
UC Irvine
ICS Technical Reports

Title
Towards achieving an 100-hour design cycle : a test case

Permalink
https://escholarship.org/uc/item/3r2251jx

Authors
Gajski, Daniel D.
Ramachandran, Loganath
Fung, Peter
et al.

Publication Date
1994-02-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3r2251jx
https://escholarship.org/uc/item/3r2251jx#author
https://escholarship.org
http://www.cdlib.org/

Notice: This Material

may be protected
by Copyright Law
(Title 17 U.S.G.)

Towards achieving an
100-hour Design Cycle:

A Test Case

Daniel D Gajski ^
Loganath Ramachandran ^

Peter Fung ^
Frank Vahid ^

Sanjiv Narayan ^

Technical Report ^^94-08
February 14, 1994

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-8059

Abstract

With recent success in logic synthesis tools, many designers are focussing on capturing the design with
a Register Transfer Level (RTL) description and using synthesis tools to complete the rest of the de
sign. Due to the large amount of detail, writing a RTL description requires a long time, making it
unacceptable when designs have to be produced rapidly. In this paper we propose a design methodol
ogy that can shorten the design cycle significantly. This is achieved by specifying the design at the
highest level of abstractions and using powerful tools to complete the rest of the design. We have used
this methodology on an industrial application, where we have designed and implemented a fuzzy logic
controller.

^University of California, Irvine, California
^Matsushita Electric Works Research and Development Laboratory, Inc. San Jose, California

Contents

1 Introduction

Our Design Methodology 2
2.1 Design Specification 2
2.2 System Design Tasks 4
2.3 Architectural Design Tasks 6
2.4 Technology Adaptation 8

Fuzzy Logic Controller
Fuzzy Logic Controller: Basic Principles • . . . 9
Design specification 11
System Design 11
Architectural Design 13
Technology Adaptation 15
Second Design Iteration 17

Conclusions

5 Acknowledgements

6 References

List of Figures

Top Down Design Methodology 3
System - Design: Tasks 6
Architectural Design: Tasks 8
Fuzzy Controller Principles 10
Fuzzy Controller - Design Steps 12
Partitioning Results 13
Rule Description in VHDL 14
Architectural Design for one FPGA (EVAL_R1) 16
Results: EVAL_R1 17
Placement and Routing Results : EVAL_R1 18

1 Introduction

Recent successes of commercial logic synthesis tools has changed the focus of design methodologies.

Instead of focussing on logic descriptions, many designers are focussing on specifying the designs at

the Register Transfer (RT) level. In order to specify the design at the Register Transfer level, the

designer must define: (i) the operations and the register transfers that should be executed during each

clock cycle and (ii) the exact state transitions of the controller. However, this task is not easy because:

[a] The amount of detail to be specified at the RT level is quite large, particularly for designs with

many states. Also, debugging of description errors is time-consuming.

[b] The number of design alternatives is large and their evaluation further increases the specification

time.

[c] Verification is difficult because of lack of formal models at higher abstraction levels. This could

even result in wrong tradeoffs.

For the above reasons, writing a correct behavioral description (with proper design tradeoffs) is

time consuming further increasing the design cycle time. This long design cycle is not acceptable for

rapid design turnarounds.

The main goal of our research is to drastically reduce this design cycle time to less than 100 hours.

In this paper, we propose a design methodology, which is a step towards achieving this goal. We have

focussed this methodology specifically for quick design turnarounds. We have been able to achieve

this extremely short design time because of the following reasons:

1. Specification of the design at a very high abstraction level. This minimizes the amount

the detail that the user has to specify manually. Moreover by keeping the specification close to

the conceptualization level, we ensure that the specification can be done correctly with very little

time and effort.

2. Use of standard languages for input specifications. By using standard languages like

VHDL, (or front- ends based on VHDL) weexploit the vast support available for them. Moreover,

designers can reduce the number of specification errors, since the syntax and semantics of the

front-end language closely match design characteristics.

3. Efficient tools for design space exploration at each abstraction level. Since there are

numerous design tasks from the specification to the Implementation, we divide the ta^ks into

three groups which are performed at the three abstraction levels. We have developed CAD tools

for each abstraction level to carry out many of the exploration and optimization tasks.

