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Despite the success of antiretroviral therapy (ART), perinatally infected HIV remains a major health problem
worldwide. Although advance neuroimaging studies have investigated structural brain changes in HIV-infected
adults, regional graymatter (GM) andwhitematter (WM) volume changes have not been reported in perinatally
HIV-infected adolescents and young adults. In this cross-sectional study, we investigated regional GM and WM
changes in 16HIV-infected youths receiving ART (age 17.0 ± 2.9 years) comparedwith age-matched 14 healthy
controls (age 16.3 ± 2.3 years) using magnetic resonance imaging (MRI)-based high-resolution T1-weighted
images with voxel based morphometry (VBM) analyses. White matter atrophy appeared in perinatally
HIV-infected youths in brain areas including the bilateral posterior corpus callosum (CC), bilateral external cap-
sule, bilateral ventral temporal WM, mid cerebral peduncles, and basal pons over controls. Gray matter volume
increasewas observed inHIV-infected youths for several regions including the left superior frontal gyrus, inferior
occipital gyrus, gyrus rectus, right mid cingulum, parahippocampal gyrus, bilateral inferior temporal gyrus, and
middle temporal gyrus comparedwith controls. GlobalWMandGMvolumes did not differ significantly between
groups. These results indicate WM injury in perinatally HIV-infected youths, but the interpretation of the GM
results, which appeared as increased regional volumes, is not clear. Further longitudinal studies are needed to
clarify if our results represent active ongoing brain infection or toxicity fromHIV treatment resulting in neuronal
cell swelling and regional increased GM volume. Our findings suggest that assessment of regional GM and
WM volume changes, based on VBM procedures, may be an additional measure to assess brain integrity in
HIV-infected youths and to evaluate success of current ART therapy for efficacy in the brain.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Perinatal infection with HIV remains a major public health problem
worldwide disproportionately affecting children in developing coun-
tries, with still limited access to antiretroviral therapy (ART). However,
netic resonance imaging; VBM,
atter; SPM, statistical paramet-
ter volume; GMV, gray matter
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in developed countries, the tremendous success of ART has transformed
perinatal and adult HIV into a chronic disease with long term survival
(Lee et al., 2006; Moore and Chaisson, 1999; Palella et al., 1998). Al-
though brain involvement with HIV is well documented for perinatally
infected infants and children (Tardieu et al., 1995), long-term neurolog-
ic outcomes for HIV-infected children and youths need further study.
Even though newer antiretroviral therapies have decreased the inci-
dence of HIV encephalopathy in perinatally HIV infected children with
early aggressive treatment (Patel et al., 2009), many children have
survived to adulthood from earlier eras with less efficacious regimens
and may experience indolent ongoing brain injury. Recent studies doc-
ument neurocognitive compromise in the older, treated perinatally
infected HIV patients and the need for noninvasive assessment of ongo-
ing brain integrity in long-term treated survivors (Nagarajan et al.,
2012; Smith et al., 2012). Improved detection of brain injury could
result in treatment modifications to improve the cognitive function of
HIV-infected patients.
ved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2013.10.012&domain=pdf
http://dx.doi.org/10.1016/j.nicl.2013.10.012
mailto:athomas@mednet.ucla.edu
http://dx.doi.org/10.1016/j.nicl.2013.10.012
http://www.sciencedirect.com/science/journal/22131582


30 M.K. Sarma et al. / NeuroImage: Clinical 4 (2014) 29–34
Both in-vitro and in-vivo studies have demonstrated that tissue
changes have been observed in distinct brain regions in patients with
HIV. Evidence in post-mortem brain tissue in patients with HIV con-
firmed wide spread neuronal loss that involved the entire cerebral cor-
tex, basal ganglia and brain-stem structures (Adle-Biassette et al., 1999).
Early studies in adults based on brain volumetric MRI reported volume
changes in subcortical graymatter structures including the basal ganglia
and central whitematter (Aylward et al., 1993; Stout et al., 1998) in HIV
patients. Subsequent studies, using tensor based morphometry (Chiang
et al., 2007) and measurement of cortical gray matter thickness
(Thompson et al., 2005), showed severe cortical atrophy and found
correlation with cognitive and motor impairment with prefrontal and
parietal tissue loss in HIV-infected patients. Furthermore, more recent
morphometric studies using deformation based morphometry (Becker
et al., 2011) and VBM (Cohen et al., 2010) suggested loss of brain
volume in cortical and subcortical regions, despite effective ART. A
recent VBM study (Küper et al., 2011) provided evidence for atrophy
of nigro-striatal and fronto-striatal circuits in HIV. It showed that the
prefrontal gray matter atrophy in HIV was associated with longer
disease duration, while motor dysfunction was associated with basal
ganglia gray matter atrophy and lower CD4 cell count correlated with
occipital gray matter loss.

