showed increased levels of LIF
mRNA in the hypothalamus of HFD mice demon-
strated this increase only in males that exhibit a re-
duction in GnRH mRNA and gonadotropin hormones,
but not in females that lack changes in GnRH or go-
nadotropin hormones (32). On the contrary, a family

member IL-6 was increased in both sexes. In the fol-
lowing study, we demonstrated that LIF represses
GnRH gene via activation of p38 and induction of
cFOS in GnRH neurons (203).

Synaptic remodeling in neuroinflammation
Our recent studies postulated that obesity-mediated

impairment of reproductive function stems from neu-
roinflammatory effects on GnRH neurons. We de-
termined that two mechanisms may be at play: (i)
reduction in spine density and consequently the con-
nectivity of the GnRH network (Fig. 4) (32), and (ii)
from direct cytokine effects on GnRH gene expression,
as described above (203). Gene regulation by cytokines
may affect expression of synaptic molecules as well as
neuropeptides. For example, cytokines directly affect
the levels and function of glutamate receptors (236, 254,
255). Alternatively, neuroinflammation may lead to

Figure 4. Decreased levels of synaptic proteins in the hypothalami
and spines in GnRH neurons in obese male mice. (A) Western blot
of hypothalamic lysates indicates lower levels of postsynaptic
density protein 95 (PSD-95), but not of presynaptic protein
synaptophysin (SYP), or neuronal marker MAP2, in obese males,
but not in females. b-Tubulin (b-tub) was used as housekeeping
control. (B) Coronal sections of the hypothalamic preoptic area of
the GnRH-GFP mice following control and hfd were stained for GFP
(green) to allow for spine count. Spines, identified as protrusions by
an arrow in the insert, were counted in the soma and along the
main axon in 15-mm intervals, which are indicated below the bars,
in reference to the distance from the soma. Reported in Lainez
et al. (32).
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synaptic remodeling via synapse engulfment by resident
or infiltrating immune cells. This leads to changes in
network connectivity. Immune cells strip synapses fol-
lowing deviations in neuronal signals, such as fractal-
kine, as mentioned above. We demonstrated that an
HFD, followed by an increase in cytokines, causes re-
duced levels of synaptic protein, PSD-95, in the hypo-
thalamus and fewer spines on the GnRH proximal
dendron itself in male mice. Fewer spines, sites of ex-
citatory synaptic input, combined with reduced levels of
synaptic proteins, indicate potential changes in neuro-
nal activity. The reduction of synaptic connections in
this particularly plastic area of the GnRH neuron
(256–258) may affect regulation of GnRH secretion by
an upstream regulatory network. Previous studies de-
termined that both NPY and POMC neurons also
exhibit a decrease in synapses following an HFD (259).
Specifically, an HFD caused elimination of inhibitory
synapses on POMC neurons and excitatory synapses on
NPY neurons. Synaptic stripping, reduced levels of syn-
aptic proteins, and fewer spines in obese male C57BL/6J
mice were observed in hippocampal neurons as well (260).
A decreased performance of obese mice in cognitive tasks
was attributed to the loss of synapses, fewer dendritic
spines, and a decrease in synaptic proteins in the pre-
frontal cortex (261). Given that POMC and NPY neurons
are located in the ARC, and that GnRH
neurons are located close to theOVLT, the
synapses may be eliminated by infiltrating
macrophages or activated microglia that
occur in these areas (Fig. 5). As stated
above, both microglia, brain-resident im-
mune cells and peripheral, monocyte-
derived macrophages are involved in
synapse stripping.

Conclusion

In this review, we describe neuroendocrine
and neuroinflammatory changes underlying
sex-specific differences in obesity-induced
impairment of the hypothalamic function
with potential consequences for re-
production and fertility (Fig. 5). Ovarian
estrogen is protective from diet-induced
obesity; however, we recently demon-
strated that it is not necessary for pro-
tection from endocrine and immune
changes (32). Females may be protected
by a variety of sex differences in the
immune system, adipose tissue accumu-
lation, and metabolic rates (61, 65, 66),
all of which may be influenced by

paracrine, locally produced cytokines, chemokines,
adipokines, or hormones, including estrogen. Owing to
the complexity in neuronal circuitry that regulates
feeding and metabolism, analyses of a single neuropep-
tide or neuronal population effects on the GnRH neuron
or its afferents failed to provide satisfactory explanation
for obesity-mediated impairment of reproductive func-
tion. Our recent studies focused on neuroinflammatory
changes and on the role of glial cells, which may affect
neuronal function via synaptic changes (164). Previous
studies that demonstrated synaptic changes in feeding
circuitry in the ARC of the hypothalamus postulated
that synapse elimination and microglia activation stem
from the neuronal stress elicited by an altered metabolic
state (259). We observed neuroinflammation, microglia
activation, and peripheral macrophage infiltration,
which may be caused either by metabolic changes in the
circulation, or by activated macrophages from the vis-
ceral adipose tissue, specifically in the vicinity to the
fenestrated capillaries. Given this specificity, we postulate
that location is one of the determinants of synaptic
changes in neuronal populations located close to cir-
cumventricular organs. Given that GnRH neurons are
uniquely located in the proximity to fenestrated capil-
laries in both OVLT andME, they are primed to respond
to the neuroimmune alternations.

Figure 5. Conclusion. GnRH neurons (red) are uniquely located, proximal to the OVLT at the
soma and to the ME at terminals, which are both circumventricular areas with fenestrated
capillaries, depicted with dashed lines. Resident immune cells, microglia, are activated
following an HFD specifically in the proximity to the OVLT and ME. Change in morphology
from resting to activated state is indicated with blue arrows. Peripheral macrophages are
recruited to the brain parenchyma, as well. These neuroinflammatory changes, together with
changes in the POMC or NPY neurons, which regulate food intake and energy expenditure,
or in kisspeptin neurons, which are upstream neurons that regulate GnRH neuron secretion,
contribute to alternations in GnRH neuron function and diminished reproductive capacity in
obesity.
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111. Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban
PC, Klein R, Krone W, Müller-Wieland D, Kahn CR. Role of
brain insulin receptor in control of bodyweight and reproduction.
Science. 2000;289(5487):2122–2125.

112. Tanaka T, Nagatani S, Bucholtz DC, Ohkura S, Tsukamura H,
Maeda K, Foster DL. Central action of insulin regulates pulsatile
luteinizing hormone secretion in the diabetic sheep model. Biol
Reprod. 2000;62(5):1256–1261.

113. Kovacs P, Parlow AF, Karkanias GB. Effect of centrally admin-
istered insulin on gonadotropin-releasing hormone neuron ac-
tivity and luteinizing hormone surge in the diabetic female rat.
Neuroendocrinology. 2002;76(6):357–365.

114. Evans MC, Rizwan M, Mayer C, Boehm U, Anderson GM.
Evidence that insulin signalling in gonadotrophin-releasing hor-
mone and kisspeptin neurones does not play an essential role in
metabolic regulation of fertility in mice. J Neuroendocrinol. 2014;
26(7):468–479.

115. Divall SA, Williams TR, Carver SE, Koch L, Brüning JC, Kahn
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Q: 8_Because supplemental materials are not noted in the cover for your article, “supplemental
information” has been deleted in the sentence beginning “Interestingly, GnRH mRNA
….” Please approve this change or amend as necessary.

Q: 9_Please confirm that the financial support statement is correct and complete as set. If funding
information from your manuscript was not accurately extracted from your article
submission in Editorial Manager, there may be problems with the final deposition into
PubMed Central and other indices.

Q: 10_Please verify the corresponding author’s contact information.
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