4. User interaction to guide synthesis. Since complete automation is not possible, user inter

action is provided at all levels to guide the exploration and refinement process. The designer may

override the decisions of the automatic tools to satisfy special cases. In order to enable designers

to guide the synthesis process, it is necessary to provide quality measures for the design, when

ever required. Such quality metrics evaluations can also be used by the automatic algorithms

when exploring the design space.

5. Enabling design verification at all abstraction levels. After completion of each task at

an abstraction level, it is necessary to check the status of the design. Our methodology allows

simulation at each abstraction level, to verify the correctness of the synthesis process.

For the remainder of this paper, we describe the details of the tasks at each abstraction level. We

then illustrate the power and speed of this methodology by showing the design steps on an industrial

design.

2 Our Design Methodology

2.1 Design Specification

In Figure 1, we show the important parts of our design methodology. The design is specified at the

highest possible level of abstraction using a model that closely resembles the way designers would

conceptualize a design. The actual design steps consists of three sets of tasks, which include, (a)

System design tasks that deal with mapping the specified functionality into multiple chips, (b)

Architectural design tasks that deal with designing the architecture (i.e., control and datapath)

for each of the chips, (c) Technology adaptation tasks that deal with mapping the components in

the chip to actual physical implementations. Detailed descriptions of each of these tasks are given in

Section 2.

In order to shorten the specification time considerably, the design specification style must very

closely resemble the way designers conceptualize the design. To make this possible, we have defined

a model called Program-state Machines (PSM), which is based on a combination of the hierar-

Proposed Design Methodology

Design Flow Abstraction Level Design Tasks

states, protocols,
hierarchy, concurrency

partitioning, estimation,
interface synthesis,
bus merging

processes,
programming statements

RTL netlist,
State machine,

scheduling, binding,
component selection,
pipelining, software
compilation

Logic synthesis
Datapath Compiliation
Placement and Routing

FPGA mapping data
Machine Code

y

Synthesis

Chip Specs

Arch. Synthesis

RTL Specs

Tech. Adaptatb^

Software

Figure 1: Top Down Design Methodology

chical finite-state machine and programming language paradigms [1]. With this model, a system can

be specified as a hierarchy of program-states, where each program-state may either be a composite

program-state or a leaf program-state. The composite program-states contains a set of concurrent

program-states (all of them active) or sequential program states (only one of them active). The leaf

program-states have a sequence ofcomputations expressed using programming language statements.

We have developed a language called SpecCharts [2], which is based on this PSM model. The

computations in the leaf program-states are expressed with VHDL programming statements. They

contain three object classes; variables that store data, behavior that represents an algorithmic

level computation, and channels that move data between behaviors. Based on the PSM model, the

composite program states are constructed by combining two or more such VHDL based leaf program-

states such that they execute sequentially or parallely.

SpecCharts is a high level specification language that can completely describe the behavior of a

system. The amount of details at this level is very small, since the description consists ofpure behavior,

with no connotations to any hardware implementations. This simplifies the specification enabling us

to possibly achieving our 100 hour design cycle goal.

SpecCharts is basically designed to serve as a front end for VHDL[3]. Hence the syntax and

semantics ofthe language are well defined reducing the number of possible errors caused by language

ambiguities. We have also developed translators to converts SpecCharts into VHDL, allowing for easy

simulation of the specification.

2.2 System Design Tasks

System Design involves mapping the functionality, as captured in the SpecCharts specification to

a set of chips, such that all design constraints are met. The tasks at the system level deal with a

very coarse granularity of objects (i.e., variables, behaviors and channels in the specification). Our

approach to system design consists ofthree well-defined tasks on these objects, (a)allocation ofchips,

to satisfy the overall cost constraints, (b) partitioning of objects in the specification to satisfy the

constraints, and (c) refinement of the behavior, to ensure that the various partitions can be interfaced

together.

Allocation selects different system components or chips for the implementation. Typical compo

nents allocated include RAMs, standard processors, FPGAs, physical buses or custom ASICs. It is

neccessary to allocate sufficient resources for implementing all the objects in the specification within

the performance constraint. At the same time, the amount of resources allocated must not exceed the

cost, power packaging and otherconstraints. Depending on the estimated quality metrics, the designer

may try many different allocations, or allow the system to automatically choose a good allocation.