Although various neuroimaging studies investigated structural brain
changes in HIV, regional gray and white matter volume changes have
rarely been studied in perinatally HIV-infected youth. Studies in perina-
tally HIV-infected children using traditional neuroradiographic tech-
niques (computed tomography and MRI) (Johann-Liang et al., 1998)
have shown cerebral atrophy and basal ganglia calcification, but these
studies were before the widespread use of combination antiretroviral
therapy and early diagnosis in infants. In this study, we have compared
a group of older perinatally HIV-infected youths with age-matched
healthy control group with VBM, using high-resolution T1-weighted
images and statistical parametric mappingmethod. The VBMprocedure
allows the detection of highly localized differences, consistently ob-
served across the samples, over the whole brain, even in areas where
the region of interest analysis would be difficult. The procedure has
proved to be a powerful method in detecting regional tissue differences
in other cerebral disorders such as Alzheimer's disease, schizophrenia,
and amyotrophic lateral sclerosis (ALS) (Ha et al., 2012; Honea et al.,
2005; Kassubek et al., 2005), even in clinical conditions where routine
imaging does not show any visible abnormality (Padovani et al., 2006;
Shin et al., 2006), and provides the opportunity for an unbiased general
search of abnormalities in the whole-brain volume (Ashburner and
Friston, 2000). Thus VBM may be useful to examine regional gray and
whitematter changes in perinatally HIV-infected children. Theobjective
of our study was to identify the gray matter (GM) and white matter
(WM) changes in children associated with perinatal HIV infection,
using high-resolution T1-weighted images with VBM procedures.
Table 1
Characteristics of study participants.

HIV+ patients Healthy controls p-Value

N 16 14 N/A
Age 17.0 ± 2.9 years 16.3 ± 2.3 years 0.48
Gender (male/female) 8/8 9/5 0.45
CD4 count 536 ± 340 N/A N/A
%CD4 N200 81.2 (n = 13) N/A N/A
Log viral load 4.7 (1.3) N/A N/A
% Log viral load b1.9 56 (n = 9) N/A N/A
Age at first HIV treatment 4.6 ± 4.8 years N/A N/A
% treated at less than one year 25 (n = 4) N/A N/A
Total gray matter (cm3) 710.75 ± 48.82 721.762 ± 39.25 0.50
Total white matter (cm3) 475.58 ± 48.17 494.11 ± 53.00 0.33
Brain/intracranial ratio 0.86 ± 0.01 0.87 ± 0.01 0.85

N/A = Not applicable or available.
2. Materials and methods

We investigated 16 patients with HIV infection (mean age ± SD,
17.0 ± 2.9 years; age range, 13–25 years) and 14 age-matched healthy
controls (16.3 ± 2.3 years; 13–25 years). Clinical and other character-
istics of HIV-infected and control subjects are included in Table 1.
Subject population was part of previously-published study (Nagarajan
et al., 2012), and included 15 patients infected perinatally from the
mother and one patient infected by blood transfusion at less than
one year of life. All HIV patients were recruited from Harbor-UCLA
Medical Center (Torrance, CA), Miller Children's Hospital of Long
Beach (Long Beach, CA), David Geffen School of Medicine at UCLA
(Los Angeles, CA) and Children's Hospital Los Angeles (Los Angeles, CA).
Fourteen HIV-negative healthy controls were recruited from the gener-
al pediatric clinic at Harbor-UCLA Medical Center and also from family
members or friends of the patients. Inclusion criteria for HIV-infected
subjects were acquisition of HIV in fetal or neonatal period or in first
year of life by blood transfusion, current combination ART and right-
hand dominance. For control youths, inclusion criteria were confirma-
tion of HIV negative status by buccal scraping (OraSure Technologies,
Bethlehem, PA 18015), and right handed status.

Exclusion criteria for all subjects were claustrophobia, pregnancy,
current alcohol or other substance use/abuse, current or past attention
deficit disorder diagnosis, active depression (based on subject's self
description) or other psychiatric diagnosis (based on subject's need
for psychiatric medications or treatments), metabolic disturbances,
metallic implants, and other brain diseases (notHIV related). For control
subjects, exclusion criteria also included any chronic medication other
than asthmamedication and severe school difficulties. CD4 T cell counts
and viral load at time of testing were collected from chart review aswas
information regarding maternal substance abuse during pregnancy.
Informed consent was obtained from all subjects prior to the study,
and study protocol was approved by the Institutional Review Boards
at both theHarbor-UCLAMedical Center and the University of California
at Los Angeles.