After allocating the chips in the system, the objects in the specification have to be partitioned

and mapped onto these chips. Thus partitioning forms the next important task at the system

level. During the partitioning process, variables are mapped to memories, behaviors are mapped to

standard/custom processors, and channels are mapped to buses.

Generally, there are a largenumber of partitioningsolutions for a given allocation. However in order

to achieve our rapid design turnaround goal, we need partitioning algorithms that can rapidly explore

this large solution space. Clustering based partitioning is an example ofa fast partitioning algorithm.

Use of such algorithms in the partitioning process, can result in a large number of solutions being

explored quickly. Fast estimators are required to evaluate the quality metrics for each partitioning

tried by the algorithm.

The partitioning criteria varies for different types of allocation. Partitioning a system onto a set

of ASICs require a different cost metric compared to partitioning a system onto FPGAs. In order to

enable the partitioner to explore different types ofallocation, the closeness criteria for the partitioning

algorithms can be selected by the designer.

Partitioning causes a regrouping of the objects in the specifications. As an example, many variables

in the description may be moved into one partition and grouped onto a single memory. Or, a single

behavioral description may be split across multiple chips. It is necessary to add behaviors to the

individual chips to maintain correct functionality for the given allocation and partitioning. In our first

example, since many variables are stored in the same memory, address translation must be introduced

for each memory access. In the second example, where behaviors are split among chips, additional

interface descriptions must be introduced into both the chips to maintain correct communication.

These sets of tasks are called refinement.

A summary of the tasks at the system level of abstraction is shown in Figure 2. After performing

these tasks, a refined specification that can be verified by simulation is generated. This refined

specification consistsof an executeable specification; one for each system component. Each component

spec contains VHDL process level statements. The channels between two chips form the input and

output ports on the chips. The details of the system level design process is given in [4].

Each component spec must be synthesized into an ASIC or compiled into an instruction set for the

Functional System-design tasks
objects

Allocation Partitioning

Variables Memories
1

> Variables to memories
1

Behaviors Processors
»

I Behaviors to processors.

Channels Buses
-1

< Channels to buses

Figure 2: System - Design: Tasks

Refinement

Address assignment

interfacing

Arbitration/protocols

allocated processor. Thus system design partitions descriptions into multiple components, which can

be implemented either in hardware or software.

2.3 Architectural Design Tasks

Architectural Design involves mapping each chip description to a set of microarchitectural com

ponents, such that the design constraints for the chip are met. We use the Finite State Machine

with Datapath (FSMD) model [5] to represent the design at the architectural design phase. This

model consists of: (a) a datapath to represent operations, and (b) a finite state machine to represent

the sequencing of the operations.

A design based on the FSMD contains (a) a datapath that contains functional units such as ALUs,

storage units, and interconnect units, and (b) a controller specified in terms of state transitions and

the value of the control lines in each state.

The tasks in the architectural design phase are very similar to the tasks in the system design

phase, except for the level of abstraction. While system design tasks generates system structure, the

architectural design tasks generate the chip structure. Our approach to architectural design consists

of four tasks on the behavior generated by system design, (a) selection of components from a library

(b) scheduling all the operations in the description into control steps (c) binding the operations in the

description to the selected components, (d) design optimization by pipelining the controller and the

datapath.

Component Selection allocates appropriate resources from a library of RT components. The

library could contain many different implementations of the same functional unit, with each imple

mentation differing in its cost and performance characteristic. There are many tradeoffs possible

during component selection. Selecting faster components may improve the performance and the clock,

but may result in a vary large area. On the other hand selecting slower components may reduce the

area of the design, but may result in the violation of the performance constraint. Thus component

selection determines the appropriate mix of fast and slow components that meet both the area and

the performance constraint.

The component selection phase deals with the allocation of three types of components, (a) func

tional units, which are used to perform all the operations in the behavioral description, (b) storage

units, which are used for storing the data, (e.g., multiported RAMs, Register Files and Registers),

(c) interconnect units that are used for transfer ofdata between the storage and functional units.

The components are selected from a GENUS [6] library, which provides an extensive set of pa

rameterized generic components. These generic components can be bound to any technology specific

implementation.

Scheduling partitions all the objects in the description (i.e., variables, operations and data trans

fers) intovarious clock cycles. Theimportant goal during scheduling is to achieve the best performance

given the allocated resources. During the synthesis process, the designer may try manydifferent com

ponent selections. The schedule must be computed quickly in order to provide instant feedback to the

designer about the quality of the component selection.

Binding derives a mapping of each object in the description to the allocated resources. All vari

ables in the description are mapped to storage units, all operations in the description are mapped to

functional units and all data transfers in the description are mapped to buses. The important goal

during binding is to minimize the number of additional interconnect units required for implementing

the design. Instead of mapping each variable into separate storage units, it is possible to share many

variables in the same same storage space, if their lifetimes do not overlap, or if their access times

do not overlap. Address translations are required when storing multiple array variable into the same

memory module [7].

Design Pipelining techniques can be used to perform further design optimization. It is possible

to decrease the maximum register to register delay by increasing the number of pipelining registers.

However, these pipelining registers can be introduced either in the datapath or in the control parts.

In datapath pipelining the datapath units (e.g., functional units) are pipelined into many stages. In

control pipelining the pipeline registers are introduced between the control and the datapath [8].

A summary of the tasks at the architectural level of abstraction is shown in Figure 3. After

performing these tasks, a netlist of the controller and the datapath is available for further synthesis in

the next level of abstraction. In addition to the netlist, a VHDL model and a logic level specification

Functional
objects Component

Selection

Variables Storage Units

Operations Functional Units

Data Transfers n, ISOS

Micro-architectural design tasks

Scheduling

Var Accesses to csteps < Variable Merging

Ops to csteps Ops » FUs

Data Transfers to csteps • Transfers to Buses

Refinement Tasks

1. Data Pipelining

2. Control Pipelining

Figure 3: Architectural Design: Tasks

of each of the structural components Is generated. This facilitates simulation of the synthesized design

at this architectural level.

2.4 Technology Adaptation

The design in the previous phase uses generic components from the GENUS library. These generic

components must now be implemented using real components from a vendor library. The Technology

Adaptation phase performs this task of mapping all the generic components in the netlist to real

components in a chosen technology.

It is possible to use custom, semicustom or programmable technologies for technology adaptation.

However, in this report we concentrate on the field programmable gate array technology (FPGA) since

it provides the fastest turnaround for design implementation.

FPGAs are regular structures consisting of programmable logic blocks (CLBs), memory elements

and programmable interconnect blocks. An example of such an FPGA is the Xilinx set of chips

[9]. Mapping a generic component into a FPGA block involves programming a set of logic and the

interconnect blocks.

In order to facilitate mapping of components to specific FPGAs, the vendors provide (a) Com

ponent Macros, which are a set of mapping schemes for RT level components, (e.g., a vendor may

supply component macros for 4 bit and 8 bit adders), (b) Component Generators, which is a

set of tools for generating other RT components, (e.g., component generators may be available for

generating Memory Modules of any size).

Our technology adaptation methodology exploits the availability of these high level components

provided by the FPGA library vendor. Each generic component in our nelist is mapped into FPGA

using three possible schemes:

1. If the same component is available as a Component Macro in the FPGA library, then the mapping

process is very simple. The generic component can be directly mapped into the Component
Macro, since very efficient schemes for mapping the macro to the FPGA blocks is available with
the vendor.

2. If a Component Macro is not available, then the list of Generators are checked to verify if a
generator for that generic component is available. If the generators are available then the generic
component can be easily synthesized using the component generators.

3. If both the Component Generators and the Component Macros are not available for the compo
nent, then agate level netlist of the generic component is required for the mapping. Commercial
logic synthesis tools are used to generate this gate level netlist, from the VHDL model of the
component that is available in the GENUS library.

Although It IS possible to automate the selection of one of these three implementation schemes for
each generic component, this is done manually. Thus each component is identified with the appropriate
mapping scheme (a) Component Macro, (b) Component Generators, and (c) Decomposition.

After each generic component is mapped into FPGA blocks, the blocks have to be placed on the
physical FPGA chip, and interconnections between the physical blocks have to be completed. This
forms the last task in the design process.