2.1. Magnetic resonance imaging

All brain imaging studies were performed in a 3.0 Tesla MRI
scanner (Siemens, Magnetom, Tim-Trio; Erlangen, Germany), using a
12-channel phased-array head coil. High-resolution T1-weighted im-
ages were acquired using a magnetization-prepared-rapid-acquisition-
gradient-echo (MP-RAGE) sequence (repetition time = 2200 ms;
echo time = 2.34 ms; inversion time = 900 ms; flip angle = 9°;
matrix size = 320 × 320; field of view = 230 mm × 230 mm; slice
thickness = 0.9 mm; number of slices = 192).

2.2. Data processing

Brain imaging data were processed using the statistical parametric
mapping package (SPM8, http://www.fil.ion.ucl.ac.uk/spm/), MRIcroN,
andMATLAB-based (TheMathWorks Inc, Natick, MA) custom software.
High-resolution T1-weighted images from all individual subjects
were visually-examined for the presence of tumors and cysts. High-
resolution T1-weighted images were also examined for any motion
artifacts.

High-resolution T1-weighted images corrected for any bias and
inhomogeneity-corrected images were partitioned into gray, white,
and cerebrospinal fluid (CSF) tissue types using a unified segmentation
approach (Ashburner and Friston, 1997; Friston et al., 1995). Gray and
white matter tissue maps were normalized to the Montreal Neurologi-
cal Institute (MNI) space and were modulated and smoothed using a
Gaussian filter (full width at half maximum, 10 mm). High-resolution
T1-weighted images of all individual subjects were also normalized to
MNI space. The normalized images of all subjects were averaged, and
averaged images were used as background images for structural

http://www.fil.ion.ucl.ac.uk/spm/
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identification. Using the segmented gray, white, and CSF tissue proba-
bility maps, global GM, WM, and CSF volumes were calculated using
an MATLAB based program.

2.3. Statistical analysis

We used the Statistical Package for the Social Sciences (SPSS, V 18.0,
Chicago, IL) software for assessment of demographic and biophysical
data. Numerical data were compared between groups using indepen-
dent samples t-tests, and categorical data evaluated using the chi-
square test. The normalized and smoothed gray andwhitematter tissue
probability maps were compared between groups using analysis of
covariance (ANCOVA; uncorrected threshold, p = 0.01; extended
threshold, 100 voxels), with age and gender included as covariates. To
avoid edge effects around the border between GM andWM,we exclud-
ed all voxels with a GM orWMvalue of b0.1 and used an explicit mask,
derived from mean of GM and WM tissue probability maps. Clusters
with significant differences in gray and white matter between groups
were overlaid onto background images for structural identification.

3. Results

3.1. Demographics

There were no significant differences in sex and age between HIV-
infected and control groups. Maternal substance abuse was document-
ed for 25% HIV-infected patients, but information regarding maternal
substance abuse was not always available.

3.2. White matter volume (WMV) changes

White matter volume (WMV) reduction appeared in HIV youths
comparedwith control subjects, and are shown as three views of regions
projections to two-dimensional (2D) glass brain panels (Fig. 1A).
Reduced WMV appeared in the bilateral posterior corpus callosum
(CC), bilateral external capsule, bilateral ventral temporal WM, mid
cerebral peduncles, and basal pons (Fig. 2). No regions emerged with a
significant elevation of WMV in HIV-infected youths over healthy
controls.

3.3. Gray matter volume (GMV) changes

Significantly higher gray matter volumes (GMV) emerged in
HIV-infected youths over healthy children, and are displayed in 2D
Fig. 1. Two-dimensional maximum intensity projection (MIP) glass brain representation sho
(B) elevated GM volume in HIV-infected group, compared with controls.
glass brain (Fig. 1B). Higher GMV was observed in the left superior
frontal gyrus, inferior occipital gyrus, gyrus rectus, right mid cingulum,
parahippocampal gyrus, bilateral inferior temporal gyrus, and middle
temporal gyrus in HIV-infected subjects over controls (Fig. 3).
3.4. Global volume changes

Global GM and WM of HIV-infected and control subjects are
tabulated in Table 1. No significant differences were observed between
HIV-infected and healthy control groups for total GM, totalWMor brain
(GM + WM) to intracranial (GM + WM + CSF) volume ratio, even
controlling for age and sex. Mean and standard deviation (SD) GMV
for HIV-infected youths was 710.75 cm3 (SD = 48.82) and for healthy
volunteers was 721.76 cm3 (SD = 39.25). Mean and SD of WMV for
HIV-infected youths was 475.58 cm3 (SD = 48.17) and for healthy
volunteers was 494.11 cm3 (SD = 53.00).
4. Discussion