3 Fuzzy Logic Controller

In order to demonstrate the advantages of using the proposed methodology, we selected an Industrial
design used in consumer and industrial electronic appUcations. The particular appUcation that we
used was afuzzy logic based temperature controller. Our goal was to specify the design at the system
level and synthesize the entire design into aset of FPGAs. Another important goal was to guage the
approximate time required for complete design from conceptualization to implementation.

In this section we provide the details of the fuzzy logic controller. We then discuss the fuzzy logic
design experiment and the tradeolfs that were achieved in each stage of the design process.

3.1 Fuzzy Logic Controller: Basic Principles

The basic idea in fuzzy logic, [10] is everyday crisp values such as "temperature is 25 C" can be
expressed as having amembership value in fuzzy sets such as "temperature is .9 hot" and "temperature

is .01 cold", where hot and cold are fuzzy sets and the values .9 and .01 represent the degree of

membership in the respective sets.

o ac / \ hi ac

Humidity Ac control

fa; Front end fuzzy sets (b) Back End fuzzy sets

1) if PL1 andNS2 then PL3
2) If NL1 and PS2 then NS3

(a) Rules

Fuzzification Rule 1

from Rule

(d) Fuzzy Control - Operations

Figure 4: Fuzzy Controller Principles

centroid

Defuzzmcation

In addition to the above fuzzy sets, each fuzzy logic controller incorporates two databases.

e Sets of membership functions to which the input facts belong in varying degrees. Typically,

these sets take on names such as Negative Large (NL), Negative Small (NS), Zero (Z), Positive

Small (PS) and Positive Large (PL). Each variable has its own set of membership functions. In

Figure 4(a) we show sets of membership for two variables temp and humidity in a sample fuzzy

logic application.

• A rule base which governs the behavior of the fuzzy controller. Typically, these rules are in the

form of if..then statements such as "if NLl and NL2 then PS3", where NLl and NL2 represent

degree of membership in the membership functions. Figure 4(c) shows two such rules in our

simple fuzzy controller.

The operations of the fuzzy controller are shown In Figure 4(d). Briefly, the fuzzy controller [11]
performs the following functions: (i) Fuzzification, converts the crisp input values for the variables

into a fuzzy value. The operations include many table lookups and comparisons, (ii) Rule Applica

tion, applies all the rules and produces a fuzzy output value. The operations include truncation and

convolution of the membership functions, (iii) Defuzzification, converts the fuzzy output values pro

duced by the rules. The operations here include computing the centroid of the back end membership

functions.

3.2 Design speciiication

As explained earlier, we needed a VHDL based specification mechanism that supports behavioral

hierarchy and concurrency. We used the SpecCharts language [2] for design specification since it

satisfied all our requirements. The specification level is very close to the designers conceptualization

for the design, and it is a front-end for VHDL based specifications. In addition it supports hierarchy

and control flow.

The design specification consisted of five behaviors expressed using VHDL process statements.

Four of these processes modeled the rules (R1 .. R4) in the system. The fifth behavior modeled the

defuzzification function (i.e., centroid computation).

During specification, it was not clear whether toevaluate the four rules sequentially orconcurrently.

We decided to explore both these options and estimate the size and performance for each of these

options during system design. Hence we wrote two different specifications of the design. In the first

specification, we created a hierarchical state, in which the four rules were executed sequentially. In

the second specification, we created a similar hierarchical state, but the four rules were executed con

currently. With SpecCharts it took less than 10 minutes to specify these two hierarchiccd descriptions

from the leaf behaviors.

Since Specharts can be easily translated to VHDL, we were able to simulate both the sequential

and the parallel specifications using a commercial VHDL simulator. It took us about 3 days to write

both these specifications. The total lines of code for the specification was about 300 lines.

3.3 System Design

Specsyn [4] was used for partitioning the design onto several chips. Since our goal was a final mapping

onto FPGAs, the system components that were allocated for partitioning purposes were only FPGAs.

SpecCharts Input

j

SpecSyn ~[
Partitioned
Description

RTL
Description

Exemplar
(Logic Synth)

FPGA
Netlist

NeoCAD
(Placo/Routo)

Back Annotated
FPGA Netlist

FPGA Programming
Pattern

(a) Design Flow

VHDL
Simulator

VHDL
Simulator

Digital >
Simulator^

i

2 days

1 days

2 days

2 days

(b) Design Cycle

Figure 5: Fuzzy Controller - Design Steps

Many FPGA allocations were tried during system design. For each allocation provided to it,

Specsyn partitioned the entire behavior into the allocated units such that the performance was optimal.

In fact, Specsyn evaluates hundreds of different partitions in a few minutes, before deriving the most

efficient partition. Specsyn contains an in-built performance and cost estimator, that provides quick

and accurate on-the-fly estimates of these quality matrices. These estimates drive the optimization

process during partitioning [12].

With a couple of days experimentation, we derived the best partition for the design. The final

partition (as shown in Figure 6), consists of five major blocks, with appropriate interface protocols

introduced between them for communication.

Criap Input
ValuM

Crisp input
ValuM

Figure 6: Partitioning Results

SpecSyn's performance estimation feature was also used to compare both the sequential and the

concurrent rule evaluation styles. Partitioning and performance estimation not only revealed that the

parallel algorithm is faster and requires more area than the sequential one, but also how this tradeoff

impacts the overall system performance of the fuzzy controller (the true design criteria).

After partitioning all the objects in the specification to five chips, Specsyn was used to output a

VHDL behavioral description for each of the five chips. This behavioral description was simulated to

verify the partitioning and the interface synthesis done by SpecSyn.

3.4 Architectural Design

Behavioral descriptions for each of the five chips were obtained after system design. In Figure 7 we

show fragments of the generated VHDL behavior for a single rule evaluation (EVAL_R1). We used

VSS [13] for further exploration of the design at the microarchitecture level and synthesis of the RTL

structure. VSS performs scheduling, allocation, binding and array variable mapping and produces the

RTL design. Components required during synthesis are obtained from the Genus library [6], which is

a library of parametrized RTL components.

entity chOe is

port (fO; In integer; f1; in Integer; gclk: in bit; exec: in bit;
done: out bit; inttrOrh: in bit; addrrOm: in integer;
datarOm: in bv7; inittrRuO: in bit; datatrRuO: in bv7;
addrtrfluO: in integer; testdoutrOm: out bv7:
testrOm: in bit; testaddrrOm: in integen testtrRuO: in bit;

testaddrtrRuO: in integer; testdouttrRuO: out bv7);
end chOe;

architecture chOa of chOe is

I type MembRuleArr is array (integer rangeo) of bv7;
type MembFunctArr is array (integer range <>) of bv7;

, signal rOm: MembRuleArr(383 downto 0);
' signal trRuO: MembFunctArr(127 downto 0);

begin
PO: process

I variable if1 .itr, irOmtr integer;
! variable rOmfO, rOmfl, rOmtr, truncVal, temptr bv7;
I begin
I If exec ='1' then
I done<= '0'; ifl := l28+fl; tOmfO := tOfn(fO); rOmfl := rOm(fl);

if rOmfO < rOmfl then truncVai := tOmfO; else truncValrOmfl; end if;
itr := 0;

white itr < 128 loop
irOmtr:= itr+256; rOmtr:= rt)ni(irOmtT);
if truncVal < rOmtrthen temptr := truncVal; else temptr := rOmtr; end if;
trfluO(itr); itr := itr+1;

end loop;
done <= '1';

elsif initrOm = '1' then rOm(addrrOm) <= datarOm
elsif inittrRuO = '1' then trRuO(addrtrRuO) <= datatrfluO;
eisif testrOm = '1' then testdoutrOm <= rOm(testaddrrOm);
elsif testtrRuO = '1' then testdouttrRuO <= trRuO(testaddrtrRuO;
end if;

end process PO;
' end chOa;

Figure 7: Rule Description in VHDL

By varying the amount of allocated resources, we were able to explore a wide range of area - delay

tradeoffs at the architectural level. We list some of the experiments attempted with the VSS system.

[a] We allocated different number offunctional units. The performance of the design did not improve

with more functional units, because this description (shown in Figure 7) does not contain many

parailelizable operations.

[b] We changed the type of functional unit resources. Instead of providing a separate adder and a

separate comparators we allocated a single ALU which can perform both these operations. This

changed the design characteristic. Although the number of states increased because of fewer

resources, the utlization of the allocated components increased substantially.