In this study, we investigated regional GM andWMvolume changes
in perinatally HIV-infected youths compared with age-matched healthy
youths. To our knowledge, the present study is the first characterization
of regional brain GM and WM structures using a VBM approach in
individuals infected perinatally or early in life with HIV. The major
findings in this study are that these HIV-infected individuals receiving
ART showed WM atrophy in selected brain regions and significantly
higher GMV in other selected regions. We did not observe any signifi-
cant changes in the global WM and GM volume between the two
groups. Also, analysis excluding the one subjectwith transfusion related
HIV did not change the morphometry results.

Several studies on adults have reported reduced white matter
volume (Chiang et al., 2007; Stout et al., 1998) in HIV+ patients com-
pared with healthy controls. A recent longitudinal study involving
region of interest analysis and deformation morphometry showed
greater rates of white matter volume loss in HIV+ patients on ART
than control individuals (Cardenas et al., 2009). Our finding of reduced
WMV in the corpus callosum is consistentwith a study showing callosal
thinning on anatomical MRI (Thompson et al., 2006) and other studies
using DTI in HIV-infected adults showing white matter injury in the
subcortical white matter, including the frontal lobes, the genu and
splenium of the corpus callosum, and the internal capsule (Chang
et al., 2008; Filippi et al., 1998; Gongvatana et al., 2009; Pfefferbaum
et al., 2007; Pomara et al., 2001; Thurnher et al., 2005;Wu et al., 2006).
wing areas of (A) reduced WM volume in HIV-infected group, compared with controls;



Fig. 2. SPM analysis of WMV reduction in patients compared with controls. Results are
projected on axial/sagittal/coronal slices of the study specific averaged MPRAGE-image
in a standard stereotactic space derived fromall the 30 study participants. Bilateral clusters
showing lowerWM is observed in the external capsule (a, b), ventral temporalWM (d, e),
and posterior corpus callosum (g, h). WM damage was also observed in the mid cerebral
peduncles (c) and basal pons (f). The neurological convention is adopted,with the left side
of the brain on the left side of coronal and axial panels. The extent of variation in damage is
provided by the color coded t-values. The color scale represents t-statistic values, with
colored regions exceeding the significance threshold of P b 0.01 and minimum cluster of
100 voxels.

Fig. 3. SPM analysis of GMV elevation in patients compared with controls. Results are
projected on coronal, sagittal and axial slices of the study specific averaged MPRAGE-image
in a standard stereotactic space derived from all the 30 study participants. Bilateral
clusters of significantly higher GM values appeared in the inferior temporal gyrus (a, b)
and middle temporal gyrus (f, i). Regions of higher GM also appeared in the right
parahippocampal gyrus (c), left superior frontal gyrus (d), left gyrus rectus (e), left inferior
occipital gyrus (g), and right mid cingulum (h). Conventions as in Fig. 2.

32 M.K. Sarma et al. / NeuroImage: Clinical 4 (2014) 29–34
Unlike some of the neuronal diseases such as Alzheimer's disease
and Parkinson's disease, HIV can also disrupt brain tissue through
indirect mechanisms of neural injury mainly as a result of axonal dis-
ruption and aberrant sprouting of synaptodendritic connections, often
without substantial neuronal loss (Ellis et al., 2007). Synaptodendritic
neuronal injury may be an important mediator of cerebral injury in
HIV, and our finding of WM volume reduction may be a reflection of
these changes. Other considerations include possible inadequate pene-
tration of some antiretroviral medications into the central nervous sys-
tem with resultant poor control of infection (Cysique et al., 2004).
Alternatively, severe damage sustained during brain development
may not be ameliorated even by subsequent effective HIV regimens.

In contrast to the WM loss, we identified several areas of elevated
GM volume in perinatally-infected HIV+ youths compared with
healthy controls. Our finding of elevated GM volumes in HIV+ patients
does not agree with several previous studies in HIV+ adults (Becker
et al., 2011; Cohen et al., 2010; Thompson et al., 2005). However, one
adult study showed GM hypertrophy in the putamen (Castelo et al.,
2007), which was not an area of increase identified by our analysis.
Similar results of GM volume increase have been observed in other
clinical populations including patients with bipolar disorder (Adler
et al., 2005), attention deficit hyperactivity disorder (ADHD) (Sowell
et al., 2003), and schizophrenia (Dazzan et al., 2005; Deng et al.,
2009). An increase in gray matter volume could be due to an increase
in cell size, neural or glial cell genesis, or spine volume (Driemeyer
et al., 2008; May et al., 2007). Although the etiology of GM volume
increases observed in perinatally HIV-infected youths remains unclear
since such findings have not been reported in adults with HIV, several
issues need to be considered. Since our medical history information
regarding maternal substance abuse during pregnancy is incomplete,
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maternal substance abuse may be a confounding factor. All the HIV+
patients were receiving ART medication at the time of the MRI scan
and thesemedicationsmay have a neuroprotective effect and potential-
ly impact neuroanatomic findings during development. Unfortunately,
the average age for initiating any antiretroviral therapy was 4.6 years
in our subjects and considerable cerebral damage may have already
occurred.