[c] Since the fuzzy logic control is a memory intensive application, changes in the allocation of

memory resources drastically affected the final design. By increasing the number of ports in the

memory we were able to significantly improve the performance. We also allocated slower and

faster memories to consider the impact of memory access time on the overall design. We finally

fixed the number of ports and the access time to correspond to the values in the Xilinx FPGAs.

Thus synthesis constraints reflected the next task in the design cycle.

[d] We selected a 100 ns clock for the design, since most of the functional unit delays in the FPGA

library was in the order of 30-40 ns, and data accesses were in the order of 60 ns.

Since VSS uses fast algorithms for scheduling, variable merging and binding, it was able to produce

the architectural design for a given allocation within a minute. Thus we were able to synthesize and

verify almost about 10 different allocations in less than a day. In Figure 8 we show one of the design

netlist and the quality metrics for one of the FPGAs. This design was generated by VSS during the

exploration process. The allocation constraints provided to VSS is also shown in the figure.

The output produced by VSS is fully simulatable. However the amount of VHDL code is quite

large since the details are at the RT level. The VHDL code produced by VSS for one of the FPGAs

was about 2500 lines, and the total lines of VHDL for all the FPGAs wa;S over 10,000 lines. However

this code was directly simulated on a commercial simulator to verify correctness of the synthesized

design.

3.5 Technology Adaptation

The RTL VHDL output from VSS was the input for commercially available logic synthesis tools which

produce gate-level schematics from the RT level. We used the logic synthesis tool from Exemplar for

synthesizing the gate level design. The target synthesis architecture were the Xilinx FPGAs. A few

minor modifications in the VHDL description of some of the GENUS components was necessary, in

order to enable the logic synthesis tool to incorporate technology specific macros or semi-custom cells

for complex components such as fast adders and memories into logic synthesis. These macros or cells

n> cmaji

n n iri — riu • n r- n n n n n
mmitmmij •t.iAnaanKMiv.ia.^H.t itaKniicxniiaraiiocnii m in liiiji Mfiiji

L-! ^ ^ -1 • , [^ L_ LJ CJ C2 III UJ

Design Constraints

I I
TBMIIMI*

LJ

#Adders Quality Metrics (Arch. Design)

#Comparaters Estimated #Gates

#RAMs (1R, 1W) Performance 648 c ks

Figure 8: Architectural Design for one FPGA (EVALJll)

greatly enhanced the performance of the system when compared to synthesizing the complex functions

from scratch.

The technology-dependent schematic was the input for place and route tools, the final piece of

the design puzzle. Another commercial tool from NeoCAD was used for placement and routing of

the FPGAs. The role of these tools are well known. After place and route a backannotated circuit

schematic was generated for final digital simulation. The digital simulation incorporated timing delays

due to logic components and routing delays. This provides final verification before proceeding to actual

silicon. The total time spent in the final phase of the design process was about 5 days.

However, during the final digital simulation of the back annotated design it was found that the

wire delays were very large (almost 75 ns), making it impossible to satisfy the clock constraint of 100

ns. Thus a second iteration through the design process was necessary.

DESIGN
DESCR

CLOCK

Num Lines of SpecChart Code 50 lines

Lines of VHDL after SpecChart 100 lines

Lines of VHDL after VSS 2500 lines

FPGA type Xilinx 4000

Number of CLBs 360

Number of Gates 9K

Clock Cycle Constraint 200 ns

Clock Cycle After VSS 70 ns

Clock Cycle After NeoCAD 145 ns

Performance Constraint 200 us

Pert. Estimated by SpecSyn 155 us

Perf. Achieved by VSS 155 us

Perf. after NeoCAD 180 us

Figure 9: Results: EVALJR,!

3.6 Second Design Iteration

The design was resynthesized with a clock cycle of 200 ns. In Figure 9 we show some of the synthesis

characteristics for one of the FPGAs (EVAL_R1). The final design occupied 360 CLBs in the FPGA.

The clock constraint of 200 ns was achieved after placement and routing of the FPGA. The total time

required to evaluate each rule was 180 us. The design produced during the second iteration was able

to run through the simulation successfully Figure 10.