Increased GMvolume has also been found in childrenwith attention
deficit hyperactivity disorder (ADHD) (Sowell et al., 2003) undergoing
stimulant drug treatment. Previous or current ADHD diagnosis was an
exclusion criterion for our study, so our findings are not related to this
confounding diagnosis. There is growing evidence that anti-psychotic
drugs used in schizophrenia may result in increased GM volume
(Deng et al., 2009), possibly playing a role inmediating neural plasticity
during the early phase of clinical recovery. Previous treatment of HIV+
patients with either mood stabilizers or antipsychotic medications or
current and previous antiretroviral therapy could potentially contribute
to cerebral toxicity and the findings of increased GM volumes (Adler
et al., 2005).

GM hypertrophy may also be a result of inflammation. It is known
that neuropathogenesis of HIV is accompanied by HIV viral protein in-
duced brain inflammation (Kaul et al., 2001; Mattson et al., 2005) and
the expression of inflammatory markers are directly involved, which
has been supported by in vitro studies (Zhao et al., 2001). Even after
the introduction of highly active ART, there is ongoing detectable neuro-
inflammation (Anthony et al., 2005). Inflammatory activity may be a
marker of neurological progression from asymptomatic to symptomatic
disease stages in HIV (Chang et al., 2004). Imperfect pruning may also
contribute to GMV elevation. Adolescence marks a period of brain de-
velopment accomplished through synaptic refinement andmyelination.
During adolescence, synaptic pruning occurs involving reduction in GM
due to elimination of unnecessary neural connections (Sowell et al.,
2001; Squeglia et al., 2009). It may happen that pruning processes are
affected by ART medications or HIV infection, resulting in larger GMV
in HIV+ youths compared with controls. Potentially either HIV infec-
tion directly or ART may result in altered pruning and a larger GMV.

Our previous study using 2D-MRS and neuropsychological tests in
this same cohort (Nagarajan et al., 2012) demonstrated metabolic
abnormalities as evidenced by elevation of scyllo-inositol (Scy) and glu-
tamate (Glu) ratios with respect to total creatine (tCr) and total choline
(tCho) in the HIV-infected youths. However, since this earlier study
focused on the right frontal region it cannot be directly related to our
whole brain VBM study. We did demonstrate in that earlier study of
the same population that neurocognitive function was impaired in
the HIV-infected group as evidenced by lower scores for the attention/
processing speed domain, but no correlation was found between
metabolites and neurocognitive performance. In the present study we
have not also found any correlation between the structural changes
and the neurocognitive performance.

Major limitations of this study are the small sample size and
the cross sectional design. Future longitudinal studies on perinatally
HIV-infected subjects are needed to confirm our results and should be
conducted using a larger study population with neurocognitive perfor-
mance correlation. Other imaging modalities, including high angular
resolution diffusion imaging, may be another way to investigate region-
al WM changes.

5. Conclusions

In this study we found white matter atrophy in perinatally HIV-
infected youths in the bilateral posterior CC (in agreement with adult
studies) and other brain areas including external capsule, ventral
temporal WM, mid cerebral peduncles, and basal pons compared with
controls. Increased gray matter volume emerged in several regions
including the left superior frontal gyrus, inferior occipital gyrus, gyrus
rectus, right mid cingulum, parahippocampal gyrus, bilateral inferior
temporal gyrus, and middle temporal gyrus. These results provide
evidence of changes in both the GM and WM, which may indicate
early developmental cerebral injury in perinatally infected HIV+
youths, ongoing HIV infection in the brain despite ART, or toxicity of
HIVmedications. Our findings suggest that HIV+patients on successful
ART should be observed long term for both direct and ongoing effects of
the virus on the brain and possible toxic effects of antiretroviral medica-
tions. The most neuroprotective regimens must be developed for
both perinatally-infected patients and patients infected as adults and
improved noninvasive sequential imaging of the brain may assist in
elucidating the best treatments.
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