Since the synthesis process was rerun from the VSS level onwards, another 9 days of work was

required before the chip passed through the test vectors. In future the quality of the area and delay

estimation tools have to be improved to avoid this second iteration of the design.

."ii
i f •>••••• V.--.;

: < m

Script plas^iack ccwplotad.
Initialization ctaplotad.
Copyright 1931-19^ by NeoCAO Inc. All rights reserved.
EPIC Fow*iT#4.0 - raa^ for Input.^

• ii

>V.: i f' A V
> St;sftee

Figure 10: Placement and Routing Results : EVAL_R1

4 Conclusions

In this paper we have discussed a design methodology aimed at producing quick design turnarounds.

We have illustrated the power of this methodology with an industrial design, that was (a) specified at

the highest levels of abstractions using SpecCharts (b) synthesized at the system level with SpecSyn

(c) further synthesized at the RT level using VSS and finally (d) implemented with FPGAs using

commercial tools.

In this experiment the design quality Is comparable to manual designs, but the design time is

orders of magnitude less. Since the designer was dealing with higher levels of abstractions, a large

design space could be explored by quickly changing some of the exploration parameters. For example,

numerous partitionings in the system level and numerous microarchitectures were quickly designed

(in a few minutes). Providing hooks to VHDL, allowed verification of the designs at each of the

abstraction levels.

We are currently working on improvements to achieve a design cycle time of 100 hours, which will

make this methodology extremely useful in cases where designs have to be delivered within a few

weeks. To meet this demand, weenvision that the design process would automatically move to higher

abstraction levels, where the amount of detail is at a minimum.

5 Acknowledgements

The design of the fuzzy logic controller was supported by a grant from Matsushita Electric Works

Research and Development Laboratory (San Jose, California). We thank their support. We would

also like to thank Yoshii Shimmei (Matsushita Electric Works Research and Development Laboratory),

for his suggestions and useful discussions during the course of this project.

We are extremely grateful to the Semiconductor Research Corporation, for funding the development

of the SpecSyn and the VSS projects (Grant 92-DJ-146).

6 References

[1] D. Gajski, F. Vahid, and S. Narayan, "SpecCharts: A VHDL Front-End for Embedded Systems."

Technical Report93-31, 1993.

[2] F. Vahid, S. Narayan, and D. Gajski, "SpecCharts: A Language for System Level Synthesis," in

Proc. of the International Symposium on Computer Hardware Description Languages and their

Applications^ 1991.

[3] IEEE Standard VHDL Language Reference Manual^ 1988.

[4] D. Gajski, F. Vahid, and S. Narayan, "A System-Design Methodology: Executable-Specification

Refinement," in Proceedings in European Conference on Design Automation, 1994.

[5] Daniel Gajski, Nikil Dutt, Allen Wu and Steve Lin, High Level Synthesis. Kluwer Academic

Publishers, 1992.

[6] P. Jha, T. Hadley, and N. Dutt, "The GENUS User Manual and C Programming Library,"

technical report. Dept. of Information and Computer Science, University of California, Irvine,

CA 92717, 1993. Technical Report ; 93-32.

[7] L. Ramachandran, D. D. Gajski, and V. Chaiyakul, "An algorithm for array variable clustering,"

in Proc. of the EDAC94 Conference, Feb 1994.

[8] L. Ramachandran and D. D. Gajski, "Architectural Tradeoffs in Synthesis ofPipelined Controls,"

in Proc. of the European Design Automation Conference,September 1993.

[9] Xilinx, The Programmable Gate Array Data Book. 1992.

[10] G.J.Klir and T.A.Folger, Fuzzy Sets, Uncertainty and Information. Prentice Hall, 1988.

[11] G.C.Lee, "Fuzzy Logic in Control Systems: Fuzzy Logic Controller - Parts I and II," IEEE

Transactions on Systems, Man and Cybernetics, pp. 404-435, March/April 1990.

[12] F. Vahid and D. Gajski, "Specification Partitioning for System Design," in Proc. 29th DAC, 1992.

[13] L. Ramachandran, N.Holmes, and D. Gajski, "VSS-AA: VHDL Synthesis System with Architec

tural Allocator. Human Interface and the Design Process," tech. rep. 94-04, Dept. of Information

and Computer Science, Univ. of California, Irvine, CA 92717, 1994.

